aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog7
-rw-r--r--src/algebra/catdef.spad.pamphlet4
-rw-r--r--src/algebra/naalgc.spad.pamphlet2
-rw-r--r--src/share/algebra/browse.daase1918
-rw-r--r--src/share/algebra/category.daase6308
-rw-r--r--src/share/algebra/compress.daase1992
-rw-r--r--src/share/algebra/interp.daase9778
-rw-r--r--src/share/algebra/operation.daase32557
8 files changed, 25283 insertions, 27283 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 0319eb6b..4bb8e6e5 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,10 @@
+2009-02-19 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/catdef.spad.pamphlet (characteristic$Ring): Make a
+ constant.
+ * algebra/naalgc.spad.pamphlet
+ (characteristic$NonAssociativeRing): Likewise.
+
2009-02-18 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/parse.boot (parseHas): Constants are not attributes.
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet
index 4cfca15c..aec301d8 100644
--- a/src/algebra/catdef.spad.pamphlet
+++ b/src/algebra/catdef.spad.pamphlet
@@ -1529,7 +1529,7 @@ RightModule(R:Rng):Category == AbelianGroup with
--Ring(): Category == Join(Rng,Monoid,LeftModule(%:Rng)) with
Ring(): Category == Join(Rng,Monoid,LeftModule(%),CoercibleFrom Integer) with
--operations
- characteristic: () -> NonNegativeInteger
+ characteristic: NonNegativeInteger
++ characteristic() returns the characteristic of the ring
++ this is the smallest positive integer n such that
++ \spad{n*x=0} for all x in the ring, or zero if no such n
@@ -1737,6 +1737,8 @@ VectorSpace(S:Field): Category == Module(S) with
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
+--Copyright (C) 2007-2009, Gabriel Dos Reis.
+--All rights reversed.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
diff --git a/src/algebra/naalgc.spad.pamphlet b/src/algebra/naalgc.spad.pamphlet
index b185cb29..cae5d5ea 100644
--- a/src/algebra/naalgc.spad.pamphlet
+++ b/src/algebra/naalgc.spad.pamphlet
@@ -183,7 +183,7 @@ NonAssociativeRng(): Category == Join(AbelianGroup,Monad) with
++ the multiplication is not necessarily commutative or associative.
NonAssociativeRing(): Category == Join(NonAssociativeRng,MonadWithUnit) with
--operations
- characteristic: -> NonNegativeInteger
+ characteristic: NonNegativeInteger
++ characteristic() returns the characteristic of the ring.
--we can not make this a constant, since some domains are mutable
coerce: Integer -> %
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 62771912..ae573563 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2282835 . 3443721767)
+(2281224 . 3444026013)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -56,10 +56,10 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3195)
+(-32 R -3485)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
+((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -88,14 +88,14 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3195 UP UPUP -3593)
+(-40 -3485 UP UPUP -2999)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4034 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4034 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4034 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
-(-41 R -3195)
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-350))) (-3943 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-350)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-3943 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-350)))) (-3943 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-350))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-546)))) (-3943 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+(-41 R -3485)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,24 +106,24 @@ NIL
((|HasCategory| |#1| (QUOTE (-307))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
-((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))))
+((-4405 |has| |#1| (-556)) (-4403 . T) (-4402 . T))
+((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4408 . T) (-4409 . T))
-((-4034 (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|))))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))))
+((-3943 (-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-846)))) (-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
+((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-546)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
@@ -132,19 +132,19 @@ NIL
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
((-4405 . T))
NIL
-(-51 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-51)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
-(-52)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-52 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
(-53 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3195)
+(-54 |Base| R -3485)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -160,131 +160,131 @@ NIL
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
((-4408 . T) (-4409 . T))
NIL
-(-58 A B)
+(-58 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4409 . T) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-59 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-61 -3352)
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-61 -3956)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-62 -3956)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3352)
+(-63 -3956)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3352)
+(-64 -3956)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3352)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-65 -3352)
+(-65 -3956)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3352)
+(-66 -3956)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3352)
+(-67 -3956)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3352)
+(-68 -3956)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3352)
+(-69 -3956)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3352)
+(-70 -3956)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3352)
+(-71 -3956)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3352)
+(-72 -3956)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3352)
+(-73 -3956)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3352)
+(-74 -3956)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-75 -3956)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-76 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3352)
-((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-77 |nameOne| |nameTwo| |nameThree|)
+((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3352)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-78 -3956)
+((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3352)
+(-79 -3956)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3352)
+(-80 -3956)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3352)
+(-81 -3956)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3352)
+(-82 -3956)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+NIL
+NIL
+(-83 -3956)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3352)
+(-84 -3956)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3352)
+(-85 -3956)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3352)
+(-86 -3956)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3352)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-87 -3956)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -3352)
+(-88 -3956)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3352)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
-NIL
-NIL
-(-89 -3352)
+(-89 -3956)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -295,7 +295,7 @@ NIL
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -343,7 +343,7 @@ NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -363,7 +363,7 @@ NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((|HasCategory| (-546) (QUOTE (-906))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-546) (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-147))) (|HasCategory| (-546) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-546) (QUOTE (-1016))) (|HasCategory| (-546) (QUOTE (-816))) (-3943 (|HasCategory| (-546) (QUOTE (-816))) (|HasCategory| (-546) (QUOTE (-846)))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-1144))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-546) (QUOTE (-233))) (|HasCategory| (-546) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-546) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -309) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -286) (QUOTE (-546)) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-307))) (|HasCategory| (-546) (QUOTE (-545))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-546) (LIST (QUOTE -636) (QUOTE (-546)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (|HasCategory| (-546) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -371,7 +371,7 @@ NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-859)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
((-4403 . T) (-4402 . T))
@@ -380,15 +380,15 @@ NIL
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-113 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-846))))
-(-114)
+(-113)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3195 UP)
+(-114 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-846))))
+(-115 -3485 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -399,7 +399,7 @@ NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-4034 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1016))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-3943 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -415,7 +415,7 @@ NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
@@ -435,19 +435,19 @@ NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-128)
-((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4034 (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
-(-129)
-((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
+((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
+(-129)
+((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
+((-4409 . T) (-4408 . T))
+((-3943 (-12 (|HasCategory| (-128) (QUOTE (-846))) (|HasCategory| (-128) (LIST (QUOTE -309) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1094))) (|HasCategory| (-128) (LIST (QUOTE -309) (QUOTE (-128)))))) (-3943 (-12 (|HasCategory| (-128) (QUOTE (-1094))) (|HasCategory| (-128) (LIST (QUOTE -309) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-128) (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| (-128) (QUOTE (-846))) (|HasCategory| (-128) (QUOTE (-1094)))) (|HasCategory| (-128) (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-128) (QUOTE (-1094))) (|HasCategory| (-128) (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| (-128) (QUOTE (-1094))) (|HasCategory| (-128) (LIST (QUOTE -309) (QUOTE (-128))))))
(-130)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -468,12 +468,12 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
(((-4410 "*") . T))
NIL
-(-135 |minix| -3308 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-135 |minix| -3006 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-136 |minix| -3308 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-136 |minix| -3006 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
(-137)
@@ -495,7 +495,7 @@ NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4408 . T) (-4398 . T) (-4409 . T))
-((-4034 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-3943 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -520,7 +520,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4405 . T))
NIL
-(-148 -3195 UP UPUP)
+(-148 -3485 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -531,7 +531,7 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasAttribute| |#1| (QUOTE -4408)))
+((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasAttribute| |#1| (QUOTE -4408)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3195)
+(-158 R -3485)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -573,11 +573,11 @@ NIL
NIL
NIL
(-161)
-((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
+((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
(-162)
-((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
+((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
(-163)
@@ -591,23 +591,23 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-846))))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-846))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4401 -4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1413 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4401 -3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1453 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-168 R S)
+(-168 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4401 -3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1453 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-350))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-1016))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-906))))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4407)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-350)))))
+(-169 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-169 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4401 -4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1413 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4407)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -643,7 +643,7 @@ NIL
(-178 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-948 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|))))
+((|HasCategory| (-942 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|))))
(-179 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -661,26 +661,26 @@ NIL
NIL
NIL
(-183)
-((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
+((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-184 S)
-((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+(-184)
+((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
-(-185)
+(-185 S)
((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-186)
-((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-187)
-((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
+((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-188 R -3195)
+(-188 R -3485)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,28 +788,28 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -3195 UP UPUP R)
+(-215 -3485 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -3195 FP)
+(-216 -3485 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((|HasCategory| (-546) (QUOTE (-906))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-546) (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-147))) (|HasCategory| (-546) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-546) (QUOTE (-1016))) (|HasCategory| (-546) (QUOTE (-816))) (-3943 (|HasCategory| (-546) (QUOTE (-816))) (|HasCategory| (-546) (QUOTE (-846)))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-1144))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-546) (QUOTE (-233))) (|HasCategory| (-546) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-546) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -309) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -286) (QUOTE (-546)) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-307))) (|HasCategory| (-546) (QUOTE (-545))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-546) (LIST (QUOTE -636) (QUOTE (-546)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (|HasCategory| (-546) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -3195)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-219 R -3485)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-220 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-221 R1 R2)
@@ -819,18 +819,18 @@ NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4405 . T))
NIL
-(-224 R -3195)
+(-224 R -3485)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4184 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -839,7 +839,7 @@ NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
@@ -876,22 +876,22 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -3308 R)
+(-237 S -3006 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093))))
-(-238 -3308 R)
+((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094))))
+(-238 -3006 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
NIL
-(-239 -3308 A B)
+(-239 -3006 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-3943 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+(-240 -3006 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -3308 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -911,15 +911,15 @@ NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-556)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -930,64 +930,64 @@ NIL
NIL
(-250 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4405 -4034 (-2188 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2188 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4405)) (-2188 (|has| |#4| (-1045)) (|has| |#4| (-636 (-563))))) (-4402 |has| |#4| (-1045)) (-4403 |has| |#4| (-1045)) ((-4410 "*") |has| |#4| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-4034 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093)))) (-4034 (|HasAttribute| |#4| (QUOTE -4405)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
+((-4405 -3943 (-3247 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-3247 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4405)) (-3247 (|has| |#4| (-1045)) (|has| |#4| (-636 (-546))))) (-4402 |has| |#4| (-1045)) (-4403 |has| |#4| (-1045)) ((-4410 "*") |has| |#4| (-172)) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-363))) (-3943 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-3943 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-3943 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-3943 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasAttribute| |#4| (QUOTE -4405)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
(-251 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4405 -4034 (-2188 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2188 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4405)) (-2188 (|has| |#3| (-1045)) (|has| |#3| (-636 (-563))))) (-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4034 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4034 (|HasAttribute| |#3| (QUOTE -4405)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4405 -3943 (-3247 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-3247 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4405)) (-3247 (|has| |#3| (-1045)) (|has| |#3| (-636 (-546))))) (-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-363))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-3943 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasAttribute| |#3| (QUOTE -4405)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-252 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-253 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-254 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
((-4408 . T) (-4409 . T))
NIL
-(-255)
+(-255 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+NIL
+NIL
+(-256)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-256 R |Ex|)
+(-257 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-257)
+(-258)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-258 R)
+(-259 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-259 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
-NIL
-NIL
(-260)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
(-261)
-((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-262 S)
-((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
+(-262)
+((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-263)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+(-263 S)
+((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
(-264 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-265 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1032,11 +1032,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-276 R -3195)
+(-276 R -3485)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-277 R -3195)
+(-277 R -3485)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1055,7 +1055,7 @@ NIL
(-281 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))))
+((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))))
(-282 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
((-4409 . T))
@@ -1084,7 +1084,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-289 S R |Mod| -4219 -4300 |exactQuo|)
+(-289 S R |Mod| -2194 -3924 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
@@ -1100,58 +1100,58 @@ NIL
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-293 S R)
+(-293 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4405 -3943 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-1045)) (-4403 |has| |#1| (-1045)))
+((|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-298))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172))))
+(-294 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-294 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4405 -4034 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-1045)) (-4403 |has| |#1| (-1045)))
-((|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-302))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172))))
(-295 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))))
(-296)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-297 -3195 S)
-((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
+(-297 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1045))))
+(-298)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-(-298 E -3195)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
+(-299 -3485 S)
+((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
-(-299 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+NIL
+(-300 E -3485)
+((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-300)
+(-301)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-301 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+(-302 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1045))))
-(-302)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+NIL
+(-303)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-303 R1)
+(-304 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-304 R1 R2)
+(-305 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-305)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
-NIL
-NIL
(-306 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
@@ -1168,35 +1168,35 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-310 -3195)
+(-310 -3485)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
(-311)
-((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
+((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
(-312)
-((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
+((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
(-313 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-4034 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-4034 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145))))))
-(-314 R S)
+((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1016))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-3943 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-906)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145)))))
+(-314 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4405 -3943 (-3247 (|has| |#1| (-1045)) (|has| |#1| (-636 (-546)))) (-12 (|has| |#1| (-556)) (-3943 (-3247 (|has| |#1| (-1045)) (|has| |#1| (-636 (-546)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-556)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-556)) (-4400 |has| |#1| (-556)))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-3943 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3943 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-546)))))
+(-315 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-315 R FE)
+(-316 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-316 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4405 -4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-12 (|has| |#1| (-555)) (-4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555)))
-((-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4034 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4034 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-317 R -3195)
+(-317 R -3485)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1206,8 +1206,8 @@ NIL
NIL
(-319 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-546)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-320 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1219,7 +1219,7 @@ NIL
(-322 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
((-4403 . T) (-4402 . T))
-((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-788))))
+((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-788))))
(-323 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1231,20 +1231,20 @@ NIL
(-325 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
(-326 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-327 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-328 S -3195)
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-328 S -3485)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))))
-(-329 -3195)
+(-329 -3485)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
@@ -1260,22 +1260,22 @@ NIL
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-333 -3485 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
+(-334 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-334 S -3195 UP UPUP R)
+(-335 S -3485 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3195 UP UPUP R)
+(-336 -3485 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-336 -3195 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
(-337 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
@@ -1287,87 +1287,87 @@ NIL
(-339 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-341 S -3195 UP UPUP)
+((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-546)))))
+(-340 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-3943 (|HasCategory| (-902 |#1|) (QUOTE (-145))) (|HasCategory| (-902 |#1|) (QUOTE (-368)))) (|HasCategory| (-902 |#1|) (QUOTE (-147))) (|HasCategory| (-902 |#1|) (QUOTE (-368))) (|HasCategory| (-902 |#1|) (QUOTE (-145))))
+(-341 S -3485 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363))))
-(-342 -3195 UP UPUP)
+(-342 -3485 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-343 |p| |extdeg|)
+(-343 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
+NIL
+(-344 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
-(-344 GF |defpol|)
+((-3943 (|HasCategory| (-902 |#1|) (QUOTE (-145))) (|HasCategory| (-902 |#1|) (QUOTE (-368)))) (|HasCategory| (-902 |#1|) (QUOTE (-147))) (|HasCategory| (-902 |#1|) (QUOTE (-368))) (|HasCategory| (-902 |#1|) (QUOTE (-145))))
+(-345 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-345 GF |extdeg|)
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-346 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-346 GF)
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-347 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-347 F1 GF F2)
+(-348 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-348 S)
+(-349 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-349)
+(-350)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-350 R UP -3195)
+(-351 R UP -3485)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-351 |p| |extdeg|)
+(-352 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
-(-352 GF |uni|)
+((-3943 (|HasCategory| (-902 |#1|) (QUOTE (-145))) (|HasCategory| (-902 |#1|) (QUOTE (-368)))) (|HasCategory| (-902 |#1|) (QUOTE (-147))) (|HasCategory| (-902 |#1|) (QUOTE (-368))) (|HasCategory| (-902 |#1|) (QUOTE (-145))))
+(-353 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-353 GF |extdeg|)
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-354 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-354 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-356 -3195 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-356 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-357 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+(-357 -3485 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-358 -3195 FP FPP)
+(-358 -3485 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-359 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-3943 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-360 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1384,21 +1384,21 @@ NIL
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-364 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-364 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-365 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-365 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
(-366 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-555))))
+((|HasCategory| |#2| (QUOTE (-556))))
(-367 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
+((-4405 |has| |#1| (-556)) (-4403 . T) (-4402 . T))
NIL
(-368)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1412,18 +1412,18 @@ NIL
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-371 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
-NIL
-NIL
-(-372 A S)
+(-371 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))))
-(-373 S)
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))))
+(-372 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
((-4408 . T))
NIL
+(-373 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+NIL
+NIL
(-374 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T))
@@ -1435,43 +1435,43 @@ NIL
(-376 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))))
+((|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))))
(-377 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
((-4405 . T))
NIL
-(-378 |Par|)
+(-378)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4391 . T) (-4399 . T) (-4184 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+NIL
+(-379 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-379)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4391 . T) (-4399 . T) (-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-381 R S)
-((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-172))))
-(-382 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+(-382 R S)
+((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
((-4403 . T) (-4402 . T))
-NIL
+((|HasCategory| |#1| (QUOTE (-172))))
(-383)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-384)
+(-384 R |Basis|)
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((-4403 . T) (-4402 . T))
+NIL
+(-385)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-385 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4403 . T) (-4402 . T))
-((|HasCategory| |#1| (QUOTE (-172))))
(-386 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
@@ -1496,35 +1496,35 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-392 -3195 UP UPUP R)
+(-392 -3485 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-393 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-393)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-394)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-394 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
(-395)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
(-396)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
(-397)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-398 -3352 |returnType| -4094 |symbols|)
+(-398 -3956 |returnType| -1497 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-399 -3195 UP)
+(-399 -3485 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1546,121 +1546,121 @@ NIL
((|HasAttribute| |#1| (QUOTE -4391)) (|HasAttribute| |#1| (QUOTE -4399)))
(-404)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4184 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-405 R S)
+(-405 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1212))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
+(-406 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-406 A B)
-((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
-NIL
-NIL
(-407 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
((-4395 -12 (|has| |#1| (-6 -4406)) (|has| |#1| (-452)) (|has| |#1| (-6 -4395))) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-4034 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4395)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-408 S R UP)
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-816))) (-3943 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-817)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-408 A B)
+((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
+NIL
+NIL
+(-409 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-409 R UP)
+(-410 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-410 A S)
+(-411 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-411 S)
+((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))))
+(-412 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-412 R1 F1 U1 A1 R2 F2 U2 A2)
-((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
-NIL
-NIL
-(-413 R -3195 UP A)
+(-413 R -3485 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
((-4405 . T))
NIL
-(-414 R -3195 UP A |ibasis|)
+(-414 R1 F1 U1 A1 R2 F2 U2 A2)
+((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
+NIL
+NIL
+(-415 R -3485 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|))))
-(-415 AR R AS S)
+(-416 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-416 S R)
+(-417 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-417 R)
+(-418 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
+((-4405 |has| |#1| (-556)) (-4403 . T) (-4402 . T))
NIL
-(-418 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1212))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
(-419 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-420 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-420 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))))
+(-421 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4405 -3943 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-556)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-556)) (-4400 |has| |#1| (-556)))
NIL
-(-421 R A S B)
+(-422 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-422 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
+(-423 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-423 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+(-424 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-424 A S)
+(-425 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
-(-425 S)
+(-426 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
((-4408 . T) (-4398 . T) (-4409 . T))
NIL
-(-426 R -3195)
+(-427 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+NIL
+NIL
+(-428 R -3485)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-427 R E)
+(-429 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4395 -12 (|has| |#1| (-6 -4395)) (|has| |#2| (-6 -4395))) (-4402 . T) (-4403 . T) (-4405 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#2| (QUOTE -4395))))
-(-428 R -3195)
+(-430 R -3485)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-429 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-NIL
-((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))))
-(-430 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4405 -4034 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555)))
-NIL
-(-431 R -3195)
+(-431 R -3485)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-432 R -3195)
+(-432 R -3485)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-433 R -3195)
+(-433 R -3485)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1668,16 +1668,16 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-435 R -3195 UP)
+(-435 R -3485 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48)))))
(-436)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
(-437)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
(-438 |f|)
@@ -1700,7 +1700,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-443 R UP -3195)
+(-443 R UP -3485)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1717,21 +1717,21 @@ NIL
NIL
NIL
(-447 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
-NIL
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
+((|HasCategory| |#1| (QUOTE (-363))))
(-448 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
+((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
(-449 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
(-450 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+NIL
NIL
-((|HasCategory| |#1| (QUOTE (-363))))
(-451 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
@@ -1742,12 +1742,12 @@ NIL
NIL
(-453 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4405 |has| (-407 (-948 |#1|)) (-555)) (-4403 . T) (-4402 . T))
-((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-555))))
+((-4405 |has| (-407 (-942 |#1|)) (-556)) (-4403 . T) (-4402 . T))
+((|HasCategory| (-407 (-942 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-942 |#1|)) (QUOTE (-556))))
(-454 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-556)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-455 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1783,7 +1783,7 @@ NIL
(-463 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))))
(-464 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1812,7 +1812,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-471 |lv| -3195 R)
+(-471 |lv| -3485 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1826,16 +1826,16 @@ NIL
NIL
(-474 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-546)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-475 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))))
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))))
(-476 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))))
(-477)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
@@ -1847,19 +1847,19 @@ NIL
(-479 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))))
(-480)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-481 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-482 -3308 S)
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-556)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-482 -3006 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-3943 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-483)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
@@ -1867,8 +1867,8 @@ NIL
(-484 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-485 -3195 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-485 -3485 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1879,11 +1879,11 @@ NIL
(-487)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((|HasCategory| (-546) (QUOTE (-906))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-546) (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-147))) (|HasCategory| (-546) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-546) (QUOTE (-1016))) (|HasCategory| (-546) (QUOTE (-816))) (-3943 (|HasCategory| (-546) (QUOTE (-816))) (|HasCategory| (-546) (QUOTE (-846)))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-1144))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-546) (QUOTE (-233))) (|HasCategory| (-546) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-546) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -309) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -286) (QUOTE (-546)) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-307))) (|HasCategory| (-546) (QUOTE (-545))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-546) (LIST (QUOTE -636) (QUOTE (-546)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (|HasCategory| (-546) (QUOTE (-145)))))
(-488 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))
+((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))))
(-489 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1904,34 +1904,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-494 -3195 UP |AlExt| |AlPol|)
+(-494 -3485 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-495)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
+((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-546)))))
(-496 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-497 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-498 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-499 R UP -3195)
+(-499 R UP -3485)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-500 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-859)))))
(-501 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1944,7 +1944,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-504 -3195 |Expon| |VarSet| |DPoly|)
+(-504 -3485 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-1169)))))
@@ -1969,15 +1969,15 @@ NIL
NIL
NIL
(-510 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
(-511 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-512 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-513 S A B)
@@ -1995,7 +1995,7 @@ NIL
(-516 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-517)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -2003,15 +2003,15 @@ NIL
(-518 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145))))
+((-3943 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145))))
(-519 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-520 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-521 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -2023,7 +2023,7 @@ NIL
(-523 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-524)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2056,7 +2056,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-532 K -3195 |Par|)
+(-532 K -3485 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2068,19 +2068,19 @@ NIL
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-535 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-535)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-536)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-536 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
(-537 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-538 K -3195 |Par|)
+(-538 K -3485 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2101,7 +2101,7 @@ NIL
NIL
NIL
(-543 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
(-544 S)
@@ -2113,90 +2113,90 @@ NIL
((-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-546)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4390 . T) (-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+NIL
+(-547)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-547)
+(-548)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-548)
+(-549)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-549 |Key| |Entry| |addDom|)
+(-550 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
-(-550 R -3195)
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))))
+(-551 R -3485)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-551 R0 -3195 UP UPUP R)
+(-552 R0 -3485 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-552)
+(-553)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-553 R)
+(-554 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1402 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4184 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-554 S)
+(-555 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-555)
+(-556)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-556 R -3195)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-557 R -3485)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-557 I)
+(-558 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-558)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-559)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-559 R -3195 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-560 R -3485 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
-(-560)
+((|HasCategory| |#3| (LIST (QUOTE -653) (|devaluate| |#2|))))
+(-561)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-561 -3195 UP UPUP R)
+(-562 -3485 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-562 -3195 UP)
+(-563 -3485 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-563)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4390 . T) (-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-NIL
(-564)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-565 R -3195 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-565 R -3485 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
-(-566 R -3195)
+((|HasCategory| |#3| (LIST (QUOTE -653) (|devaluate| |#2|))))
+(-566 R -3485)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-626)))))
-(-567 -3195 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-627)))))
+(-567 -3485 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2204,27 +2204,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-569 -3195)
+(-569 -3485)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-570 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1402 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4184 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-571)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-572 R -3195)
+(-572 R -3485)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-626))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-555))))
-(-573 -3195 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556))))
+(-573 -3485 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-574 R -3195)
+(-574 R -3485)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2256,18 +2256,18 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-582 R -3195)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-582 -3485)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4403 . T) (-4402 . T))
+((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))))
+(-583 E -3485)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-583 E -3195)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-584 R -3485)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-584 -3195)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4403 . T) (-4402 . T))
-((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))))
(-585 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2295,19 +2295,19 @@ NIL
(-591 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4034 (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-3943 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-3943 (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-592 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-593 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))) (|HasCategory| (-563) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|)))) (|HasCategory| (-546) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))))
(-594 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4403 |has| |#1| (-555)) (-4402 |has| |#1| (-555)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-555))))
+((-4403 |has| |#1| (-556)) (-4402 |has| |#1| (-556)) ((-4410 "*") |has| |#1| (-556)) (-4401 |has| |#1| (-556)) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-556))))
(-595 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
@@ -2316,7 +2316,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-597 R -3195 FG)
+(-597 R -3485 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2327,11 +2327,11 @@ NIL
(-599 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-600 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-1093))))
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-1094))))
(-601 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2346,12 +2346,12 @@ NIL
NIL
(-604 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4405 -4034 (-2188 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T))
-((-4034 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4405 -3943 (-3247 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))) (-4403 . T) (-4402 . T))
+((-3943 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-605 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -610) (QUOTE (-859)))))
(-606 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2360,14 +2360,14 @@ NIL
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
((-4409 . T))
NIL
-(-608 R S)
-((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
+(-608 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))))
+(-609 R S)
+((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
-(-609 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))))
(-610 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2376,7 +2376,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-612 -3195 UP)
+(-612 -3485 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2392,26 +2392,26 @@ NIL
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-616 S R)
+(-616 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-844))))
+(-617 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-617 R)
+(-618 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
((-4405 . T))
NIL
-(-618 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-844))))
-(-619 R -3195)
+(-619 R -3485)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-620 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
((-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4401 . T) (-4405 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))))
(-621 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2432,66 +2432,66 @@ NIL
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-626)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-626 R -3485)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-627 R -3195)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-627)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-628 |lv| -3195)
+(-628 |lv| -3485)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-629)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1151) (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))))
-(-630 S R)
+((-12 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2233) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -309) (QUOTE (-51))))) (|HasCategory| (-1151) (QUOTE (-846))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (QUOTE (-1094))))
+(-630 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4405 -3943 (-3247 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))) (-4403 . T) (-4402 . T))
+((-3943 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -418) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+(-631 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-631 R)
+(-632 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T))
NIL
-(-632 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4405 -4034 (-2188 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T))
-((-4034 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-633 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
(-634 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-635 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2174 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
+((-3733 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
(-636 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4405 . T))
NIL
-(-637 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
-NIL
-NIL
+(-637 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4409 . T) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-638 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-639 A B C)
+(-639 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+NIL
+NIL
+(-640 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-640 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-641 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2499,7 +2499,7 @@ NIL
(-642 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-643 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2516,50 +2516,50 @@ NIL
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-647 R -3195 L)
+(-647 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4403 . T) (-4402 . T))
+((|HasCategory| |#1| (QUOTE (-787))))
+(-648 R -3485 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-648 A)
+(-649 A -2799)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-650 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-649 A M)
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-651 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-650 S A)
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-652 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-651 A)
+(-653 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-652 -3195 UP)
+(-654 -3485 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-653 A -4231)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-654 A L)
+(-655 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-655 S)
+(-656 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-656)
+(-657)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-657 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4403 . T) (-4402 . T))
-((|HasCategory| |#1| (QUOTE (-787))))
(-658 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
@@ -2576,12 +2576,12 @@ NIL
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
((-4409 . T) (-4408 . T))
NIL
-(-662 -3195)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-662 -3485 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-663 -3195 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-663 -3485)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-664 R E OV P)
@@ -2591,7 +2591,7 @@ NIL
(-665 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4405 . T) (-4408 . T) (-4402 . T) (-4403 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))) (-4034 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-3943 (|HasAttribute| |#2| (QUOTE (-4410 #1#))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-666)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2611,7 +2611,7 @@ NIL
(-670 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-671)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2648,26 +2648,26 @@ NIL
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-680 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
-NIL
-NIL
-(-681 S R |Row| |Col|)
+(-680 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))))
-(-682 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))))
+(-681 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
((-4408 . T) (-4409 . T))
NIL
+(-682 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+NIL
+NIL
(-683 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))))
+((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))))
(-684 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4408 . T) (-4409 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-685 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2676,7 +2676,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-687 S -3195 FLAF FLAS)
+(-687 S -3485 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2686,8 +2686,8 @@ NIL
NIL
(-689)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4401 . T) (-4406 |has| (-694) (-363)) (-4400 |has| (-694) (-363)) (-1413 . T) (-4407 |has| (-694) (-6 -4407)) (-4404 |has| (-694) (-6 -4404)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-4034 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-4034 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4034 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-694) (QUOTE (-1018))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-555)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-555))) (|HasAttribute| (-694) (QUOTE -4407)) (|HasAttribute| (-694) (QUOTE -4404)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-145)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-349)))))
+((-4401 . T) (-4406 |has| (-694) (-363)) (-4400 |has| (-694) (-363)) (-1453 . T) (-4407 |has| (-694) (-6 -4407)) (-4404 |has| (-694) (-6 -4404)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-3943 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-3943 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-350)))) (|HasCategory| (-694) (QUOTE (-350))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (-3943 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-350)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-694) (QUOTE (-1016))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-3943 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (-12 (|HasCategory| (-694) (QUOTE (-350))) (|HasCategory| (-694) (QUOTE (-906)))) (|HasCategory| (-694) (QUOTE (-363)))) (-3943 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-906)))) (-12 (|HasCategory| (-694) (QUOTE (-350))) (|HasCategory| (-694) (QUOTE (-906))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906))) (-3943 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (|HasCategory| (-694) (QUOTE (-363)))) (-3943 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (|HasCategory| (-694) (QUOTE (-556)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-556))) (|HasAttribute| (-694) (QUOTE -4407)) (|HasAttribute| (-694) (QUOTE -4404)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (|HasCategory| (-694) (QUOTE (-145)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-906)))) (|HasCategory| (-694) (QUOTE (-350)))))
(-690 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
((-4409 . T))
@@ -2697,16 +2697,16 @@ NIL
NIL
NIL
(-692)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-693 OV E -3195 PG)
+(-693 OV E -3485 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-694)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4184 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-695 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2736,7 +2736,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-702 S -3213 I)
+(-702 S -3058 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2756,14 +2756,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-707 R |Mod| -4219 -4300 |exactQuo|)
+(-707 R |Mod| -2194 -3924 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-708 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-709 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2772,7 +2772,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-711 R |Mod| -4219 -4300 |exactQuo|)
+(-711 R |Mod| -2194 -3924 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4405 . T))
NIL
@@ -2784,7 +2784,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4403 . T) (-4402 . T))
NIL
-(-714 -3195)
+(-714 -3485)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
((-4405 . T))
NIL
@@ -2807,7 +2807,7 @@ NIL
(-719 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))))
+((|HasCategory| |#2| (QUOTE (-350))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))))
(-720 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
@@ -2820,7 +2820,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-723 -3195 UP)
+(-723 -3485 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2838,8 +2838,8 @@ NIL
NIL
(-727 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-556)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-728 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2857,13 +2857,13 @@ NIL
((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846))))
(-732 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4408 . T) (-4398 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-733 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
((-4398 . T) (-4409 . T))
NIL
-(-733 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4408 . T) (-4398 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-734)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2874,7 +2874,7 @@ NIL
NIL
(-736 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-737 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2972,11 +2972,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-761 -3195)
+(-761 -3485)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-762 P -3195)
+(-762 P -3485)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -2984,7 +2984,7 @@ NIL
NIL
NIL
NIL
-(-764 UP -3195)
+(-764 UP -3485)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3000,16 +3000,16 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4410 "*") . T))
NIL
-(-768 R -3195)
+(-768 R -3485)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-769 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-769)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-770)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-770 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
(-771 R |PolR| E |PolE|)
@@ -3020,7 +3020,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-773 -3195 |ExtF| |SUEx| |ExtP| |n|)
+(-773 -3485 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3034,20 +3034,20 @@ NIL
NIL
(-776 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (QUOTE (-545)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563))))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-563))))))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-777 R S)
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3733 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-3943 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3733 (|HasCategory| |#1| (QUOTE (-545)))) (-3733 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3733 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-546))))) (-3733 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3733 (|HasCategory| |#1| (LIST (QUOTE -987) (QUOTE (-546))))))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-777 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-778 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-778 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-779 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))
(-780 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
((-4409 . T) (-4408 . T))
@@ -3055,7 +3055,7 @@ NIL
(-781 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172))))
+((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172))))
(-782)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3092,43 +3092,43 @@ NIL
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-791)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
-NIL
-NIL
-(-792 S R)
+(-791 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
-(-793 R)
+((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
+(-792 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-794 -4034 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+(-793)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-795 R)
+(-794 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4034 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-3943 (|HasCategory| (-992 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))))
+(-795 -3943 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+NIL
+NIL
(-796)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-797 R -3195 L)
+(-797 R -3485 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-798 R -3195)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-798 R -3485)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-799)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-800 R -3195)
+(-800 R -3485)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3136,11 +3136,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-802 -3195 UP UPUP R)
+(-802 -3485 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-803 -3195 UP L LQ)
+(-803 -3485 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3148,38 +3148,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-805 -3195 UP L LQ)
+(-805 -3485 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-806 -3195 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-806 -3485 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-807 -3195 L UP A LO)
+(-807 -3485 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-808 -3195 UP)
+(-808 -3485 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-809 -3195 LO)
+(-809 -3485 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-810 -3195 LODO)
+(-810 -3485 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-811 -3308 S |f|)
+(-811 -3006 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-3943 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-812 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-813 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
(((-4410 "*") |has| |#2| (-363)) (-4401 |has| |#2| (-363)) (-4406 |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 . T) (-4403 . T) (-4402 . T))
@@ -3197,37 +3197,37 @@ NIL
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-817)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
(-818)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-819)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-820)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-821)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-822 R)
+(-822)
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+NIL
+NIL
+(-823 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-823 P R)
+(-824 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
-(-824)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
-NIL
-NIL
(-825)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
@@ -3240,26 +3240,26 @@ NIL
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-828 R S)
+(-828 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4405 |has| |#1| (-844)))
+((|HasCategory| |#1| (QUOTE (-844))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+(-829 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-829 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4405 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
-(-830 A S)
+(-830 R)
+((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
+(-831 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-831 S)
+(-832 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-832 R)
-((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-833)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
@@ -3280,19 +3280,19 @@ NIL
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-838 R S)
+(-838 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4405 |has| |#1| (-844)))
+((|HasCategory| |#1| (QUOTE (-844))) (-3943 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+(-839 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-839 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4405 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
(-840)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-841 -3308 S)
+(-841 -3006 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3319,7 +3319,7 @@ NIL
(-847 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
(-848 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
((-4402 . T) (-4403 . T) (-4405 . T))
@@ -3327,19 +3327,19 @@ NIL
(-849 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))))
-(-850 R |sigma| -1648)
+((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
+(-850 R |sigma| -3652)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-851 |x| R |sigma| -1648)
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-851 |x| R |sigma| -3652)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
(-852 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))
(-853)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
@@ -3348,24 +3348,24 @@ NIL
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-855 S)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
+(-855)
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-856)
+(-856 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-857)
-((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-858)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
(-859)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-860 |VariableList|)
@@ -3389,25 +3389,25 @@ NIL
NIL
NIL
(-865 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-866 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-867 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-4034 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-1144))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-865 |#1|) (QUOTE (-906))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-865 |#1|) (QUOTE (-145))) (|HasCategory| (-865 |#1|) (QUOTE (-147))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-865 |#1|) (QUOTE (-1016))) (|HasCategory| (-865 |#1|) (QUOTE (-816))) (-3943 (|HasCategory| (-865 |#1|) (QUOTE (-816))) (|HasCategory| (-865 |#1|) (QUOTE (-846)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-865 |#1|) (QUOTE (-1144))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| (-865 |#1|) (QUOTE (-233))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -865) (|devaluate| |#1|)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (QUOTE (-307))) (|HasCategory| (-865 |#1|) (QUOTE (-545))) (|HasCategory| (-865 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-865 |#1|) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-865 |#1|) (QUOTE (-906)))) (|HasCategory| (-865 |#1|) (QUOTE (-145)))))
(-868 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-4034 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-816))) (-3943 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-869 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-3943 (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))))
(-870)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3463,27 +3463,27 @@ NIL
(-883 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2174 (|HasCategory| |#2| (QUOTE (-1045)))) (-2174 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2174 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))
-(-884 R A B)
+((-12 (-3733 (|HasCategory| |#2| (QUOTE (-1045)))) (-3733 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-3733 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))
+(-884 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+NIL
+NIL
+(-885 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-885 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+(-886 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-886 R -3213)
+(-887 R -3058)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-887 R S)
+(-888 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-888 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
-NIL
-NIL
(-889 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
@@ -3496,7 +3496,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-892 UP -3195)
+(-892 UP -3485)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3519,44 +3519,44 @@ NIL
(-897 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-898 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-898 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4405 . T))
+((-3943 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846))))
+(-899 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-899 S)
+(-900 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
((-4405 . T))
NIL
-(-900 S)
+(-901 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-901 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4405 . T))
-((-4034 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846))))
-(-902 R E |VarSet| S)
+(-902 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
+(-903 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-903 R S)
+(-904 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-904 S)
+(-905 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-145))))
-(-905)
+(-906)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-906 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
-(-907 R0 -3195 UP UPUP R)
+(-907 R0 -3485 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3584,63 +3584,63 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-914 -3195)
+(-914 -3485)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-915 R)
+(-915)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4410 "*") . T))
+NIL
+(-916 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-916)
+(-917)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-917)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4410 "*") . T))
-NIL
-(-918 -3195 P)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
+(-918 |xx| -3485)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-919 |xx| -3195)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+(-919 -3485 P)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
(-920 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-921 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-921)
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-922)
-((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
+(-922 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
(-923)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
+((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
(-924)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-925 R -3195)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-925)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-926)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-926 R -3485)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
(-927 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-928 S R -3195)
+(-928 S R -3485)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3660,12 +3660,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|))))
-(-933 R -3195 -3213)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-933 -3058)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-934 -3213)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+(-934 R -3485 -3058)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
(-935 S R Q)
@@ -3687,7 +3687,7 @@ NIL
(-939 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-940 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3696,35 +3696,35 @@ NIL
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-844))))
-(-942 R S)
+(-942 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-943 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-943 |x| R)
+(-944 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-944 S R E |VarSet|)
+(-945 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))))
-(-945 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-906))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-846))))
+(-946 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
-(-946 E V R P -3195)
+(-947 E V R P -3485)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-947 E |Vars| R P S)
+(-948 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-948 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-949 E V R P -3195)
+(-949 E V R P -3485)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-452))))
@@ -3736,42 +3736,42 @@ NIL
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-952 R L)
+(-952 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4406)))
+(-953 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-953 A B)
-((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
-NIL
-NIL
(-954 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-955)
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-955 A B)
+((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
+NIL
+NIL
+(-956)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-956 -3195)
+(-957 -3485)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-957 I)
+(-958 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-958)
+(-959)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-959 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4406)))
(-960 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
((-4405 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846)))))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846)))))
(-961)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3806,7 +3806,7 @@ NIL
NIL
(-969 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-970)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3815,7 +3815,7 @@ NIL
(-971 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-555))))
+((|HasCategory| |#2| (QUOTE (-556))))
(-972 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
((-4408 . T))
@@ -3852,18 +3852,18 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-981 K R UP -3195)
+(-981 K R UP -3485)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-982 |vl| |nv|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
+(-982 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
+((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))))
+(-983 |vl| |nv|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
-(-983 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))))
(-984 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
@@ -3872,18 +3872,18 @@ NIL
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-986 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
-NIL
-NIL
-(-987 A S)
+(-986 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))))
-(-988 S)
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1144))))
+(-987 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
+(-988 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+NIL
+NIL
(-989 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
@@ -3896,26 +3896,26 @@ NIL
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
((-4408 . T) (-4409 . T))
NIL
-(-992 S R)
+(-992 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))))
+(-993 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290))))
-(-993 R)
+((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290))))
+(-994 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-994 QR R QS S)
+(-995 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-995 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))))
(-996 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-997 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3924,14 +3924,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-999 -3195 UP UPUP |radicnd| |n|)
+(-999 -3485 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4034 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4034 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4034 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-350))) (-3943 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-350)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-3943 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-350)))) (-3943 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-350))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-546)))) (-3943 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
(-1000 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((|HasCategory| (-546) (QUOTE (-906))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-546) (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-147))) (|HasCategory| (-546) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-546) (QUOTE (-1016))) (|HasCategory| (-546) (QUOTE (-816))) (-3943 (|HasCategory| (-546) (QUOTE (-816))) (|HasCategory| (-546) (QUOTE (-846)))) (|HasCategory| (-546) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-1144))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-546) (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-546) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-546) (QUOTE (-233))) (|HasCategory| (-546) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-546) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -309) (QUOTE (-546)))) (|HasCategory| (-546) (LIST (QUOTE -286) (QUOTE (-546)) (QUOTE (-546)))) (|HasCategory| (-546) (QUOTE (-307))) (|HasCategory| (-546) (QUOTE (-545))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-546) (LIST (QUOTE -636) (QUOTE (-546)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-546) (QUOTE (-906)))) (|HasCategory| (-546) (QUOTE (-145)))))
(-1001)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3951,7 +3951,7 @@ NIL
(-1005 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-1093))))
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-1094))))
(-1006 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3964,19 +3964,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T))
NIL
-(-1009 R -3195)
+(-1009 R -3485)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1010 R -3195)
+(-1010 R -3485)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1011 -3195 UP)
+(-1011 -3485 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1012 -3195 UP)
+(-1012 -3485 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3992,16 +3992,16 @@ NIL
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1016 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-1016)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
(-1017 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1018)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-1018 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
(-1019)
@@ -4011,35 +4011,35 @@ NIL
(-1020 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T))
-((-4034 (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-1021 -3195 L)
+((-3943 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-407 (-546)) (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-407 (-546)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-407 (-546)) (LIST (QUOTE -1034) (QUOTE (-546)))))
+(-1021 -3485 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
(-1022 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1093))))
+((|HasCategory| |#1| (QUOTE (-1094))))
(-1023 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-1024 R)
+((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-1024)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
+NIL
+(-1025 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
((|HasAttribute| |#1| (QUOTE (-4410 "*"))))
-(-1025 R)
+(-1026 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))))
-(-1026 S)
+(-1027 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1027)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
(-1028 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
@@ -4048,14 +4048,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1030 -3195 |Expon| |VarSet| |FPol| |LFPol|)
+(-1030 -3485 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1031)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2233) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -309) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-51) (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))))
(-1032)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4072,20 +4072,20 @@ NIL
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1036)
-((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
+(-1036 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1037 UP)
-((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-1037)
+((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1038 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
+(-1038 UP)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
(-1039 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
(-1040 T$)
@@ -4099,7 +4099,7 @@ NIL
(-1042 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))))
(-1043)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
@@ -4112,14 +4112,14 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4405 . T))
NIL
-(-1046 |xx| -3195)
+(-1046 |xx| -3485)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
(-1047 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-555))) (|HasCategory| |#4| (QUOTE (-172))))
+((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172))))
(-1048 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
((-4408 . T) (-4403 . T) (-4402 . T))
@@ -4127,7 +4127,7 @@ NIL
(-1049 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4408 . T) (-4403 . T) (-4402 . T))
-((-4034 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-3943 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-859)))))
(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4159,14 +4159,14 @@ NIL
(-1057)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2233) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| (-51) (QUOTE (-1094))) (|HasCategory| (-51) (LIST (QUOTE -309) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (QUOTE (-1094))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-51) (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-51) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (LIST (QUOTE -610) (QUOTE (-859)))))
(-1058 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-1169)))))
+((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -987) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-1169)))))
(-1059 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-1060)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4200,15 +4200,15 @@ NIL
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1068 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1068 |Base| R -3485)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1069 |Base| R -3195)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1069 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1070 |Base| R -3195)
+(-1070 |Base| R -3485)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4216,14 +4216,14 @@ NIL
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1072 UP SAE UPA)
+(-1072 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-350))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-350)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
+(-1073 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1073 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
(-1074 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4250,36 +4250,36 @@ NIL
NIL
(-1080 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1081 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1082 R S)
+(-1082 S)
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094))))
+(-1083 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-844))))
-(-1083)
+(-1084)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1084 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
-NIL
-NIL
(-1085 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1093))))
-(-1086 S)
-((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+((|HasCategory| |#1| (QUOTE (-1094))))
+(-1086 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
(-1087 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+NIL
NIL
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093))))
(-1088 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
NIL
@@ -4288,36 +4288,36 @@ NIL
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1090 A S)
+(-1090 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4408 . T) (-4398 . T) (-4409 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-1091 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1091 S)
+(-1092 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
((-4398 . T))
NIL
-(-1092 S)
+(-1093 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1093)
+(-1094)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1094 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1095 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1095 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4408 . T) (-4398 . T) (-4409 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-1096 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1096)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1097)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1097 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
(-1098 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4355,25 +4355,25 @@ NIL
(-1106 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) (-4405 |has| |#3| (-6 -4405)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4034 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-3943 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-3943 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-3943 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546)))))) (|HasCategory| (-546) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-3943 (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-1107 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-452))))
(-1108)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1109 R -3195)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1109)
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1110 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1110 R -3485)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1111)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+(-1111 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
(-1112)
@@ -4402,17 +4402,17 @@ NIL
NIL
(-1118 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1119 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
(-1120 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
((-4409 . T) (-4408 . T))
NIL
-(-1121 UP -3195)
+(-1121 UP -3485)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4467,11 +4467,11 @@ NIL
(-1134 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))) (-4034 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1094))) (-3943 (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-859)))))
(-1135 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4405 . T) (-4397 |has| |#2| (-6 (-4410 "*"))) (-4408 . T) (-4402 . T) (-4403 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-3943 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-1136 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
@@ -4487,11 +4487,11 @@ NIL
(-1139 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))))
(-1140 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-1141 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4503,7 +4503,7 @@ NIL
(-1143 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))))
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))))
(-1144)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4513,21 +4513,21 @@ NIL
NIL
NIL
(-1146 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-1147 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1147 A B)
+(-1148 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1148 A B C)
+(-1149 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1149 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4409 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1150)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
((-4409 . T) (-4408 . T))
@@ -4535,21 +4535,21 @@ NIL
(-1151)
NIL
((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-3943 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-1152 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#1|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (LIST (QUOTE -610) (QUOTE (-859)))))
(-1153 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
+((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))
(-1154 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1155 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1156 R UP)
@@ -4570,9 +4570,9 @@ NIL
NIL
(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4410 "*") -4034 (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4401 -4034 (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1161 R -3195)
+(((-4410 "*") -3943 (-3247 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-3247 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-906)))) (-4401 -3943 (-3247 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-3247 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-906)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|))))) (|HasCategory| (-546) (QUOTE (-1105))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1016)))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1161 R -3485)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4580,26 +4580,26 @@ NIL
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1163 R S)
+(-1163 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1164 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1164 E OV R P)
+(-1165 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1165 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-546)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1167 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1168)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4614,10 +4614,10 @@ NIL
NIL
(-1171 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasAttribute| |#1| (QUOTE -4406)))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3943 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-967) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4406)))
(-1172)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
(-1173)
@@ -4629,11 +4629,11 @@ NIL
NIL
NIL
(-1175 N)
-((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")))
+((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
(-1176 N)
-((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
+((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
(-1177 R)
@@ -4648,14 +4648,14 @@ NIL
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1180 S)
+(-1180 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4275) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2233) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -611) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-3943 (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (LIST (QUOTE -610) (QUOTE (-859)))))
+(-1181 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1181 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4408 . T) (-4409 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1182 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4676,12 +4676,12 @@ NIL
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1187 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1187)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1188)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+(-1188 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
(-1189)
@@ -4707,7 +4707,7 @@ NIL
(-1194 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
(-1195 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4716,7 +4716,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1197 R -3195)
+(-1197 R -3485)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4724,22 +4724,22 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1199 R -3195)
+(-1199 R -3485)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|)))))
-(-1200 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -886) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|)))))
+(-1200 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
+(-1201 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-368))))
-(-1201 R E V P)
+(-1202 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
((-4409 . T) (-4408 . T))
NIL
-(-1202 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
(-1203 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4751,17 +4751,17 @@ NIL
(-1205 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-1206 -3195)
+((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))))
+(-1206 -3485)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1207)
-((|constructor| (NIL "This domain represents a type AST.")))
+((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
(-1208)
-((|constructor| (NIL "The fundamental Type.")))
+((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
(-1209 S)
@@ -4792,118 +4792,118 @@ NIL
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1216 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1216 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4410 "*") -3943 (-3247 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-3247 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-906)))) (-4401 -3943 (-3247 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-3247 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-906)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|))))) (|HasCategory| (-546) (QUOTE (-1105))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1016)))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-816)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1246) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-307)))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1246 |#1| |#2| |#3|) (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1217 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1217 |Coef|)
+(-1218 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-1218 S |Coef| UTS)
+(-1219 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-1219 |Coef| UTS)
+(-1220 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-1220 |Coef| UTS)
+(-1221 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4034 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
-(-1221 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4410 "*") -4034 (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4401 -4034 (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-3943 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|)))))) (-3943 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-546)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233))))) (|HasCategory| (-546) (QUOTE (-1105))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-546))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1222 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1223 R S)
+(-1223 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094))))
+(-1224 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-844))))
-(-1224 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093))))
-(-1225 |x| R |y| S)
+(-1225 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-556)) (-4404 |has| |#2| (-363)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-378)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-378))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-546)))) (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-546))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-378)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546))))) (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -886) (QUOTE (-546)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-546)))) (-3943 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (-3943 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-3943 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-3943 (-12 (|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1226 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1226 R Q UP)
+(-1227 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1227 R UP)
+(-1228 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1228 R UP)
+(-1229 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1229 R U)
+(-1230 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1230 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4404 |has| |#2| (-363)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1231 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
-NIL
-NIL
-(-1232 S R)
+(-1231 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1144))))
-(-1233 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1144))))
+(-1232 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+NIL
+(-1233 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+NIL
NIL
(-1234 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1692) (LIST (|devaluate| |#2|) (QUOTE (-1169))))))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4361) (LIST (|devaluate| |#2|) (QUOTE (-1169))))))
(-1235 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1236 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1237 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1237 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-546)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(-1238 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1238 |Coef|)
+(-1239 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-1239 S |Coef| ULS)
+(-1240 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1240 |Coef| ULS)
+(-1241 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-1241 |Coef| ULS)
+(-1242 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
-(-1242 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-546)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-3943 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-546)))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))))
(-1243 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4410 "*") |has| (-1242 |#2| |#3| |#4|) (-172)) (-4401 |has| (-1242 |#2| |#3| |#4|) (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-172))) (-4034 (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-555))))
+(((-4410 "*") |has| (-1237 |#2| |#3| |#4|) (-172)) (-4401 |has| (-1237 |#2| |#3| |#4|) (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-1237 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-172))) (-3943 (|HasCategory| (-1237 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-1237 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546)))))) (|HasCategory| (-1237 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| (-1237 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-546)))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1237 |#2| |#3| |#4|) (QUOTE (-556))))
(-1244 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4912,30 +4912,30 @@ NIL
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1246 |Coef1| |Coef2| UTS1 UTS2)
+(-1246 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-556))) (-3943 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasSignature| |#1| (LIST (QUOTE -4227) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(-1247 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1247 S |Coef|)
+(-1248 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2062) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))))
-(-1248 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -3474) (LIST (LIST (QUOTE -637) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4227) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasCategory| |#2| (QUOTE (-363))))
+(-1249 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-556)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-1249 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1250 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1251 -3195 UP L UTS)
+(-1251 -3485 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-555))))
+((|HasCategory| |#1| (QUOTE (-556))))
(-1252)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
@@ -4952,28 +4952,28 @@ NIL
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
((-4409 . T) (-4408 . T))
NIL
-(-1256 A B)
+(-1256 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4409 . T) (-4408 . T))
+((-3943 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-3943 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-535)))) (-3943 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-546) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-1257 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1257 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4409 . T) (-4408 . T))
-((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-1258)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1259)
-((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1260)
-((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
+((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
(-1261)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
(-1262)
@@ -4992,7 +4992,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1266 K R UP -3195)
+(-1266 K R UP -3485)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -5011,7 +5011,7 @@ NIL
(-1270 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
((-4409 . T) (-4408 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-859)))))
(-1271 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
((-4402 . T) (-4403 . T) (-4405 . T))
@@ -5024,30 +5024,30 @@ NIL
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1274 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
-NIL
-(-1275 S -3195)
+(-1274 S -3485)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1276 -3195)
+(-1275 -3485)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
+(-1276 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
+NIL
(-1277 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasAttribute| |#2| (QUOTE -4401)))
-(-1278 |vl| R)
-((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
-NIL
-(-1279 R)
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-546))))) (|HasAttribute| |#2| (QUOTE -4401)))
+(-1278 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
((-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4401)))
+(-1279 |vl| R)
+((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
+NIL
(-1280 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
((-4405 . T) (-4406 |has| |#1| (-6 -4406)) (-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T))
@@ -5088,4 +5088,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2282815 2282820 2282825 2282830) (-2 NIL 2282795 2282800 2282805 2282810) (-1 NIL 2282775 2282780 2282785 2282790) (0 NIL 2282755 2282760 2282765 2282770) (-1285 "ZMOD.spad" 2282564 2282577 2282693 2282750) (-1284 "ZLINDEP.spad" 2281608 2281619 2282554 2282559) (-1283 "ZDSOLVE.spad" 2271457 2271479 2281598 2281603) (-1282 "YSTREAM.spad" 2270950 2270961 2271447 2271452) (-1281 "XRPOLY.spad" 2270170 2270190 2270806 2270875) (-1280 "XPR.spad" 2267961 2267974 2269888 2269987) (-1279 "XPOLY.spad" 2267516 2267527 2267817 2267886) (-1278 "XPOLYC.spad" 2266833 2266849 2267442 2267511) (-1277 "XPBWPOLY.spad" 2265270 2265290 2266613 2266682) (-1276 "XF.spad" 2263731 2263746 2265172 2265265) (-1275 "XF.spad" 2262172 2262189 2263615 2263620) (-1274 "XFALG.spad" 2259196 2259212 2262098 2262167) (-1273 "XEXPPKG.spad" 2258447 2258473 2259186 2259191) (-1272 "XDPOLY.spad" 2258061 2258077 2258303 2258372) (-1271 "XALG.spad" 2257721 2257732 2258017 2258056) (-1270 "WUTSET.spad" 2253560 2253577 2257367 2257394) (-1269 "WP.spad" 2252759 2252803 2253418 2253485) (-1268 "WHILEAST.spad" 2252557 2252566 2252749 2252754) (-1267 "WHEREAST.spad" 2252228 2252237 2252547 2252552) (-1266 "WFFINTBS.spad" 2249791 2249813 2252218 2252223) (-1265 "WEIER.spad" 2248005 2248016 2249781 2249786) (-1264 "VSPACE.spad" 2247678 2247689 2247973 2248000) (-1263 "VSPACE.spad" 2247371 2247384 2247668 2247673) (-1262 "VOID.spad" 2247048 2247057 2247361 2247366) (-1261 "VIEW.spad" 2244670 2244679 2247038 2247043) (-1260 "VIEWDEF.spad" 2239867 2239876 2244660 2244665) (-1259 "VIEW3D.spad" 2223702 2223711 2239857 2239862) (-1258 "VIEW2D.spad" 2211439 2211448 2223692 2223697) (-1257 "VECTOR.spad" 2210114 2210125 2210365 2210392) (-1256 "VECTOR2.spad" 2208741 2208754 2210104 2210109) (-1255 "VECTCAT.spad" 2206641 2206652 2208709 2208736) (-1254 "VECTCAT.spad" 2204349 2204362 2206419 2206424) (-1253 "VARIABLE.spad" 2204129 2204144 2204339 2204344) (-1252 "UTYPE.spad" 2203773 2203782 2204119 2204124) (-1251 "UTSODETL.spad" 2203066 2203090 2203729 2203734) (-1250 "UTSODE.spad" 2201254 2201274 2203056 2203061) (-1249 "UTS.spad" 2196043 2196071 2199721 2199818) (-1248 "UTSCAT.spad" 2193494 2193510 2195941 2196038) (-1247 "UTSCAT.spad" 2190589 2190607 2193038 2193043) (-1246 "UTS2.spad" 2190182 2190217 2190579 2190584) (-1245 "URAGG.spad" 2184814 2184825 2190172 2190177) (-1244 "URAGG.spad" 2179410 2179423 2184770 2184775) (-1243 "UPXSSING.spad" 2177053 2177079 2178491 2178624) (-1242 "UPXS.spad" 2174201 2174229 2175185 2175334) (-1241 "UPXSCONS.spad" 2171958 2171978 2172333 2172482) (-1240 "UPXSCCA.spad" 2170523 2170543 2171804 2171953) (-1239 "UPXSCCA.spad" 2169230 2169252 2170513 2170518) (-1238 "UPXSCAT.spad" 2167811 2167827 2169076 2169225) (-1237 "UPXS2.spad" 2167352 2167405 2167801 2167806) (-1236 "UPSQFREE.spad" 2165764 2165778 2167342 2167347) (-1235 "UPSCAT.spad" 2163357 2163381 2165662 2165759) (-1234 "UPSCAT.spad" 2160656 2160682 2162963 2162968) (-1233 "UPOLYC.spad" 2155634 2155645 2160498 2160651) (-1232 "UPOLYC.spad" 2150504 2150517 2155370 2155375) (-1231 "UPOLYC2.spad" 2149973 2149992 2150494 2150499) (-1230 "UP.spad" 2147130 2147145 2147523 2147676) (-1229 "UPMP.spad" 2146020 2146033 2147120 2147125) (-1228 "UPDIVP.spad" 2145583 2145597 2146010 2146015) (-1227 "UPDECOMP.spad" 2143820 2143834 2145573 2145578) (-1226 "UPCDEN.spad" 2143027 2143043 2143810 2143815) (-1225 "UP2.spad" 2142389 2142410 2143017 2143022) (-1224 "UNISEG.spad" 2141742 2141753 2142308 2142313) (-1223 "UNISEG2.spad" 2141235 2141248 2141698 2141703) (-1222 "UNIFACT.spad" 2140336 2140348 2141225 2141230) (-1221 "ULS.spad" 2130888 2130916 2131981 2132410) (-1220 "ULSCONS.spad" 2123282 2123302 2123654 2123803) (-1219 "ULSCCAT.spad" 2121011 2121031 2123128 2123277) (-1218 "ULSCCAT.spad" 2118848 2118870 2120967 2120972) (-1217 "ULSCAT.spad" 2117064 2117080 2118694 2118843) (-1216 "ULS2.spad" 2116576 2116629 2117054 2117059) (-1215 "UINT8.spad" 2116453 2116462 2116566 2116571) (-1214 "UINT32.spad" 2116329 2116338 2116443 2116448) (-1213 "UINT16.spad" 2116205 2116214 2116319 2116324) (-1212 "UFD.spad" 2115270 2115279 2116131 2116200) (-1211 "UFD.spad" 2114397 2114408 2115260 2115265) (-1210 "UDVO.spad" 2113244 2113253 2114387 2114392) (-1209 "UDPO.spad" 2110671 2110682 2113200 2113205) (-1208 "TYPE.spad" 2110603 2110612 2110661 2110666) (-1207 "TYPEAST.spad" 2110522 2110531 2110593 2110598) (-1206 "TWOFACT.spad" 2109172 2109187 2110512 2110517) (-1205 "TUPLE.spad" 2108656 2108667 2109071 2109076) (-1204 "TUBETOOL.spad" 2105493 2105502 2108646 2108651) (-1203 "TUBE.spad" 2104134 2104151 2105483 2105488) (-1202 "TS.spad" 2102723 2102739 2103699 2103796) (-1201 "TSETCAT.spad" 2089850 2089867 2102691 2102718) (-1200 "TSETCAT.spad" 2076963 2076982 2089806 2089811) (-1199 "TRMANIP.spad" 2071329 2071346 2076669 2076674) (-1198 "TRIMAT.spad" 2070288 2070313 2071319 2071324) (-1197 "TRIGMNIP.spad" 2068805 2068822 2070278 2070283) (-1196 "TRIGCAT.spad" 2068317 2068326 2068795 2068800) (-1195 "TRIGCAT.spad" 2067827 2067838 2068307 2068312) (-1194 "TREE.spad" 2066398 2066409 2067434 2067461) (-1193 "TRANFUN.spad" 2066229 2066238 2066388 2066393) (-1192 "TRANFUN.spad" 2066058 2066069 2066219 2066224) (-1191 "TOPSP.spad" 2065732 2065741 2066048 2066053) (-1190 "TOOLSIGN.spad" 2065395 2065406 2065722 2065727) (-1189 "TEXTFILE.spad" 2063952 2063961 2065385 2065390) (-1188 "TEX.spad" 2061084 2061093 2063942 2063947) (-1187 "TEX1.spad" 2060640 2060651 2061074 2061079) (-1186 "TEMUTL.spad" 2060195 2060204 2060630 2060635) (-1185 "TBCMPPK.spad" 2058288 2058311 2060185 2060190) (-1184 "TBAGG.spad" 2057324 2057347 2058268 2058283) (-1183 "TBAGG.spad" 2056368 2056393 2057314 2057319) (-1182 "TANEXP.spad" 2055744 2055755 2056358 2056363) (-1181 "TABLE.spad" 2054155 2054178 2054425 2054452) (-1180 "TABLEAU.spad" 2053636 2053647 2054145 2054150) (-1179 "TABLBUMP.spad" 2050419 2050430 2053626 2053631) (-1178 "SYSTEM.spad" 2049647 2049656 2050409 2050414) (-1177 "SYSSOLP.spad" 2047120 2047131 2049637 2049642) (-1176 "SYSNNI.spad" 2046296 2046307 2047110 2047115) (-1175 "SYSINT.spad" 2045769 2045780 2046286 2046291) (-1174 "SYNTAX.spad" 2042039 2042048 2045759 2045764) (-1173 "SYMTAB.spad" 2040095 2040104 2042029 2042034) (-1172 "SYMS.spad" 2036080 2036089 2040085 2040090) (-1171 "SYMPOLY.spad" 2035087 2035098 2035169 2035296) (-1170 "SYMFUNC.spad" 2034562 2034573 2035077 2035082) (-1169 "SYMBOL.spad" 2031989 2031998 2034552 2034557) (-1168 "SWITCH.spad" 2028746 2028755 2031979 2031984) (-1167 "SUTS.spad" 2025645 2025673 2027213 2027310) (-1166 "SUPXS.spad" 2022780 2022808 2023777 2023926) (-1165 "SUP.spad" 2019549 2019560 2020330 2020483) (-1164 "SUPFRACF.spad" 2018654 2018672 2019539 2019544) (-1163 "SUP2.spad" 2018044 2018057 2018644 2018649) (-1162 "SUMRF.spad" 2017010 2017021 2018034 2018039) (-1161 "SUMFS.spad" 2016643 2016660 2017000 2017005) (-1160 "SULS.spad" 2007182 2007210 2008288 2008717) (-1159 "SUCHTAST.spad" 2006951 2006960 2007172 2007177) (-1158 "SUCH.spad" 2006631 2006646 2006941 2006946) (-1157 "SUBSPACE.spad" 1998638 1998653 2006621 2006626) (-1156 "SUBRESP.spad" 1997798 1997812 1998594 1998599) (-1155 "STTF.spad" 1993897 1993913 1997788 1997793) (-1154 "STTFNC.spad" 1990365 1990381 1993887 1993892) (-1153 "STTAYLOR.spad" 1982763 1982774 1990246 1990251) (-1152 "STRTBL.spad" 1981268 1981285 1981417 1981444) (-1151 "STRING.spad" 1980677 1980686 1980691 1980718) (-1150 "STRICAT.spad" 1980465 1980474 1980645 1980672) (-1149 "STREAM.spad" 1977323 1977334 1979990 1980005) (-1148 "STREAM3.spad" 1976868 1976883 1977313 1977318) (-1147 "STREAM2.spad" 1975936 1975949 1976858 1976863) (-1146 "STREAM1.spad" 1975640 1975651 1975926 1975931) (-1145 "STINPROD.spad" 1974546 1974562 1975630 1975635) (-1144 "STEP.spad" 1973747 1973756 1974536 1974541) (-1143 "STBL.spad" 1972273 1972301 1972440 1972455) (-1142 "STAGG.spad" 1971348 1971359 1972263 1972268) (-1141 "STAGG.spad" 1970421 1970434 1971338 1971343) (-1140 "STACK.spad" 1969772 1969783 1970028 1970055) (-1139 "SREGSET.spad" 1967476 1967493 1969418 1969445) (-1138 "SRDCMPK.spad" 1966021 1966041 1967466 1967471) (-1137 "SRAGG.spad" 1961118 1961127 1965989 1966016) (-1136 "SRAGG.spad" 1956235 1956246 1961108 1961113) (-1135 "SQMATRIX.spad" 1953851 1953869 1954767 1954854) (-1134 "SPLTREE.spad" 1948403 1948416 1953287 1953314) (-1133 "SPLNODE.spad" 1944991 1945004 1948393 1948398) (-1132 "SPFCAT.spad" 1943768 1943777 1944981 1944986) (-1131 "SPECOUT.spad" 1942318 1942327 1943758 1943763) (-1130 "SPADXPT.spad" 1934457 1934466 1942308 1942313) (-1129 "spad-parser.spad" 1933922 1933931 1934447 1934452) (-1128 "SPADAST.spad" 1933623 1933632 1933912 1933917) (-1127 "SPACEC.spad" 1917636 1917647 1933613 1933618) (-1126 "SPACE3.spad" 1917412 1917423 1917626 1917631) (-1125 "SORTPAK.spad" 1916957 1916970 1917368 1917373) (-1124 "SOLVETRA.spad" 1914714 1914725 1916947 1916952) (-1123 "SOLVESER.spad" 1913234 1913245 1914704 1914709) (-1122 "SOLVERAD.spad" 1909244 1909255 1913224 1913229) (-1121 "SOLVEFOR.spad" 1907664 1907682 1909234 1909239) (-1120 "SNTSCAT.spad" 1907264 1907281 1907632 1907659) (-1119 "SMTS.spad" 1905524 1905550 1906829 1906926) (-1118 "SMP.spad" 1902963 1902983 1903353 1903480) (-1117 "SMITH.spad" 1901806 1901831 1902953 1902958) (-1116 "SMATCAT.spad" 1899916 1899946 1901750 1901801) (-1115 "SMATCAT.spad" 1897958 1897990 1899794 1899799) (-1114 "SKAGG.spad" 1896919 1896930 1897926 1897953) (-1113 "SINT.spad" 1895745 1895754 1896785 1896914) (-1112 "SIMPAN.spad" 1895473 1895482 1895735 1895740) (-1111 "SIG.spad" 1894801 1894810 1895463 1895468) (-1110 "SIGNRF.spad" 1893909 1893920 1894791 1894796) (-1109 "SIGNEF.spad" 1893178 1893195 1893899 1893904) (-1108 "SIGAST.spad" 1892559 1892568 1893168 1893173) (-1107 "SHP.spad" 1890477 1890492 1892515 1892520) (-1106 "SHDP.spad" 1880188 1880215 1880697 1880828) (-1105 "SGROUP.spad" 1879796 1879805 1880178 1880183) (-1104 "SGROUP.spad" 1879402 1879413 1879786 1879791) (-1103 "SGCF.spad" 1872283 1872292 1879392 1879397) (-1102 "SFRTCAT.spad" 1871211 1871228 1872251 1872278) (-1101 "SFRGCD.spad" 1870274 1870294 1871201 1871206) (-1100 "SFQCMPK.spad" 1864911 1864931 1870264 1870269) (-1099 "SFORT.spad" 1864346 1864360 1864901 1864906) (-1098 "SEXOF.spad" 1864189 1864229 1864336 1864341) (-1097 "SEX.spad" 1864081 1864090 1864179 1864184) (-1096 "SEXCAT.spad" 1861632 1861672 1864071 1864076) (-1095 "SET.spad" 1859932 1859943 1861053 1861092) (-1094 "SETMN.spad" 1858366 1858383 1859922 1859927) (-1093 "SETCAT.spad" 1857851 1857860 1858356 1858361) (-1092 "SETCAT.spad" 1857334 1857345 1857841 1857846) (-1091 "SETAGG.spad" 1853855 1853866 1857314 1857329) (-1090 "SETAGG.spad" 1850384 1850397 1853845 1853850) (-1089 "SEQAST.spad" 1850087 1850096 1850374 1850379) (-1088 "SEGXCAT.spad" 1849209 1849222 1850077 1850082) (-1087 "SEG.spad" 1849022 1849033 1849128 1849133) (-1086 "SEGCAT.spad" 1847929 1847940 1849012 1849017) (-1085 "SEGBIND.spad" 1847001 1847012 1847884 1847889) (-1084 "SEGBIND2.spad" 1846697 1846710 1846991 1846996) (-1083 "SEGAST.spad" 1846411 1846420 1846687 1846692) (-1082 "SEG2.spad" 1845836 1845849 1846367 1846372) (-1081 "SDVAR.spad" 1845112 1845123 1845826 1845831) (-1080 "SDPOL.spad" 1842502 1842513 1842793 1842920) (-1079 "SCPKG.spad" 1840581 1840592 1842492 1842497) (-1078 "SCOPE.spad" 1839726 1839735 1840571 1840576) (-1077 "SCACHE.spad" 1838408 1838419 1839716 1839721) (-1076 "SASTCAT.spad" 1838317 1838326 1838398 1838403) (-1075 "SAOS.spad" 1838189 1838198 1838307 1838312) (-1074 "SAERFFC.spad" 1837902 1837922 1838179 1838184) (-1073 "SAE.spad" 1836077 1836093 1836688 1836823) (-1072 "SAEFACT.spad" 1835778 1835798 1836067 1836072) (-1071 "RURPK.spad" 1833419 1833435 1835768 1835773) (-1070 "RULESET.spad" 1832860 1832884 1833409 1833414) (-1069 "RULE.spad" 1831064 1831088 1832850 1832855) (-1068 "RULECOLD.spad" 1830916 1830929 1831054 1831059) (-1067 "RSTRCAST.spad" 1830633 1830642 1830906 1830911) (-1066 "RSETGCD.spad" 1827011 1827031 1830623 1830628) (-1065 "RSETCAT.spad" 1816795 1816812 1826979 1827006) (-1064 "RSETCAT.spad" 1806599 1806618 1816785 1816790) (-1063 "RSDCMPK.spad" 1805051 1805071 1806589 1806594) (-1062 "RRCC.spad" 1803435 1803465 1805041 1805046) (-1061 "RRCC.spad" 1801817 1801849 1803425 1803430) (-1060 "RPTAST.spad" 1801519 1801528 1801807 1801812) (-1059 "RPOLCAT.spad" 1780879 1780894 1801387 1801514) (-1058 "RPOLCAT.spad" 1759953 1759970 1780463 1780468) (-1057 "ROUTINE.spad" 1755816 1755825 1758600 1758627) (-1056 "ROMAN.spad" 1755144 1755153 1755682 1755811) (-1055 "ROIRC.spad" 1754224 1754256 1755134 1755139) (-1054 "RNS.spad" 1753127 1753136 1754126 1754219) (-1053 "RNS.spad" 1752116 1752127 1753117 1753122) (-1052 "RNG.spad" 1751851 1751860 1752106 1752111) (-1051 "RMODULE.spad" 1751489 1751500 1751841 1751846) (-1050 "RMCAT2.spad" 1750897 1750954 1751479 1751484) (-1049 "RMATRIX.spad" 1749721 1749740 1750064 1750103) (-1048 "RMATCAT.spad" 1745254 1745285 1749677 1749716) (-1047 "RMATCAT.spad" 1740677 1740710 1745102 1745107) (-1046 "RINTERP.spad" 1740565 1740585 1740667 1740672) (-1045 "RING.spad" 1740035 1740044 1740545 1740560) (-1044 "RING.spad" 1739513 1739524 1740025 1740030) (-1043 "RIDIST.spad" 1738897 1738906 1739503 1739508) (-1042 "RGCHAIN.spad" 1737476 1737492 1738382 1738409) (-1041 "RGBCSPC.spad" 1737257 1737269 1737466 1737471) (-1040 "RGBCMDL.spad" 1736787 1736799 1737247 1737252) (-1039 "RF.spad" 1734401 1734412 1736777 1736782) (-1038 "RFFACTOR.spad" 1733863 1733874 1734391 1734396) (-1037 "RFFACT.spad" 1733598 1733610 1733853 1733858) (-1036 "RFDIST.spad" 1732586 1732595 1733588 1733593) (-1035 "RETSOL.spad" 1732003 1732016 1732576 1732581) (-1034 "RETRACT.spad" 1731431 1731442 1731993 1731998) (-1033 "RETRACT.spad" 1730857 1730870 1731421 1731426) (-1032 "RETAST.spad" 1730669 1730678 1730847 1730852) (-1031 "RESULT.spad" 1728729 1728738 1729316 1729343) (-1030 "RESRING.spad" 1728076 1728123 1728667 1728724) (-1029 "RESLATC.spad" 1727400 1727411 1728066 1728071) (-1028 "REPSQ.spad" 1727129 1727140 1727390 1727395) (-1027 "REP.spad" 1724681 1724690 1727119 1727124) (-1026 "REPDB.spad" 1724386 1724397 1724671 1724676) (-1025 "REP2.spad" 1713958 1713969 1724228 1724233) (-1024 "REP1.spad" 1707948 1707959 1713908 1713913) (-1023 "REGSET.spad" 1705745 1705762 1707594 1707621) (-1022 "REF.spad" 1705074 1705085 1705700 1705705) (-1021 "REDORDER.spad" 1704250 1704267 1705064 1705069) (-1020 "RECLOS.spad" 1703033 1703053 1703737 1703830) (-1019 "REALSOLV.spad" 1702165 1702174 1703023 1703028) (-1018 "REAL.spad" 1702037 1702046 1702155 1702160) (-1017 "REAL0Q.spad" 1699319 1699334 1702027 1702032) (-1016 "REAL0.spad" 1696147 1696162 1699309 1699314) (-1015 "RDUCEAST.spad" 1695868 1695877 1696137 1696142) (-1014 "RDIV.spad" 1695519 1695544 1695858 1695863) (-1013 "RDIST.spad" 1695082 1695093 1695509 1695514) (-1012 "RDETRS.spad" 1693878 1693896 1695072 1695077) (-1011 "RDETR.spad" 1691985 1692003 1693868 1693873) (-1010 "RDEEFS.spad" 1691058 1691075 1691975 1691980) (-1009 "RDEEF.spad" 1690054 1690071 1691048 1691053) (-1008 "RCFIELD.spad" 1687240 1687249 1689956 1690049) (-1007 "RCFIELD.spad" 1684512 1684523 1687230 1687235) (-1006 "RCAGG.spad" 1682424 1682435 1684502 1684507) (-1005 "RCAGG.spad" 1680263 1680276 1682343 1682348) (-1004 "RATRET.spad" 1679623 1679634 1680253 1680258) (-1003 "RATFACT.spad" 1679315 1679327 1679613 1679618) (-1002 "RANDSRC.spad" 1678634 1678643 1679305 1679310) (-1001 "RADUTIL.spad" 1678388 1678397 1678624 1678629) (-1000 "RADIX.spad" 1675289 1675303 1676855 1676948) (-999 "RADFF.spad" 1673703 1673739 1673821 1673977) (-998 "RADCAT.spad" 1673297 1673305 1673693 1673698) (-997 "RADCAT.spad" 1672889 1672899 1673287 1673292) (-996 "QUEUE.spad" 1672232 1672242 1672496 1672523) (-995 "QUAT.spad" 1670814 1670824 1671156 1671221) (-994 "QUATCT2.spad" 1670433 1670451 1670804 1670809) (-993 "QUATCAT.spad" 1668598 1668608 1670363 1670428) (-992 "QUATCAT.spad" 1666514 1666526 1668281 1668286) (-991 "QUAGG.spad" 1665340 1665350 1666482 1666509) (-990 "QQUTAST.spad" 1665109 1665117 1665330 1665335) (-989 "QFORM.spad" 1664572 1664586 1665099 1665104) (-988 "QFCAT.spad" 1663275 1663285 1664474 1664567) (-987 "QFCAT.spad" 1661569 1661581 1662770 1662775) (-986 "QFCAT2.spad" 1661260 1661276 1661559 1661564) (-985 "QEQUAT.spad" 1660817 1660825 1661250 1661255) (-984 "QCMPACK.spad" 1655564 1655583 1660807 1660812) (-983 "QALGSET.spad" 1651639 1651671 1655478 1655483) (-982 "QALGSET2.spad" 1649635 1649653 1651629 1651634) (-981 "PWFFINTB.spad" 1646945 1646966 1649625 1649630) (-980 "PUSHVAR.spad" 1646274 1646293 1646935 1646940) (-979 "PTRANFN.spad" 1642400 1642410 1646264 1646269) (-978 "PTPACK.spad" 1639488 1639498 1642390 1642395) (-977 "PTFUNC2.spad" 1639309 1639323 1639478 1639483) (-976 "PTCAT.spad" 1638558 1638568 1639277 1639304) (-975 "PSQFR.spad" 1637865 1637889 1638548 1638553) (-974 "PSEUDLIN.spad" 1636723 1636733 1637855 1637860) (-973 "PSETPK.spad" 1622156 1622172 1636601 1636606) (-972 "PSETCAT.spad" 1616076 1616099 1622136 1622151) (-971 "PSETCAT.spad" 1609970 1609995 1616032 1616037) (-970 "PSCURVE.spad" 1608953 1608961 1609960 1609965) (-969 "PSCAT.spad" 1607720 1607749 1608851 1608948) (-968 "PSCAT.spad" 1606577 1606608 1607710 1607715) (-967 "PRTITION.spad" 1605522 1605530 1606567 1606572) (-966 "PRTDAST.spad" 1605241 1605249 1605512 1605517) (-965 "PRS.spad" 1594803 1594820 1605197 1605202) (-964 "PRQAGG.spad" 1594234 1594244 1594771 1594798) (-963 "PROPLOG.spad" 1593637 1593645 1594224 1594229) (-962 "PROPFRML.spad" 1591555 1591566 1593627 1593632) (-961 "PROPERTY.spad" 1591049 1591057 1591545 1591550) (-960 "PRODUCT.spad" 1588729 1588741 1589015 1589070) (-959 "PR.spad" 1587115 1587127 1587820 1587947) (-958 "PRINT.spad" 1586867 1586875 1587105 1587110) (-957 "PRIMES.spad" 1585118 1585128 1586857 1586862) (-956 "PRIMELT.spad" 1583099 1583113 1585108 1585113) (-955 "PRIMCAT.spad" 1582722 1582730 1583089 1583094) (-954 "PRIMARR.spad" 1581727 1581737 1581905 1581932) (-953 "PRIMARR2.spad" 1580450 1580462 1581717 1581722) (-952 "PREASSOC.spad" 1579822 1579834 1580440 1580445) (-951 "PPCURVE.spad" 1578959 1578967 1579812 1579817) (-950 "PORTNUM.spad" 1578734 1578742 1578949 1578954) (-949 "POLYROOT.spad" 1577563 1577585 1578690 1578695) (-948 "POLY.spad" 1574860 1574870 1575377 1575504) (-947 "POLYLIFT.spad" 1574121 1574144 1574850 1574855) (-946 "POLYCATQ.spad" 1572223 1572245 1574111 1574116) (-945 "POLYCAT.spad" 1565629 1565650 1572091 1572218) (-944 "POLYCAT.spad" 1558337 1558360 1564801 1564806) (-943 "POLY2UP.spad" 1557785 1557799 1558327 1558332) (-942 "POLY2.spad" 1557380 1557392 1557775 1557780) (-941 "POLUTIL.spad" 1556321 1556350 1557336 1557341) (-940 "POLTOPOL.spad" 1555069 1555084 1556311 1556316) (-939 "POINT.spad" 1553908 1553918 1553995 1554022) (-938 "PNTHEORY.spad" 1550574 1550582 1553898 1553903) (-937 "PMTOOLS.spad" 1549331 1549345 1550564 1550569) (-936 "PMSYM.spad" 1548876 1548886 1549321 1549326) (-935 "PMQFCAT.spad" 1548463 1548477 1548866 1548871) (-934 "PMPRED.spad" 1547932 1547946 1548453 1548458) (-933 "PMPREDFS.spad" 1547376 1547398 1547922 1547927) (-932 "PMPLCAT.spad" 1546446 1546464 1547308 1547313) (-931 "PMLSAGG.spad" 1546027 1546041 1546436 1546441) (-930 "PMKERNEL.spad" 1545594 1545606 1546017 1546022) (-929 "PMINS.spad" 1545170 1545180 1545584 1545589) (-928 "PMFS.spad" 1544743 1544761 1545160 1545165) (-927 "PMDOWN.spad" 1544029 1544043 1544733 1544738) (-926 "PMASS.spad" 1543041 1543049 1544019 1544024) (-925 "PMASSFS.spad" 1542010 1542026 1543031 1543036) (-924 "PLOTTOOL.spad" 1541790 1541798 1542000 1542005) (-923 "PLOT.spad" 1536621 1536629 1541780 1541785) (-922 "PLOT3D.spad" 1533041 1533049 1536611 1536616) (-921 "PLOT1.spad" 1532182 1532192 1533031 1533036) (-920 "PLEQN.spad" 1519398 1519425 1532172 1532177) (-919 "PINTERP.spad" 1519014 1519033 1519388 1519393) (-918 "PINTERPA.spad" 1518796 1518812 1519004 1519009) (-917 "PI.spad" 1518403 1518411 1518770 1518791) (-916 "PID.spad" 1517359 1517367 1518329 1518398) (-915 "PICOERCE.spad" 1517016 1517026 1517349 1517354) (-914 "PGROEB.spad" 1515613 1515627 1517006 1517011) (-913 "PGE.spad" 1506866 1506874 1515603 1515608) (-912 "PGCD.spad" 1505748 1505765 1506856 1506861) (-911 "PFRPAC.spad" 1504891 1504901 1505738 1505743) (-910 "PFR.spad" 1501548 1501558 1504793 1504886) (-909 "PFOTOOLS.spad" 1500806 1500822 1501538 1501543) (-908 "PFOQ.spad" 1500176 1500194 1500796 1500801) (-907 "PFO.spad" 1499595 1499622 1500166 1500171) (-906 "PF.spad" 1499169 1499181 1499400 1499493) (-905 "PFECAT.spad" 1496835 1496843 1499095 1499164) (-904 "PFECAT.spad" 1494529 1494539 1496791 1496796) (-903 "PFBRU.spad" 1492399 1492411 1494519 1494524) (-902 "PFBR.spad" 1489937 1489960 1492389 1492394) (-901 "PERM.spad" 1485618 1485628 1489767 1489782) (-900 "PERMGRP.spad" 1480354 1480364 1485608 1485613) (-899 "PERMCAT.spad" 1478906 1478916 1480334 1480349) (-898 "PERMAN.spad" 1477438 1477452 1478896 1478901) (-897 "PENDTREE.spad" 1476777 1476787 1477067 1477072) (-896 "PDRING.spad" 1475268 1475278 1476757 1476772) (-895 "PDRING.spad" 1473767 1473779 1475258 1475263) (-894 "PDEPROB.spad" 1472782 1472790 1473757 1473762) (-893 "PDEPACK.spad" 1466784 1466792 1472772 1472777) (-892 "PDECOMP.spad" 1466246 1466263 1466774 1466779) (-891 "PDECAT.spad" 1464600 1464608 1466236 1466241) (-890 "PCOMP.spad" 1464451 1464464 1464590 1464595) (-889 "PBWLB.spad" 1463033 1463050 1464441 1464446) (-888 "PATTERN.spad" 1457464 1457474 1463023 1463028) (-887 "PATTERN2.spad" 1457200 1457212 1457454 1457459) (-886 "PATTERN1.spad" 1455502 1455518 1457190 1457195) (-885 "PATRES.spad" 1453049 1453061 1455492 1455497) (-884 "PATRES2.spad" 1452711 1452725 1453039 1453044) (-883 "PATMATCH.spad" 1450868 1450899 1452419 1452424) (-882 "PATMAB.spad" 1450293 1450303 1450858 1450863) (-881 "PATLRES.spad" 1449377 1449391 1450283 1450288) (-880 "PATAB.spad" 1449141 1449151 1449367 1449372) (-879 "PARTPERM.spad" 1446503 1446511 1449131 1449136) (-878 "PARSURF.spad" 1445931 1445959 1446493 1446498) (-877 "PARSU2.spad" 1445726 1445742 1445921 1445926) (-876 "script-parser.spad" 1445246 1445254 1445716 1445721) (-875 "PARSCURV.spad" 1444674 1444702 1445236 1445241) (-874 "PARSC2.spad" 1444463 1444479 1444664 1444669) (-873 "PARPCURV.spad" 1443921 1443949 1444453 1444458) (-872 "PARPC2.spad" 1443710 1443726 1443911 1443916) (-871 "PAN2EXPR.spad" 1443122 1443130 1443700 1443705) (-870 "PALETTE.spad" 1442092 1442100 1443112 1443117) (-869 "PAIR.spad" 1441075 1441088 1441680 1441685) (-868 "PADICRC.spad" 1438405 1438423 1439580 1439673) (-867 "PADICRAT.spad" 1436420 1436432 1436641 1436734) (-866 "PADIC.spad" 1436115 1436127 1436346 1436415) (-865 "PADICCT.spad" 1434656 1434668 1436041 1436110) (-864 "PADEPAC.spad" 1433335 1433354 1434646 1434651) (-863 "PADE.spad" 1432075 1432091 1433325 1433330) (-862 "OWP.spad" 1431315 1431345 1431933 1432000) (-861 "OVERSET.spad" 1430888 1430896 1431305 1431310) (-860 "OVAR.spad" 1430669 1430692 1430878 1430883) (-859 "OUT.spad" 1429753 1429761 1430659 1430664) (-858 "OUTFORM.spad" 1419049 1419057 1429743 1429748) (-857 "OUTBFILE.spad" 1418467 1418475 1419039 1419044) (-856 "OUTBCON.spad" 1417465 1417473 1418457 1418462) (-855 "OUTBCON.spad" 1416461 1416471 1417455 1417460) (-854 "OSI.spad" 1415936 1415944 1416451 1416456) (-853 "OSGROUP.spad" 1415854 1415862 1415926 1415931) (-852 "ORTHPOL.spad" 1414315 1414325 1415771 1415776) (-851 "OREUP.spad" 1413768 1413796 1413995 1414034) (-850 "ORESUP.spad" 1413067 1413091 1413448 1413487) (-849 "OREPCTO.spad" 1410886 1410898 1412987 1412992) (-848 "OREPCAT.spad" 1404943 1404953 1410842 1410881) (-847 "OREPCAT.spad" 1398890 1398902 1404791 1404796) (-846 "ORDSET.spad" 1398056 1398064 1398880 1398885) (-845 "ORDSET.spad" 1397220 1397230 1398046 1398051) (-844 "ORDRING.spad" 1396610 1396618 1397200 1397215) (-843 "ORDRING.spad" 1396008 1396018 1396600 1396605) (-842 "ORDMON.spad" 1395863 1395871 1395998 1396003) (-841 "ORDFUNS.spad" 1394989 1395005 1395853 1395858) (-840 "ORDFIN.spad" 1394809 1394817 1394979 1394984) (-839 "ORDCOMP.spad" 1393274 1393284 1394356 1394385) (-838 "ORDCOMP2.spad" 1392559 1392571 1393264 1393269) (-837 "OPTPROB.spad" 1391197 1391205 1392549 1392554) (-836 "OPTPACK.spad" 1383582 1383590 1391187 1391192) (-835 "OPTCAT.spad" 1381257 1381265 1383572 1383577) (-834 "OPSIG.spad" 1380909 1380917 1381247 1381252) (-833 "OPQUERY.spad" 1380458 1380466 1380899 1380904) (-832 "OP.spad" 1380200 1380210 1380280 1380347) (-831 "OPERCAT.spad" 1379788 1379798 1380190 1380195) (-830 "OPERCAT.spad" 1379374 1379386 1379778 1379783) (-829 "ONECOMP.spad" 1378119 1378129 1378921 1378950) (-828 "ONECOMP2.spad" 1377537 1377549 1378109 1378114) (-827 "OMSERVER.spad" 1376539 1376547 1377527 1377532) (-826 "OMSAGG.spad" 1376327 1376337 1376495 1376534) (-825 "OMPKG.spad" 1374939 1374947 1376317 1376322) (-824 "OM.spad" 1373904 1373912 1374929 1374934) (-823 "OMLO.spad" 1373329 1373341 1373790 1373829) (-822 "OMEXPR.spad" 1373163 1373173 1373319 1373324) (-821 "OMERR.spad" 1372706 1372714 1373153 1373158) (-820 "OMERRK.spad" 1371740 1371748 1372696 1372701) (-819 "OMENC.spad" 1371084 1371092 1371730 1371735) (-818 "OMDEV.spad" 1365373 1365381 1371074 1371079) (-817 "OMCONN.spad" 1364782 1364790 1365363 1365368) (-816 "OINTDOM.spad" 1364545 1364553 1364708 1364777) (-815 "OFMONOID.spad" 1360732 1360742 1364535 1364540) (-814 "ODVAR.spad" 1359993 1360003 1360722 1360727) (-813 "ODR.spad" 1359637 1359663 1359805 1359954) (-812 "ODPOL.spad" 1356983 1356993 1357323 1357450) (-811 "ODP.spad" 1346830 1346850 1347203 1347334) (-810 "ODETOOLS.spad" 1345413 1345432 1346820 1346825) (-809 "ODESYS.spad" 1343063 1343080 1345403 1345408) (-808 "ODERTRIC.spad" 1339004 1339021 1343020 1343025) (-807 "ODERED.spad" 1338391 1338415 1338994 1338999) (-806 "ODERAT.spad" 1335942 1335959 1338381 1338386) (-805 "ODEPRRIC.spad" 1332833 1332855 1335932 1335937) (-804 "ODEPROB.spad" 1332090 1332098 1332823 1332828) (-803 "ODEPRIM.spad" 1329364 1329386 1332080 1332085) (-802 "ODEPAL.spad" 1328740 1328764 1329354 1329359) (-801 "ODEPACK.spad" 1315342 1315350 1328730 1328735) (-800 "ODEINT.spad" 1314773 1314789 1315332 1315337) (-799 "ODEIFTBL.spad" 1312168 1312176 1314763 1314768) (-798 "ODEEF.spad" 1307535 1307551 1312158 1312163) (-797 "ODECONST.spad" 1307054 1307072 1307525 1307530) (-796 "ODECAT.spad" 1305650 1305658 1307044 1307049) (-795 "OCT.spad" 1303788 1303798 1304504 1304543) (-794 "OCTCT2.spad" 1303432 1303453 1303778 1303783) (-793 "OC.spad" 1301206 1301216 1303388 1303427) (-792 "OC.spad" 1298705 1298717 1300889 1300894) (-791 "OCAMON.spad" 1298553 1298561 1298695 1298700) (-790 "OASGP.spad" 1298368 1298376 1298543 1298548) (-789 "OAMONS.spad" 1297888 1297896 1298358 1298363) (-788 "OAMON.spad" 1297749 1297757 1297878 1297883) (-787 "OAGROUP.spad" 1297611 1297619 1297739 1297744) (-786 "NUMTUBE.spad" 1297198 1297214 1297601 1297606) (-785 "NUMQUAD.spad" 1285060 1285068 1297188 1297193) (-784 "NUMODE.spad" 1276196 1276204 1285050 1285055) (-783 "NUMINT.spad" 1273754 1273762 1276186 1276191) (-782 "NUMFMT.spad" 1272594 1272602 1273744 1273749) (-781 "NUMERIC.spad" 1264666 1264676 1272399 1272404) (-780 "NTSCAT.spad" 1263168 1263184 1264634 1264661) (-779 "NTPOLFN.spad" 1262713 1262723 1263085 1263090) (-778 "NSUP.spad" 1255723 1255733 1260263 1260416) (-777 "NSUP2.spad" 1255115 1255127 1255713 1255718) (-776 "NSMP.spad" 1251310 1251329 1251618 1251745) (-775 "NREP.spad" 1249682 1249696 1251300 1251305) (-774 "NPCOEF.spad" 1248928 1248948 1249672 1249677) (-773 "NORMRETR.spad" 1248526 1248565 1248918 1248923) (-772 "NORMPK.spad" 1246428 1246447 1248516 1248521) (-771 "NORMMA.spad" 1246116 1246142 1246418 1246423) (-770 "NONE.spad" 1245857 1245865 1246106 1246111) (-769 "NONE1.spad" 1245533 1245543 1245847 1245852) (-768 "NODE1.spad" 1245002 1245018 1245523 1245528) (-767 "NNI.spad" 1243889 1243897 1244976 1244997) (-766 "NLINSOL.spad" 1242511 1242521 1243879 1243884) (-765 "NIPROB.spad" 1241052 1241060 1242501 1242506) (-764 "NFINTBAS.spad" 1238512 1238529 1241042 1241047) (-763 "NETCLT.spad" 1238486 1238497 1238502 1238507) (-762 "NCODIV.spad" 1236684 1236700 1238476 1238481) (-761 "NCNTFRAC.spad" 1236326 1236340 1236674 1236679) (-760 "NCEP.spad" 1234486 1234500 1236316 1236321) (-759 "NASRING.spad" 1234082 1234090 1234476 1234481) (-758 "NASRING.spad" 1233676 1233686 1234072 1234077) (-757 "NARNG.spad" 1233020 1233028 1233666 1233671) (-756 "NARNG.spad" 1232362 1232372 1233010 1233015) (-755 "NAGSP.spad" 1231435 1231443 1232352 1232357) (-754 "NAGS.spad" 1220960 1220968 1231425 1231430) (-753 "NAGF07.spad" 1219353 1219361 1220950 1220955) (-752 "NAGF04.spad" 1213585 1213593 1219343 1219348) (-751 "NAGF02.spad" 1207394 1207402 1213575 1213580) (-750 "NAGF01.spad" 1202997 1203005 1207384 1207389) (-749 "NAGE04.spad" 1196457 1196465 1202987 1202992) (-748 "NAGE02.spad" 1186799 1186807 1196447 1196452) (-747 "NAGE01.spad" 1182683 1182691 1186789 1186794) (-746 "NAGD03.spad" 1180603 1180611 1182673 1182678) (-745 "NAGD02.spad" 1173134 1173142 1180593 1180598) (-744 "NAGD01.spad" 1167247 1167255 1173124 1173129) (-743 "NAGC06.spad" 1163034 1163042 1167237 1167242) (-742 "NAGC05.spad" 1161503 1161511 1163024 1163029) (-741 "NAGC02.spad" 1160758 1160766 1161493 1161498) (-740 "NAALG.spad" 1160293 1160303 1160726 1160753) (-739 "NAALG.spad" 1159848 1159860 1160283 1160288) (-738 "MULTSQFR.spad" 1156806 1156823 1159838 1159843) (-737 "MULTFACT.spad" 1156189 1156206 1156796 1156801) (-736 "MTSCAT.spad" 1154223 1154244 1156087 1156184) (-735 "MTHING.spad" 1153880 1153890 1154213 1154218) (-734 "MSYSCMD.spad" 1153314 1153322 1153870 1153875) (-733 "MSET.spad" 1151256 1151266 1153020 1153059) (-732 "MSETAGG.spad" 1151101 1151111 1151224 1151251) (-731 "MRING.spad" 1148072 1148084 1150809 1150876) (-730 "MRF2.spad" 1147640 1147654 1148062 1148067) (-729 "MRATFAC.spad" 1147186 1147203 1147630 1147635) (-728 "MPRFF.spad" 1145216 1145235 1147176 1147181) (-727 "MPOLY.spad" 1142651 1142666 1143010 1143137) (-726 "MPCPF.spad" 1141915 1141934 1142641 1142646) (-725 "MPC3.spad" 1141730 1141770 1141905 1141910) (-724 "MPC2.spad" 1141372 1141405 1141720 1141725) (-723 "MONOTOOL.spad" 1139707 1139724 1141362 1141367) (-722 "MONOID.spad" 1139026 1139034 1139697 1139702) (-721 "MONOID.spad" 1138343 1138353 1139016 1139021) (-720 "MONOGEN.spad" 1137089 1137102 1138203 1138338) (-719 "MONOGEN.spad" 1135857 1135872 1136973 1136978) (-718 "MONADWU.spad" 1133871 1133879 1135847 1135852) (-717 "MONADWU.spad" 1131883 1131893 1133861 1133866) (-716 "MONAD.spad" 1131027 1131035 1131873 1131878) (-715 "MONAD.spad" 1130169 1130179 1131017 1131022) (-714 "MOEBIUS.spad" 1128855 1128869 1130149 1130164) (-713 "MODULE.spad" 1128725 1128735 1128823 1128850) (-712 "MODULE.spad" 1128615 1128627 1128715 1128720) (-711 "MODRING.spad" 1127946 1127985 1128595 1128610) (-710 "MODOP.spad" 1126605 1126617 1127768 1127835) (-709 "MODMONOM.spad" 1126334 1126352 1126595 1126600) (-708 "MODMON.spad" 1123093 1123109 1123812 1123965) (-707 "MODFIELD.spad" 1122451 1122490 1122995 1123088) (-706 "MMLFORM.spad" 1121311 1121319 1122441 1122446) (-705 "MMAP.spad" 1121051 1121085 1121301 1121306) (-704 "MLO.spad" 1119478 1119488 1121007 1121046) (-703 "MLIFT.spad" 1118050 1118067 1119468 1119473) (-702 "MKUCFUNC.spad" 1117583 1117601 1118040 1118045) (-701 "MKRECORD.spad" 1117185 1117198 1117573 1117578) (-700 "MKFUNC.spad" 1116566 1116576 1117175 1117180) (-699 "MKFLCFN.spad" 1115522 1115532 1116556 1116561) (-698 "MKCHSET.spad" 1115387 1115397 1115512 1115517) (-697 "MKBCFUNC.spad" 1114872 1114890 1115377 1115382) (-696 "MINT.spad" 1114311 1114319 1114774 1114867) (-695 "MHROWRED.spad" 1112812 1112822 1114301 1114306) (-694 "MFLOAT.spad" 1111328 1111336 1112702 1112807) (-693 "MFINFACT.spad" 1110728 1110750 1111318 1111323) (-692 "MESH.spad" 1108460 1108468 1110718 1110723) (-691 "MDDFACT.spad" 1106653 1106663 1108450 1108455) (-690 "MDAGG.spad" 1105940 1105950 1106633 1106648) (-689 "MCMPLX.spad" 1101914 1101922 1102528 1102729) (-688 "MCDEN.spad" 1101122 1101134 1101904 1101909) (-687 "MCALCFN.spad" 1098224 1098250 1101112 1101117) (-686 "MAYBE.spad" 1097508 1097519 1098214 1098219) (-685 "MATSTOR.spad" 1094784 1094794 1097498 1097503) (-684 "MATRIX.spad" 1093488 1093498 1093972 1093999) (-683 "MATLIN.spad" 1090814 1090838 1093372 1093377) (-682 "MATCAT.spad" 1082399 1082421 1090782 1090809) (-681 "MATCAT.spad" 1073856 1073880 1082241 1082246) (-680 "MATCAT2.spad" 1073124 1073172 1073846 1073851) (-679 "MAPPKG3.spad" 1072023 1072037 1073114 1073119) (-678 "MAPPKG2.spad" 1071357 1071369 1072013 1072018) (-677 "MAPPKG1.spad" 1070175 1070185 1071347 1071352) (-676 "MAPPAST.spad" 1069488 1069496 1070165 1070170) (-675 "MAPHACK3.spad" 1069296 1069310 1069478 1069483) (-674 "MAPHACK2.spad" 1069061 1069073 1069286 1069291) (-673 "MAPHACK1.spad" 1068691 1068701 1069051 1069056) (-672 "MAGMA.spad" 1066481 1066498 1068681 1068686) (-671 "MACROAST.spad" 1066060 1066068 1066471 1066476) (-670 "M3D.spad" 1063756 1063766 1065438 1065443) (-669 "LZSTAGG.spad" 1060984 1060994 1063746 1063751) (-668 "LZSTAGG.spad" 1058210 1058222 1060974 1060979) (-667 "LWORD.spad" 1054915 1054932 1058200 1058205) (-666 "LSTAST.spad" 1054699 1054707 1054905 1054910) (-665 "LSQM.spad" 1052925 1052939 1053323 1053374) (-664 "LSPP.spad" 1052458 1052475 1052915 1052920) (-663 "LSMP.spad" 1051298 1051326 1052448 1052453) (-662 "LSMP1.spad" 1049102 1049116 1051288 1051293) (-661 "LSAGG.spad" 1048771 1048781 1049070 1049097) (-660 "LSAGG.spad" 1048460 1048472 1048761 1048766) (-659 "LPOLY.spad" 1047414 1047433 1048316 1048385) (-658 "LPEFRAC.spad" 1046671 1046681 1047404 1047409) (-657 "LO.spad" 1046072 1046086 1046605 1046632) (-656 "LOGIC.spad" 1045674 1045682 1046062 1046067) (-655 "LOGIC.spad" 1045274 1045284 1045664 1045669) (-654 "LODOOPS.spad" 1044192 1044204 1045264 1045269) (-653 "LODO.spad" 1043576 1043592 1043872 1043911) (-652 "LODOF.spad" 1042620 1042637 1043533 1043538) (-651 "LODOCAT.spad" 1041278 1041288 1042576 1042615) (-650 "LODOCAT.spad" 1039934 1039946 1041234 1041239) (-649 "LODO2.spad" 1039207 1039219 1039614 1039653) (-648 "LODO1.spad" 1038607 1038617 1038887 1038926) (-647 "LODEEF.spad" 1037379 1037397 1038597 1038602) (-646 "LNAGG.spad" 1033181 1033191 1037369 1037374) (-645 "LNAGG.spad" 1028947 1028959 1033137 1033142) (-644 "LMOPS.spad" 1025683 1025700 1028937 1028942) (-643 "LMODULE.spad" 1025325 1025335 1025673 1025678) (-642 "LMDICT.spad" 1024608 1024618 1024876 1024903) (-641 "LITERAL.spad" 1024514 1024525 1024598 1024603) (-640 "LIST.spad" 1022232 1022242 1023661 1023688) (-639 "LIST3.spad" 1021523 1021537 1022222 1022227) (-638 "LIST2.spad" 1020163 1020175 1021513 1021518) (-637 "LIST2MAP.spad" 1017040 1017052 1020153 1020158) (-636 "LINEXP.spad" 1016472 1016482 1017020 1017035) (-635 "LINDEP.spad" 1015249 1015261 1016384 1016389) (-634 "LIMITRF.spad" 1013163 1013173 1015239 1015244) (-633 "LIMITPS.spad" 1012046 1012059 1013153 1013158) (-632 "LIE.spad" 1010060 1010072 1011336 1011481) (-631 "LIECAT.spad" 1009536 1009546 1009986 1010055) (-630 "LIECAT.spad" 1009040 1009052 1009492 1009497) (-629 "LIB.spad" 1007088 1007096 1007699 1007714) (-628 "LGROBP.spad" 1004441 1004460 1007078 1007083) (-627 "LF.spad" 1003360 1003376 1004431 1004436) (-626 "LFCAT.spad" 1002379 1002387 1003350 1003355) (-625 "LEXTRIPK.spad" 997882 997897 1002369 1002374) (-624 "LEXP.spad" 995885 995912 997862 997877) (-623 "LETAST.spad" 995584 995592 995875 995880) (-622 "LEADCDET.spad" 993968 993985 995574 995579) (-621 "LAZM3PK.spad" 992672 992694 993958 993963) (-620 "LAUPOL.spad" 991361 991374 992265 992334) (-619 "LAPLACE.spad" 990934 990950 991351 991356) (-618 "LA.spad" 990374 990388 990856 990895) (-617 "LALG.spad" 990150 990160 990354 990369) (-616 "LALG.spad" 989934 989946 990140 990145) (-615 "KVTFROM.spad" 989669 989679 989924 989929) (-614 "KTVLOGIC.spad" 989092 989100 989659 989664) (-613 "KRCFROM.spad" 988830 988840 989082 989087) (-612 "KOVACIC.spad" 987543 987560 988820 988825) (-611 "KONVERT.spad" 987265 987275 987533 987538) (-610 "KOERCE.spad" 987002 987012 987255 987260) (-609 "KERNEL.spad" 985537 985547 986786 986791) (-608 "KERNEL2.spad" 985240 985252 985527 985532) (-607 "KDAGG.spad" 984343 984365 985220 985235) (-606 "KDAGG.spad" 983454 983478 984333 984338) (-605 "KAFILE.spad" 982417 982433 982652 982679) (-604 "JORDAN.spad" 980244 980256 981707 981852) (-603 "JOINAST.spad" 979938 979946 980234 980239) (-602 "JAVACODE.spad" 979804 979812 979928 979933) (-601 "IXAGG.spad" 977927 977951 979794 979799) (-600 "IXAGG.spad" 975905 975931 977774 977779) (-599 "IVECTOR.spad" 974676 974691 974831 974858) (-598 "ITUPLE.spad" 973821 973831 974666 974671) (-597 "ITRIGMNP.spad" 972632 972651 973811 973816) (-596 "ITFUN3.spad" 972126 972140 972622 972627) (-595 "ITFUN2.spad" 971856 971868 972116 972121) (-594 "ITAYLOR.spad" 969648 969663 971692 971817) (-593 "ISUPS.spad" 962059 962074 968622 968719) (-592 "ISUMP.spad" 961556 961572 962049 962054) (-591 "ISTRING.spad" 960559 960572 960725 960752) (-590 "ISAST.spad" 960278 960286 960549 960554) (-589 "IRURPK.spad" 958991 959010 960268 960273) (-588 "IRSN.spad" 956951 956959 958981 958986) (-587 "IRRF2F.spad" 955426 955436 956907 956912) (-586 "IRREDFFX.spad" 955027 955038 955416 955421) (-585 "IROOT.spad" 953358 953368 955017 955022) (-584 "IR.spad" 951147 951161 953213 953240) (-583 "IR2.spad" 950167 950183 951137 951142) (-582 "IR2F.spad" 949367 949383 950157 950162) (-581 "IPRNTPK.spad" 949127 949135 949357 949362) (-580 "IPF.spad" 948692 948704 948932 949025) (-579 "IPADIC.spad" 948453 948479 948618 948687) (-578 "IP4ADDR.spad" 948010 948018 948443 948448) (-577 "IOMODE.spad" 947631 947639 948000 948005) (-576 "IOBFILE.spad" 946992 947000 947621 947626) (-575 "IOBCON.spad" 946857 946865 946982 946987) (-574 "INVLAPLA.spad" 946502 946518 946847 946852) (-573 "INTTR.spad" 939748 939765 946492 946497) (-572 "INTTOOLS.spad" 937459 937475 939322 939327) (-571 "INTSLPE.spad" 936765 936773 937449 937454) (-570 "INTRVL.spad" 936331 936341 936679 936760) (-569 "INTRF.spad" 934695 934709 936321 936326) (-568 "INTRET.spad" 934127 934137 934685 934690) (-567 "INTRAT.spad" 932802 932819 934117 934122) (-566 "INTPM.spad" 931165 931181 932445 932450) (-565 "INTPAF.spad" 928933 928951 931097 931102) (-564 "INTPACK.spad" 919243 919251 928923 928928) (-563 "INT.spad" 918604 918612 919097 919238) (-562 "INTHERTR.spad" 917870 917887 918594 918599) (-561 "INTHERAL.spad" 917536 917560 917860 917865) (-560 "INTHEORY.spad" 913949 913957 917526 917531) (-559 "INTG0.spad" 907412 907430 913881 913886) (-558 "INTFTBL.spad" 901441 901449 907402 907407) (-557 "INTFACT.spad" 900500 900510 901431 901436) (-556 "INTEF.spad" 898815 898831 900490 900495) (-555 "INTDOM.spad" 897430 897438 898741 898810) (-554 "INTDOM.spad" 896107 896117 897420 897425) (-553 "INTCAT.spad" 894360 894370 896021 896102) (-552 "INTBIT.spad" 893863 893871 894350 894355) (-551 "INTALG.spad" 893045 893072 893853 893858) (-550 "INTAF.spad" 892537 892553 893035 893040) (-549 "INTABL.spad" 891055 891086 891218 891245) (-548 "INT8.spad" 890935 890943 891045 891050) (-547 "INT32.spad" 890814 890822 890925 890930) (-546 "INT16.spad" 890693 890701 890804 890809) (-545 "INS.spad" 888160 888168 890595 890688) (-544 "INS.spad" 885713 885723 888150 888155) (-543 "INPSIGN.spad" 885147 885160 885703 885708) (-542 "INPRODPF.spad" 884213 884232 885137 885142) (-541 "INPRODFF.spad" 883271 883295 884203 884208) (-540 "INNMFACT.spad" 882242 882259 883261 883266) (-539 "INMODGCD.spad" 881726 881756 882232 882237) (-538 "INFSP.spad" 880011 880033 881716 881721) (-537 "INFPROD0.spad" 879061 879080 880001 880006) (-536 "INFORM.spad" 876222 876230 879051 879056) (-535 "INFORM1.spad" 875847 875857 876212 876217) (-534 "INFINITY.spad" 875399 875407 875837 875842) (-533 "INETCLTS.spad" 875376 875384 875389 875394) (-532 "INEP.spad" 873908 873930 875366 875371) (-531 "INDE.spad" 873637 873654 873898 873903) (-530 "INCRMAPS.spad" 873058 873068 873627 873632) (-529 "INBFILE.spad" 872130 872138 873048 873053) (-528 "INBFF.spad" 867900 867911 872120 872125) (-527 "INBCON.spad" 866188 866196 867890 867895) (-526 "INBCON.spad" 864474 864484 866178 866183) (-525 "INAST.spad" 864139 864147 864464 864469) (-524 "IMPTAST.spad" 863847 863855 864129 864134) (-523 "IMATRIX.spad" 862792 862818 863304 863331) (-522 "IMATQF.spad" 861886 861930 862748 862753) (-521 "IMATLIN.spad" 860491 860515 861842 861847) (-520 "ILIST.spad" 859147 859162 859674 859701) (-519 "IIARRAY2.spad" 858535 858573 858754 858781) (-518 "IFF.spad" 857945 857961 858216 858309) (-517 "IFAST.spad" 857559 857567 857935 857940) (-516 "IFARRAY.spad" 855046 855061 856742 856769) (-515 "IFAMON.spad" 854908 854925 855002 855007) (-514 "IEVALAB.spad" 854297 854309 854898 854903) (-513 "IEVALAB.spad" 853684 853698 854287 854292) (-512 "IDPO.spad" 853482 853494 853674 853679) (-511 "IDPOAMS.spad" 853238 853250 853472 853477) (-510 "IDPOAM.spad" 852958 852970 853228 853233) (-509 "IDPC.spad" 851892 851904 852948 852953) (-508 "IDPAM.spad" 851637 851649 851882 851887) (-507 "IDPAG.spad" 851384 851396 851627 851632) (-506 "IDENT.spad" 851156 851164 851374 851379) (-505 "IDECOMP.spad" 848393 848411 851146 851151) (-504 "IDEAL.spad" 843316 843355 848328 848333) (-503 "ICDEN.spad" 842467 842483 843306 843311) (-502 "ICARD.spad" 841656 841664 842457 842462) (-501 "IBPTOOLS.spad" 840249 840266 841646 841651) (-500 "IBITS.spad" 839448 839461 839885 839912) (-499 "IBATOOL.spad" 836323 836342 839438 839443) (-498 "IBACHIN.spad" 834810 834825 836313 836318) (-497 "IARRAY2.spad" 833798 833824 834417 834444) (-496 "IARRAY1.spad" 832843 832858 832981 833008) (-495 "IAN.spad" 831056 831064 832659 832752) (-494 "IALGFACT.spad" 830657 830690 831046 831051) (-493 "HYPCAT.spad" 830081 830089 830647 830652) (-492 "HYPCAT.spad" 829503 829513 830071 830076) (-491 "HOSTNAME.spad" 829311 829319 829493 829498) (-490 "HOMOTOP.spad" 829054 829064 829301 829306) (-489 "HOAGG.spad" 826322 826332 829044 829049) (-488 "HOAGG.spad" 823365 823377 826089 826094) (-487 "HEXADEC.spad" 821467 821475 821832 821925) (-486 "HEUGCD.spad" 820482 820493 821457 821462) (-485 "HELLFDIV.spad" 820072 820096 820472 820477) (-484 "HEAP.spad" 819464 819474 819679 819706) (-483 "HEADAST.spad" 818995 819003 819454 819459) (-482 "HDP.spad" 808838 808854 809215 809346) (-481 "HDMP.spad" 806014 806029 806632 806759) (-480 "HB.spad" 804251 804259 806004 806009) (-479 "HASHTBL.spad" 802721 802752 802932 802959) (-478 "HASAST.spad" 802437 802445 802711 802716) (-477 "HACKPI.spad" 801920 801928 802339 802432) (-476 "GTSET.spad" 800859 800875 801566 801593) (-475 "GSTBL.spad" 799378 799413 799552 799567) (-474 "GSERIES.spad" 796545 796572 797510 797659) (-473 "GROUP.spad" 795814 795822 796525 796540) (-472 "GROUP.spad" 795091 795101 795804 795809) (-471 "GROEBSOL.spad" 793579 793600 795081 795086) (-470 "GRMOD.spad" 792150 792162 793569 793574) (-469 "GRMOD.spad" 790719 790733 792140 792145) (-468 "GRIMAGE.spad" 783324 783332 790709 790714) (-467 "GRDEF.spad" 781703 781711 783314 783319) (-466 "GRAY.spad" 780162 780170 781693 781698) (-465 "GRALG.spad" 779209 779221 780152 780157) (-464 "GRALG.spad" 778254 778268 779199 779204) (-463 "GPOLSET.spad" 777708 777731 777936 777963) (-462 "GOSPER.spad" 776973 776991 777698 777703) (-461 "GMODPOL.spad" 776111 776138 776941 776968) (-460 "GHENSEL.spad" 775180 775194 776101 776106) (-459 "GENUPS.spad" 771281 771294 775170 775175) (-458 "GENUFACT.spad" 770858 770868 771271 771276) (-457 "GENPGCD.spad" 770442 770459 770848 770853) (-456 "GENMFACT.spad" 769894 769913 770432 770437) (-455 "GENEEZ.spad" 767833 767846 769884 769889) (-454 "GDMP.spad" 764851 764868 765627 765754) (-453 "GCNAALG.spad" 758746 758773 764645 764712) (-452 "GCDDOM.spad" 757918 757926 758672 758741) (-451 "GCDDOM.spad" 757152 757162 757908 757913) (-450 "GB.spad" 754670 754708 757108 757113) (-449 "GBINTERN.spad" 750690 750728 754660 754665) (-448 "GBF.spad" 746447 746485 750680 750685) (-447 "GBEUCLID.spad" 744321 744359 746437 746442) (-446 "GAUSSFAC.spad" 743618 743626 744311 744316) (-445 "GALUTIL.spad" 741940 741950 743574 743579) (-444 "GALPOLYU.spad" 740386 740399 741930 741935) (-443 "GALFACTU.spad" 738551 738570 740376 740381) (-442 "GALFACT.spad" 728684 728695 738541 738546) (-441 "FVFUN.spad" 725707 725715 728674 728679) (-440 "FVC.spad" 724759 724767 725697 725702) (-439 "FUNDESC.spad" 724437 724445 724749 724754) (-438 "FUNCTION.spad" 724286 724298 724427 724432) (-437 "FT.spad" 722579 722587 724276 724281) (-436 "FTEM.spad" 721742 721750 722569 722574) (-435 "FSUPFACT.spad" 720642 720661 721678 721683) (-434 "FST.spad" 718728 718736 720632 720637) (-433 "FSRED.spad" 718206 718222 718718 718723) (-432 "FSPRMELT.spad" 717030 717046 718163 718168) (-431 "FSPECF.spad" 715107 715123 717020 717025) (-430 "FS.spad" 709169 709179 714882 715102) (-429 "FS.spad" 703009 703021 708724 708729) (-428 "FSINT.spad" 702667 702683 702999 703004) (-427 "FSERIES.spad" 701854 701866 702487 702586) (-426 "FSCINT.spad" 701167 701183 701844 701849) (-425 "FSAGG.spad" 700284 700294 701123 701162) (-424 "FSAGG.spad" 699363 699375 700204 700209) (-423 "FSAGG2.spad" 698062 698078 699353 699358) (-422 "FS2UPS.spad" 692545 692579 698052 698057) (-421 "FS2.spad" 692190 692206 692535 692540) (-420 "FS2EXPXP.spad" 691313 691336 692180 692185) (-419 "FRUTIL.spad" 690255 690265 691303 691308) (-418 "FR.spad" 683949 683959 689279 689348) (-417 "FRNAALG.spad" 679036 679046 683891 683944) (-416 "FRNAALG.spad" 674135 674147 678992 678997) (-415 "FRNAAF2.spad" 673589 673607 674125 674130) (-414 "FRMOD.spad" 672983 673013 673520 673525) (-413 "FRIDEAL.spad" 672178 672199 672963 672978) (-412 "FRIDEAL2.spad" 671780 671812 672168 672173) (-411 "FRETRCT.spad" 671291 671301 671770 671775) (-410 "FRETRCT.spad" 670668 670680 671149 671154) (-409 "FRAMALG.spad" 668996 669009 670624 670663) (-408 "FRAMALG.spad" 667356 667371 668986 668991) (-407 "FRAC.spad" 664455 664465 664858 665031) (-406 "FRAC2.spad" 664058 664070 664445 664450) (-405 "FR2.spad" 663392 663404 664048 664053) (-404 "FPS.spad" 660201 660209 663282 663387) (-403 "FPS.spad" 657038 657048 660121 660126) (-402 "FPC.spad" 656080 656088 656940 657033) (-401 "FPC.spad" 655208 655218 656070 656075) (-400 "FPATMAB.spad" 654970 654980 655198 655203) (-399 "FPARFRAC.spad" 653443 653460 654960 654965) (-398 "FORTRAN.spad" 651949 651992 653433 653438) (-397 "FORT.spad" 650878 650886 651939 651944) (-396 "FORTFN.spad" 648048 648056 650868 650873) (-395 "FORTCAT.spad" 647732 647740 648038 648043) (-394 "FORMULA.spad" 645196 645204 647722 647727) (-393 "FORMULA1.spad" 644675 644685 645186 645191) (-392 "FORDER.spad" 644366 644390 644665 644670) (-391 "FOP.spad" 643567 643575 644356 644361) (-390 "FNLA.spad" 642991 643013 643535 643562) (-389 "FNCAT.spad" 641578 641586 642981 642986) (-388 "FNAME.spad" 641470 641478 641568 641573) (-387 "FMTC.spad" 641268 641276 641396 641465) (-386 "FMONOID.spad" 638323 638333 641224 641229) (-385 "FM.spad" 638018 638030 638257 638284) (-384 "FMFUN.spad" 635048 635056 638008 638013) (-383 "FMC.spad" 634100 634108 635038 635043) (-382 "FMCAT.spad" 631754 631772 634068 634095) (-381 "FM1.spad" 631111 631123 631688 631715) (-380 "FLOATRP.spad" 628832 628846 631101 631106) (-379 "FLOAT.spad" 622120 622128 628698 628827) (-378 "FLOATCP.spad" 619537 619551 622110 622115) (-377 "FLINEXP.spad" 619249 619259 619517 619532) (-376 "FLINEXP.spad" 618915 618927 619185 619190) (-375 "FLASORT.spad" 618235 618247 618905 618910) (-374 "FLALG.spad" 615881 615900 618161 618230) (-373 "FLAGG.spad" 612899 612909 615861 615876) (-372 "FLAGG.spad" 609818 609830 612782 612787) (-371 "FLAGG2.spad" 608499 608515 609808 609813) (-370 "FINRALG.spad" 606528 606541 608455 608494) (-369 "FINRALG.spad" 604483 604498 606412 606417) (-368 "FINITE.spad" 603635 603643 604473 604478) (-367 "FINAALG.spad" 592616 592626 603577 603630) (-366 "FINAALG.spad" 581609 581621 592572 592577) (-365 "FILE.spad" 581192 581202 581599 581604) (-364 "FILECAT.spad" 579710 579727 581182 581187) (-363 "FIELD.spad" 579116 579124 579612 579705) (-362 "FIELD.spad" 578608 578618 579106 579111) (-361 "FGROUP.spad" 577217 577227 578588 578603) (-360 "FGLMICPK.spad" 576004 576019 577207 577212) (-359 "FFX.spad" 575379 575394 575720 575813) (-358 "FFSLPE.spad" 574868 574889 575369 575374) (-357 "FFPOLY.spad" 566120 566131 574858 574863) (-356 "FFPOLY2.spad" 565180 565197 566110 566115) (-355 "FFP.spad" 564577 564597 564896 564989) (-354 "FF.spad" 564025 564041 564258 564351) (-353 "FFNBX.spad" 562537 562557 563741 563834) (-352 "FFNBP.spad" 561050 561067 562253 562346) (-351 "FFNB.spad" 559515 559536 560731 560824) (-350 "FFINTBAS.spad" 556929 556948 559505 559510) (-349 "FFIELDC.spad" 554504 554512 556831 556924) (-348 "FFIELDC.spad" 552165 552175 554494 554499) (-347 "FFHOM.spad" 550913 550930 552155 552160) (-346 "FFF.spad" 548348 548359 550903 550908) (-345 "FFCGX.spad" 547195 547215 548064 548157) (-344 "FFCGP.spad" 546084 546104 546911 547004) (-343 "FFCG.spad" 544876 544897 545765 545858) (-342 "FFCAT.spad" 537903 537925 544715 544871) (-341 "FFCAT.spad" 531009 531033 537823 537828) (-340 "FFCAT2.spad" 530754 530794 530999 531004) (-339 "FEXPR.spad" 522463 522509 530510 530549) (-338 "FEVALAB.spad" 522169 522179 522453 522458) (-337 "FEVALAB.spad" 521660 521672 521946 521951) (-336 "FDIV.spad" 521102 521126 521650 521655) (-335 "FDIVCAT.spad" 519144 519168 521092 521097) (-334 "FDIVCAT.spad" 517184 517210 519134 519139) (-333 "FDIV2.spad" 516838 516878 517174 517179) (-332 "FCPAK1.spad" 515391 515399 516828 516833) (-331 "FCOMP.spad" 514770 514780 515381 515386) (-330 "FC.spad" 504685 504693 514760 514765) (-329 "FAXF.spad" 497620 497634 504587 504680) (-328 "FAXF.spad" 490607 490623 497576 497581) (-327 "FARRAY.spad" 488753 488763 489790 489817) (-326 "FAMR.spad" 486873 486885 488651 488748) (-325 "FAMR.spad" 484977 484991 486757 486762) (-324 "FAMONOID.spad" 484627 484637 484931 484936) (-323 "FAMONC.spad" 482849 482861 484617 484622) (-322 "FAGROUP.spad" 482455 482465 482745 482772) (-321 "FACUTIL.spad" 480651 480668 482445 482450) (-320 "FACTFUNC.spad" 479827 479837 480641 480646) (-319 "EXPUPXS.spad" 476660 476683 477959 478108) (-318 "EXPRTUBE.spad" 473888 473896 476650 476655) (-317 "EXPRODE.spad" 470760 470776 473878 473883) (-316 "EXPR.spad" 466035 466045 466749 467156) (-315 "EXPR2UPS.spad" 462127 462140 466025 466030) (-314 "EXPR2.spad" 461830 461842 462117 462122) (-313 "EXPEXPAN.spad" 458768 458793 459402 459495) (-312 "EXIT.spad" 458439 458447 458758 458763) (-311 "EXITAST.spad" 458175 458183 458429 458434) (-310 "EVALCYC.spad" 457633 457647 458165 458170) (-309 "EVALAB.spad" 457197 457207 457623 457628) (-308 "EVALAB.spad" 456759 456771 457187 457192) (-307 "EUCDOM.spad" 454301 454309 456685 456754) (-306 "EUCDOM.spad" 451905 451915 454291 454296) (-305 "ESTOOLS.spad" 443745 443753 451895 451900) (-304 "ESTOOLS2.spad" 443346 443360 443735 443740) (-303 "ESTOOLS1.spad" 443031 443042 443336 443341) (-302 "ES.spad" 435578 435586 443021 443026) (-301 "ES.spad" 428031 428041 435476 435481) (-300 "ESCONT.spad" 424804 424812 428021 428026) (-299 "ESCONT1.spad" 424553 424565 424794 424799) (-298 "ES2.spad" 424048 424064 424543 424548) (-297 "ES1.spad" 423614 423630 424038 424043) (-296 "ERROR.spad" 420935 420943 423604 423609) (-295 "EQTBL.spad" 419407 419429 419616 419643) (-294 "EQ.spad" 414281 414291 417080 417192) (-293 "EQ2.spad" 413997 414009 414271 414276) (-292 "EP.spad" 410311 410321 413987 413992) (-291 "ENV.spad" 409013 409021 410301 410306) (-290 "ENTIRER.spad" 408681 408689 408957 409008) (-289 "EMR.spad" 407882 407923 408607 408676) (-288 "ELTAGG.spad" 406122 406141 407872 407877) (-287 "ELTAGG.spad" 404326 404347 406078 406083) (-286 "ELTAB.spad" 403773 403791 404316 404321) (-285 "ELFUTS.spad" 403152 403171 403763 403768) (-284 "ELEMFUN.spad" 402841 402849 403142 403147) (-283 "ELEMFUN.spad" 402528 402538 402831 402836) (-282 "ELAGG.spad" 400471 400481 402508 402523) (-281 "ELAGG.spad" 398351 398363 400390 400395) (-280 "ELABEXPR.spad" 397282 397290 398341 398346) (-279 "EFUPXS.spad" 394058 394088 397238 397243) (-278 "EFULS.spad" 390894 390917 394014 394019) (-277 "EFSTRUC.spad" 388849 388865 390884 390889) (-276 "EF.spad" 383615 383631 388839 388844) (-275 "EAB.spad" 381891 381899 383605 383610) (-274 "E04UCFA.spad" 381427 381435 381881 381886) (-273 "E04NAFA.spad" 381004 381012 381417 381422) (-272 "E04MBFA.spad" 380584 380592 380994 380999) (-271 "E04JAFA.spad" 380120 380128 380574 380579) (-270 "E04GCFA.spad" 379656 379664 380110 380115) (-269 "E04FDFA.spad" 379192 379200 379646 379651) (-268 "E04DGFA.spad" 378728 378736 379182 379187) (-267 "E04AGNT.spad" 374570 374578 378718 378723) (-266 "DVARCAT.spad" 371255 371265 374560 374565) (-265 "DVARCAT.spad" 367938 367950 371245 371250) (-264 "DSMP.spad" 365369 365383 365674 365801) (-263 "DROPT.spad" 359314 359322 365359 365364) (-262 "DROPT1.spad" 358977 358987 359304 359309) (-261 "DROPT0.spad" 353804 353812 358967 358972) (-260 "DRAWPT.spad" 351959 351967 353794 353799) (-259 "DRAW.spad" 344559 344572 351949 351954) (-258 "DRAWHACK.spad" 343867 343877 344549 344554) (-257 "DRAWCX.spad" 341309 341317 343857 343862) (-256 "DRAWCURV.spad" 340846 340861 341299 341304) (-255 "DRAWCFUN.spad" 330018 330026 340836 340841) (-254 "DQAGG.spad" 328186 328196 329986 330013) (-253 "DPOLCAT.spad" 323527 323543 328054 328181) (-252 "DPOLCAT.spad" 318954 318972 323483 323488) (-251 "DPMO.spad" 311180 311196 311318 311619) (-250 "DPMM.spad" 303419 303437 303544 303845) (-249 "DOMCTOR.spad" 303311 303319 303409 303414) (-248 "DOMAIN.spad" 302442 302450 303301 303306) (-247 "DMP.spad" 299664 299679 300236 300363) (-246 "DLP.spad" 299012 299022 299654 299659) (-245 "DLIST.spad" 297591 297601 298195 298222) (-244 "DLAGG.spad" 296002 296012 297581 297586) (-243 "DIVRING.spad" 295544 295552 295946 295997) (-242 "DIVRING.spad" 295130 295140 295534 295539) (-241 "DISPLAY.spad" 293310 293318 295120 295125) (-240 "DIRPROD.spad" 282890 282906 283530 283661) (-239 "DIRPROD2.spad" 281698 281716 282880 282885) (-238 "DIRPCAT.spad" 280640 280656 281562 281693) (-237 "DIRPCAT.spad" 279311 279329 280235 280240) (-236 "DIOSP.spad" 278136 278144 279301 279306) (-235 "DIOPS.spad" 277120 277130 278116 278131) (-234 "DIOPS.spad" 276078 276090 277076 277081) (-233 "DIFRING.spad" 275370 275378 276058 276073) (-232 "DIFRING.spad" 274670 274680 275360 275365) (-231 "DIFEXT.spad" 273829 273839 274650 274665) (-230 "DIFEXT.spad" 272905 272917 273728 273733) (-229 "DIAGG.spad" 272535 272545 272885 272900) (-228 "DIAGG.spad" 272173 272185 272525 272530) (-227 "DHMATRIX.spad" 270477 270487 271630 271657) (-226 "DFSFUN.spad" 263885 263893 270467 270472) (-225 "DFLOAT.spad" 260606 260614 263775 263880) (-224 "DFINTTLS.spad" 258815 258831 260596 260601) (-223 "DERHAM.spad" 256725 256757 258795 258810) (-222 "DEQUEUE.spad" 256043 256053 256332 256359) (-221 "DEGRED.spad" 255658 255672 256033 256038) (-220 "DEFINTRF.spad" 253183 253193 255648 255653) (-219 "DEFINTEF.spad" 251679 251695 253173 253178) (-218 "DEFAST.spad" 251047 251055 251669 251674) (-217 "DECIMAL.spad" 249153 249161 249514 249607) (-216 "DDFACT.spad" 246952 246969 249143 249148) (-215 "DBLRESP.spad" 246550 246574 246942 246947) (-214 "DBASE.spad" 245204 245214 246540 246545) (-213 "DATAARY.spad" 244666 244679 245194 245199) (-212 "D03FAFA.spad" 244494 244502 244656 244661) (-211 "D03EEFA.spad" 244314 244322 244484 244489) (-210 "D03AGNT.spad" 243394 243402 244304 244309) (-209 "D02EJFA.spad" 242856 242864 243384 243389) (-208 "D02CJFA.spad" 242334 242342 242846 242851) (-207 "D02BHFA.spad" 241824 241832 242324 242329) (-206 "D02BBFA.spad" 241314 241322 241814 241819) (-205 "D02AGNT.spad" 236118 236126 241304 241309) (-204 "D01WGTS.spad" 234437 234445 236108 236113) (-203 "D01TRNS.spad" 234414 234422 234427 234432) (-202 "D01GBFA.spad" 233936 233944 234404 234409) (-201 "D01FCFA.spad" 233458 233466 233926 233931) (-200 "D01ASFA.spad" 232926 232934 233448 233453) (-199 "D01AQFA.spad" 232372 232380 232916 232921) (-198 "D01APFA.spad" 231796 231804 232362 232367) (-197 "D01ANFA.spad" 231290 231298 231786 231791) (-196 "D01AMFA.spad" 230800 230808 231280 231285) (-195 "D01ALFA.spad" 230340 230348 230790 230795) (-194 "D01AKFA.spad" 229866 229874 230330 230335) (-193 "D01AJFA.spad" 229389 229397 229856 229861) (-192 "D01AGNT.spad" 225448 225456 229379 229384) (-191 "CYCLOTOM.spad" 224954 224962 225438 225443) (-190 "CYCLES.spad" 221786 221794 224944 224949) (-189 "CVMP.spad" 221203 221213 221776 221781) (-188 "CTRIGMNP.spad" 219693 219709 221193 221198) (-187 "CTOR.spad" 219388 219396 219683 219688) (-186 "CTORKIND.spad" 218991 218999 219378 219383) (-185 "CTORCAT.spad" 218240 218248 218981 218986) (-184 "CTORCAT.spad" 217487 217497 218230 218235) (-183 "CTORCALL.spad" 217067 217075 217477 217482) (-182 "CSTTOOLS.spad" 216310 216323 217057 217062) (-181 "CRFP.spad" 210014 210027 216300 216305) (-180 "CRCEAST.spad" 209734 209742 210004 210009) (-179 "CRAPACK.spad" 208777 208787 209724 209729) (-178 "CPMATCH.spad" 208277 208292 208702 208707) (-177 "CPIMA.spad" 207982 208001 208267 208272) (-176 "COORDSYS.spad" 202875 202885 207972 207977) (-175 "CONTOUR.spad" 202277 202285 202865 202870) (-174 "CONTFRAC.spad" 197889 197899 202179 202272) (-173 "CONDUIT.spad" 197647 197655 197879 197884) (-172 "COMRING.spad" 197321 197329 197585 197642) (-171 "COMPPROP.spad" 196835 196843 197311 197316) (-170 "COMPLPAT.spad" 196602 196617 196825 196830) (-169 "COMPLEX.spad" 190626 190636 190870 191131) (-168 "COMPLEX2.spad" 190339 190351 190616 190621) (-167 "COMPFACT.spad" 189941 189955 190329 190334) (-166 "COMPCAT.spad" 188009 188019 189675 189936) (-165 "COMPCAT.spad" 185770 185782 187438 187443) (-164 "COMMUPC.spad" 185516 185534 185760 185765) (-163 "COMMONOP.spad" 185049 185057 185506 185511) (-162 "COMM.spad" 184858 184866 185039 185044) (-161 "COMMAAST.spad" 184621 184629 184848 184853) (-160 "COMBOPC.spad" 183526 183534 184611 184616) (-159 "COMBINAT.spad" 182271 182281 183516 183521) (-158 "COMBF.spad" 179639 179655 182261 182266) (-157 "COLOR.spad" 178476 178484 179629 179634) (-156 "COLONAST.spad" 178142 178150 178466 178471) (-155 "CMPLXRT.spad" 177851 177868 178132 178137) (-154 "CLLCTAST.spad" 177513 177521 177841 177846) (-153 "CLIP.spad" 173605 173613 177503 177508) (-152 "CLIF.spad" 172244 172260 173561 173600) (-151 "CLAGG.spad" 168729 168739 172234 172239) (-150 "CLAGG.spad" 165085 165097 168592 168597) (-149 "CINTSLPE.spad" 164410 164423 165075 165080) (-148 "CHVAR.spad" 162488 162510 164400 164405) (-147 "CHARZ.spad" 162403 162411 162468 162483) (-146 "CHARPOL.spad" 161911 161921 162393 162398) (-145 "CHARNZ.spad" 161664 161672 161891 161906) (-144 "CHAR.spad" 159532 159540 161654 161659) (-143 "CFCAT.spad" 158848 158856 159522 159527) (-142 "CDEN.spad" 158006 158020 158838 158843) (-141 "CCLASS.spad" 156155 156163 157417 157456) (-140 "CATEGORY.spad" 155245 155253 156145 156150) (-139 "CATCTOR.spad" 155136 155144 155235 155240) (-138 "CATAST.spad" 154763 154771 155126 155131) (-137 "CASEAST.spad" 154477 154485 154753 154758) (-136 "CARTEN.spad" 149580 149604 154467 154472) (-135 "CARTEN2.spad" 148966 148993 149570 149575) (-134 "CARD.spad" 146255 146263 148940 148961) (-133 "CAPSLAST.spad" 146029 146037 146245 146250) (-132 "CACHSET.spad" 145651 145659 146019 146024) (-131 "CABMON.spad" 145204 145212 145641 145646) (-130 "BYTEORD.spad" 144879 144887 145194 145199) (-129 "BYTE.spad" 144300 144308 144869 144874) (-128 "BYTEBUF.spad" 142157 142165 143469 143496) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2281204 2281209 2281214 2281219) (-2 NIL 2281184 2281189 2281194 2281199) (-1 NIL 2281164 2281169 2281174 2281179) (0 NIL 2281144 2281149 2281154 2281159) (-1285 "ZMOD.spad" 2280953 2280966 2281082 2281139) (-1284 "ZLINDEP.spad" 2279997 2280008 2280943 2280948) (-1283 "ZDSOLVE.spad" 2269846 2269868 2279987 2279992) (-1282 "YSTREAM.spad" 2269339 2269350 2269836 2269841) (-1281 "XRPOLY.spad" 2268559 2268579 2269195 2269264) (-1280 "XPR.spad" 2266350 2266363 2268277 2268376) (-1279 "XPOLYC.spad" 2265667 2265683 2266276 2266345) (-1278 "XPOLY.spad" 2265222 2265233 2265523 2265592) (-1277 "XPBWPOLY.spad" 2263659 2263679 2265002 2265071) (-1276 "XFALG.spad" 2260683 2260699 2263585 2263654) (-1275 "XF.spad" 2259144 2259159 2260585 2260678) (-1274 "XF.spad" 2257585 2257602 2259028 2259033) (-1273 "XEXPPKG.spad" 2256836 2256862 2257575 2257580) (-1272 "XDPOLY.spad" 2256450 2256466 2256692 2256761) (-1271 "XALG.spad" 2256110 2256121 2256406 2256445) (-1270 "WUTSET.spad" 2251949 2251966 2255756 2255783) (-1269 "WP.spad" 2251148 2251192 2251807 2251874) (-1268 "WHILEAST.spad" 2250946 2250955 2251138 2251143) (-1267 "WHEREAST.spad" 2250617 2250626 2250936 2250941) (-1266 "WFFINTBS.spad" 2248180 2248202 2250607 2250612) (-1265 "WEIER.spad" 2246394 2246405 2248170 2248175) (-1264 "VSPACE.spad" 2246067 2246078 2246362 2246389) (-1263 "VSPACE.spad" 2245760 2245773 2246057 2246062) (-1262 "VOID.spad" 2245437 2245446 2245750 2245755) (-1261 "VIEWDEF.spad" 2240634 2240643 2245427 2245432) (-1260 "VIEW3D.spad" 2224469 2224478 2240624 2240629) (-1259 "VIEW2D.spad" 2212206 2212215 2224459 2224464) (-1258 "VIEW.spad" 2209828 2209837 2212196 2212201) (-1257 "VECTOR2.spad" 2208455 2208468 2209818 2209823) (-1256 "VECTOR.spad" 2207130 2207141 2207381 2207408) (-1255 "VECTCAT.spad" 2205030 2205041 2207098 2207125) (-1254 "VECTCAT.spad" 2202738 2202751 2204808 2204813) (-1253 "VARIABLE.spad" 2202518 2202533 2202728 2202733) (-1252 "UTYPE.spad" 2202162 2202171 2202508 2202513) (-1251 "UTSODETL.spad" 2201455 2201479 2202118 2202123) (-1250 "UTSODE.spad" 2199643 2199663 2201445 2201450) (-1249 "UTSCAT.spad" 2197094 2197110 2199541 2199638) (-1248 "UTSCAT.spad" 2194189 2194207 2196638 2196643) (-1247 "UTS2.spad" 2193782 2193817 2194179 2194184) (-1246 "UTS.spad" 2188571 2188599 2192249 2192346) (-1245 "URAGG.spad" 2183203 2183214 2188561 2188566) (-1244 "URAGG.spad" 2177799 2177812 2183159 2183164) (-1243 "UPXSSING.spad" 2175442 2175468 2176880 2177013) (-1242 "UPXSCONS.spad" 2173199 2173219 2173574 2173723) (-1241 "UPXSCCA.spad" 2171764 2171784 2173045 2173194) (-1240 "UPXSCCA.spad" 2170471 2170493 2171754 2171759) (-1239 "UPXSCAT.spad" 2169052 2169068 2170317 2170466) (-1238 "UPXS2.spad" 2168593 2168646 2169042 2169047) (-1237 "UPXS.spad" 2165741 2165769 2166725 2166874) (-1236 "UPSQFREE.spad" 2164154 2164168 2165731 2165736) (-1235 "UPSCAT.spad" 2161747 2161771 2164052 2164149) (-1234 "UPSCAT.spad" 2159046 2159072 2161353 2161358) (-1233 "UPOLYC2.spad" 2158515 2158534 2159036 2159041) (-1232 "UPOLYC.spad" 2153493 2153504 2158357 2158510) (-1231 "UPOLYC.spad" 2148363 2148376 2153229 2153234) (-1230 "UPMP.spad" 2147253 2147266 2148353 2148358) (-1229 "UPDIVP.spad" 2146816 2146830 2147243 2147248) (-1228 "UPDECOMP.spad" 2145053 2145067 2146806 2146811) (-1227 "UPCDEN.spad" 2144260 2144276 2145043 2145048) (-1226 "UP2.spad" 2143622 2143643 2144250 2144255) (-1225 "UP.spad" 2140779 2140794 2141172 2141325) (-1224 "UNISEG2.spad" 2140272 2140285 2140735 2140740) (-1223 "UNISEG.spad" 2139625 2139636 2140191 2140196) (-1222 "UNIFACT.spad" 2138726 2138738 2139615 2139620) (-1221 "ULSCONS.spad" 2131120 2131140 2131492 2131641) (-1220 "ULSCCAT.spad" 2128849 2128869 2130966 2131115) (-1219 "ULSCCAT.spad" 2126686 2126708 2128805 2128810) (-1218 "ULSCAT.spad" 2124902 2124918 2126532 2126681) (-1217 "ULS2.spad" 2124414 2124467 2124892 2124897) (-1216 "ULS.spad" 2114966 2114994 2116059 2116488) (-1215 "UINT8.spad" 2114843 2114852 2114956 2114961) (-1214 "UINT32.spad" 2114719 2114728 2114833 2114838) (-1213 "UINT16.spad" 2114595 2114604 2114709 2114714) (-1212 "UFD.spad" 2113660 2113669 2114521 2114590) (-1211 "UFD.spad" 2112787 2112798 2113650 2113655) (-1210 "UDVO.spad" 2111634 2111643 2112777 2112782) (-1209 "UDPO.spad" 2109061 2109072 2111590 2111595) (-1208 "TYPEAST.spad" 2108980 2108989 2109051 2109056) (-1207 "TYPE.spad" 2108912 2108921 2108970 2108975) (-1206 "TWOFACT.spad" 2107562 2107577 2108902 2108907) (-1205 "TUPLE.spad" 2107046 2107057 2107461 2107466) (-1204 "TUBETOOL.spad" 2103883 2103892 2107036 2107041) (-1203 "TUBE.spad" 2102524 2102541 2103873 2103878) (-1202 "TSETCAT.spad" 2089651 2089668 2102492 2102519) (-1201 "TSETCAT.spad" 2076764 2076783 2089607 2089612) (-1200 "TS.spad" 2075353 2075369 2076329 2076426) (-1199 "TRMANIP.spad" 2069719 2069736 2075059 2075064) (-1198 "TRIMAT.spad" 2068678 2068703 2069709 2069714) (-1197 "TRIGMNIP.spad" 2067195 2067212 2068668 2068673) (-1196 "TRIGCAT.spad" 2066707 2066716 2067185 2067190) (-1195 "TRIGCAT.spad" 2066217 2066228 2066697 2066702) (-1194 "TREE.spad" 2064788 2064799 2065824 2065851) (-1193 "TRANFUN.spad" 2064619 2064628 2064778 2064783) (-1192 "TRANFUN.spad" 2064448 2064459 2064609 2064614) (-1191 "TOPSP.spad" 2064122 2064131 2064438 2064443) (-1190 "TOOLSIGN.spad" 2063785 2063796 2064112 2064117) (-1189 "TEXTFILE.spad" 2062342 2062351 2063775 2063780) (-1188 "TEX1.spad" 2061898 2061909 2062332 2062337) (-1187 "TEX.spad" 2059030 2059039 2061888 2061893) (-1186 "TEMUTL.spad" 2058585 2058594 2059020 2059025) (-1185 "TBCMPPK.spad" 2056678 2056701 2058575 2058580) (-1184 "TBAGG.spad" 2055714 2055737 2056658 2056673) (-1183 "TBAGG.spad" 2054758 2054783 2055704 2055709) (-1182 "TANEXP.spad" 2054134 2054145 2054748 2054753) (-1181 "TABLEAU.spad" 2053615 2053626 2054124 2054129) (-1180 "TABLE.spad" 2052026 2052049 2052296 2052323) (-1179 "TABLBUMP.spad" 2048809 2048820 2052016 2052021) (-1178 "SYSTEM.spad" 2048037 2048046 2048799 2048804) (-1177 "SYSSOLP.spad" 2045510 2045521 2048027 2048032) (-1176 "SYSNNI.spad" 2044690 2044701 2045500 2045505) (-1175 "SYSINT.spad" 2044094 2044105 2044680 2044685) (-1174 "SYNTAX.spad" 2040364 2040373 2044084 2044089) (-1173 "SYMTAB.spad" 2038420 2038429 2040354 2040359) (-1172 "SYMS.spad" 2034411 2034420 2038410 2038415) (-1171 "SYMPOLY.spad" 2033418 2033429 2033500 2033627) (-1170 "SYMFUNC.spad" 2032893 2032904 2033408 2033413) (-1169 "SYMBOL.spad" 2030320 2030329 2032883 2032888) (-1168 "SWITCH.spad" 2027077 2027086 2030310 2030315) (-1167 "SUTS.spad" 2023976 2024004 2025544 2025641) (-1166 "SUPXS.spad" 2021111 2021139 2022108 2022257) (-1165 "SUPFRACF.spad" 2020216 2020234 2021101 2021106) (-1164 "SUP2.spad" 2019606 2019619 2020206 2020211) (-1163 "SUP.spad" 2016375 2016386 2017156 2017309) (-1162 "SUMRF.spad" 2015341 2015352 2016365 2016370) (-1161 "SUMFS.spad" 2014974 2014991 2015331 2015336) (-1160 "SULS.spad" 2005513 2005541 2006619 2007048) (-1159 "SUCHTAST.spad" 2005282 2005291 2005503 2005508) (-1158 "SUCH.spad" 2004962 2004977 2005272 2005277) (-1157 "SUBSPACE.spad" 1996969 1996984 2004952 2004957) (-1156 "SUBRESP.spad" 1996129 1996143 1996925 1996930) (-1155 "STTFNC.spad" 1992597 1992613 1996119 1996124) (-1154 "STTF.spad" 1988696 1988712 1992587 1992592) (-1153 "STTAYLOR.spad" 1981094 1981105 1988577 1988582) (-1152 "STRTBL.spad" 1979599 1979616 1979748 1979775) (-1151 "STRING.spad" 1979008 1979017 1979022 1979049) (-1150 "STRICAT.spad" 1978796 1978805 1978976 1979003) (-1149 "STREAM3.spad" 1978341 1978356 1978786 1978791) (-1148 "STREAM2.spad" 1977409 1977422 1978331 1978336) (-1147 "STREAM1.spad" 1977113 1977124 1977399 1977404) (-1146 "STREAM.spad" 1973971 1973982 1976638 1976653) (-1145 "STINPROD.spad" 1972877 1972893 1973961 1973966) (-1144 "STEP.spad" 1972078 1972087 1972867 1972872) (-1143 "STBL.spad" 1970604 1970632 1970771 1970786) (-1142 "STAGG.spad" 1969679 1969690 1970594 1970599) (-1141 "STAGG.spad" 1968752 1968765 1969669 1969674) (-1140 "STACK.spad" 1968103 1968114 1968359 1968386) (-1139 "SREGSET.spad" 1965807 1965824 1967749 1967776) (-1138 "SRDCMPK.spad" 1964352 1964372 1965797 1965802) (-1137 "SRAGG.spad" 1959449 1959458 1964320 1964347) (-1136 "SRAGG.spad" 1954566 1954577 1959439 1959444) (-1135 "SQMATRIX.spad" 1952182 1952200 1953098 1953185) (-1134 "SPLTREE.spad" 1946734 1946747 1951618 1951645) (-1133 "SPLNODE.spad" 1943322 1943335 1946724 1946729) (-1132 "SPFCAT.spad" 1942099 1942108 1943312 1943317) (-1131 "SPECOUT.spad" 1940649 1940658 1942089 1942094) (-1130 "SPADXPT.spad" 1932788 1932797 1940639 1940644) (-1129 "spad-parser.spad" 1932253 1932262 1932778 1932783) (-1128 "SPADAST.spad" 1931954 1931963 1932243 1932248) (-1127 "SPACEC.spad" 1915967 1915978 1931944 1931949) (-1126 "SPACE3.spad" 1915743 1915754 1915957 1915962) (-1125 "SORTPAK.spad" 1915288 1915301 1915699 1915704) (-1124 "SOLVETRA.spad" 1913045 1913056 1915278 1915283) (-1123 "SOLVESER.spad" 1911565 1911576 1913035 1913040) (-1122 "SOLVERAD.spad" 1907575 1907586 1911555 1911560) (-1121 "SOLVEFOR.spad" 1905995 1906013 1907565 1907570) (-1120 "SNTSCAT.spad" 1905595 1905612 1905963 1905990) (-1119 "SMTS.spad" 1903855 1903881 1905160 1905257) (-1118 "SMP.spad" 1901294 1901314 1901684 1901811) (-1117 "SMITH.spad" 1900137 1900162 1901284 1901289) (-1116 "SMATCAT.spad" 1898247 1898277 1900081 1900132) (-1115 "SMATCAT.spad" 1896289 1896321 1898125 1898130) (-1114 "SKAGG.spad" 1895250 1895261 1896257 1896284) (-1113 "SINT.spad" 1894076 1894085 1895116 1895245) (-1112 "SIMPAN.spad" 1893804 1893813 1894066 1894071) (-1111 "SIGNRF.spad" 1892919 1892930 1893794 1893799) (-1110 "SIGNEF.spad" 1892195 1892212 1892909 1892914) (-1109 "SIGAST.spad" 1891576 1891585 1892185 1892190) (-1108 "SIG.spad" 1890904 1890913 1891566 1891571) (-1107 "SHP.spad" 1888822 1888837 1890860 1890865) (-1106 "SHDP.spad" 1878533 1878560 1879042 1879173) (-1105 "SGROUP.spad" 1878141 1878150 1878523 1878528) (-1104 "SGROUP.spad" 1877747 1877758 1878131 1878136) (-1103 "SGCF.spad" 1870628 1870637 1877737 1877742) (-1102 "SFRTCAT.spad" 1869556 1869573 1870596 1870623) (-1101 "SFRGCD.spad" 1868619 1868639 1869546 1869551) (-1100 "SFQCMPK.spad" 1863256 1863276 1868609 1868614) (-1099 "SFORT.spad" 1862691 1862705 1863246 1863251) (-1098 "SEXOF.spad" 1862534 1862574 1862681 1862686) (-1097 "SEXCAT.spad" 1860085 1860125 1862524 1862529) (-1096 "SEX.spad" 1859977 1859986 1860075 1860080) (-1095 "SETMN.spad" 1858413 1858430 1859967 1859972) (-1094 "SETCAT.spad" 1857898 1857907 1858403 1858408) (-1093 "SETCAT.spad" 1857381 1857392 1857888 1857893) (-1092 "SETAGG.spad" 1853902 1853913 1857361 1857376) (-1091 "SETAGG.spad" 1850431 1850444 1853892 1853897) (-1090 "SET.spad" 1848731 1848742 1849852 1849891) (-1089 "SEQAST.spad" 1848434 1848443 1848721 1848726) (-1088 "SEGXCAT.spad" 1847556 1847569 1848424 1848429) (-1087 "SEGCAT.spad" 1846463 1846474 1847546 1847551) (-1086 "SEGBIND2.spad" 1846159 1846172 1846453 1846458) (-1085 "SEGBIND.spad" 1845231 1845242 1846114 1846119) (-1084 "SEGAST.spad" 1844945 1844954 1845221 1845226) (-1083 "SEG2.spad" 1844370 1844383 1844901 1844906) (-1082 "SEG.spad" 1844183 1844194 1844289 1844294) (-1081 "SDVAR.spad" 1843459 1843470 1844173 1844178) (-1080 "SDPOL.spad" 1840849 1840860 1841140 1841267) (-1079 "SCPKG.spad" 1838928 1838939 1840839 1840844) (-1078 "SCOPE.spad" 1838073 1838082 1838918 1838923) (-1077 "SCACHE.spad" 1836755 1836766 1838063 1838068) (-1076 "SASTCAT.spad" 1836664 1836673 1836745 1836750) (-1075 "SAOS.spad" 1836536 1836545 1836654 1836659) (-1074 "SAERFFC.spad" 1836249 1836269 1836526 1836531) (-1073 "SAEFACT.spad" 1835950 1835970 1836239 1836244) (-1072 "SAE.spad" 1834125 1834141 1834736 1834871) (-1071 "RURPK.spad" 1831766 1831782 1834115 1834120) (-1070 "RULESET.spad" 1831207 1831231 1831756 1831761) (-1069 "RULECOLD.spad" 1831059 1831072 1831197 1831202) (-1068 "RULE.spad" 1829263 1829287 1831049 1831054) (-1067 "RSTRCAST.spad" 1828980 1828989 1829253 1829258) (-1066 "RSETGCD.spad" 1825358 1825378 1828970 1828975) (-1065 "RSETCAT.spad" 1815142 1815159 1825326 1825353) (-1064 "RSETCAT.spad" 1804946 1804965 1815132 1815137) (-1063 "RSDCMPK.spad" 1803398 1803418 1804936 1804941) (-1062 "RRCC.spad" 1801782 1801812 1803388 1803393) (-1061 "RRCC.spad" 1800164 1800196 1801772 1801777) (-1060 "RPTAST.spad" 1799866 1799875 1800154 1800159) (-1059 "RPOLCAT.spad" 1779226 1779241 1799734 1799861) (-1058 "RPOLCAT.spad" 1758300 1758317 1778810 1778815) (-1057 "ROUTINE.spad" 1754163 1754172 1756947 1756974) (-1056 "ROMAN.spad" 1753491 1753500 1754029 1754158) (-1055 "ROIRC.spad" 1752571 1752603 1753481 1753486) (-1054 "RNS.spad" 1751474 1751483 1752473 1752566) (-1053 "RNS.spad" 1750463 1750474 1751464 1751469) (-1052 "RNG.spad" 1750198 1750207 1750453 1750458) (-1051 "RMODULE.spad" 1749836 1749847 1750188 1750193) (-1050 "RMCAT2.spad" 1749244 1749301 1749826 1749831) (-1049 "RMATRIX.spad" 1748068 1748087 1748411 1748450) (-1048 "RMATCAT.spad" 1743601 1743632 1748024 1748063) (-1047 "RMATCAT.spad" 1739024 1739057 1743449 1743454) (-1046 "RINTERP.spad" 1738912 1738932 1739014 1739019) (-1045 "RING.spad" 1738382 1738391 1738892 1738907) (-1044 "RING.spad" 1737860 1737871 1738372 1738377) (-1043 "RIDIST.spad" 1737244 1737253 1737850 1737855) (-1042 "RGCHAIN.spad" 1735823 1735839 1736729 1736756) (-1041 "RGBCSPC.spad" 1735604 1735616 1735813 1735818) (-1040 "RGBCMDL.spad" 1735134 1735146 1735594 1735599) (-1039 "RFFACTOR.spad" 1734596 1734607 1735124 1735129) (-1038 "RFFACT.spad" 1734331 1734343 1734586 1734591) (-1037 "RFDIST.spad" 1733319 1733328 1734321 1734326) (-1036 "RF.spad" 1730933 1730944 1733309 1733314) (-1035 "RETSOL.spad" 1730350 1730363 1730923 1730928) (-1034 "RETRACT.spad" 1729778 1729789 1730340 1730345) (-1033 "RETRACT.spad" 1729204 1729217 1729768 1729773) (-1032 "RETAST.spad" 1729016 1729025 1729194 1729199) (-1031 "RESULT.spad" 1727076 1727085 1727663 1727690) (-1030 "RESRING.spad" 1726423 1726470 1727014 1727071) (-1029 "RESLATC.spad" 1725747 1725758 1726413 1726418) (-1028 "REPSQ.spad" 1725476 1725487 1725737 1725742) (-1027 "REPDB.spad" 1725181 1725192 1725466 1725471) (-1026 "REP2.spad" 1714753 1714764 1725023 1725028) (-1025 "REP1.spad" 1708743 1708754 1714703 1714708) (-1024 "REP.spad" 1706295 1706304 1708733 1708738) (-1023 "REGSET.spad" 1704092 1704109 1705941 1705968) (-1022 "REF.spad" 1703421 1703432 1704047 1704052) (-1021 "REDORDER.spad" 1702597 1702614 1703411 1703416) (-1020 "RECLOS.spad" 1701380 1701400 1702084 1702177) (-1019 "REALSOLV.spad" 1700512 1700521 1701370 1701375) (-1018 "REAL0Q.spad" 1697794 1697809 1700502 1700507) (-1017 "REAL0.spad" 1694622 1694637 1697784 1697789) (-1016 "REAL.spad" 1694494 1694503 1694612 1694617) (-1015 "RDUCEAST.spad" 1694215 1694224 1694484 1694489) (-1014 "RDIV.spad" 1693866 1693891 1694205 1694210) (-1013 "RDIST.spad" 1693429 1693440 1693856 1693861) (-1012 "RDETRS.spad" 1692225 1692243 1693419 1693424) (-1011 "RDETR.spad" 1690332 1690350 1692215 1692220) (-1010 "RDEEFS.spad" 1689405 1689422 1690322 1690327) (-1009 "RDEEF.spad" 1688401 1688418 1689395 1689400) (-1008 "RCFIELD.spad" 1685587 1685596 1688303 1688396) (-1007 "RCFIELD.spad" 1682859 1682870 1685577 1685582) (-1006 "RCAGG.spad" 1680771 1680782 1682849 1682854) (-1005 "RCAGG.spad" 1678610 1678623 1680690 1680695) (-1004 "RATRET.spad" 1677970 1677981 1678600 1678605) (-1003 "RATFACT.spad" 1677662 1677674 1677960 1677965) (-1002 "RANDSRC.spad" 1676981 1676990 1677652 1677657) (-1001 "RADUTIL.spad" 1676735 1676744 1676971 1676976) (-1000 "RADIX.spad" 1673636 1673650 1675202 1675295) (-999 "RADFF.spad" 1672050 1672086 1672168 1672324) (-998 "RADCAT.spad" 1671644 1671652 1672040 1672045) (-997 "RADCAT.spad" 1671236 1671246 1671634 1671639) (-996 "QUEUE.spad" 1670579 1670589 1670843 1670870) (-995 "QUATCT2.spad" 1670198 1670216 1670569 1670574) (-994 "QUATCAT.spad" 1668363 1668373 1670128 1670193) (-993 "QUATCAT.spad" 1666279 1666291 1668046 1668051) (-992 "QUAT.spad" 1664861 1664871 1665203 1665268) (-991 "QUAGG.spad" 1663687 1663697 1664829 1664856) (-990 "QQUTAST.spad" 1663456 1663464 1663677 1663682) (-989 "QFORM.spad" 1662919 1662933 1663446 1663451) (-988 "QFCAT2.spad" 1662610 1662626 1662909 1662914) (-987 "QFCAT.spad" 1661313 1661323 1662512 1662605) (-986 "QFCAT.spad" 1659607 1659619 1660808 1660813) (-985 "QEQUAT.spad" 1659164 1659172 1659597 1659602) (-984 "QCMPACK.spad" 1653911 1653930 1659154 1659159) (-983 "QALGSET2.spad" 1651907 1651925 1653901 1653906) (-982 "QALGSET.spad" 1647984 1648016 1651821 1651826) (-981 "PWFFINTB.spad" 1645294 1645315 1647974 1647979) (-980 "PUSHVAR.spad" 1644623 1644642 1645284 1645289) (-979 "PTRANFN.spad" 1640749 1640759 1644613 1644618) (-978 "PTPACK.spad" 1637837 1637847 1640739 1640744) (-977 "PTFUNC2.spad" 1637658 1637672 1637827 1637832) (-976 "PTCAT.spad" 1636907 1636917 1637626 1637653) (-975 "PSQFR.spad" 1636214 1636238 1636897 1636902) (-974 "PSEUDLIN.spad" 1635072 1635082 1636204 1636209) (-973 "PSETPK.spad" 1620505 1620521 1634950 1634955) (-972 "PSETCAT.spad" 1614425 1614448 1620485 1620500) (-971 "PSETCAT.spad" 1608319 1608344 1614381 1614386) (-970 "PSCURVE.spad" 1607302 1607310 1608309 1608314) (-969 "PSCAT.spad" 1606069 1606098 1607200 1607297) (-968 "PSCAT.spad" 1604926 1604957 1606059 1606064) (-967 "PRTITION.spad" 1603871 1603879 1604916 1604921) (-966 "PRTDAST.spad" 1603590 1603598 1603861 1603866) (-965 "PRS.spad" 1593152 1593169 1603546 1603551) (-964 "PRQAGG.spad" 1592583 1592593 1593120 1593147) (-963 "PROPLOG.spad" 1591986 1591994 1592573 1592578) (-962 "PROPFRML.spad" 1589904 1589915 1591976 1591981) (-961 "PROPERTY.spad" 1589398 1589406 1589894 1589899) (-960 "PRODUCT.spad" 1587078 1587090 1587364 1587419) (-959 "PRINT.spad" 1586830 1586838 1587068 1587073) (-958 "PRIMES.spad" 1585081 1585091 1586820 1586825) (-957 "PRIMELT.spad" 1583062 1583076 1585071 1585076) (-956 "PRIMCAT.spad" 1582685 1582693 1583052 1583057) (-955 "PRIMARR2.spad" 1581408 1581420 1582675 1582680) (-954 "PRIMARR.spad" 1580413 1580423 1580591 1580618) (-953 "PREASSOC.spad" 1579785 1579797 1580403 1580408) (-952 "PR.spad" 1578171 1578183 1578876 1579003) (-951 "PPCURVE.spad" 1577308 1577316 1578161 1578166) (-950 "PORTNUM.spad" 1577083 1577091 1577298 1577303) (-949 "POLYROOT.spad" 1575912 1575934 1577039 1577044) (-948 "POLYLIFT.spad" 1575173 1575196 1575902 1575907) (-947 "POLYCATQ.spad" 1573275 1573297 1575163 1575168) (-946 "POLYCAT.spad" 1566681 1566702 1573143 1573270) (-945 "POLYCAT.spad" 1559389 1559412 1565853 1565858) (-944 "POLY2UP.spad" 1558837 1558851 1559379 1559384) (-943 "POLY2.spad" 1558432 1558444 1558827 1558832) (-942 "POLY.spad" 1555729 1555739 1556246 1556373) (-941 "POLUTIL.spad" 1554670 1554699 1555685 1555690) (-940 "POLTOPOL.spad" 1553418 1553433 1554660 1554665) (-939 "POINT.spad" 1552257 1552267 1552344 1552371) (-938 "PNTHEORY.spad" 1548923 1548931 1552247 1552252) (-937 "PMTOOLS.spad" 1547680 1547694 1548913 1548918) (-936 "PMSYM.spad" 1547225 1547235 1547670 1547675) (-935 "PMQFCAT.spad" 1546812 1546826 1547215 1547220) (-934 "PMPREDFS.spad" 1546256 1546278 1546802 1546807) (-933 "PMPRED.spad" 1545725 1545739 1546246 1546251) (-932 "PMPLCAT.spad" 1544795 1544813 1545657 1545662) (-931 "PMLSAGG.spad" 1544376 1544390 1544785 1544790) (-930 "PMKERNEL.spad" 1543943 1543955 1544366 1544371) (-929 "PMINS.spad" 1543519 1543529 1543933 1543938) (-928 "PMFS.spad" 1543092 1543110 1543509 1543514) (-927 "PMDOWN.spad" 1542378 1542392 1543082 1543087) (-926 "PMASSFS.spad" 1541347 1541363 1542368 1542373) (-925 "PMASS.spad" 1540359 1540367 1541337 1541342) (-924 "PLOTTOOL.spad" 1540139 1540147 1540349 1540354) (-923 "PLOT3D.spad" 1536559 1536567 1540129 1540134) (-922 "PLOT1.spad" 1535700 1535710 1536549 1536554) (-921 "PLOT.spad" 1530531 1530539 1535690 1535695) (-920 "PLEQN.spad" 1517747 1517774 1530521 1530526) (-919 "PINTERPA.spad" 1517529 1517545 1517737 1517742) (-918 "PINTERP.spad" 1517145 1517164 1517519 1517524) (-917 "PID.spad" 1516101 1516109 1517071 1517140) (-916 "PICOERCE.spad" 1515758 1515768 1516091 1516096) (-915 "PI.spad" 1515365 1515373 1515732 1515753) (-914 "PGROEB.spad" 1513962 1513976 1515355 1515360) (-913 "PGE.spad" 1505215 1505223 1513952 1513957) (-912 "PGCD.spad" 1504097 1504114 1505205 1505210) (-911 "PFRPAC.spad" 1503240 1503250 1504087 1504092) (-910 "PFR.spad" 1499897 1499907 1503142 1503235) (-909 "PFOTOOLS.spad" 1499155 1499171 1499887 1499892) (-908 "PFOQ.spad" 1498525 1498543 1499145 1499150) (-907 "PFO.spad" 1497944 1497971 1498515 1498520) (-906 "PFECAT.spad" 1495610 1495618 1497870 1497939) (-905 "PFECAT.spad" 1493304 1493314 1495566 1495571) (-904 "PFBRU.spad" 1491174 1491186 1493294 1493299) (-903 "PFBR.spad" 1488712 1488735 1491164 1491169) (-902 "PF.spad" 1488286 1488298 1488517 1488610) (-901 "PERMGRP.spad" 1483022 1483032 1488276 1488281) (-900 "PERMCAT.spad" 1481574 1481584 1483002 1483017) (-899 "PERMAN.spad" 1480106 1480120 1481564 1481569) (-898 "PERM.spad" 1475787 1475797 1479936 1479951) (-897 "PENDTREE.spad" 1475126 1475136 1475416 1475421) (-896 "PDRING.spad" 1473617 1473627 1475106 1475121) (-895 "PDRING.spad" 1472116 1472128 1473607 1473612) (-894 "PDEPROB.spad" 1471131 1471139 1472106 1472111) (-893 "PDEPACK.spad" 1465133 1465141 1471121 1471126) (-892 "PDECOMP.spad" 1464595 1464612 1465123 1465128) (-891 "PDECAT.spad" 1462949 1462957 1464585 1464590) (-890 "PCOMP.spad" 1462800 1462813 1462939 1462944) (-889 "PBWLB.spad" 1461382 1461399 1462790 1462795) (-888 "PATTERN2.spad" 1461118 1461130 1461372 1461377) (-887 "PATTERN1.spad" 1459420 1459436 1461108 1461113) (-886 "PATTERN.spad" 1453851 1453861 1459410 1459415) (-885 "PATRES2.spad" 1453513 1453527 1453841 1453846) (-884 "PATRES.spad" 1451060 1451072 1453503 1453508) (-883 "PATMATCH.spad" 1449217 1449248 1450768 1450773) (-882 "PATMAB.spad" 1448642 1448652 1449207 1449212) (-881 "PATLRES.spad" 1447726 1447740 1448632 1448637) (-880 "PATAB.spad" 1447490 1447500 1447716 1447721) (-879 "PARTPERM.spad" 1444852 1444860 1447480 1447485) (-878 "PARSURF.spad" 1444280 1444308 1444842 1444847) (-877 "PARSU2.spad" 1444075 1444091 1444270 1444275) (-876 "script-parser.spad" 1443595 1443603 1444065 1444070) (-875 "PARSCURV.spad" 1443023 1443051 1443585 1443590) (-874 "PARSC2.spad" 1442812 1442828 1443013 1443018) (-873 "PARPCURV.spad" 1442270 1442298 1442802 1442807) (-872 "PARPC2.spad" 1442059 1442075 1442260 1442265) (-871 "PAN2EXPR.spad" 1441471 1441479 1442049 1442054) (-870 "PALETTE.spad" 1440441 1440449 1441461 1441466) (-869 "PAIR.spad" 1439424 1439437 1440029 1440034) (-868 "PADICRC.spad" 1436754 1436772 1437929 1438022) (-867 "PADICRAT.spad" 1434769 1434781 1434990 1435083) (-866 "PADICCT.spad" 1433310 1433322 1434695 1434764) (-865 "PADIC.spad" 1433005 1433017 1433236 1433305) (-864 "PADEPAC.spad" 1431684 1431703 1432995 1433000) (-863 "PADE.spad" 1430424 1430440 1431674 1431679) (-862 "OWP.spad" 1429664 1429694 1430282 1430349) (-861 "OVERSET.spad" 1429237 1429245 1429654 1429659) (-860 "OVAR.spad" 1429018 1429041 1429227 1429232) (-859 "OUTFORM.spad" 1418314 1418322 1429008 1429013) (-858 "OUTBFILE.spad" 1417732 1417740 1418304 1418309) (-857 "OUTBCON.spad" 1416730 1416738 1417722 1417727) (-856 "OUTBCON.spad" 1415726 1415736 1416720 1416725) (-855 "OUT.spad" 1414810 1414818 1415716 1415721) (-854 "OSI.spad" 1414285 1414293 1414800 1414805) (-853 "OSGROUP.spad" 1414203 1414211 1414275 1414280) (-852 "ORTHPOL.spad" 1412664 1412674 1414120 1414125) (-851 "OREUP.spad" 1412117 1412145 1412344 1412383) (-850 "ORESUP.spad" 1411416 1411440 1411797 1411836) (-849 "OREPCTO.spad" 1409235 1409247 1411336 1411341) (-848 "OREPCAT.spad" 1403292 1403302 1409191 1409230) (-847 "OREPCAT.spad" 1397239 1397251 1403140 1403145) (-846 "ORDSET.spad" 1396405 1396413 1397229 1397234) (-845 "ORDSET.spad" 1395569 1395579 1396395 1396400) (-844 "ORDRING.spad" 1394959 1394967 1395549 1395564) (-843 "ORDRING.spad" 1394357 1394367 1394949 1394954) (-842 "ORDMON.spad" 1394212 1394220 1394347 1394352) (-841 "ORDFUNS.spad" 1393338 1393354 1394202 1394207) (-840 "ORDFIN.spad" 1393158 1393166 1393328 1393333) (-839 "ORDCOMP2.spad" 1392443 1392455 1393148 1393153) (-838 "ORDCOMP.spad" 1390908 1390918 1391990 1392019) (-837 "OPTPROB.spad" 1389546 1389554 1390898 1390903) (-836 "OPTPACK.spad" 1381931 1381939 1389536 1389541) (-835 "OPTCAT.spad" 1379606 1379614 1381921 1381926) (-834 "OPSIG.spad" 1379258 1379266 1379596 1379601) (-833 "OPQUERY.spad" 1378807 1378815 1379248 1379253) (-832 "OPERCAT.spad" 1378395 1378405 1378797 1378802) (-831 "OPERCAT.spad" 1377981 1377993 1378385 1378390) (-830 "OP.spad" 1377723 1377733 1377803 1377870) (-829 "ONECOMP2.spad" 1377141 1377153 1377713 1377718) (-828 "ONECOMP.spad" 1375886 1375896 1376688 1376717) (-827 "OMSERVER.spad" 1374888 1374896 1375876 1375881) (-826 "OMSAGG.spad" 1374676 1374686 1374844 1374883) (-825 "OMPKG.spad" 1373288 1373296 1374666 1374671) (-824 "OMLO.spad" 1372713 1372725 1373174 1373213) (-823 "OMEXPR.spad" 1372547 1372557 1372703 1372708) (-822 "OMERRK.spad" 1371581 1371589 1372537 1372542) (-821 "OMERR.spad" 1371124 1371132 1371571 1371576) (-820 "OMENC.spad" 1370468 1370476 1371114 1371119) (-819 "OMDEV.spad" 1364757 1364765 1370458 1370463) (-818 "OMCONN.spad" 1364166 1364174 1364747 1364752) (-817 "OM.spad" 1363131 1363139 1364156 1364161) (-816 "OINTDOM.spad" 1362894 1362902 1363057 1363126) (-815 "OFMONOID.spad" 1359081 1359091 1362884 1362889) (-814 "ODVAR.spad" 1358342 1358352 1359071 1359076) (-813 "ODR.spad" 1357986 1358012 1358154 1358303) (-812 "ODPOL.spad" 1355332 1355342 1355672 1355799) (-811 "ODP.spad" 1345179 1345199 1345552 1345683) (-810 "ODETOOLS.spad" 1343762 1343781 1345169 1345174) (-809 "ODESYS.spad" 1341412 1341429 1343752 1343757) (-808 "ODERTRIC.spad" 1337353 1337370 1341369 1341374) (-807 "ODERED.spad" 1336740 1336764 1337343 1337348) (-806 "ODERAT.spad" 1334293 1334310 1336730 1336735) (-805 "ODEPRRIC.spad" 1331184 1331206 1334283 1334288) (-804 "ODEPROB.spad" 1330441 1330449 1331174 1331179) (-803 "ODEPRIM.spad" 1327715 1327737 1330431 1330436) (-802 "ODEPAL.spad" 1327091 1327115 1327705 1327710) (-801 "ODEPACK.spad" 1313693 1313701 1327081 1327086) (-800 "ODEINT.spad" 1313124 1313140 1313683 1313688) (-799 "ODEIFTBL.spad" 1310519 1310527 1313114 1313119) (-798 "ODEEF.spad" 1305890 1305906 1310509 1310514) (-797 "ODECONST.spad" 1305409 1305427 1305880 1305885) (-796 "ODECAT.spad" 1304005 1304013 1305399 1305404) (-795 "OCTCT2.spad" 1303649 1303670 1303995 1304000) (-794 "OCT.spad" 1301787 1301797 1302503 1302542) (-793 "OCAMON.spad" 1301635 1301643 1301777 1301782) (-792 "OC.spad" 1299409 1299419 1301591 1301630) (-791 "OC.spad" 1296908 1296920 1299092 1299097) (-790 "OASGP.spad" 1296723 1296731 1296898 1296903) (-789 "OAMONS.spad" 1296243 1296251 1296713 1296718) (-788 "OAMON.spad" 1296104 1296112 1296233 1296238) (-787 "OAGROUP.spad" 1295966 1295974 1296094 1296099) (-786 "NUMTUBE.spad" 1295553 1295569 1295956 1295961) (-785 "NUMQUAD.spad" 1283415 1283423 1295543 1295548) (-784 "NUMODE.spad" 1274551 1274559 1283405 1283410) (-783 "NUMINT.spad" 1272109 1272117 1274541 1274546) (-782 "NUMFMT.spad" 1270949 1270957 1272099 1272104) (-781 "NUMERIC.spad" 1263021 1263031 1270754 1270759) (-780 "NTSCAT.spad" 1261523 1261539 1262989 1263016) (-779 "NTPOLFN.spad" 1261068 1261078 1261440 1261445) (-778 "NSUP2.spad" 1260460 1260472 1261058 1261063) (-777 "NSUP.spad" 1253470 1253480 1258010 1258163) (-776 "NSMP.spad" 1249665 1249684 1249973 1250100) (-775 "NREP.spad" 1248037 1248051 1249655 1249660) (-774 "NPCOEF.spad" 1247283 1247303 1248027 1248032) (-773 "NORMRETR.spad" 1246881 1246920 1247273 1247278) (-772 "NORMPK.spad" 1244783 1244802 1246871 1246876) (-771 "NORMMA.spad" 1244471 1244497 1244773 1244778) (-770 "NONE1.spad" 1244147 1244157 1244461 1244466) (-769 "NONE.spad" 1243888 1243896 1244137 1244142) (-768 "NODE1.spad" 1243357 1243373 1243878 1243883) (-767 "NNI.spad" 1242244 1242252 1243331 1243352) (-766 "NLINSOL.spad" 1240866 1240876 1242234 1242239) (-765 "NIPROB.spad" 1239407 1239415 1240856 1240861) (-764 "NFINTBAS.spad" 1236867 1236884 1239397 1239402) (-763 "NETCLT.spad" 1236841 1236852 1236857 1236862) (-762 "NCODIV.spad" 1235039 1235055 1236831 1236836) (-761 "NCNTFRAC.spad" 1234681 1234695 1235029 1235034) (-760 "NCEP.spad" 1232841 1232855 1234671 1234676) (-759 "NASRING.spad" 1232437 1232445 1232831 1232836) (-758 "NASRING.spad" 1232031 1232041 1232427 1232432) (-757 "NARNG.spad" 1231375 1231383 1232021 1232026) (-756 "NARNG.spad" 1230717 1230727 1231365 1231370) (-755 "NAGSP.spad" 1229790 1229798 1230707 1230712) (-754 "NAGS.spad" 1219315 1219323 1229780 1229785) (-753 "NAGF07.spad" 1217708 1217716 1219305 1219310) (-752 "NAGF04.spad" 1211940 1211948 1217698 1217703) (-751 "NAGF02.spad" 1205749 1205757 1211930 1211935) (-750 "NAGF01.spad" 1201352 1201360 1205739 1205744) (-749 "NAGE04.spad" 1194812 1194820 1201342 1201347) (-748 "NAGE02.spad" 1185154 1185162 1194802 1194807) (-747 "NAGE01.spad" 1181038 1181046 1185144 1185149) (-746 "NAGD03.spad" 1178958 1178966 1181028 1181033) (-745 "NAGD02.spad" 1171489 1171497 1178948 1178953) (-744 "NAGD01.spad" 1165602 1165610 1171479 1171484) (-743 "NAGC06.spad" 1161389 1161397 1165592 1165597) (-742 "NAGC05.spad" 1159858 1159866 1161379 1161384) (-741 "NAGC02.spad" 1159113 1159121 1159848 1159853) (-740 "NAALG.spad" 1158648 1158658 1159081 1159108) (-739 "NAALG.spad" 1158203 1158215 1158638 1158643) (-738 "MULTSQFR.spad" 1155161 1155178 1158193 1158198) (-737 "MULTFACT.spad" 1154544 1154561 1155151 1155156) (-736 "MTSCAT.spad" 1152578 1152599 1154442 1154539) (-735 "MTHING.spad" 1152235 1152245 1152568 1152573) (-734 "MSYSCMD.spad" 1151669 1151677 1152225 1152230) (-733 "MSETAGG.spad" 1151514 1151524 1151637 1151664) (-732 "MSET.spad" 1149456 1149466 1151220 1151259) (-731 "MRING.spad" 1146427 1146439 1149164 1149231) (-730 "MRF2.spad" 1145995 1146009 1146417 1146422) (-729 "MRATFAC.spad" 1145541 1145558 1145985 1145990) (-728 "MPRFF.spad" 1143571 1143590 1145531 1145536) (-727 "MPOLY.spad" 1141006 1141021 1141365 1141492) (-726 "MPCPF.spad" 1140270 1140289 1140996 1141001) (-725 "MPC3.spad" 1140085 1140125 1140260 1140265) (-724 "MPC2.spad" 1139727 1139760 1140075 1140080) (-723 "MONOTOOL.spad" 1138062 1138079 1139717 1139722) (-722 "MONOID.spad" 1137381 1137389 1138052 1138057) (-721 "MONOID.spad" 1136698 1136708 1137371 1137376) (-720 "MONOGEN.spad" 1135444 1135457 1136558 1136693) (-719 "MONOGEN.spad" 1134212 1134227 1135328 1135333) (-718 "MONADWU.spad" 1132226 1132234 1134202 1134207) (-717 "MONADWU.spad" 1130238 1130248 1132216 1132221) (-716 "MONAD.spad" 1129382 1129390 1130228 1130233) (-715 "MONAD.spad" 1128524 1128534 1129372 1129377) (-714 "MOEBIUS.spad" 1127210 1127224 1128504 1128519) (-713 "MODULE.spad" 1127080 1127090 1127178 1127205) (-712 "MODULE.spad" 1126970 1126982 1127070 1127075) (-711 "MODRING.spad" 1126301 1126340 1126950 1126965) (-710 "MODOP.spad" 1124960 1124972 1126123 1126190) (-709 "MODMONOM.spad" 1124689 1124707 1124950 1124955) (-708 "MODMON.spad" 1121448 1121464 1122167 1122320) (-707 "MODFIELD.spad" 1120806 1120845 1121350 1121443) (-706 "MMLFORM.spad" 1119666 1119674 1120796 1120801) (-705 "MMAP.spad" 1119406 1119440 1119656 1119661) (-704 "MLO.spad" 1117833 1117843 1119362 1119401) (-703 "MLIFT.spad" 1116405 1116422 1117823 1117828) (-702 "MKUCFUNC.spad" 1115938 1115956 1116395 1116400) (-701 "MKRECORD.spad" 1115540 1115553 1115928 1115933) (-700 "MKFUNC.spad" 1114921 1114931 1115530 1115535) (-699 "MKFLCFN.spad" 1113877 1113887 1114911 1114916) (-698 "MKCHSET.spad" 1113742 1113752 1113867 1113872) (-697 "MKBCFUNC.spad" 1113227 1113245 1113732 1113737) (-696 "MINT.spad" 1112666 1112674 1113129 1113222) (-695 "MHROWRED.spad" 1111167 1111177 1112656 1112661) (-694 "MFLOAT.spad" 1109683 1109691 1111057 1111162) (-693 "MFINFACT.spad" 1109083 1109105 1109673 1109678) (-692 "MESH.spad" 1106820 1106828 1109073 1109078) (-691 "MDDFACT.spad" 1105013 1105023 1106810 1106815) (-690 "MDAGG.spad" 1104300 1104310 1104993 1105008) (-689 "MCMPLX.spad" 1100274 1100282 1100888 1101089) (-688 "MCDEN.spad" 1099482 1099494 1100264 1100269) (-687 "MCALCFN.spad" 1096584 1096610 1099472 1099477) (-686 "MAYBE.spad" 1095868 1095879 1096574 1096579) (-685 "MATSTOR.spad" 1093144 1093154 1095858 1095863) (-684 "MATRIX.spad" 1091848 1091858 1092332 1092359) (-683 "MATLIN.spad" 1089174 1089198 1091732 1091737) (-682 "MATCAT2.spad" 1088442 1088490 1089164 1089169) (-681 "MATCAT.spad" 1080027 1080049 1088410 1088437) (-680 "MATCAT.spad" 1071484 1071508 1079869 1079874) (-679 "MAPPKG3.spad" 1070383 1070397 1071474 1071479) (-678 "MAPPKG2.spad" 1069717 1069729 1070373 1070378) (-677 "MAPPKG1.spad" 1068535 1068545 1069707 1069712) (-676 "MAPPAST.spad" 1067848 1067856 1068525 1068530) (-675 "MAPHACK3.spad" 1067656 1067670 1067838 1067843) (-674 "MAPHACK2.spad" 1067421 1067433 1067646 1067651) (-673 "MAPHACK1.spad" 1067051 1067061 1067411 1067416) (-672 "MAGMA.spad" 1064841 1064858 1067041 1067046) (-671 "MACROAST.spad" 1064420 1064428 1064831 1064836) (-670 "M3D.spad" 1062116 1062126 1063798 1063803) (-669 "LZSTAGG.spad" 1059344 1059354 1062106 1062111) (-668 "LZSTAGG.spad" 1056570 1056582 1059334 1059339) (-667 "LWORD.spad" 1053275 1053292 1056560 1056565) (-666 "LSTAST.spad" 1053059 1053067 1053265 1053270) (-665 "LSQM.spad" 1051282 1051296 1051680 1051731) (-664 "LSPP.spad" 1050815 1050832 1051272 1051277) (-663 "LSMP1.spad" 1048636 1048650 1050805 1050810) (-662 "LSMP.spad" 1047483 1047511 1048626 1048631) (-661 "LSAGG.spad" 1047152 1047162 1047451 1047478) (-660 "LSAGG.spad" 1046841 1046853 1047142 1047147) (-659 "LPOLY.spad" 1045795 1045814 1046697 1046766) (-658 "LPEFRAC.spad" 1045052 1045062 1045785 1045790) (-657 "LOGIC.spad" 1044654 1044662 1045042 1045047) (-656 "LOGIC.spad" 1044254 1044264 1044644 1044649) (-655 "LODOOPS.spad" 1043172 1043184 1044244 1044249) (-654 "LODOF.spad" 1042216 1042233 1043129 1043134) (-653 "LODOCAT.spad" 1040874 1040884 1042172 1042211) (-652 "LODOCAT.spad" 1039530 1039542 1040830 1040835) (-651 "LODO2.spad" 1038803 1038815 1039210 1039249) (-650 "LODO1.spad" 1038203 1038213 1038483 1038522) (-649 "LODO.spad" 1037587 1037603 1037883 1037922) (-648 "LODEEF.spad" 1036359 1036377 1037577 1037582) (-647 "LO.spad" 1035760 1035774 1036293 1036320) (-646 "LNAGG.spad" 1031562 1031572 1035750 1035755) (-645 "LNAGG.spad" 1027328 1027340 1031518 1031523) (-644 "LMOPS.spad" 1024064 1024081 1027318 1027323) (-643 "LMODULE.spad" 1023706 1023716 1024054 1024059) (-642 "LMDICT.spad" 1022989 1022999 1023257 1023284) (-641 "LITERAL.spad" 1022895 1022906 1022979 1022984) (-640 "LIST3.spad" 1022186 1022200 1022885 1022890) (-639 "LIST2MAP.spad" 1019063 1019075 1022176 1022181) (-638 "LIST2.spad" 1017703 1017715 1019053 1019058) (-637 "LIST.spad" 1015421 1015431 1016850 1016877) (-636 "LINEXP.spad" 1014853 1014863 1015401 1015416) (-635 "LINDEP.spad" 1013630 1013642 1014765 1014770) (-634 "LIMITRF.spad" 1011563 1011573 1013620 1013625) (-633 "LIMITPS.spad" 1010453 1010466 1011553 1011558) (-632 "LIECAT.spad" 1009929 1009939 1010379 1010448) (-631 "LIECAT.spad" 1009433 1009445 1009885 1009890) (-630 "LIE.spad" 1007447 1007459 1008723 1008868) (-629 "LIB.spad" 1005495 1005503 1006106 1006121) (-628 "LGROBP.spad" 1002848 1002867 1005485 1005490) (-627 "LFCAT.spad" 1001867 1001875 1002838 1002843) (-626 "LF.spad" 1000786 1000802 1001857 1001862) (-625 "LEXTRIPK.spad" 996289 996304 1000776 1000781) (-624 "LEXP.spad" 994292 994319 996269 996284) (-623 "LETAST.spad" 993991 993999 994282 994287) (-622 "LEADCDET.spad" 992375 992392 993981 993986) (-621 "LAZM3PK.spad" 991079 991101 992365 992370) (-620 "LAUPOL.spad" 989768 989781 990672 990741) (-619 "LAPLACE.spad" 989341 989357 989758 989763) (-618 "LALG.spad" 989117 989127 989321 989336) (-617 "LALG.spad" 988901 988913 989107 989112) (-616 "LA.spad" 988341 988355 988823 988862) (-615 "KVTFROM.spad" 988076 988086 988331 988336) (-614 "KTVLOGIC.spad" 987499 987507 988066 988071) (-613 "KRCFROM.spad" 987237 987247 987489 987494) (-612 "KOVACIC.spad" 985950 985967 987227 987232) (-611 "KONVERT.spad" 985672 985682 985940 985945) (-610 "KOERCE.spad" 985409 985419 985662 985667) (-609 "KERNEL2.spad" 985112 985124 985399 985404) (-608 "KERNEL.spad" 983647 983657 984896 984901) (-607 "KDAGG.spad" 982750 982772 983627 983642) (-606 "KDAGG.spad" 981861 981885 982740 982745) (-605 "KAFILE.spad" 980824 980840 981059 981086) (-604 "JORDAN.spad" 978651 978663 980114 980259) (-603 "JOINAST.spad" 978345 978353 978641 978646) (-602 "JAVACODE.spad" 978211 978219 978335 978340) (-601 "IXAGG.spad" 976334 976358 978201 978206) (-600 "IXAGG.spad" 974312 974338 976181 976186) (-599 "IVECTOR.spad" 973083 973098 973238 973265) (-598 "ITUPLE.spad" 972228 972238 973073 973078) (-597 "ITRIGMNP.spad" 971039 971058 972218 972223) (-596 "ITFUN3.spad" 970533 970547 971029 971034) (-595 "ITFUN2.spad" 970263 970275 970523 970528) (-594 "ITAYLOR.spad" 968055 968070 970099 970224) (-593 "ISUPS.spad" 960466 960481 967029 967126) (-592 "ISUMP.spad" 959963 959979 960456 960461) (-591 "ISTRING.spad" 958966 958979 959132 959159) (-590 "ISAST.spad" 958685 958693 958956 958961) (-589 "IRURPK.spad" 957398 957417 958675 958680) (-588 "IRSN.spad" 955358 955366 957388 957393) (-587 "IRRF2F.spad" 953833 953843 955314 955319) (-586 "IRREDFFX.spad" 953434 953445 953823 953828) (-585 "IROOT.spad" 951765 951775 953424 953429) (-584 "IR2F.spad" 950965 950981 951755 951760) (-583 "IR2.spad" 949985 950001 950955 950960) (-582 "IR.spad" 947774 947788 949840 949867) (-581 "IPRNTPK.spad" 947534 947542 947764 947769) (-580 "IPF.spad" 947099 947111 947339 947432) (-579 "IPADIC.spad" 946860 946886 947025 947094) (-578 "IP4ADDR.spad" 946417 946425 946850 946855) (-577 "IOMODE.spad" 946038 946046 946407 946412) (-576 "IOBFILE.spad" 945399 945407 946028 946033) (-575 "IOBCON.spad" 945264 945272 945389 945394) (-574 "INVLAPLA.spad" 944909 944925 945254 945259) (-573 "INTTR.spad" 938167 938184 944899 944904) (-572 "INTTOOLS.spad" 935878 935894 937741 937746) (-571 "INTSLPE.spad" 935184 935192 935868 935873) (-570 "INTRVL.spad" 934750 934760 935098 935179) (-569 "INTRF.spad" 933114 933128 934740 934745) (-568 "INTRET.spad" 932546 932556 933104 933109) (-567 "INTRAT.spad" 931221 931238 932536 932541) (-566 "INTPM.spad" 929584 929600 930864 930869) (-565 "INTPAF.spad" 927359 927377 929516 929521) (-564 "INTPACK.spad" 917669 917677 927349 927354) (-563 "INTHERTR.spad" 916935 916952 917659 917664) (-562 "INTHERAL.spad" 916601 916625 916925 916930) (-561 "INTHEORY.spad" 913014 913022 916591 916596) (-560 "INTG0.spad" 906495 906513 912946 912951) (-559 "INTFTBL.spad" 901949 901957 906485 906490) (-558 "INTFACT.spad" 901008 901018 901939 901944) (-557 "INTEF.spad" 899325 899341 900998 901003) (-556 "INTDOM.spad" 897940 897948 899251 899320) (-555 "INTDOM.spad" 896617 896627 897930 897935) (-554 "INTCAT.spad" 894870 894880 896531 896612) (-553 "INTBIT.spad" 894373 894381 894860 894865) (-552 "INTALG.spad" 893555 893582 894363 894368) (-551 "INTAF.spad" 893047 893063 893545 893550) (-550 "INTABL.spad" 891565 891596 891728 891755) (-549 "INT8.spad" 891445 891453 891555 891560) (-548 "INT32.spad" 891324 891332 891435 891440) (-547 "INT16.spad" 891203 891211 891314 891319) (-546 "INT.spad" 890564 890572 891057 891198) (-545 "INS.spad" 888031 888039 890466 890559) (-544 "INS.spad" 885584 885594 888021 888026) (-543 "INPSIGN.spad" 885040 885053 885574 885579) (-542 "INPRODPF.spad" 884106 884125 885030 885035) (-541 "INPRODFF.spad" 883164 883188 884096 884101) (-540 "INNMFACT.spad" 882135 882152 883154 883159) (-539 "INMODGCD.spad" 881619 881649 882125 882130) (-538 "INFSP.spad" 879904 879926 881609 881614) (-537 "INFPROD0.spad" 878954 878973 879894 879899) (-536 "INFORM1.spad" 878579 878589 878944 878949) (-535 "INFORM.spad" 875740 875748 878569 878574) (-534 "INFINITY.spad" 875292 875300 875730 875735) (-533 "INETCLTS.spad" 875269 875277 875282 875287) (-532 "INEP.spad" 873801 873823 875259 875264) (-531 "INDE.spad" 873530 873547 873791 873796) (-530 "INCRMAPS.spad" 872951 872961 873520 873525) (-529 "INBFILE.spad" 872023 872031 872941 872946) (-528 "INBFF.spad" 867793 867804 872013 872018) (-527 "INBCON.spad" 866081 866089 867783 867788) (-526 "INBCON.spad" 864367 864377 866071 866076) (-525 "INAST.spad" 864032 864040 864357 864362) (-524 "IMPTAST.spad" 863740 863748 864022 864027) (-523 "IMATRIX.spad" 862685 862711 863197 863224) (-522 "IMATQF.spad" 861779 861823 862641 862646) (-521 "IMATLIN.spad" 860384 860408 861735 861740) (-520 "ILIST.spad" 859040 859055 859567 859594) (-519 "IIARRAY2.spad" 858428 858466 858647 858674) (-518 "IFF.spad" 857838 857854 858109 858202) (-517 "IFAST.spad" 857452 857460 857828 857833) (-516 "IFARRAY.spad" 854939 854954 856635 856662) (-515 "IFAMON.spad" 854801 854818 854895 854900) (-514 "IEVALAB.spad" 854190 854202 854791 854796) (-513 "IEVALAB.spad" 853577 853591 854180 854185) (-512 "IDPOAMS.spad" 853333 853345 853567 853572) (-511 "IDPOAM.spad" 853053 853065 853323 853328) (-510 "IDPO.spad" 852851 852863 853043 853048) (-509 "IDPC.spad" 851785 851797 852841 852846) (-508 "IDPAM.spad" 851530 851542 851775 851780) (-507 "IDPAG.spad" 851277 851289 851520 851525) (-506 "IDENT.spad" 851049 851057 851267 851272) (-505 "IDECOMP.spad" 848286 848304 851039 851044) (-504 "IDEAL.spad" 843209 843248 848221 848226) (-503 "ICDEN.spad" 842360 842376 843199 843204) (-502 "ICARD.spad" 841549 841557 842350 842355) (-501 "IBPTOOLS.spad" 840142 840159 841539 841544) (-500 "IBITS.spad" 839341 839354 839778 839805) (-499 "IBATOOL.spad" 836216 836235 839331 839336) (-498 "IBACHIN.spad" 834703 834718 836206 836211) (-497 "IARRAY2.spad" 833691 833717 834310 834337) (-496 "IARRAY1.spad" 832736 832751 832874 832901) (-495 "IAN.spad" 830949 830957 832552 832645) (-494 "IALGFACT.spad" 830550 830583 830939 830944) (-493 "HYPCAT.spad" 829974 829982 830540 830545) (-492 "HYPCAT.spad" 829396 829406 829964 829969) (-491 "HOSTNAME.spad" 829204 829212 829386 829391) (-490 "HOMOTOP.spad" 828947 828957 829194 829199) (-489 "HOAGG.spad" 826215 826225 828937 828942) (-488 "HOAGG.spad" 823258 823270 825982 825987) (-487 "HEXADEC.spad" 821360 821368 821725 821818) (-486 "HEUGCD.spad" 820375 820386 821350 821355) (-485 "HELLFDIV.spad" 819965 819989 820365 820370) (-484 "HEAP.spad" 819357 819367 819572 819599) (-483 "HEADAST.spad" 818888 818896 819347 819352) (-482 "HDP.spad" 808731 808747 809108 809239) (-481 "HDMP.spad" 805907 805922 806525 806652) (-480 "HB.spad" 804144 804152 805897 805902) (-479 "HASHTBL.spad" 802614 802645 802825 802852) (-478 "HASAST.spad" 802330 802338 802604 802609) (-477 "HACKPI.spad" 801813 801821 802232 802325) (-476 "GTSET.spad" 800752 800768 801459 801486) (-475 "GSTBL.spad" 799271 799306 799445 799460) (-474 "GSERIES.spad" 796438 796465 797403 797552) (-473 "GROUP.spad" 795707 795715 796418 796433) (-472 "GROUP.spad" 794984 794994 795697 795702) (-471 "GROEBSOL.spad" 793472 793493 794974 794979) (-470 "GRMOD.spad" 792043 792055 793462 793467) (-469 "GRMOD.spad" 790612 790626 792033 792038) (-468 "GRIMAGE.spad" 783217 783225 790602 790607) (-467 "GRDEF.spad" 781596 781604 783207 783212) (-466 "GRAY.spad" 780055 780063 781586 781591) (-465 "GRALG.spad" 779102 779114 780045 780050) (-464 "GRALG.spad" 778147 778161 779092 779097) (-463 "GPOLSET.spad" 777601 777624 777829 777856) (-462 "GOSPER.spad" 776866 776884 777591 777596) (-461 "GMODPOL.spad" 776004 776031 776834 776861) (-460 "GHENSEL.spad" 775073 775087 775994 775999) (-459 "GENUPS.spad" 771174 771187 775063 775068) (-458 "GENUFACT.spad" 770751 770761 771164 771169) (-457 "GENPGCD.spad" 770335 770352 770741 770746) (-456 "GENMFACT.spad" 769787 769806 770325 770330) (-455 "GENEEZ.spad" 767726 767739 769777 769782) (-454 "GDMP.spad" 764744 764761 765520 765647) (-453 "GCNAALG.spad" 758639 758666 764538 764605) (-452 "GCDDOM.spad" 757811 757819 758565 758634) (-451 "GCDDOM.spad" 757045 757055 757801 757806) (-450 "GBINTERN.spad" 753065 753103 757035 757040) (-449 "GBF.spad" 748822 748860 753055 753060) (-448 "GBEUCLID.spad" 746696 746734 748812 748817) (-447 "GB.spad" 744214 744252 746652 746657) (-446 "GAUSSFAC.spad" 743511 743519 744204 744209) (-445 "GALUTIL.spad" 741833 741843 743467 743472) (-444 "GALPOLYU.spad" 740279 740292 741823 741828) (-443 "GALFACTU.spad" 738444 738463 740269 740274) (-442 "GALFACT.spad" 728577 728588 738434 738439) (-441 "FVFUN.spad" 725600 725608 728567 728572) (-440 "FVC.spad" 724652 724660 725590 725595) (-439 "FUNDESC.spad" 724330 724338 724642 724647) (-438 "FUNCTION.spad" 724179 724191 724320 724325) (-437 "FTEM.spad" 723342 723350 724169 724174) (-436 "FT.spad" 721638 721646 723332 723337) (-435 "FSUPFACT.spad" 720538 720557 721574 721579) (-434 "FST.spad" 718624 718632 720528 720533) (-433 "FSRED.spad" 718102 718118 718614 718619) (-432 "FSPRMELT.spad" 716926 716942 718059 718064) (-431 "FSPECF.spad" 715003 715019 716916 716921) (-430 "FSINT.spad" 714661 714677 714993 714998) (-429 "FSERIES.spad" 713848 713860 714481 714580) (-428 "FSCINT.spad" 713161 713177 713838 713843) (-427 "FSAGG2.spad" 711860 711876 713151 713156) (-426 "FSAGG.spad" 710977 710987 711816 711855) (-425 "FSAGG.spad" 710056 710068 710897 710902) (-424 "FS2UPS.spad" 704539 704573 710046 710051) (-423 "FS2EXPXP.spad" 703662 703685 704529 704534) (-422 "FS2.spad" 703307 703323 703652 703657) (-421 "FS.spad" 697369 697379 703082 703302) (-420 "FS.spad" 691209 691221 696924 696929) (-419 "FRUTIL.spad" 690151 690161 691199 691204) (-418 "FRNAALG.spad" 685238 685248 690093 690146) (-417 "FRNAALG.spad" 680337 680349 685194 685199) (-416 "FRNAAF2.spad" 679791 679809 680327 680332) (-415 "FRMOD.spad" 679185 679215 679722 679727) (-414 "FRIDEAL2.spad" 678787 678819 679175 679180) (-413 "FRIDEAL.spad" 677982 678003 678767 678782) (-412 "FRETRCT.spad" 677493 677503 677972 677977) (-411 "FRETRCT.spad" 676870 676882 677351 677356) (-410 "FRAMALG.spad" 675198 675211 676826 676865) (-409 "FRAMALG.spad" 673558 673573 675188 675193) (-408 "FRAC2.spad" 673161 673173 673548 673553) (-407 "FRAC.spad" 670260 670270 670663 670836) (-406 "FR2.spad" 669594 669606 670250 670255) (-405 "FR.spad" 663315 663325 668618 668687) (-404 "FPS.spad" 660124 660132 663205 663310) (-403 "FPS.spad" 656961 656971 660044 660049) (-402 "FPC.spad" 656003 656011 656863 656956) (-401 "FPC.spad" 655131 655141 655993 655998) (-400 "FPATMAB.spad" 654893 654903 655121 655126) (-399 "FPARFRAC.spad" 653366 653383 654883 654888) (-398 "FORTRAN.spad" 651872 651915 653356 653361) (-397 "FORTFN.spad" 649042 649050 651862 651867) (-396 "FORTCAT.spad" 648726 648734 649032 649037) (-395 "FORT.spad" 647655 647663 648716 648721) (-394 "FORMULA1.spad" 647134 647144 647645 647650) (-393 "FORMULA.spad" 644598 644606 647124 647129) (-392 "FORDER.spad" 644289 644313 644588 644593) (-391 "FOP.spad" 643490 643498 644279 644284) (-390 "FNLA.spad" 642914 642936 643458 643485) (-389 "FNCAT.spad" 641501 641509 642904 642909) (-388 "FNAME.spad" 641393 641401 641491 641496) (-387 "FMTC.spad" 641191 641199 641319 641388) (-386 "FMONOID.spad" 638246 638256 641147 641152) (-385 "FMFUN.spad" 635276 635284 638236 638241) (-384 "FMCAT.spad" 632930 632948 635244 635271) (-383 "FMC.spad" 631982 631990 632920 632925) (-382 "FM1.spad" 631339 631351 631916 631943) (-381 "FM.spad" 631034 631046 631273 631300) (-380 "FLOATRP.spad" 628755 628769 631024 631029) (-379 "FLOATCP.spad" 626172 626186 628745 628750) (-378 "FLOAT.spad" 619460 619468 626038 626167) (-377 "FLINEXP.spad" 619172 619182 619440 619455) (-376 "FLINEXP.spad" 618838 618850 619108 619113) (-375 "FLASORT.spad" 618158 618170 618828 618833) (-374 "FLALG.spad" 615804 615823 618084 618153) (-373 "FLAGG2.spad" 614485 614501 615794 615799) (-372 "FLAGG.spad" 611503 611513 614465 614480) (-371 "FLAGG.spad" 608422 608434 611386 611391) (-370 "FINRALG.spad" 606451 606464 608378 608417) (-369 "FINRALG.spad" 604406 604421 606335 606340) (-368 "FINITE.spad" 603558 603566 604396 604401) (-367 "FINAALG.spad" 592539 592549 603500 603553) (-366 "FINAALG.spad" 581532 581544 592495 592500) (-365 "FILECAT.spad" 580050 580067 581522 581527) (-364 "FILE.spad" 579633 579643 580040 580045) (-363 "FIELD.spad" 579039 579047 579535 579628) (-362 "FIELD.spad" 578531 578541 579029 579034) (-361 "FGROUP.spad" 577140 577150 578511 578526) (-360 "FGLMICPK.spad" 575927 575942 577130 577135) (-359 "FFX.spad" 575302 575317 575643 575736) (-358 "FFSLPE.spad" 574791 574812 575292 575297) (-357 "FFPOLY2.spad" 573851 573868 574781 574786) (-356 "FFPOLY.spad" 565103 565114 573841 573846) (-355 "FFP.spad" 564500 564520 564819 564912) (-354 "FFNBX.spad" 563012 563032 564216 564309) (-353 "FFNBP.spad" 561525 561542 562728 562821) (-352 "FFNB.spad" 559990 560011 561206 561299) (-351 "FFINTBAS.spad" 557404 557423 559980 559985) (-350 "FFIELDC.spad" 554979 554987 557306 557399) (-349 "FFIELDC.spad" 552640 552650 554969 554974) (-348 "FFHOM.spad" 551388 551405 552630 552635) (-347 "FFF.spad" 548823 548834 551378 551383) (-346 "FFCGX.spad" 547670 547690 548539 548632) (-345 "FFCGP.spad" 546559 546579 547386 547479) (-344 "FFCG.spad" 545351 545372 546240 546333) (-343 "FFCAT2.spad" 545096 545136 545341 545346) (-342 "FFCAT.spad" 538123 538145 544935 545091) (-341 "FFCAT.spad" 531229 531253 538043 538048) (-340 "FF.spad" 530677 530693 530910 531003) (-339 "FEXPR.spad" 522386 522432 530433 530472) (-338 "FEVALAB.spad" 522092 522102 522376 522381) (-337 "FEVALAB.spad" 521583 521595 521869 521874) (-336 "FDIVCAT.spad" 519625 519649 521573 521578) (-335 "FDIVCAT.spad" 517665 517691 519615 519620) (-334 "FDIV2.spad" 517319 517359 517655 517660) (-333 "FDIV.spad" 516761 516785 517309 517314) (-332 "FCPAK1.spad" 515314 515322 516751 516756) (-331 "FCOMP.spad" 514693 514703 515304 515309) (-330 "FC.spad" 504608 504616 514683 514688) (-329 "FAXF.spad" 497543 497557 504510 504603) (-328 "FAXF.spad" 490530 490546 497499 497504) (-327 "FARRAY.spad" 488676 488686 489713 489740) (-326 "FAMR.spad" 486796 486808 488574 488671) (-325 "FAMR.spad" 484900 484914 486680 486685) (-324 "FAMONOID.spad" 484550 484560 484854 484859) (-323 "FAMONC.spad" 482772 482784 484540 484545) (-322 "FAGROUP.spad" 482378 482388 482668 482695) (-321 "FACUTIL.spad" 480574 480591 482368 482373) (-320 "FACTFUNC.spad" 479750 479760 480564 480569) (-319 "EXPUPXS.spad" 476583 476606 477882 478031) (-318 "EXPRTUBE.spad" 473811 473819 476573 476578) (-317 "EXPRODE.spad" 470683 470699 473801 473806) (-316 "EXPR2UPS.spad" 466775 466788 470673 470678) (-315 "EXPR2.spad" 466478 466490 466765 466770) (-314 "EXPR.spad" 461753 461763 462467 462874) (-313 "EXPEXPAN.spad" 458691 458716 459325 459418) (-312 "EXITAST.spad" 458427 458435 458681 458686) (-311 "EXIT.spad" 458098 458106 458417 458422) (-310 "EVALCYC.spad" 457556 457570 458088 458093) (-309 "EVALAB.spad" 457120 457130 457546 457551) (-308 "EVALAB.spad" 456682 456694 457110 457115) (-307 "EUCDOM.spad" 454224 454232 456608 456677) (-306 "EUCDOM.spad" 451828 451838 454214 454219) (-305 "ESTOOLS2.spad" 451429 451443 451818 451823) (-304 "ESTOOLS1.spad" 451114 451125 451419 451424) (-303 "ESTOOLS.spad" 442954 442962 451104 451109) (-302 "ESCONT1.spad" 442703 442715 442944 442949) (-301 "ESCONT.spad" 439476 439484 442693 442698) (-300 "ES2.spad" 438971 438987 439466 439471) (-299 "ES1.spad" 438537 438553 438961 438966) (-298 "ES.spad" 431084 431092 438527 438532) (-297 "ES.spad" 423537 423547 430982 430987) (-296 "ERROR.spad" 420858 420866 423527 423532) (-295 "EQTBL.spad" 419330 419352 419539 419566) (-294 "EQ2.spad" 419046 419058 419320 419325) (-293 "EQ.spad" 413920 413930 416719 416831) (-292 "EP.spad" 410234 410244 413910 413915) (-291 "ENV.spad" 408936 408944 410224 410229) (-290 "ENTIRER.spad" 408604 408612 408880 408931) (-289 "EMR.spad" 407805 407846 408530 408599) (-288 "ELTAGG.spad" 406045 406064 407795 407800) (-287 "ELTAGG.spad" 404249 404270 406001 406006) (-286 "ELTAB.spad" 403696 403714 404239 404244) (-285 "ELFUTS.spad" 403075 403094 403686 403691) (-284 "ELEMFUN.spad" 402764 402772 403065 403070) (-283 "ELEMFUN.spad" 402451 402461 402754 402759) (-282 "ELAGG.spad" 400394 400404 402431 402446) (-281 "ELAGG.spad" 398274 398286 400313 400318) (-280 "ELABEXPR.spad" 397205 397213 398264 398269) (-279 "EFUPXS.spad" 393981 394011 397161 397166) (-278 "EFULS.spad" 390817 390840 393937 393942) (-277 "EFSTRUC.spad" 388772 388788 390807 390812) (-276 "EF.spad" 383538 383554 388762 388767) (-275 "EAB.spad" 381814 381822 383528 383533) (-274 "E04UCFA.spad" 381350 381358 381804 381809) (-273 "E04NAFA.spad" 380927 380935 381340 381345) (-272 "E04MBFA.spad" 380507 380515 380917 380922) (-271 "E04JAFA.spad" 380043 380051 380497 380502) (-270 "E04GCFA.spad" 379579 379587 380033 380038) (-269 "E04FDFA.spad" 379115 379123 379569 379574) (-268 "E04DGFA.spad" 378651 378659 379105 379110) (-267 "E04AGNT.spad" 374493 374501 378641 378646) (-266 "DVARCAT.spad" 371178 371188 374483 374488) (-265 "DVARCAT.spad" 367861 367873 371168 371173) (-264 "DSMP.spad" 365292 365306 365597 365724) (-263 "DROPT1.spad" 364955 364965 365282 365287) (-262 "DROPT0.spad" 359782 359790 364945 364950) (-261 "DROPT.spad" 353727 353735 359772 359777) (-260 "DRAWPT.spad" 351882 351890 353717 353722) (-259 "DRAWHACK.spad" 351190 351200 351872 351877) (-258 "DRAWCX.spad" 348632 348640 351180 351185) (-257 "DRAWCURV.spad" 348169 348184 348622 348627) (-256 "DRAWCFUN.spad" 337341 337349 348159 348164) (-255 "DRAW.spad" 329941 329954 337331 337336) (-254 "DQAGG.spad" 328109 328119 329909 329936) (-253 "DPOLCAT.spad" 323450 323466 327977 328104) (-252 "DPOLCAT.spad" 318877 318895 323406 323411) (-251 "DPMO.spad" 311103 311119 311241 311542) (-250 "DPMM.spad" 303342 303360 303467 303768) (-249 "DOMCTOR.spad" 303234 303242 303332 303337) (-248 "DOMAIN.spad" 302365 302373 303224 303229) (-247 "DMP.spad" 299587 299602 300159 300286) (-246 "DLP.spad" 298935 298945 299577 299582) (-245 "DLIST.spad" 297514 297524 298118 298145) (-244 "DLAGG.spad" 295925 295935 297504 297509) (-243 "DIVRING.spad" 295467 295475 295869 295920) (-242 "DIVRING.spad" 295053 295063 295457 295462) (-241 "DISPLAY.spad" 293233 293241 295043 295048) (-240 "DIRPROD2.spad" 292041 292059 293223 293228) (-239 "DIRPROD.spad" 281621 281637 282261 282392) (-238 "DIRPCAT.spad" 280563 280579 281485 281616) (-237 "DIRPCAT.spad" 279234 279252 280158 280163) (-236 "DIOSP.spad" 278059 278067 279224 279229) (-235 "DIOPS.spad" 277043 277053 278039 278054) (-234 "DIOPS.spad" 276001 276013 276999 277004) (-233 "DIFRING.spad" 275293 275301 275981 275996) (-232 "DIFRING.spad" 274593 274603 275283 275288) (-231 "DIFEXT.spad" 273752 273762 274573 274588) (-230 "DIFEXT.spad" 272828 272840 273651 273656) (-229 "DIAGG.spad" 272458 272468 272808 272823) (-228 "DIAGG.spad" 272096 272108 272448 272453) (-227 "DHMATRIX.spad" 270400 270410 271553 271580) (-226 "DFSFUN.spad" 263808 263816 270390 270395) (-225 "DFLOAT.spad" 260529 260537 263698 263803) (-224 "DFINTTLS.spad" 258738 258754 260519 260524) (-223 "DERHAM.spad" 256648 256680 258718 258733) (-222 "DEQUEUE.spad" 255966 255976 256255 256282) (-221 "DEGRED.spad" 255581 255595 255956 255961) (-220 "DEFINTRF.spad" 253151 253161 255571 255576) (-219 "DEFINTEF.spad" 251675 251691 253141 253146) (-218 "DEFAST.spad" 251043 251051 251665 251670) (-217 "DECIMAL.spad" 249149 249157 249510 249603) (-216 "DDFACT.spad" 246948 246965 249139 249144) (-215 "DBLRESP.spad" 246546 246570 246938 246943) (-214 "DBASE.spad" 245200 245210 246536 246541) (-213 "DATAARY.spad" 244662 244675 245190 245195) (-212 "D03FAFA.spad" 244490 244498 244652 244657) (-211 "D03EEFA.spad" 244310 244318 244480 244485) (-210 "D03AGNT.spad" 243390 243398 244300 244305) (-209 "D02EJFA.spad" 242852 242860 243380 243385) (-208 "D02CJFA.spad" 242330 242338 242842 242847) (-207 "D02BHFA.spad" 241820 241828 242320 242325) (-206 "D02BBFA.spad" 241310 241318 241810 241815) (-205 "D02AGNT.spad" 236114 236122 241300 241305) (-204 "D01WGTS.spad" 234433 234441 236104 236109) (-203 "D01TRNS.spad" 234410 234418 234423 234428) (-202 "D01GBFA.spad" 233932 233940 234400 234405) (-201 "D01FCFA.spad" 233454 233462 233922 233927) (-200 "D01ASFA.spad" 232922 232930 233444 233449) (-199 "D01AQFA.spad" 232368 232376 232912 232917) (-198 "D01APFA.spad" 231792 231800 232358 232363) (-197 "D01ANFA.spad" 231286 231294 231782 231787) (-196 "D01AMFA.spad" 230796 230804 231276 231281) (-195 "D01ALFA.spad" 230336 230344 230786 230791) (-194 "D01AKFA.spad" 229862 229870 230326 230331) (-193 "D01AJFA.spad" 229385 229393 229852 229857) (-192 "D01AGNT.spad" 225444 225452 229375 229380) (-191 "CYCLOTOM.spad" 224950 224958 225434 225439) (-190 "CYCLES.spad" 221782 221790 224940 224945) (-189 "CVMP.spad" 221199 221209 221772 221777) (-188 "CTRIGMNP.spad" 219689 219705 221189 221194) (-187 "CTORKIND.spad" 219292 219300 219679 219684) (-186 "CTORCAT.spad" 218541 218549 219282 219287) (-185 "CTORCAT.spad" 217788 217798 218531 218536) (-184 "CTORCALL.spad" 217368 217376 217778 217783) (-183 "CTOR.spad" 217063 217071 217358 217363) (-182 "CSTTOOLS.spad" 216306 216319 217053 217058) (-181 "CRFP.spad" 210010 210023 216296 216301) (-180 "CRCEAST.spad" 209730 209738 210000 210005) (-179 "CRAPACK.spad" 208773 208783 209720 209725) (-178 "CPMATCH.spad" 208273 208288 208698 208703) (-177 "CPIMA.spad" 207978 207997 208263 208268) (-176 "COORDSYS.spad" 202871 202881 207968 207973) (-175 "CONTOUR.spad" 202273 202281 202861 202866) (-174 "CONTFRAC.spad" 197885 197895 202175 202268) (-173 "CONDUIT.spad" 197643 197651 197875 197880) (-172 "COMRING.spad" 197317 197325 197581 197638) (-171 "COMPPROP.spad" 196831 196839 197307 197312) (-170 "COMPLPAT.spad" 196598 196613 196821 196826) (-169 "COMPLEX2.spad" 196311 196323 196588 196593) (-168 "COMPLEX.spad" 190335 190345 190579 190840) (-167 "COMPFACT.spad" 189937 189951 190325 190330) (-166 "COMPCAT.spad" 188005 188015 189671 189932) (-165 "COMPCAT.spad" 185766 185778 187434 187439) (-164 "COMMUPC.spad" 185512 185530 185756 185761) (-163 "COMMONOP.spad" 185045 185053 185502 185507) (-162 "COMMAAST.spad" 184808 184816 185035 185040) (-161 "COMM.spad" 184617 184625 184798 184803) (-160 "COMBOPC.spad" 183522 183530 184607 184612) (-159 "COMBINAT.spad" 182267 182277 183512 183517) (-158 "COMBF.spad" 179635 179651 182257 182262) (-157 "COLOR.spad" 178472 178480 179625 179630) (-156 "COLONAST.spad" 178138 178146 178462 178467) (-155 "CMPLXRT.spad" 177847 177864 178128 178133) (-154 "CLLCTAST.spad" 177509 177517 177837 177842) (-153 "CLIP.spad" 173601 173609 177499 177504) (-152 "CLIF.spad" 172240 172256 173557 173596) (-151 "CLAGG.spad" 168725 168735 172230 172235) (-150 "CLAGG.spad" 165081 165093 168588 168593) (-149 "CINTSLPE.spad" 164406 164419 165071 165076) (-148 "CHVAR.spad" 162484 162506 164396 164401) (-147 "CHARZ.spad" 162399 162407 162464 162479) (-146 "CHARPOL.spad" 161907 161917 162389 162394) (-145 "CHARNZ.spad" 161660 161668 161887 161902) (-144 "CHAR.spad" 159528 159536 161650 161655) (-143 "CFCAT.spad" 158844 158852 159518 159523) (-142 "CDEN.spad" 158002 158016 158834 158839) (-141 "CCLASS.spad" 156151 156159 157413 157452) (-140 "CATEGORY.spad" 155241 155249 156141 156146) (-139 "CATCTOR.spad" 155132 155140 155231 155236) (-138 "CATAST.spad" 154759 154767 155122 155127) (-137 "CASEAST.spad" 154473 154481 154749 154754) (-136 "CARTEN2.spad" 153859 153886 154463 154468) (-135 "CARTEN.spad" 148962 148986 153849 153854) (-134 "CARD.spad" 146251 146259 148936 148957) (-133 "CAPSLAST.spad" 146025 146033 146241 146246) (-132 "CACHSET.spad" 145647 145655 146015 146020) (-131 "CABMON.spad" 145200 145208 145637 145642) (-130 "BYTEORD.spad" 144875 144883 145190 145195) (-129 "BYTEBUF.spad" 142732 142740 144044 144071) (-128 "BYTE.spad" 142157 142165 142722 142727) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP1.spad" 126718 126728 129288 129293) (-113 "BOP.spad" 122182 122190 126708 126713) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP80.spad" 98053 98066 98721 98726) (-87 "ASP8.spad" 97096 97109 98043 98048) (-86 "ASP78.spad" 96547 96560 97086 97091) (-85 "ASP77.spad" 95916 95929 96537 96542) (-84 "ASP74.spad" 95008 95021 95906 95911) (-83 "ASP73.spad" 94279 94292 94998 95003) (-82 "ASP7.spad" 93439 93452 94269 94274) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP49.spad" 87631 87644 88622 88627) (-77 "ASP42.spad" 86038 86077 87621 87626) (-76 "ASP41.spad" 84617 84656 86028 86033) (-75 "ASP4.spad" 83912 83925 84607 84612) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP19.spad" 62666 62679 67970 67975) (-63 "ASP12.spad" 62080 62093 62656 62661) (-62 "ASP10.spad" 61351 61364 62070 62075) (-61 "ASP1.spad" 60732 60745 61341 61346) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY12.spad" 58761 58772 60082 60087) (-58 "ARRAY1.spad" 57596 57605 57944 57971) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY1.spad" 46438 46447 47357 47362) (-51 "ANY.spad" 44780 44787 46428 46433) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index a55e54a3..229f155a 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3543 +1,3543 @@
-(162113 . 3443721773)
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-((((-563)) . T) (($) -4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T))
-(((|#2| |#2|) . T))
-((((-563)) . T))
-((($ $) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))))
-((($) . T))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#2|) . T))
-((($) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))))
-(|has| |#1| (-905))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((($) . T) (((-407 (-563))) . T))
-((($) . T))
-((($) . T))
-(((|#2| |#2|) . T))
-((((-144)) . T))
-((((-536)) . T) (((-1151)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-(((|#1|) . T))
-((((-225)) . T) (((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((($ $) . T) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-(-4034 (|has| |#1| (-816)) (|has| |#1| (-846)))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-844))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#2| |#3|) . T))
+(162132 . 3444026019)
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
((((-1174)) . T))
-((((-563)) . T) (((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-858)) . T))
-((((-1174)) . T))
-(((|#4|) . T))
-((((-858)) . T))
-((((-858)) |has| |#1| (-1093)))
-((((-858)) . T) (((-1174)) . T))
-(((|#1|) . T) ((|#2|) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(((|#2| (-482 (-3610 |#1|) (-767))) . T))
-(((|#1| (-531 (-1169))) . T))
-(((#0=(-866 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-((((-1151)) . T) (((-954 (-129))) . T) (((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(|has| |#4| (-368))
-(|has| |#3| (-368))
-(((|#1|) . T))
-((((-506)) . T))
-((((-866 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(|has| |#1| (-555))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-((((-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) . T))
-((($) . T))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1169)) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-1169)) . T))
-((((-563)) . T) (($) . T))
-((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T))
-(((|#1| |#2|) . T))
-((((-858)) . T))
-(((|#1|) . T))
-(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-(((|#1|) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-(((|#2|) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($ $) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-((($) . T))
-(((|#1|) . T))
+((((-407 |#2|) |#3|) . T))
+((((-407 (-546))) |has| #1=(-407 |#2|) (-1034 (-407 (-546)))) (((-546)) |has| #1# (-1034 (-546))) ((#1#) . T))
+((((-407 |#2|)) . T))
+((((-546)) |has| #1=(-407 |#2|) (-636 (-546))) ((#1#) . T))
+((((-407 |#2|)) . T))
+((((-407 |#2|) |#3|) . T))
+(|has| (-407 |#2|) (-147))
+((((-407 |#2|) |#3|) . T))
+(|has| (-407 |#2|) (-145))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+(|has| (-407 |#2|) (-233))
+((((-1169)) |has| (-407 |#2|) (-896 (-1169))))
+((((-407 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-407 |#2|) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(((|#1| |#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-368))
(((|#1|) . T))
+((((-1135 |#2| |#1|)) . T) ((|#1|) . T))
+((((-859)) . T))
(((|#1|) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
(((|#1| |#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-555))
-(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(|has| |#1| (-1093))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(|has| |#1| (-1093))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(|has| |#1| (-844))
-((($) . T) (((-407 (-563))) . T))
(((|#1|) . T))
-((((-563) (-129)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-129)) . T))
-((((-1174)) . T))
-(-4034 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-4034 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(((|#1|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-859)) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1093))
-(|has| |#1| (-1093))
-(((|#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) . T))
-((((-563) |#1|) . T))
-((((-563)) . T))
-((((-563)) . T))
-((((-906 |#1|)) . T))
-(((|#1| (-531 |#2|)) . T))
-((((-563)) . T))
-((((-563)) . T))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1| (-767)) . T))
-(|has| |#2| (-789))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(|has| |#2| (-844))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((|#1| |#2|) . T))
+((((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((|#2|) . T))
+(((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-1151) |#1|) . T))
-((((-563) (-129)) . T))
-(((|#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#3| (-767)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-1093))
-((((-407 (-563))) . T) (((-563)) . T))
-((((-563)) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#2|) . T))
-((((-1169) |#2|) |has| |#2| (-514 (-1169) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|)))
-((((-407 (-563))) . T) (((-563)) . T))
-((((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))
+((((-168 (-378))) . T) (((-225)) . T) (((-378)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((((-407 (-546))) . T) (($) . T))
+(((#1=(-407 (-546)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-608 $) $) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (((-546)) . T) (((-608 $)) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T) (((-608 $)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+((((-859)) . T))
(((|#1|) . T) (($) . T))
-((((-563)) . T))
-((((-563)) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-((((-563)) . T))
-((((-563)) . T))
-(((#0=(-694) (-1165 #0#)) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((((-563) |#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-363))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T))
+(((|#1|) . T) (((-546)) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-1151) |#1|) . T))
-(((|#3| |#3|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#1|) . T))
-(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-563) |#1|) . T))
-((((-858)) . T))
-((((-169 (-225))) |has| |#1| (-1018)) (((-169 (-379))) |has| |#1| (-1018)) (((-536)) |has| |#1| (-611 (-536))) (((-1165 |#1|)) . T) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-(|has| |#1| (-363))
-((((-858)) . T))
-((((-129)) . T))
-(-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
-(-4034 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-(|has| |#1| (-555))
-((((-563)) -4034 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045))) ((|#4|) -4034 (|has| |#4| (-172)) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))
-((((-563)) -4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#1| (-555))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#1|) . T))
-(|has| |#1| (-555))
-(|has| |#1| (-555))
-(|has| |#1| (-555))
-((((-694)) . T))
+((((-859)) . T))
+((((-767)) . T))
+((((-767)) . T))
+((((-859)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))
-(((|#2|) . T) (($) . T) (((-407 (-563))) . T))
-(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))
-((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T))
-(((|#4| |#4|) -4034 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172)))
-(((|#3| |#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))))
-((((-858)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) . T) (((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))))
-(((|#4|) -4034 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172)))
-(((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
-((((-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-((((-640 |#1|)) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T))
-((((-407 $) (-407 $)) |has| |#2| (-555)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-905))
-((((-1151) (-52)) . T))
-((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T))
-((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-(((|#1|) |has| |#1| (-172)))
-(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-858)) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
(|has| |#1| (-846))
-(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T))
-(|has| |#1| (-1093))
-(((|#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) . T) (((-1174)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((((-1174)) . T))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(|has| |#1| (-233))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1| (-531 (-814 (-1169)))) . T))
-(((|#1| (-967)) . T))
-(((#0=(-866 |#1|) $) |has| #0# (-286 #0# #0#)))
-((((-563) |#4|) . T))
-((((-563) |#3|) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
-(|has| |#1| (-1144))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-(|has| (-1243 |#1| |#2| |#3| |#4|) (-145))
-(|has| (-1243 |#1| |#2| |#3| |#4|) (-147))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(((|#1|) |has| |#1| (-172)))
-((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
-(|has| |#1| (-1093))
-((((-1151) |#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-814 (-1169))) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T))
-(|has| |#2| (-368))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1045)))
-((((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((|#1|) . T))
-((((-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))))
-((((-858)) . T))
-((((-563) |#1|) . T))
-((((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563))))))
-((($) . T))
-((((-858)) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(((|#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1| (-58 |#1|) (-58 |#1|)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-684 (-339 (-3936) (-3936 (QUOTE X) (QUOTE HESS)) (-694)))) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+(((|#1| |#1|) . T))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-1000 2)) . T) (((-407 (-546))) . T) (((-859)) . T))
+((((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-546) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T))
+((((-859)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-546) (-112)) . T))
+((((-546) (-112)) . T))
+((((-546) (-112)) . T))
+((((-535)) . T))
+((((-112)) . T))
+((((-859)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-535)) . T))
+((((-859)) . T))
+((((-859)) . T))
((($) . T))
+((((-859)) . T))
((($) . T))
+((($ $) . T))
((($) . T))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
-((((-858)) . T))
-(|has| (-1242 |#2| |#3| |#4|) (-147))
-(|has| (-1242 |#2| |#3| |#4|) (-145))
-(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
-(((|#1|) . T))
-(|has| |#1| (-1093))
-((((-858)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-(((|#1|) . T))
-((((-563) |#1|) . T))
-(((|#2|) |has| |#2| (-172)))
-(((|#1|) |has| |#1| (-172)))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-858)) |has| |#1| (-1093)))
-(-4034 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-906 |#1|)) . T))
-((((-407 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-563) |#1|)))
-((((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-846))
-(((|#1|) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-(|has| |#1| (-363))
-(-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))
-(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))
-(|has| |#1| (-363))
-((((-563)) . T))
-(|has| |#1| (-15 * (|#1| (-767) |#1|)))
-((((-1135 |#2| (-407 (-948 |#1|)))) . T) (((-407 (-948 |#1|))) . T))
((($) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T))
+((((-546)) . T) (($) . T))
(((|#1|) . T))
-((((-563) |#1|) . T))
-((((-858)) . T))
-(((|#2|) . T))
-(-4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((($) |has| |#1| (-555)) (((-563)) . T))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-((((-1249 |#1| |#2| |#3|)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1253 |#2|)) . T) (((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T))
+((((-859)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-116 |#1|)) . T) (((-407 (-546))) . T))
+((((-116 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-116 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-116 |#1|) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-116 |#1|)) . T))
+((((-1169) #1=(-116 |#1|)) |has| #1# (-514 (-1169) #1#)) ((#1# #1#) |has| #1# (-309 #1#)))
+(((#1=(-116 |#1|)) |has| #1# (-309 #1#)))
+(((#1=(-116 |#1|) $) |has| #1# (-286 #1# #1#)))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-546)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
(((|#1|) . T))
-((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555)))
-(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-((($ $) |has| |#1| (-555)))
-(((#0=(-694) (-1165 #0#)) . T))
-((((-858)) . T) (((-1257 |#4|)) . T))
-((((-858)) . T) (((-1257 |#3|)) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)))
-((((-858)) . T))
-((($) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1249 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
-(((|#3|) |has| |#3| (-1045)))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(|has| |#1| (-1093))
-(((|#2| (-815 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-363))
-((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1075) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-858)) . T))
-((((-906 |#1|)) . T))
-((((-144)) . T))
-((((-144)) . T))
-(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-(|has| |#1| (-363))
-((((-1174)) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(|has| |#2| (-816))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-844))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-(((|#1| |#2|) . T))
-((((-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))))
-((((-1151) |#1|) . T))
-(((|#1| |#2| |#3| (-531 |#3|)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((((-858)) . T))
(((|#1|) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(|has| |#1| (-368))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-563)) . T))
-((((-563)) . T))
-(((|#1|) . T) (((-563)) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
-((((-1169) #0=(-866 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
(((|#1|) . T))
-((((-563) |#4|) . T))
-((((-563) |#3|) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-((((-407 (-563))) . T) (((-563)) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T))
-((((-563)) . T))
-((((-563)) . T))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-((((-563)) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
-(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) |has| |#1| (-555)))
-((((-563) |#4|) . T))
-((((-563) |#3|) . T))
-((((-858)) . T))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-563) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1169) $) . T) ((#0# |#1|) . T))
-(((|#2|) |has| |#2| (-172)))
-((($) -4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))))
-(((|#2| |#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
((((-144)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
-((((-858)) . T))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
-(((|#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-1093))
-(|has| $ (-147))
+((((-144)) . T))
+((((-144)) . T) (((-859)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-1151)) . T) (((-954 (-128))) . T) (((-859)) . T))
+((((-128)) . T))
+((((-546) (-128)) . T))
+((((-546) (-128)) . T))
+((((-546) (-128)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-((((-563) |#1|) . T))
-((($) -4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))))
-(|has| |#1| (-363))
-(-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))
-(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))
-(|has| |#1| (-363))
-(|has| |#1| (-15 * (|#1| (-767) |#1|)))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(((|#2| (-531 (-860 |#1|))) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-580 |#1|)) . T))
-((($) . T))
-((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-(((|#1|) . T) (($) . T))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-((((-1167 |#1| |#2| |#3|)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1253 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-(((|#4|) . T))
+((((-767)) . T))
+((((-767)) . T))
+((((-859)) . T))
+((((-546) (-767)) . T) ((|#3| (-767)) . T))
+((((-859)) . T))
(((|#3|) . T))
-((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T))
-((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
-(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-((((-563) |#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1167 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
-(((|#2|) |has| |#2| (-1045)))
-(|has| |#1| (-1093))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) |has| |#1| (-172)) (($) . T))
-(((|#1|) . T))
-(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((((-858)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
-(((|#2|) |has| |#1| (-363)))
-((((-563) |#1|) . T))
+(((|#3|) . T))
+(((|#3| (-767)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-506)) . T))
+((((-183)) . T) (((-859)) . T))
+((((-859)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-637 (-144))) . T) (((-1151)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) . T))
+(((|#2|) . T) (($) . T))
+((((-859)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
+((((-859)) . T))
+((((-859)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-((((-858)) . T))
-((((-407 |#2|) |#3|) . T))
-(((|#1| (-407 (-563))) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T) (((-1174)) . T))
-(|has| |#1| (-145))
+(|has| |#1| (-817))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-350)))
+((((-859)) . T))
(|has| |#1| (-147))
-((((-1174)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#2| |#3| (-860 |#1|)) . T))
-((((-1169)) |has| |#2| (-896 (-1169))))
(((|#1|) . T))
-(((|#1| (-531 |#2|) |#2|) . T))
-(((|#1| (-767) (-1075)) . T))
-((((-407 (-563))) |has| |#2| (-363)) (($) . T))
-(((|#1| (-531 (-1081 (-1169))) (-1081 (-1169))) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
+((((-1169)) |has| |#1| (-896 (-1169))))
+(-3943 (|has| |#1| (-233)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(((|#1|) . T))
+((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(((|#1|) |has| |#1| (-309 |#1|)))
+(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
+(((|#1|) . T))
+((((-546)) |has| |#1| (-882 (-546))) (((-378)) |has| |#1| (-882 (-378))))
+(((|#1|) . T))
+((((-546)) . T) (($) -3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-1034 (-407 (-546))))) ((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| (-1163 |#1|)) . T))
+(((|#1| (-1163 |#1|)) . T))
+((($) -3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+(((|#1| (-1163 |#1|)) . T))
+(|has| |#1| (-350))
+(|has| |#1| (-350))
+(|has| |#1| (-350))
+(-3943 (|has| |#1| (-368)) (|has| |#1| (-350)))
+(|has| |#1| (-846))
(((|#1|) . T))
-((((-995 |#1|)) . T) (((-563)) . T) ((|#1|) . T) (((-407 (-563))) -4034 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+((((-168 (-225))) |has| |#1| . #1=((-1016))) (((-168 (-378))) |has| |#1| . #1#) (((-535)) |has| |#1| (-611 (-535))) (((-1163 |#1|)) . T) (((-886 (-546))) |has| |#1| (-611 (-886 (-546)))) (((-886 (-378))) |has| |#1| (-611 (-886 (-378)))))
+(-12 (|has| |#1| (-307)) (|has| |#1| (-906)))
+(-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))
+(|has| |#1| (-1193))
+(|has| |#1| (-1193))
+(|has| |#1| (-1193))
+(|has| |#1| (-1193))
+(|has| |#1| (-1193))
+(|has| |#1| (-1193))
+(((|#1|) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) . T) (((-407 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T) ((#2=(-407 |#1|) #2#) . T) ((|#1| |#1|) . T))
+((((-407 (-546))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-546)) . T))
+((((-407 (-546))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-506)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-637 |#1|)) . T))
+((((-859)) . T))
+((((-1000 10)) . T) (((-407 (-546))) . T) (((-859)) . T))
+((((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-546) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-314 |#1|)) . T))
+((((-859)) . T))
+((((-314 |#1|)) . T) (($) . T))
+((((-314 |#1|)) . T) (((-546)) . T))
+((((-314 |#1|)) . T))
+((((-546)) . T) (((-407 (-546))) . T))
+((((-378)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-535)) . T) (((-225)) . T) (((-378)) . T) (((-886 (-378))) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(((|#1| (-1256 |#1|) (-1256 |#1|)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1|) . T))
+(((|#1| (-1256 |#1|) (-1256 |#1|)) . T))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(((|#2|) |has| |#2| (-172)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+((($) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-859)) -3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1256 |#2|)) . T))
+(|has| |#2| (-172))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
+(((|#2|) |has| |#2| (-1045)))
+((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
+(|has| |#2| (-368))
+(((|#2|) |has| |#2| (-1045)))
+(((|#2|) |has| |#2| (-1045)) (((-546)) -12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045))))
+(((|#2|) |has| |#2| (-1094)))
+((((-546)) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+(((|#2|) |has| |#2| (-1094)) (((-546)) -12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+((((-546) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) . T))
+((((-546) |#2|) . T))
+((((-546) |#2|) . T))
(|has| |#2| (-789))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
(|has| |#2| (-844))
-((((-889 |#1|)) . T) (((-815 |#1|)) . T))
-((((-815 (-1169))) . T))
+(|has| |#2| (-844))
+(((|#2|) |has| |#2| (-363)))
+(((|#1| |#2|) . T))
+((((-637 |#1|)) . T))
+((((-637 |#1|)) . T))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-640 (-563))) . T))
-((((-640 (-563))) . T) (((-858)) . T))
-((((-407 (-563))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-(|has| |#1| (-233))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((($ $) . T))
-(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-1249 |#1| |#2| |#3|) $) -12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
(((|#1|) . T))
-((((-1133 |#1| |#2|)) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
+((((-637 |#1|)) . T) (((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((($) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-846))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-535)) |has| |#2| (-611 (-535))) (((-886 (-378))) |has| |#2| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#2| (-611 (-886 (-546)))))
((($) . T))
+(((|#2| (-239 (-4372 |#1|) (-767))) . T))
(((|#2|) . T))
-(((|#3|) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((|#2|) . T))
-((((-858)) -4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T) (($) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-563)) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-563) (-144)) . T))
-((($) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
-((((-563)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-563)) . T))
-((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
-(((|#2|) |has| |#1| (-363)))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) . T) (($ $) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-1174)) . T))
-(((|#1| (-531 #0=(-1169)) #0#) . T))
-(((|#1|) . T) (($) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-147))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T) (($) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#2| (-38 (-407 (-546)))) ((|#2| |#2|) . T) (($ $) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((|#2| (-239 (-4372 |#1|) (-767))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-906)))
+((($ $) . T) ((#1=(-860 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-846))
+((((-860 |#1|)) . T))
+(|has| |#2| (-906))
+(|has| |#2| (-906))
+((((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))) (((-546)) |has| |#2| (-1034 (-546))) ((|#2|) . T) (((-860 |#1|)) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))) ((|#2|) . T) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-860 |#1|)) . T))
+(((|#2| (-239 (-4372 |#1|) (-767)) (-860 |#1|)) . T))
+((((-859)) . T))
+((((-506)) . T))
+((((-183)) . T) (((-859)) . T))
+(((|#4|) |has| |#4| (-172)))
+(-3943 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
+(-3943 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
+(-3943 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
+(-3943 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
+(((|#3|) . T) ((|#2|) . T) (($) -3943 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -3943 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))))
+(((|#4|) -3943 (|has| |#4| (-172)) (|has| |#4| (-363))))
+((((-859)) . T) (((-1256 |#4|)) . T))
(|has| |#4| (-172))
+(((|#4|) -3943 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172)))
+(((|#4| |#4|) -3943 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172)))
+(((|#4|) |has| |#4| (-1045)))
+((((-1169)) -12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))
+(-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))
+(|has| |#4| (-368))
+(((|#4|) |has| |#4| (-1045)))
+(((|#4|) |has| |#4| (-1045)) (((-546)) -12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))))
+(((|#4|) |has| |#4| (-1094)))
+((((-546)) -3943 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-546))) (|has| |#4| (-1094))) (|has| |#4| (-1045))) ((|#4|) -3943 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-546))) -12 (|has| |#4| (-1034 (-407 (-546)))) (|has| |#4| (-1094))))
+(((|#4|) |has| |#4| (-1094)) (((-546)) -12 (|has| |#4| (-1034 (-546))) (|has| |#4| (-1094))) (((-407 (-546))) -12 (|has| |#4| (-1034 (-407 (-546)))) (|has| |#4| (-1094))))
+((((-546) |#4|) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) . T))
+((((-546) |#4|) . T))
+((((-546) |#4|) . T))
+(|has| |#4| (-789))
+(-3943 (|has| |#4| (-789)) (|has| |#4| (-844)))
+(-3943 (|has| |#4| (-789)) (|has| |#4| (-844)))
+(-3943 (|has| |#4| (-789)) (|has| |#4| (-844)))
+(-3943 (|has| |#4| (-789)) (|has| |#4| (-844)))
+(|has| |#4| (-844))
+(|has| |#4| (-844))
+(((|#4|) |has| |#4| (-363)))
+(((|#1| |#4|) . T))
+(((|#3|) |has| |#3| (-172)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(((|#2|) . T) (($) -3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
+(((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363))))
+((((-859)) . T) (((-1256 |#3|)) . T))
(|has| |#3| (-172))
-(((#0=(-407 (-948 |#1|)) #0#) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(|has| |#1| (-1093))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(|has| |#1| (-1093))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-(((|#1| |#1|) |has| |#1| (-172)))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T))
-((((-407 (-948 |#1|))) . T))
-(((|#1|) |has| |#1| (-172)))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-858)) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1045)) (((-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))
-(((|#1| |#2|) . T))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
+(((|#3| |#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
+(((|#3|) |has| |#3| (-1045)))
+((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
+(|has| |#3| (-368))
+(((|#3|) |has| |#3| (-1045)))
+(((|#3|) |has| |#3| (-1045)) (((-546)) -12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))))
+(((|#3|) |has| |#3| (-1094)))
+((((-546)) -3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-546))) -12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))
+(((|#3|) |has| |#3| (-1094)) (((-546)) -12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (((-407 (-546))) -12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))
+((((-546) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3|) . T))
+((((-546) |#3|) . T))
+((((-546) |#3|) . T))
(|has| |#3| (-789))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
(|has| |#3| (-844))
+(|has| |#3| (-844))
+(((|#3|) |has| |#3| (-363)))
+(((|#1| |#3|) . T))
+((((-859)) . T))
(((|#1|) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-(((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| (-1149 |#1|)) |has| |#1| (-844)))
-((((-563) |#2|) . T))
-(|has| |#1| (-1093))
+((((-859)) . T))
+(|has| |#1| (-233))
+((($) . T))
+(((|#1| (-531 |#3|) |#3|) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#3| (-882 (-546)))) (((-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#3| (-882 (-378)))))
+((((-1169)) |has| |#1| (-896 (-1169))) ((|#3|) . T))
+(|has| |#1| (-846))
+((($ $) . T) ((|#2| $) |has| |#1| . #1=((-233))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-1144)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#1| (-1093))
-(((|#2|) . T))
-((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))))
-(((|#4|) -4034 (|has| |#4| (-172)) (|has| |#4| (-363))))
-(((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363))))
-((((-858)) . T))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-814 (-1169)) |#1|) . T) ((#1# $) . T))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-((((-563) |#2|) . T))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((($) -4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
-((((-563) |#1|) . T))
-(|has| (-407 |#2|) (-147))
-(|has| (-407 |#2|) (-145))
-(((|#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-407 (-563))) . T))
-((((-858)) . T))
-(|has| |#1| (-555))
-(|has| |#1| (-555))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-858)) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-388) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#2| (-1144))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-1207)) . T) (((-858)) . T) (((-1174)) . T))
-((((-116 |#1|)) . T))
+(((|#1| (-531 |#3|)) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+(((|#1| (-531 |#3|)) . T))
+((((-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#3| (-611 (-886 (-546))))) (((-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#3| (-611 (-886 (-378))))) (((-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#3| (-611 (-535)))))
+((((-1118 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#2|) . T))
+((((-1118 |#1| |#2|)) . T) (((-546)) . T) ((|#3|) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-531 |#3|)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-859)) . T))
+((($) . T))
+((($) . T))
+((((-859)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T) (((-546)) . T))
+((($) . T))
+((((-859)) . T))
+(((|#1|) |has| |#1| (-363)))
+((((-1169)) |has| |#1| (-896 (-1169))))
+(((|#1|) -3943 (|has| |#1| (-172)) (|has| |#1| (-363))))
+(((|#1|) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
+(((|#1| |#1|) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
+((((-546)) -3943 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))))
+(((|#1|) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -3943 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))))
+(-3943 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(|has| |#1| (-473))
+(-3943 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1094)))
+((((-112)) |has| |#1| (-1094)) (((-859)) -3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1094)))
+((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-859)) . T))
((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
+((((-859)) . T))
+(|has| (-1243 |#1| |#2| |#3| |#4|) (-145))
+(|has| (-1243 |#1| |#2| |#3| |#4|) (-147))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-546))) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-1243 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1169) #1=(-1243 |#1| |#2| |#3| |#4|)) |has| #1# (-514 (-1169) #1#)) ((#1# #1#) |has| #1# (-309 #1#)))
+(((#1=(-1243 |#1| |#2| |#3| |#4|)) |has| #1# (-309 #1#)))
+(((#1=(-1243 |#1| |#2| |#3| |#4|) $) |has| #1# (-286 #1# #1#)))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1237 |#2| |#3| |#4|)) . T) (((-546)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-1237 |#2| |#3| |#4|)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T))
+((((-1243 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(((|#1|) |has| |#1| (-556)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+((((-859)) . T))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+((((-608 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-546))) |has| |#1| (-556)))
+((($) -3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-556)))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-546))) |has| |#1| (-556)))
+(|has| |#1| (-556))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-556)) (($) |has| |#1| (-556)))
+(((|#1| |#1|) |has| |#1| (-172)) ((#1=(-407 (-546)) #1#) |has| |#1| (-556)) (($ $) |has| |#1| (-556)))
+(|has| |#1| (-556))
+(((|#1|) |has| |#1| (-1045)))
+(((|#1|) |has| |#1| (-1045)) (((-546)) -12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))
(((|#1|) . T))
-((((-388) (-1151)) . T))
-(|has| |#1| (-555))
-((((-563) |#1|) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#2|) . T))
-((((-858)) . T))
-((((-815 |#1|)) . T))
-(((|#2|) |has| |#2| (-172)))
-((((-1169) (-52)) . T))
+((((-546)) |has| |#1| (-882 (-546))) (((-378)) |has| |#1| (-882 (-378))))
(((|#1|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-555))
-(((|#1|) |has| |#1| (-172)))
-((((-640 |#1|)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#2|) |has| |#2| (-309 |#2|)))
-(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
+(|has| |#1| (-473))
+((((-1169)) |has| |#1| (-1045)))
(((|#1|) . T))
-(((|#1| (-1165 |#1|)) . T))
-(|has| $ (-147))
-(((|#2|) . T))
-(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T))
-(|has| |#2| (-368))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-((((-1167 |#1| |#2| |#3|) $) -12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((($ $) . T))
-((((-858)) . T))
-((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((#0=(-1249 |#1| |#2| |#3|) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))
+((((-535)) |has| |#1| (-611 (-535))) (((-886 (-546))) |has| |#1| (-611 (-886 (-546)))) (((-886 (-378))) |has| |#1| (-611 (-886 (-378)))))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546)))) (((-608 $)) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) -3943 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-407 (-942 |#1|))) |has| |#1| (-556)) (((-942 |#1|)) |has| |#1| (-1045)) (((-1169)) . T))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546)))) (((-546)) -3943 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))) (|has| |#1| (-1045))) ((|#1|) . T) (((-608 $)) . T) (($) |has| |#1| (-556)) (((-407 (-546))) -3943 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-546))))) (((-407 (-942 |#1|))) |has| |#1| (-556)) (((-942 |#1|)) |has| |#1| (-1045)) (((-1169)) . T))
(((|#1|) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+((((-859)) . T))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-407 (-546))) . T))
+(((|#1| (-407 (-546))) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-546)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+(((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-407 (-546)) (-1075)) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))
(((|#1|) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-407 (-563))) . T) (((-563)) . T))
-((((-563) (-144)) . T))
-((((-144)) . T))
(((|#1|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
-((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-112)) . T))
+(((|#1| (-546)) . T))
+(((#1=(-546) #1#) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1|) . T))
-((((-536)) |has| |#1| (-611 (-536))) (((-225)) . #0=(|has| |#1| (-1018))) (((-379)) . #0#))
-((((-858)) . T))
-((((-1174)) . T))
-(|has| |#1| (-816))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(|has| |#1| (-846))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-(|has| |#1| (-555))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T))
-(|has| |#1| (-905))
-(((|#1|) . T))
-(|has| |#1| (-1093))
-((((-858)) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| (-1257 |#1|) (-1257 |#1|)) . T))
-((((-563) (-144)) . T))
-((($) . T))
-(-4034 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-1174)) . T) (((-858)) . T))
-((((-1174)) . T))
-((((-858)) . T))
-(|has| |#1| (-1093))
-(((|#1| (-967)) . T))
-(((|#1| |#1|) . T))
-((($) . T))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-12 (|has| |#1| (-473)) (|has| |#2| (-473)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
(((|#1|) . T))
-(|has| |#2| (-789))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#2| (-844))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-563)) . T))
-(((|#2|) |has| |#2| (-172)))
-(((|#1|) |has| |#1| (-172)))
-((((-858)) . T))
-(|has| |#1| (-349))
+(((|#1| (-767)) . T))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
-((((-407 (-563))) . T) (($) . T))
-((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T))
-(|has| |#1| (-824))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-(|has| |#1| (-1093))
-(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((($) |has| |#1| (-555)))
-(((|#4|) |has| |#4| (-1093)))
-(((|#3|) |has| |#3| (-1093)))
-(|has| |#3| (-368))
-(((|#1|) . T) (((-858)) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-(((|#2|) . T))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1| |#1|) |has| |#1| (-172)))
-(|has| |#2| (-363))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-407 (-563))) . T) (((-563)) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-((((-144)) . T))
(((|#1|) . T))
-((($) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
-((((-144)) . T))
-((((-144)) . T))
-((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-563)) . T))
-(((|#1| |#2| |#3|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-1169)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T) (($) . T))
+(((|#3|) . T))
+((($) . T))
+((($ $) . T) (((-608 $) $) . T))
+((((-859)) . T))
+(((|#3|) . T) (((-608 $)) . T))
+(((|#3|) . T) (((-546)) . T) (((-608 $)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+(((#1=(-902 |#1|) #1#) . T) (($ $) . T) ((#2=(-407 (-546)) #2#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
(|has| $ (-147))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+(((#1=(-902 |#1|) #1#) . T) (($ $) . T) ((#2=(-407 (-546)) #2#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
(|has| $ (-147))
-((((-1174)) . T))
-(|has| |#1| (-1093))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
-((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-(((|#1| (-407 (-563))) . T))
+((((-902 |#1|)) . T))
(((|#1|) . T))
-((((-1169)) . T))
-(|has| |#1| (-555))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-555))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
-(((|#2|) . T) (($) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-(|has| |#4| (-844))
-(((|#2| (-240 (-3610 |#1|) (-767)) (-860 |#1|)) . T))
-(|has| |#3| (-844))
-(((|#1| (-531 |#3|) |#3|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
(|has| |#1| (-147))
-(|has| |#1| (-145))
-(((#0=(-407 (-563)) #0#) |has| |#2| (-363)) (($ $) . T))
-((((-866 |#1|)) . T))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
(|has| |#1| (-147))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-((((-858)) . T))
-(|has| |#1| (-145))
-((((-407 (-563))) |has| |#2| (-363)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-349)) (|has| |#1| (-368)))
-((((-1135 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-172))
-(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
+(|has| |#1| (-368))
(((|#1|) . T))
-(((|#2|) . T) (($) . T))
-((((-694)) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(|has| |#1| (-555))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T))
+((((-902 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+(((#1=(-902 |#1|) #1#) . T) (($ $) . T) ((#2=(-407 (-546)) #2#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-902 |#1|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(|has| $ (-147))
+((((-902 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1169) (-52)) . T))
-(((|#1|) . T) (($) . T))
-((((-1000 10)) . T) (((-407 (-563))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-(((|#1|) . T))
-((((-1000 16)) . T) (((-407 (-563))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-(((|#1| (-563)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
(((|#1|) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#3|) . T) (((-609 $)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-563)) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((($ $) . T) ((|#2| $) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(((#0=(-1167 |#1| |#2| |#3|) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))))
-((((-858)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T))
-((((-1169) (-52)) . T))
-(((|#3|) . T))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-824))
-(|has| |#1| (-1093))
-(((|#2| |#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363))))
-((((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
-((((-1174)) . T))
-((((-767)) . T))
-(|has| |#1| (-555))
-((((-563)) . T))
-((((-858)) . T))
-(((|#1| (-407 (-563)) (-1075)) . T))
-(|has| |#1| (-145))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(|has| |#1| (-368))
+(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-555))
-((((-563)) . T))
-((((-116 |#1|)) . T))
(((|#1|) . T))
+(((|#1|) . T))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
(|has| |#1| (-147))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-((((-888 (-563))) . T) (((-888 (-379))) . T) (((-536)) . T) (((-1169)) . T))
-((((-858)) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((($) . T))
-((((-858)) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(((|#2|) |has| |#2| (-172)))
-((($) -4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))))
-((((-866 |#1|)) . T))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
-(|has| |#2| (-1144))
-(((#0=(-52)) . T) (((-2 (|:| -2387 (-1169)) (|:| -2556 #0#))) . T))
-(((|#1| |#2|) . T))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(((|#1| (-563) (-1075)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| (-407 (-563)) (-1075)) . T))
-((($) -4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-563) |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(|has| |#2| (-368))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
-((((-858)) . T))
-((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(((|#1|) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#4|) . T))
-(|has| |#1| (-349))
-((((-563)) -4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))
-(((|#1|) . T))
-(((|#4|) . T) (((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(|has| |#1| (-555))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-((((-407 (-563))) . T) (((-563)) . T))
-((((-563)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((((-858)) . T))
-(((|#3| |#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
-(|has| |#1| (-1018))
-((((-858)) . T))
-(((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
-((((-563) (-112)) . T))
-((((-1174)) . T))
-(((|#1|) |has| |#1| (-309 |#1|)))
-((((-1174)) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-((((-1169) $) |has| |#1| (-514 (-1169) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)))
-((((-1169)) |has| |#1| (-896 (-1169))))
-(-4034 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))
-(((|#1| |#4|) . T))
-(((|#1| |#3|) . T))
+(|has| |#1| (-368))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
((((-388) |#1|) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-1093))
-(((|#2|) . T) (((-858)) . T))
-((((-858)) . T))
-(((|#2|) . T))
-((((-906 |#1|)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
+((((-225)) . T))
+((((-546)) . T) (((-407 (-546))) . T))
+((((-378)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-535)) . T) (((-1151)) . T) (((-225)) . T) (((-378)) . T) (((-886 (-378))) . T))
+((((-225)) . T) (((-859)) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#1| |#2|) . T))
-((($) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
+(((|#1|) . T))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
-(((#0=(-866 |#1|)) |has| #0# (-309 #0#)))
-((((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
(((|#1|) . T))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(|has| |#1| (-1193))
-(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1045)))
-(((|#3|) |has| |#3| (-1045)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(|has| |#1| (-363))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-((($ $) . T) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-563) |#3|) . T))
-((((-858)) . T))
-((((-536)) |has| |#3| (-611 (-536))))
-((((-684 |#3|)) . T) (((-858)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-((($) . T))
-(((#0=(-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) #0#) |has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))))
-(|has| |#2| (-846))
-((($) . T))
-(((|#2|) |has| |#2| (-1093)))
-((((-858)) -4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T))
(|has| |#1| (-846))
-(|has| |#1| (-846))
-((((-1151) (-52)) . T))
-(|has| |#1| (-846))
-((((-858)) . T))
-((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T))
-((($) . T) (((-563)) . T))
-((((-563) (-144)) . T))
-((((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((|#1| |#2|) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-858)) . T))
-((((-906 |#1|)) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))
-(|has| |#1| (-844))
-(|has| |#1| (-363))
-(|has| |#1| (-844))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-1151)) . T))
+((((-1151)) . T))
+((((-1151)) . T) (((-859)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-859)) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-407 |#2|)) . T))
+((((-859)) . T))
+(|has| |#1| (-1212))
+((((-535)) |has| |#1| (-611 (-535))) (((-225)) . #1=(|has| |#1| (-1016))) (((-378)) . #1#))
+(|has| |#1| (-1016))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-1212)))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
+(((|#1|) . T))
+((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|)))
+((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|)))
+((((-1169) $) |has| |#1| (-514 (-1169) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-233))
+((((-1169)) |has| |#1| (-896 (-1169))))
+(((|#1|) . T))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-844))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#1|) . T) (((-546)) . T) (($) . T))
+(-12 (|has| |#1| (-545)) (|has| |#1| (-817)))
+((((-859)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(((|#1|) . T))
((((-1169)) |has| |#1| (-896 (-1169))))
-((((-506)) . T))
-(((|#1| (-1169)) . T))
-(((|#1| (-1257 |#1|) (-1257 |#1|)) . T))
-((((-858)) . T) (((-1174)) . T))
-(((|#1| |#2|) . T))
-((($ $) . T))
-((((-1174)) . T))
-(|has| |#1| (-1093))
-(((|#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) . T))
-((((-407 (-948 |#1|))) . T))
-((((-536)) . T))
-((((-858)) . T))
-((($) . T))
-(((|#2|) . T) (($) . T))
-((((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((|#1| |#2|) . T))
+(|has| |#1| (-233))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) ((|#1|) . T) (((-407 (-546))) . T))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-172)))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#3|) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(((|#1|) |has| |#1| (-309 |#1|)))
+(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
(((|#1|) . T))
-((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))))
-((((-858)) . T))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-506)) . T))
-(|has| |#2| (-844))
-((((-506)) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
-(|has| |#1| (-555))
-((((-1151) |#1|) . T))
+((((-546)) |has| |#1| (-882 (-546))) (((-378)) |has| |#1| (-882 (-378))))
+(|has| |#1| (-816))
+(|has| |#1| (-816))
+(|has| |#1| (-816))
+(-3943 (|has| |#1| (-816)) (|has| |#1| (-846)))
+(|has| |#1| (-816))
+(|has| |#1| (-816))
+(|has| |#1| (-816))
+(((|#1|) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-1016))
+((((-535)) |has| |#1| (-611 (-535))) (((-886 (-546))) |has| |#1| (-611 (-886 (-546)))) (((-886 (-378))) |has| |#1| (-611 (-886 (-378)))) (((-378)) . #1=(|has| |#1| (-1016))) (((-225)) . #1#))
+((((-546)) . T) ((|#1|) . T) (($) . T) (((-407 (-546))) . T) (((-1169)) |has| |#1| (-1034 (-1169))))
+((((-407 (-546))) |has| |#1| . #1=((-1034 (-546)))) (((-546)) |has| |#1| . #1#) (((-1169)) |has| |#1| (-1034 (-1169))) ((|#1|) . T))
(|has| |#1| (-1144))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-954 |#1|)) . T))
-(((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-563))) (((-563)) |has| |#1| (-1034 (-563))) (((-1169)) |has| |#1| (-1034 (-1169))) ((|#1|) . T))
-((((-563) |#2|) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379))))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T))
-(((|#1|) . T))
-((((-640 |#4|)) . T) (((-858)) . T))
-((((-536)) |has| |#4| (-611 (-536))))
-((((-536)) |has| |#4| (-611 (-536))))
-((((-858)) . T) (((-640 |#4|)) . T))
-((($) |has| |#1| (-844)))
-((((-563)) -4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
(((|#1|) . T))
-((((-640 |#4|)) . T) (((-858)) . T))
-((((-536)) |has| |#4| (-611 (-536))))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+((((-859)) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (((-546)) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-388) (-1151)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-407 (-942 |#1|))) . T))
+((((-407 (-942 |#1|))) . T))
+((((-1135 |#2| (-407 (-942 |#1|)))) . T) (((-407 (-942 |#1|))) . T))
+((((-859)) . T))
+((((-407 (-942 |#1|))) . T))
+(((#1=(-407 (-942 |#1|)) #1#) . T))
+((((-407 (-942 |#1|))) . T))
+((((-407 (-942 |#1|))) . T))
+((((-535)) |has| |#2| (-611 (-535))) (((-886 (-378))) |has| |#2| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#2| (-611 (-886 (-546)))))
+((($) . T))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-1169)) |has| (-407 |#2|) (-896 (-1169))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-858)) -4034 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-610 (-858))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) (((-1257 |#3|)) . T))
-((((-563) |#2|) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#2| |#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
-(((|#2|) . T) (((-563)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-1151) (-1169) (-563) (-225) (-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
-((((-563) (-112)) . T))
-(((|#1|) . T))
-((((-858)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-112)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
-(|has| $ (-147))
-((((-407 |#2|)) . T))
-((((-889 |#1|)) . T) ((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T))
-((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T))
-(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-172)))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-(((|#3|) |has| |#3| (-172)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T) (($) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#2| (-38 (-407 (-546)))) ((|#2| |#2|) . T) (($ $) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((|#2| |#3|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-906)))
+((($ $) . T) ((#1=(-860 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-846))
+((((-860 |#1|)) . T))
+(|has| |#2| (-906))
+(|has| |#2| (-906))
+((((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))) (((-546)) |has| |#2| (-1034 (-546))) ((|#2|) . T) (((-860 |#1|)) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))) ((|#2|) . T) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-860 |#1|)) . T))
+(((|#2| |#3| (-860 |#1|)) . T))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+((((-859)) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#4|) . T))
+((((-637 |#4|)) . T) (((-859)) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) . T))
+((((-535)) |has| |#4| (-611 (-535))))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-859)) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+((((-859)) . T))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-407 (-546))) . T))
+(((|#1| (-407 (-546))) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-546)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+(((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-407 (-546)) (-1075)) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))
(((|#1|) . T))
-(|has| |#2| (-233))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-535)) |has| |#4| (-611 (-535))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) . T))
+((((-859)) . T) (((-637 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-535)) . T) (((-407 (-1163 (-546)))) . T) (((-225)) . T) (((-378)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((((-378)) . T) (((-225)) . T) (((-859)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (((-546)) . T) (($) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-535)) |has| |#2| (-611 (-535))) (((-886 (-378))) |has| |#2| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#2| (-611 (-886 (-546)))))
+((($) . T))
+(((|#2| (-482 (-4372 |#1|) (-767))) . T))
(((|#2|) . T))
-((((-858)) . T) (((-1174)) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-147))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T) (($) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#2| (-38 (-407 (-546)))) ((|#2| |#2|) . T) (($ $) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((|#2| (-482 (-4372 |#1|) (-767))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-906)))
+((($ $) . T) ((#1=(-860 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-846))
+((((-860 |#1|)) . T))
+(|has| |#2| (-906))
+(|has| |#2| (-906))
+((((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))) (((-546)) |has| |#2| (-1034 (-546))) ((|#2|) . T) (((-860 |#1|)) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))) ((|#2|) . T) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-860 |#1|)) . T))
+(((|#2| (-482 (-4372 |#1|) (-767)) (-860 |#1|)) . T))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(((|#2|) |has| |#2| (-172)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+((($) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-859)) -3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1256 |#2|)) . T))
+(|has| |#2| (-172))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
+(((|#2|) |has| |#2| (-1045)))
+((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
+(|has| |#2| (-368))
+(((|#2|) |has| |#2| (-1045)))
+(((|#2|) |has| |#2| (-1045)) (((-546)) -12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045))))
+(((|#2|) |has| |#2| (-1094)))
+((((-546)) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+(((|#2|) |has| |#2| (-1094)) (((-546)) -12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+((((-546) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) . T))
+((((-546) |#2|) . T))
+((((-546) |#2|) . T))
+(|has| |#2| (-789))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(|has| |#2| (-844))
+(|has| |#2| (-844))
+(((|#2|) |has| |#2| (-363)))
+(((|#1| |#2|) . T))
((((-1174)) . T))
-((((-1169) (-52)) . T))
-((((-858)) . T))
-((((-858)) . T) (((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-(((|#1| |#1|) . T))
-((((-1169)) |has| |#2| (-896 (-1169))))
-((((-129)) . T))
-((((-563) (-112)) . T))
-(|has| |#1| (-555))
-(((|#1|) . T) (((-563)) . T) (((-815 (-1169))) . T))
-(((|#2|) . T))
-(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-1000 16)) . T) (((-407 (-546))) . T) (((-859)) . T))
+((((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-546) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T))
+((((-1151)) . T) (((-859)) . T))
+((((-168 (-378))) . T) (((-225)) . T) (((-378)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((((-407 (-546))) . T) (($) . T))
+(((#1=(-407 (-546)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-608 $) $) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (((-546)) . T) (((-608 $)) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T) (((-608 $)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#3|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
-(((|#1|) . T))
-((((-1000 2)) . T) (((-407 (-563))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-995 |#1|)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1165 |#1|)) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#3|) . T) (($) . T))
(|has| |#1| (-846))
-(((|#2|) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-((((-563) |#2|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#2|) . T))
-((((-563) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-(|has| |#1| (-1093))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((|#2| |#2|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#2|) . T))
-(|has| |#2| (-363))
-(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
(((|#1|) . T))
-(((|#2|) . T))
-((((-1151) (-52)) . T))
-(((|#2|) |has| |#2| (-172)))
-((((-563) |#3|) . T))
-((((-563) (-144)) . T))
-((((-144)) . T))
-((((-858)) . T))
-((((-1174)) . T))
-((((-112)) . T))
-(|has| |#1| (-147))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-(|has| |#1| (-145))
-((($) . T))
-(|has| |#1| (-555))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-((((-144)) . T))
-((((-858)) . T))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-((((-1151) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
+(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-546) (-112)) . T))
+((((-546) (-112)) . T))
+((((-546) (-112)) . T))
+((((-535)) . T))
+((((-112)) . T))
+((((-859)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1169)) . T) (((-859)) . T))
(((|#1| |#2|) . T))
-((((-563) (-144)) . T))
-(((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(|has| |#1| (-846))
-(((|#2| (-767) (-1075)) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-(|has| |#1| (-787))
-(((|#1|) |has| |#1| (-172)))
-(((|#4|) . T))
-(((|#4|) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
-(-4034 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
-(-4034 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
-(((|#4|) . T))
-(|has| |#1| (-145))
-((((-1151) |#1|) . T))
-(|has| |#1| (-147))
-(((|#1|) . T))
-((((-563)) . T))
-((((-858)) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#3|) . T))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))) (((-954 |#1|)) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-954 |#1|)) . T))
-(|has| |#2| (-363))
-(((|#1|) |has| |#1| (-172)))
-(((|#2|) |has| |#2| (-1045)))
-((((-1151) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-(((|#2| (-889 |#1|)) . T))
-((($) . T))
-((((-388) (-1151)) . T))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) -4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2387 (-1151)) (|:| -2556 #0#))) . T))
-(((|#1|) . T))
-((((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-((((-144)) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
-(|has| |#1| (-473))
-(-4034 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-(|has| |#1| (-363))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((($) |has| |#1| (-555)))
-((((-1174)) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((((-858)) . T))
-(((|#2|) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
-((((-1169)) |has| |#1| (-896 (-1169))))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
-(|has| |#1| (-1093))
-(((|#2| (-482 (-3610 |#1|) (-767)) (-860 |#1|)) . T))
-((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#))
-(((|#1| (-531 (-1169)) (-1169)) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-172))
-(((|#2| |#2|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-1169) (-52)) . T))
-((($ $) . T))
-(((|#1| (-563)) . T))
-((((-906 |#1|)) . T))
-(((|#1|) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -4034 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-(|has| |#1| (-846))
-(|has| |#1| (-846))
-((((-563) |#2|) . T))
-((((-563)) . T))
-((((-1249 |#1| |#2| |#3|)) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-(|has| |#1| (-846))
-((((-684 |#2|)) . T) (((-858)) . T))
-((((-407 (-563))) . T) (((-563)) . T) (($) . T))
-(((|#1| |#2|) . T))
-((((-407 (-948 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#1|) |has| |#1| (-172)))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(|has| |#2| (-846))
-(|has| |#1| (-846))
-(((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363))))
-(-4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-905)))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-((((-563) |#2|) . T))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363))))
-(|has| |#1| (-349))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-(((|#2|) . T) (((-563)) . T))
-((($) . T) (((-407 (-563))) . T))
-((((-563) (-112)) . T))
-(|has| |#1| (-816))
-(|has| |#1| (-816))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-(-4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-38 (-407 (-563))))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
(((|#1|) . T))
-(|has| |#1| (-844))
-(((#0=(-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#1| (-1093))
-((((-858)) . T) (((-1174)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-580 |#1|)) . T))
+((((-580 |#1|)) . T))
+((((-580 |#1|)) . T))
+((((-580 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+(((#1=(-580 |#1|) #1#) . T) (($ $) . T) ((#2=(-407 (-546)) #2#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-580 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-580 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-580 |#1|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(|has| $ (-147))
+((((-580 |#1|)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1| |#4| |#5|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
-(((|#2|) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-(((|#1| (-531 |#2|) |#2|) . T))
-((((-858)) . T))
-((((-144)) . T) (((-858)) . T))
-(((|#1| (-767) (-1075)) . T))
-(((|#3|) . T))
-((((-144)) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -4034 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-((((-144)) . T))
-(((|#2|) |has| |#2| (-172)))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
(((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(|has| |#3| (-172))
-(((|#4|) |has| |#4| (-363)))
-(((|#3|) |has| |#3| (-363)))
+(|has| |#1| (-846))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-363)))
-((((-858)) . T))
-(((|#2|) . T))
-(((|#1| (-1165 |#1|)) . T))
-((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((($) . T) ((|#1|) . T) (((-407 (-563))) . T))
-(((|#2|) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((($) |has| |#1| (-844)))
-(|has| |#1| (-905))
-((((-1169)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
-(((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363))))
-(|has| |#1| (-846))
-(|has| |#1| (-555))
-((((-580 |#1|)) . T))
+(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+((((-767) |#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-578)) . T))
+((((-1096)) . T))
+((((-637 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-546)) . T) (((-225)) . T) (((-859)) . T))
+((((-859)) . T))
+((((-1151) (-1169) (-546) (-225) (-859)) . T))
((($) . T))
-(((|#2|) . T))
-(-4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-((((-906 |#1|)) . T))
-(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T))
-(((|#1| |#4| |#5|) . T))
-(((|#1| (-767)) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-667 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-536)) . T))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((((-1174)) . T))
-((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-563)) . T))
-(((|#3|) . T) (((-563)) . T) (((-609 $)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#2|) . T))
-(-4034 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-(|has| |#1| (-1193))
-(|has| |#1| (-1193))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
-(|has| |#1| (-1193))
-(|has| |#1| (-1193))
-(((|#3| |#3|) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#3|) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((((-1151) (-52)) . T))
-(|has| |#1| (-1093))
-(-4034 (|has| |#2| (-816)) (|has| |#2| (-846)))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-859)) . T))
((($) . T))
-((((-1167 |#1| |#2| |#3|)) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-((((-858)) . T))
-((((-563)) . T) (($) . T))
-((((-767)) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-((($) . T) (((-563)) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-1151)) . T) (((-535)) . T) (((-546)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-546)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
((($) . T))
-(|has| |#2| (-905))
-(|has| |#1| (-363))
-(((|#2|) |has| |#2| (-1093)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-536)) . T) (((-407 (-1165 (-563)))) . T) (((-225)) . T) (((-379)) . T))
-((((-379)) . T) (((-225)) . T) (((-858)) . T))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-((($) . T) ((|#2|) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-((((-858)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
((($ $) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
+((($) . T))
+((((-859)) . T))
+((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
+((((-546)) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((($) . T))
+((((-859)) . T))
+((($) . T))
((($ $) . T))
-((((-563) (-112)) . T))
((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
(((|#1|) . T))
-((((-563)) . T))
-((((-112)) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#1| (-563)) . T))
+((((-546)) . T))
+((($) . T))
((($) . T))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
+((($) . T))
+(|has| $ (-147))
+((($) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
(((|#1|) . T))
-((((-563)) . T))
-(((|#1| |#2|) . T))
-((((-1169)) |has| |#1| (-1045)))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
(((|#1|) . T))
-((((-858)) . T))
-(((|#1| (-563)) . T))
-(((|#1| (-1249 |#1| |#2| |#3|)) . T))
+(((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T))
+((((-859)) . T))
+((((-407 (-546))) . T))
+((((-407 (-546))) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-546) (-144)) . T))
+((((-546) (-144)) . T))
+((((-546) (-144)) . T))
+((((-144)) . T))
+((((-859)) . T))
+((((-144)) . T))
+((((-144)) . T))
+(|has| |#1| (-15 * (|#1| (-546) |#1|)))
+((((-859)) . T))
+((($ $) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))
+(((|#1| (-546) (-1075)) . T))
+((($) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))) ((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+((((-546)) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+(((|#1| (-546)) . T))
+(((|#1| (-546)) . T))
+((($) |has| |#1| (-556)))
+((($ $) |has| |#1| (-556)))
+((($) |has| |#1| (-556)))
+((($) |has| |#1| (-556)))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+((($) |has| |#1| (-556)) (((-546)) . T))
+((($) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+(((|#1|) . T))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
(((|#1|) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#1| (-1221 |#1| |#2| |#3|)) . T))
-(((|#1| (-767)) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-858)) . T))
-(|has| |#1| (-1093))
-((((-1151) |#1|) . T))
-((($) . T))
-(|has| |#2| (-147))
-(|has| |#2| (-145))
-(((|#1| (-531 (-814 (-1169))) (-814 (-1169))) . T))
-((((-858)) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1045)))
-((((-563) (-112)) . T))
-((((-858)) |has| |#1| (-1093)))
-(|has| |#2| (-172))
-((((-563)) . T))
-(|has| |#2| (-844))
(((|#1|) . T))
-((((-563)) . T))
-((((-858)) . T))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-349)))
-(|has| |#1| (-147))
-((((-858)) . T))
-(((|#3|) . T))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T))
-((((-1242 |#2| |#3| |#4|)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T))
-((((-858)) . T))
-((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-609 $)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) -4034 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-767)) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-309 |#1|)))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379))))
+((((-128)) . T))
+((((-128)) . T))
+((((-128)) . T) (((-859)) . T))
+((((-1174)) . T))
+((((-1208)) . T) (((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+(((|#1|) -3943 (|has| |#2| (-367 |#1|)) (|has| |#2| (-418 |#1|))))
+(((|#1|) |has| |#2| (-418 |#1|)))
(((|#1|) . T))
-(|has| |#1| (-555))
(((|#1|) . T))
-((((-858)) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((|#1|) |has| |#1| (-172)))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1093)))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((|#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-363))))
-((((-1242 |#2| |#3| |#4|)) . T))
-((((-112)) . T))
-(|has| |#1| (-816))
-(|has| |#1| (-816))
-(((|#1| (-563) (-1075)) . T))
-((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|)))
+(((|#2|) . T) (((-859)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-1151) |#1|) . T))
+((((-1151) |#1|) . T))
+((((-1151) |#1|) . T))
+((((-1151) |#1|) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#1=(-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) #1#) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-1151) |#1|) . T))
+((((-859)) . T))
+((((-388) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-535)) |has| |#1| (-611 (-535))) (((-886 (-378))) |has| |#1| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#1| (-611 (-886 (-546)))))
+(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
(|has| |#1| (-844))
(|has| |#1| (-844))
-(((|#1| (-563) (-1075)) . T))
-(-4034 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#1| (-407 (-563)) (-1075)) . T))
-(((|#1| (-767) (-1075)) . T))
-(|has| |#1| (-846))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-147))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(((|#2|) . T))
+((((-859)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T) (($) . T))
+(((|#2|) . T) (((-546)) . T))
(((|#2|) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(|has| |#1| (-1093))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-1093))
-((((-563)) -4034 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))))
-(((|#1|) . T))
-(|has| |#1| (-1093))
-((((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((|#2|) |has| |#1| (-363)))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
-((((-684 (-339 (-1706) (-1706 (QUOTE X) (QUOTE HESS)) (-694)))) . T))
-(((|#2|) |has| |#2| (-172)))
-(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-((((-858)) . T))
-(|has| |#3| (-844))
-((((-858)) . T))
-((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
-(((|#1|) . T))
-((((-563)) . T))
-((((-563)) . T))
-(((|#1|) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
-(((|#2|) |has| |#2| (-363)))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-363)))
-(|has| |#1| (-846))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) |has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-905)))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-233))
+(((|#2|) . T) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
+(((|#1|) . T))
+((((-407 |#2|)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+(|has| |#2| (-233))
+(((|#2|) . T) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#1|) . T) (($) . T) (((-546)) . T))
+((($) . T))
+((((-859)) . T))
+((((-1169)) |has| |#2| (-896 (-1169))))
+(((|#2|) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+((((-1151) (-51)) . T))
+((((-859)) . T))
+((((-1151) (-51)) . T))
+((((-1151) (-51)) . T))
+((((-1151) (-51)) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4275 (-1151)) (|:| -2233 #1#))) . T))
+(((#1=(-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) #1#) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) . T))
+((((-1151) (-51)) . T))
+(((|#1|) -3943 (|has| |#2| (-367 |#1|)) (|has| |#2| (-418 |#1|))))
+(((|#1|) |has| |#2| (-418 |#1|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-859)) . T))
(((|#1|) . T))
-(((|#1| (-563)) . T))
-(|has| |#1| (-844))
-(((|#1| (-1167 |#1| |#2| |#3|)) . T))
-(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-817))
(((|#1|) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#1| (-1160 |#1| |#2| |#3|)) . T))
-(((|#1| (-767)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-846))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1174)) . T))
+(((|#1|) . T) (((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+(((|#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+(|has| |#1| (-787))
+(|has| |#1| (-787))
+(|has| |#1| (-787))
+(|has| |#1| (-787))
+(|has| |#1| (-787))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-859)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((((-563)) . T) ((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#1| (-1034 (-1169))))
-(((|#1| |#2|) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -4034 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T))
-((((-144)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-563)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| (-407 |#2|) (-233))
-((((-640 |#1|)) . T))
-(|has| |#1| (-905))
-(((|#2|) |has| |#2| (-1045)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(|has| |#1| (-363))
(((|#1|) |has| |#1| (-172)))
+((((-859)) . T))
+(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-866 |#1|)) . T))
-((((-858)) . T))
+(((|#1|) . T) (($) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#1|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1093)))
-(|has| |#2| (-846))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T))
-((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-((($) . T))
-(|has| |#1| (-846))
-((((-858)) . T))
-(((|#1| (-531 |#2|) |#2|) . T))
-(((|#1| (-563) (-1075)) . T))
-((((-906 |#1|)) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-172)))
+((((-859)) . T))
(((|#1|) . T))
-(((|#1| (-407 (-563)) (-1075)) . T))
-(((|#1| (-767) (-1075)) . T))
-(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-563)) -4034 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) . T))
-(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#1|) . T) (((-546)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
(((|#1|) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-(|has| |#2| (-233))
-(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T))
-((((-858)) . T))
-((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
-(((|#1| |#3|) . T))
-((((-858)) . T))
-(((|#1|) |has| |#1| (-172)) (((-948 |#1|)) . T) (((-563)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-694)) . T))
-((((-694)) . T))
-(((|#2|) |has| |#2| (-172)))
-(|has| |#2| (-844))
-((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
-((((-112)) |has| |#1| (-1093)) (((-858)) -4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093))))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T) (($) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((|#1|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1|) . T))
+((((-667 |#1|)) . T))
+((((-667 |#1|)) . T))
+(((|#2| (-667 |#1|)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-859)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) . T))
-((((-858)) . T))
-((((-563) |#1|) . T))
-((((-858)) . T))
-((((-694)) . T) (((-407 (-563))) . T) (((-563)) . T))
-(((|#1| |#1|) |has| |#1| (-172)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-((((-379)) . T))
-((((-694)) . T))
-((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#))
-(((|#1|) |has| |#1| (-172)))
-((((-407 (-948 |#1|))) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-6 (-4410 "*"))))
(((|#2| |#2|) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-846))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-(|has| |#1| (-363))
-(|has| |#1| (-846))
-(((|#3|) |has| |#3| (-1045)))
+((((-684 |#2|)) . T) (((-859)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
((((-1169)) |has| |#2| (-896 (-1169))))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-473))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-363))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105)))
-(|has| |#1| (-38 (-407 (-563))))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-(|has| |#1| (-349))
-((((-144)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((($) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#2|) . T) (((-858)) . T))
-(((|#2|) . T) (((-858)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-846))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
+(|has| |#2| (-233))
(((|#2|) . T))
-(((|#3|) . T))
-((((-116 |#1|)) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-846))
-(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-((((-116 |#1|)) . T))
-(((|#2|) |has| |#2| (-172)))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(((|#2|) . T))
+((((-546)) . T) ((|#2|) . T) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#2|) . T) (((-546)) |has| |#2| (-1034 (-546))) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) . T))
+(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
(((|#1|) . T))
-((((-563)) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#1| (-1018))) (((-225)) . #0#))
-(((|#1|) |has| |#1| (-363)))
-((((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((($ $) . T) (((-609 $) $) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-((($) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T))
-((($) -4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555)))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-379)) . T) (((-563)) . T) (((-407 (-563))) . T))
-((((-640 (-776 |#1| (-860 |#2|)))) . T) (((-858)) . T))
-((((-536)) |has| (-776 |#1| (-860 |#2|)) (-611 (-536))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-379)) . T))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-((((-858)) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-905)))
(((|#1|) . T))
-(|has| |#1| (-846))
-(|has| |#1| (-846))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-((((-767)) . T))
-(|has| |#1| (-1093))
-((((-858)) . T))
-((((-1169)) . T) (((-858)) . T))
-((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-((((-563)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))) (($) . T))
-((((-563)) . T))
-(|has| |#1| (-363))
-(-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
-(|has| |#1| (-363))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-(|has| |#1| (-233))
-(|has| |#1| (-363))
-(((|#3|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-563)) |has| |#2| (-636 (-563))) ((|#2|) . T))
-(((|#2|) . T))
-(|has| |#1| (-1093))
-(((|#1| |#2|) . T))
-((((-563)) . T) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-(((|#3|) |has| |#3| (-172)))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
-((((-858)) . T))
-((((-563)) . T))
-(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
-((((-948 |#1|)) . T) (((-858)) . T))
-(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-563)) #0#) |has| |#1| (-363)))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-((((-948 |#1|)) . T))
-((($) . T))
-((((-563) |#1|) . T))
-((((-1169)) |has| (-407 |#2|) (-896 (-1169))))
-(((|#1|) . T) (($) -4034 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-563))) |has| |#1| (-363)))
-((((-536)) |has| |#2| (-611 (-536))))
-((((-684 |#2|)) . T) (((-858)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-((((-866 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(-4034 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
-((((-858)) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#2|) |has| |#2| (-1045)))
+((((-859)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
-((((-407 |#2|)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))
-((((-563) |#1|) . T))
(((|#1|) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-1208)) . T) (((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+(((|#1| (-1256 |#1|) (-1256 |#1|)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1|) . T))
+(((|#1| (-1256 |#1|) (-1256 |#1|)) . T))
+((((-859)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-378)) . T))
+((((-694)) . T))
+(((#1=(-694) (-1163 #1#)) . T))
+(((#1=(-694) (-1163 #1#)) . T))
+(((#1=(-694) (-1163 #1#)) . T))
+((((-694)) . T))
+((((-168 (-225))) . T) (((-168 (-378))) . T) (((-1163 (-694))) . T) (((-886 (-378))) . T))
+((((-694)) . T))
+((((-407 (-546))) . T) (((-694)) . T) (($) . T))
+((((-407 (-546))) . T) (((-694)) . T) (($) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (((-694)) . T) (($) . T))
+(((#1=(-407 (-546)) #1#) . T) ((#2=(-694) #2#) . T) (($ $) . T))
+((((-407 (-546))) . T) (((-694)) . T) (($) . T) (((-546)) . T))
+((((-407 (-546))) . T) (((-694)) . T) (($) . T))
+((((-694)) . T) (((-407 (-546))) . T) (((-546)) . T))
+((((-378)) . T) (((-546)) . T) (((-407 (-546))) . T))
+((((-378)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-225)) . T) (((-378)) . T) (((-886 (-378))) . T))
+((((-859)) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-378)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-546)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((($) . T))
+((($) . T))
+((((-859)) . T))
((($) . T))
-((((-563)) . T) (($) . T) (((-407 (-563))) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 (-563))) . T) (($) . T))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-1212)))
+((($ $) . T))
+((($) . T) (((-546)) . T))
((($) . T))
-((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-(((|#1| (-767)) . T))
-(|has| |#1| (-846))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-563)) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#1| (-844))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-349))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T))
-(((|#2|) . T) (((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))
-(((|#1| |#2|) . T))
-((((-144)) . T))
-((((-776 |#1| (-860 |#2|))) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(|has| |#1| (-1193))
-((((-858)) . T))
+((((-546)) . T))
(((|#1|) . T))
-(-4034 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093)))
-((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)))
-(((|#2|) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((((-906 |#1|)) . T))
-((($) . T))
-((((-407 (-948 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-536)) |has| |#4| (-611 (-536))))
-((((-858)) . T) (((-640 |#4|)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-844))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) |has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))))
-(|has| |#1| (-1093))
+(((|#1|) . T) (((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (((-546)) . T) (($) . T))
+(|has| |#1| (-368))
+(((|#1|) . T))
+((((-859)) . T))
+((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#1| (-363))
+(((|#1| (-767) (-1075)) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
(|has| |#1| (-846))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-667 |#1|)) . T))
-((($) . T) (((-407 (-563))) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-(|has| |#1| (-145))
+(((|#1| (-767)) . T))
(|has| |#1| (-147))
-(-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
(|has| |#1| (-145))
-(|has| |#1| (-147))
-(|has| |#1| (-147))
+(((|#2|) . T) (((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1075)) . T) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+((((-1075)) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| (-767)) . T))
+(((#1=(-1075) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1144))
+(((|#1|) . T))
+((((-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) . T))
+((((-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) . T))
+((((-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) . T) (((-859)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(|has| |#1| (-844))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-1093))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-563)) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T))
+(|has| |#1| (-147))
+(((|#2| |#2|) . T))
+((((-113)) . T) ((|#1|) . T))
+((((-113)) . T) ((|#1|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-859)) . T))
+((((-546)) . T))
+((($) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-535)) |has| |#2| (-611 (-535))) (((-886 (-378))) |has| |#2| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#2| (-611 (-886 (-546)))))
+((($) . T))
+(((|#2| (-531 (-860 |#1|))) . T))
+(((|#2|) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-1093))
-(((|#2|) |has| |#2| (-172)))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-363)))
-((((-407 |#2|)) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(((|#1|) -4034 (|has| |#1| (-172)) (|has| |#1| (-363))))
-((((-316 |#1|)) . T))
-(((|#2|) |has| |#2| (-363)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) . T) (($) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#2| (-38 (-407 (-546)))) ((|#2| |#2|) . T) (($ $) -3943 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-546))) |has| |#2| (-38 (-407 (-546)))) ((|#2|) |has| |#2| (-172)) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((|#2| (-531 (-860 |#1|))) . T))
(((|#2|) . T))
-((((-407 (-563))) . T) (((-694)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((#0=(-776 |#1| (-860 |#2|)) #0#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
-((((-563)) . T) (($) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(-3943 (|has| |#2| (-452)) (|has| |#2| (-906)))
+((($ $) . T) ((#1=(-860 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-846))
((((-860 |#1|)) . T))
-(((|#2|) |has| |#2| (-172)))
+(|has| |#2| (-906))
+(|has| |#2| (-906))
+((((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))) (((-546)) |has| |#2| (-1034 (-546))) ((|#2|) . T) (((-860 |#1|)) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))) ((|#2|) . T) (($) -3943 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-860 |#1|)) . T))
+(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T))
+(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) |has| |#1| (-172)))
(((|#1|) |has| |#1| (-172)))
-(((|#2|) . T))
-((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
-((((-1169)) |has| |#1| (-896 (-1169))) (((-1081 (-1169))) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#4|) |has| |#4| (-1045)) (((-563)) -12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))))
-(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((($ $) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093)))
-(|has| |#1| (-555))
-(((|#2|) . T))
-((((-563)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
+(((|#1|) . T) ((|#2|) . T))
+(((|#1|) . T) ((|#2|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-859)) . T))
(((|#1|) . T))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
-(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-580 |#1|)) . T))
-((($) . T))
(((|#1|) . T))
+((((-859)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
-((($) . T))
(((|#1|) . T))
-((((-858)) . T))
-(((|#2|) |has| |#2| (-6 (-4410 "*"))))
+((((-535)) |has| |#1| (-611 (-535))))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) . T))
(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1| (-531 |#2|) |#2|) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#2| (-882 (-546)))) (((-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#2| (-882 (-378)))))
+(((|#2|) . T))
+(|has| |#1| (-846))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-((((-1242 |#2| |#3| |#4|)) . T) (((-563)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T))
-((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-563)) -4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))) ((|#1|) . T) (((-609 $)) . T) (($) |has| |#1| (-555)) (((-407 (-563))) -4034 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T))
-((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-407 (-563))) . T))
-((((-1118 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-1165 |#1|)) . T) (((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-1118 |#1| (-1169))) . T) (((-1081 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T))
-(|has| |#1| (-1093))
-((($) . T))
-(|has| |#1| (-1093))
-((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))))
-(((|#1| |#2|) . T))
-((((-1169) |#1|) . T))
-(((|#4|) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-1169) (-52)) . T))
-((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T))
-((((-858)) . T))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093)))
-(((#0=(-1243 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-563)) #0#) |has| |#1| (-555)) (($ $) |has| |#1| (-555)))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555)) (($) |has| |#1| (-555)))
-(|has| |#1| (-363))
-(|has| |#1| (-145))
-(|has| |#1| (-147))
+(((|#1| (-531 |#2|)) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-407 (-563))) . T) (($) . T))
-(((|#3|) |has| |#3| (-363)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-((((-1169)) . T))
-((($) . T) (((-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (((-563)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-(((|#2| |#3|) . T))
-(-4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((((-1118 |#1| |#2|)) . T) (((-942 |#1|)) |has| |#2| (-611 (-1169))) (((-859)) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (($) . T))
+((((-1118 |#1| |#2|)) . T) ((|#2|) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-546)) . T))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+((((-1118 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
(((|#1| (-531 |#2|)) . T))
-(((|#1| (-767)) . T))
-(((|#1| (-531 (-1081 (-1169)))) . T))
-(((|#1|) |has| |#1| (-172)))
-(((|#1|) . T))
-(|has| |#2| (-905))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-((((-858)) . T))
-((($ $) . T) ((#0=(-1242 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) |has| #0# (-38 (-407 (-563)))))
-((((-906 |#1|)) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-((($) . T) (((-407 (-563))) . T))
-((((-858)) . T))
-((($) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-(-4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555)))
+((((-942 |#1|)) |has| |#2| (-611 (-1169))) (((-1151)) -12 (|has| |#1| (-1034 (-546))) (|has| |#2| (-611 (-1169)))) (((-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546))))) (((-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378))))) (((-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#2| (-611 (-535)))))
+(((|#1| (-531 |#2|) |#2|) . T))
+(((|#1|) . T))
+((((-1163 |#1|)) . T) (((-859)) . T))
+((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#1| (-363))
-(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-4034 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))
-((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-112)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
-(|has| |#2| (-363))
+(((|#1| (-767) (-1075)) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
(|has| |#1| (-846))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-563)) . T))
-((((-858)) . T))
-(|has| |#1| (-1093))
-(((|#4|) . T))
-(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-816))
-(((|#4|) . T))
-((($) . T))
-((($ $) . T))
+(((|#1| (-767)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((((-1163 |#1|)) . T) (((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1075)) . T) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+((((-1163 |#1|)) . T) (((-1075)) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| (-767)) . T))
+(((#1=(-1075) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-((((-858)) . T))
-(((|#1| (-531 (-1169))) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-858)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#2|) -4034 (|has| |#2| (-6 (-4410 "*"))) (|has| |#2| (-172))))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(|has| |#2| (-846))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-(((|#2|) |has| |#2| (-172)))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) . T))
-(((|#1|) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-290)) (|has| |#1| (-363)))
-((((-144)) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-844))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
+(|has| |#1| (-1144))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-187)) . T) (((-858)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))))
-((((-1169) (-52)) . T))
-(((|#2|) . T))
+((((-859)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+((((-535)) |has| |#1| (-611 (-535))))
+(|has| |#1| (-368))
(((|#1|) . T))
-((((-640 (-144))) . T) (((-1151)) . T))
-((((-858)) . T))
-((((-1151)) . T))
((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
+(((|#1|) |has| |#1| (-309 |#1|)))
+(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
+((((-992 |#1|)) . T) ((|#1|) . T))
+((((-992 |#1|)) . T) (((-546)) . T) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| (-992 |#1|) (-1034 (-407 (-546))))))
+((((-992 |#1|)) . T) ((|#1|) . T) (((-546)) -3943 (|has| |#1| (-1034 (-546))) (|has| (-992 |#1|) (-1034 (-546)))) (((-407 (-546))) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| (-992 |#1|) (-1034 (-407 (-546))))))
(|has| |#1| (-846))
-((((-858)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) . T))
-(((|#2|) |has| |#2| (-363)))
-((((-858)) . T))
-((((-536)) |has| |#4| (-611 (-536))))
-((((-858)) . T) (((-640 |#4|)) . T))
-(((|#2|) . T))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T))
-(-4034 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-1169) (-52)) . T))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(|has| |#1| (-905))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(|has| |#1| (-905))
-(((|#1|) . T) (((-563)) . T) (((-407 (-563))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-858)) . T))
-((((-563)) . T))
-(((#0=(-407 (-563)) #0#) . T) (($ $) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#1| (-407 (-563)) (-1075)) . T))
-(|has| |#1| (-1093))
-(|has| |#1| (-555))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(|has| |#1| (-816))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T))
-((((-407 |#2|)) . T))
-(|has| |#1| (-844))
-((((-1194 |#1|)) . T) (((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-563) #1#) . T) (($ $) . T))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))))
-(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-(((|#2|) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (((-694)) . T) (($) . T) (((-563)) . T))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2387 (-1169)) (|:| -2556 #0#))) . T))
-(|has| |#1| (-349))
-((((-563)) . T))
-((((-858)) . T))
-(((|#1|) . T))
-(((#0=(-1243 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#)))
-(|has| |#1| (-363))
-(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(((#0=(-407 (-563)) #0#) . T) ((#1=(-694) #1#) . T) (($ $) . T))
-((((-316 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363)))
-((((-858)) . T))
-(|has| |#1| (-1093))
-(((|#1|) . T))
-(((|#1|) -4034 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
-(((|#1|) -4034 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
-(((|#2|) . T))
-((((-407 (-563))) . T) (((-694)) . T) (($) . T))
-((((-578)) . T))
-(((|#3| |#3|) . T))
-(|has| |#2| (-233))
-((((-860 |#1|)) . T))
-((((-1169)) |has| |#1| (-896 (-1169))) ((|#3|) . T))
-((((-640 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-1018)))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
-((((-563)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((((-563)) . T))
-(((|#3|) . T))
-(|has| |#1| (-1093))
-(((|#2|) . T))
(((|#1|) . T))
-((((-563)) . T))
-(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (($) . T) (((-563)) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
+((((-859)) . T))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(-3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(((|#2|) |has| |#2| (-172)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-3943 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+((($) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-859)) -3943 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1256 |#2|)) . T))
+(|has| |#2| (-172))
+(((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
+(((|#2|) |has| |#2| (-1045)))
+((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
+(|has| |#2| (-368))
+(((|#2|) |has| |#2| (-1045)))
+(((|#2|) |has| |#2| (-1045)) (((-546)) -12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045))))
+(((|#2|) |has| |#2| (-1094)))
+((((-546)) -3943 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+(((|#2|) |has| |#2| (-1094)) (((-546)) -12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (((-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))))
+((((-546) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) . T))
+((((-546) |#2|) . T))
+((((-546) |#2|) . T))
+(|has| |#2| (-789))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-3943 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(|has| |#2| (-844))
+(|has| |#2| (-844))
+(((|#2|) |has| |#2| (-363)))
(((|#1| |#2|) . T))
-((($) . T))
-((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((($) . T) (((-407 (-563))) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-1257 |#1|) (-1257 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T))
-((((-1118 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#2|) . T))
-(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-((($ $) . T))
-((((-667 |#1|)) . T))
-((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))))
-(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T))
-((((-144)) . T))
+((((-859)) . T))
+(|has| |#1| (-233))
((($) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-379)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
+(((|#1| (-531 (-814 (-1169))) (-814 (-1169))) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-1169)) |has| |#1| (-896 (-1169))) (((-814 (-1169))) . T))
+(|has| |#1| (-846))
+((($ $) . T) ((#1=(-1169) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-814 (-1169)) |#1|) . T) ((#3# $) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-(((|#4|) . T))
-(|has| |#2| (-1018))
-((($) . T))
-(|has| |#1| (-905))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((($) . T))
+(((|#1| (-531 (-814 (-1169)))) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+(((|#1| (-531 (-814 (-1169)))) . T))
+((((-1118 |#1| (-1169))) . T) (((-814 (-1169))) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-1169)) . T))
+((((-1118 |#1| (-1169))) . T) (((-546)) . T) (((-814 (-1169))) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-1169)) . T))
+(((|#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) . T))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+((((-407 (-546))) . #1=(|has| |#2| (-363))) (($) . #1#))
+((((-407 (-546))) . #1=(|has| |#2| (-363))) (($) . #1#))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
+(|has| |#2| (-363))
(((|#2|) . T))
+((((-407 (-546))) . #1=(|has| |#2| (-363))) (($) . #1#) ((|#2|) . T) (((-546)) . T))
+((((-407 (-546))) |has| |#2| (-363)) (($) . T))
+(((|#2|) . T) (((-859)) . T))
+((((-407 (-546))) |has| |#2| (-363)) (($) . T))
+(((#1=(-407 (-546)) #1#) |has| |#2| (-363)) (($ $) . T))
+((((-859)) . T))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((($) . T))
-(|has| |#1| (-363))
-((((-906 |#1|)) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(-4034 (|has| |#1| (-368)) (|has| |#1| (-846)))
(((|#1|) . T))
-((((-767)) . T))
-((((-858)) . T))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))))
-((((-407 |#2|) |#3|) . T))
-((($) . T) (((-407 (-563))) . T))
-((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T))
-((((-563)) . T) (($) . T))
-((((-563)) . T) (($) . T))
-((((-767) |#1|) . T))
-(((|#2| (-240 (-3610 |#1|) (-767))) . T))
-(((|#1| (-531 |#3|)) . T))
-((((-407 (-563))) . T))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-1151)) . T) (((-858)) . T))
-(((#0=(-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) #0#) |has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))))
-((((-1151)) . T))
-(|has| |#1| (-905))
-(|has| |#2| (-363))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
-((((-858)) . T))
(((|#1|) . T))
-((((-379)) . T) (((-563)) . T))
-(((#0=(-407 (-563)) #0#) . T) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
-(((|#1| |#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-555))
-((((-407 (-563))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-38 (-407 (-563))))
-(-12 (|has| |#1| (-545)) (|has| |#1| (-824)))
-((((-858)) . T))
-((((-1169)) -4034 (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169))))))
-(|has| |#1| (-363))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))))
-(|has| |#1| (-363))
-((((-407 (-563))) . T) (($) . T))
-((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T))
-((((-563) |#1|) . T))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-363)))
-(((|#2|) |has| |#1| (-363)))
-((((-563)) . T) (($) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(|has| |#1| (-233))
+(((|#2|) |has| |#2| (-172)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-859)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+((((-546)) . T) ((|#2|) |has| |#2| (-172)))
+(((|#2|) . T))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((($) |has| |#1| (-844)))
+(|has| |#1| (-844))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) -3943 (|has| |#1| (-844)) (|has| |#1| (-1034 (-546)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
(((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(((|#1| |#1|) . T))
+((((-113)) . T) ((|#1|) . T))
+((((-113)) . T) ((|#1|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-506)) . T))
+((((-859)) . T))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((($) |has| |#1| (-844)))
+(|has| |#1| (-844))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-3943 (|has| |#1| (-21)) (|has| |#1| (-844)))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) -3943 (|has| |#1| (-844)) (|has| |#1| (-1034 (-546)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-859)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) (((-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))))
-(((|#2|) . T))
-((((-1169) #0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
-((((-609 $) $) . T) (($ $) . T))
-((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1165 (-694))) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-(|has| |#1| (-555))
-(|has| |#1| (-555))
-(|has| (-407 |#2|) (-233))
-(((|#1| (-407 (-563))) . T))
-((($ $) . T))
-((((-1169)) |has| |#2| (-896 (-1169))))
-((($) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-(((|#2|) |has| |#1| (-363)))
-((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563)))))
-(|has| |#1| (-363))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-363))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(|has| |#1| (-363))
-(|has| |#1| (-555))
+((((-859)) . T))
+((($) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(((|#3|) . T))
-((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T))
+((((-546)) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
(((|#1|) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(((|#2|) |has| |#2| (-172)))
+(((|#2| |#2|) . T))
(((|#2|) . T))
+((((-859)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-172)))
(((|#2|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
-((((-1151) |#1|) . T))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(|has| |#1| (-147))
-((((-580 |#1|)) . T))
+((((-1253 |#1|)) . T) (((-546)) . T) ((|#2|) . T) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#2|) . T) (((-546)) |has| |#2| (-1034 (-546))) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#2|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-886 (-546))) . T) (((-886 (-378))) . T) (((-535)) . T) (((-1169)) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+((((-942 |#1|)) . T))
+(((|#1|) |has| |#1| (-172)) (((-942 |#1|)) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-942 |#1|)) . T) (((-859)) . T))
((($) . T))
-((((-407 |#2|)) . T))
-(|has| |#1| (-555))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-349)))
-(|has| |#1| (-147))
-((((-858)) . T))
+((((-859)) . T))
((($) . T))
-((((-407 (-563))) |has| |#2| (-1034 (-563))) (((-563)) |has| |#2| (-1034 (-563))) (((-1169)) |has| |#2| (-1034 (-1169))) ((|#2|) . T))
-(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T))
-((((-1133 |#1| |#2|)) . T))
-(((|#1| (-563)) . T))
-(((|#1| (-407 (-563))) . T))
-((((-563)) |has| |#2| (-882 (-563))) (((-379)) |has| |#2| (-882 (-379))))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-865 |#1|)) . T))
+((((-865 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-865 |#1|)) . T) (((-407 (-546))) . T))
+((((-865 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-865 |#1|)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-865 |#1|) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-865 |#1|)) . T))
+((((-1169) #1=(-865 |#1|)) |has| #1# (-514 (-1169) #1#)) ((#1# #1#) |has| #1# (-309 #1#)))
+(((#1=(-865 |#1|)) |has| #1# (-309 #1#)))
+(((#1=(-865 |#1|) $) |has| #1# (-286 #1# #1#)))
+((((-865 |#1|)) . T))
+((((-865 |#1|)) . T))
+((((-865 |#1|)) . T))
+((((-865 |#1|)) . T))
+((((-546)) . T) (((-865 |#1|)) . T) (($) . T) (((-407 (-546))) . T))
+((((-865 |#1|)) . T))
+((((-865 |#1|)) . T))
+((((-859)) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-147))
(((|#2|) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-112)) . T))
-(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
+((((-1169)) |has| |#2| (-896 (-1169))))
+(|has| |#2| (-233))
+(((|#2|) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) ((|#2|) . T) (((-407 (-546))) . T))
+(((|#2|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#2|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#2| |#2|) . T) ((#1=(-407 (-546)) #1#) . T) (($ $) . T))
(((|#2|) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-1169) (-52)) . T))
-((((-407 |#2|)) . T))
-((((-858)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1093))
-(|has| |#1| (-787))
-(|has| |#1| (-787))
-((((-858)) . T))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-114)) . T) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555)))
-((((-858)) . T))
-((((-858)) . T))
+((((-1169) |#2|) |has| |#2| (-514 (-1169) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|)))
+(((|#2|) |has| |#2| (-309 |#2|)))
+(((|#2| $) |has| |#2| (-286 |#2| |#2|)))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(((|#2|) . T))
+((((-546)) |has| |#2| (-882 (-546))) (((-378)) |has| |#2| (-882 (-378))))
+(|has| |#2| (-816))
+(|has| |#2| (-816))
+(|has| |#2| (-816))
+(-3943 (|has| |#2| (-816)) (|has| |#2| (-846)))
+(|has| |#2| (-816))
+(|has| |#2| (-816))
+(|has| |#2| (-816))
+(((|#2|) . T))
+(|has| |#2| (-906))
+(|has| |#2| (-1016))
+((((-535)) |has| |#2| (-611 (-535))) (((-886 (-546))) |has| |#2| (-611 (-886 (-546)))) (((-886 (-378))) |has| |#2| (-611 (-886 (-378)))) (((-378)) . #1=(|has| |#2| (-1016))) (((-225)) . #1#))
+((((-546)) . T) ((|#2|) . T) (($) . T) (((-407 (-546))) . T) (((-1169)) |has| |#2| (-1034 (-1169))))
+((((-407 (-546))) |has| |#2| . #1=((-1034 (-546)))) (((-546)) |has| |#2| . #1#) (((-1169)) |has| |#2| (-1034 (-1169))) ((|#2|) . T))
+(|has| |#2| (-1144))
(((|#2|) . T))
-((((-858)) . T))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T))
+(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))
+(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))
+((((-859)) -3943 (-12 (|has| |#1| (-610 (-859))) (|has| |#2| (-610 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1169)) . T) ((|#1|) . T))
+((((-1169)) . T) ((|#1|) . T))
+((((-859)) . T))
+((((-667 |#1|)) . T))
+((((-667 |#1|)) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1|) . T))
+((((-1194 |#1|)) . T) (((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-363))
-((((-858)) . T))
-(((|#2|) . T))
-((((-563)) . T))
-((((-858)) . T))
-((((-563)) . T))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-1151)) . T) (((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
-(|has| |#1| (-147))
-(|has| |#1| (-145))
-((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093)))
-(|has| |#1| (-1144))
-((((-563) |#1|) . T))
(((|#1|) . T))
-(((#0=(-116 |#1|) $) |has| #0# (-286 #0# #0#)))
-(((|#1|) |has| |#1| (-172)))
-((((-316 |#1|)) . T) (((-563)) . T))
+((((-859)) . T))
+(-3943 (|has| |#1| (-368)) (|has| |#1| (-846)))
(((|#1|) . T))
-((((-858)) . T))
-((((-114)) . T) ((|#1|) . T))
-((((-858)) . T))
-(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-309 |#1|)))
-((((-563) |#1|) . T))
-((((-1169) |#1|) . T))
+((((-859)) . T))
+((((-546)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-147))
+((($) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) . T))
+((($) . T) (((-407 (-546))) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-407 (-546))) . T) (($) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-407 (-546)) #1#) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (((-546)) . T) (($) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-637 |#1|)) . T))
(((|#1|) . T))
-((((-563)) . T) (((-407 (-563))) . T))
(((|#1|) . T))
-(|has| |#1| (-555))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-((((-379)) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-555))
-(|has| |#1| (-1093))
-((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-905))
-(((|#1| (-531 |#2|)) . T))
-(((|#1| (-767)) . T))
-(|has| |#1| (-233))
-(((|#1| (-531 (-1081 (-1169)))) . T))
-(|has| |#2| (-363))
-((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-563)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-((((-858)) . T))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
-((((-1113)) . T) (((-858)) . T))
-((((-536)) . T) (((-858)) . T))
+((((-535)) |has| |#1| (-611 (-535))) (((-886 (-378))) |has| |#1| (-611 (-886 (-378)))) (((-886 (-546))) |has| |#1| (-611 (-886 (-546)))))
+((($) . T))
+(((|#1| (-531 (-1169))) . T))
(((|#1|) . T))
-((($ $) . T) (((-609 $) $) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))) ((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(((|#1| (-531 (-1169))) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((($ $) . T) ((#1=(-1169) $) . T) ((#1# |#1|) . T))
+(|has| |#1| (-846))
+((((-1169)) . T))
+((((-378)) |has| |#1| (-882 (-378))) (((-546)) |has| |#1| (-882 (-546))))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T) (((-1169)) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) ((|#1|) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1169)) . T))
+(((|#1| (-531 (-1169)) (-1169)) . T))
+((((-1113)) . T) (((-859)) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((((-859)) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (($) . T))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-546)) . T))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-563)) . T))
-(((|#3|) . T))
-((((-858)) . T))
-(-4034 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-((((-1118 |#1| |#2|)) . T) ((|#2|) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T))
-((((-1165 |#1|)) . T) (((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))
-(-4034 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045)))
-((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-1081 (-1169))) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T))
-(((#0=(-580 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#1|) |has| |#1| (-172)))
-(((|#1| (-1257 |#1|) (-1257 |#1|)) . T))
-((((-580 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((($) . T) (((-407 (-563))) . T))
-((($) . T) (((-407 (-563))) . T))
-(((|#2|) |has| |#2| (-6 (-4410 "*"))))
+(|has| |#1| (-846))
(((|#1|) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
(((|#1|) . T))
-((((-858)) . T))
-((((-294 |#3|)) . T))
-(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
-((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-(((|#2|) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-(((|#2|) . T) ((|#6|) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
(((|#1|) . T))
-((((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) . T))
+(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
+(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
+(-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846))))
+(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
+(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+(-12 (|has| |#1| (-473)) (|has| |#2| (-473)))
+(-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+(-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+(-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+(-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
+(-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
+(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-637 (-546))) . T))
+((((-637 (-546))) . T) (((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+((((-535)) |has| |#1| (-611 (-535))))
(((|#1|) . T))
+((((-1169)) |has| |#1| (-896 (-1169))))
+(|has| |#1| (-233))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-290)) (|has| |#1| (-363)))
+((((-546)) . T) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546))))))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-363)))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-363)))
+(((|#1|) . T) (($) -3943 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-546))) |has| |#1| (-363)))
+(((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#1=(-407 (-546)) #1#) |has| |#1| (-363)))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-363)))
(((|#1|) . T))
+((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(((|#1|) |has| |#1| (-309 |#1|)))
+(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(|has| |#1| (-846))
(((|#1|) . T))
-(|has| |#1| (-1093))
(((|#1|) . T))
-((((-1169)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))
-(((#0=(-407 (-563)) #0#) . T))
-((((-407 (-563))) . T))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-407 (-563))) . T) (((-563)) . T) (($) . T))
-((((-536)) . T))
-((((-858)) . T))
-((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((((-1169)) |has| |#2| (-896 (-1169))) (((-1075)) . T))
-((((-1242 |#2| |#3| |#4|)) . T))
-((((-906 |#1|)) . T))
-((($) . T) (((-407 (-563))) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-((((-858)) . T))
-(|has| |#1| (-1212))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-((((-1169)) |has| |#1| (-896 (-1169))))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T))
-(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-((($) . T) (((-407 (-563))) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-555))))
-(|has| |#1| (-555))
-(((|#1|) |has| |#1| (-363)))
-((((-563)) . T))
-(|has| |#1| (-787))
-(|has| |#1| (-787))
-((((-1169) #0=(-116 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
-(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
-((((-1075)) . T) ((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
(((|#1|) . T))
+((((-407 |#2|) |#3|) . T))
+((((-407 (-546))) |has| #1=(-407 |#2|) (-1034 (-407 (-546)))) (((-546)) |has| #1# (-1034 (-546))) ((#1#) . T))
+((((-407 |#2|)) . T))
+((((-546)) |has| #1=(-407 |#2|) (-636 (-546))) ((#1#) . T))
+((((-407 |#2|)) . T))
+((((-407 |#2|) |#3|) . T))
+(|has| (-407 |#2|) (-147))
+((((-407 |#2|) |#3|) . T))
+(|has| (-407 |#2|) (-145))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+(|has| (-407 |#2|) (-233))
+((((-1169)) |has| (-407 |#2|) (-896 (-1169))))
+((((-407 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-407 |#2|) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-859)) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T))
+((((-407 |#2|)) . T) (((-407 (-546))) . T) (($) . T) (((-546)) . T))
+(((|#1| |#2| |#3|) . T))
+((((-407 (-546))) . T) (((-859)) . T))
+((((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((($) . T) (((-546)) . T) (((-407 (-546))) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T) (((-407 (-546))) . T) (($) . T))
+(((#1=(-546) #1#) . T) ((#2=(-407 (-546)) #2#) . T) (($ $) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-407 (-546))) . T) (((-546)) . T))
+((((-546)) . T) (($) . T) (((-407 (-546))) . T))
+((((-546)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+(((|#1|) . T) (($) . T) (((-407 (-546))) . T) (((-546)) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (((-546)) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) . T) ((#2=(-546) #2#) . T) (($ $) . T))
+(((|#1|) . T) (((-546)) . T) (((-407 (-546))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (((-546)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T) (((-546)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-546))) . T))
+(((|#1|) . T) (((-546)) -3943 (|has| |#1| (-1034 (-546))) (|has| (-407 (-546)) (-1034 (-546)))) (((-407 (-546))) . T))
+(|has| |#1| (-1094))
+((((-859)) |has| |#1| (-1094)))
+(|has| |#1| (-1094))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#4|) . T))
+((((-637 |#4|)) . T) (((-859)) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) . T))
+((((-535)) |has| |#4| (-611 (-535))))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-((((-563) (-767)) . T) ((|#3| (-767)) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (((-546)) . T))
+((((-1169) (-51)) . T))
+((((-859)) . T))
+((((-1169) (-51)) . T))
+((((-1169) (-51)) . T))
+((((-1169) (-51)) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4275 (-1169)) (|:| -2233 #1#))) . T))
+(((#1=(-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) #1#) |has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) |has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-1169) (-51)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+((((-776 |#1| (-860 |#2|))) . T))
+((((-637 (-776 |#1| (-860 |#2|)))) . T) (((-859)) . T))
+((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
+(((#1=(-776 |#1| (-860 |#2|)) #1#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
+((((-776 |#1| (-860 |#2|))) . T))
+((((-535)) |has| (-776 |#1| (-860 |#2|)) (-611 (-535))))
+(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+((((-535)) |has| |#3| (-611 (-535))))
+(((|#3|) |has| |#3| (-363)))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-684 |#3|)) . T) (((-859)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-858)) . T))
-(|has| |#2| (-816))
-(|has| |#2| (-816))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379))))
-(((|#1|) . T))
-((((-866 |#1|)) . T))
-((((-866 |#1|)) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-905)))
-((((-407 (-563))) . T) (((-694)) . T) (($) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-(|has| |#1| (-363))
+((((-1169)) . T))
+((($) . T))
+((((-859)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-546)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-546)) . T))
+((((-1169) (-51)) . T))
+((((-859)) . T))
+((((-1169) (-51)) . T))
+((((-1169) (-51)) . T))
+((((-1169) (-51)) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4275 (-1169)) (|:| -2233 #1#))) . T))
+(((#1=(-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) #1#) |has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) |has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) . T))
+((((-1169) (-51)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-293 |#3|)) . T))
+((((-293 |#3|)) . T))
+(((|#3| |#3|) . T))
+((((-859)) . T))
+((((-859)) . T))
+(((|#3| |#3|) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#2|) . T))
+(((|#1|) |has| |#1| (-363)))
+((((-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))))
+(-3943 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-350)))
+(-3943 (|has| |#1| (-368)) (|has| |#1| (-350)))
+(|has| |#1| (-350))
+(|has| |#1| (-350))
+(-3943 (|has| |#1| (-145)) (|has| |#1| (-350)))
+(|has| |#1| (-350))
+(((|#1| |#2|) . T))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($ $) . T) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1| |#1|) . T))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($) . T) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) ((|#1|) . T))
+((((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-350))) (((-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-350)) (|has| |#1| (-1034 (-407 (-546))))) ((|#1|) . T))
+(|has| |#1| (-147))
+(((|#1| |#2|) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-860 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2| (-767)) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| |#2|) . T))
((((-1169)) . T))
-((((-866 |#1|)) . T))
-(-4034 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T))
-(((|#1|) . T))
-(-4034 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846))))
-((((-866 |#1|)) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1|) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((($ $) . T) (((-609 $) $) . T))
+((((-859)) . T))
+(|has| |#1| (-233))
((($) . T))
-((((-858)) . T))
-((((-563)) . T))
-(((|#2|) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363)))
-((((-858)) . T))
+(((|#1| (-531 (-1081 (-1169))) (-1081 (-1169))) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-1169)) |has| |#1| (-896 (-1169))) (((-1081 (-1169))) . T))
+(|has| |#1| (-846))
+((($ $) . T) ((#1=(-1169) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1081 (-1169)) |#1|) . T) ((#3# $) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-((($) . T) ((|#2|) . T) (((-407 (-563))) . T))
-(|has| |#1| (-1093))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
+(((|#1| (-531 (-1081 (-1169)))) . T))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
(((|#1|) . T))
+(((|#1| (-531 (-1081 (-1169)))) . T))
+((((-1118 |#1| (-1169))) . T) (((-1081 (-1169))) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-1169)) . T))
+((((-1118 |#1| (-1169))) . T) (((-546)) . T) (((-1081 (-1169))) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-1169)) . T))
+(((|#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) . T))
+((((-859)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-(|has| |#2| (-905))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))))
-((((-858)) . T))
-((((-858)) . T))
-(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))))
-((((-1118 |#1| |#2|)) . T) (((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-858)) . T))
-((((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169)))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))))
-((((-1165 |#1|)) . T) (((-858)) . T))
-((((-858)) . T))
-((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) (((-1169)) . T))
-((((-858)) . T))
-((((-563)) . T))
(((|#1|) . T))
-((($) . T))
-((((-379)) |has| |#1| (-882 (-379))) (((-563)) |has| |#1| (-882 (-563))))
-((((-563)) . T))
+(((|#1| (-637 |#1|)) |has| |#1| (-844)))
+(|has| |#1| (-1094))
+((((-859)) |has| |#1| (-1094)))
+(|has| |#1| (-1094))
(((|#1|) . T))
-((((-858)) . T))
(((|#1|) . T))
-((((-858)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
+(|has| |#1| (-1094))
+((((-859)) |has| |#1| (-1094)))
+(|has| |#1| (-1094))
((((-1174)) . T))
-((((-640 |#1|)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T))
-((((-563)) . T) (((-407 (-563))) . T))
-(((|#1|) |has| |#1| (-309 |#1|)))
-((((-858)) . T))
-((((-379)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-407 |#2|) |#3|) . T))
+((((-859)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
-(|has| |#1| (-1093))
-(((|#2| (-482 (-3610 |#1|) (-767))) . T))
-((((-563) |#1|) . T))
-((((-1151)) . T) (((-858)) . T))
-(((|#2| |#2|) . T))
-(((|#1| (-531 (-1169))) . T))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-563)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563))))
-(|has| |#1| (-555))
-((($) . T) (((-407 (-563))) . T))
-((($) . T))
-((($) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-(((|#1|) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-858)) . T))
-((((-144)) . T))
-(((|#1|) . T) (((-407 (-563))) . T))
(((|#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
(((|#1|) . T))
-((((-858)) . T))
+(|has| |#1| (-368))
(((|#1|) . T))
-(|has| |#1| (-1144))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
(((|#1|) . T))
-((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-858)) . T))
-((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) ((|#2|) . T))
-((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))))
-((((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-((((-563) |#1|) . T))
-(((|#1| |#1|) . T))
-((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-859)) . T))
+((((-637 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-546)) . T) (((-225)) . T) (((-859)) . T))
+((((-859)) . T))
+((((-1151) (-1169) (-546) (-225) (-859)) . T))
+((((-637 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((-859)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+((((-859)) . T))
+(-3943 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094)))
+(-3943 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094)))
+(((|#3|) |has| |#3| (-172)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+(-3943 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+((($) -3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
+(((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363))))
+((((-859)) -3943 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-610 (-859))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094))) (((-1256 |#3|)) . T))
+(|has| |#3| (-172))
+(((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
+(((|#3| |#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
+(((|#3|) |has| |#3| (-1045)))
+((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
+(|has| |#3| (-368))
+(((|#3|) |has| |#3| (-1045)))
+(((|#3|) |has| |#3| (-1045)) (((-546)) -12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))))
+(((|#3|) |has| |#3| (-1094)))
+((((-546)) -3943 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -3943 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-546))) -12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))
+(((|#3|) |has| |#3| (-1094)) (((-546)) -12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (((-407 (-546))) -12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))
+((((-546) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3|) . T))
+((((-546) |#3|) . T))
+((((-546) |#3|) . T))
+(|has| |#3| (-789))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-3943 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(|has| |#3| (-844))
+(|has| |#3| (-844))
+(((|#3|) |has| |#3| (-363)))
+(((|#1| |#3|) . T))
+((((-859)) . T))
+((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
((($) . T))
-((((-694)) . T))
-((((-776 |#1| (-860 |#2|))) . T))
+((((-859)) . T))
((($) . T))
-((((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-1093))
-(|has| |#1| (-1093))
-(|has| |#2| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-38 (-407 (-563))))
-((((-563)) . T))
-((((-1169)) -12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))
-((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-546)) . T) (($) . T))
+((((-546)) . T))
+((((-546)) . T))
+((((-535)) . T) (((-546)) . T) (((-886 (-546))) . T) (((-378)) . T) (((-225)) . T))
+((((-546)) . T))
+((((-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#2| (-611 (-535)))) (((-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378))))) (((-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546))))))
+((($) . T))
+(((|#1| (-531 |#2|)) . T))
(((|#1|) . T))
-(|has| |#1| (-233))
-(((|#1| (-531 |#3|)) . T))
-(((|#2| (-240 (-3610 |#1|) (-767))) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(((|#1|) . T) (($) . T))
+((((-859)) . T))
+((($) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))) ((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
(((|#1| (-531 |#2|)) . T))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1| (-767)) . T))
-(|has| |#1| (-555))
-(-4034 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-858)) . T))
-((((-563)) . T) (((-407 (-563))) . T) (($) . T))
-(-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-(-4034 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1|) |has| |#1| (-172)))
-(((|#4|) |has| |#4| (-1045)))
-(((|#3|) |has| |#3| (-1045)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-((((-563)) . T) (((-407 (-563))) -4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-((((-1118 |#1| |#2|)) . T) (((-563)) . T) ((|#3|) . T) (($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#2|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((((-1174)) . T))
-((((-667 |#1|)) . T))
-((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-((((-858)) . T))
-((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T))
-((($) . T) (((-407 (-563))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1093)) (((-563)) -12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))
-(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))
-(|has| |#2| (-363))
-(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))))
(((|#1|) . T))
-(|has| |#2| (-363))
-(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(((|#2| |#2|) . T))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) . T) (($) . T) (((-407 (-563))) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-636 (-546))))
+(-3943 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+(|has| |#1| (-846))
(((|#2|) . T))
-((((-858)) |has| |#1| (-1093)))
+((((-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#2| (-882 (-378)))) (((-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#2| (-882 (-546)))))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) (((-546)) |has| |#1| (-1034 (-546))) ((|#1|) . T) ((|#2|) . T))
+((((-546)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) ((|#1|) . T) (($) -3943 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#2|) . T))
+(((|#1| (-531 |#2|) |#2|) . T))
((($) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
+((($ $) . T) ((|#2| $) . T))
+(((|#2|) . T))
+((((-859)) . T))
+(((|#1| (-531 |#2|) |#2|) . T))
+((($) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))) ((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+((((-546)) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+(((|#1| (-531 |#2|)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| |#2|) . T))
+((((-859)) . T))
(((|#1|) . T))
-(|has| |#2| (-816))
-(|has| |#2| (-816))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))
-(|has| |#1| (-363))
-(((|#1|) |has| |#2| (-417 |#1|)))
-(((|#1|) |has| |#2| (-417 |#1|)))
-((((-1151)) . T))
-((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-640 |#1|)) . T) (((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
((((-1174)) . T))
((((-1174)) . T))
-((((-1174)) . T))
-((((-640 |#1|)) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1207)) . T) (((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) |has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-((((-563) |#1|) . T))
-((((-563) |#1|) . T))
-((((-563) |#1|) . T))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-563) |#1|) . T))
-(((|#1|) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-((((-1169)) |has| |#1| (-896 (-1169))) (((-814 (-1169))) . T))
-(-4034 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-815 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-858)) . T))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
-((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T))
-(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555)))
-(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563))))
-(|has| |#1| (-363))
-(-4034 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233))))
-(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))
-(|has| |#1| (-363))
-(((|#1|) . T))
-(((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T))
-((((-563) |#1|) . T))
-((((-316 |#1|)) . T))
-(((#0=(-694) (-1165 #0#)) . T))
-((((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-844))
-(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4034 (|has| |#1| (-363)) (|has| |#1| (-555))))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1118 |#1| (-1169))) . T) (((-814 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T))
-((($) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1081 (-1169)) |#1|) . T) ((#1# $) . T))
+((((-1174)) . T) (((-859)) . T))
+((((-859)) . T))
+((((-1133 |#1| |#2|)) . T))
+(((#1=(-1133 |#1| |#2|) #1#) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))))
+((((-1133 |#1| |#2|)) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))))
+((((-859)) . T))
+((((-1133 |#1| |#2|)) . T))
+((((-535)) |has| |#2| (-611 (-535))))
+(((|#2|) |has| |#2| (-6 (-4410 "*"))))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-684 |#2|)) . T) (((-859)) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))))
-(|has| |#2| (-905))
-((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))))
-((((-563) |#1|) . T))
-((((-1174)) . T))
-(((#0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#)))
-((($) . T))
-(((|#1|) . T))
-((($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
+(((|#2|) -3943 (|has| |#2| (-6 (-4410 "*"))) (|has| |#2| (-172))))
+(((|#2|) . T))
+((((-1169)) |has| |#2| (-896 (-1169))))
(|has| |#2| (-233))
-(|has| $ (-147))
-((((-858)) . T))
-((($) . T) (((-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-844))
-((((-129)) . T))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))
-((((-407 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-129)) . T))
-((((-858)) . T))
-(((|#2| (-667 |#1|)) . T))
-(-12 (|has| |#1| (-307)) (|has| |#1| (-905)))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
+(((|#2|) . T))
+(((|#2|) . T) (((-546)) |has| |#2| (-636 (-546))))
+(((|#2|) . T))
+((((-546)) . T) ((|#2|) . T) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#2|) . T) (((-546)) |has| |#2| (-1034 (-546))) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) . T))
+(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-535)) |has| |#4| (-611 (-535))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
(((|#4|) . T))
-(|has| |#1| (-555))
-((($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
-((((-1169)) -4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))
-(((|#1|) . T) (($) -4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169)))))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))
-((((-563) |#1|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
+((((-859)) . T) (((-637 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1|) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
-(((|#1| (-531 (-814 (-1169)))) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((((-563)) . T) ((|#2|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#2| (-1034 (-1169))))
(((|#1|) . T))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-637 |#1|)) . T))
(((|#1|) . T))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((($) . T) (((-866 |#1|)) . T) (((-407 (-563))) . T))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(|has| |#1| (-555))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-407 |#2|)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T))
-((((-563)) . T))
-(((|#2|) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T))
-((((-858)) . T))
-((((-407 (-563))) . T) (($) . T))
-((((-563) |#1|) . T))
-((((-858)) . T))
-((($ $) . T) (((-1169) $) . T))
-((((-1249 |#1| |#2| |#3|)) . T))
-((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))))
-((((-858)) . T))
-((((-858)) . T))
-((((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-858)) . T) (((-1174)) . T))
-((((-858)) . T))
-((((-1174)) . T))
-((((-114)) . T) ((|#1|) . T) (((-563)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
-(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-((((-129)) . T))
-((((-858)) . T))
-((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))))
-(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T))
-(|has| |#1| (-363))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-1097)) . T))
-((((-858)) . T))
-((($) -4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T))
-((($) . T))
-((($) -4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-((((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T))
-((((-1169)) . T) (((-858)) . T))
-(|has| |#2| (-905))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#1|) . T))
-(|has| |#1| (-905))
+((((-535)) |has| |#1| (-611 (-535))))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-172)))
-((((-694)) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-1174)) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-1174)) . T))
-((((-1174)) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-407 (-563))) . T) (($) . T))
-(((|#1| (-563)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-((((-1174)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-859)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-546) (-144)) . T))
+((((-546) (-144)) . T))
+((((-546) (-144)) . T))
+((((-144)) . T))
+((((-144)) . T))
+((((-1151) |#1|) . T))
+((((-859)) . T))
+((((-1151) |#1|) . T))
+((((-1151) |#1|) . T))
+((((-1151) |#1|) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#1=(-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) #1#) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) |has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) . T))
+((((-1151) |#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1167 |#1| |#2| |#3|)) . T))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
(|has| |#1| (-363))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|)))))
+(((#1=(-1167 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|)))) (((-1169) #1#) -12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|)))))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
(|has| |#1| (-363))
-(-4034 (|has| |#1| (-172)) (|has| |#1| (-555)))
-(((|#1| (-563)) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#1| (-767)) . T))
-((((-407 (-563))) . T))
-(((|#1| (-531 |#2|) |#2|) . T))
-((((-563) |#1|) . T))
-((((-563) |#1|) . T))
-(|has| |#1| (-1093))
-((((-563) |#1|) . T))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (-12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))
+((((-1169)) -3943 (-12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169)))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))
+((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(-3943 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-147))))
+(-3943 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-145))))
+((((-859)) . T))
+(((|#1|) . T))
+((((-1167 |#1| |#2| |#3|) $) -12 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-546) (-1075)) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((#2=(-1167 |#1| |#2| |#3|) #2#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((((-1167 |#1| |#2| |#3|)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-546)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-546)) . T))
+(((|#1| (-546)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-1167 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+((((-859)) . T))
+((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(|has| |#1| (-363))
+(((|#1| (-767) (-1075)) . T))
+(|has| |#1| (-906))
+(|has| |#1| (-906))
+((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T))
+(|has| |#1| (-846))
+((((-546)) |has| |#1| (-636 (-546))) ((|#1|) . T))
(((|#1|) . T))
-((((-888 (-379))) . T) (((-888 (-563))) . T) (((-1169)) . T) (((-536)) . T))
+(((|#1| (-767)) . T))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1075)) . T) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) . T) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+((((-1075)) . T) ((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| (-767)) . T))
+(((#1=(-1075) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1144))
(((|#1|) . T))
-((((-858)) . T))
-(-4034 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-((((-563)) . T))
-((((-563)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(((|#1| |#2|) . T))
+((((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(-4034 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))))
-(-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
+(|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))
+((($ $) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))))
+(((|#1| (-407 (-546)) (-1075)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
+(((|#1| (-407 (-546))) . T))
+(((|#1| (-407 (-546))) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-859)) . T))
+(((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) . T))
(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-1253 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1| (-1160 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-767)) . T))
+(((|#1| (-767)) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1| (-767) (-1075)) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|)))))
+((($ $) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (($) . T))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (((-546)) . T))
+(|has| |#1| (-15 * (|#1| (-767) |#1|)))
+(((|#1|) . T))
+((((-859)) . T))
+((((-378)) . T) (((-546)) . T))
+((((-1151)) . T))
+((((-886 (-378))) . T) (((-886 (-546))) . T) (((-1169)) . T) (((-535)) . T))
+((((-859)) . T))
+(((|#1| (-967)) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((((-859)) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (($) . T))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))) (((-546)) . T))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-546)) |has| |#1| (-1034 (-546))) (((-407 (-546))) |has| |#1| (-1034 (-407 (-546)))))
+(((|#1| (-967)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-546)) . T))
+((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-546)) . T))
+((((-535)) . T) (((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
+((((-859)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-233))
-((((-858)) . T))
-(((|#1| (-767) (-1075)) . T))
-((((-563) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-563) |#1|) . T))
-((((-563) |#1|) . T))
-((((-116 |#1|)) . T))
-((((-407 (-563))) . T) (((-563)) . T))
-(((|#2|) |has| |#2| (-1045)))
-((((-407 (-563))) . T) (($) . T))
-(((|#2|) . T))
-((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)))
-((((-563)) . T))
-((((-563)) . T))
-((((-1151) (-1169) (-563) (-225) (-858)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-563)) . T) ((|#2|) |has| |#2| (-172)))
-((((-114)) . T) ((|#1|) . T) (((-563)) . T))
-(-4034 (|has| |#1| (-349)) (|has| |#1| (-368)))
(((|#1| |#2|) . T))
-((((-225)) . T))
-((((-407 (-563))) . T) (($) . T) (((-563)) . T))
-((((-858)) . T))
-((($) . T) ((|#1|) . T))
-((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))))
-(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-536)) |has| |#1| (-611 (-536))))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093))))
-((($) . T) (((-407 (-563))) . T))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536)))))
-((((-858)) . T))
-((((-858)) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-172)))
-(((|#1|) . T) (((-563)) . T))
-((((-1174)) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-555)))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-(((|#2|) . T))
-(-4034 (|has| |#1| (-21)) (|has| |#1| (-844)))
-(((|#1|) |has| |#1| (-172)))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #1#) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+((((-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-388) (-1151)) . T))
(((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
-((((-858)) -4034 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))
-((((-407 |#2|) |#3|) . T))
-((((-407 (-563))) . T) (($) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-363))
-((($ $) . T) ((#0=(-407 (-563)) #0#) . T))
-(|has| (-407 |#2|) (-147))
-(|has| (-407 |#2|) (-145))
-((((-694)) . T))
-(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T))
-(((#0=(-563) #0#) . T))
-((($) . T) (((-407 (-563))) . T))
-(-4034 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-4034 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T) (((-1174)) . T))
-(|has| |#4| (-789))
-(-4034 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(|has| |#4| (-844))
-(|has| |#3| (-789))
+((($) . T))
+((($ $) . T) (((-1169) $) . T))
+((((-1169)) . T))
+((((-859)) . T))
+(((|#1| (-531 #1=(-1169)) #1#) . T))
+((($) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))) ((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+((((-546)) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+(((|#1| (-531 (-1169))) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-1169)) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+((((-954 |#1|)) . T))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-1094))) (((-954 |#1|)) . T))
+((((-954 |#1|)) . T))
((((-1174)) . T))
-(-4034 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(|has| |#3| (-844))
-((((-563)) . T))
-(((|#2|) . T))
-((((-1169)) -4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))))
-((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169)))))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-859)) . T) (((-1174)) . T))
+((((-1174)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1246 |#1| |#2| |#3|)) . T))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(|has| |#1| (-363))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1246 |#1| |#2| |#3|)) -12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|)))))
+(((#1=(-1246 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|)))) (((-1169) #1#) -12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-514 (-1169) (-1246 |#1| |#2| |#3|)))))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (-12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))
+((((-1169)) -3943 (-12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169)))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))
+((((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(-3943 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-147))))
+(-3943 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-145))))
+((((-859)) . T))
+(((|#1|) . T))
+((((-1246 |#1| |#2| |#3|) $) -12 (|has| |#1| (-363)) (|has| (-1246 |#1| |#2| |#3|) (-286 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-546) (-1075)) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((#2=(-1246 |#1| |#2| |#3|) #2#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1246 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((((-1246 |#1| |#2| |#3|)) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-546)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-546)) . T))
+(((|#1| (-546)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-1246 |#1| |#2| |#3|)) . T))
+(((|#2|) |has| |#1| (-363)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-1144)))
+(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546)))) (((-407 (-546))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546)))))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-1016)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-906)))
+(((|#2|) |has| |#1| (-363)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+((((-378)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-378)))) (((-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-546)))))
+(|has| |#1| (-363))
+(((|#2|) |has| |#1| (-363)))
+((((-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-546)))) ((|#2|) |has| |#1| (-363)))
+(((|#2|) |has| |#1| (-363)))
+(((|#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))))
+(((|#2|) |has| |#1| (-363)))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))
+((((-1169)) -3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))
+(((|#2|) |has| |#1| (-363)))
+((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1016))) (((-378)) -12 (|has| |#1| (-363)) (|has| |#2| (-1016))) (((-886 (-378))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-378))))) (((-886 (-546))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-546))))) (((-535)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-535)))))
+(-3943 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
+(-3943 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
+((((-859)) . T))
(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T))
+(((|#1| (-546) (-1075)) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+((((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-546)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-546)) . T))
+(((|#1| (-546)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| |#2|) . T))
+(((|#1| (-1146 |#1|)) |has| |#1| (-844)))
+(|has| |#1| (-1094))
+((((-859)) |has| |#1| (-1094)))
+(|has| |#1| (-1094))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-860 |#1|)) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-1133 |#1| |#2|)) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
+(((|#2|) . T))
+((((-859)) . T))
+((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T))
+(|has| |#2| (-363))
+(-3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(|has| |#2| (-363))
+(((|#2| (-767) (-1075)) . T))
+(|has| |#2| (-906))
+(|has| |#2| (-906))
+((((-1169)) |has| |#2| (-896 (-1169))) (((-1075)) . T))
+(|has| |#2| (-846))
+((((-546)) |has| |#2| (-636 (-546))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-767)) . T))
+(|has| |#2| (-147))
+(|has| |#2| (-145))
+((((-1253 |#1|)) . T) (((-546)) . T) (($) -3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-1075)) . T) ((|#2|) . T) (((-407 (-546))) -3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))))
+((($) -3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))))
+((($) . T) ((|#2|) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) . T) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2| |#2|) . T) ((#1=(-407 (-546)) #1#) |has| |#2| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-546))) |has| |#2| (-38 (-407 (-546)))))
+(((|#2|) . T))
+((((-1075)) . T) ((|#2|) . T) (((-546)) |has| |#2| (-1034 (-546))) (((-407 (-546))) |has| |#2| (-1034 (-407 (-546)))))
+(((|#2| (-767)) . T))
+(((#1=(-1075) |#2|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1018))
-(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-((((-858)) . T))
-((((-536)) |has| |#2| (-611 (-536))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#2| (-1018))) (((-225)) . #0#))
-((((-294 |#3|)) . T))
-((((-1169) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-407 (-563))))
-(|has| |#1| (-38 (-407 (-563))))
-((((-858)) . T))
+(|has| |#2| (-1144))
(((|#2|) . T))
-((((-858)) . T))
-((($ $) . T))
-((((-407 (-563))) . T) (((-694)) . T) (($) . T))
-((((-1167 |#1| |#2| |#3|)) . T))
-((((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T))
-((((-858)) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-563) |#1|) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-1246 |#1| |#2| |#3|)) . T) (((-1216 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))
+((($ $) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))))
+(((|#1| (-407 (-546)) (-1075)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(((|#1| (-407 (-546))) . T))
+(((|#1| (-407 (-546))) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-363))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-859)) . T))
+(((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-1253 |#2|)) . T) (((-1246 |#1| |#2| |#3|)) . T) (((-1216 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1| (-1216 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
-(|has| |#2| (-363))
-(((|#3|) . T) ((|#2|) . T) (($) -4034 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -4034 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))))
-(((|#2|) . T) (($) -4034 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -4034 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
-(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))
+((($ $) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))))
+(((|#1| (-407 (-546)) (-1075)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-147))
+(((|#1| (-407 (-546))) . T))
+(((|#1| (-407 (-546))) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
(|has| |#1| (-363))
-((((-116 |#1|)) . T))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-859)) . T))
+(((|#1|) . T) (($) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1| |#1|) . T) (($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#1=(-407 (-546)) #1#) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))))
+(((|#1|) . T) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) . T))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) -3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-363))) (((-546)) . T) (($) -3943 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-3943 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(|has| |#1| (-363))
+(((|#1| |#2|) . T))
+((((-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
+(|has| (-1237 |#2| |#3| |#4|) (-147))
+(|has| (-1237 |#2| |#3| |#4|) (-145))
+((($) . T) ((#1=(-1237 |#2| |#3| |#4|)) |has| #1# (-172)) (((-407 (-546))) |has| #1# (-38 (-407 (-546)))))
+((((-859)) . T))
+((($) . T) ((#1=(-1237 |#2| |#3| |#4|)) . T) (((-407 (-546))) |has| #1# (-38 (-407 (-546)))))
+((($ $) . T) ((#1=(-1237 |#2| |#3| |#4|) #1#) . T) ((#2=(-407 (-546)) #2#) |has| #1# (-38 (-407 (-546)))))
+(((#1=(-1237 |#2| |#3| |#4|)) . T) (((-407 (-546))) |has| #1# (-38 (-407 (-546)))) (($) . T))
+((($) . T) (((-1237 |#2| |#3| |#4|)) . T) (((-407 (-546))) |has| (-1237 |#2| |#3| |#4|) (-38 (-407 (-546)))) (((-546)) . T))
+((($) . T) ((#1=(-1237 |#2| |#3| |#4|)) |has| #1# (-172)) (((-407 (-546))) |has| #1# (-38 (-407 (-546)))))
+((((-1237 |#2| |#3| |#4|)) . T))
+((((-1237 |#2| |#3| |#4|)) . T))
+((((-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(|has| |#1| (-38 (-407 (-546))))
+(((|#1| (-767)) . T))
+(((|#1| (-767)) . T))
+(|has| |#1| (-556))
+(|has| |#1| (-556))
+(-3943 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-147))
+(|has| |#1| (-145))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+((($ $) -3943 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#1=(-407 (-546)) #1#) |has| |#1| (-38 (-407 (-546)))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))))
+(((|#1| (-767) (-1075)) . T))
+((((-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|)))))
+((($ $) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (($) . T))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-546))) |has| |#1| (-38 (-407 (-546)))) (((-546)) . T))
+(|has| |#1| (-15 * (|#1| (-767) |#1|)))
(((|#1|) . T))
+((((-1169)) . T) (((-859)) . T))
(((|#1|) . T))
-((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T))
-((((-1169)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-187)) . T) (((-858)) . T))
-((((-858)) . T))
(((|#1|) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-((((-129)) . T) (((-858)) . T))
-((((-563) |#1|) . T))
-((((-129)) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-546) |#1|) . T))
+((((-535)) |has| |#1| (-611 (-535))))
(((|#1|) . T))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-3943 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-859)) -3943 (|has| |#1| (-610 (-859))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
(((|#1|) . T))
+(|has| |#1| (-846))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T))
-((($ $) . T))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| (-531 |#2|)) . T))
-((((-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) . T))
-((((-563) (-129)) . T))
-(((|#1| (-563)) . T))
-(((|#1| (-407 (-563))) . T))
-(((|#1| (-767)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
+(((|#1|) . T))
+((((-859)) . T))
+((((-859)) . T))
+((((-859)) . T))
((((-1174)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-(-4034 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))
-(-4034 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))
-((($) . T))
-(((|#2| (-531 (-860 |#1|))) . T))
((((-1174)) . T))
+((((-859)) . T) (((-1174)) . T))
((((-1174)) . T))
-((((-563) |#1|) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)))
+(((|#4|) . T))
+(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-546)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
+(((|#4|) . T) (((-859)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-535)) |has| |#4| (-611 (-535))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#4|) . T))
+((((-859)) . T) (((-637 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-172)))
(((|#2|) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-858)) . T) (((-1174)) . T))
-((((-1174)) . T))
-((((-858)) -4034 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))))
-(((|#1|) . T))
-(((|#2| (-767)) . T))
(((|#1| |#2|) . T))
-((((-1151) |#1|) . T))
-((((-407 |#2|)) . T))
-((((-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T))
-(|has| |#1| (-555))
-(|has| |#1| (-555))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-859)) . T))
((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+((((-815 |#1|)) . T))
+(((|#2|) . T) (((-546)) . T) (((-815 |#1|)) . T))
+(((|#2| (-815 |#1|)) . T))
+(((|#2| (-889 |#1|)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-859)) . T))
+((((-889 |#1|)) . T) ((|#2|) . T) (((-546)) . T) (((-815 |#1|)) . T))
+((((-889 |#1|)) . T) (((-815 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-1169) |#1|) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-859)) . T))
+(((|#1|) . T) (((-546)) . T) (((-815 (-1169))) . T))
+((((-815 (-1169))) . T))
+((((-1169) |#1|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-563)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-286 |#2| |#2|)))
-(((|#1| (-640 |#1|)) |has| |#1| (-844)))
-(-4034 (|has| |#1| (-233)) (|has| |#1| (-349)))
-(-4034 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-1253 |#1|)) . T) (((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))))
-(|has| |#1| (-1093))
-(((|#1|) . T))
-((((-1253 |#1|)) . T) (((-563)) . T) (($) -4034 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-1075)) . T) ((|#2|) . T) (((-407 (-563))) -4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))))
-((((-407 (-563))) . T) (($) . T))
-((((-995 |#1|)) . T) ((|#1|) . T) (((-563)) -4034 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) -4034 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-((((-1169)) |has| |#1| (-896 (-1169))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))
-(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1133 |#1| |#2|) #0#) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))))
+(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))))
-(((#0=(-116 |#1|)) |has| #0# (-309 #0#)))
+(((|#2|) . T) ((|#1|) . T) (((-546)) . T))
+(((|#1|) . T) (($) . T))
+((((-859)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-172)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-859)) . T))
+(((|#2|) . T) (((-546)) . T) (((-815 |#1|)) . T))
+((((-815 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-546)) . T))
((($ $) . T))
-(-4034 (|has| |#1| (-846)) (|has| |#1| (-1093)))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-478 . -1093) T) ((-264 . -514) 162004) ((-247 . -514) 161947) ((-245 . -1093) 161897) ((-570 . -111) 161882) ((-531 . -23) T) ((-138 . -1093) T) ((-137 . -1093) T) ((-117 . -309) 161839) ((-133 . -1093) T) ((-479 . -514) 161631) ((-672 . -613) 161615) ((-689 . -102) T) ((-1134 . -514) 161534) ((-390 . -131) T) ((-1270 . -972) 161503) ((-31 . -93) T) ((-599 . -489) 161487) ((-618 . -131) T) ((-815 . -842) T) ((-523 . -57) 161437) ((-59 . -514) 161370) ((-519 . -514) 161303) ((-418 . -896) 161262) ((-169 . -1045) T) ((-516 . -514) 161195) ((-497 . -514) 161128) ((-496 . -514) 161061) ((-795 . -1034) 160844) ((-694 . -38) 160809) ((-1230 . -613) 160557) ((-343 . -349) T) ((-1087 . -1086) 160541) ((-1087 . -1093) 160519) ((-851 . -613) 160416) ((-169 . -243) 160367) ((-169 . -233) 160318) ((-1087 . -1088) 160276) ((-868 . -286) 160234) ((-225 . -791) T) ((-225 . -788) T) ((-689 . -284) NIL) ((-570 . -613) 160206) ((-1143 . -1184) 160185) ((-407 . -988) 160169) ((-696 . -21) T) ((-696 . -25) T) ((-1272 . -643) 160143) ((-316 . -160) 160122) ((-316 . -143) 160101) ((-1143 . -107) 160051) ((-134 . -25) T) ((-40 . -231) 160028) ((-116 . -21) T) ((-116 . -25) T) ((-605 . -288) 160004) ((-475 . -288) 159983) ((-1230 . -326) 159960) ((-1230 . -1045) T) ((-851 . -1045) T) ((-795 . -338) 159944) ((-139 . -185) T) ((-117 . -1144) NIL) ((-91 . -610) 159876) ((-477 . -131) T) ((-1230 . -233) T) ((-1089 . -490) 159857) ((-1089 . -610) 159823) ((-1083 . -490) 159804) ((-1083 . -610) 159770) ((-591 . -1208) T) ((-1067 . -490) 159751) ((-570 . -1045) T) ((-1067 . -610) 159717) ((-657 . -713) 159701) ((-1060 . -490) 159682) ((-1060 . -610) 159648) ((-954 . -288) 159625) ((-60 . -34) T) ((-1056 . -791) T) ((-1056 . -788) T) ((-1032 . -490) 159606) ((-1015 . -490) 159587) ((-812 . -722) T) ((-727 . -47) 159552) ((-620 . -38) 159539) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159470) ((-247 . -290) 159401) ((-1032 . -610) 159367) ((-1020 . -102) T) ((-1015 . -610) 159333) ((-623 . -490) 159314) ((-413 . -722) T) ((-117 . -38) 159259) ((-483 . -490) 159240) ((-623 . -610) 159206) ((-413 . -473) T) ((-218 . -490) 159187) ((-483 . -610) 159153) ((-354 . -102) T) ((-218 . -610) 159119) ((-1202 . -1052) T) ((-707 . -1052) T) ((-1167 . -47) 159096) ((-1166 . -47) 159066) ((-1160 . -47) 159043) ((-128 . -288) 159018) ((-1031 . -151) 158964) ((-906 . -290) T) ((-1119 . -47) 158936) ((-689 . -309) NIL) ((-515 . -610) 158918) ((-510 . -610) 158900) ((-508 . -610) 158882) ((-327 . -1093) 158832) ((-708 . -452) 158763) ((-48 . -102) T) ((-1241 . -286) 158748) ((-1220 . -286) 158668) ((-640 . -661) 158652) ((-640 . -646) 158636) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-640 . -373) 158620) ((-602 . -490) 158602) ((-599 . -286) 158579) ((-602 . -610) 158546) ((-388 . -102) T) ((-1113 . -143) T) ((-126 . -610) 158478) ((-870 . -1093) T) ((-653 . -411) 158462) ((-710 . -610) 158444) ((-249 . -610) 158411) ((-187 . -610) 158393) ((-162 . -610) 158375) ((-157 . -610) 158357) ((-1272 . -722) T) ((-1095 . -34) T) ((-867 . -791) NIL) ((-867 . -788) NIL) ((-854 . -846) T) ((-727 . -882) NIL) ((-1281 . -131) T) ((-381 . -131) T) ((-888 . -613) 158325) ((-900 . -102) T) ((-727 . -1034) 158201) ((-531 . -131) T) ((-1080 . -411) 158185) ((-996 . -489) 158169) ((-117 . -400) 158146) ((-1160 . -1208) 158125) ((-778 . -411) 158109) ((-776 . -411) 158093) ((-939 . -34) T) ((-689 . -1144) NIL) ((-251 . -643) 157928) ((-250 . -643) 157750) ((-813 . -916) 157729) ((-454 . -411) 157713) ((-599 . -19) 157697) ((-1139 . -1201) 157666) ((-1160 . -882) NIL) ((-1160 . -880) 157618) ((-599 . -601) 157595) ((-1194 . -610) 157527) ((-1168 . -610) 157509) ((-62 . -395) T) ((-1166 . -1034) 157444) ((-1160 . -1034) 157410) ((-689 . -38) 157360) ((-474 . -286) 157345) ((-1214 . -610) 157327) ((-727 . -377) 157311) ((-834 . -610) 157293) ((-653 . -1052) T) ((-1241 . -998) 157259) ((-1220 . -998) 157225) ((-1081 . -613) 157209) ((-1057 . -1184) 157184) ((-1069 . -613) 157161) ((-868 . -611) 156968) ((-868 . -610) 156950) ((-1181 . -489) 156887) ((-418 . -1018) 156865) ((-48 . -309) 156852) ((-1057 . -107) 156798) ((-479 . -489) 156735) ((-520 . -1208) T) ((-1160 . -338) 156687) ((-1134 . -489) 156658) ((-1160 . -377) 156610) ((-1080 . -1052) T) ((-437 . -102) T) ((-183 . -1093) T) ((-251 . -34) T) ((-250 . -34) T) ((-778 . -1052) T) ((-776 . -1052) T) ((-727 . -896) 156587) ((-454 . -1052) T) ((-59 . -489) 156571) ((-1030 . -1051) 156545) ((-519 . -489) 156529) ((-516 . -489) 156513) ((-497 . -489) 156497) ((-496 . -489) 156481) ((-245 . -514) 156414) ((-1030 . -111) 156381) ((-1167 . -896) 156294) ((-1166 . -896) 156200) ((-1160 . -896) 156033) ((-1119 . -896) 156017) ((-665 . -1105) T) ((-354 . -1144) T) ((-641 . -93) T) ((-322 . -1051) 155999) ((-251 . -787) 155978) ((-251 . -790) 155929) ((-31 . -490) 155910) ((-251 . -789) 155889) ((-250 . -787) 155868) ((-250 . -790) 155819) ((-250 . -789) 155798) ((-31 . -610) 155764) ((-50 . -1052) T) ((-251 . -722) 155674) ((-250 . -722) 155584) ((-1202 . -1093) T) ((-665 . -23) T) ((-580 . -1052) T) ((-518 . -1052) T) ((-379 . -1051) 155549) ((-322 . -111) 155524) ((-73 . -383) T) ((-73 . -395) T) ((-1020 . -38) 155461) ((-689 . -400) 155443) ((-99 . -102) T) ((-707 . -1093) T) ((-999 . -145) 155415) ((-999 . -147) 155387) ((-379 . -111) 155343) ((-319 . -1212) 155322) ((-474 . -998) 155288) ((-354 . -38) 155253) ((-40 . -370) 155225) ((-869 . -610) 155097) ((-127 . -125) 155081) ((-121 . -125) 155065) ((-832 . -1051) 155035) ((-829 . -21) 154987) ((-823 . -1051) 154971) ((-829 . -25) 154923) ((-319 . -555) 154874) ((-517 . -613) 154855) ((-563 . -824) T) ((-240 . -1208) T) ((-1030 . -613) 154824) ((-832 . -111) 154789) ((-823 . -111) 154768) ((-1241 . -610) 154750) ((-1220 . -610) 154732) ((-1220 . -611) 154403) ((-1165 . -905) 154382) ((-1118 . -905) 154361) ((-48 . -38) 154326) ((-1279 . -1105) T) ((-599 . -610) 154238) ((-599 . -611) 154199) ((-1277 . -1105) T) ((-361 . -613) 154183) ((-322 . -613) 154167) ((-240 . -1034) 153994) ((-1165 . -643) 153919) ((-1118 . -643) 153844) ((-850 . -643) 153818) ((-714 . -610) 153800) ((-546 . -368) T) ((-1279 . -23) T) ((-1277 . -23) T) ((-491 . -1093) T) ((-379 . -613) 153750) ((-379 . -615) 153732) ((-1030 . -1045) T) ((-861 . -102) T) ((-1181 . -286) 153711) ((-169 . -368) 153662) ((-1000 . -1208) T) ((-832 . -613) 153616) ((-823 . -613) 153571) ((-44 . -23) T) ((-479 . -286) 153550) ((-584 . -1093) T) ((-1139 . -1102) 153519) ((-1097 . -1096) 153471) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1105) T) ((-1285 . -102) T) ((-1000 . -880) 153453) ((-1000 . -882) 153435) ((-1202 . -713) 153332) ((-620 . -231) 153316) ((-618 . -21) T) ((-289 . -555) T) ((-618 . -25) T) ((-1188 . -1093) T) ((-707 . -713) 153281) ((-240 . -377) 153250) ((-1000 . -1034) 153210) ((-379 . -1045) T) ((-223 . -1052) T) ((-117 . -231) 153187) ((-59 . -286) 153164) ((-152 . -23) T) ((-516 . -286) 153141) ((-327 . -514) 153074) ((-496 . -286) 153051) ((-379 . -243) T) ((-379 . -233) T) ((-832 . -1045) T) ((-823 . -1045) T) ((-708 . -945) 153020) ((-696 . -846) T) ((-474 . -610) 153002) ((-823 . -233) 152981) ((-134 . -846) T) ((-653 . -1093) T) ((-1181 . -601) 152960) ((-549 . -1184) 152939) ((-336 . -1093) T) ((-319 . -363) 152918) ((-407 . -147) 152897) ((-407 . -145) 152876) ((-960 . -1105) 152775) ((-240 . -896) 152707) ((-811 . -1105) 152617) ((-649 . -848) 152601) ((-479 . -601) 152580) ((-549 . -107) 152530) ((-1000 . -377) 152512) ((-1000 . -338) 152494) ((-97 . -1093) T) ((-960 . -23) 152305) ((-477 . -21) T) ((-477 . -25) T) ((-811 . -23) 152175) ((-1169 . -610) 152157) ((-59 . -19) 152141) ((-1169 . -611) 152063) ((-1165 . -722) T) ((-1118 . -722) T) ((-516 . -19) 152047) ((-496 . -19) 152031) ((-59 . -601) 152008) ((-1080 . -1093) T) ((-897 . -102) 151986) ((-850 . -722) T) ((-778 . -1093) T) ((-516 . -601) 151963) ((-496 . -601) 151940) ((-776 . -1093) T) ((-776 . -1059) 151907) ((-461 . -1093) T) ((-454 . -1093) T) ((-584 . -713) 151882) ((-644 . -1093) T) ((-1249 . -47) 151859) ((-1243 . -102) T) ((-1242 . -47) 151829) ((-1221 . -47) 151806) ((-1202 . -172) 151757) ((-1166 . -307) 151736) ((-1000 . -896) NIL) ((-1160 . -307) 151715) ((-624 . -1105) T) ((-665 . -131) T) ((-1089 . -613) 151696) ((-1083 . -613) 151677) ((-1073 . -555) 151628) ((-1073 . -1212) 151579) ((-1067 . -613) 151560) ((-275 . -1093) T) ((-85 . -441) T) ((-85 . -395) T) ((-1060 . -613) 151541) ((-1032 . -613) 151522) ((-50 . -1093) T) ((-1015 . -613) 151503) ((-707 . -172) T) ((-593 . -47) 151480) ((-225 . -643) 151445) ((-580 . -1093) T) ((-518 . -1093) T) ((-359 . -1212) T) ((-353 . -1212) T) ((-345 . -1212) T) ((-487 . -816) T) ((-487 . -916) T) ((-319 . -1105) T) ((-108 . -1212) T) ((-710 . -1051) 151415) ((-339 . -846) T) ((-217 . -916) T) ((-217 . -816) T) ((-623 . -613) 151396) ((-359 . -555) T) ((-353 . -555) T) ((-345 . -555) T) ((-483 . -613) 151377) ((-108 . -555) T) ((-653 . -713) 151347) ((-1160 . -1018) NIL) ((-218 . -613) 151328) ((-319 . -23) T) ((-67 . -1208) T) ((-996 . -610) 151260) ((-689 . -231) 151242) ((-710 . -111) 151207) ((-640 . -34) T) ((-245 . -489) 151191) ((-1095 . -1091) 151175) ((-171 . -1093) T) ((-948 . -905) 151154) ((-515 . -613) 151138) ((-1285 . -1144) T) ((-1281 . -21) T) ((-481 . -905) 151117) ((-1281 . -25) T) ((-1279 . -131) T) ((-1277 . -131) T) ((-1270 . -102) T) ((-1253 . -610) 151083) ((-1242 . -1034) 151018) ((-1080 . -713) 150867) ((-1056 . -643) 150854) ((-948 . -643) 150779) ((-778 . -713) 150608) ((-536 . -610) 150590) ((-536 . -611) 150571) ((-776 . -713) 150420) ((-1221 . -1208) 150399) ((-1070 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -643) 150324) ((-461 . -713) 150295) ((-454 . -713) 150144) ((-983 . -102) T) ((-1221 . -882) NIL) ((-1221 . -880) 150096) ((-1181 . -611) NIL) ((-733 . -102) T) ((-1181 . -610) 150078) ((-602 . -613) 150060) ((-1135 . -1116) 150005) ((-1042 . -1201) 149934) ((-531 . -25) T) ((-897 . -309) 149872) ((-710 . -613) 149826) ((-343 . -1052) T) ((-641 . -490) 149807) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1105) T) ((-676 . -93) T) ((-671 . -93) T) ((-659 . -610) 149789) ((-641 . -610) 149742) ((-478 . -93) T) ((-355 . -610) 149724) ((-352 . -610) 149706) ((-344 . -610) 149688) ((-264 . -611) 149436) ((-264 . -610) 149418) ((-247 . -610) 149400) ((-247 . -611) 149261) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1221 . -1034) 149227) ((-1202 . -514) 149194) ((-1134 . -610) 149176) ((-815 . -853) T) ((-815 . -722) T) ((-599 . -288) 149153) ((-580 . -713) 149118) ((-479 . -611) NIL) ((-479 . -610) 149100) ((-518 . -713) 149045) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-906 . -610) 149027) ((-386 . -722) T) ((-868 . -1051) 148979) ((-906 . -611) 148961) ((-868 . -111) 148899) ((-710 . -1045) T) ((-708 . -1233) 148883) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-689 . -349) NIL) ((-519 . -610) 148815) ((-379 . -791) T) ((-223 . -1093) T) ((-379 . -788) T) ((-225 . -790) T) ((-225 . -787) T) ((-59 . -611) 148776) ((-59 . -610) 148688) ((-225 . -722) T) ((-516 . -611) 148649) ((-516 . -610) 148561) ((-497 . -610) 148493) ((-496 . -611) 148454) ((-496 . -610) 148366) ((-1073 . -363) 148317) ((-40 . -411) 148294) ((-77 . -1208) T) ((-867 . -905) NIL) ((-359 . -329) 148278) ((-359 . -363) T) ((-353 . -329) 148262) ((-353 . -363) T) ((-345 . -329) 148246) ((-345 . -363) T) ((-316 . -284) 148225) ((-108 . -363) T) ((-70 . -1208) T) ((-1221 . -338) 148177) ((-867 . -643) 148122) ((-1221 . -377) 148074) ((-960 . -131) 147929) ((-811 . -131) 147799) ((-954 . -646) 147783) ((-1080 . -172) 147694) ((-954 . -373) 147678) ((-1056 . -790) T) ((-1056 . -787) T) ((-868 . -613) 147576) ((-778 . -172) 147467) ((-776 . -172) 147378) ((-812 . -47) 147340) ((-1056 . -722) T) ((-327 . -489) 147324) ((-948 . -722) T) ((-454 . -172) 147235) ((-245 . -286) 147212) ((-1270 . -309) 147150) ((-1249 . -896) 147063) ((-481 . -722) T) ((-1242 . -896) 146969) ((-1241 . -1051) 146804) ((-1221 . -896) 146637) ((-1220 . -1051) 146445) ((-1202 . -290) 146424) ((-1178 . -1208) T) ((-1176 . -368) T) ((-1175 . -368) T) ((-1139 . -151) 146408) ((-1113 . -102) T) ((-1111 . -1093) T) ((-1073 . -23) T) ((-1068 . -102) T) ((-923 . -951) T) ((-733 . -309) 146346) ((-75 . -1208) T) ((-30 . -951) T) ((-169 . -905) 146299) ((-659 . -382) 146271) ((-112 . -840) T) ((-1 . -610) 146253) ((-1073 . -1105) T) ((-128 . -646) 146235) ((-50 . -617) 146219) ((-999 . -409) 146191) ((-593 . -896) 146104) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146086) ((-868 . -1045) T) ((-829 . -846) 146065) ((-81 . -1208) T) ((-707 . -290) T) ((-40 . -1052) T) ((-580 . -172) T) ((-518 . -172) T) ((-511 . -610) 146047) ((-169 . -643) 145957) ((-507 . -610) 145939) ((-351 . -147) 145921) ((-351 . -145) T) ((-359 . -1105) T) ((-353 . -1105) T) ((-345 . -1105) T) ((-1000 . -307) T) ((-910 . -307) T) ((-868 . -243) T) ((-108 . -1105) T) ((-868 . -233) 145900) ((-1241 . -111) 145721) ((-1220 . -111) 145510) ((-245 . -1245) 145494) ((-563 . -844) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145481) ((-313 . -309) 145422) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1000 . -1018) T) ((-31 . -613) 145403) ((-108 . -23) T) ((-245 . -601) 145380) ((-1243 . -38) 145272) ((-1230 . -905) 145251) ((-112 . -1093) T) ((-1031 . -102) T) ((-1230 . -643) 145176) ((-867 . -790) NIL) ((-851 . -643) 145150) ((-867 . -787) NIL) ((-812 . -882) NIL) ((-867 . -722) T) ((-1080 . -514) 145023) ((-778 . -514) 144970) ((-776 . -514) 144922) ((-570 . -643) 144909) ((-812 . -1034) 144737) ((-454 . -514) 144680) ((-388 . -389) T) ((-1241 . -613) 144493) ((-1220 . -613) 144241) ((-60 . -1208) T) ((-618 . -846) 144220) ((-500 . -656) T) ((-1139 . -972) 144189) ((-999 . -452) T) ((-694 . -844) T) ((-510 . -788) T) ((-474 . -1051) 144024) ((-343 . -1093) T) ((-313 . -1144) NIL) ((-289 . -131) T) ((-394 . -1093) T) ((-689 . -370) 143991) ((-866 . -1052) T) ((-223 . -617) 143968) ((-327 . -286) 143945) ((-474 . -111) 143766) ((-1241 . -1045) T) ((-1220 . -1045) T) ((-812 . -377) 143750) ((-169 . -722) T) ((-649 . -102) T) ((-1241 . -243) 143729) ((-1241 . -233) 143681) ((-1220 . -233) 143586) ((-1220 . -243) 143565) ((-999 . -402) NIL) ((-665 . -636) 143513) ((-316 . -38) 143423) ((-313 . -38) 143352) ((-69 . -610) 143334) ((-319 . -493) 143300) ((-1181 . -288) 143279) ((-1215 . -846) T) ((-1106 . -1105) 143189) ((-83 . -1208) T) ((-61 . -610) 143171) ((-479 . -288) 143150) ((-1272 . -1034) 143127) ((-1157 . -1093) T) ((-1106 . -23) 142997) ((-812 . -896) 142933) ((-1230 . -722) T) ((-1095 . -1208) T) ((-474 . -613) 142759) ((-1080 . -290) 142690) ((-962 . -1093) T) ((-889 . -102) T) ((-778 . -290) 142601) ((-327 . -19) 142585) ((-59 . -288) 142562) ((-776 . -290) 142493) ((-851 . -722) T) ((-117 . -844) NIL) ((-516 . -288) 142470) ((-327 . -601) 142447) ((-496 . -288) 142424) ((-454 . -290) 142355) ((-1031 . -309) 142206) ((-676 . -490) 142187) ((-570 . -722) T) ((-671 . -490) 142168) ((-676 . -610) 142118) ((-671 . -610) 142084) ((-657 . -610) 142066) ((-478 . -490) 142047) ((-478 . -610) 142013) ((-245 . -611) 141974) ((-245 . -490) 141951) ((-138 . -490) 141932) ((-137 . -490) 141913) ((-133 . -490) 141894) ((-245 . -610) 141786) ((-213 . -102) T) ((-138 . -610) 141752) ((-137 . -610) 141718) ((-133 . -610) 141684) ((-1140 . -34) T) ((-939 . -1208) T) ((-343 . -713) 141629) ((-665 . -25) T) ((-665 . -21) T) ((-1169 . -613) 141610) ((-474 . -1045) T) ((-632 . -417) 141575) ((-604 . -417) 141540) ((-1113 . -1144) T) ((-580 . -290) T) ((-518 . -290) T) ((-1242 . -307) 141519) ((-474 . -233) 141471) ((-474 . -243) 141450) ((-1221 . -307) 141429) ((-1221 . -1018) NIL) ((-1073 . -131) T) ((-868 . -791) 141408) ((-144 . -102) T) ((-40 . -1093) T) ((-868 . -788) 141387) ((-640 . -1006) 141371) ((-579 . -1052) T) ((-563 . -1052) T) ((-495 . -1052) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141355) ((-313 . -400) 141316) ((-353 . -131) T) ((-345 . -131) T) ((-1174 . -1093) T) ((-1113 . -38) 141303) ((-1087 . -610) 141270) ((-108 . -131) T) ((-950 . -1093) T) ((-917 . -1093) T) ((-767 . -1093) T) ((-667 . -1093) T) ((-696 . -147) T) ((-116 . -147) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-659 . -1051) 141254) ((-531 . -846) T) ((-500 . -846) T) ((-355 . -1051) 141206) ((-352 . -1051) 141158) ((-344 . -1051) 141110) ((-251 . -1208) T) ((-250 . -1208) T) ((-264 . -1051) 140953) ((-247 . -1051) 140796) ((-659 . -111) 140775) ((-547 . -840) T) ((-355 . -111) 140713) ((-352 . -111) 140651) ((-344 . -111) 140589) ((-264 . -111) 140418) ((-247 . -111) 140247) ((-813 . -1212) 140226) ((-620 . -411) 140210) ((-44 . -21) T) ((-44 . -25) T) ((-811 . -636) 140116) ((-813 . -555) 140095) ((-251 . -1034) 139922) ((-250 . -1034) 139749) ((-126 . -119) 139733) ((-906 . -1051) 139698) ((-708 . -102) T) ((-694 . -1052) T) ((-536 . -615) 139601) ((-343 . -172) T) ((-88 . -610) 139583) ((-152 . -21) T) ((-152 . -25) T) ((-906 . -111) 139539) ((-40 . -713) 139484) ((-866 . -1093) T) ((-659 . -613) 139461) ((-641 . -613) 139442) ((-355 . -613) 139379) ((-352 . -613) 139316) ((-547 . -1093) T) ((-344 . -613) 139253) ((-327 . -611) 139214) ((-327 . -610) 139126) ((-264 . -613) 138879) ((-247 . -613) 138664) ((-1220 . -788) 138617) ((-1220 . -791) 138570) ((-251 . -377) 138539) ((-250 . -377) 138508) ((-649 . -38) 138478) ((-605 . -34) T) ((-482 . -1105) 138388) ((-475 . -34) T) ((-1106 . -131) 138258) ((-960 . -25) 138069) ((-906 . -613) 138019) ((-870 . -610) 138001) ((-960 . -21) 137956) ((-811 . -21) 137866) ((-811 . -25) 137717) ((-1214 . -368) T) ((-620 . -1052) T) ((-1171 . -555) 137696) ((-1165 . -47) 137673) ((-355 . -1045) T) ((-352 . -1045) T) ((-482 . -23) 137543) ((-344 . -1045) T) ((-247 . -1045) T) ((-264 . -1045) T) ((-1118 . -47) 137515) ((-117 . -1052) T) ((-1030 . -643) 137489) ((-954 . -34) T) ((-355 . -233) 137468) ((-355 . -243) T) ((-352 . -233) 137447) ((-352 . -243) T) ((-344 . -233) 137426) ((-344 . -243) T) ((-247 . -326) 137383) ((-264 . -326) 137355) ((-264 . -233) 137334) ((-1149 . -151) 137318) ((-251 . -896) 137250) ((-250 . -896) 137182) ((-1075 . -846) T) ((-414 . -1105) T) ((-1049 . -23) T) ((-906 . -1045) T) ((-322 . -643) 137164) ((-1020 . -844) T) ((-1202 . -998) 137130) ((-1166 . -916) 137109) ((-1160 . -916) 137088) ((-1160 . -816) NIL) ((-906 . -243) T) ((-813 . -363) 137067) ((-385 . -23) T) ((-127 . -1093) 137045) ((-121 . -1093) 137023) ((-906 . -233) T) ((-128 . -34) T) ((-379 . -643) 136988) ((-866 . -713) 136975) ((-1042 . -151) 136940) ((-40 . -172) T) ((-689 . -411) 136922) ((-708 . -309) 136909) ((-832 . -643) 136869) ((-823 . -643) 136843) ((-319 . -25) T) ((-319 . -21) T) ((-653 . -286) 136822) ((-579 . -1093) T) ((-563 . -1093) T) ((-495 . -1093) T) ((-245 . -288) 136799) ((-313 . -231) 136760) ((-1165 . -882) NIL) ((-55 . -1093) T) ((-1118 . -882) 136619) ((-129 . -846) T) ((-1165 . -1034) 136499) ((-1118 . -1034) 136382) ((-183 . -610) 136364) ((-850 . -1034) 136260) ((-778 . -286) 136187) ((-813 . -1105) T) ((-1030 . -722) T) ((-599 . -646) 136171) ((-1042 . -972) 136100) ((-995 . -102) T) ((-813 . -23) T) ((-708 . -1144) 136078) ((-689 . -1052) T) ((-599 . -373) 136062) ((-351 . -452) T) ((-343 . -290) T) ((-1258 . -1093) T) ((-248 . -1093) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -722) T) ((-706 . -1093) T) ((-694 . -1093) T) ((-361 . -473) T) ((-1202 . -610) 136044) ((-1165 . -377) 136028) ((-1118 . -377) 136012) ((-1020 . -411) 135974) ((-141 . -229) 135956) ((-379 . -790) T) ((-379 . -787) T) ((-866 . -172) T) ((-379 . -722) T) ((-707 . -610) 135938) ((-708 . -38) 135767) ((-1257 . -1255) 135751) ((-351 . -402) T) ((-1257 . -1093) 135701) ((-579 . -713) 135688) ((-563 . -713) 135675) ((-495 . -713) 135640) ((-316 . -626) 135619) ((-832 . -722) T) ((-823 . -722) T) ((-640 . -1208) T) ((-1073 . -636) 135567) ((-1165 . -896) 135510) ((-1118 . -896) 135494) ((-657 . -1051) 135478) ((-108 . -636) 135460) ((-482 . -131) 135330) ((-1171 . -1105) T) ((-948 . -47) 135299) ((-620 . -1093) T) ((-657 . -111) 135278) ((-491 . -610) 135244) ((-327 . -288) 135221) ((-481 . -47) 135178) ((-1171 . -23) T) ((-117 . -1093) T) ((-103 . -102) 135156) ((-1269 . -1105) T) ((-1049 . -131) T) ((-1020 . -1052) T) ((-815 . -1034) 135140) ((-999 . -720) 135112) ((-1269 . -23) T) ((-694 . -713) 135077) ((-584 . -610) 135059) ((-386 . -1034) 135043) ((-354 . -1052) T) ((-385 . -131) T) ((-324 . -1034) 135027) ((-225 . -882) 135009) ((-1000 . -916) T) ((-91 . -34) T) ((-1000 . -816) T) ((-910 . -916) T) ((-1188 . -610) 134991) ((-1113 . -824) T) ((-487 . -1212) T) ((-1098 . -1093) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-217 . -1212) T) ((-995 . -309) 134956) ((-225 . -1034) 134916) ((-40 . -290) T) ((-710 . -643) 134876) ((-676 . -613) 134857) ((-671 . -613) 134838) ((-487 . -555) T) ((-478 . -613) 134819) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -555) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -613) 134796) ((-138 . -613) 134777) ((-137 . -613) 134758) ((-133 . -613) 134739) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1052) T) ((-579 . -172) T) ((-563 . -172) T) ((-495 . -172) T) ((-653 . -610) 134721) ((-733 . -732) 134705) ((-336 . -610) 134687) ((-68 . -383) T) ((-68 . -395) T) ((-1095 . -107) 134671) ((-1056 . -882) 134653) ((-948 . -882) 134578) ((-648 . -1105) T) ((-620 . -713) 134565) ((-481 . -882) NIL) ((-1139 . -102) T) ((-1087 . -615) 134549) ((-1056 . -1034) 134531) ((-97 . -610) 134513) ((-477 . -147) T) ((-948 . -1034) 134393) ((-117 . -713) 134338) ((-648 . -23) T) ((-481 . -1034) 134214) ((-1080 . -611) NIL) ((-1080 . -610) 134196) ((-778 . -611) NIL) ((-778 . -610) 134157) ((-776 . -611) 133791) ((-776 . -610) 133705) ((-1106 . -636) 133611) ((-461 . -610) 133593) ((-454 . -610) 133575) ((-454 . -611) 133436) ((-1031 . -229) 133382) ((-868 . -905) 133361) ((-126 . -34) T) ((-813 . -131) T) ((-644 . -610) 133343) ((-577 . -102) T) ((-355 . -1276) 133327) ((-352 . -1276) 133311) ((-344 . -1276) 133295) ((-127 . -514) 133228) ((-121 . -514) 133161) ((-511 . -788) T) ((-511 . -791) T) ((-510 . -790) T) ((-103 . -309) 133099) ((-222 . -102) 133077) ((-689 . -1093) T) ((-694 . -172) T) ((-868 . -643) 133029) ((-65 . -384) T) ((-275 . -610) 133011) ((-65 . -395) T) ((-948 . -377) 132995) ((-866 . -290) T) ((-50 . -610) 132977) ((-995 . -38) 132925) ((-580 . -610) 132907) ((-481 . -377) 132891) ((-580 . -611) 132873) ((-518 . -610) 132855) ((-906 . -1276) 132842) ((-867 . -1208) T) ((-696 . -452) T) ((-495 . -514) 132808) ((-487 . -363) T) ((-355 . -368) 132787) ((-352 . -368) 132766) ((-344 . -368) 132745) ((-710 . -722) T) ((-217 . -363) T) ((-116 . -452) T) ((-1280 . -1271) 132729) ((-867 . -880) 132706) ((-867 . -882) NIL) ((-960 . -846) 132605) ((-811 . -846) 132556) ((-649 . -651) 132540) ((-1194 . -34) T) ((-171 . -610) 132522) ((-1106 . -21) 132432) ((-1106 . -25) 132283) ((-867 . -1034) 132260) ((-948 . -896) 132241) ((-1230 . -47) 132218) ((-906 . -368) T) ((-59 . -646) 132202) ((-516 . -646) 132186) ((-481 . -896) 132163) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -646) 132147) ((-59 . -373) 132131) ((-620 . -172) T) ((-516 . -373) 132115) ((-496 . -373) 132099) ((-823 . -704) 132083) ((-1165 . -307) 132062) ((-1171 . -131) T) ((-117 . -172) T) ((-1139 . -309) 132000) ((-169 . -1208) T) ((-632 . -740) 131984) ((-604 . -740) 131968) ((-1269 . -131) T) ((-1242 . -916) 131947) ((-1221 . -916) 131926) ((-1221 . -816) NIL) ((-689 . -713) 131876) ((-1220 . -905) 131829) ((-1020 . -1093) T) ((-867 . -377) 131806) ((-867 . -338) 131783) ((-901 . -1105) T) ((-169 . -880) 131767) ((-169 . -882) 131692) ((-487 . -1105) T) ((-354 . -1093) T) ((-217 . -1105) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1034) 131588) ((-319 . -846) T) ((-1257 . -514) 131521) ((-1241 . -643) 131418) ((-1220 . -643) 131288) ((-868 . -790) 131267) ((-868 . -787) 131246) ((-868 . -722) T) ((-487 . -23) T) ((-223 . -610) 131228) ((-174 . -452) T) ((-222 . -309) 131166) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1281 . -1274) 131145) ((-579 . -290) T) ((-563 . -290) T) ((-672 . -1034) 131129) ((-495 . -290) T) ((-136 . -470) 131084) ((-48 . -1093) T) ((-708 . -231) 131068) ((-867 . -896) NIL) ((-1230 . -882) NIL) ((-885 . -102) T) ((-881 . -102) T) ((-388 . -1093) T) ((-169 . -377) 131052) ((-169 . -338) 131036) ((-1230 . -1034) 130916) ((-851 . -1034) 130812) ((-1135 . -102) T) ((-648 . -131) T) ((-117 . -514) 130720) ((-657 . -788) 130699) ((-657 . -791) 130678) ((-570 . -1034) 130660) ((-294 . -1264) 130630) ((-862 . -102) T) ((-959 . -555) 130609) ((-1202 . -1051) 130492) ((-482 . -636) 130398) ((-900 . -1093) T) ((-1020 . -713) 130335) ((-707 . -1051) 130300) ((-614 . -102) T) ((-599 . -34) T) ((-1140 . -1208) T) ((-1202 . -111) 130169) ((-474 . -643) 130066) ((-354 . -713) 130011) ((-169 . -896) 129970) ((-694 . -290) T) ((-689 . -172) T) ((-707 . -111) 129926) ((-1285 . -1052) T) ((-1230 . -377) 129910) ((-418 . -1212) 129888) ((-1111 . -610) 129870) ((-313 . -844) NIL) ((-418 . -555) T) ((-225 . -307) T) ((-1220 . -787) 129823) ((-1220 . -790) 129776) ((-1241 . -722) T) ((-1220 . -722) T) ((-48 . -713) 129741) ((-225 . -1018) T) ((-351 . -1264) 129718) ((-1243 . -411) 129684) ((-714 . -722) T) ((-1230 . -896) 129627) ((-1202 . -613) 129509) ((-112 . -610) 129491) ((-112 . -611) 129473) ((-714 . -473) T) ((-707 . -613) 129423) ((-482 . -21) 129333) ((-127 . -489) 129317) ((-121 . -489) 129301) ((-482 . -25) 129152) ((-620 . -290) T) ((-584 . -1051) 129127) ((-437 . -1093) T) ((-1056 . -307) T) ((-117 . -290) T) ((-1097 . -102) T) ((-999 . -102) T) ((-584 . -111) 129095) ((-1135 . -309) 129033) ((-1202 . -1045) T) ((-1056 . -1018) T) ((-66 . -1208) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-707 . -1045) T) ((-385 . -21) T) ((-385 . -25) T) ((-689 . -514) NIL) ((-1020 . -172) T) ((-707 . -243) T) ((-1056 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -610) 129015) ((-394 . -610) 128997) ((-474 . -722) T) ((-1113 . -844) T) ((-888 . -1034) 128965) ((-108 . -846) T) ((-653 . -1051) 128949) ((-487 . -131) T) ((-1243 . -1052) T) ((-217 . -131) T) ((-1149 . -102) 128927) ((-99 . -1093) T) ((-245 . -661) 128911) ((-245 . -646) 128895) ((-653 . -111) 128874) ((-584 . -613) 128858) ((-316 . -411) 128842) ((-245 . -373) 128826) ((-1152 . -235) 128773) ((-995 . -231) 128757) ((-74 . -1208) T) ((-48 . -172) T) ((-696 . -387) T) ((-696 . -143) T) ((-1280 . -102) T) ((-1188 . -613) 128739) ((-1080 . -1051) 128582) ((-264 . -905) 128561) ((-247 . -905) 128540) ((-778 . -1051) 128363) ((-776 . -1051) 128206) ((-605 . -1208) T) ((-1157 . -610) 128188) ((-1080 . -111) 128017) ((-1042 . -102) T) ((-475 . -1208) T) ((-461 . -1051) 127988) ((-454 . -1051) 127831) ((-659 . -643) 127815) ((-867 . -307) T) ((-778 . -111) 127624) ((-776 . -111) 127453) ((-355 . -643) 127405) ((-352 . -643) 127357) ((-344 . -643) 127309) ((-264 . -643) 127234) ((-247 . -643) 127159) ((-1151 . -846) T) ((-1081 . -1034) 127143) ((-461 . -111) 127104) ((-454 . -111) 126933) ((-1069 . -1034) 126910) ((-996 . -34) T) ((-962 . -610) 126892) ((-954 . -1208) T) ((-126 . -1006) 126876) ((-959 . -1105) T) ((-867 . -1018) NIL) ((-731 . -1105) T) ((-711 . -1105) T) ((-653 . -613) 126794) ((-1257 . -489) 126778) ((-1135 . -38) 126738) ((-959 . -23) T) ((-861 . -1093) T) ((-839 . -102) T) ((-813 . -21) T) ((-813 . -25) T) ((-731 . -23) T) ((-711 . -23) T) ((-110 . -656) T) ((-906 . -643) 126703) ((-580 . -1051) 126668) ((-518 . -1051) 126613) ((-227 . -57) 126571) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-689 . -290) T) ((-862 . -38) 126541) ((-580 . -111) 126497) ((-518 . -111) 126426) ((-1080 . -613) 126162) ((-418 . -1105) T) ((-316 . -1052) 126052) ((-313 . -1052) T) ((-128 . -1208) T) ((-778 . -613) 125800) ((-776 . -613) 125566) ((-653 . -1045) T) ((-1285 . -1093) T) ((-454 . -613) 125351) ((-169 . -307) 125282) ((-418 . -23) T) ((-40 . -610) 125264) ((-40 . -611) 125248) ((-108 . -988) 125230) ((-116 . -865) 125214) ((-644 . -613) 125198) ((-48 . -514) 125164) ((-1194 . -1006) 125148) ((-1174 . -610) 125115) ((-1181 . -34) T) ((-950 . -610) 125081) ((-917 . -610) 125063) ((-1106 . -846) 125014) ((-767 . -610) 124996) ((-667 . -610) 124978) ((-1149 . -309) 124916) ((-479 . -34) T) ((-1085 . -1208) T) ((-477 . -452) T) ((-1134 . -34) T) ((-1080 . -1045) T) ((-50 . -613) 124885) ((-778 . -1045) T) ((-776 . -1045) T) ((-642 . -235) 124869) ((-629 . -235) 124815) ((-580 . -613) 124765) ((-518 . -613) 124695) ((-1230 . -307) 124674) ((-1080 . -326) 124635) ((-454 . -1045) T) ((-1171 . -21) T) ((-1080 . -233) 124614) ((-778 . -326) 124591) ((-778 . -233) T) ((-776 . -326) 124563) ((-727 . -1212) 124542) ((-327 . -646) 124526) ((-1171 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124505) ((-327 . -373) 124489) ((-497 . -34) T) ((-496 . -34) T) ((-999 . -1144) NIL) ((-727 . -555) 124420) ((-632 . -102) T) ((-604 . -102) T) ((-355 . -722) T) ((-352 . -722) T) ((-344 . -722) T) ((-264 . -722) T) ((-247 . -722) T) ((-1042 . -309) 124328) ((-897 . -1093) 124306) ((-50 . -1045) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-1167 . -555) 124285) ((-1166 . -1212) 124264) ((-580 . -1045) T) ((-518 . -1045) T) ((-1160 . -1212) 124243) ((-361 . -1034) 124227) ((-322 . -1034) 124211) ((-1020 . -290) T) ((-379 . -882) 124193) ((-1166 . -555) 124144) ((-1160 . -555) 124095) ((-999 . -38) 124040) ((-795 . -1105) T) ((-906 . -722) T) ((-580 . -243) T) ((-580 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1119 . -555) 124019) ((-354 . -290) T) ((-642 . -690) 124003) ((-379 . -1034) 123963) ((-1113 . -1052) T) ((-103 . -125) 123947) ((-795 . -23) T) ((-1279 . -1274) 123923) ((-1257 . -286) 123900) ((-407 . -309) 123865) ((-1277 . -1274) 123844) ((-1243 . -1093) T) ((-866 . -610) 123826) ((-832 . -1034) 123795) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-200 . -783) T) ((-199 . -783) T) ((-198 . -783) T) ((-197 . -783) T) ((-196 . -783) T) ((-195 . -783) T) ((-194 . -783) T) ((-547 . -610) 123777) ((-495 . -998) T) ((-274 . -835) T) ((-273 . -835) T) ((-272 . -835) T) ((-271 . -835) T) ((-48 . -290) T) ((-270 . -835) T) ((-269 . -835) T) ((-268 . -835) T) ((-193 . -783) T) ((-609 . -846) T) ((-649 . -411) 123761) ((-223 . -613) 123723) ((-110 . -846) T) ((-648 . -21) T) ((-648 . -25) T) ((-1280 . -38) 123693) ((-117 . -286) 123644) ((-1257 . -19) 123628) ((-1257 . -601) 123605) ((-1270 . -1093) T) ((-1070 . -1093) T) ((-983 . -1093) T) ((-959 . -131) T) ((-733 . -1093) T) ((-731 . -131) T) ((-711 . -131) T) ((-511 . -789) T) ((-407 . -1144) 123583) ((-453 . -131) T) ((-511 . -790) T) ((-223 . -1045) T) ((-294 . -102) 123365) ((-141 . -1093) T) ((-694 . -998) T) ((-91 . -1208) T) ((-127 . -610) 123297) ((-121 . -610) 123229) ((-1285 . -172) T) ((-1166 . -363) 123208) ((-1160 . -363) 123187) ((-316 . -1093) T) ((-418 . -131) T) ((-313 . -1093) T) ((-407 . -38) 123139) ((-1126 . -102) T) ((-1243 . -713) 123031) ((-649 . -1052) T) ((-1128 . -1252) T) ((-319 . -145) 123010) ((-319 . -147) 122989) ((-139 . -1093) T) ((-136 . -1093) T) ((-114 . -1093) T) ((-854 . -102) T) ((-579 . -610) 122971) ((-563 . -611) 122870) ((-563 . -610) 122852) ((-495 . -610) 122834) ((-495 . -611) 122779) ((-485 . -23) T) ((-482 . -846) 122730) ((-487 . -636) 122712) ((-961 . -610) 122694) ((-217 . -636) 122676) ((-225 . -404) T) ((-657 . -643) 122660) ((-55 . -610) 122642) ((-1165 . -916) 122621) ((-727 . -1105) T) ((-351 . -102) T) ((-1207 . -1076) T) ((-1113 . -840) T) ((-814 . -846) T) ((-727 . -23) T) ((-343 . -1051) 122566) ((-1151 . -1150) T) ((-1140 . -107) 122550) ((-1167 . -1105) T) ((-1166 . -1105) T) ((-515 . -1034) 122534) ((-1160 . -1105) T) ((-1119 . -1105) T) ((-343 . -111) 122463) ((-1000 . -1212) T) ((-126 . -1208) T) ((-910 . -1212) T) ((-689 . -286) NIL) ((-1258 . -610) 122445) ((-1167 . -23) T) ((-1166 . -23) T) ((-1160 . -23) T) ((-1000 . -555) T) ((-1135 . -231) 122429) ((-910 . -555) T) ((-1119 . -23) T) ((-248 . -610) 122411) ((-1068 . -1093) T) ((-795 . -131) T) ((-706 . -610) 122393) ((-316 . -713) 122303) ((-313 . -713) 122232) ((-694 . -610) 122214) ((-694 . -611) 122159) ((-407 . -400) 122143) ((-438 . -1093) T) ((-487 . -25) T) ((-487 . -21) T) ((-1113 . -1093) T) ((-217 . -25) T) ((-217 . -21) T) ((-708 . -411) 122127) ((-710 . -1034) 122096) ((-1257 . -610) 122008) ((-1257 . -611) 121969) ((-1243 . -172) T) ((-245 . -34) T) ((-343 . -613) 121899) ((-394 . -613) 121881) ((-922 . -970) T) ((-1194 . -1208) T) ((-657 . -787) 121860) ((-657 . -790) 121839) ((-398 . -395) T) ((-523 . -102) 121817) ((-1031 . -1093) T) ((-222 . -991) 121801) ((-504 . -102) T) ((-620 . -610) 121783) ((-45 . -846) NIL) ((-620 . -611) 121760) ((-1031 . -607) 121735) ((-897 . -514) 121668) ((-343 . -1045) T) ((-117 . -611) NIL) ((-117 . -610) 121650) ((-868 . -1208) T) ((-665 . -417) 121634) ((-665 . -1116) 121579) ((-500 . -151) 121561) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1051) 121506) ((-868 . -880) 121490) ((-868 . -882) 121415) ((-708 . -1052) T) ((-689 . -998) NIL) ((-3 . |UnionCategory|) T) ((-1241 . -47) 121385) ((-1220 . -47) 121362) ((-1134 . -1006) 121333) ((-225 . -916) T) ((-40 . -111) 121262) ((-868 . -1034) 121126) ((-1113 . -713) 121113) ((-1098 . -610) 121095) ((-1073 . -147) 121074) ((-1073 . -145) 121025) ((-1000 . -363) T) ((-319 . -1196) 120991) ((-379 . -307) T) ((-319 . -1193) 120957) ((-316 . -172) 120936) ((-313 . -172) T) ((-999 . -231) 120913) ((-910 . -363) T) ((-580 . -1276) 120900) ((-518 . -1276) 120877) ((-359 . -147) 120856) ((-359 . -145) 120807) ((-353 . -147) 120786) ((-353 . -145) 120737) ((-605 . -1184) 120713) ((-345 . -147) 120692) ((-345 . -145) 120643) ((-319 . -35) 120609) ((-475 . -1184) 120588) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120554) ((-379 . -1018) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120504) ((-649 . -1093) T) ((-605 . -107) 120451) ((-485 . -131) T) ((-475 . -107) 120401) ((-240 . -1105) 120311) ((-868 . -377) 120295) ((-868 . -338) 120279) ((-240 . -23) 120149) ((-40 . -613) 120079) ((-1056 . -916) T) ((-1056 . -816) T) ((-580 . -368) T) ((-518 . -368) T) ((-351 . -1144) T) ((-327 . -34) T) ((-44 . -417) 120063) ((-1174 . -613) 119998) ((-869 . -1208) T) ((-390 . -740) 119982) ((-1270 . -514) 119915) ((-727 . -131) T) ((-667 . -613) 119899) ((-1249 . -555) 119878) ((-1242 . -1212) 119857) ((-1242 . -555) 119808) ((-1221 . -1212) 119787) ((-311 . -1076) T) ((-1221 . -555) 119738) ((-733 . -514) 119671) ((-1220 . -1208) 119650) ((-1220 . -882) 119523) ((-889 . -1093) T) ((-144 . -840) T) ((-1220 . -880) 119493) ((-686 . -610) 119475) ((-1167 . -131) T) ((-523 . -309) 119413) ((-1166 . -131) T) ((-141 . -514) NIL) ((-1160 . -131) T) ((-1119 . -131) T) ((-1020 . -998) T) ((-1000 . -23) T) ((-351 . -38) 119378) ((-1000 . -1105) T) ((-910 . -1105) T) ((-82 . -610) 119360) ((-40 . -1045) T) ((-866 . -1051) 119347) ((-999 . -349) NIL) ((-868 . -896) 119306) ((-696 . -102) T) ((-967 . -23) T) ((-599 . -1208) T) ((-910 . -23) T) ((-866 . -111) 119291) ((-427 . -1105) T) ((-213 . -1093) T) ((-474 . -47) 119261) ((-134 . -102) T) ((-40 . -233) 119233) ((-40 . -243) T) ((-116 . -102) T) ((-594 . -555) 119212) ((-593 . -555) 119191) ((-689 . -610) 119173) ((-689 . -611) 119081) ((-316 . -514) 119047) ((-313 . -514) 118939) ((-1241 . -1034) 118923) ((-1220 . -1034) 118709) ((-995 . -411) 118693) ((-427 . -23) T) ((-1113 . -172) T) ((-1243 . -290) T) ((-649 . -713) 118663) ((-144 . -1093) T) ((-48 . -998) T) ((-407 . -231) 118647) ((-295 . -235) 118597) ((-867 . -916) T) ((-867 . -816) NIL) ((-866 . -613) 118569) ((-860 . -846) T) ((-1220 . -338) 118539) ((-1220 . -377) 118509) ((-222 . -1114) 118493) ((-1257 . -288) 118470) ((-1202 . -643) 118395) ((-959 . -21) T) ((-959 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-711 . -21) T) ((-711 . -25) T) ((-707 . -643) 118360) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-995 . -1052) T) ((-866 . -1045) T) ((-770 . -102) T) ((-1242 . -363) 118339) ((-1241 . -896) 118245) ((-1221 . -363) 118224) ((-1220 . -896) 118075) ((-1020 . -610) 118057) ((-407 . -824) 118010) ((-1167 . -493) 117976) ((-169 . -916) 117907) ((-1166 . -493) 117873) ((-1160 . -493) 117839) ((-708 . -1093) T) ((-1119 . -493) 117805) ((-579 . -1051) 117792) ((-563 . -1051) 117779) ((-495 . -1051) 117744) ((-316 . -290) 117723) ((-313 . -290) T) ((-354 . -610) 117705) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117684) ((-579 . -111) 117669) ((-563 . -111) 117654) ((-495 . -111) 117610) ((-1169 . -882) 117577) ((-897 . -489) 117561) ((-48 . -610) 117543) ((-48 . -611) 117488) ((-240 . -131) 117358) ((-1230 . -916) 117337) ((-812 . -1212) 117316) ((-388 . -490) 117297) ((-1031 . -514) 117141) ((-388 . -610) 117107) ((-812 . -555) 117038) ((-584 . -643) 117013) ((-264 . -47) 116985) ((-247 . -47) 116942) ((-531 . -509) 116919) ((-579 . -613) 116891) ((-563 . -613) 116863) ((-495 . -613) 116796) ((-996 . -1208) T) ((-694 . -1051) 116761) ((-1249 . -23) T) ((-1249 . -1105) T) ((-1242 . -1105) T) ((-1221 . -1105) T) ((-999 . -370) 116733) ((-112 . -368) T) ((-474 . -896) 116639) ((-1242 . -23) T) ((-900 . -610) 116621) ((-55 . -613) 116603) ((-91 . -107) 116587) ((-1202 . -722) T) ((-901 . -846) 116538) ((-696 . -1144) T) ((-694 . -111) 116494) ((-1221 . -23) T) ((-594 . -1105) T) ((-593 . -1105) T) ((-708 . -713) 116323) ((-707 . -722) T) ((-1113 . -290) T) ((-1000 . -131) T) ((-487 . -846) T) ((-967 . -131) T) ((-910 . -131) T) ((-795 . -25) T) ((-217 . -846) T) ((-795 . -21) T) ((-579 . -1045) T) ((-563 . -1045) T) ((-495 . -1045) T) ((-594 . -23) T) ((-343 . -1276) 116300) ((-319 . -452) 116279) ((-339 . -309) 116266) ((-593 . -23) T) ((-427 . -131) T) ((-653 . -643) 116240) ((-245 . -1006) 116224) ((-868 . -307) T) ((-1281 . -1271) 116208) ((-767 . -788) T) ((-767 . -791) T) ((-696 . -38) 116195) ((-563 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1143 . -235) 116145) ((-1080 . -905) 116124) ((-116 . -38) 116111) ((-209 . -796) T) ((-208 . -796) T) ((-207 . -796) T) ((-206 . -796) T) ((-868 . -1018) 116089) ((-1270 . -489) 116073) ((-778 . -905) 116052) ((-776 . -905) 116031) ((-1181 . -1208) T) ((-454 . -905) 116010) ((-733 . -489) 115994) ((-1080 . -643) 115919) ((-694 . -613) 115854) ((-778 . -643) 115779) ((-620 . -1051) 115766) ((-479 . -1208) T) ((-343 . -368) T) ((-141 . -489) 115748) ((-776 . -643) 115673) ((-1134 . -1208) T) ((-548 . -846) T) ((-461 . -643) 115644) ((-264 . -882) 115503) ((-247 . -882) NIL) ((-117 . -1051) 115448) ((-454 . -643) 115373) ((-659 . -1034) 115350) ((-620 . -111) 115335) ((-355 . -1034) 115319) ((-352 . -1034) 115303) ((-344 . -1034) 115287) ((-264 . -1034) 115131) ((-247 . -1034) 115007) ((-117 . -111) 114936) ((-59 . -1208) T) ((-519 . -1208) T) ((-516 . -1208) T) ((-497 . -1208) T) ((-496 . -1208) T) ((-437 . -610) 114918) ((-434 . -610) 114900) ((-3 . -102) T) ((-1023 . -1201) 114869) ((-829 . -102) T) ((-684 . -57) 114827) ((-694 . -1045) T) ((-50 . -643) 114801) ((-289 . -452) T) ((-476 . -1201) 114770) ((0 . -102) T) ((-580 . -643) 114735) ((-518 . -643) 114680) ((-49 . -102) T) ((-906 . -1034) 114667) ((-694 . -243) T) ((-1073 . -409) 114646) ((-727 . -636) 114594) ((-995 . -1093) T) ((-708 . -172) 114485) ((-620 . -613) 114380) ((-487 . -988) 114362) ((-264 . -377) 114346) ((-247 . -377) 114330) ((-399 . -1093) T) ((-1022 . -102) 114308) ((-339 . -38) 114292) ((-217 . -988) 114274) ((-117 . -613) 114204) ((-174 . -38) 114136) ((-1241 . -307) 114115) ((-1220 . -307) 114094) ((-653 . -722) T) ((-99 . -610) 114076) ((-1160 . -636) 114028) ((-485 . -25) T) ((-485 . -21) T) ((-1220 . -1018) 113980) ((-620 . -1045) T) ((-379 . -404) T) ((-390 . -102) T) ((-1098 . -615) 113895) ((-264 . -896) 113841) ((-247 . -896) 113818) ((-117 . -1045) T) ((-812 . -1105) T) ((-1080 . -722) T) ((-620 . -233) 113797) ((-618 . -102) T) ((-778 . -722) T) ((-776 . -722) T) ((-413 . -1105) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1213 . -846) T) ((-454 . -722) T) ((-812 . -23) T) ((-727 . -25) T) ((-727 . -21) T) ((-698 . -846) T) ((-1070 . -286) 113776) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -763) 113758) ((-689 . -1051) 113708) ((-1249 . -131) T) ((-1242 . -131) T) ((-1221 . -131) T) ((-1167 . -25) T) ((-1135 . -411) 113692) ((-632 . -367) 113624) ((-604 . -367) 113556) ((-1149 . -1142) 113540) ((-103 . -1093) 113518) ((-1167 . -21) T) ((-1166 . -21) T) ((-861 . -610) 113500) ((-995 . -713) 113448) ((-223 . -643) 113415) ((-689 . -111) 113349) ((-50 . -722) T) ((-1166 . -25) T) ((-351 . -349) T) ((-1160 . -21) T) ((-1073 . -452) 113300) ((-1160 . -25) T) ((-708 . -514) 113247) ((-580 . -722) T) ((-518 . -722) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-594 . -131) T) ((-593 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113226) ((-1215 . -102) T) ((-313 . -286) 113161) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-686 . -613) 113145) ((-1285 . -610) 113127) ((-1285 . -611) 113109) ((-1073 . -402) 113088) ((-1031 . -489) 113019) ((-563 . -791) T) ((-563 . -788) T) ((-1057 . -235) 112965) ((-359 . -402) 112916) ((-353 . -402) 112867) ((-345 . -402) 112818) ((-1272 . -1105) T) ((-689 . -613) 112753) ((-1272 . -23) T) ((-1259 . -102) T) ((-175 . -610) 112735) ((-1135 . -1052) T) ((-547 . -368) T) ((-665 . -740) 112719) ((-1171 . -145) 112698) ((-1171 . -147) 112677) ((-1139 . -1093) T) ((-1139 . -1065) 112646) ((-69 . -1208) T) ((-1020 . -1051) 112583) ((-862 . -1052) T) ((-240 . -636) 112489) ((-689 . -1045) T) ((-354 . -1051) 112434) ((-61 . -1208) T) ((-1020 . -111) 112350) ((-897 . -610) 112261) ((-689 . -243) T) ((-689 . -233) NIL) ((-839 . -844) 112240) ((-694 . -791) T) ((-694 . -788) T) ((-999 . -411) 112217) ((-354 . -111) 112146) ((-379 . -916) T) ((-407 . -844) 112125) ((-708 . -290) 112036) ((-223 . -722) T) ((-1249 . -493) 112002) ((-1242 . -493) 111968) ((-1221 . -493) 111934) ((-577 . -1093) T) ((-316 . -998) 111913) ((-222 . -1093) 111891) ((-319 . -969) 111853) ((-105 . -102) T) ((-48 . -1051) 111818) ((-1281 . -102) T) ((-381 . -102) T) ((-48 . -111) 111774) ((-1000 . -636) 111756) ((-1243 . -610) 111738) ((-531 . -102) T) ((-500 . -102) T) ((-1126 . -1127) 111722) ((-152 . -1264) 111706) ((-245 . -1208) T) ((-1207 . -102) T) ((-1020 . -613) 111643) ((-1165 . -1212) 111622) ((-354 . -613) 111552) ((-1118 . -1212) 111531) ((-240 . -21) 111441) ((-240 . -25) 111292) ((-127 . -119) 111276) ((-121 . -119) 111260) ((-44 . -740) 111244) ((-1165 . -555) 111155) ((-1118 . -555) 111086) ((-1031 . -286) 111061) ((-1159 . -1076) T) ((-990 . -1076) T) ((-812 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1105) 110971) ((-250 . -1105) 110881) ((-1020 . -1045) T) ((-999 . -1052) T) ((-48 . -613) 110814) ((-343 . -643) 110759) ((-618 . -38) 110743) ((-1270 . -610) 110705) ((-1270 . -611) 110666) ((-1070 . -610) 110648) ((-1020 . -243) T) ((-354 . -1045) T) ((-811 . -1264) 110618) ((-251 . -23) T) ((-250 . -23) T) ((-983 . -610) 110600) ((-733 . -611) 110561) ((-733 . -610) 110543) ((-795 . -846) 110522) ((-1152 . -151) 110469) ((-995 . -514) 110381) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -613) 110362) ((-1000 . -25) T) ((-141 . -610) 110344) ((-141 . -611) 110303) ((-906 . -307) T) ((-1000 . -21) T) ((-967 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-839 . -411) 110287) ((-48 . -1045) T) ((-1279 . -1271) 110271) ((-1277 . -1271) 110255) ((-1031 . -601) 110230) ((-316 . -611) 110091) ((-316 . -610) 110073) ((-313 . -611) NIL) ((-313 . -610) 110055) ((-48 . -243) T) ((-48 . -233) T) ((-649 . -286) 110016) ((-549 . -235) 109966) ((-139 . -610) 109933) ((-136 . -610) 109915) ((-114 . -610) 109897) ((-477 . -38) 109862) ((-1281 . -1278) 109841) ((-1272 . -131) T) ((-1280 . -1052) T) ((-1075 . -102) T) ((-88 . -1208) T) ((-500 . -309) NIL) ((-996 . -107) 109825) ((-885 . -1093) T) ((-881 . -1093) T) ((-1257 . -646) 109809) ((-1257 . -373) 109793) ((-327 . -1208) T) ((-591 . -846) T) ((-1135 . -1093) T) ((-1135 . -1048) 109733) ((-103 . -514) 109666) ((-923 . -610) 109648) ((-343 . -722) T) ((-30 . -610) 109630) ((-862 . -1093) T) ((-839 . -1052) 109609) ((-40 . -643) 109554) ((-225 . -1212) T) ((-407 . -1052) T) ((-1151 . -151) 109536) ((-995 . -290) 109487) ((-614 . -1093) T) ((-225 . -555) T) ((-319 . -1238) 109471) ((-319 . -1235) 109441) ((-1181 . -1184) 109420) ((-1068 . -610) 109402) ((-642 . -151) 109386) ((-629 . -151) 109332) ((-1181 . -107) 109282) ((-479 . -1184) 109261) ((-487 . -147) T) ((-487 . -145) NIL) ((-1113 . -611) 109176) ((-438 . -610) 109158) ((-217 . -147) T) ((-217 . -145) NIL) ((-1113 . -610) 109140) ((-129 . -102) T) ((-52 . -102) T) ((-1221 . -636) 109092) ((-479 . -107) 109042) ((-989 . -23) T) ((-1281 . -38) 109012) ((-1165 . -1105) T) ((-1118 . -1105) T) ((-1056 . -1212) T) ((-311 . -102) T) ((-850 . -1105) T) ((-948 . -1212) 108991) ((-481 . -1212) 108970) ((-727 . -846) 108949) ((-1056 . -555) T) ((-948 . -555) 108880) ((-1165 . -23) T) ((-1118 . -23) T) ((-850 . -23) T) ((-481 . -555) 108811) ((-1135 . -713) 108743) ((-1139 . -514) 108676) ((-1031 . -611) NIL) ((-1031 . -610) 108658) ((-96 . -1076) T) ((-862 . -713) 108628) ((-1202 . -47) 108597) ((-251 . -131) T) ((-250 . -131) T) ((-1097 . -1093) T) ((-999 . -1093) T) ((-62 . -610) 108579) ((-1160 . -846) NIL) ((-1020 . -788) T) ((-1020 . -791) T) ((-1285 . -1051) 108566) ((-1285 . -111) 108551) ((-866 . -643) 108538) ((-1249 . -25) T) ((-1249 . -21) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1023 . -151) 108522) ((-868 . -816) 108501) ((-868 . -916) T) ((-708 . -286) 108428) ((-594 . -21) T) ((-594 . -25) T) ((-593 . -21) T) ((-40 . -722) T) ((-222 . -514) 108361) ((-593 . -25) T) ((-476 . -151) 108345) ((-463 . -151) 108329) ((-917 . -790) T) ((-917 . -722) T) ((-767 . -789) T) ((-767 . -790) T) ((-506 . -1093) T) ((-502 . -1093) T) ((-767 . -722) T) ((-225 . -363) T) ((-1149 . -1093) 108307) ((-867 . -1212) T) ((-649 . -610) 108289) ((-867 . -555) T) ((-689 . -368) NIL) ((-1285 . -613) 108271) ((-359 . -1264) 108255) ((-665 . -102) T) ((-353 . -1264) 108239) ((-345 . -1264) 108223) ((-1280 . -1093) T) ((-520 . -846) 108202) ((-813 . -452) 108181) ((-1042 . -1093) T) ((-1042 . -1065) 108110) ((-1023 . -972) 108079) ((-815 . -1105) T) ((-999 . -713) 108024) ((-386 . -1105) T) ((-476 . -972) 107993) ((-463 . -972) 107962) ((-110 . -151) 107944) ((-73 . -610) 107926) ((-889 . -610) 107908) ((-1073 . -720) 107887) ((-1285 . -1045) T) ((-812 . -636) 107835) ((-294 . -1052) 107777) ((-169 . -1212) 107682) ((-225 . -1105) T) ((-324 . -23) T) ((-1160 . -988) 107634) ((-839 . -1093) T) ((-1243 . -1051) 107539) ((-1119 . -736) 107518) ((-1241 . -916) 107497) ((-1220 . -916) 107476) ((-866 . -722) T) ((-169 . -555) 107387) ((-579 . -643) 107374) ((-563 . -643) 107361) ((-407 . -1093) T) ((-263 . -1093) T) ((-213 . -610) 107343) ((-495 . -643) 107308) ((-225 . -23) T) ((-1220 . -816) 107261) ((-1279 . -102) T) ((-354 . -1276) 107238) ((-1277 . -102) T) ((-1243 . -111) 107130) ((-144 . -610) 107112) ((-989 . -131) T) ((-44 . -102) T) ((-240 . -846) 107063) ((-1230 . -1212) 107042) ((-103 . -489) 107026) ((-1280 . -713) 106996) ((-1080 . -47) 106957) ((-1056 . -1105) T) ((-948 . -1105) T) ((-127 . -34) T) ((-121 . -34) T) ((-778 . -47) 106934) ((-776 . -47) 106906) ((-1230 . -555) 106817) ((-354 . -368) T) ((-481 . -1105) T) ((-1165 . -131) T) ((-1118 . -131) T) ((-454 . -47) 106796) ((-867 . -363) T) ((-850 . -131) T) ((-152 . -102) T) ((-1056 . -23) T) ((-948 . -23) T) ((-570 . -555) T) ((-812 . -25) T) ((-812 . -21) T) ((-1135 . -514) 106729) ((-590 . -1076) T) ((-584 . -1034) 106713) ((-1243 . -613) 106587) ((-481 . -23) T) ((-351 . -1052) T) ((-1202 . -896) 106568) ((-665 . -309) 106506) ((-1106 . -1264) 106476) ((-694 . -643) 106441) ((-999 . -172) T) ((-959 . -145) 106420) ((-632 . -1093) T) ((-604 . -1093) T) ((-959 . -147) 106399) ((-1000 . -846) T) ((-731 . -147) 106378) ((-731 . -145) 106357) ((-967 . -846) T) ((-474 . -916) 106336) ((-316 . -1051) 106246) ((-313 . -1051) 106175) ((-995 . -286) 106133) ((-407 . -713) 106085) ((-696 . -844) T) ((-1243 . -1045) T) ((-316 . -111) 105981) ((-313 . -111) 105894) ((-960 . -102) T) ((-811 . -102) 105684) ((-708 . -611) NIL) ((-708 . -610) 105666) ((-653 . -1034) 105562) ((-1243 . -326) 105506) ((-1031 . -288) 105481) ((-579 . -722) T) ((-563 . -790) T) ((-169 . -363) 105432) ((-563 . -787) T) ((-563 . -722) T) ((-495 . -722) T) ((-1139 . -489) 105416) ((-1080 . -882) NIL) ((-867 . -1105) T) ((-117 . -905) NIL) ((-1279 . -1278) 105392) ((-1277 . -1278) 105371) ((-778 . -882) NIL) ((-776 . -882) 105230) ((-1272 . -25) T) ((-1272 . -21) T) ((-1205 . -102) 105208) ((-1099 . -395) T) ((-620 . -643) 105195) ((-454 . -882) NIL) ((-670 . -102) 105173) ((-1080 . -1034) 105000) ((-867 . -23) T) ((-778 . -1034) 104859) ((-776 . -1034) 104716) ((-117 . -643) 104661) ((-454 . -1034) 104537) ((-316 . -613) 104101) ((-313 . -613) 103984) ((-644 . -1034) 103968) ((-624 . -102) T) ((-222 . -489) 103952) ((-1257 . -34) T) ((-136 . -613) 103936) ((-632 . -713) 103920) ((-604 . -713) 103904) ((-665 . -38) 103864) ((-319 . -102) T) ((-85 . -610) 103846) ((-50 . -1034) 103830) ((-1113 . -1051) 103817) ((-1080 . -377) 103801) ((-778 . -377) 103785) ((-694 . -722) T) ((-694 . -790) T) ((-694 . -787) T) ((-580 . -1034) 103772) ((-518 . -1034) 103749) ((-60 . -57) 103711) ((-324 . -131) T) ((-316 . -1045) 103601) ((-313 . -1045) T) ((-169 . -1105) T) ((-776 . -377) 103585) ((-45 . -151) 103535) ((-1000 . -988) 103517) ((-454 . -377) 103501) ((-407 . -172) T) ((-316 . -243) 103480) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1093) 103262) ((-225 . -131) T) ((-1113 . -111) 103247) ((-169 . -23) T) ((-795 . -147) 103226) ((-795 . -145) 103205) ((-251 . -636) 103111) ((-250 . -636) 103017) ((-319 . -284) 102983) ((-1149 . -514) 102916) ((-1126 . -1093) T) ((-225 . -1054) T) ((-811 . -309) 102854) ((-1080 . -896) 102789) ((-778 . -896) 102732) ((-776 . -896) 102716) ((-1279 . -38) 102686) ((-1277 . -38) 102656) ((-1230 . -1105) T) ((-851 . -1105) T) ((-454 . -896) 102633) ((-854 . -1093) T) ((-1230 . -23) T) ((-1113 . -613) 102605) ((-570 . -1105) T) ((-851 . -23) T) ((-620 . -722) T) ((-355 . -916) T) ((-352 . -916) T) ((-289 . -102) T) ((-344 . -916) T) ((-1056 . -131) T) ((-966 . -1076) T) ((-948 . -131) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-117 . -722) T) ((-689 . -905) NIL) ((-1042 . -514) 102506) ((-481 . -131) T) ((-570 . -23) T) ((-670 . -309) 102444) ((-632 . -757) T) ((-604 . -757) T) ((-1221 . -846) NIL) ((-999 . -290) T) ((-251 . -21) T) ((-689 . -643) 102394) ((-351 . -1093) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102378) ((-2 . -102) T) ((-906 . -916) T) ((-482 . -1264) 102348) ((-223 . -1034) 102325) ((-1113 . -1045) T) ((-707 . -307) T) ((-294 . -713) 102267) ((-696 . -1052) T) ((-487 . -452) T) ((-407 . -514) 102179) ((-217 . -452) T) ((-1113 . -233) T) ((-295 . -151) 102129) ((-995 . -611) 102090) ((-995 . -610) 102072) ((-985 . -610) 102054) ((-116 . -1052) T) ((-649 . -1051) 102038) ((-225 . -493) T) ((-399 . -610) 102020) ((-399 . -611) 101997) ((-1049 . -1264) 101967) ((-649 . -111) 101946) ((-1135 . -489) 101930) ((-811 . -38) 101900) ((-63 . -441) T) ((-63 . -395) T) ((-1152 . -102) T) ((-867 . -131) T) ((-484 . -102) 101878) ((-1285 . -368) T) ((-1073 . -102) T) ((-1055 . -102) T) ((-351 . -713) 101823) ((-727 . -147) 101802) ((-727 . -145) 101781) ((-649 . -613) 101699) ((-1020 . -643) 101636) ((-523 . -1093) 101614) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1093) T) ((-354 . -643) 101559) ((-1165 . -636) 101507) ((-1118 . -636) 101455) ((-385 . -509) 101434) ((-829 . -844) 101413) ((-379 . -1212) T) ((-689 . -722) T) ((-339 . -1052) T) ((-1221 . -988) 101365) ((-174 . -1052) T) ((-103 . -610) 101297) ((-1167 . -145) 101276) ((-1167 . -147) 101255) ((-379 . -555) T) ((-1166 . -147) 101234) ((-1166 . -145) 101213) ((-1160 . -145) 101120) ((-407 . -290) T) ((-1160 . -147) 101027) ((-1119 . -147) 101006) ((-1119 . -145) 100985) ((-319 . -38) 100826) ((-169 . -131) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-649 . -1045) T) ((-48 . -643) 100791) ((-889 . -613) 100768) ((-1159 . -102) T) ((-990 . -102) T) ((-989 . -21) T) ((-127 . -1006) 100752) ((-121 . -1006) 100736) ((-989 . -25) T) ((-897 . -119) 100720) ((-1151 . -102) T) ((-812 . -846) 100699) ((-1230 . -131) T) ((-1165 . -25) T) ((-1165 . -21) T) ((-851 . -131) T) ((-1118 . -25) T) ((-1118 . -21) T) ((-850 . -25) T) ((-850 . -21) T) ((-778 . -307) 100678) ((-642 . -102) 100656) ((-629 . -102) T) ((-1152 . -309) 100451) ((-570 . -131) T) ((-618 . -844) 100430) ((-1149 . -489) 100414) ((-1143 . -151) 100364) ((-1139 . -610) 100326) ((-1139 . -611) 100287) ((-1020 . -787) T) ((-1020 . -790) T) ((-1020 . -722) T) ((-708 . -1051) 100110) ((-484 . -309) 100048) ((-453 . -417) 100018) ((-351 . -172) T) ((-289 . -38) 100005) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1034) 99982) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -722) T) ((-708 . -111) 99791) ((-665 . -231) 99775) ((-580 . -307) T) ((-518 . -307) T) ((-294 . -514) 99724) ((-108 . -309) NIL) ((-72 . -395) T) ((-1106 . -102) 99514) ((-829 . -411) 99498) ((-1113 . -791) T) ((-1113 . -788) T) ((-696 . -1093) T) ((-577 . -610) 99480) ((-379 . -363) T) ((-169 . -493) 99458) ((-222 . -610) 99390) ((-134 . -1093) T) ((-116 . -1093) T) ((-48 . -722) T) ((-1042 . -489) 99355) ((-141 . -425) 99337) ((-141 . -368) T) ((-1023 . -102) T) ((-512 . -509) 99316) ((-708 . -613) 99072) ((-476 . -102) T) ((-463 . -102) T) ((-1030 . -1105) T) ((-1174 . -1034) 99007) ((-1167 . -35) 98973) ((-1167 . -95) 98939) ((-1167 . -1196) 98905) ((-1167 . -1193) 98871) ((-1151 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1073 . -1144) 98850) ((-1166 . -1193) 98816) ((-1166 . -1196) 98782) ((-1030 . -23) T) ((-1166 . -95) 98748) ((-570 . -493) T) ((-1166 . -35) 98714) ((-1160 . -1193) 98680) ((-1160 . -1196) 98646) ((-1160 . -95) 98612) ((-361 . -1105) T) ((-359 . -1144) 98591) ((-353 . -1144) 98570) ((-345 . -1144) 98549) ((-1160 . -35) 98515) ((-1119 . -35) 98481) ((-1119 . -95) 98447) ((-108 . -1144) T) ((-1119 . -1196) 98413) ((-829 . -1052) 98392) ((-642 . -309) 98330) ((-629 . -309) 98181) ((-1119 . -1193) 98147) ((-708 . -1045) T) ((-1056 . -636) 98129) ((-1073 . -38) 97997) ((-948 . -636) 97945) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-379 . -1105) T) ((-324 . -25) T) ((-322 . -23) T) ((-939 . -846) 97924) ((-708 . -326) 97901) ((-481 . -636) 97849) ((-40 . -1034) 97737) ((-708 . -233) T) ((-696 . -713) 97724) ((-339 . -1093) T) ((-174 . -1093) T) ((-331 . -846) T) ((-418 . -452) 97674) ((-379 . -23) T) ((-359 . -38) 97639) ((-353 . -38) 97604) ((-345 . -38) 97569) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-832 . -1105) T) ((-108 . -38) 97519) ((-823 . -1105) T) ((-770 . -1093) T) ((-116 . -713) 97506) ((-667 . -1034) 97490) ((-609 . -102) T) ((-832 . -23) T) ((-823 . -23) T) ((-1149 . -286) 97467) ((-1106 . -309) 97405) ((-1095 . -235) 97389) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97366) ((-96 . -102) T) ((-648 . -848) 97350) ((-1128 . -1076) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-811 . -231) 97319) ((-948 . -25) T) ((-948 . -21) T) ((-618 . -1052) T) ((-1113 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1023 . -309) 97257) ((-885 . -610) 97239) ((-881 . -610) 97221) ((-251 . -846) 97172) ((-250 . -846) 97123) ((-523 . -514) 97056) ((-867 . -636) 97033) ((-476 . -309) 96971) ((-463 . -309) 96909) ((-351 . -290) T) ((-1149 . -1245) 96893) ((-1135 . -610) 96855) ((-1135 . -611) 96816) ((-1133 . -102) T) ((-995 . -1051) 96712) ((-40 . -896) 96664) ((-1149 . -601) 96641) ((-1285 . -643) 96628) ((-862 . -490) 96605) ((-1057 . -151) 96551) ((-868 . -1212) T) ((-995 . -111) 96433) ((-339 . -713) 96417) ((-862 . -610) 96379) ((-174 . -713) 96311) ((-407 . -286) 96269) ((-868 . -555) T) ((-108 . -400) 96251) ((-84 . -384) T) ((-84 . -395) T) ((-696 . -172) T) ((-614 . -610) 96233) ((-99 . -722) T) ((-482 . -102) 96023) ((-99 . -473) T) ((-116 . -172) T) ((-1106 . -38) 95993) ((-169 . -636) 95941) ((-1049 . -102) T) ((-995 . -613) 95831) ((-867 . -25) T) ((-811 . -238) 95810) ((-867 . -21) T) ((-814 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95788) ((-127 . -1208) T) ((-121 . -1208) T) ((-1030 . -131) T) ((-665 . -367) 95772) ((-995 . -1045) T) ((-1230 . -636) 95720) ((-1097 . -610) 95702) ((-999 . -610) 95684) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1093) T) ((-999 . -611) 95668) ((-995 . -243) 95647) ((-995 . -233) 95626) ((-1285 . -722) T) ((-1249 . -145) 95605) ((-829 . -1093) T) ((-1249 . -147) 95584) ((-1242 . -147) 95563) ((-1242 . -145) 95542) ((-1241 . -1212) 95521) ((-1221 . -145) 95428) ((-1221 . -147) 95335) ((-1220 . -1212) 95314) ((-379 . -131) T) ((-563 . -882) 95296) ((0 . -1093) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1093) T) ((-1243 . -643) 95201) ((-1241 . -555) 95152) ((-710 . -1105) T) ((-1220 . -555) 95103) ((-563 . -1034) 95085) ((-593 . -147) 95064) ((-593 . -145) 95043) ((-495 . -1034) 94986) ((-1128 . -1130) T) ((-87 . -384) T) ((-87 . -395) T) ((-868 . -363) T) ((-832 . -131) T) ((-823 . -131) T) ((-710 . -23) T) ((-506 . -610) 94952) ((-502 . -610) 94934) ((-1281 . -1052) T) ((-379 . -1054) T) ((-1022 . -1093) 94912) ((-55 . -1034) 94894) ((-897 . -34) T) ((-482 . -309) 94832) ((-590 . -102) T) ((-1149 . -611) 94793) ((-1149 . -610) 94725) ((-1165 . -846) 94704) ((-45 . -102) T) ((-1118 . -846) 94683) ((-813 . -102) T) ((-1230 . -25) T) ((-1230 . -21) T) ((-851 . -25) T) ((-44 . -367) 94667) ((-851 . -21) T) ((-727 . -452) 94618) ((-1280 . -610) 94600) ((-1049 . -309) 94538) ((-666 . -1076) T) ((-603 . -1076) T) ((-390 . -1093) T) ((-570 . -25) T) ((-570 . -21) T) ((-180 . -1076) T) ((-161 . -1076) T) ((-156 . -1076) T) ((-154 . -1076) T) ((-618 . -1093) T) ((-694 . -882) 94520) ((-1257 . -1208) T) ((-227 . -309) 94458) ((-144 . -368) T) ((-1042 . -611) 94400) ((-1042 . -610) 94343) ((-313 . -905) NIL) ((-1215 . -840) T) ((-694 . -1034) 94288) ((-707 . -916) T) ((-474 . -1212) 94267) ((-1166 . -452) 94246) ((-1160 . -452) 94225) ((-330 . -102) T) ((-868 . -1105) T) ((-316 . -643) 94046) ((-313 . -643) 93975) ((-474 . -555) 93926) ((-339 . -514) 93892) ((-549 . -151) 93842) ((-40 . -307) T) ((-839 . -610) 93824) ((-696 . -290) T) ((-868 . -23) T) ((-379 . -493) T) ((-1073 . -231) 93794) ((-512 . -102) T) ((-407 . -611) 93601) ((-407 . -610) 93583) ((-263 . -610) 93565) ((-116 . -290) T) ((-1243 . -722) T) ((-1241 . -363) 93544) ((-1220 . -363) 93523) ((-1270 . -34) T) ((-1215 . -1093) T) ((-117 . -1208) T) ((-108 . -231) 93505) ((-1171 . -102) T) ((-477 . -1093) T) ((-523 . -489) 93489) ((-733 . -34) T) ((-482 . -38) 93459) ((-141 . -34) T) ((-117 . -880) 93436) ((-117 . -882) NIL) ((-620 . -1034) 93319) ((-640 . -846) 93298) ((-1269 . -102) T) ((-295 . -102) T) ((-708 . -368) 93277) ((-117 . -1034) 93254) ((-390 . -713) 93238) ((-618 . -713) 93222) ((-45 . -309) 93026) ((-812 . -145) 93005) ((-812 . -147) 92984) ((-1280 . -382) 92963) ((-815 . -846) T) ((-1259 . -1093) T) ((-1152 . -229) 92910) ((-386 . -846) 92889) ((-1249 . -1196) 92855) ((-1249 . -1193) 92821) ((-1242 . -1193) 92787) ((-515 . -131) T) ((-1242 . -1196) 92753) ((-1221 . -1193) 92719) ((-1221 . -1196) 92685) ((-1249 . -35) 92651) ((-1249 . -95) 92617) ((-632 . -610) 92586) ((-604 . -610) 92555) ((-225 . -846) T) ((-1242 . -95) 92521) ((-1242 . -35) 92487) ((-1241 . -1105) T) ((-1113 . -643) 92474) ((-1221 . -95) 92440) ((-1220 . -1105) T) ((-591 . -151) 92422) ((-1073 . -349) 92401) ((-174 . -290) T) ((-117 . -377) 92378) ((-117 . -338) 92355) ((-1221 . -35) 92321) ((-866 . -307) T) ((-313 . -790) NIL) ((-313 . -787) NIL) ((-316 . -722) 92170) ((-313 . -722) T) ((-474 . -363) 92149) ((-359 . -349) 92128) ((-353 . -349) 92107) ((-345 . -349) 92086) ((-316 . -473) 92065) ((-1241 . -23) T) ((-1220 . -23) T) ((-714 . -1105) T) ((-710 . -131) T) ((-648 . -102) T) ((-477 . -713) 92030) ((-45 . -282) 91980) ((-105 . -1093) T) ((-68 . -610) 91962) ((-966 . -102) T) ((-860 . -102) T) ((-620 . -896) 91921) ((-1281 . -1093) T) ((-381 . -1093) T) ((-1207 . -1093) T) ((-1106 . -231) 91890) ((-82 . -1208) T) ((-1056 . -846) T) ((-948 . -846) 91869) ((-117 . -896) NIL) ((-778 . -916) 91848) ((-709 . -846) T) ((-531 . -1093) T) ((-500 . -1093) T) ((-355 . -1212) T) ((-352 . -1212) T) ((-344 . -1212) T) ((-264 . -1212) 91827) ((-247 . -1212) 91806) ((-533 . -856) T) ((-481 . -846) 91785) ((-1151 . -824) T) ((-1135 . -1051) 91769) ((-390 . -757) T) ((-689 . -1208) T) ((-686 . -1034) 91753) ((-355 . -555) T) ((-352 . -555) T) ((-344 . -555) T) ((-264 . -555) 91684) ((-247 . -555) 91615) ((-525 . -1076) T) ((-1135 . -111) 91594) ((-453 . -740) 91564) ((-862 . -1051) 91534) ((-813 . -38) 91476) ((-689 . -880) 91458) ((-689 . -882) 91440) ((-295 . -309) 91244) ((-906 . -1212) T) ((-665 . -411) 91228) ((-862 . -111) 91193) ((-689 . -1034) 91138) ((-1000 . -452) T) ((-906 . -555) T) ((-533 . -610) 91120) ((-580 . -916) T) ((-474 . -1105) T) ((-518 . -916) T) ((-1149 . -288) 91097) ((-910 . -452) T) ((-65 . -610) 91079) ((-629 . -229) 91025) ((-474 . -23) T) ((-1113 . -790) T) ((-868 . -131) T) ((-1113 . -787) T) ((-1272 . -1274) 91004) ((-1113 . -722) T) ((-649 . -643) 90978) ((-294 . -610) 90719) ((-1135 . -613) 90637) ((-1031 . -34) T) ((-811 . -844) 90616) ((-579 . -307) T) ((-563 . -307) T) ((-495 . -307) T) ((-1281 . -713) 90586) ((-689 . -377) 90568) ((-689 . -338) 90550) ((-477 . -172) T) ((-381 . -713) 90520) ((-862 . -613) 90455) ((-867 . -846) NIL) ((-563 . -1018) T) ((-495 . -1018) T) ((-1126 . -610) 90437) ((-1106 . -238) 90416) ((-214 . -102) T) ((-1143 . -102) T) ((-71 . -610) 90398) ((-1135 . -1045) T) ((-1171 . -38) 90295) ((-854 . -610) 90277) ((-563 . -545) T) ((-665 . -1052) T) ((-727 . -945) 90230) ((-1135 . -233) 90209) ((-1075 . -1093) T) ((-1030 . -25) T) ((-1030 . -21) T) ((-999 . -1051) 90154) ((-901 . -102) T) ((-862 . -1045) T) ((-689 . -896) NIL) ((-355 . -329) 90138) ((-355 . -363) T) ((-352 . -329) 90122) ((-352 . -363) T) ((-344 . -329) 90106) ((-344 . -363) T) ((-487 . -102) T) ((-1269 . -38) 90076) ((-546 . -846) T) ((-523 . -682) 90026) ((-217 . -102) T) ((-1020 . -1034) 89906) ((-999 . -111) 89835) ((-1167 . -969) 89804) ((-1166 . -969) 89766) ((-520 . -151) 89750) ((-1073 . -370) 89729) ((-351 . -610) 89711) ((-322 . -21) T) ((-354 . -1034) 89688) ((-322 . -25) T) ((-1160 . -969) 89657) ((-1119 . -969) 89624) ((-76 . -610) 89606) ((-694 . -307) T) ((-169 . -846) 89585) ((-129 . -840) T) ((-906 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-906 . -329) 89572) ((-86 . -610) 89554) ((-694 . -1018) T) ((-672 . -846) T) ((-1241 . -131) T) ((-1220 . -131) T) ((-897 . -1006) 89538) ((-832 . -21) T) ((-48 . -1034) 89481) ((-832 . -25) T) ((-823 . -25) T) ((-823 . -21) T) ((-1279 . -1052) T) ((-548 . -102) T) ((-1277 . -1052) T) ((-649 . -722) T) ((-1097 . -615) 89384) ((-999 . -613) 89314) ((-1280 . -1051) 89298) ((-1230 . -846) 89277) ((-811 . -411) 89246) ((-103 . -119) 89230) ((-129 . -1093) T) ((-52 . -1093) T) ((-922 . -610) 89212) ((-867 . -988) 89189) ((-819 . -102) T) ((-1280 . -111) 89168) ((-648 . -38) 89138) ((-570 . -846) T) ((-355 . -1105) T) ((-352 . -1105) T) ((-344 . -1105) T) ((-264 . -1105) T) ((-247 . -1105) T) ((-620 . -307) 89117) ((-1143 . -309) 88921) ((-524 . -1076) T) ((-311 . -1093) T) ((-659 . -23) T) ((-482 . -231) 88890) ((-152 . -1052) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-999 . -1045) T) ((-708 . -905) 88869) ((-1149 . -613) 88846) ((-999 . -233) 88818) ((-999 . -243) T) ((-117 . -1018) NIL) ((-906 . -1105) T) ((-1242 . -452) 88797) ((-1221 . -452) 88776) ((-523 . -610) 88708) ((-708 . -643) 88633) ((-407 . -1051) 88585) ((-504 . -610) 88567) ((-906 . -23) T) ((-487 . -309) NIL) ((-1280 . -613) 88523) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88461) ((-811 . -1052) 88391) ((-733 . -1091) 88375) ((-1241 . -493) 88341) ((-1220 . -493) 88307) ((-141 . -1091) 88289) ((-477 . -290) T) ((-1280 . -1045) T) ((-1213 . -102) T) ((-1057 . -102) T) ((-839 . -613) 88157) ((-500 . -514) NIL) ((-698 . -102) T) ((-482 . -238) 88136) ((-407 . -613) 88034) ((-1165 . -145) 88013) ((-1165 . -147) 87992) ((-1118 . -147) 87971) ((-1118 . -145) 87950) ((-632 . -1051) 87934) ((-604 . -1051) 87918) ((-665 . -1093) T) ((-665 . -1048) 87858) ((-1167 . -1248) 87842) ((-1167 . -1235) 87819) ((-487 . -1144) T) ((-1166 . -1240) 87780) ((-1166 . -1235) 87750) ((-1166 . -1238) 87734) ((-217 . -1144) T) ((-343 . -916) T) ((-814 . -266) 87718) ((-632 . -111) 87697) ((-604 . -111) 87676) ((-1160 . -1219) 87637) ((-839 . -1045) 87616) ((-1160 . -1235) 87593) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1160 . -1217) 87577) ((-407 . -1045) T) ((-319 . -1052) T) ((-689 . -307) T) ((-108 . -844) T) ((-708 . -722) T) ((-407 . -243) T) ((-407 . -233) 87556) ((-487 . -38) 87506) ((-217 . -38) 87456) ((-474 . -493) 87422) ((-1151 . -1137) T) ((-1094 . -102) T) ((-696 . -610) 87404) ((-696 . -611) 87319) ((-710 . -21) T) ((-710 . -25) T) ((-1128 . -102) T) ((-134 . -610) 87301) ((-116 . -610) 87283) ((-157 . -25) T) ((-1279 . -1093) T) ((-868 . -636) 87231) ((-1277 . -1093) T) ((-959 . -102) T) ((-731 . -102) T) ((-711 . -102) T) ((-453 . -102) T) ((-812 . -452) 87182) ((-44 . -1093) T) ((-1081 . -846) T) ((-659 . -131) T) ((-1057 . -309) 87033) ((-665 . -713) 87017) ((-289 . -1052) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1093) T) ((-45 . -229) 86967) ((-954 . -846) 86946) ((-995 . -643) 86884) ((-240 . -1264) 86854) ((-1020 . -307) T) ((-294 . -1051) 86775) ((-906 . -131) T) ((-40 . -916) T) ((-487 . -400) 86757) ((-354 . -307) T) ((-217 . -400) 86739) ((-1073 . -411) 86723) ((-294 . -111) 86639) ((-1176 . -846) T) ((-1175 . -846) T) ((-868 . -25) T) ((-868 . -21) T) ((-339 . -610) 86621) ((-1243 . -47) 86565) ((-225 . -147) T) ((-174 . -610) 86547) ((-1106 . -844) 86526) ((-770 . -610) 86508) ((-128 . -846) T) ((-605 . -235) 86455) ((-475 . -235) 86405) ((-1279 . -713) 86375) ((-48 . -307) T) ((-1277 . -713) 86345) ((-65 . -613) 86274) ((-960 . -1093) T) ((-811 . -1093) 86064) ((-312 . -102) T) ((-897 . -1208) T) ((-48 . -1018) T) ((-1220 . -636) 85972) ((-684 . -102) 85950) ((-44 . -713) 85934) ((-549 . -102) T) ((-294 . -613) 85865) ((-67 . -383) T) ((-67 . -395) T) ((-657 . -23) T) ((-665 . -757) T) ((-1205 . -1093) 85843) ((-351 . -1051) 85788) ((-670 . -1093) 85766) ((-1056 . -147) T) ((-948 . -147) 85745) ((-948 . -145) 85724) ((-795 . -102) T) ((-152 . -713) 85708) ((-481 . -147) 85687) ((-481 . -145) 85666) ((-351 . -111) 85595) ((-1073 . -1052) T) ((-322 . -846) 85574) ((-1249 . -969) 85543) ((-624 . -1093) T) ((-1242 . -969) 85505) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85455) ((-359 . -1052) T) ((-353 . -1052) T) ((-345 . -1052) T) ((-294 . -1045) 85397) ((-1221 . -969) 85366) ((-379 . -846) T) ((-108 . -1052) T) ((-995 . -722) T) ((-866 . -916) T) ((-839 . -791) 85345) ((-839 . -788) 85324) ((-418 . -309) 85263) ((-468 . -102) T) ((-593 . -969) 85232) ((-319 . -1093) T) ((-407 . -791) 85211) ((-407 . -788) 85190) ((-500 . -489) 85172) ((-1243 . -1034) 85138) ((-1241 . -21) T) ((-1241 . -25) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-811 . -713) 85080) ((-351 . -613) 85010) ((-694 . -404) T) ((-1270 . -1208) T) ((-603 . -102) T) ((-1106 . -411) 84979) ((-999 . -368) NIL) ((-666 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-733 . -1208) T) ((-44 . -757) T) ((-591 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-648 . -651) 84963) ((-141 . -1208) T) ((-867 . -147) T) ((-867 . -145) NIL) ((-1207 . -93) T) ((-351 . -1045) T) ((-70 . -383) T) ((-70 . -395) T) ((-1158 . -102) T) ((-665 . -514) 84896) ((-684 . -309) 84834) ((-959 . -38) 84731) ((-731 . -38) 84701) ((-549 . -309) 84505) ((-316 . -1208) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1208) T) ((-289 . -1093) T) ((-1173 . -610) 84487) ((-707 . -1212) T) ((-1149 . -646) 84471) ((-1202 . -555) 84450) ((-707 . -555) T) ((-316 . -880) 84434) ((-316 . -882) 84359) ((-313 . -880) 84320) ((-313 . -882) NIL) ((-795 . -309) 84285) ((-319 . -713) 84126) ((-324 . -323) 84103) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84077) ((-316 . -1034) 83740) ((-225 . -1193) T) ((-225 . -1196) T) ((-3 . -610) 83722) ((-313 . -1034) 83652) ((-2 . -1093) T) ((-2 . |RecordCategory|) T) ((-829 . -610) 83634) ((-1106 . -1052) 83564) ((-579 . -916) T) ((-563 . -816) T) ((-563 . -916) T) ((-495 . -916) T) ((-136 . -1034) 83548) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -610) 83530) ((-169 . -147) 83509) ((-169 . -145) 83460) ((-225 . -35) T) ((-49 . -610) 83442) ((-477 . -1052) T) ((-487 . -231) 83424) ((-484 . -964) 83408) ((-482 . -844) 83387) ((-217 . -231) 83369) ((-81 . -441) T) ((-81 . -395) T) ((-1139 . -34) T) ((-811 . -172) 83348) ((-727 . -102) T) ((-1022 . -610) 83315) ((-500 . -286) 83290) ((-316 . -377) 83259) ((-313 . -377) 83220) ((-313 . -338) 83181) ((-1078 . -610) 83163) ((-812 . -945) 83110) ((-657 . -131) T) ((-1230 . -145) 83089) ((-1230 . -147) 83068) ((-1167 . -102) T) ((-1166 . -102) T) ((-1160 . -102) T) ((-1152 . -1093) T) ((-1119 . -102) T) ((-222 . -34) T) ((-289 . -713) 83055) ((-1152 . -607) 83031) ((-591 . -309) NIL) ((-484 . -1093) 83009) ((-390 . -610) 82991) ((-510 . -846) T) ((-1143 . -229) 82941) ((-1249 . -1248) 82925) ((-1249 . -1235) 82902) ((-1242 . -1240) 82863) ((-1242 . -1235) 82833) ((-1242 . -1238) 82817) ((-1221 . -1219) 82778) ((-1221 . -1235) 82755) ((-618 . -610) 82737) ((-1221 . -1217) 82721) ((-694 . -916) T) ((-1167 . -284) 82687) ((-1166 . -284) 82653) ((-1160 . -284) 82619) ((-1073 . -1093) T) ((-1055 . -1093) T) ((-48 . -302) T) ((-316 . -896) 82585) ((-313 . -896) NIL) ((-1055 . -1062) 82564) ((-1113 . -882) 82546) ((-795 . -38) 82530) ((-264 . -636) 82478) ((-247 . -636) 82426) ((-696 . -1051) 82413) ((-593 . -1235) 82390) ((-1119 . -284) 82356) ((-319 . -172) 82287) ((-359 . -1093) T) ((-353 . -1093) T) ((-345 . -1093) T) ((-500 . -19) 82269) ((-1113 . -1034) 82251) ((-1095 . -151) 82235) ((-108 . -1093) T) ((-116 . -1051) 82222) ((-707 . -363) T) ((-500 . -601) 82197) ((-696 . -111) 82182) ((-436 . -102) T) ((-45 . -1142) 82132) ((-116 . -111) 82117) ((-632 . -716) T) ((-604 . -716) T) ((-811 . -514) 82050) ((-1031 . -1208) T) ((-939 . -151) 82034) ((-1215 . -610) 82016) ((-1165 . -452) 81947) ((-1159 . -1093) T) ((-1151 . -1093) T) ((-525 . -102) T) ((-520 . -102) 81897) ((-1135 . -643) 81871) ((-1118 . -452) 81822) ((-1080 . -1212) 81801) ((-778 . -1212) 81780) ((-776 . -1212) 81759) ((-62 . -1208) T) ((-477 . -610) 81711) ((-477 . -611) 81633) ((-1080 . -555) 81564) ((-990 . -1093) T) ((-778 . -555) 81475) ((-776 . -555) 81406) ((-482 . -411) 81375) ((-620 . -916) 81354) ((-454 . -1212) 81333) ((-727 . -309) 81320) ((-696 . -613) 81292) ((-398 . -610) 81274) ((-670 . -514) 81207) ((-659 . -25) T) ((-659 . -21) T) ((-454 . -555) 81138) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -916) T) ((-117 . -816) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -613) 81120) ((-116 . -613) 81092) ((-1259 . -610) 81074) ((-1214 . -846) T) ((-1202 . -1105) T) ((-1202 . -23) T) ((-1160 . -309) 80959) ((-1119 . -309) 80946) ((-1073 . -713) 80814) ((-862 . -643) 80774) ((-939 . -976) 80758) ((-906 . -21) T) ((-289 . -172) T) ((-906 . -25) T) ((-311 . -93) T) ((-868 . -846) 80709) ((-707 . -1105) T) ((-707 . -23) T) ((-696 . -1045) T) ((-642 . -1093) 80687) ((-629 . -1093) T) ((-580 . -1212) T) ((-518 . -1212) T) ((-696 . -233) T) ((-629 . -607) 80662) ((-580 . -555) T) ((-518 . -555) T) ((-359 . -713) 80614) ((-339 . -1051) 80598) ((-353 . -713) 80550) ((-345 . -713) 80502) ((-174 . -1051) 80434) ((-174 . -111) 80345) ((-108 . -713) 80295) ((-339 . -111) 80274) ((-274 . -1093) T) ((-273 . -1093) T) ((-272 . -1093) T) ((-271 . -1093) T) ((-270 . -1093) T) ((-269 . -1093) T) ((-268 . -1093) T) ((-212 . -1093) T) ((-211 . -1093) T) ((-169 . -1196) 80252) ((-169 . -1193) 80230) ((-209 . -1093) T) ((-208 . -1093) T) ((-116 . -1045) T) ((-207 . -1093) T) ((-206 . -1093) T) ((-203 . -1093) T) ((-202 . -1093) T) ((-201 . -1093) T) ((-200 . -1093) T) ((-199 . -1093) T) ((-198 . -1093) T) ((-197 . -1093) T) ((-196 . -1093) T) ((-195 . -1093) T) ((-194 . -1093) T) ((-193 . -1093) T) ((-240 . -102) 80020) ((-169 . -35) 79998) ((-169 . -95) 79976) ((-649 . -1034) 79872) ((-482 . -1052) 79802) ((-1106 . -1093) 79592) ((-1135 . -34) T) ((-665 . -489) 79576) ((-73 . -1208) T) ((-105 . -610) 79558) ((-1281 . -610) 79540) ((-381 . -610) 79522) ((-339 . -613) 79474) ((-174 . -613) 79391) ((-1207 . -490) 79372) ((-727 . -38) 79221) ((-570 . -1196) T) ((-570 . -1193) T) ((-531 . -610) 79203) ((-520 . -309) 79141) ((-500 . -610) 79123) ((-500 . -611) 79105) ((-1207 . -610) 79071) ((-1160 . -1144) NIL) ((-1023 . -1065) 79040) ((-1023 . -1093) T) ((-1000 . -102) T) ((-967 . -102) T) ((-910 . -102) T) ((-889 . -1034) 79017) ((-1135 . -722) T) ((-999 . -643) 78962) ((-476 . -1093) T) ((-463 . -1093) T) ((-584 . -23) T) ((-570 . -35) T) ((-570 . -95) T) ((-427 . -102) T) ((-1057 . -229) 78908) ((-1167 . -38) 78805) ((-862 . -722) T) ((-689 . -916) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1166 . -38) 78646) ((-339 . -1045) T) ((-1160 . -38) 78442) ((-1073 . -172) T) ((-174 . -1045) T) ((-1119 . -38) 78339) ((-708 . -47) 78316) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78290) ((-497 . -57) 78240) ((-351 . -1276) 78217) ((-225 . -452) T) ((-319 . -290) 78168) ((-345 . -172) T) ((-174 . -243) T) ((-1220 . -846) 78067) ((-108 . -172) T) ((-868 . -988) 78051) ((-653 . -1105) T) ((-580 . -363) T) ((-580 . -329) 78038) ((-518 . -329) 78015) ((-518 . -363) T) ((-316 . -307) 77994) ((-313 . -307) T) ((-599 . -846) 77973) ((-1106 . -713) 77915) ((-520 . -282) 77899) ((-653 . -23) T) ((-418 . -231) 77883) ((-313 . -1018) NIL) ((-336 . -23) T) ((-103 . -1006) 77867) ((-45 . -36) 77846) ((-609 . -1093) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77784) ((-1080 . -1105) T) ((-1280 . -643) 77758) ((-778 . -1105) T) ((-776 . -1105) T) ((-454 . -1105) T) ((-1056 . -452) T) ((-948 . -452) 77709) ((-1108 . -1076) T) ((-110 . -1093) T) ((-1080 . -23) T) ((-813 . -1052) T) ((-778 . -23) T) ((-776 . -23) T) ((-481 . -452) 77660) ((-1152 . -514) 77443) ((-381 . -382) 77422) ((-1171 . -411) 77406) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1093) T) ((-484 . -514) 77339) ((-289 . -290) T) ((-1075 . -610) 77321) ((-1075 . -611) 77302) ((-407 . -905) 77281) ((-50 . -1105) T) ((-1020 . -916) T) ((-999 . -722) T) ((-708 . -882) NIL) ((-580 . -1105) T) ((-518 . -1105) T) ((-839 . -643) 77254) ((-1202 . -131) T) ((-1160 . -400) 77206) ((-1000 . -309) NIL) ((-811 . -489) 77190) ((-354 . -916) T) ((-1149 . -34) T) ((-407 . -643) 77142) ((-50 . -23) T) ((-707 . -131) T) ((-708 . -1034) 77022) ((-580 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 76993) ((-1133 . -1093) T) ((-1272 . -1271) 76977) ((-696 . -791) T) ((-696 . -788) T) ((-1113 . -307) T) ((-379 . -147) T) ((-280 . -610) 76959) ((-1220 . -988) 76929) ((-48 . -916) T) ((-670 . -489) 76913) ((-251 . -1264) 76883) ((-250 . -1264) 76853) ((-1169 . -846) T) ((-1106 . -172) 76832) ((-1113 . -1018) T) ((-1042 . -34) T) ((-832 . -147) 76811) ((-832 . -145) 76790) ((-733 . -107) 76774) ((-609 . -132) T) ((-482 . -1093) 76564) ((-1171 . -1052) T) ((-867 . -452) T) ((-85 . -1208) T) ((-240 . -38) 76534) ((-141 . -107) 76516) ((-708 . -377) 76500) ((-829 . -613) 76368) ((-1113 . -545) T) ((-578 . -102) T) ((-129 . -490) 76350) ((-390 . -1051) 76334) ((-1280 . -722) T) ((-1165 . -945) 76303) ((-129 . -610) 76270) ((-52 . -610) 76252) ((-1118 . -945) 76219) ((-648 . -411) 76203) ((-1269 . -1052) T) ((-618 . -1051) 76187) ((-657 . -25) T) ((-657 . -21) T) ((-1151 . -514) NIL) ((-1249 . -102) T) ((-1242 . -102) T) ((-390 . -111) 76166) ((-222 . -254) 76150) ((-1221 . -102) T) ((-1049 . -1093) T) ((-1000 . -1144) T) ((-1049 . -1048) 76090) ((-814 . -1093) T) ((-343 . -1212) T) ((-632 . -643) 76074) ((-618 . -111) 76053) ((-604 . -643) 76037) ((-594 . -102) T) ((-311 . -490) 76018) ((-584 . -131) T) ((-593 . -102) T) ((-414 . -1093) T) ((-385 . -1093) T) ((-311 . -610) 75984) ((-227 . -1093) 75962) ((-642 . -514) 75895) ((-629 . -514) 75739) ((-829 . -1045) 75718) ((-640 . -151) 75702) ((-343 . -555) T) ((-708 . -896) 75645) ((-549 . -229) 75595) ((-1249 . -284) 75561) ((-1073 . -290) 75512) ((-487 . -844) T) ((-223 . -1105) T) ((-1242 . -284) 75478) ((-1221 . -284) 75444) ((-1000 . -38) 75394) ((-217 . -844) T) ((-1202 . -493) 75360) ((-910 . -38) 75312) ((-839 . -790) 75291) ((-839 . -787) 75270) ((-839 . -722) 75249) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75180) ((-427 . -38) 75164) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -790) 75143) ((-407 . -787) 75122) ((-407 . -722) T) ((-500 . -288) 75097) ((-477 . -1051) 75062) ((-653 . -131) T) ((-618 . -613) 75031) ((-1106 . -514) 74964) ((-336 . -131) T) ((-169 . -402) 74943) ((-482 . -713) 74885) ((-811 . -286) 74862) ((-477 . -111) 74818) ((-648 . -1052) T) ((-1230 . -452) 74749) ((-1268 . -1076) T) ((-1267 . -1076) T) ((-1080 . -131) T) ((-1049 . -713) 74691) ((-264 . -846) 74670) ((-247 . -846) 74649) ((-778 . -131) T) ((-776 . -131) T) ((-570 . -452) T) ((-1023 . -514) 74582) ((-618 . -1045) T) ((-590 . -1093) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1093) T) ((-385 . -713) 74552) ((-813 . -1093) T) ((-476 . -514) 74485) ((-463 . -514) 74418) ((-453 . -367) 74388) ((-45 . -607) 74367) ((-316 . -302) T) ((-477 . -613) 74317) ((-665 . -610) 74279) ((-59 . -846) 74258) ((-1221 . -309) 74143) ((-1000 . -400) 74125) ((-811 . -601) 74102) ((-516 . -846) 74081) ((-496 . -846) 74060) ((-40 . -1212) T) ((-995 . -1034) 73956) ((-50 . -131) T) ((-580 . -131) T) ((-518 . -131) T) ((-294 . -643) 73816) ((-343 . -329) 73793) ((-343 . -363) T) ((-322 . -323) 73770) ((-319 . -286) 73755) ((-40 . -555) T) ((-379 . -1193) T) ((-379 . -1196) T) ((-1031 . -1184) 73730) ((-1181 . -235) 73680) ((-1160 . -231) 73632) ((-330 . -1093) T) ((-379 . -95) T) ((-379 . -35) T) ((-1031 . -107) 73578) ((-477 . -1045) T) ((-479 . -235) 73528) ((-1152 . -489) 73462) ((-1281 . -1051) 73446) ((-381 . -1051) 73430) ((-477 . -243) T) ((-812 . -102) T) ((-710 . -147) 73409) ((-710 . -145) 73388) ((-484 . -489) 73372) ((-485 . -335) 73341) ((-1281 . -111) 73320) ((-512 . -1093) T) ((-482 . -172) 73299) ((-995 . -377) 73283) ((-413 . -102) T) ((-381 . -111) 73262) ((-995 . -338) 73246) ((-279 . -979) 73230) ((-278 . -979) 73214) ((-1279 . -610) 73196) ((-1277 . -610) 73178) ((-110 . -514) NIL) ((-1165 . -1233) 73162) ((-850 . -848) 73146) ((-1171 . -1093) T) ((-103 . -1208) T) ((-948 . -945) 73107) ((-813 . -713) 73049) ((-1221 . -1144) NIL) ((-481 . -945) 72994) ((-1056 . -143) T) ((-60 . -102) 72972) ((-44 . -610) 72954) ((-78 . -610) 72936) ((-351 . -643) 72881) ((-1269 . -1093) T) ((-511 . -846) T) ((-343 . -1105) T) ((-295 . -1093) T) ((-995 . -896) 72840) ((-295 . -607) 72819) ((-1281 . -613) 72768) ((-1249 . -38) 72665) ((-1242 . -38) 72506) ((-1221 . -38) 72302) ((-487 . -1052) T) ((-381 . -613) 72286) ((-217 . -1052) T) ((-343 . -23) T) ((-152 . -610) 72268) ((-829 . -791) 72247) ((-829 . -788) 72226) ((-1207 . -613) 72207) ((-594 . -38) 72180) ((-593 . -38) 72077) ((-866 . -555) T) ((-223 . -131) T) ((-319 . -998) 72043) ((-79 . -610) 72025) ((-708 . -307) 72004) ((-294 . -722) 71906) ((-820 . -102) T) ((-860 . -840) T) ((-294 . -473) 71885) ((-1272 . -102) T) ((-40 . -363) T) ((-868 . -147) 71864) ((-868 . -145) 71843) ((-1151 . -489) 71825) ((-1281 . -1045) T) ((-482 . -514) 71758) ((-1139 . -1208) T) ((-960 . -610) 71740) ((-642 . -489) 71724) ((-629 . -489) 71655) ((-811 . -610) 71386) ((-48 . -27) T) ((-1171 . -713) 71283) ((-648 . -1093) T) ((-857 . -856) T) ((-436 . -364) 71257) ((-1095 . -102) T) ((-966 . -1093) T) ((-860 . -1093) T) ((-812 . -309) 71244) ((-533 . -527) T) ((-533 . -575) T) ((-1277 . -382) 71216) ((-1049 . -514) 71149) ((-1152 . -286) 71125) ((-240 . -231) 71094) ((-1269 . -713) 71064) ((-1159 . -93) T) ((-990 . -93) T) ((-813 . -172) 71043) ((-1205 . -490) 71020) ((-227 . -514) 70953) ((-618 . -791) 70932) ((-618 . -788) 70911) ((-1205 . -610) 70823) ((-222 . -1208) T) ((-670 . -610) 70755) ((-1149 . -1006) 70739) ((-939 . -102) 70689) ((-351 . -722) T) ((-857 . -610) 70671) ((-1221 . -400) 70623) ((-1106 . -489) 70607) ((-60 . -309) 70545) ((-331 . -102) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-40 . -1105) T) ((-707 . -21) T) ((-624 . -610) 70527) ((-515 . -323) 70506) ((-707 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-917 . -1105) T) ((-40 . -23) T) ((-767 . -1105) T) ((-563 . -1212) T) ((-495 . -1212) T) ((-319 . -610) 70488) ((-1000 . -231) 70470) ((-169 . -166) 70454) ((-579 . -555) T) ((-563 . -555) T) ((-495 . -555) T) ((-767 . -23) T) ((-1241 . -147) 70433) ((-1152 . -601) 70409) ((-1241 . -145) 70388) ((-1023 . -489) 70372) ((-1220 . -145) 70297) ((-1220 . -147) 70222) ((-1272 . -1278) 70201) ((-476 . -489) 70185) ((-463 . -489) 70169) ((-523 . -34) T) ((-648 . -713) 70139) ((-112 . -963) T) ((-657 . -846) 70118) ((-1171 . -172) 70069) ((-365 . -102) T) ((-240 . -238) 70048) ((-251 . -102) T) ((-250 . -102) T) ((-1230 . -945) 70017) ((-245 . -846) 69996) ((-812 . -38) 69845) ((-45 . -514) 69637) ((-1151 . -286) 69612) ((-214 . -1093) T) ((-1143 . -1093) T) ((-1143 . -607) 69591) ((-584 . -25) T) ((-584 . -21) T) ((-1095 . -309) 69529) ((-959 . -411) 69513) ((-694 . -1212) T) ((-629 . -286) 69488) ((-1080 . -636) 69436) ((-778 . -636) 69384) ((-776 . -636) 69332) ((-343 . -131) T) ((-289 . -610) 69314) ((-901 . -1093) T) ((-694 . -555) T) ((-129 . -613) 69296) ((-866 . -1105) T) ((-454 . -636) 69244) ((-901 . -899) 69228) ((-379 . -452) T) ((-487 . -1093) T) ((-939 . -309) 69166) ((-696 . -643) 69153) ((-548 . -840) T) ((-217 . -1093) T) ((-316 . -916) 69132) ((-313 . -916) T) ((-313 . -816) NIL) ((-390 . -716) T) ((-866 . -23) T) ((-116 . -643) 69119) ((-474 . -145) 69098) ((-418 . -411) 69082) ((-474 . -147) 69061) ((-110 . -489) 69043) ((-311 . -613) 69024) ((-2 . -610) 69006) ((-186 . -102) T) ((-1151 . -19) 68988) ((-1151 . -601) 68963) ((-653 . -21) T) ((-653 . -25) T) ((-591 . -1137) T) ((-1106 . -286) 68940) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1272 . -38) 68910) ((-1135 . -1208) T) ((-629 . -601) 68885) ((-548 . -1093) T) ((-1080 . -25) T) ((-1080 . -21) T) ((-531 . -788) T) ((-531 . -791) T) ((-117 . -1212) T) ((-959 . -1052) T) ((-620 . -555) T) ((-778 . -25) T) ((-778 . -21) T) ((-776 . -21) T) ((-776 . -25) T) ((-731 . -1052) T) ((-711 . -1052) T) ((-665 . -1051) 68869) ((-517 . -1076) T) ((-461 . -25) T) ((-117 . -555) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1279 . -1051) 68853) ((-1135 . -1034) 68749) ((-813 . -290) 68728) ((-1277 . -1051) 68712) ((-819 . -1093) T) ((-1241 . -1193) 68678) ((-962 . -963) T) ((-665 . -111) 68657) ((-295 . -514) 68449) ((-1241 . -1196) 68415) ((-1241 . -95) 68381) ((-1224 . -102) 68359) ((-251 . -309) 68297) ((-250 . -309) 68235) ((-1221 . -231) 68187) ((-1152 . -611) NIL) ((-1152 . -610) 68169) ((-1220 . -1193) 68135) ((-1220 . -1196) 68101) ((-1215 . -368) T) ((-96 . -93) T) ((-1213 . -840) T) ((-1135 . -377) 68085) ((-1113 . -816) T) ((-1113 . -916) T) ((-1106 . -601) 68062) ((-1073 . -611) 68046) ((-484 . -610) 67978) ((-811 . -288) 67955) ((-605 . -151) 67902) ((-418 . -1052) T) ((-487 . -713) 67852) ((-482 . -489) 67836) ((-327 . -846) 67815) ((-339 . -643) 67789) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -713) 67739) ((-169 . -720) 67710) ((-174 . -643) 67642) ((-580 . -21) T) ((-580 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67592) ((-1073 . -610) 67574) ((-1055 . -610) 67556) ((-989 . -102) T) ((-858 . -102) T) ((-795 . -411) 67520) ((-40 . -131) T) ((-694 . -363) T) ((-696 . -722) T) ((-696 . -790) T) ((-696 . -787) T) ((-212 . -891) T) ((-579 . -1105) T) ((-563 . -1105) T) ((-495 . -1105) T) ((-359 . -610) 67502) ((-353 . -610) 67484) ((-345 . -610) 67466) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -611) 67396) ((-108 . -610) 67338) ((-211 . -891) T) ((-954 . -151) 67322) ((-767 . -131) T) ((-665 . -613) 67240) ((-134 . -722) T) ((-116 . -722) T) ((-1241 . -35) 67206) ((-1049 . -489) 67190) ((-579 . -23) T) ((-563 . -23) T) ((-495 . -23) T) ((-1220 . -95) 67156) ((-1220 . -35) 67122) ((-1165 . -102) T) ((-1118 . -102) T) ((-850 . -102) T) ((-227 . -489) 67106) ((-1279 . -111) 67085) ((-1277 . -111) 67064) ((-44 . -1051) 67048) ((-1230 . -1233) 67032) ((-851 . -848) 67016) ((-1279 . -613) 66962) ((-1171 . -290) 66941) ((-110 . -286) 66916) ((-1213 . -1093) T) ((-128 . -151) 66898) ((-1135 . -896) 66857) ((-44 . -111) 66836) ((-1174 . -1252) T) ((-1159 . -490) 66817) ((-1159 . -610) 66783) ((-1151 . -611) NIL) ((-665 . -1045) T) ((-1151 . -610) 66765) ((-1057 . -607) 66740) ((-1057 . -1093) T) ((-990 . -490) 66721) ((-990 . -610) 66687) ((-74 . -441) T) ((-74 . -395) T) ((-698 . -1093) T) ((-152 . -1051) 66671) ((-665 . -233) 66650) ((-570 . -553) 66634) ((-355 . -147) 66613) ((-355 . -145) 66564) ((-352 . -147) 66543) ((-352 . -145) 66494) ((-344 . -147) 66473) ((-344 . -145) 66424) ((-264 . -145) 66403) ((-264 . -147) 66382) ((-251 . -38) 66352) ((-247 . -147) 66331) ((-117 . -363) T) ((-247 . -145) 66310) ((-250 . -38) 66280) ((-152 . -111) 66259) ((-999 . -1034) 66147) ((-1160 . -844) NIL) ((-689 . -1212) T) ((-795 . -1052) T) ((-694 . -1105) T) ((-1279 . -1045) T) ((-1277 . -613) 66076) ((-1277 . -1045) T) ((-1149 . -1208) T) ((-999 . -377) 66053) ((-906 . -145) T) ((-906 . -147) 66035) ((-866 . -131) T) ((-811 . -1051) 65932) ((-689 . -555) T) ((-694 . -23) T) ((-642 . -610) 65864) ((-642 . -611) 65825) ((-629 . -611) NIL) ((-629 . -610) 65807) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1196) 65773) ((-474 . -1193) 65739) ((-274 . -610) 65721) ((-273 . -610) 65703) ((-272 . -610) 65685) ((-271 . -610) 65667) ((-270 . -610) 65649) ((-500 . -646) 65631) ((-269 . -610) 65613) ((-339 . -722) T) ((-268 . -610) 65595) ((-110 . -19) 65577) ((-174 . -722) T) ((-500 . -373) 65559) ((-212 . -610) 65541) ((-520 . -1142) 65525) ((-500 . -123) T) ((-110 . -601) 65500) ((-211 . -610) 65482) ((-474 . -35) 65448) ((-474 . -95) 65414) ((-209 . -610) 65396) ((-208 . -610) 65378) ((-207 . -610) 65360) ((-206 . -610) 65342) ((-203 . -610) 65324) ((-202 . -610) 65306) ((-201 . -610) 65288) ((-200 . -610) 65270) ((-199 . -610) 65252) ((-198 . -610) 65234) ((-197 . -610) 65216) ((-536 . -1096) 65168) ((-196 . -610) 65150) ((-195 . -610) 65132) ((-45 . -489) 65069) ((-194 . -610) 65051) ((-193 . -610) 65033) ((-152 . -613) 65002) ((-1108 . -102) T) ((-811 . -111) 64892) ((-640 . -102) 64842) ((-482 . -286) 64819) ((-1106 . -610) 64550) ((-1094 . -1093) T) ((-1042 . -1208) T) ((-1280 . -1034) 64534) ((-620 . -1105) T) ((-1165 . -309) 64521) ((-1128 . -1093) T) ((-1118 . -309) 64508) ((-1089 . -1076) T) ((-1083 . -1076) T) ((-1067 . -1076) T) ((-1060 . -1076) T) ((-1032 . -1076) T) ((-1015 . -1076) T) ((-117 . -1105) T) ((-815 . -102) T) ((-623 . -1076) T) ((-620 . -23) T) ((-1143 . -514) 64300) ((-483 . -1076) T) ((-999 . -896) 64252) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1076) T) ((-959 . -1093) T) ((-152 . -1045) T) ((-727 . -411) 64236) ((-117 . -23) T) ((-731 . -1093) T) ((-711 . -1093) T) ((-698 . -132) T) ((-453 . -1093) T) ((-407 . -1208) T) ((-316 . -430) 64220) ((-590 . -93) T) ((-1023 . -611) 64181) ((-1020 . -1212) T) ((-225 . -102) T) ((-1023 . -610) 64143) ((-812 . -231) 64127) ((-811 . -613) 63857) ((-1020 . -555) T) ((-829 . -643) 63830) ((-354 . -1212) T) ((-476 . -610) 63792) ((-476 . -611) 63753) ((-463 . -611) 63714) ((-463 . -610) 63676) ((-407 . -880) 63660) ((-319 . -1051) 63495) ((-407 . -882) 63420) ((-839 . -1034) 63316) ((-487 . -514) NIL) ((-482 . -601) 63293) ((-354 . -555) T) ((-217 . -514) NIL) ((-868 . -452) T) ((-418 . -1093) T) ((-407 . -1034) 63157) ((-319 . -111) 62978) ((-689 . -363) T) ((-225 . -284) T) ((-1205 . -613) 62955) ((-48 . -1212) T) ((-811 . -1045) 62885) ((-579 . -131) T) ((-563 . -131) T) ((-495 . -131) T) ((-1165 . -1144) 62863) ((-48 . -555) T) ((-1152 . -288) 62839) ((-1056 . -102) T) ((-948 . -102) T) ((-316 . -27) 62818) ((-811 . -233) 62770) ((-249 . -831) 62752) ((-240 . -844) 62731) ((-187 . -831) 62713) ((-709 . -102) T) ((-295 . -489) 62650) ((-481 . -102) T) ((-727 . -1052) T) ((-609 . -610) 62632) ((-609 . -611) 62493) ((-407 . -377) 62477) ((-407 . -338) 62461) ((-319 . -613) 62287) ((-1165 . -38) 62116) ((-1118 . -38) 61965) ((-850 . -38) 61935) ((-390 . -643) 61919) ((-640 . -309) 61857) ((-959 . -713) 61754) ((-731 . -713) 61724) ((-222 . -107) 61708) ((-45 . -286) 61633) ((-618 . -643) 61607) ((-312 . -1093) T) ((-289 . -1051) 61594) ((-110 . -610) 61576) ((-110 . -611) 61558) ((-453 . -713) 61528) ((-812 . -253) 61467) ((-684 . -1093) 61445) ((-549 . -1093) T) ((-1167 . -1052) T) ((-1166 . -1052) T) ((-96 . -490) 61426) ((-1160 . -1052) T) ((-289 . -111) 61411) ((-1119 . -1052) T) ((-549 . -607) 61390) ((-96 . -610) 61356) ((-1000 . -844) T) ((-227 . -682) 61314) ((-689 . -1105) T) ((-1202 . -736) 61290) ((-1020 . -363) T) ((-834 . -831) 61272) ((-319 . -1045) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -896) 61231) ((-68 . -1208) T) ((-829 . -790) 61210) ((-418 . -713) 61184) ((-795 . -1093) T) ((-829 . -787) 61163) ((-694 . -131) T) ((-708 . -916) 61142) ((-689 . -23) T) ((-487 . -290) T) ((-829 . -722) 61121) ((-319 . -233) 61073) ((-319 . -243) 61052) ((-217 . -290) T) ((-129 . -368) T) ((-1241 . -452) 61031) ((-1220 . -452) 61010) ((-354 . -329) 60987) ((-354 . -363) T) ((-1133 . -610) 60969) ((-45 . -1245) 60919) ((-867 . -102) T) ((-640 . -282) 60903) ((-694 . -1054) T) ((-1268 . -102) T) ((-1267 . -102) T) ((-477 . -643) 60868) ((-468 . -1093) T) ((-45 . -601) 60793) ((-1151 . -288) 60768) ((-289 . -613) 60740) ((-40 . -636) 60679) ((-48 . -363) T) ((-1099 . -610) 60661) ((-1080 . -846) 60640) ((-629 . -288) 60615) ((-778 . -846) 60594) ((-776 . -846) 60573) ((-482 . -610) 60304) ((-240 . -411) 60273) ((-948 . -309) 60260) ((-454 . -846) 60239) ((-65 . -1208) T) ((-1057 . -514) 60083) ((-620 . -131) T) ((-546 . -102) T) ((-481 . -309) 60070) ((-603 . -1093) T) ((-117 . -131) T) ((-666 . -1093) T) ((-289 . -1045) T) ((-180 . -1093) T) ((-161 . -1093) T) ((-156 . -1093) T) ((-154 . -1093) T) ((-453 . -757) T) ((-31 . -1076) T) ((-959 . -172) 60021) ((-966 . -93) T) ((-1073 . -1051) 59931) ((-618 . -790) 59910) ((-591 . -1093) T) ((-618 . -787) 59889) ((-618 . -722) T) ((-295 . -286) 59868) ((-294 . -1208) T) ((-1049 . -610) 59830) ((-1049 . -611) 59791) ((-1020 . -1105) T) ((-169 . -102) T) ((-275 . -846) T) ((-1158 . -1093) T) ((-814 . -610) 59773) ((-1106 . -288) 59750) ((-1095 . -229) 59734) ((-999 . -307) T) ((-795 . -713) 59718) ((-359 . -1051) 59670) ((-354 . -1105) T) ((-353 . -1051) 59622) ((-414 . -610) 59604) ((-385 . -610) 59586) ((-345 . -1051) 59538) ((-227 . -610) 59470) ((-1073 . -111) 59366) ((-1020 . -23) T) ((-108 . -1051) 59316) ((-894 . -102) T) ((-837 . -102) T) ((-804 . -102) T) ((-765 . -102) T) ((-672 . -102) T) ((-474 . -452) 59295) ((-418 . -172) T) ((-359 . -111) 59233) ((-353 . -111) 59171) ((-345 . -111) 59109) ((-251 . -231) 59078) ((-250 . -231) 59047) ((-354 . -23) T) ((-71 . -1208) T) ((-225 . -38) 59012) ((-108 . -111) 58946) ((-40 . -25) T) ((-40 . -21) T) ((-665 . -716) T) ((-169 . -284) 58924) ((-48 . -1105) T) ((-917 . -25) T) ((-767 . -25) T) ((-1143 . -489) 58861) ((-485 . -1093) T) ((-1281 . -643) 58835) ((-1230 . -102) T) ((-851 . -102) T) ((-240 . -1052) 58765) ((-1056 . -1144) T) ((-960 . -788) 58718) ((-381 . -643) 58702) ((-48 . -23) T) ((-960 . -791) 58655) ((-811 . -791) 58606) ((-811 . -788) 58557) ((-295 . -601) 58536) ((-477 . -722) T) ((-570 . -102) T) ((-1073 . -613) 58354) ((-249 . -185) T) ((-187 . -185) T) ((-867 . -309) 58311) ((-648 . -286) 58290) ((-112 . -656) T) ((-359 . -613) 58227) ((-353 . -613) 58164) ((-345 . -613) 58101) ((-76 . -1208) T) ((-108 . -613) 58051) ((-1056 . -38) 58038) ((-659 . -374) 58017) ((-948 . -38) 57866) ((-727 . -1093) T) ((-481 . -38) 57715) ((-86 . -1208) T) ((-590 . -490) 57696) ((-570 . -284) T) ((-1221 . -844) NIL) ((-590 . -610) 57662) ((-1167 . -1093) T) ((-1166 . -1093) T) ((-1073 . -1045) T) ((-351 . -1034) 57639) ((-813 . -490) 57623) ((-1000 . -1052) T) ((-45 . -610) 57605) ((-45 . -611) NIL) ((-910 . -1052) T) ((-813 . -610) 57574) ((-1160 . -1093) T) ((-1140 . -102) 57552) ((-1073 . -243) 57503) ((-427 . -1052) T) ((-359 . -1045) T) ((-365 . -364) 57480) ((-353 . -1045) T) ((-345 . -1045) T) ((-251 . -238) 57459) ((-250 . -238) 57438) ((-1073 . -233) 57363) ((-1119 . -1093) T) ((-294 . -896) 57322) ((-108 . -1045) T) ((-689 . -131) T) ((-418 . -514) 57164) ((-359 . -233) 57143) ((-359 . -243) T) ((-44 . -716) T) ((-353 . -233) 57122) ((-353 . -243) T) ((-345 . -233) 57101) ((-345 . -243) T) ((-1159 . -613) 57082) ((-169 . -309) 57047) ((-108 . -243) T) ((-108 . -233) T) ((-990 . -613) 57028) ((-319 . -788) T) ((-866 . -21) T) ((-866 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 57003) ((-1106 . -1051) 56900) ((-867 . -1144) NIL) ((-330 . -610) 56882) ((-407 . -1018) 56860) ((-1106 . -111) 56750) ((-686 . -1252) T) ((-436 . -1093) T) ((-1281 . -722) T) ((-63 . -610) 56732) ((-867 . -38) 56677) ((-523 . -1208) T) ((-599 . -151) 56661) ((-512 . -610) 56643) ((-1230 . -309) 56630) ((-727 . -713) 56479) ((-531 . -789) T) ((-531 . -790) T) ((-563 . -636) 56461) ((-495 . -636) 56421) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56372) ((-525 . -1093) T) ((-520 . -1093) 56322) ((-247 . -452) 56273) ((-1143 . -286) 56252) ((-1171 . -610) 56234) ((-684 . -514) 56167) ((-959 . -290) 56146) ((-549 . -514) 55938) ((-1269 . -610) 55907) ((-1165 . -231) 55891) ((-1106 . -613) 55621) ((-169 . -1144) 55600) ((-1269 . -490) 55584) ((-1167 . -713) 55481) ((-1166 . -713) 55322) ((-888 . -102) T) ((-1160 . -713) 55118) ((-1119 . -713) 55015) ((-1149 . -669) 54999) ((-355 . -402) 54950) ((-352 . -402) 54901) ((-344 . -402) 54852) ((-1020 . -131) T) ((-795 . -514) 54764) ((-295 . -611) NIL) ((-295 . -610) 54746) ((-906 . -452) T) ((-960 . -368) 54699) ((-811 . -368) 54678) ((-510 . -509) 54657) ((-508 . -509) 54636) ((-487 . -286) NIL) ((-482 . -288) 54613) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-689 . -493) NIL) ((-99 . -1105) T) ((-169 . -38) 54441) ((-1241 . -969) 54403) ((-1140 . -309) 54341) ((-1220 . -969) 54310) ((-906 . -402) T) ((-1106 . -1045) 54240) ((-1243 . -555) T) ((-1143 . -601) 54219) ((-112 . -846) T) ((-1057 . -489) 54150) ((-579 . -21) T) ((-579 . -25) T) ((-563 . -21) T) ((-563 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1230 . -1144) 54128) ((-1106 . -233) 54080) ((-48 . -131) T) ((-1189 . -102) T) ((-240 . -1093) 53870) ((-867 . -400) 53847) ((-1081 . -102) T) ((-1069 . -102) T) ((-605 . -102) T) ((-475 . -102) T) ((-1230 . -38) 53676) ((-851 . -38) 53646) ((-727 . -172) 53557) ((-648 . -610) 53539) ((-641 . -1076) T) ((-570 . -38) 53526) ((-966 . -490) 53507) ((-966 . -610) 53473) ((-954 . -102) 53423) ((-860 . -610) 53405) ((-860 . -611) 53327) ((-591 . -514) NIL) ((-1249 . -1052) T) ((-1242 . -1052) T) ((-1221 . -1052) T) ((-1285 . -1105) T) ((-1176 . -102) T) ((-594 . -1052) T) ((-593 . -1052) T) ((-1175 . -102) T) ((-1167 . -172) 53278) ((-1166 . -172) 53209) ((-1160 . -172) 53140) ((-1119 . -172) 53091) ((-1000 . -1093) T) ((-967 . -1093) T) ((-910 . -1093) T) ((-1202 . -147) 53070) ((-795 . -793) 53054) ((-694 . -25) T) ((-694 . -21) T) ((-117 . -636) 53031) ((-696 . -882) 53013) ((-427 . -1093) T) ((-316 . -1212) 52992) ((-313 . -1212) T) ((-169 . -400) 52976) ((-1202 . -145) 52955) ((-474 . -969) 52917) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -610) 52899) ((-108 . -791) T) ((-108 . -788) T) ((-696 . -1034) 52881) ((-316 . -555) 52860) ((-313 . -555) T) ((-1285 . -23) T) ((-134 . -1034) 52842) ((-96 . -613) 52823) ((-482 . -1051) 52720) ((-45 . -288) 52645) ((-240 . -713) 52587) ((-517 . -102) T) ((-482 . -111) 52477) ((-1085 . -102) 52455) ((-1030 . -102) T) ((-640 . -824) 52434) ((-727 . -514) 52377) ((-1049 . -1051) 52361) ((-1128 . -93) T) ((-1057 . -286) 52336) ((-620 . -21) T) ((-620 . -25) T) ((-524 . -1093) T) ((-361 . -102) T) ((-322 . -102) T) ((-665 . -643) 52310) ((-385 . -1051) 52294) ((-1049 . -111) 52273) ((-812 . -411) 52257) ((-117 . -25) T) ((-89 . -610) 52239) ((-117 . -21) T) ((-605 . -309) 52034) ((-475 . -309) 51838) ((-1143 . -611) NIL) ((-385 . -111) 51817) ((-379 . -102) T) ((-214 . -610) 51799) ((-1143 . -610) 51781) ((-1160 . -514) 51550) ((-1000 . -713) 51500) ((-1119 . -514) 51470) ((-910 . -713) 51422) ((-482 . -613) 51152) ((-351 . -307) T) ((-1181 . -151) 51102) ((-954 . -309) 51040) ((-832 . -102) T) ((-427 . -713) 51024) ((-225 . -824) T) ((-823 . -102) T) ((-821 . -102) T) ((-479 . -151) 50974) ((-1241 . -1240) 50953) ((-1113 . -1212) T) ((-339 . -1034) 50920) ((-1241 . -1235) 50890) ((-1241 . -1238) 50874) ((-1220 . -1219) 50853) ((-80 . -610) 50835) ((-901 . -610) 50817) ((-1220 . -1235) 50794) ((-1113 . -555) T) ((-917 . -846) T) ((-767 . -846) T) ((-487 . -611) 50724) ((-487 . -610) 50665) ((-379 . -284) T) ((-667 . -846) T) ((-1220 . -1217) 50649) ((-1243 . -1105) T) ((-217 . -611) 50579) ((-217 . -610) 50520) ((-1279 . -643) 50494) ((-1057 . -601) 50469) ((-814 . -613) 50453) ((-59 . -151) 50437) ((-516 . -151) 50421) ((-496 . -151) 50405) ((-359 . -1276) 50389) ((-353 . -1276) 50373) ((-345 . -1276) 50357) ((-316 . -363) 50336) ((-313 . -363) T) ((-482 . -1045) 50266) ((-689 . -636) 50248) ((-1277 . -643) 50222) ((-128 . -309) NIL) ((-1243 . -23) T) ((-684 . -489) 50206) ((-64 . -610) 50188) ((-1106 . -791) 50139) ((-1106 . -788) 50090) ((-549 . -489) 50027) ((-665 . -34) T) ((-482 . -233) 49979) ((-295 . -288) 49958) ((-240 . -172) 49937) ((-812 . -1052) T) ((-44 . -643) 49895) ((-1073 . -368) 49846) ((-727 . -290) 49777) ((-520 . -514) 49710) ((-813 . -1051) 49661) ((-1080 . -145) 49640) ((-548 . -610) 49622) ((-359 . -368) 49601) ((-353 . -368) 49580) ((-345 . -368) 49559) ((-1080 . -147) 49538) ((-867 . -231) 49515) ((-813 . -111) 49457) ((-778 . -145) 49436) ((-778 . -147) 49415) ((-264 . -945) 49382) ((-251 . -844) 49361) ((-247 . -945) 49306) ((-250 . -844) 49285) ((-776 . -145) 49264) ((-776 . -147) 49243) ((-152 . -643) 49217) ((-578 . -1093) T) ((-454 . -147) 49196) ((-454 . -145) 49175) ((-665 . -722) T) ((-819 . -610) 49157) ((-1249 . -1093) T) ((-1242 . -1093) T) ((-1221 . -1093) T) ((-1202 . -1196) 49123) ((-1202 . -1193) 49089) ((-1167 . -290) 49068) ((-1166 . -290) 49019) ((-1160 . -290) 48970) ((-1119 . -290) 48949) ((-339 . -896) 48930) ((-1000 . -172) T) ((-910 . -172) T) ((-594 . -1093) T) ((-593 . -1093) T) ((-689 . -21) T) ((-689 . -25) T) ((-474 . -1238) 48914) ((-474 . -1235) 48884) ((-418 . -286) 48812) ((-547 . -846) T) ((-316 . -1105) 48661) ((-313 . -1105) T) ((-1202 . -35) 48627) ((-1202 . -95) 48593) ((-84 . -610) 48575) ((-91 . -102) 48553) ((-1285 . -131) T) ((-590 . -613) 48534) ((-580 . -145) T) ((-580 . -147) 48516) ((-518 . -147) 48498) ((-518 . -145) T) ((-316 . -23) 48350) ((-40 . -342) 48324) ((-313 . -23) T) ((-813 . -613) 48238) ((-1151 . -646) 48220) ((-1272 . -1052) T) ((-1151 . -373) 48202) ((-811 . -643) 48050) ((-1089 . -102) T) ((-1083 . -102) T) ((-1067 . -102) T) ((-169 . -231) 48034) ((-1060 . -102) T) ((-1032 . -102) T) ((-1015 . -102) T) ((-591 . -489) 48016) ((-623 . -102) T) ((-240 . -514) 47949) ((-483 . -102) T) ((-1279 . -722) T) ((-1277 . -722) T) ((-218 . -102) T) ((-1171 . -1051) 47832) ((-1171 . -111) 47701) ((-857 . -173) T) ((-813 . -1045) T) ((-676 . -1076) T) ((-671 . -1076) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -636) 47661) ((-508 . -102) T) ((-478 . -1076) T) ((-1269 . -1051) 47631) ((-138 . -1076) T) ((-137 . -1076) T) ((-133 . -1076) T) ((-1030 . -38) 47615) ((-813 . -233) T) ((-813 . -243) 47594) ((-1269 . -111) 47559) ((-1249 . -713) 47456) ((-1242 . -713) 47297) ((-1230 . -231) 47281) ((-549 . -286) 47260) ((-1213 . -610) 47242) ((-1057 . -611) NIL) ((-603 . -93) T) ((-1057 . -610) 47224) ((-698 . -490) 47208) ((-666 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1221 . -713) 47004) ((-999 . -916) T) ((-698 . -610) 46973) ((-152 . -722) T) ((-1106 . -368) 46952) ((-1000 . -514) NIL) ((-251 . -411) 46921) ((-250 . -411) 46890) ((-1020 . -25) T) ((-1020 . -21) T) ((-594 . -713) 46863) ((-593 . -713) 46760) ((-795 . -286) 46718) ((-126 . -102) 46696) ((-829 . -1034) 46592) ((-169 . -824) 46571) ((-319 . -643) 46468) ((-811 . -34) T) ((-710 . -102) T) ((-1171 . -613) 46321) ((-1113 . -1105) T) ((-1022 . -1208) T) ((-379 . -38) 46286) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1264) 46270) ((-352 . -1264) 46254) ((-344 . -1264) 46238) ((-169 . -349) 46217) ((-563 . -846) T) ((-495 . -846) T) ((-1113 . -23) T) ((-87 . -610) 46199) ((-696 . -307) T) ((-832 . -38) 46169) ((-823 . -38) 46139) ((-1269 . -613) 46081) ((-1243 . -131) T) ((-1143 . -288) 46060) ((-960 . -789) 46013) ((-960 . -790) 45966) ((-811 . -787) 45945) ((-116 . -307) T) ((-91 . -309) 45883) ((-670 . -34) T) ((-549 . -601) 45862) ((-48 . -25) T) ((-48 . -21) T) ((-811 . -790) 45813) ((-811 . -789) 45792) ((-696 . -1018) T) ((-648 . -1051) 45776) ((-960 . -722) 45675) ((-811 . -722) 45585) ((-960 . -473) 45538) ((-482 . -791) 45489) ((-482 . -788) 45440) ((-906 . -1264) 45427) ((-1171 . -1045) T) ((-648 . -111) 45406) ((-1171 . -326) 45383) ((-1194 . -102) 45361) ((-1094 . -610) 45343) ((-696 . -545) T) ((-812 . -1093) T) ((-1269 . -1045) T) ((-1128 . -490) 45324) ((-1214 . -102) T) ((-413 . -1093) T) ((-1128 . -610) 45290) ((-251 . -1052) 45220) ((-250 . -1052) 45150) ((-834 . -102) T) ((-289 . -643) 45137) ((-591 . -286) 45112) ((-684 . -682) 45070) ((-959 . -610) 45052) ((-868 . -102) T) ((-731 . -610) 45034) ((-711 . -610) 45016) ((-1249 . -172) 44967) ((-1242 . -172) 44898) ((-1221 . -172) 44829) ((-694 . -846) T) ((-1000 . -290) T) ((-453 . -610) 44811) ((-624 . -722) T) ((-60 . -1093) 44789) ((-245 . -151) 44773) ((-910 . -290) T) ((-1020 . -1008) T) ((-624 . -473) T) ((-708 . -1212) 44752) ((-648 . -613) 44670) ((-594 . -172) 44649) ((-593 . -172) 44600) ((-1257 . -846) 44579) ((-708 . -555) 44490) ((-407 . -916) T) ((-407 . -816) 44469) ((-319 . -790) T) ((-966 . -613) 44450) ((-319 . -722) T) ((-418 . -610) 44432) ((-418 . -611) 44339) ((-640 . -1142) 44323) ((-110 . -646) 44305) ((-174 . -307) T) ((-126 . -309) 44243) ((-110 . -373) 44225) ((-398 . -1208) T) ((-316 . -131) 44096) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44080) ((-649 . -1105) T) ((-591 . -19) 44062) ((-61 . -441) T) ((-61 . -395) T) ((-820 . -1093) T) ((-591 . -601) 44037) ((-477 . -1034) 43997) ((-648 . -1045) T) ((-649 . -23) T) ((-1272 . -1093) T) ((-31 . -102) T) ((-812 . -713) 43846) ((-576 . -856) T) ((-117 . -846) NIL) ((-1165 . -411) 43830) ((-1118 . -411) 43814) ((-850 . -411) 43798) ((-869 . -102) 43749) ((-1241 . -102) T) ((-1221 . -514) 43518) ((-1220 . -102) T) ((-1194 . -309) 43456) ((-525 . -93) T) ((-1167 . -286) 43441) ((-312 . -610) 43423) ((-1166 . -286) 43408) ((-1095 . -1093) T) ((-1073 . -643) 43318) ((-684 . -610) 43250) ((-289 . -722) T) ((-108 . -905) NIL) ((-684 . -611) 43211) ((-598 . -610) 43193) ((-576 . -610) 43175) ((-549 . -611) NIL) ((-549 . -610) 43157) ((-529 . -610) 43139) ((-1160 . -286) 42987) ((-487 . -1051) 42937) ((-707 . -452) T) ((-511 . -509) 42916) ((-507 . -509) 42895) ((-217 . -1051) 42845) ((-359 . -643) 42797) ((-353 . -643) 42749) ((-225 . -844) T) ((-345 . -643) 42701) ((-599 . -102) 42651) ((-482 . -368) 42630) ((-108 . -643) 42580) ((-487 . -111) 42514) ((-240 . -489) 42498) ((-343 . -147) 42480) ((-343 . -145) T) ((-169 . -370) 42451) ((-939 . -1255) 42435) ((-217 . -111) 42369) ((-868 . -309) 42334) ((-939 . -1093) 42284) ((-795 . -611) 42245) ((-795 . -610) 42227) ((-714 . -102) T) ((-331 . -1093) T) ((-214 . -613) 42204) ((-1113 . -131) T) ((-710 . -38) 42174) ((-316 . -493) 42153) ((-500 . -1208) T) ((-1241 . -284) 42119) ((-1220 . -284) 42085) ((-327 . -151) 42069) ((-439 . -1093) T) ((-1057 . -288) 42044) ((-1272 . -713) 42014) ((-1152 . -34) T) ((-1281 . -1034) 41991) ((-468 . -610) 41973) ((-484 . -34) T) ((-381 . -1034) 41957) ((-1165 . -1052) T) ((-1118 . -1052) T) ((-850 . -1052) T) ((-1056 . -844) T) ((-487 . -613) 41907) ((-217 . -613) 41857) ((-812 . -172) 41768) ((-520 . -286) 41745) ((-1249 . -290) 41724) ((-1189 . -364) 41698) ((-1081 . -266) 41682) ((-666 . -490) 41663) ((-666 . -610) 41629) ((-603 . -490) 41610) ((-117 . -988) 41587) ((-603 . -610) 41537) ((-474 . -102) T) ((-180 . -490) 41518) ((-180 . -610) 41484) ((-161 . -490) 41465) ((-156 . -490) 41446) ((-154 . -490) 41427) ((-161 . -610) 41393) ((-156 . -610) 41359) ((-365 . -1093) T) ((-251 . -1093) T) ((-250 . -1093) T) ((-154 . -610) 41325) ((-1242 . -290) 41276) ((-1221 . -290) 41227) ((-868 . -1144) 41205) ((-1167 . -998) 41171) ((-605 . -364) 41111) ((-1166 . -998) 41077) ((-605 . -229) 41024) ((-591 . -610) 41006) ((-591 . -611) NIL) ((-689 . -846) T) ((-475 . -229) 40956) ((-487 . -1045) T) ((-1160 . -998) 40922) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1045) T) ((-1119 . -998) 40888) ((-1073 . -722) T) ((-708 . -1105) T) ((-594 . -290) 40867) ((-593 . -290) 40846) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1158 . -610) 40828) ((-868 . -38) 40780) ((-359 . -722) T) ((-353 . -722) T) ((-345 . -722) T) ((-108 . -790) T) ((-108 . -787) T) ((-708 . -23) T) ((-108 . -722) T) ((-520 . -1245) 40764) ((-1285 . -25) T) ((-474 . -284) 40730) ((-1285 . -21) T) ((-1220 . -309) 40669) ((-1169 . -102) T) ((-40 . -145) 40641) ((-40 . -147) 40613) ((-520 . -601) 40590) ((-1106 . -643) 40438) ((-599 . -309) 40376) ((-45 . -646) 40326) ((-45 . -661) 40276) ((-45 . -373) 40226) ((-1151 . -34) T) ((-867 . -844) NIL) ((-649 . -131) T) ((-485 . -610) 40208) ((-240 . -286) 40185) ((-186 . -1093) T) ((-642 . -34) T) ((-629 . -34) T) ((-1080 . -452) 40136) ((-812 . -514) 40010) ((-778 . -452) 39941) ((-776 . -452) 39892) ((-454 . -452) 39843) ((-948 . -411) 39827) ((-727 . -610) 39809) ((-251 . -713) 39751) ((-250 . -713) 39693) ((-727 . -611) 39554) ((-481 . -411) 39538) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -916) T) ((-996 . -102) 39516) ((-1020 . -846) T) ((-60 . -514) 39449) ((-1220 . -1144) 39401) ((-1000 . -286) NIL) ((-225 . -1052) T) ((-379 . -824) T) ((-1106 . -34) T) ((-580 . -452) T) ((-518 . -452) T) ((-1224 . -1086) 39385) ((-1224 . -1093) 39363) ((-240 . -601) 39340) ((-1224 . -1088) 39297) ((-1167 . -610) 39279) ((-1166 . -610) 39261) ((-1160 . -610) 39243) ((-1160 . -611) NIL) ((-1119 . -610) 39225) ((-868 . -400) 39209) ((-536 . -102) T) ((-1241 . -38) 39050) ((-1220 . -38) 38864) ((-866 . -147) T) ((-698 . -613) 38848) ((-580 . -402) T) ((-48 . -846) T) ((-518 . -402) T) ((-1253 . -102) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1106 . -787) 38827) ((-1106 . -790) 38778) ((-1106 . -789) 38757) ((-989 . -1093) T) ((-1023 . -34) T) ((-858 . -1093) T) ((-1106 . -722) 38667) ((-659 . -102) T) ((-641 . -102) T) ((-549 . -288) 38646) ((-1181 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1056 . -1052) T) ((-948 . -1052) T) ((-316 . -636) 38552) ((-313 . -636) 38513) ((-481 . -1052) T) ((-479 . -102) T) ((-436 . -610) 38495) ((-1165 . -1093) T) ((-1118 . -1093) T) ((-850 . -1093) T) ((-1134 . -102) T) ((-812 . -290) 38426) ((-959 . -1051) 38309) ((-477 . -1018) T) ((-731 . -1051) 38279) ((-453 . -1051) 38249) ((-1140 . -1114) 38233) ((-1095 . -514) 38166) ((-959 . -111) 38035) ((-906 . -102) T) ((-731 . -111) 38000) ((-525 . -490) 37981) ((-525 . -610) 37947) ((-59 . -102) 37897) ((-520 . -611) 37858) ((-520 . -610) 37770) ((-519 . -102) 37748) ((-516 . -102) 37698) ((-497 . -102) 37676) ((-496 . -102) 37626) ((-453 . -111) 37589) ((-251 . -172) 37568) ((-250 . -172) 37547) ((-418 . -1051) 37521) ((-1202 . -969) 37483) ((-995 . -1105) T) ((-1128 . -613) 37464) ((-939 . -514) 37397) ((-487 . -791) T) ((-474 . -38) 37238) ((-418 . -111) 37205) ((-487 . -788) T) ((-996 . -309) 37143) ((-217 . -791) T) ((-217 . -788) T) ((-995 . -23) T) ((-708 . -131) T) ((-1220 . -400) 37113) ((-316 . -25) 36965) ((-169 . -411) 36949) ((-316 . -21) 36820) ((-313 . -25) T) ((-313 . -21) T) ((-860 . -368) T) ((-959 . -613) 36673) ((-110 . -34) T) ((-731 . -613) 36629) ((-711 . -613) 36611) ((-482 . -643) 36459) ((-867 . -1052) T) ((-591 . -288) 36434) ((-579 . -147) T) ((-563 . -147) T) ((-495 . -147) T) ((-1165 . -713) 36263) ((-1118 . -713) 36112) ((-1113 . -636) 36094) ((-850 . -713) 36064) ((-665 . -1208) T) ((-1 . -102) T) ((-418 . -613) 35972) ((-240 . -610) 35703) ((-1108 . -1093) T) ((-1230 . -411) 35687) ((-1181 . -309) 35491) ((-959 . -1045) T) ((-731 . -1045) T) ((-711 . -1045) T) ((-640 . -1093) 35441) ((-1049 . -643) 35425) ((-851 . -411) 35409) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35396) ((-264 . -309) 35383) ((-959 . -326) 35362) ((-385 . -643) 35346) ((-479 . -309) 35150) ((-251 . -514) 35083) ((-665 . -1034) 34979) ((-250 . -514) 34912) ((-1134 . -309) 34838) ((-815 . -1093) T) ((-795 . -1051) 34822) ((-1249 . -286) 34807) ((-1242 . -286) 34792) ((-1221 . -286) 34640) ((-386 . -1093) T) ((-324 . -1093) T) ((-418 . -1045) T) ((-169 . -1052) T) ((-59 . -309) 34578) ((-795 . -111) 34557) ((-593 . -286) 34542) ((-519 . -309) 34480) ((-516 . -309) 34418) ((-497 . -309) 34356) ((-496 . -309) 34294) ((-418 . -233) 34273) ((-482 . -34) T) ((-1000 . -611) 34203) ((-225 . -1093) T) ((-1000 . -610) 34163) ((-967 . -610) 34123) ((-967 . -611) 34098) ((-910 . -610) 34080) ((-694 . -147) T) ((-696 . -916) T) ((-696 . -816) T) ((-427 . -610) 34062) ((-1113 . -21) T) ((-1113 . -25) T) ((-665 . -377) 34046) ((-116 . -916) T) ((-868 . -231) 34030) ((-78 . -1208) T) ((-126 . -125) 34014) ((-1049 . -34) T) ((-1279 . -1034) 33988) ((-1277 . -1034) 33945) ((-1230 . -1052) T) ((-851 . -1052) T) ((-482 . -787) 33924) ((-355 . -1144) 33903) ((-352 . -1144) 33882) ((-344 . -1144) 33861) ((-482 . -790) 33812) ((-482 . -789) 33791) ((-227 . -34) T) ((-482 . -722) 33701) ((-795 . -613) 33549) ((-60 . -489) 33533) ((-570 . -1052) T) ((-1165 . -172) 33424) ((-1118 . -172) 33335) ((-1056 . -1093) T) ((-1080 . -945) 33280) ((-948 . -1093) T) ((-813 . -643) 33231) ((-778 . -945) 33200) ((-709 . -1093) T) ((-776 . -945) 33167) ((-516 . -282) 33151) ((-665 . -896) 33110) ((-481 . -1093) T) ((-454 . -945) 33077) ((-79 . -1208) T) ((-355 . -38) 33042) ((-352 . -38) 33007) ((-344 . -38) 32972) ((-264 . -38) 32821) ((-247 . -38) 32670) ((-906 . -1144) T) ((-524 . -490) 32651) ((-620 . -147) 32630) ((-620 . -145) 32609) ((-524 . -610) 32575) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -722) T) ((-795 . -1045) T) ((-343 . -452) T) ((-1249 . -998) 32541) ((-1242 . -998) 32507) ((-1221 . -998) 32473) ((-906 . -38) 32438) ((-225 . -713) 32403) ((-319 . -47) 32373) ((-40 . -409) 32345) ((-140 . -610) 32327) ((-995 . -131) T) ((-811 . -1208) T) ((-174 . -916) T) ((-548 . -368) T) ((-603 . -613) 32308) ((-343 . -402) T) ((-666 . -613) 32289) ((-180 . -613) 32270) ((-161 . -613) 32251) ((-156 . -613) 32232) ((-154 . -613) 32213) ((-520 . -288) 32190) ((-1220 . -231) 32160) ((-811 . -1034) 31987) ((-45 . -34) T) ((-676 . -102) T) ((-671 . -102) T) ((-657 . -102) T) ((-649 . -21) T) ((-649 . -25) T) ((-1095 . -489) 31971) ((-670 . -1208) T) ((-478 . -102) T) ((-245 . -102) 31921) ((-546 . -840) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-867 . -1093) T) ((-1171 . -643) 31846) ((-1056 . -713) 31833) ((-727 . -1051) 31676) ((-1165 . -514) 31623) ((-948 . -713) 31472) ((-1118 . -514) 31424) ((-1268 . -1093) T) ((-1267 . -1093) T) ((-481 . -713) 31273) ((-67 . -610) 31255) ((-727 . -111) 31084) ((-939 . -489) 31068) ((-1269 . -643) 31028) ((-813 . -722) T) ((-1167 . -1051) 30911) ((-1166 . -1051) 30746) ((-1160 . -1051) 30536) ((-1119 . -1051) 30419) ((-999 . -1212) T) ((-1087 . -102) 30397) ((-811 . -377) 30366) ((-578 . -610) 30348) ((-546 . -1093) T) ((-999 . -555) T) ((-1167 . -111) 30217) ((-1166 . -111) 30038) ((-1160 . -111) 29807) ((-1119 . -111) 29676) ((-1098 . -1096) 29640) ((-379 . -844) T) ((-1249 . -610) 29622) ((-1242 . -610) 29604) ((-1221 . -610) 29586) ((-1221 . -611) NIL) ((-240 . -288) 29563) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1093) T) ((-727 . -613) 29348) ((-689 . -147) T) ((-689 . -145) NIL) ((-594 . -610) 29330) ((-593 . -610) 29312) ((-894 . -1093) T) ((-837 . -1093) T) ((-804 . -1093) T) ((-765 . -1093) T) ((-653 . -848) 29296) ((-672 . -1093) T) ((-811 . -896) 29228) ((-1213 . -368) T) ((-40 . -402) NIL) ((-1167 . -613) 29110) ((-1113 . -656) T) ((-867 . -713) 29055) ((-251 . -489) 29039) ((-250 . -489) 29023) ((-1166 . -613) 28766) ((-1160 . -613) 28561) ((-708 . -636) 28509) ((-648 . -643) 28483) ((-1119 . -613) 28365) ((-295 . -34) T) ((-727 . -1045) T) ((-580 . -1264) 28352) ((-518 . -1264) 28329) ((-1230 . -1093) T) ((-1165 . -290) 28240) ((-1118 . -290) 28171) ((-1056 . -172) T) ((-851 . -1093) T) ((-948 . -172) 28082) ((-778 . -1233) 28066) ((-640 . -514) 27999) ((-77 . -610) 27981) ((-727 . -326) 27946) ((-1171 . -722) T) ((-570 . -1093) T) ((-481 . -172) 27857) ((-245 . -309) 27795) ((-1135 . -1105) T) ((-70 . -610) 27777) ((-1269 . -722) T) ((-1167 . -1045) T) ((-1166 . -1045) T) ((-327 . -102) 27727) ((-1160 . -1045) T) ((-1135 . -23) T) ((-1119 . -1045) T) ((-91 . -1114) 27711) ((-862 . -1105) T) ((-1167 . -233) 27670) ((-1166 . -243) 27649) ((-1166 . -233) 27601) ((-1160 . -233) 27488) ((-1160 . -243) 27467) ((-319 . -896) 27373) ((-862 . -23) T) ((-169 . -713) 27201) ((-407 . -1212) T) ((-1094 . -368) T) ((-1020 . -147) T) ((-999 . -363) T) ((-866 . -452) T) ((-939 . -286) 27178) ((-316 . -846) T) ((-313 . -846) NIL) ((-870 . -102) T) ((-708 . -25) T) ((-407 . -555) T) ((-708 . -21) T) ((-525 . -613) 27159) ((-354 . -147) 27141) ((-354 . -145) T) ((-1140 . -1093) 27119) ((-453 . -716) T) ((-75 . -610) 27101) ((-114 . -846) T) ((-245 . -282) 27085) ((-240 . -1051) 26982) ((-81 . -610) 26964) ((-731 . -368) 26917) ((-1169 . -824) T) ((-733 . -235) 26901) ((-1152 . -1208) T) ((-141 . -235) 26883) ((-240 . -111) 26773) ((-1230 . -713) 26602) ((-48 . -147) T) ((-867 . -172) T) ((-851 . -713) 26572) ((-484 . -1208) T) ((-948 . -514) 26519) ((-648 . -722) T) ((-570 . -713) 26506) ((-1030 . -1052) T) ((-481 . -514) 26449) ((-939 . -19) 26433) ((-939 . -601) 26410) ((-812 . -611) NIL) ((-812 . -610) 26392) ((-1000 . -1051) 26342) ((-413 . -610) 26324) ((-251 . -286) 26301) ((-250 . -286) 26278) ((-487 . -905) NIL) ((-316 . -29) 26248) ((-108 . -1208) T) ((-999 . -1105) T) ((-217 . -905) NIL) ((-910 . -1051) 26200) ((-1073 . -1034) 26096) ((-1000 . -111) 26030) ((-999 . -23) T) ((-733 . -690) 26014) ((-264 . -231) 25998) ((-427 . -1051) 25982) ((-379 . -1052) T) ((-240 . -613) 25712) ((-910 . -111) 25650) ((-689 . -1196) NIL) ((-487 . -643) 25600) ((-108 . -880) 25582) ((-108 . -882) 25564) ((-689 . -1193) NIL) ((-217 . -643) 25514) ((-359 . -1034) 25498) ((-353 . -1034) 25482) ((-327 . -309) 25420) ((-345 . -1034) 25404) ((-225 . -290) T) ((-427 . -111) 25383) ((-60 . -610) 25315) ((-169 . -172) T) ((-1113 . -846) T) ((-108 . -1034) 25275) ((-888 . -1093) T) ((-832 . -1052) T) ((-823 . -1052) T) ((-689 . -35) NIL) ((-689 . -95) NIL) ((-313 . -988) 25236) ((-183 . -102) T) ((-579 . -452) T) ((-563 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1045) 25166) ((-1143 . -34) T) ((-477 . -916) T) ((-995 . -636) 25114) ((-251 . -601) 25091) ((-250 . -601) 25068) ((-1073 . -377) 25052) ((-867 . -514) 24960) ((-240 . -233) 24912) ((-1151 . -1208) T) ((-1000 . -613) 24862) ((-910 . -613) 24799) ((-820 . -610) 24781) ((-1280 . -1105) T) ((-1272 . -610) 24763) ((-1230 . -172) 24654) ((-427 . -613) 24623) ((-108 . -377) 24605) ((-108 . -338) 24587) ((-1056 . -290) T) ((-948 . -290) 24518) ((-795 . -368) 24497) ((-642 . -1208) T) ((-629 . -1208) T) ((-481 . -290) 24428) ((-570 . -172) T) ((-327 . -282) 24412) ((-1280 . -23) T) ((-1202 . -102) T) ((-1189 . -1093) T) ((-1081 . -1093) T) ((-1069 . -1093) T) ((-83 . -610) 24394) ((-1176 . -840) T) ((-1175 . -840) T) ((-707 . -102) T) ((-355 . -349) 24373) ((-605 . -1093) T) ((-352 . -349) 24352) ((-344 . -349) 24331) ((-475 . -1093) T) ((-1181 . -229) 24281) ((-264 . -253) 24243) ((-1135 . -131) T) ((-605 . -607) 24219) ((-1073 . -896) 24152) ((-1000 . -1045) T) ((-910 . -1045) T) ((-475 . -607) 24131) ((-1160 . -788) NIL) ((-1160 . -791) NIL) ((-1095 . -611) 24092) ((-479 . -229) 24042) ((-1095 . -610) 24024) ((-1000 . -243) T) ((-1000 . -233) T) ((-427 . -1045) T) ((-954 . -1093) 23974) ((-910 . -243) T) ((-862 . -131) T) ((-694 . -452) T) ((-839 . -1105) 23953) ((-108 . -896) NIL) ((-1202 . -284) 23919) ((-868 . -844) 23898) ((-1106 . -1208) T) ((-901 . -722) T) ((-169 . -514) 23810) ((-995 . -25) T) ((-901 . -473) T) ((-407 . -1105) T) ((-487 . -790) T) ((-487 . -787) T) ((-906 . -349) T) ((-487 . -722) T) ((-217 . -790) T) ((-217 . -787) T) ((-995 . -21) T) ((-217 . -722) T) ((-839 . -23) 23762) ((-524 . -613) 23743) ((-1176 . -1093) T) ((-319 . -307) 23722) ((-1175 . -1093) T) ((-1031 . -235) 23668) ((-407 . -23) T) ((-939 . -611) 23629) ((-939 . -610) 23541) ((-640 . -489) 23525) ((-45 . -1006) 23475) ((-614 . -963) T) ((-491 . -102) T) ((-331 . -610) 23457) ((-1106 . -1034) 23284) ((-591 . -646) 23266) ((-130 . -1093) T) ((-128 . -1093) T) ((-591 . -373) 23248) ((-343 . -1264) 23225) ((-439 . -610) 23207) ((-1023 . -1208) T) ((-867 . -290) T) ((-1230 . -514) 23154) ((-476 . -1208) T) ((-463 . -1208) T) ((-584 . -102) T) ((-1165 . -286) 23081) ((-620 . -452) 23060) ((-996 . -991) 23044) ((-1272 . -382) 23016) ((-517 . -1093) T) ((-117 . -452) T) ((-1188 . -102) T) ((-1085 . -1093) 22994) ((-1030 . -1093) T) ((-1108 . -93) T) ((-889 . -846) T) ((-351 . -1212) T) ((-1249 . -1051) 22877) ((-1106 . -377) 22846) ((-1242 . -1051) 22681) ((-1221 . -1051) 22471) ((-1249 . -111) 22340) ((-1242 . -111) 22161) ((-1221 . -111) 21930) ((-1202 . -309) 21917) ((-351 . -555) T) ((-365 . -610) 21899) ((-289 . -307) T) ((-594 . -1051) 21872) ((-593 . -1051) 21755) ((-361 . -1093) T) ((-322 . -1093) T) ((-251 . -610) 21716) ((-250 . -610) 21677) ((-999 . -131) T) ((-632 . -23) T) ((-689 . -409) 21644) ((-604 . -23) T) ((-653 . -102) T) ((-594 . -111) 21615) ((-593 . -111) 21484) ((-379 . -1093) T) ((-336 . -102) T) ((-169 . -290) 21395) ((-1220 . -844) 21348) ((-710 . -1052) T) ((-1140 . -514) 21281) ((-1106 . -896) 21213) ((-832 . -1093) T) ((-823 . -1093) T) ((-821 . -1093) T) ((-97 . -102) T) ((-144 . -846) T) ((-609 . -880) 21197) ((-110 . -1208) T) ((-1080 . -102) T) ((-1057 . -34) T) ((-778 . -102) T) ((-776 . -102) T) ((-1249 . -613) 21079) ((-1242 . -613) 20822) ((-461 . -102) T) ((-454 . -102) T) ((-1221 . -613) 20617) ((-240 . -791) 20568) ((-240 . -788) 20519) ((-644 . -102) T) ((-594 . -613) 20477) ((-593 . -613) 20359) ((-1230 . -290) 20270) ((-659 . -631) 20254) ((-186 . -610) 20236) ((-640 . -286) 20213) ((-1030 . -713) 20197) ((-570 . -290) T) ((-959 . -643) 20122) ((-1280 . -131) T) ((-731 . -643) 20082) ((-711 . -643) 20069) ((-275 . -102) T) ((-453 . -643) 19999) ((-50 . -102) T) ((-580 . -102) T) ((-518 . -102) T) ((-1249 . -1045) T) ((-1242 . -1045) T) ((-1221 . -1045) T) ((-1249 . -233) 19958) ((-322 . -713) 19940) ((-1242 . -243) 19919) ((-1242 . -233) 19871) ((-1221 . -233) 19758) ((-1221 . -243) 19737) ((-1202 . -38) 19634) ((-1000 . -791) T) ((-594 . -1045) T) ((-593 . -1045) T) ((-1000 . -788) T) ((-967 . -791) T) ((-967 . -788) T) ((-868 . -1052) T) ((-866 . -865) 19618) ((-109 . -610) 19600) ((-689 . -452) T) ((-379 . -713) 19565) ((-418 . -643) 19539) ((-708 . -846) 19518) ((-707 . -38) 19483) ((-593 . -233) 19442) ((-40 . -720) 19414) ((-351 . -329) 19391) ((-351 . -363) T) ((-1073 . -307) 19342) ((-294 . -1105) 19223) ((-1099 . -1208) T) ((-171 . -102) T) ((-1224 . -610) 19190) ((-839 . -131) 19142) ((-640 . -1245) 19126) ((-832 . -713) 19096) ((-823 . -713) 19066) ((-482 . -1208) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-640 . -601) 19043) ((-407 . -131) T) ((-520 . -661) 19027) ((-108 . -307) T) ((-294 . -23) 18910) ((-520 . -646) 18894) ((-689 . -402) NIL) ((-520 . -373) 18878) ((-291 . -610) 18860) ((-91 . -1093) 18838) ((-108 . -1018) T) ((-563 . -143) T) ((-1257 . -151) 18822) ((-482 . -1034) 18649) ((-1243 . -145) 18610) ((-1243 . -147) 18571) ((-1049 . -1208) T) ((-989 . -610) 18553) ((-858 . -610) 18535) ((-812 . -1051) 18378) ((-1268 . -93) T) ((-1267 . -93) T) ((-1165 . -611) NIL) ((-1089 . -1093) T) ((-1083 . -1093) T) ((-1080 . -309) 18365) ((-1067 . -1093) T) ((-227 . -1208) T) ((-1060 . -1093) T) ((-1032 . -1093) T) ((-1015 . -1093) T) ((-778 . -309) 18352) ((-776 . -309) 18339) ((-1165 . -610) 18321) ((-812 . -111) 18150) ((-1118 . -610) 18132) ((-623 . -1093) T) ((-576 . -173) T) ((-529 . -173) T) ((-454 . -309) 18119) ((-483 . -1093) T) ((-1118 . -611) 17867) ((-1030 . -172) T) ((-939 . -288) 17844) ((-218 . -1093) T) ((-850 . -610) 17826) ((-605 . -514) 17609) ((-81 . -613) 17550) ((-814 . -1034) 17534) ((-475 . -514) 17326) ((-959 . -722) T) ((-731 . -722) T) ((-711 . -722) T) ((-351 . -1105) T) ((-1172 . -610) 17308) ((-223 . -102) T) ((-482 . -377) 17277) ((-515 . -1093) T) ((-510 . -1093) T) ((-508 . -1093) T) ((-795 . -643) 17251) ((-1020 . -452) T) ((-954 . -514) 17184) ((-351 . -23) T) ((-632 . -131) T) ((-604 . -131) T) ((-354 . -452) T) ((-240 . -368) 17163) ((-379 . -172) T) ((-1241 . -1052) T) ((-1220 . -1052) T) ((-225 . -998) T) ((-812 . -613) 16900) ((-694 . -387) T) ((-418 . -722) T) ((-696 . -1212) T) ((-1135 . -636) 16848) ((-579 . -865) 16832) ((-1272 . -1051) 16816) ((-1152 . -1184) 16792) ((-696 . -555) T) ((-126 . -1093) 16770) ((-710 . -1093) T) ((-482 . -896) 16702) ((-249 . -1093) T) ((-187 . -1093) T) ((-653 . -38) 16672) ((-354 . -402) T) ((-316 . -147) 16651) ((-316 . -145) 16630) ((-128 . -514) NIL) ((-116 . -555) T) ((-313 . -147) 16586) ((-313 . -145) 16542) ((-48 . -452) T) ((-162 . -1093) T) ((-157 . -1093) T) ((-1152 . -107) 16489) ((-778 . -1144) 16467) ((-684 . -34) T) ((-1272 . -111) 16446) ((-549 . -34) T) ((-484 . -107) 16430) ((-251 . -288) 16407) ((-250 . -288) 16384) ((-867 . -286) 16335) ((-45 . -1208) T) ((-1214 . -840) T) ((-812 . -1045) T) ((-1171 . -47) 16312) ((-812 . -326) 16274) ((-1080 . -38) 16123) ((-812 . -233) 16102) ((-778 . -38) 15931) ((-776 . -38) 15780) ((-1108 . -490) 15761) ((-454 . -38) 15610) ((-1108 . -610) 15576) ((-1111 . -102) T) ((-640 . -611) 15537) ((-640 . -610) 15449) ((-580 . -1144) T) ((-518 . -1144) T) ((-1140 . -489) 15433) ((-1194 . -1093) 15411) ((-1135 . -25) T) ((-1135 . -21) T) ((-1272 . -613) 15360) ((-474 . -1052) T) ((-1214 . -1093) T) ((-1221 . -788) NIL) ((-1221 . -791) NIL) ((-995 . -846) 15339) ((-834 . -1093) T) ((-815 . -610) 15321) ((-862 . -21) T) ((-862 . -25) T) ((-795 . -722) T) ((-174 . -1212) T) ((-580 . -38) 15286) ((-518 . -38) 15251) ((-386 . -610) 15233) ((-324 . -610) 15215) ((-169 . -286) 15173) ((-63 . -1208) T) ((-112 . -102) T) ((-868 . -1093) T) ((-174 . -555) T) ((-710 . -713) 15143) ((-294 . -131) 15026) ((-225 . -610) 15008) ((-225 . -611) 14938) ((-999 . -636) 14877) ((-1272 . -1045) T) ((-1113 . -147) T) ((-629 . -1184) 14852) ((-727 . -905) 14831) ((-591 . -34) T) ((-642 . -107) 14815) ((-629 . -107) 14761) ((-1230 . -286) 14688) ((-727 . -643) 14613) ((-295 . -1208) T) ((-1171 . -1034) 14509) ((-939 . -615) 14486) ((-576 . -575) T) ((-576 . -527) T) ((-529 . -527) T) ((-1160 . -905) NIL) ((-1056 . -611) 14401) ((-1056 . -610) 14383) ((-948 . -610) 14365) ((-709 . -490) 14315) ((-343 . -102) T) ((-251 . -1051) 14212) ((-250 . -1051) 14109) ((-394 . -102) T) ((-31 . -1093) T) ((-948 . -611) 13970) ((-709 . -610) 13905) ((-1270 . -1201) 13874) ((-481 . -610) 13856) ((-481 . -611) 13717) ((-247 . -411) 13701) ((-264 . -411) 13685) ((-251 . -111) 13575) ((-250 . -111) 13465) ((-1167 . -643) 13390) ((-1166 . -643) 13287) ((-1160 . -643) 13139) ((-1119 . -643) 13064) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-999 . -25) T) ((-999 . -21) T) ((-869 . -1093) 13015) ((-868 . -713) 12967) ((-379 . -290) T) ((-169 . -998) 12919) ((-689 . -387) T) ((-995 . -993) 12903) ((-696 . -1105) T) ((-689 . -166) 12885) ((-1241 . -1093) T) ((-1220 . -1093) T) ((-316 . -1193) 12864) ((-316 . -1196) 12843) ((-1157 . -102) T) ((-316 . -955) 12822) ((-134 . -1105) T) ((-116 . -1105) T) ((-599 . -1255) 12806) ((-696 . -23) T) ((-599 . -1093) 12756) ((-316 . -95) 12735) ((-91 . -514) 12668) ((-174 . -363) T) ((-251 . -613) 12398) ((-250 . -613) 12128) ((-316 . -35) 12107) ((-605 . -489) 12041) ((-134 . -23) T) ((-116 . -23) T) ((-962 . -102) T) ((-714 . -1093) T) ((-475 . -489) 11978) ((-407 . -636) 11926) ((-648 . -1034) 11822) ((-954 . -489) 11806) ((-355 . -1052) T) ((-352 . -1052) T) ((-344 . -1052) T) ((-264 . -1052) T) ((-247 . -1052) T) ((-867 . -611) NIL) ((-867 . -610) 11788) ((-1268 . -490) 11769) ((-1267 . -490) 11750) ((-1280 . -21) T) ((-1268 . -610) 11716) ((-1267 . -610) 11682) ((-570 . -998) T) ((-727 . -722) T) ((-1280 . -25) T) ((-251 . -1045) 11612) ((-250 . -1045) 11542) ((-72 . -1208) T) ((-251 . -233) 11494) ((-250 . -233) 11446) ((-40 . -102) T) ((-906 . -1052) T) ((-128 . -489) 11428) ((-1174 . -102) T) ((-1167 . -722) T) ((-1166 . -722) T) ((-1160 . -722) T) ((-1160 . -787) NIL) ((-1160 . -790) NIL) ((-950 . -102) T) ((-917 . -102) T) ((-1119 . -722) T) ((-767 . -102) T) ((-667 . -102) T) ((-546 . -610) 11410) ((-474 . -1093) T) ((-339 . -1105) T) ((-174 . -1105) T) ((-319 . -916) 11389) ((-1241 . -713) 11230) ((-868 . -172) T) ((-1220 . -713) 11044) ((-839 . -21) 10996) ((-839 . -25) 10948) ((-245 . -1142) 10932) ((-126 . -514) 10865) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -611) 10631) ((-169 . -610) 10613) ((-174 . -23) T) ((-640 . -288) 10590) ((-520 . -34) T) ((-894 . -610) 10572) ((-89 . -1208) T) ((-837 . -610) 10554) ((-804 . -610) 10536) ((-765 . -610) 10518) ((-672 . -610) 10500) ((-240 . -643) 10348) ((-1169 . -1093) T) ((-1165 . -1051) 10171) ((-1143 . -1208) T) ((-1118 . -1051) 10014) ((-850 . -1051) 9998) ((-1224 . -615) 9982) ((-1165 . -111) 9791) ((-1118 . -111) 9620) ((-850 . -111) 9599) ((-1230 . -611) NIL) ((-1230 . -610) 9581) ((-343 . -1144) T) ((-851 . -610) 9563) ((-1069 . -286) 9542) ((-80 . -1208) T) ((-1000 . -905) NIL) ((-605 . -286) 9518) ((-1194 . -514) 9451) ((-487 . -1208) T) ((-570 . -610) 9433) ((-475 . -286) 9412) ((-517 . -93) T) ((-217 . -1208) T) ((-1080 . -231) 9396) ((-1000 . -643) 9346) ((-289 . -916) T) ((-813 . -307) 9325) ((-866 . -102) T) ((-778 . -231) 9309) ((-954 . -286) 9286) ((-910 . -643) 9238) ((-632 . -21) T) ((-632 . -25) T) ((-604 . -21) T) ((-547 . -102) T) ((-343 . -38) 9203) ((-689 . -720) 9170) ((-487 . -880) 9152) ((-487 . -882) 9134) ((-474 . -713) 8975) ((-217 . -880) 8957) ((-64 . -1208) T) ((-217 . -882) 8939) ((-604 . -25) T) ((-427 . -643) 8913) ((-1165 . -613) 8682) ((-487 . -1034) 8642) ((-868 . -514) 8554) ((-1118 . -613) 8346) ((-850 . -613) 8264) ((-217 . -1034) 8224) ((-240 . -34) T) ((-996 . -1093) 8202) ((-1241 . -172) 8133) ((-1220 . -172) 8064) ((-708 . -145) 8043) ((-708 . -147) 8022) ((-696 . -131) T) ((-136 . -465) 7999) ((-1140 . -610) 7931) ((-653 . -651) 7915) ((-128 . -286) 7890) ((-116 . -131) T) ((-477 . -1212) T) ((-605 . -601) 7866) ((-475 . -601) 7845) ((-336 . -335) 7814) ((-536 . -1093) T) ((-477 . -555) T) ((-1165 . -1045) T) ((-1118 . -1045) T) ((-850 . -1045) T) ((-240 . -787) 7793) ((-240 . -790) 7744) ((-240 . -789) 7723) ((-1165 . -326) 7700) ((-240 . -722) 7610) ((-954 . -19) 7594) ((-487 . -377) 7576) ((-487 . -338) 7558) ((-1118 . -326) 7530) ((-354 . -1264) 7507) ((-217 . -377) 7489) ((-217 . -338) 7471) ((-954 . -601) 7448) ((-1165 . -233) T) ((-659 . -1093) T) ((-641 . -1093) T) ((-1253 . -1093) T) ((-1181 . -1093) T) ((-1080 . -253) 7385) ((-355 . -1093) T) ((-352 . -1093) T) ((-344 . -1093) T) ((-264 . -1093) T) ((-247 . -1093) T) ((-84 . -1208) T) ((-127 . -102) 7363) ((-121 . -102) 7341) ((-1181 . -607) 7320) ((-479 . -1093) T) ((-1134 . -1093) T) ((-479 . -607) 7299) ((-251 . -791) 7250) ((-251 . -788) 7201) ((-250 . -791) 7152) ((-40 . -1144) NIL) ((-250 . -788) 7103) ((-1108 . -613) 7084) ((-128 . -19) 7066) ((-1073 . -916) 7017) ((-1000 . -790) T) ((-1000 . -787) T) ((-1000 . -722) T) ((-967 . -790) T) ((-128 . -601) 6992) ((-910 . -722) T) ((-91 . -489) 6976) ((-487 . -896) NIL) ((-906 . -1093) T) ((-225 . -1051) 6941) ((-868 . -290) T) ((-217 . -896) NIL) ((-829 . -1105) 6920) ((-59 . -1093) 6870) ((-519 . -1093) 6848) ((-516 . -1093) 6798) ((-497 . -1093) 6776) ((-496 . -1093) 6726) ((-579 . -102) T) ((-563 . -102) T) ((-495 . -102) T) ((-474 . -172) 6657) ((-359 . -916) T) ((-353 . -916) T) ((-345 . -916) T) ((-225 . -111) 6613) ((-829 . -23) 6565) ((-427 . -722) T) ((-108 . -916) T) ((-40 . -38) 6510) ((-108 . -816) T) ((-580 . -349) T) ((-518 . -349) T) ((-1220 . -514) 6370) ((-316 . -452) 6349) ((-313 . -452) T) ((-888 . -610) 6331) ((-832 . -286) 6310) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6174) ((-294 . -21) 6057) ((-45 . -1184) 6036) ((-66 . -610) 6018) ((-55 . -102) T) ((-599 . -514) 5951) ((-45 . -107) 5901) ((-815 . -613) 5885) ((-1095 . -425) 5869) ((-1095 . -368) 5848) ((-386 . -613) 5832) ((-324 . -613) 5816) ((-1057 . -1208) T) ((-1056 . -1051) 5803) ((-948 . -1051) 5646) ((-1258 . -102) T) ((-1257 . -102) 5596) ((-1056 . -111) 5581) ((-481 . -1051) 5424) ((-659 . -713) 5408) ((-948 . -111) 5237) ((-225 . -613) 5187) ((-477 . -363) T) ((-355 . -713) 5139) ((-352 . -713) 5091) ((-344 . -713) 5043) ((-264 . -713) 4892) ((-247 . -713) 4741) ((-1249 . -643) 4666) ((-1221 . -905) NIL) ((-1089 . -93) T) ((-1083 . -93) T) ((-939 . -646) 4650) ((-1067 . -93) T) ((-481 . -111) 4479) ((-1060 . -93) T) ((-1032 . -93) T) ((-939 . -373) 4463) ((-248 . -102) T) ((-1015 . -93) T) ((-74 . -610) 4445) ((-959 . -47) 4424) ((-706 . -102) T) ((-694 . -102) T) ((-1 . -1093) T) ((-618 . -1105) T) ((-1242 . -643) 4321) ((-623 . -93) T) ((-1189 . -610) 4303) ((-1081 . -610) 4285) ((-126 . -489) 4269) ((-483 . -93) T) ((-1069 . -610) 4251) ((-390 . -23) T) ((-87 . -1208) T) ((-218 . -93) T) ((-1221 . -643) 4103) ((-906 . -713) 4068) ((-618 . -23) T) ((-605 . -610) 4050) ((-605 . -611) NIL) ((-475 . -611) NIL) ((-475 . -610) 4032) ((-511 . -1093) T) ((-507 . -1093) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3970) ((-121 . -309) 3908) ((-594 . -643) 3895) ((-225 . -1045) T) ((-593 . -643) 3820) ((-379 . -998) T) ((-225 . -243) T) ((-225 . -233) T) ((-1056 . -613) 3792) ((-1056 . -615) 3773) ((-954 . -611) 3734) ((-954 . -610) 3646) ((-948 . -613) 3435) ((-866 . -38) 3422) ((-709 . -613) 3372) ((-1241 . -290) 3323) ((-1220 . -290) 3274) ((-481 . -613) 3059) ((-1113 . -452) T) ((-502 . -846) T) ((-316 . -1132) 3038) ((-995 . -147) 3017) ((-995 . -145) 2996) ((-495 . -309) 2983) ((-295 . -1184) 2962) ((-1176 . -610) 2944) ((-1175 . -610) 2926) ((-867 . -1051) 2871) ((-477 . -1105) T) ((-139 . -831) 2853) ((-620 . -102) T) ((-1194 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1056 . -1045) T) ((-295 . -107) 2745) ((-130 . -610) 2727) ((-128 . -611) NIL) ((-128 . -610) 2671) ((-117 . -102) T) ((-948 . -1045) T) ((-867 . -111) 2600) ((-477 . -23) T) ((-481 . -1045) T) ((-1056 . -233) T) ((-948 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-959 . -1034) 2244) ((-517 . -490) 2225) ((-731 . -1034) 2196) ((-517 . -610) 2162) ((-1098 . -102) T) ((-1085 . -610) 2129) ((-1030 . -610) 2111) ((-1270 . -151) 2095) ((-1268 . -613) 2076) ((-1262 . -610) 2058) ((-1249 . -722) T) ((-1242 . -722) T) ((-1221 . -787) NIL) ((-1221 . -790) NIL) ((-169 . -1051) 1968) ((-906 . -172) T) ((-867 . -613) 1898) ((-1221 . -722) T) ((-1267 . -613) 1879) ((-999 . -342) 1853) ((-996 . -514) 1786) ((-839 . -846) 1765) ((-563 . -1144) T) ((-474 . -290) 1716) ((-594 . -722) T) ((-361 . -610) 1698) ((-322 . -610) 1680) ((-418 . -1034) 1576) ((-593 . -722) T) ((-407 . -846) 1527) ((-169 . -111) 1423) ((-829 . -131) 1375) ((-733 . -151) 1359) ((-1257 . -309) 1297) ((-487 . -307) T) ((-379 . -610) 1264) ((-520 . -1006) 1248) ((-379 . -611) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-710 . -286) 1123) ((-487 . -1018) T) ((-579 . -38) 1110) ((-563 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1018) T) ((-867 . -1045) T) ((-832 . -610) 1044) ((-823 . -610) 1026) ((-821 . -610) 1008) ((-812 . -905) 987) ((-1281 . -1105) T) ((-1230 . -1051) 810) ((-851 . -1051) 794) ((-867 . -243) T) ((-867 . -233) NIL) ((-684 . -1208) T) ((-1281 . -23) T) ((-812 . -643) 719) ((-549 . -1208) T) ((-418 . -338) 703) ((-570 . -1051) 690) ((-1230 . -111) 499) ((-696 . -636) 481) ((-851 . -111) 460) ((-381 . -23) T) ((-169 . -613) 238) ((-1181 . -514) 30) ((-657 . -1093) T) ((-676 . -1093) T) ((-671 . -1093) T)) \ No newline at end of file
+((($) . T))
+((((-859)) . T))
+((($) . T))
+((((-546)) . T))
+(((-1285 . -172) T) ((-1285 . -613) 162114) ((-1285 . -722) T) ((-1285 . -1105) T) ((-1285 . -1052) T) ((-1285 . -1045) T) ((-1285 . -643) 162101) ((-1285 . -131) T) ((-1285 . -25) T) ((-1285 . -102) T) ((-1285 . -610) 162083) ((-1285 . -1094) T) ((-1285 . -23) T) ((-1285 . -21) T) ((-1285 . -1051) 162070) ((-1285 . -111) 162055) ((-1285 . -368) T) ((-1285 . -611) 162037) ((-1285 . -1144) T) ((-1281 . -1279) 162016) ((-1281 . -1034) 161993) ((-1281 . -613) 161942) ((-1281 . -1045) T) ((-1281 . -1052) T) ((-1281 . -1105) T) ((-1281 . -722) T) ((-1281 . -21) T) ((-1281 . -23) T) ((-1281 . -1094) T) ((-1281 . -610) 161924) ((-1281 . -102) T) ((-1281 . -25) T) ((-1281 . -131) T) ((-1281 . -643) 161898) ((-1281 . -1271) 161882) ((-1281 . -713) 161852) ((-1281 . -1051) 161836) ((-1281 . -111) 161815) ((-1281 . -38) 161785) ((-1281 . -1276) 161764) ((-1280 . -1045) T) ((-1280 . -1052) T) ((-1280 . -1105) T) ((-1280 . -722) T) ((-1280 . -21) T) ((-1280 . -23) T) ((-1280 . -1094) T) ((-1280 . -610) 161746) ((-1280 . -102) T) ((-1280 . -25) T) ((-1280 . -131) T) ((-1280 . -643) 161720) ((-1280 . -613) 161676) ((-1280 . -1271) 161660) ((-1280 . -713) 161630) ((-1280 . -1051) 161614) ((-1280 . -111) 161593) ((-1280 . -38) 161563) ((-1280 . -384) 161542) ((-1280 . -1034) 161526) ((-1278 . -1279) 161502) ((-1278 . -1034) 161476) ((-1278 . -613) 161422) ((-1278 . -1045) T) ((-1278 . -1052) T) ((-1278 . -1105) T) ((-1278 . -722) T) ((-1278 . -21) T) ((-1278 . -23) T) ((-1278 . -1094) T) ((-1278 . -610) 161404) ((-1278 . -102) T) ((-1278 . -25) T) ((-1278 . -131) T) ((-1278 . -643) 161378) ((-1278 . -1271) 161362) ((-1278 . -713) 161332) ((-1278 . -1051) 161316) ((-1278 . -111) 161295) ((-1278 . -38) 161265) ((-1278 . -1276) 161241) ((-1277 . -1279) 161220) ((-1277 . -1034) 161177) ((-1277 . -613) 161106) ((-1277 . -1045) T) ((-1277 . -1052) T) ((-1277 . -1105) T) ((-1277 . -722) T) ((-1277 . -21) T) ((-1277 . -23) T) ((-1277 . -1094) T) ((-1277 . -610) 161088) ((-1277 . -102) T) ((-1277 . -25) T) ((-1277 . -131) T) ((-1277 . -643) 161062) ((-1277 . -1271) 161046) ((-1277 . -713) 161016) ((-1277 . -1051) 161000) ((-1277 . -111) 160979) ((-1277 . -38) 160949) ((-1277 . -1276) 160928) ((-1277 . -384) 160900) ((-1272 . -384) 160872) ((-1272 . -613) 160821) ((-1272 . -1034) 160798) ((-1272 . -713) 160768) ((-1272 . -643) 160742) ((-1272 . -131) T) ((-1272 . -25) T) ((-1272 . -102) T) ((-1272 . -610) 160724) ((-1272 . -1094) T) ((-1272 . -23) T) ((-1272 . -21) T) ((-1272 . -1051) 160708) ((-1272 . -111) 160687) ((-1272 . -1279) 160666) ((-1272 . -1045) T) ((-1272 . -1052) T) ((-1272 . -1105) T) ((-1272 . -722) T) ((-1272 . -1271) 160650) ((-1272 . -38) 160620) ((-1272 . -1276) 160599) ((-1270 . -1202) 160568) ((-1270 . -610) 160530) ((-1270 . -151) 160514) ((-1270 . -34) T) ((-1270 . -1207) T) ((-1270 . -309) 160452) ((-1270 . -514) 160385) ((-1270 . -1094) T) ((-1270 . -102) T) ((-1270 . -489) 160369) ((-1270 . -611) 160330) ((-1270 . -972) 160299) ((-1269 . -1045) T) ((-1269 . -1052) T) ((-1269 . -1105) T) ((-1269 . -722) T) ((-1269 . -21) T) ((-1269 . -23) T) ((-1269 . -1094) T) ((-1269 . -610) 160268) ((-1269 . -102) T) ((-1269 . -25) T) ((-1269 . -131) T) ((-1269 . -643) 160228) ((-1269 . -613) 160170) ((-1269 . -490) 160154) ((-1269 . -38) 160124) ((-1269 . -111) 160089) ((-1269 . -1051) 160059) ((-1269 . -713) 160029) ((-1268 . -1076) T) ((-1268 . -490) 160010) ((-1268 . -610) 159976) ((-1268 . -613) 159957) ((-1268 . -1094) T) ((-1268 . -102) T) ((-1268 . -93) T) ((-1267 . -1076) T) ((-1267 . -490) 159938) ((-1267 . -610) 159904) ((-1267 . -613) 159885) ((-1267 . -1094) T) ((-1267 . -102) T) ((-1267 . -93) T) ((-1262 . -610) 159867) ((-1260 . -1094) T) ((-1260 . -610) 159849) ((-1260 . -102) T) ((-1259 . -1094) T) ((-1259 . -610) 159831) ((-1259 . -102) T) ((-1256 . -1255) 159815) ((-1256 . -372) 159799) ((-1256 . -846) 159778) ((-1256 . -151) 159762) ((-1256 . -34) T) ((-1256 . -1207) T) ((-1256 . -610) 159674) ((-1256 . -309) 159612) ((-1256 . -514) 159545) ((-1256 . -1094) 159495) ((-1256 . -102) 159445) ((-1256 . -489) 159429) ((-1256 . -611) 159390) ((-1256 . -601) 159367) ((-1256 . -286) 159344) ((-1256 . -288) 159321) ((-1256 . -646) 159305) ((-1256 . -19) 159289) ((-1253 . -1094) T) ((-1253 . -610) 159255) ((-1253 . -102) T) ((-1246 . -1249) 159239) ((-1246 . -233) 159198) ((-1246 . -613) 159080) ((-1246 . -643) 159005) ((-1246 . -131) T) ((-1246 . -25) T) ((-1246 . -102) T) ((-1246 . -610) 158987) ((-1246 . -1094) T) ((-1246 . -23) T) ((-1246 . -21) T) ((-1246 . -722) T) ((-1246 . -1105) T) ((-1246 . -1052) T) ((-1246 . -1045) T) ((-1246 . -286) 158972) ((-1246 . -896) 158885) ((-1246 . -969) 158854) ((-1246 . -38) 158751) ((-1246 . -111) 158620) ((-1246 . -1051) 158503) ((-1246 . -713) 158400) ((-1246 . -145) 158379) ((-1246 . -147) 158358) ((-1246 . -172) 158309) ((-1246 . -556) 158288) ((-1246 . -290) 158267) ((-1246 . -47) 158244) ((-1246 . -1235) 158221) ((-1246 . -35) 158187) ((-1246 . -95) 158153) ((-1246 . -284) 158119) ((-1246 . -493) 158085) ((-1246 . -1196) 158051) ((-1246 . -1193) 158017) ((-1246 . -998) 157983) ((-1243 . -326) 157927) ((-1243 . -1034) 157893) ((-1243 . -412) 157859) ((-1243 . -38) 157751) ((-1243 . -613) 157625) ((-1243 . -643) 157530) ((-1243 . -722) T) ((-1243 . -1105) T) ((-1243 . -1052) T) ((-1243 . -1045) T) ((-1243 . -111) 157422) ((-1243 . -1051) 157327) ((-1243 . -21) T) ((-1243 . -23) T) ((-1243 . -1094) T) ((-1243 . -610) 157309) ((-1243 . -102) T) ((-1243 . -25) T) ((-1243 . -131) T) ((-1243 . -713) 157201) ((-1243 . -145) 157162) ((-1243 . -147) 157123) ((-1243 . -172) T) ((-1243 . -556) T) ((-1243 . -290) T) ((-1243 . -47) 157067) ((-1242 . -1241) 157046) ((-1242 . -363) 157025) ((-1242 . -1212) 157004) ((-1242 . -917) 156983) ((-1242 . -556) 156934) ((-1242 . -172) 156865) ((-1242 . -613) 156678) ((-1242 . -713) 156519) ((-1242 . -38) 156360) ((-1242 . -452) 156339) ((-1242 . -307) 156318) ((-1242 . -643) 156215) ((-1242 . -722) T) ((-1242 . -1105) T) ((-1242 . -1052) T) ((-1242 . -1045) T) ((-1242 . -111) 156036) ((-1242 . -1051) 155871) ((-1242 . -21) T) ((-1242 . -23) T) ((-1242 . -1094) T) ((-1242 . -610) 155853) ((-1242 . -102) T) ((-1242 . -25) T) ((-1242 . -131) T) ((-1242 . -290) 155804) ((-1242 . -243) 155783) ((-1242 . -998) 155749) ((-1242 . -1193) 155715) ((-1242 . -1196) 155681) ((-1242 . -493) 155647) ((-1242 . -284) 155613) ((-1242 . -95) 155579) ((-1242 . -35) 155545) ((-1242 . -1235) 155515) ((-1242 . -47) 155485) ((-1242 . -147) 155464) ((-1242 . -145) 155443) ((-1242 . -969) 155405) ((-1242 . -896) 155311) ((-1242 . -286) 155296) ((-1242 . -233) 155248) ((-1242 . -1239) 155232) ((-1242 . -1034) 155216) ((-1237 . -1241) 155177) ((-1237 . -363) 155156) ((-1237 . -1212) 155135) ((-1237 . -917) 155114) ((-1237 . -556) 155065) ((-1237 . -172) 154996) ((-1237 . -613) 154739) ((-1237 . -713) 154580) ((-1237 . -38) 154421) ((-1237 . -452) 154400) ((-1237 . -307) 154379) ((-1237 . -643) 154276) ((-1237 . -722) T) ((-1237 . -1105) T) ((-1237 . -1052) T) ((-1237 . -1045) T) ((-1237 . -111) 154097) ((-1237 . -1051) 153932) ((-1237 . -21) T) ((-1237 . -23) T) ((-1237 . -1094) T) ((-1237 . -610) 153914) ((-1237 . -102) T) ((-1237 . -25) T) ((-1237 . -131) T) ((-1237 . -290) 153865) ((-1237 . -243) 153844) ((-1237 . -998) 153810) ((-1237 . -1193) 153776) ((-1237 . -1196) 153742) ((-1237 . -493) 153708) ((-1237 . -284) 153674) ((-1237 . -95) 153640) ((-1237 . -35) 153606) ((-1237 . -1235) 153576) ((-1237 . -47) 153546) ((-1237 . -147) 153525) ((-1237 . -145) 153504) ((-1237 . -969) 153466) ((-1237 . -896) 153372) ((-1237 . -286) 153357) ((-1237 . -233) 153309) ((-1237 . -1239) 153293) ((-1237 . -1034) 153228) ((-1225 . -1232) 153212) ((-1225 . -1144) 153190) ((-1225 . -611) NIL) ((-1225 . -309) 153177) ((-1225 . -514) 153124) ((-1225 . -326) 153101) ((-1225 . -1034) 152981) ((-1225 . -412) 152965) ((-1225 . -38) 152794) ((-1225 . -111) 152603) ((-1225 . -1051) 152426) ((-1225 . -643) 152351) ((-1225 . -713) 152180) ((-1225 . -613) 151928) ((-1225 . -145) 151907) ((-1225 . -147) 151886) ((-1225 . -47) 151863) ((-1225 . -377) 151847) ((-1225 . -636) 151795) ((-1225 . -846) 151774) ((-1225 . -896) 151717) ((-1225 . -882) NIL) ((-1225 . -906) 151696) ((-1225 . -1212) 151675) ((-1225 . -946) 151644) ((-1225 . -917) 151623) ((-1225 . -556) 151534) ((-1225 . -290) 151445) ((-1225 . -172) 151336) ((-1225 . -452) 151267) ((-1225 . -307) 151246) ((-1225 . -286) 151173) ((-1225 . -233) T) ((-1225 . -131) T) ((-1225 . -25) T) ((-1225 . -102) T) ((-1225 . -610) 151155) ((-1225 . -1094) T) ((-1225 . -23) T) ((-1225 . -21) T) ((-1225 . -722) T) ((-1225 . -1105) T) ((-1225 . -1052) T) ((-1225 . -1045) T) ((-1225 . -231) 151139) ((-1223 . -1087) 151123) ((-1223 . -615) 151107) ((-1223 . -1094) 151085) ((-1223 . -610) 151052) ((-1223 . -102) 151030) ((-1223 . -1088) 150987) ((-1221 . -1220) 150966) ((-1221 . -998) 150932) ((-1221 . -1193) 150898) ((-1221 . -1196) 150864) ((-1221 . -493) 150830) ((-1221 . -284) 150796) ((-1221 . -95) 150762) ((-1221 . -35) 150728) ((-1221 . -1235) 150705) ((-1221 . -47) 150682) ((-1221 . -613) 150430) ((-1221 . -713) 150244) ((-1221 . -643) 150114) ((-1221 . -1051) 149922) ((-1221 . -111) 149711) ((-1221 . -38) 149525) ((-1221 . -969) 149494) ((-1221 . -286) 149414) ((-1221 . -1218) 149398) ((-1221 . -722) T) ((-1221 . -1105) T) ((-1221 . -1052) T) ((-1221 . -1045) T) ((-1221 . -21) T) ((-1221 . -23) T) ((-1221 . -1094) T) ((-1221 . -610) 149380) ((-1221 . -102) T) ((-1221 . -25) T) ((-1221 . -131) T) ((-1221 . -145) 149305) ((-1221 . -147) 149230) ((-1221 . -611) 148901) ((-1221 . -231) 148871) ((-1221 . -896) 148722) ((-1221 . -233) 148627) ((-1221 . -363) 148606) ((-1221 . -1212) 148585) ((-1221 . -917) 148564) ((-1221 . -556) 148515) ((-1221 . -172) 148446) ((-1221 . -452) 148425) ((-1221 . -307) 148404) ((-1221 . -290) 148355) ((-1221 . -243) 148334) ((-1221 . -338) 148304) ((-1221 . -514) 148164) ((-1221 . -309) 148103) ((-1221 . -377) 148073) ((-1221 . -636) 147981) ((-1221 . -400) 147951) ((-1221 . -1207) 147930) ((-1221 . -882) 147803) ((-1221 . -816) 147756) ((-1221 . -787) 147709) ((-1221 . -788) 147662) ((-1221 . -846) 147561) ((-1221 . -790) 147514) ((-1221 . -793) 147467) ((-1221 . -844) 147420) ((-1221 . -880) 147390) ((-1221 . -906) 147343) ((-1221 . -1016) 147295) ((-1221 . -1034) 147081) ((-1221 . -1144) 147033) ((-1221 . -987) 147003) ((-1216 . -1220) 146964) ((-1216 . -998) 146930) ((-1216 . -1193) 146896) ((-1216 . -1196) 146862) ((-1216 . -493) 146828) ((-1216 . -284) 146794) ((-1216 . -95) 146760) ((-1216 . -35) 146726) ((-1216 . -1235) 146703) ((-1216 . -47) 146680) ((-1216 . -613) 146475) ((-1216 . -713) 146271) ((-1216 . -643) 146123) ((-1216 . -1051) 145913) ((-1216 . -111) 145682) ((-1216 . -38) 145478) ((-1216 . -969) 145447) ((-1216 . -286) 145295) ((-1216 . -1218) 145279) ((-1216 . -722) T) ((-1216 . -1105) T) ((-1216 . -1052) T) ((-1216 . -1045) T) ((-1216 . -21) T) ((-1216 . -23) T) ((-1216 . -1094) T) ((-1216 . -610) 145261) ((-1216 . -102) T) ((-1216 . -25) T) ((-1216 . -131) T) ((-1216 . -145) 145168) ((-1216 . -147) 145075) ((-1216 . -611) NIL) ((-1216 . -231) 145027) ((-1216 . -896) 144860) ((-1216 . -233) 144747) ((-1216 . -363) 144726) ((-1216 . -1212) 144705) ((-1216 . -917) 144684) ((-1216 . -556) 144635) ((-1216 . -172) 144566) ((-1216 . -452) 144545) ((-1216 . -307) 144524) ((-1216 . -290) 144475) ((-1216 . -243) 144454) ((-1216 . -338) 144406) ((-1216 . -514) 144175) ((-1216 . -309) 144060) ((-1216 . -377) 144012) ((-1216 . -636) 143964) ((-1216 . -400) 143916) ((-1216 . -1207) 143895) ((-1216 . -882) NIL) ((-1216 . -816) NIL) ((-1216 . -787) NIL) ((-1216 . -788) NIL) ((-1216 . -846) NIL) ((-1216 . -790) NIL) ((-1216 . -793) NIL) ((-1216 . -844) NIL) ((-1216 . -880) 143847) ((-1216 . -906) NIL) ((-1216 . -1016) NIL) ((-1216 . -1034) 143813) ((-1216 . -1144) NIL) ((-1216 . -987) 143765) ((-1215 . -840) T) ((-1215 . -846) T) ((-1215 . -1094) T) ((-1215 . -610) 143747) ((-1215 . -102) T) ((-1215 . -368) T) ((-1214 . -840) T) ((-1214 . -846) T) ((-1214 . -1094) T) ((-1214 . -610) 143729) ((-1214 . -102) T) ((-1214 . -368) T) ((-1213 . -840) T) ((-1213 . -846) T) ((-1213 . -1094) T) ((-1213 . -610) 143711) ((-1213 . -102) T) ((-1213 . -368) T) ((-1208 . -1076) T) ((-1208 . -490) 143692) ((-1208 . -610) 143658) ((-1208 . -613) 143639) ((-1208 . -1094) T) ((-1208 . -102) T) ((-1208 . -93) T) ((-1205 . -490) 143616) ((-1205 . -610) 143528) ((-1205 . -613) 143505) ((-1205 . -1094) 143483) ((-1205 . -102) 143461) ((-1200 . -736) 143437) ((-1200 . -35) 143403) ((-1200 . -95) 143369) ((-1200 . -284) 143335) ((-1200 . -493) 143301) ((-1200 . -1196) 143267) ((-1200 . -1193) 143233) ((-1200 . -998) 143199) ((-1200 . -47) 143168) ((-1200 . -38) 143065) ((-1200 . -713) 142962) ((-1200 . -613) 142844) ((-1200 . -290) 142823) ((-1200 . -556) 142802) ((-1200 . -111) 142671) ((-1200 . -1051) 142554) ((-1200 . -172) 142505) ((-1200 . -147) 142484) ((-1200 . -145) 142463) ((-1200 . -643) 142388) ((-1200 . -969) 142350) ((-1200 . -1045) T) ((-1200 . -1052) T) ((-1200 . -1105) T) ((-1200 . -722) T) ((-1200 . -21) T) ((-1200 . -23) T) ((-1200 . -1094) T) ((-1200 . -610) 142332) ((-1200 . -102) T) ((-1200 . -25) T) ((-1200 . -131) T) ((-1200 . -896) 142313) ((-1200 . -514) 142280) ((-1200 . -309) 142267) ((-1194 . -1006) 142251) ((-1194 . -34) T) ((-1194 . -1207) T) ((-1194 . -610) 142183) ((-1194 . -309) 142121) ((-1194 . -514) 142054) ((-1194 . -1094) 142032) ((-1194 . -102) 142010) ((-1194 . -489) 141994) ((-1189 . -365) 141968) ((-1189 . -102) T) ((-1189 . -610) 141950) ((-1189 . -1094) T) ((-1187 . -1094) T) ((-1187 . -610) 141932) ((-1187 . -102) T) ((-1187 . -613) 141914) ((-1180 . -1184) 141893) ((-1180 . -229) 141843) ((-1180 . -107) 141793) ((-1180 . -309) 141597) ((-1180 . -514) 141389) ((-1180 . -489) 141326) ((-1180 . -151) 141276) ((-1180 . -611) NIL) ((-1180 . -235) 141226) ((-1180 . -607) 141205) ((-1180 . -288) 141184) ((-1180 . -286) 141163) ((-1180 . -102) T) ((-1180 . -1094) T) ((-1180 . -610) 141145) ((-1180 . -1207) T) ((-1180 . -34) T) ((-1180 . -601) 141124) ((-1178 . -1207) T) ((-1176 . -840) T) ((-1176 . -846) T) ((-1176 . -1094) T) ((-1176 . -610) 141106) ((-1176 . -102) T) ((-1176 . -368) T) ((-1175 . -840) T) ((-1175 . -846) T) ((-1175 . -1094) T) ((-1175 . -610) 141088) ((-1175 . -102) T) ((-1175 . -368) T) ((-1174 . -1252) T) ((-1174 . -1094) T) ((-1174 . -610) 141055) ((-1174 . -102) T) ((-1174 . -1034) 140990) ((-1174 . -613) 140925) ((-1173 . -610) 140907) ((-1172 . -610) 140889) ((-1171 . -326) 140866) ((-1171 . -1034) 140762) ((-1171 . -412) 140746) ((-1171 . -38) 140643) ((-1171 . -613) 140496) ((-1171 . -643) 140421) ((-1171 . -722) T) ((-1171 . -1105) T) ((-1171 . -1052) T) ((-1171 . -1045) T) ((-1171 . -111) 140290) ((-1171 . -1051) 140173) ((-1171 . -21) T) ((-1171 . -23) T) ((-1171 . -1094) T) ((-1171 . -610) 140155) ((-1171 . -102) T) ((-1171 . -25) T) ((-1171 . -131) T) ((-1171 . -713) 140052) ((-1171 . -145) 140031) ((-1171 . -147) 140010) ((-1171 . -172) 139961) ((-1171 . -556) 139940) ((-1171 . -290) 139919) ((-1171 . -47) 139896) ((-1169 . -846) T) ((-1169 . -102) T) ((-1169 . -610) 139878) ((-1169 . -1094) T) ((-1169 . -611) 139800) ((-1169 . -817) T) ((-1169 . -613) 139781) ((-1169 . -882) 139748) ((-1168 . -610) 139730) ((-1167 . -1249) 139714) ((-1167 . -233) 139673) ((-1167 . -613) 139555) ((-1167 . -643) 139480) ((-1167 . -131) T) ((-1167 . -25) T) ((-1167 . -102) T) ((-1167 . -610) 139462) ((-1167 . -1094) T) ((-1167 . -23) T) ((-1167 . -21) T) ((-1167 . -722) T) ((-1167 . -1105) T) ((-1167 . -1052) T) ((-1167 . -1045) T) ((-1167 . -286) 139447) ((-1167 . -896) 139360) ((-1167 . -969) 139329) ((-1167 . -38) 139226) ((-1167 . -111) 139095) ((-1167 . -1051) 138978) ((-1167 . -713) 138875) ((-1167 . -145) 138854) ((-1167 . -147) 138833) ((-1167 . -172) 138784) ((-1167 . -556) 138763) ((-1167 . -290) 138742) ((-1167 . -47) 138719) ((-1167 . -1235) 138696) ((-1167 . -35) 138662) ((-1167 . -95) 138628) ((-1167 . -284) 138594) ((-1167 . -493) 138560) ((-1167 . -1196) 138526) ((-1167 . -1193) 138492) ((-1167 . -998) 138458) ((-1166 . -1241) 138419) ((-1166 . -363) 138398) ((-1166 . -1212) 138377) ((-1166 . -917) 138356) ((-1166 . -556) 138307) ((-1166 . -172) 138238) ((-1166 . -613) 137981) ((-1166 . -713) 137822) ((-1166 . -38) 137663) ((-1166 . -452) 137642) ((-1166 . -307) 137621) ((-1166 . -643) 137518) ((-1166 . -722) T) ((-1166 . -1105) T) ((-1166 . -1052) T) ((-1166 . -1045) T) ((-1166 . -111) 137339) ((-1166 . -1051) 137174) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1094) T) ((-1166 . -610) 137156) ((-1166 . -102) T) ((-1166 . -25) T) ((-1166 . -131) T) ((-1166 . -290) 137107) ((-1166 . -243) 137086) ((-1166 . -998) 137052) ((-1166 . -1193) 137018) ((-1166 . -1196) 136984) ((-1166 . -493) 136950) ((-1166 . -284) 136916) ((-1166 . -95) 136882) ((-1166 . -35) 136848) ((-1166 . -1235) 136818) ((-1166 . -47) 136788) ((-1166 . -147) 136767) ((-1166 . -145) 136746) ((-1166 . -969) 136708) ((-1166 . -896) 136614) ((-1166 . -286) 136599) ((-1166 . -233) 136551) ((-1166 . -1239) 136535) ((-1166 . -1034) 136470) ((-1163 . -1232) 136454) ((-1163 . -1144) 136432) ((-1163 . -611) NIL) ((-1163 . -309) 136419) ((-1163 . -514) 136366) ((-1163 . -326) 136343) ((-1163 . -1034) 136223) ((-1163 . -412) 136207) ((-1163 . -38) 136036) ((-1163 . -111) 135845) ((-1163 . -1051) 135668) ((-1163 . -643) 135593) ((-1163 . -713) 135422) ((-1163 . -613) 135191) ((-1163 . -145) 135170) ((-1163 . -147) 135149) ((-1163 . -47) 135126) ((-1163 . -377) 135110) ((-1163 . -636) 135058) ((-1163 . -846) 135037) ((-1163 . -896) 134980) ((-1163 . -882) NIL) ((-1163 . -906) 134959) ((-1163 . -1212) 134938) ((-1163 . -946) 134907) ((-1163 . -917) 134886) ((-1163 . -556) 134797) ((-1163 . -290) 134708) ((-1163 . -172) 134599) ((-1163 . -452) 134530) ((-1163 . -307) 134509) ((-1163 . -286) 134436) ((-1163 . -233) T) ((-1163 . -131) T) ((-1163 . -25) T) ((-1163 . -102) T) ((-1163 . -610) 134418) ((-1163 . -1094) T) ((-1163 . -23) T) ((-1163 . -21) T) ((-1163 . -722) T) ((-1163 . -1105) T) ((-1163 . -1052) T) ((-1163 . -1045) T) ((-1163 . -231) 134402) ((-1160 . -1220) 134363) ((-1160 . -998) 134329) ((-1160 . -1193) 134295) ((-1160 . -1196) 134261) ((-1160 . -493) 134227) ((-1160 . -284) 134193) ((-1160 . -95) 134159) ((-1160 . -35) 134125) ((-1160 . -1235) 134102) ((-1160 . -47) 134079) ((-1160 . -613) 133874) ((-1160 . -713) 133670) ((-1160 . -643) 133522) ((-1160 . -1051) 133312) ((-1160 . -111) 133081) ((-1160 . -38) 132877) ((-1160 . -969) 132846) ((-1160 . -286) 132694) ((-1160 . -1218) 132678) ((-1160 . -722) T) ((-1160 . -1105) T) ((-1160 . -1052) T) ((-1160 . -1045) T) ((-1160 . -21) T) ((-1160 . -23) T) ((-1160 . -1094) T) ((-1160 . -610) 132660) ((-1160 . -102) T) ((-1160 . -25) T) ((-1160 . -131) T) ((-1160 . -145) 132567) ((-1160 . -147) 132474) ((-1160 . -611) NIL) ((-1160 . -231) 132426) ((-1160 . -896) 132259) ((-1160 . -233) 132146) ((-1160 . -363) 132125) ((-1160 . -1212) 132104) ((-1160 . -917) 132083) ((-1160 . -556) 132034) ((-1160 . -172) 131965) ((-1160 . -452) 131944) ((-1160 . -307) 131923) ((-1160 . -290) 131874) ((-1160 . -243) 131853) ((-1160 . -338) 131805) ((-1160 . -514) 131574) ((-1160 . -309) 131459) ((-1160 . -377) 131411) ((-1160 . -636) 131363) ((-1160 . -400) 131315) ((-1160 . -1207) 131294) ((-1160 . -882) NIL) ((-1160 . -816) NIL) ((-1160 . -787) NIL) ((-1160 . -788) NIL) ((-1160 . -846) NIL) ((-1160 . -790) NIL) ((-1160 . -793) NIL) ((-1160 . -844) NIL) ((-1160 . -880) 131246) ((-1160 . -906) NIL) ((-1160 . -1016) NIL) ((-1160 . -1034) 131212) ((-1160 . -1144) NIL) ((-1160 . -987) 131164) ((-1159 . -1076) T) ((-1159 . -490) 131145) ((-1159 . -610) 131111) ((-1159 . -613) 131092) ((-1159 . -1094) T) ((-1159 . -102) T) ((-1159 . -93) T) ((-1158 . -1094) T) ((-1158 . -610) 131074) ((-1158 . -102) T) ((-1157 . -1094) T) ((-1157 . -610) 131056) ((-1157 . -102) T) ((-1152 . -1184) 131032) ((-1152 . -229) 130979) ((-1152 . -107) 130926) ((-1152 . -309) 130721) ((-1152 . -514) 130504) ((-1152 . -489) 130438) ((-1152 . -151) 130385) ((-1152 . -611) NIL) ((-1152 . -235) 130332) ((-1152 . -607) 130308) ((-1152 . -288) 130284) ((-1152 . -286) 130260) ((-1152 . -102) T) ((-1152 . -1094) T) ((-1152 . -610) 130242) ((-1152 . -1207) T) ((-1152 . -34) T) ((-1152 . -601) 130218) ((-1151 . -1150) T) ((-1151 . -19) 130200) ((-1151 . -646) 130182) ((-1151 . -288) 130157) ((-1151 . -286) 130132) ((-1151 . -601) 130107) ((-1151 . -611) NIL) ((-1151 . -489) 130089) ((-1151 . -514) NIL) ((-1151 . -309) NIL) ((-1151 . -1207) T) ((-1151 . -34) T) ((-1151 . -151) 130071) ((-1151 . -846) T) ((-1151 . -372) 130053) ((-1151 . -1137) T) ((-1151 . -102) T) ((-1151 . -610) 130035) ((-1151 . -1094) T) ((-1151 . -817) T) ((-1146 . -669) 130019) ((-1146 . -646) 130003) ((-1146 . -288) 129980) ((-1146 . -286) 129957) ((-1146 . -601) 129934) ((-1146 . -611) 129895) ((-1146 . -489) 129879) ((-1146 . -102) 129857) ((-1146 . -1094) 129835) ((-1146 . -514) 129768) ((-1146 . -309) 129706) ((-1146 . -610) 129638) ((-1146 . -1207) T) ((-1146 . -34) T) ((-1146 . -151) 129622) ((-1146 . -1245) 129606) ((-1146 . -1006) 129590) ((-1146 . -1142) 129574) ((-1146 . -613) 129551) ((-1143 . -1184) 129530) ((-1143 . -229) 129480) ((-1143 . -107) 129430) ((-1143 . -309) 129234) ((-1143 . -514) 129026) ((-1143 . -489) 128963) ((-1143 . -151) 128913) ((-1143 . -611) NIL) ((-1143 . -235) 128863) ((-1143 . -607) 128842) ((-1143 . -288) 128821) ((-1143 . -286) 128800) ((-1143 . -102) T) ((-1143 . -1094) T) ((-1143 . -610) 128782) ((-1143 . -1207) T) ((-1143 . -34) T) ((-1143 . -601) 128761) ((-1140 . -1114) 128745) ((-1140 . -489) 128729) ((-1140 . -102) 128707) ((-1140 . -1094) 128685) ((-1140 . -514) 128618) ((-1140 . -309) 128556) ((-1140 . -610) 128488) ((-1140 . -1207) T) ((-1140 . -34) T) ((-1140 . -107) 128472) ((-1139 . -1102) 128441) ((-1139 . -1202) 128410) ((-1139 . -610) 128372) ((-1139 . -151) 128356) ((-1139 . -34) T) ((-1139 . -1207) T) ((-1139 . -309) 128294) ((-1139 . -514) 128227) ((-1139 . -1094) T) ((-1139 . -102) T) ((-1139 . -489) 128211) ((-1139 . -611) 128172) ((-1139 . -972) 128141) ((-1139 . -1065) 128110) ((-1135 . -1116) 128055) ((-1135 . -489) 128039) ((-1135 . -514) 127972) ((-1135 . -309) 127910) ((-1135 . -1207) T) ((-1135 . -34) T) ((-1135 . -1048) 127850) ((-1135 . -1034) 127746) ((-1135 . -613) 127664) ((-1135 . -412) 127648) ((-1135 . -636) 127596) ((-1135 . -377) 127580) ((-1135 . -233) 127559) ((-1135 . -896) 127518) ((-1135 . -231) 127502) ((-1135 . -713) 127434) ((-1135 . -643) 127408) ((-1135 . -131) T) ((-1135 . -25) T) ((-1135 . -102) T) ((-1135 . -610) 127370) ((-1135 . -1094) T) ((-1135 . -23) T) ((-1135 . -21) T) ((-1135 . -1051) 127354) ((-1135 . -111) 127333) ((-1135 . -1045) T) ((-1135 . -1052) T) ((-1135 . -1105) T) ((-1135 . -722) T) ((-1135 . -38) 127293) ((-1135 . -611) 127254) ((-1134 . -1006) 127225) ((-1134 . -34) T) ((-1134 . -1207) T) ((-1134 . -610) 127207) ((-1134 . -309) 127133) ((-1134 . -514) 127052) ((-1134 . -1094) T) ((-1134 . -102) T) ((-1134 . -489) 127023) ((-1133 . -1094) T) ((-1133 . -610) 127005) ((-1133 . -102) T) ((-1128 . -1130) T) ((-1128 . -1252) T) ((-1128 . -93) T) ((-1128 . -102) T) ((-1128 . -610) 126971) ((-1128 . -1094) T) ((-1128 . -613) 126952) ((-1128 . -490) 126933) ((-1128 . -1076) T) ((-1126 . -1127) 126917) ((-1126 . -102) T) ((-1126 . -610) 126899) ((-1126 . -1094) T) ((-1119 . -736) 126878) ((-1119 . -35) 126844) ((-1119 . -95) 126810) ((-1119 . -284) 126776) ((-1119 . -493) 126742) ((-1119 . -1196) 126708) ((-1119 . -1193) 126674) ((-1119 . -998) 126640) ((-1119 . -47) 126612) ((-1119 . -38) 126509) ((-1119 . -713) 126406) ((-1119 . -613) 126288) ((-1119 . -290) 126267) ((-1119 . -556) 126246) ((-1119 . -111) 126115) ((-1119 . -1051) 125998) ((-1119 . -172) 125949) ((-1119 . -147) 125928) ((-1119 . -145) 125907) ((-1119 . -643) 125832) ((-1119 . -969) 125799) ((-1119 . -1045) T) ((-1119 . -1052) T) ((-1119 . -1105) T) ((-1119 . -722) T) ((-1119 . -21) T) ((-1119 . -23) T) ((-1119 . -1094) T) ((-1119 . -610) 125781) ((-1119 . -102) T) ((-1119 . -25) T) ((-1119 . -131) T) ((-1119 . -896) 125765) ((-1119 . -514) 125735) ((-1119 . -309) 125722) ((-1118 . -946) 125689) ((-1118 . -613) 125481) ((-1118 . -1034) 125364) ((-1118 . -1212) 125343) ((-1118 . -906) 125322) ((-1118 . -882) 125181) ((-1118 . -896) 125165) ((-1118 . -846) 125144) ((-1118 . -514) 125096) ((-1118 . -452) 125047) ((-1118 . -636) 124995) ((-1118 . -377) 124979) ((-1118 . -47) 124951) ((-1118 . -38) 124800) ((-1118 . -713) 124649) ((-1118 . -290) 124580) ((-1118 . -556) 124511) ((-1118 . -111) 124340) ((-1118 . -1051) 124183) ((-1118 . -172) 124094) ((-1118 . -147) 124073) ((-1118 . -145) 124052) ((-1118 . -643) 123977) ((-1118 . -131) T) ((-1118 . -25) T) ((-1118 . -102) T) ((-1118 . -610) 123959) ((-1118 . -1094) T) ((-1118 . -23) T) ((-1118 . -21) T) ((-1118 . -1045) T) ((-1118 . -1052) T) ((-1118 . -1105) T) ((-1118 . -722) T) ((-1118 . -412) 123943) ((-1118 . -326) 123915) ((-1118 . -309) 123902) ((-1118 . -611) 123650) ((-1113 . -545) T) ((-1113 . -1212) T) ((-1113 . -1144) T) ((-1113 . -1034) 123632) ((-1113 . -611) 123547) ((-1113 . -1016) T) ((-1113 . -882) 123529) ((-1113 . -844) T) ((-1113 . -793) T) ((-1113 . -790) T) ((-1113 . -846) T) ((-1113 . -788) T) ((-1113 . -787) T) ((-1113 . -816) T) ((-1113 . -636) 123511) ((-1113 . -917) T) ((-1113 . -556) T) ((-1113 . -290) T) ((-1113 . -172) T) ((-1113 . -613) 123483) ((-1113 . -713) 123470) ((-1113 . -1051) 123457) ((-1113 . -111) 123442) ((-1113 . -38) 123429) ((-1113 . -452) T) ((-1113 . -307) T) ((-1113 . -233) T) ((-1113 . -143) T) ((-1113 . -1045) T) ((-1113 . -1052) T) ((-1113 . -1105) T) ((-1113 . -722) T) ((-1113 . -21) T) ((-1113 . -23) T) ((-1113 . -1094) T) ((-1113 . -610) 123411) ((-1113 . -102) T) ((-1113 . -25) T) ((-1113 . -131) T) ((-1113 . -643) 123398) ((-1113 . -147) T) ((-1113 . -840) T) ((-1113 . -368) T) ((-1113 . -657) T) ((-1113 . -817) T) ((-1109 . -1076) T) ((-1109 . -490) 123379) ((-1109 . -610) 123345) ((-1109 . -613) 123326) ((-1109 . -1094) T) ((-1109 . -102) T) ((-1109 . -93) T) ((-1108 . -1094) T) ((-1108 . -610) 123308) ((-1108 . -102) T) ((-1106 . -238) 123287) ((-1106 . -1264) 123257) ((-1106 . -787) 123236) ((-1106 . -844) 123215) ((-1106 . -793) 123166) ((-1106 . -790) 123117) ((-1106 . -846) 123068) ((-1106 . -788) 123019) ((-1106 . -789) 122998) ((-1106 . -288) 122975) ((-1106 . -286) 122952) ((-1106 . -489) 122936) ((-1106 . -514) 122869) ((-1106 . -309) 122807) ((-1106 . -1207) T) ((-1106 . -34) T) ((-1106 . -601) 122784) ((-1106 . -1034) 122611) ((-1106 . -613) 122341) ((-1106 . -412) 122310) ((-1106 . -636) 122216) ((-1106 . -377) 122185) ((-1106 . -368) 122164) ((-1106 . -233) 122116) ((-1106 . -896) 122048) ((-1106 . -231) 122017) ((-1106 . -111) 121907) ((-1106 . -1051) 121804) ((-1106 . -172) 121783) ((-1106 . -610) 121514) ((-1106 . -713) 121456) ((-1106 . -643) 121304) ((-1106 . -131) 121174) ((-1106 . -23) 121044) ((-1106 . -21) 120954) ((-1106 . -1045) 120884) ((-1106 . -1052) 120814) ((-1106 . -1105) 120724) ((-1106 . -722) 120634) ((-1106 . -38) 120604) ((-1106 . -1094) 120394) ((-1106 . -102) 120184) ((-1106 . -25) 120035) ((-1099 . -396) T) ((-1099 . -1207) T) ((-1099 . -610) 120017) ((-1098 . -1097) 119981) ((-1098 . -102) T) ((-1098 . -610) 119963) ((-1098 . -1094) T) ((-1098 . -615) 119878) ((-1096 . -1097) 119830) ((-1096 . -102) T) ((-1096 . -610) 119812) ((-1096 . -1094) T) ((-1096 . -615) 119715) ((-1095 . -368) T) ((-1095 . -102) T) ((-1095 . -610) 119697) ((-1095 . -1094) T) ((-1090 . -426) 119681) ((-1090 . -1092) 119665) ((-1090 . -368) 119644) ((-1090 . -235) 119628) ((-1090 . -611) 119589) ((-1090 . -151) 119573) ((-1090 . -489) 119557) ((-1090 . -102) T) ((-1090 . -1094) T) ((-1090 . -514) 119490) ((-1090 . -309) 119428) ((-1090 . -610) 119410) ((-1090 . -1207) T) ((-1090 . -34) T) ((-1090 . -107) 119394) ((-1090 . -229) 119378) ((-1089 . -1076) T) ((-1089 . -490) 119359) ((-1089 . -610) 119325) ((-1089 . -613) 119306) ((-1089 . -1094) T) ((-1089 . -102) T) ((-1089 . -93) T) ((-1085 . -1207) T) ((-1085 . -1094) 119284) ((-1085 . -610) 119251) ((-1085 . -102) 119229) ((-1084 . -1076) T) ((-1084 . -490) 119210) ((-1084 . -610) 119176) ((-1084 . -613) 119157) ((-1084 . -1094) T) ((-1084 . -102) T) ((-1084 . -93) T) ((-1082 . -1087) 119141) ((-1082 . -615) 119125) ((-1082 . -1094) 119103) ((-1082 . -610) 119070) ((-1082 . -102) 119048) ((-1082 . -1088) 119006) ((-1081 . -266) 118990) ((-1081 . -613) 118974) ((-1081 . -1034) 118958) ((-1081 . -1094) T) ((-1081 . -610) 118940) ((-1081 . -102) T) ((-1081 . -846) T) ((-1080 . -253) 118877) ((-1080 . -613) 118613) ((-1080 . -1034) 118440) ((-1080 . -611) NIL) ((-1080 . -326) 118401) ((-1080 . -412) 118385) ((-1080 . -38) 118234) ((-1080 . -111) 118063) ((-1080 . -1051) 117906) ((-1080 . -643) 117831) ((-1080 . -713) 117680) ((-1080 . -145) 117659) ((-1080 . -147) 117638) ((-1080 . -172) 117549) ((-1080 . -556) 117480) ((-1080 . -290) 117411) ((-1080 . -47) 117372) ((-1080 . -377) 117356) ((-1080 . -636) 117304) ((-1080 . -452) 117255) ((-1080 . -514) 117122) ((-1080 . -846) 117101) ((-1080 . -896) 117036) ((-1080 . -882) NIL) ((-1080 . -906) 117015) ((-1080 . -1212) 116994) ((-1080 . -946) 116939) ((-1080 . -309) 116926) ((-1080 . -233) 116905) ((-1080 . -131) T) ((-1080 . -25) T) ((-1080 . -102) T) ((-1080 . -610) 116887) ((-1080 . -1094) T) ((-1080 . -23) T) ((-1080 . -21) T) ((-1080 . -722) T) ((-1080 . -1105) T) ((-1080 . -1052) T) ((-1080 . -1045) T) ((-1080 . -231) 116871) ((-1078 . -610) 116853) ((-1075 . -846) T) ((-1075 . -102) T) ((-1075 . -610) 116835) ((-1075 . -1094) T) ((-1075 . -611) 116816) ((-1072 . -720) 116795) ((-1072 . -1034) 116691) ((-1072 . -412) 116675) ((-1072 . -636) 116623) ((-1072 . -377) 116607) ((-1072 . -370) 116586) ((-1072 . -147) 116565) ((-1072 . -613) 116383) ((-1072 . -713) 116251) ((-1072 . -643) 116161) ((-1072 . -1051) 116071) ((-1072 . -111) 115967) ((-1072 . -38) 115835) ((-1072 . -410) 115814) ((-1072 . -402) 115793) ((-1072 . -145) 115744) ((-1072 . -1144) 115723) ((-1072 . -350) 115702) ((-1072 . -368) 115653) ((-1072 . -243) 115604) ((-1072 . -290) 115555) ((-1072 . -307) 115506) ((-1072 . -452) 115457) ((-1072 . -556) 115408) ((-1072 . -917) 115359) ((-1072 . -1212) 115310) ((-1072 . -363) 115261) ((-1072 . -233) 115186) ((-1072 . -896) 115119) ((-1072 . -231) 115089) ((-1072 . -611) 115073) ((-1072 . -21) T) ((-1072 . -23) T) ((-1072 . -1094) T) ((-1072 . -610) 115055) ((-1072 . -102) T) ((-1072 . -25) T) ((-1072 . -131) T) ((-1072 . -1045) T) ((-1072 . -1052) T) ((-1072 . -1105) T) ((-1072 . -722) T) ((-1072 . -172) T) ((-1070 . -1094) T) ((-1070 . -610) 115037) ((-1070 . -102) T) ((-1070 . -286) 115016) ((-1069 . -1094) T) ((-1069 . -610) 114998) ((-1069 . -102) T) ((-1068 . -1094) T) ((-1068 . -610) 114980) ((-1068 . -102) T) ((-1068 . -286) 114959) ((-1068 . -1034) 114936) ((-1068 . -613) 114913) ((-1067 . -1076) T) ((-1067 . -490) 114894) ((-1067 . -610) 114860) ((-1067 . -613) 114841) ((-1067 . -1094) T) ((-1067 . -102) T) ((-1067 . -93) T) ((-1060 . -1076) T) ((-1060 . -490) 114822) ((-1060 . -610) 114788) ((-1060 . -613) 114769) ((-1060 . -1094) T) ((-1060 . -102) T) ((-1060 . -93) T) ((-1057 . -1184) 114744) ((-1057 . -229) 114690) ((-1057 . -107) 114636) ((-1057 . -309) 114487) ((-1057 . -514) 114331) ((-1057 . -489) 114262) ((-1057 . -151) 114208) ((-1057 . -611) NIL) ((-1057 . -235) 114154) ((-1057 . -607) 114129) ((-1057 . -288) 114104) ((-1057 . -286) 114079) ((-1057 . -102) T) ((-1057 . -1094) T) ((-1057 . -610) 114061) ((-1057 . -1207) T) ((-1057 . -34) T) ((-1057 . -601) 114036) ((-1056 . -545) T) ((-1056 . -1212) T) ((-1056 . -1144) T) ((-1056 . -1034) 114018) ((-1056 . -611) 113933) ((-1056 . -1016) T) ((-1056 . -882) 113915) ((-1056 . -844) T) ((-1056 . -793) T) ((-1056 . -790) T) ((-1056 . -846) T) ((-1056 . -788) T) ((-1056 . -787) T) ((-1056 . -816) T) ((-1056 . -636) 113897) ((-1056 . -917) T) ((-1056 . -556) T) ((-1056 . -290) T) ((-1056 . -172) T) ((-1056 . -613) 113869) ((-1056 . -713) 113856) ((-1056 . -1051) 113843) ((-1056 . -111) 113828) ((-1056 . -38) 113815) ((-1056 . -452) T) ((-1056 . -307) T) ((-1056 . -233) T) ((-1056 . -143) T) ((-1056 . -1045) T) ((-1056 . -1052) T) ((-1056 . -1105) T) ((-1056 . -722) T) ((-1056 . -21) T) ((-1056 . -23) T) ((-1056 . -1094) T) ((-1056 . -610) 113797) ((-1056 . -102) T) ((-1056 . -25) T) ((-1056 . -131) T) ((-1056 . -643) 113784) ((-1056 . -147) T) ((-1056 . -615) 113765) ((-1055 . -1062) 113744) ((-1055 . -102) T) ((-1055 . -610) 113726) ((-1055 . -1094) T) ((-1049 . -1048) 113666) ((-1049 . -713) 113608) ((-1049 . -34) T) ((-1049 . -1207) T) ((-1049 . -309) 113546) ((-1049 . -514) 113479) ((-1049 . -489) 113463) ((-1049 . -643) 113447) ((-1049 . -131) T) ((-1049 . -25) T) ((-1049 . -102) T) ((-1049 . -610) 113409) ((-1049 . -1094) T) ((-1049 . -23) T) ((-1049 . -21) T) ((-1049 . -1051) 113393) ((-1049 . -111) 113372) ((-1049 . -1264) 113342) ((-1049 . -611) 113303) ((-1042 . -1065) 113232) ((-1042 . -972) 113161) ((-1042 . -611) 113103) ((-1042 . -489) 113068) ((-1042 . -102) T) ((-1042 . -1094) T) ((-1042 . -514) 112969) ((-1042 . -309) 112877) ((-1042 . -610) 112820) ((-1042 . -1207) T) ((-1042 . -34) T) ((-1042 . -151) 112785) ((-1042 . -1202) 112714) ((-1032 . -1076) T) ((-1032 . -490) 112695) ((-1032 . -610) 112661) ((-1032 . -613) 112642) ((-1032 . -1094) T) ((-1032 . -102) T) ((-1032 . -93) T) ((-1031 . -1184) 112617) ((-1031 . -229) 112563) ((-1031 . -107) 112509) ((-1031 . -309) 112360) ((-1031 . -514) 112204) ((-1031 . -489) 112135) ((-1031 . -151) 112081) ((-1031 . -611) NIL) ((-1031 . -235) 112027) ((-1031 . -607) 112002) ((-1031 . -288) 111977) ((-1031 . -286) 111952) ((-1031 . -102) T) ((-1031 . -1094) T) ((-1031 . -610) 111934) ((-1031 . -1207) T) ((-1031 . -34) T) ((-1031 . -601) 111909) ((-1030 . -172) T) ((-1030 . -613) 111878) ((-1030 . -722) T) ((-1030 . -1105) T) ((-1030 . -1052) T) ((-1030 . -1045) T) ((-1030 . -643) 111852) ((-1030 . -131) T) ((-1030 . -25) T) ((-1030 . -102) T) ((-1030 . -610) 111834) ((-1030 . -1094) T) ((-1030 . -23) T) ((-1030 . -21) T) ((-1030 . -1051) 111808) ((-1030 . -111) 111775) ((-1030 . -38) 111759) ((-1030 . -713) 111743) ((-1023 . -1065) 111712) ((-1023 . -972) 111681) ((-1023 . -611) 111642) ((-1023 . -489) 111626) ((-1023 . -102) T) ((-1023 . -1094) T) ((-1023 . -514) 111559) ((-1023 . -309) 111497) ((-1023 . -610) 111459) ((-1023 . -1207) T) ((-1023 . -34) T) ((-1023 . -151) 111443) ((-1023 . -1202) 111412) ((-1022 . -1207) T) ((-1022 . -1094) 111390) ((-1022 . -610) 111357) ((-1022 . -102) 111335) ((-1020 . -1008) T) ((-1020 . -998) T) ((-1020 . -787) T) ((-1020 . -788) T) ((-1020 . -846) T) ((-1020 . -790) T) ((-1020 . -793) T) ((-1020 . -844) T) ((-1020 . -1034) 111215) ((-1020 . -412) 111177) ((-1020 . -243) T) ((-1020 . -290) T) ((-1020 . -307) T) ((-1020 . -452) T) ((-1020 . -38) 111114) ((-1020 . -713) 111051) ((-1020 . -613) 110988) ((-1020 . -556) T) ((-1020 . -917) T) ((-1020 . -1212) T) ((-1020 . -363) T) ((-1020 . -111) 110904) ((-1020 . -1051) 110841) ((-1020 . -172) T) ((-1020 . -147) T) ((-1020 . -643) 110778) ((-1020 . -131) T) ((-1020 . -25) T) ((-1020 . -102) T) ((-1020 . -610) 110760) ((-1020 . -1094) T) ((-1020 . -23) T) ((-1020 . -21) T) ((-1020 . -1045) T) ((-1020 . -1052) T) ((-1020 . -1105) T) ((-1020 . -722) T) ((-1015 . -1076) T) ((-1015 . -490) 110741) ((-1015 . -610) 110707) ((-1015 . -613) 110688) ((-1015 . -1094) T) ((-1015 . -102) T) ((-1015 . -93) T) ((-1000 . -987) 110670) ((-1000 . -1144) T) ((-1000 . -613) 110620) ((-1000 . -1034) 110580) ((-1000 . -611) 110510) ((-1000 . -1016) T) ((-1000 . -906) NIL) ((-1000 . -880) 110492) ((-1000 . -844) T) ((-1000 . -793) T) ((-1000 . -790) T) ((-1000 . -846) T) ((-1000 . -788) T) ((-1000 . -787) T) ((-1000 . -816) T) ((-1000 . -882) 110474) ((-1000 . -1207) T) ((-1000 . -400) 110456) ((-1000 . -636) 110438) ((-1000 . -377) 110420) ((-1000 . -286) NIL) ((-1000 . -309) NIL) ((-1000 . -514) NIL) ((-1000 . -338) 110402) ((-1000 . -243) T) ((-1000 . -111) 110336) ((-1000 . -1051) 110286) ((-1000 . -290) T) ((-1000 . -713) 110236) ((-1000 . -643) 110186) ((-1000 . -38) 110136) ((-1000 . -307) T) ((-1000 . -452) T) ((-1000 . -172) T) ((-1000 . -556) T) ((-1000 . -917) T) ((-1000 . -1212) T) ((-1000 . -363) T) ((-1000 . -233) T) ((-1000 . -896) NIL) ((-1000 . -231) 110118) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-1000 . -131) T) ((-1000 . -25) T) ((-1000 . -102) T) ((-1000 . -610) 110078) ((-1000 . -1094) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -1045) T) ((-1000 . -1052) T) ((-1000 . -1105) T) ((-1000 . -722) T) ((-999 . -342) 110052) ((-999 . -172) T) ((-999 . -613) 109982) ((-999 . -722) T) ((-999 . -1105) T) ((-999 . -1052) T) ((-999 . -1045) T) ((-999 . -643) 109927) ((-999 . -131) T) ((-999 . -25) T) ((-999 . -102) T) ((-999 . -610) 109909) ((-999 . -1094) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -1051) 109854) ((-999 . -111) 109783) ((-999 . -611) 109767) ((-999 . -231) 109744) ((-999 . -896) 109696) ((-999 . -233) 109668) ((-999 . -363) T) ((-999 . -1212) T) ((-999 . -917) T) ((-999 . -556) T) ((-999 . -713) 109613) ((-999 . -38) 109558) ((-999 . -452) T) ((-999 . -307) T) ((-999 . -290) T) ((-999 . -243) T) ((-999 . -368) NIL) ((-999 . -350) NIL) ((-999 . -1144) NIL) ((-999 . -145) 109530) ((-999 . -402) NIL) ((-999 . -410) 109502) ((-999 . -147) 109474) ((-999 . -370) 109446) ((-999 . -377) 109423) ((-999 . -636) 109362) ((-999 . -412) 109339) ((-999 . -1034) 109227) ((-999 . -720) 109199) ((-996 . -991) 109183) ((-996 . -489) 109167) ((-996 . -102) 109145) ((-996 . -1094) 109123) ((-996 . -514) 109056) ((-996 . -309) 108994) ((-996 . -610) 108926) ((-996 . -1207) T) ((-996 . -34) T) ((-996 . -107) 108910) ((-992 . -994) 108894) ((-992 . -846) 108873) ((-992 . -1034) 108769) ((-992 . -412) 108753) ((-992 . -636) 108701) ((-992 . -377) 108685) ((-992 . -286) 108643) ((-992 . -309) 108608) ((-992 . -514) 108520) ((-992 . -338) 108504) ((-992 . -38) 108452) ((-992 . -111) 108334) ((-992 . -1051) 108230) ((-992 . -643) 108168) ((-992 . -713) 108116) ((-992 . -613) 108006) ((-992 . -290) 107957) ((-992 . -243) 107936) ((-992 . -233) 107915) ((-992 . -896) 107874) ((-992 . -231) 107858) ((-992 . -611) 107819) ((-992 . -147) 107798) ((-992 . -145) 107777) ((-992 . -131) T) ((-992 . -25) T) ((-992 . -102) T) ((-992 . -610) 107759) ((-992 . -1094) T) ((-992 . -23) T) ((-992 . -21) T) ((-992 . -1045) T) ((-992 . -1052) T) ((-992 . -1105) T) ((-992 . -722) T) ((-990 . -1076) T) ((-990 . -490) 107740) ((-990 . -610) 107706) ((-990 . -613) 107687) ((-990 . -1094) T) ((-990 . -102) T) ((-990 . -93) T) ((-989 . -21) T) ((-989 . -23) T) ((-989 . -1094) T) ((-989 . -610) 107669) ((-989 . -102) T) ((-989 . -25) T) ((-989 . -131) T) ((-985 . -610) 107651) ((-982 . -1094) T) ((-982 . -610) 107633) ((-982 . -102) T) ((-967 . -793) T) ((-967 . -790) T) ((-967 . -846) T) ((-967 . -788) T) ((-967 . -23) T) ((-967 . -1094) T) ((-967 . -610) 107593) ((-967 . -102) T) ((-967 . -25) T) ((-967 . -131) T) ((-967 . -611) 107568) ((-966 . -1076) T) ((-966 . -490) 107549) ((-966 . -610) 107515) ((-966 . -613) 107496) ((-966 . -1094) T) ((-966 . -102) T) ((-966 . -93) T) ((-962 . -963) T) ((-962 . -102) T) ((-962 . -610) 107478) ((-962 . -1094) T) ((-961 . -610) 107460) ((-960 . -1094) T) ((-960 . -610) 107442) ((-960 . -102) T) ((-960 . -368) 107395) ((-960 . -722) 107294) ((-960 . -1105) 107193) ((-960 . -23) 107004) ((-960 . -25) 106815) ((-960 . -131) 106670) ((-960 . -473) 106623) ((-960 . -21) 106578) ((-960 . -789) 106531) ((-960 . -788) 106484) ((-960 . -846) 106383) ((-960 . -790) 106336) ((-960 . -793) 106289) ((-954 . -19) 106273) ((-954 . -646) 106257) ((-954 . -288) 106234) ((-954 . -286) 106211) ((-954 . -601) 106188) ((-954 . -611) 106149) ((-954 . -489) 106133) ((-954 . -102) 106083) ((-954 . -1094) 106033) ((-954 . -514) 105966) ((-954 . -309) 105904) ((-954 . -610) 105816) ((-954 . -1207) T) ((-954 . -34) T) ((-954 . -151) 105800) ((-954 . -846) 105779) ((-954 . -372) 105763) ((-952 . -326) 105742) ((-952 . -1034) 105638) ((-952 . -412) 105622) ((-952 . -38) 105519) ((-952 . -613) 105372) ((-952 . -643) 105297) ((-952 . -722) T) ((-952 . -1105) T) ((-952 . -1052) T) ((-952 . -1045) T) ((-952 . -111) 105166) ((-952 . -1051) 105049) ((-952 . -21) T) ((-952 . -23) T) ((-952 . -1094) T) ((-952 . -610) 105031) ((-952 . -102) T) ((-952 . -25) T) ((-952 . -131) T) ((-952 . -713) 104928) ((-952 . -145) 104907) ((-952 . -147) 104886) ((-952 . -172) 104837) ((-952 . -556) 104816) ((-952 . -290) 104795) ((-952 . -47) 104774) ((-950 . -1094) T) ((-950 . -610) 104740) ((-950 . -102) T) ((-942 . -946) 104701) ((-942 . -613) 104490) ((-942 . -1034) 104370) ((-942 . -1212) 104349) ((-942 . -906) 104328) ((-942 . -882) 104253) ((-942 . -896) 104234) ((-942 . -846) 104213) ((-942 . -514) 104160) ((-942 . -452) 104111) ((-942 . -636) 104059) ((-942 . -377) 104043) ((-942 . -47) 104012) ((-942 . -38) 103861) ((-942 . -713) 103710) ((-942 . -290) 103641) ((-942 . -556) 103572) ((-942 . -111) 103401) ((-942 . -1051) 103244) ((-942 . -172) 103155) ((-942 . -147) 103134) ((-942 . -145) 103113) ((-942 . -643) 103038) ((-942 . -131) T) ((-942 . -25) T) ((-942 . -102) T) ((-942 . -610) 103020) ((-942 . -1094) T) ((-942 . -23) T) ((-942 . -21) T) ((-942 . -1045) T) ((-942 . -1052) T) ((-942 . -1105) T) ((-942 . -722) T) ((-942 . -412) 103004) ((-942 . -326) 102973) ((-942 . -309) 102960) ((-942 . -611) 102821) ((-939 . -976) 102805) ((-939 . -19) 102789) ((-939 . -646) 102773) ((-939 . -288) 102750) ((-939 . -286) 102727) ((-939 . -601) 102704) ((-939 . -611) 102665) ((-939 . -489) 102649) ((-939 . -102) 102599) ((-939 . -1094) 102549) ((-939 . -514) 102482) ((-939 . -309) 102420) ((-939 . -610) 102332) ((-939 . -1207) T) ((-939 . -34) T) ((-939 . -151) 102316) ((-939 . -846) 102295) ((-939 . -372) 102279) ((-939 . -1255) 102263) ((-939 . -615) 102240) ((-923 . -970) T) ((-923 . -610) 102222) ((-921 . -951) T) ((-921 . -610) 102204) ((-915 . -790) T) ((-915 . -846) T) ((-915 . -1094) T) ((-915 . -610) 102186) ((-915 . -102) T) ((-915 . -25) T) ((-915 . -722) T) ((-915 . -1105) T) ((-910 . -363) T) ((-910 . -1212) T) ((-910 . -917) T) ((-910 . -556) T) ((-910 . -172) T) ((-910 . -613) 102123) ((-910 . -713) 102075) ((-910 . -38) 102027) ((-910 . -452) T) ((-910 . -307) T) ((-910 . -643) 101979) ((-910 . -722) T) ((-910 . -1105) T) ((-910 . -1052) T) ((-910 . -1045) T) ((-910 . -111) 101917) ((-910 . -1051) 101869) ((-910 . -21) T) ((-910 . -23) T) ((-910 . -1094) T) ((-910 . -610) 101851) ((-910 . -102) T) ((-910 . -25) T) ((-910 . -131) T) ((-910 . -290) T) ((-910 . -243) T) ((-902 . -350) T) ((-902 . -1144) T) ((-902 . -368) T) ((-902 . -145) T) ((-902 . -363) T) ((-902 . -1212) T) ((-902 . -917) T) ((-902 . -556) T) ((-902 . -172) T) ((-902 . -613) 101801) ((-902 . -713) 101766) ((-902 . -38) 101731) ((-902 . -452) T) ((-902 . -307) T) ((-902 . -111) 101687) ((-902 . -1051) 101652) ((-902 . -643) 101617) ((-902 . -290) T) ((-902 . -243) T) ((-902 . -402) T) ((-902 . -1045) T) ((-902 . -1052) T) ((-902 . -1105) T) ((-902 . -722) T) ((-902 . -21) T) ((-902 . -23) T) ((-902 . -1094) T) ((-902 . -610) 101599) ((-902 . -102) T) ((-902 . -25) T) ((-902 . -131) T) ((-902 . -233) T) ((-902 . -329) 101586) ((-902 . -147) 101568) ((-902 . -1034) 101555) ((-902 . -1264) 101542) ((-902 . -1275) 101529) ((-902 . -611) 101511) ((-901 . -1094) T) ((-901 . -610) 101493) ((-901 . -102) T) ((-898 . -900) 101477) ((-898 . -846) 101428) ((-898 . -722) T) ((-898 . -1094) T) ((-898 . -610) 101410) ((-898 . -102) T) ((-898 . -1105) T) ((-898 . -473) T) ((-897 . -119) 101394) ((-897 . -489) 101378) ((-897 . -102) 101356) ((-897 . -1094) 101334) ((-897 . -514) 101267) ((-897 . -309) 101205) ((-897 . -610) 101116) ((-897 . -1207) T) ((-897 . -34) T) ((-897 . -1006) 101100) ((-894 . -1094) T) ((-894 . -610) 101082) ((-894 . -102) T) ((-889 . -846) T) ((-889 . -102) T) ((-889 . -610) 101064) ((-889 . -1094) T) ((-889 . -1034) 101041) ((-889 . -613) 101018) ((-886 . -1094) T) ((-886 . -610) 101000) ((-886 . -102) T) ((-886 . -1034) 100968) ((-886 . -613) 100936) ((-884 . -1094) T) ((-884 . -610) 100918) ((-884 . -102) T) ((-881 . -1094) T) ((-881 . -610) 100900) ((-881 . -102) T) ((-870 . -1094) T) ((-870 . -610) 100882) ((-870 . -102) T) ((-869 . -1207) T) ((-869 . -610) 100754) ((-869 . -1094) 100705) ((-869 . -102) 100656) ((-868 . -987) 100640) ((-868 . -1144) 100618) ((-868 . -1034) 100484) ((-868 . -613) 100382) ((-868 . -611) 100189) ((-868 . -1016) 100167) ((-868 . -906) 100146) ((-868 . -880) 100130) ((-868 . -844) 100109) ((-868 . -793) 100088) ((-868 . -790) 100067) ((-868 . -846) 100018) ((-868 . -788) 99997) ((-868 . -787) 99976) ((-868 . -816) 99955) ((-868 . -882) 99880) ((-868 . -1207) T) ((-868 . -400) 99864) ((-868 . -636) 99812) ((-868 . -377) 99796) ((-868 . -286) 99754) ((-868 . -309) 99719) ((-868 . -514) 99631) ((-868 . -338) 99615) ((-868 . -243) T) ((-868 . -111) 99553) ((-868 . -1051) 99505) ((-868 . -290) T) ((-868 . -713) 99457) ((-868 . -643) 99409) ((-868 . -38) 99361) ((-868 . -307) T) ((-868 . -452) T) ((-868 . -172) T) ((-868 . -556) T) ((-868 . -917) T) ((-868 . -1212) T) ((-868 . -363) T) ((-868 . -233) 99340) ((-868 . -896) 99299) ((-868 . -231) 99283) ((-868 . -147) 99262) ((-868 . -145) 99241) ((-868 . -131) T) ((-868 . -25) T) ((-868 . -102) T) ((-868 . -610) 99223) ((-868 . -1094) T) ((-868 . -23) T) ((-868 . -21) T) ((-868 . -1045) T) ((-868 . -1052) T) ((-868 . -1105) T) ((-868 . -722) T) ((-867 . -987) 99200) ((-867 . -1144) NIL) ((-867 . -1034) 99177) ((-867 . -613) 99107) ((-867 . -611) NIL) ((-867 . -1016) NIL) ((-867 . -906) NIL) ((-867 . -880) 99084) ((-867 . -844) NIL) ((-867 . -793) NIL) ((-867 . -790) NIL) ((-867 . -846) NIL) ((-867 . -788) NIL) ((-867 . -787) NIL) ((-867 . -816) NIL) ((-867 . -882) NIL) ((-867 . -1207) T) ((-867 . -400) 99061) ((-867 . -636) 99038) ((-867 . -377) 99015) ((-867 . -286) 98966) ((-867 . -309) 98923) ((-867 . -514) 98831) ((-867 . -338) 98808) ((-867 . -243) T) ((-867 . -111) 98737) ((-867 . -1051) 98682) ((-867 . -290) T) ((-867 . -713) 98627) ((-867 . -643) 98572) ((-867 . -38) 98517) ((-867 . -307) T) ((-867 . -452) T) ((-867 . -172) T) ((-867 . -556) T) ((-867 . -917) T) ((-867 . -1212) T) ((-867 . -363) T) ((-867 . -233) NIL) ((-867 . -896) NIL) ((-867 . -231) 98494) ((-867 . -147) T) ((-867 . -145) NIL) ((-867 . -131) T) ((-867 . -25) T) ((-867 . -102) T) ((-867 . -610) 98476) ((-867 . -1094) T) ((-867 . -23) T) ((-867 . -21) T) ((-867 . -1045) T) ((-867 . -1052) T) ((-867 . -1105) T) ((-867 . -722) T) ((-865 . -866) 98460) ((-865 . -917) T) ((-865 . -556) T) ((-865 . -290) T) ((-865 . -172) T) ((-865 . -613) 98432) ((-865 . -713) 98419) ((-865 . -1051) 98406) ((-865 . -111) 98391) ((-865 . -38) 98378) ((-865 . -452) T) ((-865 . -307) T) ((-865 . -1045) T) ((-865 . -1052) T) ((-865 . -1105) T) ((-865 . -722) T) ((-865 . -21) T) ((-865 . -23) T) ((-865 . -1094) T) ((-865 . -610) 98360) ((-865 . -102) T) ((-865 . -25) T) ((-865 . -131) T) ((-865 . -643) 98347) ((-865 . -147) T) ((-862 . -1045) T) ((-862 . -1052) T) ((-862 . -1105) T) ((-862 . -722) T) ((-862 . -21) T) ((-862 . -23) T) ((-862 . -1094) T) ((-862 . -610) 98309) ((-862 . -102) T) ((-862 . -25) T) ((-862 . -131) T) ((-862 . -643) 98269) ((-862 . -613) 98204) ((-862 . -490) 98181) ((-862 . -38) 98151) ((-862 . -111) 98116) ((-862 . -1051) 98086) ((-862 . -713) 98056) ((-861 . -1094) T) ((-861 . -610) 98038) ((-861 . -102) T) ((-860 . -840) T) ((-860 . -846) T) ((-860 . -1094) T) ((-860 . -610) 98020) ((-860 . -102) T) ((-860 . -368) T) ((-860 . -611) 97942) ((-859 . -1094) T) ((-859 . -610) 97924) ((-859 . -102) T) ((-858 . -857) T) ((-858 . -173) T) ((-858 . -610) 97906) ((-854 . -846) T) ((-854 . -102) T) ((-854 . -610) 97888) ((-854 . -1094) T) ((-851 . -848) 97872) ((-851 . -1034) 97768) ((-851 . -613) 97665) ((-851 . -412) 97649) ((-851 . -713) 97619) ((-851 . -643) 97593) ((-851 . -131) T) ((-851 . -25) T) ((-851 . -102) T) ((-851 . -610) 97575) ((-851 . -1094) T) ((-851 . -23) T) ((-851 . -21) T) ((-851 . -1051) 97559) ((-851 . -111) 97538) ((-851 . -1045) T) ((-851 . -1052) T) ((-851 . -1105) T) ((-851 . -722) T) ((-851 . -38) 97508) ((-850 . -848) 97492) ((-850 . -1034) 97388) ((-850 . -613) 97306) ((-850 . -412) 97290) ((-850 . -713) 97260) ((-850 . -643) 97234) ((-850 . -131) T) ((-850 . -25) T) ((-850 . -102) T) ((-850 . -610) 97216) ((-850 . -1094) T) ((-850 . -23) T) ((-850 . -21) T) ((-850 . -1051) 97200) ((-850 . -111) 97179) ((-850 . -1045) T) ((-850 . -1052) T) ((-850 . -1105) T) ((-850 . -722) T) ((-850 . -38) 97149) ((-838 . -1094) T) ((-838 . -610) 97131) ((-838 . -102) T) ((-838 . -412) 97115) ((-838 . -613) 96983) ((-838 . -1034) 96879) ((-838 . -21) 96831) ((-838 . -23) 96783) ((-838 . -25) 96735) ((-838 . -131) 96687) ((-838 . -844) 96666) ((-838 . -643) 96639) ((-838 . -1052) 96618) ((-838 . -1045) 96597) ((-838 . -793) 96576) ((-838 . -790) 96555) ((-838 . -846) 96534) ((-838 . -788) 96513) ((-838 . -787) 96492) ((-838 . -1105) 96471) ((-838 . -722) 96450) ((-837 . -1094) T) ((-837 . -610) 96432) ((-837 . -102) T) ((-834 . -832) 96414) ((-834 . -102) T) ((-834 . -610) 96396) ((-834 . -1094) T) ((-830 . -1045) T) ((-830 . -1052) T) ((-830 . -1105) T) ((-830 . -722) T) ((-830 . -21) T) ((-830 . -23) T) ((-830 . -1094) T) ((-830 . -610) 96378) ((-830 . -102) T) ((-830 . -25) T) ((-830 . -131) T) ((-830 . -643) 96338) ((-830 . -613) 96292) ((-830 . -1034) 96261) ((-830 . -286) 96240) ((-830 . -147) 96219) ((-830 . -145) 96198) ((-830 . -38) 96168) ((-830 . -111) 96133) ((-830 . -1051) 96103) ((-830 . -713) 96073) ((-828 . -1094) T) ((-828 . -610) 96055) ((-828 . -102) T) ((-828 . -412) 96039) ((-828 . -613) 95907) ((-828 . -1034) 95803) ((-828 . -21) 95755) ((-828 . -23) 95707) ((-828 . -25) 95659) ((-828 . -131) 95611) ((-828 . -844) 95590) ((-828 . -643) 95563) ((-828 . -1052) 95542) ((-828 . -1045) 95521) ((-828 . -793) 95500) ((-828 . -790) 95479) ((-828 . -846) 95458) ((-828 . -788) 95437) ((-828 . -787) 95416) ((-828 . -1105) 95395) ((-828 . -722) 95374) ((-824 . -704) 95358) ((-824 . -613) 95313) ((-824 . -713) 95283) ((-824 . -643) 95257) ((-824 . -131) T) ((-824 . -25) T) ((-824 . -102) T) ((-824 . -610) 95239) ((-824 . -1094) T) ((-824 . -23) T) ((-824 . -21) T) ((-824 . -1051) 95223) ((-824 . -111) 95202) ((-824 . -1045) T) ((-824 . -1052) T) ((-824 . -1105) T) ((-824 . -722) T) ((-824 . -38) 95172) ((-824 . -233) 95151) ((-822 . -1094) T) ((-822 . -610) 95133) ((-822 . -102) T) ((-821 . -1094) T) ((-821 . -610) 95115) ((-821 . -102) T) ((-820 . -1094) T) ((-820 . -610) 95097) ((-820 . -102) T) ((-815 . -842) T) ((-815 . -846) T) ((-815 . -853) T) ((-815 . -1105) T) ((-815 . -102) T) ((-815 . -610) 95079) ((-815 . -1094) T) ((-815 . -722) T) ((-815 . -1034) 95063) ((-815 . -613) 95047) ((-814 . -266) 95031) ((-814 . -613) 95015) ((-814 . -1034) 94999) ((-814 . -1094) T) ((-814 . -610) 94981) ((-814 . -102) T) ((-814 . -846) T) ((-813 . -111) 94923) ((-813 . -1051) 94874) ((-813 . -21) T) ((-813 . -23) T) ((-813 . -1094) T) ((-813 . -610) 94843) ((-813 . -102) T) ((-813 . -25) T) ((-813 . -131) T) ((-813 . -643) 94794) ((-813 . -233) T) ((-813 . -613) 94708) ((-813 . -722) T) ((-813 . -1105) T) ((-813 . -1052) T) ((-813 . -1045) T) ((-813 . -490) 94692) ((-813 . -363) 94671) ((-813 . -1212) 94650) ((-813 . -917) 94629) ((-813 . -556) 94608) ((-813 . -172) 94587) ((-813 . -713) 94529) ((-813 . -38) 94471) ((-813 . -452) 94450) ((-813 . -307) 94429) ((-813 . -290) 94408) ((-813 . -243) 94387) ((-812 . -253) 94326) ((-812 . -613) 94063) ((-812 . -1034) 93891) ((-812 . -611) NIL) ((-812 . -326) 93853) ((-812 . -412) 93837) ((-812 . -38) 93686) ((-812 . -111) 93515) ((-812 . -1051) 93358) ((-812 . -643) 93283) ((-812 . -713) 93132) ((-812 . -145) 93111) ((-812 . -147) 93090) ((-812 . -172) 93001) ((-812 . -556) 92932) ((-812 . -290) 92863) ((-812 . -47) 92825) ((-812 . -377) 92809) ((-812 . -636) 92757) ((-812 . -452) 92708) ((-812 . -514) 92576) ((-812 . -846) 92555) ((-812 . -896) 92491) ((-812 . -882) NIL) ((-812 . -906) 92470) ((-812 . -1212) 92449) ((-812 . -946) 92396) ((-812 . -309) 92383) ((-812 . -233) 92362) ((-812 . -131) T) ((-812 . -25) T) ((-812 . -102) T) ((-812 . -610) 92344) ((-812 . -1094) T) ((-812 . -23) T) ((-812 . -21) T) ((-812 . -722) T) ((-812 . -1105) T) ((-812 . -1052) T) ((-812 . -1045) T) ((-812 . -231) 92328) ((-811 . -238) 92307) ((-811 . -1264) 92277) ((-811 . -787) 92256) ((-811 . -844) 92235) ((-811 . -793) 92186) ((-811 . -790) 92137) ((-811 . -846) 92088) ((-811 . -788) 92039) ((-811 . -789) 92018) ((-811 . -288) 91995) ((-811 . -286) 91972) ((-811 . -489) 91956) ((-811 . -514) 91889) ((-811 . -309) 91827) ((-811 . -1207) T) ((-811 . -34) T) ((-811 . -601) 91804) ((-811 . -1034) 91631) ((-811 . -613) 91361) ((-811 . -412) 91330) ((-811 . -636) 91236) ((-811 . -377) 91205) ((-811 . -368) 91184) ((-811 . -233) 91136) ((-811 . -896) 91068) ((-811 . -231) 91037) ((-811 . -111) 90927) ((-811 . -1051) 90824) ((-811 . -172) 90803) ((-811 . -610) 90534) ((-811 . -713) 90476) ((-811 . -643) 90324) ((-811 . -131) 90194) ((-811 . -23) 90064) ((-811 . -21) 89974) ((-811 . -1045) 89904) ((-811 . -1052) 89834) ((-811 . -1105) 89744) ((-811 . -722) 89654) ((-811 . -38) 89624) ((-811 . -1094) 89414) ((-811 . -102) 89204) ((-811 . -25) 89055) ((-804 . -1094) T) ((-804 . -610) 89037) ((-804 . -102) T) ((-794 . -792) 89021) ((-794 . -846) 89000) ((-794 . -1034) 88783) ((-794 . -613) 88631) ((-794 . -412) 88595) ((-794 . -286) 88553) ((-794 . -309) 88518) ((-794 . -514) 88430) ((-794 . -338) 88414) ((-794 . -368) 88393) ((-794 . -611) 88354) ((-794 . -147) 88333) ((-794 . -145) 88312) ((-794 . -713) 88296) ((-794 . -643) 88270) ((-794 . -131) T) ((-794 . -25) T) ((-794 . -102) T) ((-794 . -610) 88252) ((-794 . -1094) T) ((-794 . -23) T) ((-794 . -21) T) ((-794 . -1051) 88236) ((-794 . -111) 88215) ((-794 . -1045) T) ((-794 . -1052) T) ((-794 . -1105) T) ((-794 . -722) T) ((-794 . -38) 88199) ((-777 . -1232) 88183) ((-777 . -1144) 88161) ((-777 . -611) NIL) ((-777 . -309) 88148) ((-777 . -514) 88095) ((-777 . -326) 88072) ((-777 . -1034) 87931) ((-777 . -412) 87915) ((-777 . -38) 87744) ((-777 . -111) 87553) ((-777 . -1051) 87376) ((-777 . -643) 87301) ((-777 . -713) 87130) ((-777 . -613) 86878) ((-777 . -145) 86857) ((-777 . -147) 86836) ((-777 . -47) 86813) ((-777 . -377) 86797) ((-777 . -636) 86745) ((-777 . -846) 86724) ((-777 . -896) 86667) ((-777 . -882) NIL) ((-777 . -906) 86646) ((-777 . -1212) 86625) ((-777 . -946) 86594) ((-777 . -917) 86573) ((-777 . -556) 86484) ((-777 . -290) 86395) ((-777 . -172) 86286) ((-777 . -452) 86217) ((-777 . -307) 86196) ((-777 . -286) 86123) ((-777 . -233) T) ((-777 . -131) T) ((-777 . -25) T) ((-777 . -102) T) ((-777 . -610) 86084) ((-777 . -1094) T) ((-777 . -23) T) ((-777 . -21) T) ((-777 . -722) T) ((-777 . -1105) T) ((-777 . -1052) T) ((-777 . -1045) T) ((-777 . -231) 86068) ((-776 . -1059) 86035) ((-776 . -611) 85669) ((-776 . -309) 85656) ((-776 . -514) 85608) ((-776 . -326) 85580) ((-776 . -1034) 85437) ((-776 . -412) 85421) ((-776 . -38) 85270) ((-776 . -613) 85036) ((-776 . -643) 84961) ((-776 . -722) T) ((-776 . -1105) T) ((-776 . -1052) T) ((-776 . -1045) T) ((-776 . -111) 84790) ((-776 . -1051) 84633) ((-776 . -21) T) ((-776 . -23) T) ((-776 . -1094) T) ((-776 . -610) 84547) ((-776 . -102) T) ((-776 . -25) T) ((-776 . -131) T) ((-776 . -713) 84396) ((-776 . -145) 84375) ((-776 . -147) 84354) ((-776 . -172) 84265) ((-776 . -556) 84196) ((-776 . -290) 84127) ((-776 . -47) 84099) ((-776 . -377) 84083) ((-776 . -636) 84031) ((-776 . -452) 83982) ((-776 . -846) 83961) ((-776 . -896) 83945) ((-776 . -882) 83804) ((-776 . -906) 83783) ((-776 . -1212) 83762) ((-776 . -946) 83729) ((-769 . -1094) T) ((-769 . -610) 83711) ((-769 . -102) T) ((-767 . -789) T) ((-767 . -131) T) ((-767 . -25) T) ((-767 . -102) T) ((-767 . -610) 83693) ((-767 . -1094) T) ((-767 . -23) T) ((-767 . -788) T) ((-767 . -846) T) ((-767 . -790) T) ((-767 . -793) T) ((-767 . -722) T) ((-767 . -1105) T) ((-765 . -1094) T) ((-765 . -610) 83675) ((-765 . -102) T) ((-732 . -733) 83659) ((-732 . -1092) 83643) ((-732 . -235) 83627) ((-732 . -611) 83588) ((-732 . -151) 83572) ((-732 . -489) 83556) ((-732 . -102) T) ((-732 . -1094) T) ((-732 . -514) 83489) ((-732 . -309) 83427) ((-732 . -610) 83409) ((-732 . -1207) T) ((-732 . -34) T) ((-732 . -107) 83393) ((-732 . -690) 83377) ((-731 . -1045) T) ((-731 . -1052) T) ((-731 . -1105) T) ((-731 . -722) T) ((-731 . -21) T) ((-731 . -23) T) ((-731 . -1094) T) ((-731 . -610) 83359) ((-731 . -102) T) ((-731 . -25) T) ((-731 . -131) T) ((-731 . -643) 83319) ((-731 . -613) 83275) ((-731 . -1034) 83246) ((-731 . -147) 83225) ((-731 . -145) 83204) ((-731 . -38) 83174) ((-731 . -111) 83139) ((-731 . -1051) 83109) ((-731 . -713) 83079) ((-731 . -368) 83032) ((-727 . -946) 82985) ((-727 . -613) 82770) ((-727 . -1034) 82646) ((-727 . -1212) 82625) ((-727 . -906) 82604) ((-727 . -882) NIL) ((-727 . -896) 82581) ((-727 . -846) 82560) ((-727 . -514) 82503) ((-727 . -452) 82454) ((-727 . -636) 82402) ((-727 . -377) 82386) ((-727 . -47) 82351) ((-727 . -38) 82200) ((-727 . -713) 82049) ((-727 . -290) 81980) ((-727 . -556) 81911) ((-727 . -111) 81740) ((-727 . -1051) 81583) ((-727 . -172) 81494) ((-727 . -147) 81473) ((-727 . -145) 81452) ((-727 . -643) 81377) ((-727 . -131) T) ((-727 . -25) T) ((-727 . -102) T) ((-727 . -610) 81359) ((-727 . -1094) T) ((-727 . -23) T) ((-727 . -21) T) ((-727 . -1045) T) ((-727 . -1052) T) ((-727 . -1105) T) ((-727 . -722) T) ((-727 . -412) 81343) ((-727 . -326) 81308) ((-727 . -309) 81295) ((-727 . -611) 81156) ((-714 . -473) T) ((-714 . -1105) T) ((-714 . -102) T) ((-714 . -610) 81138) ((-714 . -1094) T) ((-714 . -722) T) ((-711 . -1045) T) ((-711 . -1052) T) ((-711 . -1105) T) ((-711 . -722) T) ((-711 . -21) T) ((-711 . -23) T) ((-711 . -1094) T) ((-711 . -610) 81120) ((-711 . -102) T) ((-711 . -25) T) ((-711 . -131) T) ((-711 . -643) 81107) ((-711 . -613) 81089) ((-710 . -1045) T) ((-710 . -1052) T) ((-710 . -1105) T) ((-710 . -722) T) ((-710 . -21) T) ((-710 . -23) T) ((-710 . -1094) T) ((-710 . -610) 81071) ((-710 . -102) T) ((-710 . -25) T) ((-710 . -131) T) ((-710 . -643) 81031) ((-710 . -613) 80985) ((-710 . -1034) 80954) ((-710 . -286) 80933) ((-710 . -147) 80912) ((-710 . -145) 80891) ((-710 . -38) 80861) ((-710 . -111) 80826) ((-710 . -1051) 80796) ((-710 . -713) 80766) ((-709 . -846) T) ((-709 . -102) T) ((-709 . -610) 80701) ((-709 . -1094) T) ((-709 . -490) 80651) ((-709 . -613) 80601) ((-708 . -1232) 80585) ((-708 . -1144) 80563) ((-708 . -611) NIL) ((-708 . -309) 80550) ((-708 . -514) 80497) ((-708 . -326) 80474) ((-708 . -1034) 80354) ((-708 . -412) 80338) ((-708 . -38) 80167) ((-708 . -111) 79976) ((-708 . -1051) 79799) ((-708 . -643) 79724) ((-708 . -713) 79553) ((-708 . -613) 79309) ((-708 . -145) 79288) ((-708 . -147) 79267) ((-708 . -47) 79244) ((-708 . -377) 79228) ((-708 . -636) 79176) ((-708 . -846) 79155) ((-708 . -896) 79098) ((-708 . -882) NIL) ((-708 . -906) 79077) ((-708 . -1212) 79056) ((-708 . -946) 79025) ((-708 . -917) 79004) ((-708 . -556) 78915) ((-708 . -290) 78826) ((-708 . -172) 78717) ((-708 . -452) 78648) ((-708 . -307) 78627) ((-708 . -286) 78554) ((-708 . -233) T) ((-708 . -131) T) ((-708 . -25) T) ((-708 . -102) T) ((-708 . -610) 78536) ((-708 . -1094) T) ((-708 . -23) T) ((-708 . -21) T) ((-708 . -722) T) ((-708 . -1105) T) ((-708 . -1052) T) ((-708 . -1045) T) ((-708 . -231) 78520) ((-708 . -368) 78499) ((-707 . -363) T) ((-707 . -1212) T) ((-707 . -917) T) ((-707 . -556) T) ((-707 . -172) T) ((-707 . -613) 78449) ((-707 . -713) 78414) ((-707 . -38) 78379) ((-707 . -452) T) ((-707 . -307) T) ((-707 . -643) 78344) ((-707 . -722) T) ((-707 . -1105) T) ((-707 . -1052) T) ((-707 . -1045) T) ((-707 . -111) 78300) ((-707 . -1051) 78265) ((-707 . -21) T) ((-707 . -23) T) ((-707 . -1094) T) ((-707 . -610) 78247) ((-707 . -102) T) ((-707 . -25) T) ((-707 . -131) T) ((-707 . -290) T) ((-707 . -243) T) ((-706 . -1094) T) ((-706 . -610) 78229) ((-706 . -102) T) ((-698 . -132) T) ((-698 . -1094) T) ((-698 . -610) 78198) ((-698 . -102) T) ((-698 . -846) T) ((-698 . -490) 78182) ((-698 . -613) 78166) ((-696 . -387) T) ((-696 . -1034) 78148) ((-696 . -846) T) ((-696 . -38) 78135) ((-696 . -613) 78107) ((-696 . -722) T) ((-696 . -1105) T) ((-696 . -1052) T) ((-696 . -1045) T) ((-696 . -111) 78092) ((-696 . -1051) 78079) ((-696 . -21) T) ((-696 . -23) T) ((-696 . -1094) T) ((-696 . -610) 78061) ((-696 . -102) T) ((-696 . -25) T) ((-696 . -131) T) ((-696 . -643) 78048) ((-696 . -713) 78035) ((-696 . -172) T) ((-696 . -290) T) ((-696 . -556) T) ((-696 . -545) T) ((-696 . -1212) T) ((-696 . -1144) T) ((-696 . -611) 77950) ((-696 . -1016) T) ((-696 . -882) 77932) ((-696 . -844) T) ((-696 . -793) T) ((-696 . -790) T) ((-696 . -788) T) ((-696 . -787) T) ((-696 . -816) T) ((-696 . -636) 77914) ((-696 . -917) T) ((-696 . -452) T) ((-696 . -307) T) ((-696 . -233) T) ((-696 . -143) T) ((-696 . -147) T) ((-694 . -404) T) ((-694 . -147) T) ((-694 . -613) 77849) ((-694 . -643) 77814) ((-694 . -131) T) ((-694 . -25) T) ((-694 . -102) T) ((-694 . -610) 77796) ((-694 . -1094) T) ((-694 . -23) T) ((-694 . -21) T) ((-694 . -722) T) ((-694 . -1105) T) ((-694 . -1052) T) ((-694 . -1045) T) ((-694 . -611) 77741) ((-694 . -363) T) ((-694 . -1212) T) ((-694 . -917) T) ((-694 . -556) T) ((-694 . -172) T) ((-694 . -713) 77706) ((-694 . -38) 77671) ((-694 . -452) T) ((-694 . -307) T) ((-694 . -111) 77627) ((-694 . -1051) 77592) ((-694 . -290) T) ((-694 . -243) T) ((-694 . -844) T) ((-694 . -793) T) ((-694 . -790) T) ((-694 . -846) T) ((-694 . -788) T) ((-694 . -787) T) ((-694 . -882) 77574) ((-694 . -998) T) ((-694 . -1016) T) ((-694 . -1034) 77519) ((-694 . -1054) T) ((-694 . -387) T) ((-689 . -387) T) ((-689 . -1034) 77464) ((-689 . -846) T) ((-689 . -38) 77414) ((-689 . -613) 77349) ((-689 . -722) T) ((-689 . -1105) T) ((-689 . -1052) T) ((-689 . -1045) T) ((-689 . -111) 77283) ((-689 . -1051) 77233) ((-689 . -21) T) ((-689 . -23) T) ((-689 . -1094) T) ((-689 . -610) 77215) ((-689 . -102) T) ((-689 . -25) T) ((-689 . -131) T) ((-689 . -643) 77165) ((-689 . -713) 77115) ((-689 . -172) T) ((-689 . -290) T) ((-689 . -556) T) ((-689 . -166) 77097) ((-689 . -35) NIL) ((-689 . -95) NIL) ((-689 . -284) NIL) ((-689 . -493) NIL) ((-689 . -1196) NIL) ((-689 . -1193) NIL) ((-689 . -998) NIL) ((-689 . -906) NIL) ((-689 . -611) 77005) ((-689 . -880) 76987) ((-689 . -368) NIL) ((-689 . -350) NIL) ((-689 . -1144) NIL) ((-689 . -402) NIL) ((-689 . -410) 76954) ((-689 . -370) 76921) ((-689 . -720) 76888) ((-689 . -412) 76870) ((-689 . -882) 76852) ((-689 . -1207) T) ((-689 . -400) 76834) ((-689 . -636) 76816) ((-689 . -377) 76798) ((-689 . -286) NIL) ((-689 . -309) NIL) ((-689 . -514) NIL) ((-689 . -338) 76780) ((-689 . -243) T) ((-689 . -1212) T) ((-689 . -363) T) ((-689 . -917) T) ((-689 . -452) T) ((-689 . -307) T) ((-689 . -233) NIL) ((-689 . -896) NIL) ((-689 . -231) 76762) ((-689 . -147) T) ((-689 . -145) NIL) ((-686 . -1252) T) ((-686 . -1034) 76746) ((-686 . -613) 76730) ((-686 . -610) 76712) ((-684 . -681) 76670) ((-684 . -489) 76654) ((-684 . -102) 76632) ((-684 . -1094) 76610) ((-684 . -514) 76543) ((-684 . -309) 76481) ((-684 . -610) 76413) ((-684 . -1207) T) ((-684 . -34) T) ((-684 . -57) 76371) ((-684 . -611) 76332) ((-676 . -1076) T) ((-676 . -490) 76313) ((-676 . -610) 76263) ((-676 . -613) 76244) ((-676 . -1094) T) ((-676 . -102) T) ((-676 . -93) T) ((-672 . -846) T) ((-672 . -102) T) ((-672 . -610) 76226) ((-672 . -1094) T) ((-672 . -1034) 76210) ((-672 . -613) 76194) ((-671 . -1076) T) ((-671 . -490) 76175) ((-671 . -610) 76141) ((-671 . -613) 76122) ((-671 . -1094) T) ((-671 . -102) T) ((-671 . -93) T) ((-670 . -489) 76106) ((-670 . -102) 76084) ((-670 . -1094) 76062) ((-670 . -514) 75995) ((-670 . -309) 75933) ((-670 . -610) 75865) ((-670 . -1207) T) ((-670 . -34) T) ((-667 . -846) T) ((-667 . -102) T) ((-667 . -610) 75847) ((-667 . -1094) T) ((-667 . -1034) 75831) ((-667 . -613) 75815) ((-666 . -1076) T) ((-666 . -490) 75796) ((-666 . -610) 75762) ((-666 . -613) 75743) ((-666 . -1094) T) ((-666 . -102) T) ((-666 . -93) T) ((-665 . -1116) 75688) ((-665 . -489) 75672) ((-665 . -514) 75605) ((-665 . -309) 75543) ((-665 . -1207) T) ((-665 . -34) T) ((-665 . -1048) 75483) ((-665 . -1034) 75379) ((-665 . -613) 75297) ((-665 . -412) 75281) ((-665 . -636) 75229) ((-665 . -377) 75213) ((-665 . -233) 75192) ((-665 . -896) 75151) ((-665 . -231) 75135) ((-665 . -713) 75119) ((-665 . -643) 75093) ((-665 . -131) T) ((-665 . -25) T) ((-665 . -102) T) ((-665 . -610) 75055) ((-665 . -1094) T) ((-665 . -23) T) ((-665 . -21) T) ((-665 . -1051) 75039) ((-665 . -111) 75018) ((-665 . -1045) T) ((-665 . -1052) T) ((-665 . -1105) T) ((-665 . -722) T) ((-665 . -38) 74978) ((-665 . -418) 74962) ((-665 . -740) 74946) ((-665 . -716) T) ((-665 . -757) T) ((-665 . -367) 74930) ((-659 . -374) 74909) ((-659 . -713) 74893) ((-659 . -643) 74877) ((-659 . -131) T) ((-659 . -25) T) ((-659 . -102) T) ((-659 . -610) 74859) ((-659 . -1094) T) ((-659 . -23) T) ((-659 . -21) T) ((-659 . -1051) 74843) ((-659 . -111) 74822) ((-659 . -632) 74806) ((-659 . -384) 74778) ((-659 . -613) 74755) ((-659 . -1034) 74732) ((-651 . -653) 74716) ((-651 . -38) 74686) ((-651 . -613) 74604) ((-651 . -643) 74578) ((-651 . -722) T) ((-651 . -1105) T) ((-651 . -1052) T) ((-651 . -1045) T) ((-651 . -111) 74557) ((-651 . -1051) 74541) ((-651 . -21) T) ((-651 . -23) T) ((-651 . -1094) T) ((-651 . -610) 74523) ((-651 . -102) T) ((-651 . -25) T) ((-651 . -131) T) ((-651 . -713) 74493) ((-651 . -412) 74477) ((-651 . -1034) 74373) ((-651 . -848) 74357) ((-651 . -286) 74318) ((-650 . -653) 74302) ((-650 . -38) 74272) ((-650 . -613) 74190) ((-650 . -643) 74164) ((-650 . -722) T) ((-650 . -1105) T) ((-650 . -1052) T) ((-650 . -1045) T) ((-650 . -111) 74143) ((-650 . -1051) 74127) ((-650 . -21) T) ((-650 . -23) T) ((-650 . -1094) T) ((-650 . -610) 74109) ((-650 . -102) T) ((-650 . -25) T) ((-650 . -131) T) ((-650 . -713) 74079) ((-650 . -412) 74063) ((-650 . -1034) 73959) ((-650 . -848) 73943) ((-650 . -286) 73922) ((-649 . -653) 73906) ((-649 . -38) 73876) ((-649 . -613) 73794) ((-649 . -643) 73768) ((-649 . -722) T) ((-649 . -1105) T) ((-649 . -1052) T) ((-649 . -1045) T) ((-649 . -111) 73747) ((-649 . -1051) 73731) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1094) T) ((-649 . -610) 73713) ((-649 . -102) T) ((-649 . -25) T) ((-649 . -131) T) ((-649 . -713) 73683) ((-649 . -412) 73667) ((-649 . -1034) 73563) ((-649 . -848) 73547) ((-649 . -286) 73526) ((-647 . -713) 73510) ((-647 . -643) 73494) ((-647 . -131) T) ((-647 . -25) T) ((-647 . -102) T) ((-647 . -610) 73476) ((-647 . -1094) T) ((-647 . -23) T) ((-647 . -21) T) ((-647 . -1051) 73460) ((-647 . -111) 73439) ((-647 . -787) 73418) ((-647 . -788) 73397) ((-647 . -846) 73376) ((-647 . -790) 73355) ((-647 . -793) 73334) ((-644 . -1094) T) ((-644 . -610) 73316) ((-644 . -102) T) ((-644 . -1034) 73300) ((-644 . -613) 73284) ((-642 . -690) 73268) ((-642 . -107) 73252) ((-642 . -34) T) ((-642 . -1207) T) ((-642 . -610) 73184) ((-642 . -309) 73122) ((-642 . -514) 73055) ((-642 . -1094) 73033) ((-642 . -102) 73011) ((-642 . -489) 72995) ((-642 . -151) 72979) ((-642 . -611) 72940) ((-642 . -235) 72924) ((-641 . -1076) T) ((-641 . -490) 72905) ((-641 . -610) 72858) ((-641 . -613) 72839) ((-641 . -1094) T) ((-641 . -102) T) ((-641 . -93) T) ((-637 . -661) 72823) ((-637 . -1245) 72807) ((-637 . -1006) 72791) ((-637 . -1142) 72775) ((-637 . -846) 72754) ((-637 . -372) 72738) ((-637 . -646) 72722) ((-637 . -288) 72699) ((-637 . -286) 72676) ((-637 . -601) 72653) ((-637 . -611) 72614) ((-637 . -489) 72598) ((-637 . -102) 72548) ((-637 . -1094) 72498) ((-637 . -514) 72431) ((-637 . -309) 72369) ((-637 . -610) 72281) ((-637 . -1207) T) ((-637 . -34) T) ((-637 . -151) 72265) ((-637 . -282) 72249) ((-637 . -817) 72228) ((-630 . -740) 72212) ((-630 . -716) T) ((-630 . -757) T) ((-630 . -111) 72191) ((-630 . -1051) 72175) ((-630 . -21) T) ((-630 . -23) T) ((-630 . -1094) T) ((-630 . -610) 72144) ((-630 . -102) T) ((-630 . -25) T) ((-630 . -131) T) ((-630 . -643) 72128) ((-630 . -713) 72112) ((-630 . -418) 72077) ((-630 . -367) 72009) ((-629 . -1184) 71984) ((-629 . -229) 71930) ((-629 . -107) 71876) ((-629 . -309) 71727) ((-629 . -514) 71571) ((-629 . -489) 71502) ((-629 . -151) 71448) ((-629 . -611) NIL) ((-629 . -235) 71394) ((-629 . -607) 71369) ((-629 . -288) 71344) ((-629 . -286) 71319) ((-629 . -102) T) ((-629 . -1094) T) ((-629 . -610) 71301) ((-629 . -1207) T) ((-629 . -34) T) ((-629 . -601) 71276) ((-624 . -473) T) ((-624 . -1105) T) ((-624 . -102) T) ((-624 . -610) 71258) ((-624 . -1094) T) ((-624 . -722) T) ((-623 . -1076) T) ((-623 . -490) 71239) ((-623 . -610) 71205) ((-623 . -613) 71186) ((-623 . -1094) T) ((-623 . -102) T) ((-623 . -93) T) ((-620 . -231) 71170) ((-620 . -896) 71129) ((-620 . -1045) T) ((-620 . -1052) T) ((-620 . -1105) T) ((-620 . -722) T) ((-620 . -21) T) ((-620 . -23) T) ((-620 . -1094) T) ((-620 . -610) 71111) ((-620 . -102) T) ((-620 . -25) T) ((-620 . -131) T) ((-620 . -643) 71098) ((-620 . -613) 70993) ((-620 . -233) 70972) ((-620 . -556) T) ((-620 . -290) T) ((-620 . -172) T) ((-620 . -713) 70959) ((-620 . -1051) 70946) ((-620 . -111) 70931) ((-620 . -38) 70918) ((-620 . -611) 70895) ((-620 . -412) 70879) ((-620 . -1034) 70762) ((-620 . -147) 70741) ((-620 . -145) 70720) ((-620 . -307) 70699) ((-620 . -452) 70678) ((-620 . -917) 70657) ((-616 . -38) 70641) ((-616 . -613) 70610) ((-616 . -643) 70584) ((-616 . -722) T) ((-616 . -1105) T) ((-616 . -1052) T) ((-616 . -1045) T) ((-616 . -111) 70563) ((-616 . -1051) 70547) ((-616 . -21) T) ((-616 . -23) T) ((-616 . -1094) T) ((-616 . -610) 70529) ((-616 . -102) T) ((-616 . -25) T) ((-616 . -131) T) ((-616 . -713) 70513) ((-616 . -844) 70492) ((-616 . -793) 70471) ((-616 . -790) 70450) ((-616 . -846) 70429) ((-616 . -788) 70408) ((-616 . -787) 70387) ((-614 . -963) T) ((-614 . -102) T) ((-614 . -610) 70369) ((-614 . -1094) T) ((-608 . -132) T) ((-608 . -1094) T) ((-608 . -610) 70351) ((-608 . -102) T) ((-608 . -846) T) ((-608 . -880) 70335) ((-608 . -611) 70196) ((-605 . -365) 70136) ((-605 . -102) T) ((-605 . -610) 70118) ((-605 . -1094) T) ((-605 . -1184) 70094) ((-605 . -229) 70041) ((-605 . -107) 69988) ((-605 . -309) 69783) ((-605 . -514) 69566) ((-605 . -489) 69500) ((-605 . -151) 69447) ((-605 . -611) NIL) ((-605 . -235) 69394) ((-605 . -607) 69370) ((-605 . -288) 69346) ((-605 . -286) 69322) ((-605 . -1207) T) ((-605 . -34) T) ((-605 . -601) 69298) ((-604 . -740) 69282) ((-604 . -716) T) ((-604 . -757) T) ((-604 . -111) 69261) ((-604 . -1051) 69245) ((-604 . -21) T) ((-604 . -23) T) ((-604 . -1094) T) ((-604 . -610) 69214) ((-604 . -102) T) ((-604 . -25) T) ((-604 . -131) T) ((-604 . -643) 69198) ((-604 . -713) 69182) ((-604 . -418) 69147) ((-604 . -367) 69079) ((-603 . -1076) T) ((-603 . -490) 69060) ((-603 . -610) 69010) ((-603 . -613) 68991) ((-603 . -1094) T) ((-603 . -102) T) ((-603 . -93) T) ((-602 . -610) 68958) ((-602 . -490) 68940) ((-602 . -613) 68922) ((-599 . -1255) 68906) ((-599 . -372) 68890) ((-599 . -846) 68869) ((-599 . -151) 68853) ((-599 . -34) T) ((-599 . -1207) T) ((-599 . -610) 68765) ((-599 . -309) 68703) ((-599 . -514) 68636) ((-599 . -1094) 68586) ((-599 . -102) 68536) ((-599 . -489) 68520) ((-599 . -611) 68481) ((-599 . -601) 68458) ((-599 . -286) 68435) ((-599 . -288) 68412) ((-599 . -646) 68396) ((-599 . -19) 68380) ((-598 . -610) 68362) ((-594 . -1045) T) ((-594 . -1052) T) ((-594 . -1105) T) ((-594 . -722) T) ((-594 . -21) T) ((-594 . -23) T) ((-594 . -1094) T) ((-594 . -610) 68344) ((-594 . -102) T) ((-594 . -25) T) ((-594 . -131) T) ((-594 . -643) 68331) ((-594 . -613) 68289) ((-594 . -556) 68268) ((-594 . -290) 68247) ((-594 . -172) 68226) ((-594 . -713) 68199) ((-594 . -1051) 68172) ((-594 . -111) 68143) ((-594 . -38) 68116) ((-593 . -1235) 68093) ((-593 . -47) 68070) ((-593 . -38) 67967) ((-593 . -713) 67864) ((-593 . -613) 67746) ((-593 . -290) 67725) ((-593 . -556) 67704) ((-593 . -111) 67573) ((-593 . -1051) 67456) ((-593 . -172) 67407) ((-593 . -147) 67386) ((-593 . -145) 67365) ((-593 . -643) 67290) ((-593 . -969) 67259) ((-593 . -896) 67172) ((-593 . -286) 67157) ((-593 . -1045) T) ((-593 . -1052) T) ((-593 . -1105) T) ((-593 . -722) T) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1094) T) ((-593 . -610) 67139) ((-593 . -102) T) ((-593 . -25) T) ((-593 . -131) T) ((-593 . -233) 67098) ((-591 . -1137) T) ((-591 . -372) 67080) ((-591 . -846) T) ((-591 . -151) 67062) ((-591 . -34) T) ((-591 . -1207) T) ((-591 . -610) 67044) ((-591 . -309) NIL) ((-591 . -514) NIL) ((-591 . -1094) T) ((-591 . -102) T) ((-591 . -489) 67026) ((-591 . -611) NIL) ((-591 . -601) 67001) ((-591 . -286) 66976) ((-591 . -288) 66951) ((-591 . -646) 66933) ((-591 . -19) 66915) ((-590 . -1076) T) ((-590 . -490) 66896) ((-590 . -610) 66862) ((-590 . -613) 66843) ((-590 . -1094) T) ((-590 . -102) T) ((-590 . -93) T) ((-582 . -713) 66818) ((-582 . -643) 66793) ((-582 . -131) T) ((-582 . -25) T) ((-582 . -102) T) ((-582 . -610) 66775) ((-582 . -1094) T) ((-582 . -23) T) ((-582 . -21) T) ((-582 . -1051) 66750) ((-582 . -111) 66718) ((-582 . -1034) 66702) ((-582 . -613) 66686) ((-580 . -350) T) ((-580 . -1144) T) ((-580 . -368) T) ((-580 . -145) T) ((-580 . -363) T) ((-580 . -1212) T) ((-580 . -917) T) ((-580 . -556) T) ((-580 . -172) T) ((-580 . -613) 66636) ((-580 . -713) 66601) ((-580 . -38) 66566) ((-580 . -452) T) ((-580 . -307) T) ((-580 . -111) 66522) ((-580 . -1051) 66487) ((-580 . -643) 66452) ((-580 . -290) T) ((-580 . -243) T) ((-580 . -402) T) ((-580 . -1045) T) ((-580 . -1052) T) ((-580 . -1105) T) ((-580 . -722) T) ((-580 . -21) T) ((-580 . -23) T) ((-580 . -1094) T) ((-580 . -610) 66434) ((-580 . -102) T) ((-580 . -25) T) ((-580 . -131) T) ((-580 . -233) T) ((-580 . -329) 66421) ((-580 . -147) 66403) ((-580 . -1034) 66390) ((-580 . -1264) 66377) ((-580 . -1275) 66364) ((-580 . -611) 66346) ((-579 . -866) 66330) ((-579 . -917) T) ((-579 . -556) T) ((-579 . -290) T) ((-579 . -172) T) ((-579 . -613) 66302) ((-579 . -713) 66289) ((-579 . -1051) 66276) ((-579 . -111) 66261) ((-579 . -38) 66248) ((-579 . -452) T) ((-579 . -307) T) ((-579 . -1045) T) ((-579 . -1052) T) ((-579 . -1105) T) ((-579 . -722) T) ((-579 . -21) T) ((-579 . -23) T) ((-579 . -1094) T) ((-579 . -610) 66230) ((-579 . -102) T) ((-579 . -25) T) ((-579 . -131) T) ((-579 . -643) 66217) ((-579 . -147) T) ((-578 . -1094) T) ((-578 . -610) 66199) ((-578 . -102) T) ((-577 . -1094) T) ((-577 . -610) 66181) ((-577 . -102) T) ((-576 . -575) T) ((-576 . -857) T) ((-576 . -173) T) ((-576 . -527) T) ((-576 . -610) 66163) ((-570 . -554) 66147) ((-570 . -35) T) ((-570 . -95) T) ((-570 . -284) T) ((-570 . -493) T) ((-570 . -1196) T) ((-570 . -1193) T) ((-570 . -1034) 66129) ((-570 . -998) T) ((-570 . -846) T) ((-570 . -556) T) ((-570 . -290) T) ((-570 . -172) T) ((-570 . -613) 66101) ((-570 . -713) 66088) ((-570 . -643) 66075) ((-570 . -131) T) ((-570 . -25) T) ((-570 . -102) T) ((-570 . -610) 66057) ((-570 . -1094) T) ((-570 . -23) T) ((-570 . -21) T) ((-570 . -1051) 66044) ((-570 . -111) 66029) ((-570 . -1045) T) ((-570 . -1052) T) ((-570 . -1105) T) ((-570 . -722) T) ((-570 . -38) 66016) ((-570 . -452) T) ((-550 . -1184) 65995) ((-550 . -229) 65945) ((-550 . -107) 65895) ((-550 . -309) 65699) ((-550 . -514) 65491) ((-550 . -489) 65428) ((-550 . -151) 65378) ((-550 . -611) NIL) ((-550 . -235) 65328) ((-550 . -607) 65307) ((-550 . -288) 65286) ((-550 . -286) 65265) ((-550 . -102) T) ((-550 . -1094) T) ((-550 . -610) 65247) ((-550 . -1207) T) ((-550 . -34) T) ((-550 . -601) 65226) ((-549 . -840) T) ((-549 . -846) T) ((-549 . -1094) T) ((-549 . -610) 65208) ((-549 . -102) T) ((-549 . -368) T) ((-548 . -840) T) ((-548 . -846) T) ((-548 . -1094) T) ((-548 . -610) 65190) ((-548 . -102) T) ((-548 . -368) T) ((-547 . -840) T) ((-547 . -846) T) ((-547 . -1094) T) ((-547 . -610) 65172) ((-547 . -102) T) ((-547 . -368) T) ((-546 . -545) T) ((-546 . -1212) T) ((-546 . -1144) T) ((-546 . -1034) 65154) ((-546 . -611) 65053) ((-546 . -1016) T) ((-546 . -882) 65035) ((-546 . -844) T) ((-546 . -793) T) ((-546 . -790) T) ((-546 . -846) T) ((-546 . -788) T) ((-546 . -787) T) ((-546 . -816) T) ((-546 . -636) 65017) ((-546 . -917) T) ((-546 . -556) T) ((-546 . -290) T) ((-546 . -172) T) ((-546 . -613) 64989) ((-546 . -713) 64976) ((-546 . -1051) 64963) ((-546 . -111) 64948) ((-546 . -38) 64935) ((-546 . -452) T) ((-546 . -307) T) ((-546 . -233) T) ((-546 . -143) T) ((-546 . -1045) T) ((-546 . -1052) T) ((-546 . -1105) T) ((-546 . -722) T) ((-546 . -21) T) ((-546 . -23) T) ((-546 . -1094) T) ((-546 . -610) 64917) ((-546 . -102) T) ((-546 . -25) T) ((-546 . -131) T) ((-546 . -643) 64904) ((-546 . -147) T) ((-546 . -817) T) ((-535 . -1097) 64856) ((-535 . -102) T) ((-535 . -610) 64838) ((-535 . -1094) T) ((-535 . -615) 64741) ((-535 . -611) 64722) ((-533 . -763) 64704) ((-533 . -527) T) ((-533 . -173) T) ((-533 . -857) T) ((-533 . -575) T) ((-533 . -610) 64686) ((-531 . -789) T) ((-531 . -131) T) ((-531 . -25) T) ((-531 . -102) T) ((-531 . -610) 64668) ((-531 . -1094) T) ((-531 . -23) T) ((-531 . -788) T) ((-531 . -846) T) ((-531 . -790) T) ((-531 . -793) T) ((-531 . -509) 64645) ((-529 . -527) T) ((-529 . -173) T) ((-529 . -610) 64627) ((-525 . -1076) T) ((-525 . -490) 64608) ((-525 . -610) 64574) ((-525 . -613) 64555) ((-525 . -1094) T) ((-525 . -102) T) ((-525 . -93) T) ((-524 . -1076) T) ((-524 . -490) 64536) ((-524 . -610) 64502) ((-524 . -613) 64483) ((-524 . -1094) T) ((-524 . -102) T) ((-524 . -93) T) ((-523 . -681) 64433) ((-523 . -489) 64417) ((-523 . -102) 64395) ((-523 . -1094) 64373) ((-523 . -514) 64306) ((-523 . -309) 64244) ((-523 . -610) 64176) ((-523 . -1207) T) ((-523 . -34) T) ((-523 . -57) 64126) ((-520 . -661) 64110) ((-520 . -1245) 64094) ((-520 . -1006) 64078) ((-520 . -1142) 64062) ((-520 . -846) 64041) ((-520 . -372) 64025) ((-520 . -646) 64009) ((-520 . -288) 63986) ((-520 . -286) 63963) ((-520 . -601) 63940) ((-520 . -611) 63901) ((-520 . -489) 63885) ((-520 . -102) 63835) ((-520 . -1094) 63785) ((-520 . -514) 63718) ((-520 . -309) 63656) ((-520 . -610) 63568) ((-520 . -1207) T) ((-520 . -34) T) ((-520 . -151) 63552) ((-520 . -282) 63536) ((-519 . -57) 63510) ((-519 . -34) T) ((-519 . -1207) T) ((-519 . -610) 63442) ((-519 . -309) 63380) ((-519 . -514) 63313) ((-519 . -1094) 63291) ((-519 . -102) 63269) ((-519 . -489) 63253) ((-518 . -329) 63230) ((-518 . -233) T) ((-518 . -368) T) ((-518 . -1144) T) ((-518 . -350) T) ((-518 . -147) 63212) ((-518 . -613) 63142) ((-518 . -643) 63087) ((-518 . -131) T) ((-518 . -25) T) ((-518 . -102) T) ((-518 . -610) 63069) ((-518 . -1094) T) ((-518 . -23) T) ((-518 . -21) T) ((-518 . -722) T) ((-518 . -1105) T) ((-518 . -1052) T) ((-518 . -1045) T) ((-518 . -363) T) ((-518 . -1212) T) ((-518 . -917) T) ((-518 . -556) T) ((-518 . -172) T) ((-518 . -713) 63014) ((-518 . -38) 62979) ((-518 . -452) T) ((-518 . -307) T) ((-518 . -111) 62908) ((-518 . -1051) 62853) ((-518 . -290) T) ((-518 . -243) T) ((-518 . -402) T) ((-518 . -145) T) ((-518 . -1034) 62830) ((-518 . -1264) 62807) ((-518 . -1275) 62784) ((-517 . -1076) T) ((-517 . -490) 62765) ((-517 . -610) 62731) ((-517 . -613) 62712) ((-517 . -1094) T) ((-517 . -102) T) ((-517 . -93) T) ((-516 . -19) 62696) ((-516 . -646) 62680) ((-516 . -288) 62657) ((-516 . -286) 62634) ((-516 . -601) 62611) ((-516 . -611) 62572) ((-516 . -489) 62556) ((-516 . -102) 62506) ((-516 . -1094) 62456) ((-516 . -514) 62389) ((-516 . -309) 62327) ((-516 . -610) 62239) ((-516 . -1207) T) ((-516 . -34) T) ((-516 . -151) 62223) ((-516 . -846) 62202) ((-516 . -372) 62186) ((-516 . -282) 62170) ((-515 . -323) 62149) ((-515 . -613) 62133) ((-515 . -1034) 62117) ((-515 . -23) T) ((-515 . -1094) T) ((-515 . -610) 62099) ((-515 . -102) T) ((-515 . -25) T) ((-515 . -131) T) ((-512 . -789) T) ((-512 . -131) T) ((-512 . -25) T) ((-512 . -102) T) ((-512 . -610) 62081) ((-512 . -1094) T) ((-512 . -23) T) ((-512 . -788) T) ((-512 . -846) T) ((-512 . -790) T) ((-512 . -793) T) ((-512 . -509) 62060) ((-511 . -788) T) ((-511 . -846) T) ((-511 . -790) T) ((-511 . -25) T) ((-511 . -102) T) ((-511 . -610) 62042) ((-511 . -1094) T) ((-511 . -23) T) ((-511 . -509) 62021) ((-510 . -509) 62000) ((-510 . -102) T) ((-510 . -610) 61982) ((-510 . -1094) T) ((-508 . -23) T) ((-508 . -1094) T) ((-508 . -610) 61964) ((-508 . -102) T) ((-508 . -25) T) ((-508 . -509) 61943) ((-507 . -21) T) ((-507 . -23) T) ((-507 . -1094) T) ((-507 . -610) 61925) ((-507 . -102) T) ((-507 . -25) T) ((-507 . -131) T) ((-507 . -509) 61904) ((-506 . -1094) T) ((-506 . -610) 61870) ((-506 . -102) T) ((-504 . -1094) T) ((-504 . -610) 61852) ((-504 . -102) T) ((-502 . -846) T) ((-502 . -102) T) ((-502 . -610) 61834) ((-502 . -1094) T) ((-500 . -123) T) ((-500 . -372) 61816) ((-500 . -846) T) ((-500 . -151) 61798) ((-500 . -34) T) ((-500 . -1207) T) ((-500 . -610) 61780) ((-500 . -309) NIL) ((-500 . -514) NIL) ((-500 . -1094) T) ((-500 . -489) 61762) ((-500 . -611) 61744) ((-500 . -601) 61719) ((-500 . -286) 61694) ((-500 . -288) 61669) ((-500 . -646) 61651) ((-500 . -19) 61633) ((-500 . -102) T) ((-500 . -657) T) ((-497 . -57) 61583) ((-497 . -34) T) ((-497 . -1207) T) ((-497 . -610) 61515) ((-497 . -309) 61453) ((-497 . -514) 61386) ((-497 . -1094) 61364) ((-497 . -102) 61342) ((-497 . -489) 61326) ((-496 . -19) 61310) ((-496 . -646) 61294) ((-496 . -288) 61271) ((-496 . -286) 61248) ((-496 . -601) 61225) ((-496 . -611) 61186) ((-496 . -489) 61170) ((-496 . -102) 61120) ((-496 . -1094) 61070) ((-496 . -514) 61003) ((-496 . -309) 60941) ((-496 . -610) 60853) ((-496 . -1207) T) ((-496 . -34) T) ((-496 . -151) 60837) ((-496 . -846) 60816) ((-496 . -372) 60800) ((-495 . -298) T) ((-495 . -613) 60733) ((-495 . -1034) 60676) ((-495 . -1094) T) ((-495 . -610) 60658) ((-495 . -102) T) ((-495 . -846) T) ((-495 . -514) 60624) ((-495 . -309) 60611) ((-495 . -27) T) ((-495 . -998) T) ((-495 . -243) T) ((-495 . -111) 60567) ((-495 . -1051) 60532) ((-495 . -290) T) ((-495 . -713) 60497) ((-495 . -643) 60462) ((-495 . -131) T) ((-495 . -25) T) ((-495 . -23) T) ((-495 . -21) T) ((-495 . -1045) T) ((-495 . -1052) T) ((-495 . -1105) T) ((-495 . -722) T) ((-495 . -38) 60427) ((-495 . -307) T) ((-495 . -452) T) ((-495 . -172) T) ((-495 . -556) T) ((-495 . -917) T) ((-495 . -1212) T) ((-495 . -363) T) ((-495 . -636) 60387) ((-495 . -1016) T) ((-495 . -611) 60332) ((-495 . -147) T) ((-495 . -233) T) ((-491 . -1094) T) ((-491 . -610) 60298) ((-491 . -102) T) ((-487 . -987) 60280) ((-487 . -1144) T) ((-487 . -613) 60230) ((-487 . -1034) 60190) ((-487 . -611) 60120) ((-487 . -1016) T) ((-487 . -906) NIL) ((-487 . -880) 60102) ((-487 . -844) T) ((-487 . -793) T) ((-487 . -790) T) ((-487 . -846) T) ((-487 . -788) T) ((-487 . -787) T) ((-487 . -816) T) ((-487 . -882) 60084) ((-487 . -1207) T) ((-487 . -400) 60066) ((-487 . -636) 60048) ((-487 . -377) 60030) ((-487 . -286) NIL) ((-487 . -309) NIL) ((-487 . -514) NIL) ((-487 . -338) 60012) ((-487 . -243) T) ((-487 . -111) 59946) ((-487 . -1051) 59896) ((-487 . -290) T) ((-487 . -713) 59846) ((-487 . -643) 59796) ((-487 . -38) 59746) ((-487 . -307) T) ((-487 . -452) T) ((-487 . -172) T) ((-487 . -556) T) ((-487 . -917) T) ((-487 . -1212) T) ((-487 . -363) T) ((-487 . -233) T) ((-487 . -896) NIL) ((-487 . -231) 59728) ((-487 . -147) T) ((-487 . -145) NIL) ((-487 . -131) T) ((-487 . -25) T) ((-487 . -102) T) ((-487 . -610) 59669) ((-487 . -1094) T) ((-487 . -23) T) ((-487 . -21) T) ((-487 . -1045) T) ((-487 . -1052) T) ((-487 . -1105) T) ((-487 . -722) T) ((-485 . -336) 59638) ((-485 . -131) T) ((-485 . -25) T) ((-485 . -102) T) ((-485 . -610) 59620) ((-485 . -1094) T) ((-485 . -23) T) ((-485 . -21) T) ((-484 . -964) 59604) ((-484 . -489) 59588) ((-484 . -102) 59566) ((-484 . -1094) 59544) ((-484 . -514) 59477) ((-484 . -309) 59415) ((-484 . -610) 59347) ((-484 . -1207) T) ((-484 . -34) T) ((-484 . -107) 59331) ((-483 . -1076) T) ((-483 . -490) 59312) ((-483 . -610) 59278) ((-483 . -613) 59259) ((-483 . -1094) T) ((-483 . -102) T) ((-483 . -93) T) ((-482 . -238) 59238) ((-482 . -1264) 59208) ((-482 . -787) 59187) ((-482 . -844) 59166) ((-482 . -793) 59117) ((-482 . -790) 59068) ((-482 . -846) 59019) ((-482 . -788) 58970) ((-482 . -789) 58949) ((-482 . -288) 58926) ((-482 . -286) 58903) ((-482 . -489) 58887) ((-482 . -514) 58820) ((-482 . -309) 58758) ((-482 . -1207) T) ((-482 . -34) T) ((-482 . -601) 58735) ((-482 . -1034) 58562) ((-482 . -613) 58292) ((-482 . -412) 58261) ((-482 . -636) 58167) ((-482 . -377) 58136) ((-482 . -368) 58115) ((-482 . -233) 58067) ((-482 . -896) 57999) ((-482 . -231) 57968) ((-482 . -111) 57858) ((-482 . -1051) 57755) ((-482 . -172) 57734) ((-482 . -610) 57465) ((-482 . -713) 57407) ((-482 . -643) 57255) ((-482 . -131) 57125) ((-482 . -23) 56995) ((-482 . -21) 56905) ((-482 . -1045) 56835) ((-482 . -1052) 56765) ((-482 . -1105) 56675) ((-482 . -722) 56585) ((-482 . -38) 56555) ((-482 . -1094) 56345) ((-482 . -102) 56135) ((-482 . -25) 55986) ((-481 . -946) 55931) ((-481 . -613) 55716) ((-481 . -1034) 55592) ((-481 . -1212) 55571) ((-481 . -906) 55550) ((-481 . -882) NIL) ((-481 . -896) 55527) ((-481 . -846) 55506) ((-481 . -514) 55449) ((-481 . -452) 55400) ((-481 . -636) 55348) ((-481 . -377) 55332) ((-481 . -47) 55289) ((-481 . -38) 55138) ((-481 . -713) 54987) ((-481 . -290) 54918) ((-481 . -556) 54849) ((-481 . -111) 54678) ((-481 . -1051) 54521) ((-481 . -172) 54432) ((-481 . -147) 54411) ((-481 . -145) 54390) ((-481 . -643) 54315) ((-481 . -131) T) ((-481 . -25) T) ((-481 . -102) T) ((-481 . -610) 54297) ((-481 . -1094) T) ((-481 . -23) T) ((-481 . -21) T) ((-481 . -1045) T) ((-481 . -1052) T) ((-481 . -1105) T) ((-481 . -722) T) ((-481 . -412) 54281) ((-481 . -326) 54238) ((-481 . -309) 54225) ((-481 . -611) 54086) ((-479 . -1184) 54065) ((-479 . -229) 54015) ((-479 . -107) 53965) ((-479 . -309) 53769) ((-479 . -514) 53561) ((-479 . -489) 53498) ((-479 . -151) 53448) ((-479 . -611) NIL) ((-479 . -235) 53398) ((-479 . -607) 53377) ((-479 . -288) 53356) ((-479 . -286) 53335) ((-479 . -102) T) ((-479 . -1094) T) ((-479 . -610) 53317) ((-479 . -1207) T) ((-479 . -34) T) ((-479 . -601) 53296) ((-478 . -1076) T) ((-478 . -490) 53277) ((-478 . -610) 53243) ((-478 . -613) 53224) ((-478 . -1094) T) ((-478 . -102) T) ((-478 . -93) T) ((-477 . -363) T) ((-477 . -1212) T) ((-477 . -917) T) ((-477 . -556) T) ((-477 . -172) T) ((-477 . -613) 53174) ((-477 . -713) 53139) ((-477 . -38) 53104) ((-477 . -452) T) ((-477 . -307) T) ((-477 . -643) 53069) ((-477 . -722) T) ((-477 . -1105) T) ((-477 . -1052) T) ((-477 . -1045) T) ((-477 . -111) 53025) ((-477 . -1051) 52990) ((-477 . -21) T) ((-477 . -23) T) ((-477 . -1094) T) ((-477 . -610) 52942) ((-477 . -102) T) ((-477 . -25) T) ((-477 . -131) T) ((-477 . -290) T) ((-477 . -243) T) ((-477 . -147) T) ((-477 . -1034) 52902) ((-477 . -1016) T) ((-477 . -611) 52824) ((-476 . -1202) 52793) ((-476 . -610) 52755) ((-476 . -151) 52739) ((-476 . -34) T) ((-476 . -1207) T) ((-476 . -309) 52677) ((-476 . -514) 52610) ((-476 . -1094) T) ((-476 . -102) T) ((-476 . -489) 52594) ((-476 . -611) 52555) ((-476 . -972) 52524) ((-475 . -1184) 52503) ((-475 . -229) 52453) ((-475 . -107) 52403) ((-475 . -309) 52207) ((-475 . -514) 51999) ((-475 . -489) 51936) ((-475 . -151) 51886) ((-475 . -611) NIL) ((-475 . -235) 51836) ((-475 . -607) 51815) ((-475 . -288) 51794) ((-475 . -286) 51773) ((-475 . -102) T) ((-475 . -1094) T) ((-475 . -610) 51755) ((-475 . -1207) T) ((-475 . -34) T) ((-475 . -601) 51734) ((-474 . -1239) 51718) ((-474 . -233) 51670) ((-474 . -286) 51655) ((-474 . -896) 51561) ((-474 . -969) 51523) ((-474 . -38) 51364) ((-474 . -111) 51185) ((-474 . -1051) 51020) ((-474 . -643) 50917) ((-474 . -713) 50758) ((-474 . -613) 50584) ((-474 . -145) 50563) ((-474 . -147) 50542) ((-474 . -47) 50512) ((-474 . -1235) 50482) ((-474 . -35) 50448) ((-474 . -95) 50414) ((-474 . -284) 50380) ((-474 . -493) 50346) ((-474 . -1196) 50312) ((-474 . -1193) 50278) ((-474 . -998) 50244) ((-474 . -243) 50223) ((-474 . -290) 50174) ((-474 . -131) T) ((-474 . -25) T) ((-474 . -102) T) ((-474 . -610) 50156) ((-474 . -1094) T) ((-474 . -23) T) ((-474 . -21) T) ((-474 . -1045) T) ((-474 . -1052) T) ((-474 . -1105) T) ((-474 . -722) T) ((-474 . -307) 50135) ((-474 . -452) 50114) ((-474 . -172) 50045) ((-474 . -556) 49996) ((-474 . -917) 49975) ((-474 . -1212) 49954) ((-474 . -363) 49933) ((-468 . -1094) T) ((-468 . -610) 49915) ((-468 . -102) T) ((-463 . -972) 49884) ((-463 . -611) 49845) ((-463 . -489) 49829) ((-463 . -102) T) ((-463 . -1094) T) ((-463 . -514) 49762) ((-463 . -309) 49700) ((-463 . -610) 49662) ((-463 . -1207) T) ((-463 . -34) T) ((-463 . -151) 49646) ((-461 . -713) 49617) ((-461 . -643) 49588) ((-461 . -131) T) ((-461 . -25) T) ((-461 . -102) T) ((-461 . -610) 49570) ((-461 . -1094) T) ((-461 . -23) T) ((-461 . -21) T) ((-461 . -1051) 49541) ((-461 . -111) 49502) ((-454 . -946) 49469) ((-454 . -613) 49254) ((-454 . -1034) 49130) ((-454 . -1212) 49109) ((-454 . -906) 49088) ((-454 . -882) NIL) ((-454 . -896) 49065) ((-454 . -846) 49044) ((-454 . -514) 48987) ((-454 . -452) 48938) ((-454 . -636) 48886) ((-454 . -377) 48870) ((-454 . -47) 48849) ((-454 . -38) 48698) ((-454 . -713) 48547) ((-454 . -290) 48478) ((-454 . -556) 48409) ((-454 . -111) 48238) ((-454 . -1051) 48081) ((-454 . -172) 47992) ((-454 . -147) 47971) ((-454 . -145) 47950) ((-454 . -643) 47875) ((-454 . -131) T) ((-454 . -25) T) ((-454 . -102) T) ((-454 . -610) 47857) ((-454 . -1094) T) ((-454 . -23) T) ((-454 . -21) T) ((-454 . -1045) T) ((-454 . -1052) T) ((-454 . -1105) T) ((-454 . -722) T) ((-454 . -412) 47841) ((-454 . -326) 47820) ((-454 . -309) 47807) ((-454 . -611) 47668) ((-453 . -418) 47638) ((-453 . -740) 47608) ((-453 . -716) T) ((-453 . -757) T) ((-453 . -111) 47571) ((-453 . -1051) 47541) ((-453 . -21) T) ((-453 . -23) T) ((-453 . -1094) T) ((-453 . -610) 47523) ((-453 . -102) T) ((-453 . -25) T) ((-453 . -131) T) ((-453 . -643) 47453) ((-453 . -713) 47423) ((-453 . -367) 47393) ((-439 . -1094) T) ((-439 . -610) 47375) ((-439 . -102) T) ((-438 . -1094) T) ((-438 . -610) 47357) ((-438 . -102) T) ((-437 . -365) 47331) ((-437 . -102) T) ((-437 . -610) 47313) ((-437 . -1094) T) ((-436 . -1094) T) ((-436 . -610) 47295) ((-436 . -102) T) ((-434 . -610) 47277) ((-429 . -38) 47261) ((-429 . -613) 47230) ((-429 . -643) 47204) ((-429 . -722) T) ((-429 . -1105) T) ((-429 . -1052) T) ((-429 . -1045) T) ((-429 . -111) 47183) ((-429 . -1051) 47167) ((-429 . -21) T) ((-429 . -23) T) ((-429 . -1094) T) ((-429 . -610) 47149) ((-429 . -102) T) ((-429 . -25) T) ((-429 . -131) T) ((-429 . -713) 47133) ((-415 . -722) T) ((-415 . -1094) T) ((-415 . -610) 47115) ((-415 . -102) T) ((-415 . -1105) T) ((-413 . -473) T) ((-413 . -1105) T) ((-413 . -102) T) ((-413 . -610) 47097) ((-413 . -1094) T) ((-413 . -722) T) ((-407 . -987) 47081) ((-407 . -1144) 47059) ((-407 . -1034) 46925) ((-407 . -613) 46823) ((-407 . -611) 46630) ((-407 . -1016) 46608) ((-407 . -906) 46587) ((-407 . -880) 46571) ((-407 . -844) 46550) ((-407 . -793) 46529) ((-407 . -790) 46508) ((-407 . -846) 46459) ((-407 . -788) 46438) ((-407 . -787) 46417) ((-407 . -816) 46396) ((-407 . -882) 46321) ((-407 . -1207) T) ((-407 . -400) 46305) ((-407 . -636) 46253) ((-407 . -377) 46237) ((-407 . -286) 46195) ((-407 . -309) 46160) ((-407 . -514) 46072) ((-407 . -338) 46056) ((-407 . -243) T) ((-407 . -111) 45994) ((-407 . -1051) 45946) ((-407 . -290) T) ((-407 . -713) 45898) ((-407 . -643) 45850) ((-407 . -38) 45802) ((-407 . -307) T) ((-407 . -452) T) ((-407 . -172) T) ((-407 . -556) T) ((-407 . -917) T) ((-407 . -1212) T) ((-407 . -363) T) ((-407 . -233) 45781) ((-407 . -896) 45740) ((-407 . -231) 45724) ((-407 . -147) 45703) ((-407 . -145) 45682) ((-407 . -131) T) ((-407 . -25) T) ((-407 . -102) T) ((-407 . -610) 45664) ((-407 . -1094) T) ((-407 . -23) T) ((-407 . -21) T) ((-407 . -1045) T) ((-407 . -1052) T) ((-407 . -1105) T) ((-407 . -722) T) ((-407 . -817) 45617) ((-405 . -556) T) ((-405 . -290) T) ((-405 . -172) T) ((-405 . -613) 45525) ((-405 . -713) 45499) ((-405 . -643) 45473) ((-405 . -131) T) ((-405 . -25) T) ((-405 . -102) T) ((-405 . -610) 45455) ((-405 . -1094) T) ((-405 . -23) T) ((-405 . -21) T) ((-405 . -1051) 45429) ((-405 . -111) 45396) ((-405 . -1045) T) ((-405 . -1052) T) ((-405 . -1105) T) ((-405 . -722) T) ((-405 . -38) 45370) ((-405 . -231) 45354) ((-405 . -896) 45313) ((-405 . -233) 45292) ((-405 . -338) 45276) ((-405 . -514) 45118) ((-405 . -309) 45057) ((-405 . -286) 44985) ((-405 . -412) 44969) ((-405 . -1034) 44865) ((-405 . -452) 44815) ((-405 . -1016) 44793) ((-405 . -611) 44700) ((-405 . -1212) 44678) ((-399 . -1094) T) ((-399 . -610) 44660) ((-399 . -102) T) ((-399 . -611) 44637) ((-398 . -396) T) ((-398 . -1207) T) ((-398 . -610) 44619) ((-393 . -1094) T) ((-393 . -610) 44601) ((-393 . -102) T) ((-393 . -613) 44583) ((-390 . -740) 44567) ((-390 . -716) T) ((-390 . -757) T) ((-390 . -111) 44546) ((-390 . -1051) 44530) ((-390 . -21) T) ((-390 . -23) T) ((-390 . -1094) T) ((-390 . -610) 44512) ((-390 . -102) T) ((-390 . -25) T) ((-390 . -131) T) ((-390 . -643) 44496) ((-390 . -713) 44480) ((-388 . -389) T) ((-388 . -102) T) ((-388 . -610) 44446) ((-388 . -1094) T) ((-388 . -613) 44427) ((-388 . -490) 44408) ((-386 . -722) T) ((-386 . -1094) T) ((-386 . -610) 44390) ((-386 . -102) T) ((-386 . -1105) T) ((-386 . -1034) 44374) ((-386 . -613) 44358) ((-386 . -846) 44337) ((-382 . -384) 44316) ((-382 . -613) 44300) ((-382 . -1034) 44284) ((-382 . -713) 44254) ((-382 . -643) 44238) ((-382 . -131) T) ((-382 . -25) T) ((-382 . -102) T) ((-382 . -610) 44220) ((-382 . -1094) T) ((-382 . -23) T) ((-382 . -21) T) ((-382 . -1051) 44204) ((-382 . -111) 44183) ((-381 . -111) 44162) ((-381 . -1051) 44146) ((-381 . -21) T) ((-381 . -23) T) ((-381 . -1094) T) ((-381 . -610) 44128) ((-381 . -102) T) ((-381 . -25) T) ((-381 . -131) T) ((-381 . -643) 44112) ((-381 . -509) 44091) ((-381 . -713) 44061) ((-378 . -404) T) ((-378 . -147) T) ((-378 . -613) 44011) ((-378 . -643) 43976) ((-378 . -131) T) ((-378 . -25) T) ((-378 . -102) T) ((-378 . -610) 43943) ((-378 . -1094) T) ((-378 . -23) T) ((-378 . -21) T) ((-378 . -722) T) ((-378 . -1105) T) ((-378 . -1052) T) ((-378 . -1045) T) ((-378 . -611) 43857) ((-378 . -363) T) ((-378 . -1212) T) ((-378 . -917) T) ((-378 . -556) T) ((-378 . -172) T) ((-378 . -713) 43822) ((-378 . -38) 43787) ((-378 . -452) T) ((-378 . -307) T) ((-378 . -111) 43743) ((-378 . -1051) 43708) ((-378 . -290) T) ((-378 . -243) T) ((-378 . -844) T) ((-378 . -793) T) ((-378 . -790) T) ((-378 . -846) T) ((-378 . -788) T) ((-378 . -787) T) ((-378 . -882) 43690) ((-378 . -998) T) ((-378 . -1016) T) ((-378 . -1034) 43650) ((-378 . -1054) T) ((-378 . -233) T) ((-378 . -817) T) ((-378 . -1193) T) ((-378 . -1196) T) ((-378 . -493) T) ((-378 . -284) T) ((-378 . -95) T) ((-378 . -35) T) ((-378 . -615) 43632) ((-364 . -365) 43609) ((-364 . -102) T) ((-364 . -610) 43591) ((-364 . -1094) T) ((-361 . -473) T) ((-361 . -1105) T) ((-361 . -102) T) ((-361 . -610) 43573) ((-361 . -1094) T) ((-361 . -722) T) ((-361 . -1034) 43557) ((-361 . -613) 43541) ((-359 . -329) 43525) ((-359 . -233) 43504) ((-359 . -368) 43483) ((-359 . -1144) 43462) ((-359 . -350) 43441) ((-359 . -147) 43420) ((-359 . -613) 43357) ((-359 . -643) 43309) ((-359 . -131) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -610) 43291) ((-359 . -1094) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -722) T) ((-359 . -1105) T) ((-359 . -1052) T) ((-359 . -1045) T) ((-359 . -363) T) ((-359 . -1212) T) ((-359 . -917) T) ((-359 . -556) T) ((-359 . -172) T) ((-359 . -713) 43243) ((-359 . -38) 43208) ((-359 . -452) T) ((-359 . -307) T) ((-359 . -111) 43146) ((-359 . -1051) 43098) ((-359 . -290) T) ((-359 . -243) T) ((-359 . -402) 43049) ((-359 . -145) 43000) ((-359 . -1034) 42984) ((-359 . -1264) 42968) ((-359 . -1275) 42952) ((-355 . -329) 42936) ((-355 . -233) 42915) ((-355 . -368) 42894) ((-355 . -1144) 42873) ((-355 . -350) 42852) ((-355 . -147) 42831) ((-355 . -613) 42768) ((-355 . -643) 42720) ((-355 . -131) T) ((-355 . -25) T) ((-355 . -102) T) ((-355 . -610) 42702) ((-355 . -1094) T) ((-355 . -23) T) ((-355 . -21) T) ((-355 . -722) T) ((-355 . -1105) T) ((-355 . -1052) T) ((-355 . -1045) T) ((-355 . -363) T) ((-355 . -1212) T) ((-355 . -917) T) ((-355 . -556) T) ((-355 . -172) T) ((-355 . -713) 42654) ((-355 . -38) 42619) ((-355 . -452) T) ((-355 . -307) T) ((-355 . -111) 42557) ((-355 . -1051) 42509) ((-355 . -290) T) ((-355 . -243) T) ((-355 . -402) 42460) ((-355 . -145) 42411) ((-355 . -1034) 42395) ((-355 . -1264) 42379) ((-355 . -1275) 42363) ((-354 . -329) 42347) ((-354 . -233) 42326) ((-354 . -368) 42305) ((-354 . -1144) 42284) ((-354 . -350) 42263) ((-354 . -147) 42242) ((-354 . -613) 42179) ((-354 . -643) 42131) ((-354 . -131) T) ((-354 . -25) T) ((-354 . -102) T) ((-354 . -610) 42113) ((-354 . -1094) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -722) T) ((-354 . -1105) T) ((-354 . -1052) T) ((-354 . -1045) T) ((-354 . -363) T) ((-354 . -1212) T) ((-354 . -917) T) ((-354 . -556) T) ((-354 . -172) T) ((-354 . -713) 42065) ((-354 . -38) 42030) ((-354 . -452) T) ((-354 . -307) T) ((-354 . -111) 41968) ((-354 . -1051) 41920) ((-354 . -290) T) ((-354 . -243) T) ((-354 . -402) 41871) ((-354 . -145) 41822) ((-354 . -1034) 41806) ((-354 . -1264) 41790) ((-354 . -1275) 41774) ((-353 . -329) 41758) ((-353 . -233) 41737) ((-353 . -368) 41716) ((-353 . -1144) 41695) ((-353 . -350) 41674) ((-353 . -147) 41653) ((-353 . -613) 41590) ((-353 . -643) 41542) ((-353 . -131) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -610) 41524) ((-353 . -1094) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -722) T) ((-353 . -1105) T) ((-353 . -1052) T) ((-353 . -1045) T) ((-353 . -363) T) ((-353 . -1212) T) ((-353 . -917) T) ((-353 . -556) T) ((-353 . -172) T) ((-353 . -713) 41476) ((-353 . -38) 41441) ((-353 . -452) T) ((-353 . -307) T) ((-353 . -111) 41379) ((-353 . -1051) 41331) ((-353 . -290) T) ((-353 . -243) T) ((-353 . -402) 41282) ((-353 . -145) 41233) ((-353 . -1034) 41217) ((-353 . -1264) 41201) ((-353 . -1275) 41185) ((-352 . -329) 41162) ((-352 . -233) T) ((-352 . -368) T) ((-352 . -1144) T) ((-352 . -350) T) ((-352 . -147) 41144) ((-352 . -613) 41074) ((-352 . -643) 41019) ((-352 . -131) T) ((-352 . -25) T) ((-352 . -102) T) ((-352 . -610) 41001) ((-352 . -1094) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -722) T) ((-352 . -1105) T) ((-352 . -1052) T) ((-352 . -1045) T) ((-352 . -363) T) ((-352 . -1212) T) ((-352 . -917) T) ((-352 . -556) T) ((-352 . -172) T) ((-352 . -713) 40946) ((-352 . -38) 40911) ((-352 . -452) T) ((-352 . -307) T) ((-352 . -111) 40840) ((-352 . -1051) 40785) ((-352 . -290) T) ((-352 . -243) T) ((-352 . -402) T) ((-352 . -145) T) ((-352 . -1034) 40762) ((-352 . -1264) 40739) ((-352 . -1275) 40716) ((-346 . -329) 40700) ((-346 . -233) 40679) ((-346 . -368) 40658) ((-346 . -1144) 40637) ((-346 . -350) 40616) ((-346 . -147) 40595) ((-346 . -613) 40532) ((-346 . -643) 40484) ((-346 . -131) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -610) 40466) ((-346 . -1094) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -722) T) ((-346 . -1105) T) ((-346 . -1052) T) ((-346 . -1045) T) ((-346 . -363) T) ((-346 . -1212) T) ((-346 . -917) T) ((-346 . -556) T) ((-346 . -172) T) ((-346 . -713) 40418) ((-346 . -38) 40383) ((-346 . -452) T) ((-346 . -307) T) ((-346 . -111) 40321) ((-346 . -1051) 40273) ((-346 . -290) T) ((-346 . -243) T) ((-346 . -402) 40224) ((-346 . -145) 40175) ((-346 . -1034) 40159) ((-346 . -1264) 40143) ((-346 . -1275) 40127) ((-345 . -329) 40111) ((-345 . -233) 40090) ((-345 . -368) 40069) ((-345 . -1144) 40048) ((-345 . -350) 40027) ((-345 . -147) 40006) ((-345 . -613) 39943) ((-345 . -643) 39895) ((-345 . -131) T) ((-345 . -25) T) ((-345 . -102) T) ((-345 . -610) 39877) ((-345 . -1094) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -722) T) ((-345 . -1105) T) ((-345 . -1052) T) ((-345 . -1045) T) ((-345 . -363) T) ((-345 . -1212) T) ((-345 . -917) T) ((-345 . -556) T) ((-345 . -172) T) ((-345 . -713) 39829) ((-345 . -38) 39794) ((-345 . -452) T) ((-345 . -307) T) ((-345 . -111) 39732) ((-345 . -1051) 39684) ((-345 . -290) T) ((-345 . -243) T) ((-345 . -402) 39635) ((-345 . -145) 39586) ((-345 . -1034) 39570) ((-345 . -1264) 39554) ((-345 . -1275) 39538) ((-344 . -329) 39515) ((-344 . -233) T) ((-344 . -368) T) ((-344 . -1144) T) ((-344 . -350) T) ((-344 . -147) 39497) ((-344 . -613) 39427) ((-344 . -643) 39372) ((-344 . -131) T) ((-344 . -25) T) ((-344 . -102) T) ((-344 . -610) 39354) ((-344 . -1094) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -722) T) ((-344 . -1105) T) ((-344 . -1052) T) ((-344 . -1045) T) ((-344 . -363) T) ((-344 . -1212) T) ((-344 . -917) T) ((-344 . -556) T) ((-344 . -172) T) ((-344 . -713) 39299) ((-344 . -38) 39264) ((-344 . -452) T) ((-344 . -307) T) ((-344 . -111) 39193) ((-344 . -1051) 39138) ((-344 . -290) T) ((-344 . -243) T) ((-344 . -402) T) ((-344 . -145) T) ((-344 . -1034) 39115) ((-344 . -1264) 39092) ((-344 . -1275) 39069) ((-340 . -329) 39046) ((-340 . -233) T) ((-340 . -368) T) ((-340 . -1144) T) ((-340 . -350) T) ((-340 . -147) 39028) ((-340 . -613) 38958) ((-340 . -643) 38903) ((-340 . -131) T) ((-340 . -25) T) ((-340 . -102) T) ((-340 . -610) 38885) ((-340 . -1094) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -722) T) ((-340 . -1105) T) ((-340 . -1052) T) ((-340 . -1045) T) ((-340 . -363) T) ((-340 . -1212) T) ((-340 . -917) T) ((-340 . -556) T) ((-340 . -172) T) ((-340 . -713) 38830) ((-340 . -38) 38795) ((-340 . -452) T) ((-340 . -307) T) ((-340 . -111) 38724) ((-340 . -1051) 38669) ((-340 . -290) T) ((-340 . -243) T) ((-340 . -402) T) ((-340 . -145) T) ((-340 . -1034) 38646) ((-340 . -1264) 38623) ((-340 . -1275) 38600) ((-339 . -298) T) ((-339 . -613) 38552) ((-339 . -1034) 38519) ((-339 . -1094) T) ((-339 . -610) 38501) ((-339 . -102) T) ((-339 . -846) T) ((-339 . -514) 38467) ((-339 . -309) 38454) ((-339 . -38) 38438) ((-339 . -643) 38412) ((-339 . -722) T) ((-339 . -1105) T) ((-339 . -1052) T) ((-339 . -1045) T) ((-339 . -111) 38391) ((-339 . -1051) 38375) ((-339 . -21) T) ((-339 . -23) T) ((-339 . -25) T) ((-339 . -131) T) ((-339 . -713) 38359) ((-339 . -896) 38340) ((-333 . -336) 38309) ((-333 . -131) T) ((-333 . -25) T) ((-333 . -102) T) ((-333 . -610) 38291) ((-333 . -1094) T) ((-333 . -23) T) ((-333 . -21) T) ((-331 . -846) T) ((-331 . -102) T) ((-331 . -610) 38273) ((-331 . -1094) T) ((-330 . -1094) T) ((-330 . -610) 38255) ((-330 . -102) T) ((-327 . -19) 38239) ((-327 . -646) 38223) ((-327 . -288) 38200) ((-327 . -286) 38177) ((-327 . -601) 38154) ((-327 . -611) 38115) ((-327 . -489) 38099) ((-327 . -102) 38049) ((-327 . -1094) 37999) ((-327 . -514) 37932) ((-327 . -309) 37870) ((-327 . -610) 37782) ((-327 . -1207) T) ((-327 . -34) T) ((-327 . -151) 37766) ((-327 . -846) 37745) ((-327 . -372) 37729) ((-327 . -282) 37713) ((-324 . -323) 37690) ((-324 . -613) 37674) ((-324 . -1034) 37658) ((-324 . -23) T) ((-324 . -1094) T) ((-324 . -610) 37640) ((-324 . -102) T) ((-324 . -25) T) ((-324 . -131) T) ((-322 . -21) T) ((-322 . -23) T) ((-322 . -1094) T) ((-322 . -610) 37622) ((-322 . -102) T) ((-322 . -25) T) ((-322 . -131) T) ((-322 . -713) 37604) ((-322 . -643) 37586) ((-322 . -1051) 37568) ((-322 . -111) 37543) ((-322 . -323) 37520) ((-322 . -613) 37504) ((-322 . -1034) 37488) ((-322 . -846) 37467) ((-319 . -1239) 37451) ((-319 . -233) 37403) ((-319 . -286) 37388) ((-319 . -896) 37294) ((-319 . -969) 37256) ((-319 . -38) 37097) ((-319 . -111) 36918) ((-319 . -1051) 36753) ((-319 . -643) 36650) ((-319 . -713) 36491) ((-319 . -613) 36317) ((-319 . -145) 36296) ((-319 . -147) 36275) ((-319 . -47) 36245) ((-319 . -1235) 36215) ((-319 . -35) 36181) ((-319 . -95) 36147) ((-319 . -284) 36113) ((-319 . -493) 36079) ((-319 . -1196) 36045) ((-319 . -1193) 36011) ((-319 . -998) 35977) ((-319 . -243) 35956) ((-319 . -290) 35907) ((-319 . -131) T) ((-319 . -25) T) ((-319 . -102) T) ((-319 . -610) 35889) ((-319 . -1094) T) ((-319 . -23) T) ((-319 . -21) T) ((-319 . -1045) T) ((-319 . -1052) T) ((-319 . -1105) T) ((-319 . -722) T) ((-319 . -307) 35868) ((-319 . -452) 35847) ((-319 . -172) 35778) ((-319 . -556) 35729) ((-319 . -917) 35708) ((-319 . -1212) 35687) ((-319 . -363) 35666) ((-319 . -788) T) ((-319 . -846) T) ((-319 . -790) T) ((-314 . -421) 35650) ((-314 . -613) 35214) ((-314 . -1034) 34877) ((-314 . -611) 34738) ((-314 . -880) 34722) ((-314 . -896) 34688) ((-314 . -473) 34667) ((-314 . -412) 34651) ((-314 . -882) 34576) ((-314 . -1207) T) ((-314 . -400) 34560) ((-314 . -636) 34466) ((-314 . -377) 34435) ((-314 . -243) 34414) ((-314 . -111) 34310) ((-314 . -1051) 34220) ((-314 . -290) 34199) ((-314 . -713) 34109) ((-314 . -643) 33930) ((-314 . -38) 33840) ((-314 . -307) 33819) ((-314 . -452) 33798) ((-314 . -172) 33777) ((-314 . -556) 33756) ((-314 . -917) 33735) ((-314 . -1212) 33714) ((-314 . -363) 33693) ((-314 . -309) 33680) ((-314 . -514) 33646) ((-314 . -846) T) ((-314 . -298) T) ((-314 . -147) 33625) ((-314 . -145) 33604) ((-314 . -1045) 33494) ((-314 . -1052) 33384) ((-314 . -1105) 33233) ((-314 . -722) 33082) ((-314 . -131) 32953) ((-314 . -25) 32805) ((-314 . -102) T) ((-314 . -610) 32787) ((-314 . -1094) T) ((-314 . -23) 32639) ((-314 . -21) 32510) ((-314 . -29) 32480) ((-314 . -998) 32459) ((-314 . -27) 32438) ((-314 . -1193) 32417) ((-314 . -1196) 32396) ((-314 . -493) 32375) ((-314 . -284) 32354) ((-314 . -95) 32333) ((-314 . -35) 32312) ((-314 . -160) 32291) ((-314 . -143) 32270) ((-314 . -627) 32249) ((-314 . -956) 32228) ((-314 . -1132) 32207) ((-313 . -987) 32168) ((-313 . -1144) NIL) ((-313 . -1034) 32098) ((-313 . -613) 31981) ((-313 . -611) NIL) ((-313 . -1016) NIL) ((-313 . -906) NIL) ((-313 . -880) 31942) ((-313 . -844) NIL) ((-313 . -793) NIL) ((-313 . -790) NIL) ((-313 . -846) NIL) ((-313 . -788) NIL) ((-313 . -787) NIL) ((-313 . -816) NIL) ((-313 . -882) NIL) ((-313 . -1207) T) ((-313 . -400) 31903) ((-313 . -636) 31864) ((-313 . -377) 31825) ((-313 . -286) 31760) ((-313 . -309) 31701) ((-313 . -514) 31593) ((-313 . -338) 31554) ((-313 . -243) T) ((-313 . -111) 31467) ((-313 . -1051) 31396) ((-313 . -290) T) ((-313 . -713) 31325) ((-313 . -643) 31254) ((-313 . -38) 31183) ((-313 . -307) T) ((-313 . -452) T) ((-313 . -172) T) ((-313 . -556) T) ((-313 . -917) T) ((-313 . -1212) T) ((-313 . -363) T) ((-313 . -233) NIL) ((-313 . -896) NIL) ((-313 . -231) 31144) ((-313 . -147) 31100) ((-313 . -145) 31056) ((-313 . -131) T) ((-313 . -25) T) ((-313 . -102) T) ((-313 . -610) 31038) ((-313 . -1094) T) ((-313 . -23) T) ((-313 . -21) T) ((-313 . -1045) T) ((-313 . -1052) T) ((-313 . -1105) T) ((-313 . -722) T) ((-312 . -1076) T) ((-312 . -490) 31019) ((-312 . -610) 30985) ((-312 . -613) 30966) ((-312 . -1094) T) ((-312 . -102) T) ((-312 . -93) T) ((-311 . -1094) T) ((-311 . -610) 30948) ((-311 . -102) T) ((-295 . -1184) 30927) ((-295 . -229) 30877) ((-295 . -107) 30827) ((-295 . -309) 30631) ((-295 . -514) 30423) ((-295 . -489) 30360) ((-295 . -151) 30310) ((-295 . -611) NIL) ((-295 . -235) 30260) ((-295 . -607) 30239) ((-295 . -288) 30218) ((-295 . -286) 30197) ((-295 . -102) T) ((-295 . -1094) T) ((-295 . -610) 30179) ((-295 . -1207) T) ((-295 . -34) T) ((-295 . -601) 30158) ((-293 . -1207) T) ((-293 . -514) 30107) ((-293 . -1094) 29889) ((-293 . -610) 29630) ((-293 . -102) 29412) ((-293 . -25) 29276) ((-293 . -21) 29159) ((-293 . -23) 29042) ((-293 . -131) 28925) ((-293 . -1105) 28806) ((-293 . -722) 28708) ((-293 . -473) 28687) ((-293 . -1045) 28629) ((-293 . -1052) 28571) ((-293 . -643) 28431) ((-293 . -613) 28362) ((-293 . -111) 28278) ((-293 . -1051) 28199) ((-293 . -713) 28141) ((-293 . -896) 28100) ((-293 . -1264) 28070) ((-291 . -610) 28052) ((-289 . -307) T) ((-289 . -452) T) ((-289 . -38) 28039) ((-289 . -613) 28011) ((-289 . -722) T) ((-289 . -1105) T) ((-289 . -1052) T) ((-289 . -1045) T) ((-289 . -111) 27996) ((-289 . -1051) 27983) ((-289 . -21) T) ((-289 . -23) T) ((-289 . -1094) T) ((-289 . -610) 27965) ((-289 . -102) T) ((-289 . -25) T) ((-289 . -131) T) ((-289 . -643) 27952) ((-289 . -713) 27939) ((-289 . -172) T) ((-289 . -290) T) ((-289 . -556) T) ((-289 . -917) T) ((-280 . -610) 27921) ((-279 . -979) 27905) ((-278 . -979) 27889) ((-275 . -846) T) ((-275 . -102) T) ((-275 . -610) 27871) ((-275 . -1094) T) ((-274 . -835) T) ((-274 . -102) T) ((-274 . -610) 27853) ((-274 . -1094) T) ((-273 . -835) T) ((-273 . -102) T) ((-273 . -610) 27835) ((-273 . -1094) T) ((-272 . -835) T) ((-272 . -102) T) ((-272 . -610) 27817) ((-272 . -1094) T) ((-271 . -835) T) ((-271 . -102) T) ((-271 . -610) 27799) ((-271 . -1094) T) ((-270 . -835) T) ((-270 . -102) T) ((-270 . -610) 27781) ((-270 . -1094) T) ((-269 . -835) T) ((-269 . -102) T) ((-269 . -610) 27763) ((-269 . -1094) T) ((-268 . -835) T) ((-268 . -102) T) ((-268 . -610) 27745) ((-268 . -1094) T) ((-264 . -253) 27707) ((-264 . -613) 27460) ((-264 . -1034) 27304) ((-264 . -611) 27052) ((-264 . -326) 27024) ((-264 . -412) 27008) ((-264 . -38) 26857) ((-264 . -111) 26686) ((-264 . -1051) 26529) ((-264 . -643) 26454) ((-264 . -713) 26303) ((-264 . -145) 26282) ((-264 . -147) 26261) ((-264 . -172) 26172) ((-264 . -556) 26103) ((-264 . -290) 26034) ((-264 . -47) 26006) ((-264 . -377) 25990) ((-264 . -636) 25938) ((-264 . -452) 25889) ((-264 . -514) 25774) ((-264 . -846) 25753) ((-264 . -896) 25699) ((-264 . -882) 25558) ((-264 . -906) 25537) ((-264 . -1212) 25516) ((-264 . -946) 25483) ((-264 . -309) 25470) ((-264 . -233) 25449) ((-264 . -131) T) ((-264 . -25) T) ((-264 . -102) T) ((-264 . -610) 25431) ((-264 . -1094) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -722) T) ((-264 . -1105) T) ((-264 . -1052) T) ((-264 . -1045) T) ((-264 . -231) 25415) ((-261 . -1094) T) ((-261 . -610) 25397) ((-261 . -102) T) ((-251 . -238) 25376) ((-251 . -1264) 25346) ((-251 . -787) 25325) ((-251 . -844) 25304) ((-251 . -793) 25255) ((-251 . -790) 25206) ((-251 . -846) 25157) ((-251 . -788) 25108) ((-251 . -789) 25087) ((-251 . -288) 25064) ((-251 . -286) 25041) ((-251 . -489) 25025) ((-251 . -514) 24958) ((-251 . -309) 24896) ((-251 . -1207) T) ((-251 . -34) T) ((-251 . -601) 24873) ((-251 . -1034) 24700) ((-251 . -613) 24430) ((-251 . -412) 24399) ((-251 . -636) 24305) ((-251 . -377) 24274) ((-251 . -368) 24253) ((-251 . -233) 24205) ((-251 . -896) 24137) ((-251 . -231) 24106) ((-251 . -111) 23996) ((-251 . -1051) 23893) ((-251 . -172) 23872) ((-251 . -610) 23833) ((-251 . -713) 23775) ((-251 . -643) 23610) ((-251 . -131) T) ((-251 . -23) T) ((-251 . -21) T) ((-251 . -1045) 23540) ((-251 . -1052) 23470) ((-251 . -1105) 23380) ((-251 . -722) 23290) ((-251 . -38) 23260) ((-251 . -1094) T) ((-251 . -102) T) ((-251 . -25) T) ((-250 . -238) 23239) ((-250 . -1264) 23209) ((-250 . -787) 23188) ((-250 . -844) 23167) ((-250 . -793) 23118) ((-250 . -790) 23069) ((-250 . -846) 23020) ((-250 . -788) 22971) ((-250 . -789) 22950) ((-250 . -288) 22927) ((-250 . -286) 22904) ((-250 . -489) 22888) ((-250 . -514) 22821) ((-250 . -309) 22759) ((-250 . -1207) T) ((-250 . -34) T) ((-250 . -601) 22736) ((-250 . -1034) 22563) ((-250 . -613) 22293) ((-250 . -412) 22262) ((-250 . -636) 22168) ((-250 . -377) 22137) ((-250 . -368) 22116) ((-250 . -233) 22068) ((-250 . -896) 22000) ((-250 . -231) 21969) ((-250 . -111) 21859) ((-250 . -1051) 21756) ((-250 . -172) 21735) ((-250 . -610) 21696) ((-250 . -713) 21638) ((-250 . -643) 21460) ((-250 . -131) T) ((-250 . -23) T) ((-250 . -21) T) ((-250 . -1045) 21390) ((-250 . -1052) 21320) ((-250 . -1105) 21230) ((-250 . -722) 21140) ((-250 . -38) 21110) ((-250 . -1094) T) ((-250 . -102) T) ((-250 . -25) T) ((-249 . -186) T) ((-249 . -1094) T) ((-249 . -610) 21077) ((-249 . -102) T) ((-249 . -832) 21059) ((-248 . -1094) T) ((-248 . -610) 21041) ((-248 . -102) T) ((-247 . -946) 20986) ((-247 . -613) 20771) ((-247 . -1034) 20647) ((-247 . -1212) 20626) ((-247 . -906) 20605) ((-247 . -882) NIL) ((-247 . -896) 20582) ((-247 . -846) 20561) ((-247 . -514) 20504) ((-247 . -452) 20455) ((-247 . -636) 20403) ((-247 . -377) 20387) ((-247 . -47) 20344) ((-247 . -38) 20193) ((-247 . -713) 20042) ((-247 . -290) 19973) ((-247 . -556) 19904) ((-247 . -111) 19733) ((-247 . -1051) 19576) ((-247 . -172) 19487) ((-247 . -147) 19466) ((-247 . -145) 19445) ((-247 . -643) 19370) ((-247 . -131) T) ((-247 . -25) T) ((-247 . -102) T) ((-247 . -610) 19352) ((-247 . -1094) T) ((-247 . -23) T) ((-247 . -21) T) ((-247 . -1045) T) ((-247 . -1052) T) ((-247 . -1105) T) ((-247 . -722) T) ((-247 . -412) 19336) ((-247 . -326) 19293) ((-247 . -309) 19280) ((-247 . -611) 19141) ((-245 . -661) 19125) ((-245 . -1245) 19109) ((-245 . -1006) 19093) ((-245 . -1142) 19077) ((-245 . -846) 19056) ((-245 . -372) 19040) ((-245 . -646) 19024) ((-245 . -288) 19001) ((-245 . -286) 18978) ((-245 . -601) 18955) ((-245 . -611) 18916) ((-245 . -489) 18900) ((-245 . -102) 18850) ((-245 . -1094) 18800) ((-245 . -514) 18733) ((-245 . -309) 18671) ((-245 . -610) 18563) ((-245 . -1207) T) ((-245 . -34) T) ((-245 . -151) 18547) ((-245 . -282) 18531) ((-245 . -490) 18508) ((-245 . -613) 18485) ((-239 . -238) 18464) ((-239 . -1264) 18434) ((-239 . -787) 18413) ((-239 . -844) 18392) ((-239 . -793) 18343) ((-239 . -790) 18294) ((-239 . -846) 18245) ((-239 . -788) 18196) ((-239 . -789) 18175) ((-239 . -288) 18152) ((-239 . -286) 18129) ((-239 . -489) 18113) ((-239 . -514) 18046) ((-239 . -309) 17984) ((-239 . -1207) T) ((-239 . -34) T) ((-239 . -601) 17961) ((-239 . -1034) 17788) ((-239 . -613) 17518) ((-239 . -412) 17487) ((-239 . -636) 17393) ((-239 . -377) 17362) ((-239 . -368) 17341) ((-239 . -233) 17293) ((-239 . -896) 17225) ((-239 . -231) 17194) ((-239 . -111) 17084) ((-239 . -1051) 16981) ((-239 . -172) 16960) ((-239 . -610) 16691) ((-239 . -713) 16633) ((-239 . -643) 16481) ((-239 . -131) 16351) ((-239 . -23) 16221) ((-239 . -21) 16131) ((-239 . -1045) 16061) ((-239 . -1052) 15991) ((-239 . -1105) 15901) ((-239 . -722) 15811) ((-239 . -38) 15781) ((-239 . -1094) 15571) ((-239 . -102) 15361) ((-239 . -25) 15212) ((-227 . -681) 15170) ((-227 . -489) 15154) ((-227 . -102) 15132) ((-227 . -1094) 15110) ((-227 . -514) 15043) ((-227 . -309) 14981) ((-227 . -610) 14913) ((-227 . -1207) T) ((-227 . -34) T) ((-227 . -57) 14871) ((-225 . -404) T) ((-225 . -147) T) ((-225 . -613) 14821) ((-225 . -643) 14786) ((-225 . -131) T) ((-225 . -25) T) ((-225 . -102) T) ((-225 . -610) 14768) ((-225 . -1094) T) ((-225 . -23) T) ((-225 . -21) T) ((-225 . -722) T) ((-225 . -1105) T) ((-225 . -1052) T) ((-225 . -1045) T) ((-225 . -611) 14698) ((-225 . -363) T) ((-225 . -1212) T) ((-225 . -917) T) ((-225 . -556) T) ((-225 . -172) T) ((-225 . -713) 14663) ((-225 . -38) 14628) ((-225 . -452) T) ((-225 . -307) T) ((-225 . -111) 14584) ((-225 . -1051) 14549) ((-225 . -290) T) ((-225 . -243) T) ((-225 . -844) T) ((-225 . -793) T) ((-225 . -790) T) ((-225 . -846) T) ((-225 . -788) T) ((-225 . -787) T) ((-225 . -882) 14531) ((-225 . -998) T) ((-225 . -1016) T) ((-225 . -1034) 14491) ((-225 . -1054) T) ((-225 . -233) T) ((-225 . -817) T) ((-225 . -1193) T) ((-225 . -1196) T) ((-225 . -493) T) ((-225 . -284) T) ((-225 . -95) T) ((-225 . -35) T) ((-223 . -618) 14468) ((-223 . -613) 14430) ((-223 . -643) 14397) ((-223 . -722) T) ((-223 . -1105) T) ((-223 . -1052) T) ((-223 . -1045) T) ((-223 . -21) T) ((-223 . -23) T) ((-223 . -1094) T) ((-223 . -610) 14379) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -131) T) ((-223 . -1034) 14356) ((-222 . -254) 14340) ((-222 . -1114) 14324) ((-222 . -107) 14308) ((-222 . -34) T) ((-222 . -1207) T) ((-222 . -610) 14240) ((-222 . -309) 14178) ((-222 . -514) 14111) ((-222 . -1094) 14089) ((-222 . -102) 14067) ((-222 . -489) 14051) ((-222 . -991) 14035) ((-218 . -1076) T) ((-218 . -490) 14016) ((-218 . -610) 13982) ((-218 . -613) 13963) ((-218 . -1094) T) ((-218 . -102) T) ((-218 . -93) T) ((-217 . -987) 13945) ((-217 . -1144) T) ((-217 . -613) 13895) ((-217 . -1034) 13855) ((-217 . -611) 13785) ((-217 . -1016) T) ((-217 . -906) NIL) ((-217 . -880) 13767) ((-217 . -844) T) ((-217 . -793) T) ((-217 . -790) T) ((-217 . -846) T) ((-217 . -788) T) ((-217 . -787) T) ((-217 . -816) T) ((-217 . -882) 13749) ((-217 . -1207) T) ((-217 . -400) 13731) ((-217 . -636) 13713) ((-217 . -377) 13695) ((-217 . -286) NIL) ((-217 . -309) NIL) ((-217 . -514) NIL) ((-217 . -338) 13677) ((-217 . -243) T) ((-217 . -111) 13611) ((-217 . -1051) 13561) ((-217 . -290) T) ((-217 . -713) 13511) ((-217 . -643) 13461) ((-217 . -38) 13411) ((-217 . -307) T) ((-217 . -452) T) ((-217 . -172) T) ((-217 . -556) T) ((-217 . -917) T) ((-217 . -1212) T) ((-217 . -363) T) ((-217 . -233) T) ((-217 . -896) NIL) ((-217 . -231) 13393) ((-217 . -147) T) ((-217 . -145) NIL) ((-217 . -131) T) ((-217 . -25) T) ((-217 . -102) T) ((-217 . -610) 13334) ((-217 . -1094) T) ((-217 . -23) T) ((-217 . -21) T) ((-217 . -1045) T) ((-217 . -1052) T) ((-217 . -1105) T) ((-217 . -722) T) ((-214 . -1094) T) ((-214 . -610) 13316) ((-214 . -102) T) ((-214 . -613) 13293) ((-213 . -1094) T) ((-213 . -610) 13275) ((-213 . -102) T) ((-212 . -891) T) ((-212 . -102) T) ((-212 . -610) 13257) ((-212 . -1094) T) ((-211 . -891) T) ((-211 . -102) T) ((-211 . -610) 13239) ((-211 . -1094) T) ((-209 . -796) T) ((-209 . -102) T) ((-209 . -610) 13221) ((-209 . -1094) T) ((-208 . -796) T) ((-208 . -102) T) ((-208 . -610) 13203) ((-208 . -1094) T) ((-207 . -796) T) ((-207 . -102) T) ((-207 . -610) 13185) ((-207 . -1094) T) ((-206 . -796) T) ((-206 . -102) T) ((-206 . -610) 13167) ((-206 . -1094) T) ((-203 . -783) T) ((-203 . -102) T) ((-203 . -610) 13149) ((-203 . -1094) T) ((-202 . -783) T) ((-202 . -102) T) ((-202 . -610) 13131) ((-202 . -1094) T) ((-201 . -783) T) ((-201 . -102) T) ((-201 . -610) 13113) ((-201 . -1094) T) ((-200 . -783) T) ((-200 . -102) T) ((-200 . -610) 13095) ((-200 . -1094) T) ((-199 . -783) T) ((-199 . -102) T) ((-199 . -610) 13077) ((-199 . -1094) T) ((-198 . -783) T) ((-198 . -102) T) ((-198 . -610) 13059) ((-198 . -1094) T) ((-197 . -783) T) ((-197 . -102) T) ((-197 . -610) 13041) ((-197 . -1094) T) ((-196 . -783) T) ((-196 . -102) T) ((-196 . -610) 13023) ((-196 . -1094) T) ((-195 . -783) T) ((-195 . -102) T) ((-195 . -610) 13005) ((-195 . -1094) T) ((-194 . -783) T) ((-194 . -102) T) ((-194 . -610) 12987) ((-194 . -1094) T) ((-193 . -783) T) ((-193 . -102) T) ((-193 . -610) 12969) ((-193 . -1094) T) ((-187 . -1094) T) ((-187 . -610) 12951) ((-187 . -102) T) ((-184 . -1094) T) ((-184 . -610) 12933) ((-184 . -102) T) ((-183 . -186) T) ((-183 . -1094) T) ((-183 . -610) 12915) ((-183 . -102) T) ((-183 . -832) 12897) ((-180 . -1076) T) ((-180 . -490) 12878) ((-180 . -610) 12844) ((-180 . -613) 12825) ((-180 . -1094) T) ((-180 . -102) T) ((-180 . -93) T) ((-175 . -610) 12807) ((-174 . -38) 12739) ((-174 . -613) 12656) ((-174 . -643) 12588) ((-174 . -722) T) ((-174 . -1105) T) ((-174 . -1052) T) ((-174 . -1045) T) ((-174 . -111) 12499) ((-174 . -1051) 12431) ((-174 . -21) T) ((-174 . -23) T) ((-174 . -1094) T) ((-174 . -610) 12413) ((-174 . -102) T) ((-174 . -25) T) ((-174 . -131) T) ((-174 . -713) 12345) ((-174 . -363) T) ((-174 . -1212) T) ((-174 . -917) T) ((-174 . -556) T) ((-174 . -172) T) ((-174 . -452) T) ((-174 . -307) T) ((-174 . -290) T) ((-174 . -243) T) ((-171 . -1094) T) ((-171 . -610) 12327) ((-171 . -102) T) ((-168 . -166) 12311) ((-168 . -35) 12289) ((-168 . -95) 12267) ((-168 . -284) 12245) ((-168 . -493) 12223) ((-168 . -1196) 12201) ((-168 . -1193) 12179) ((-168 . -998) 12131) ((-168 . -906) 12084) ((-168 . -611) 11845) ((-168 . -880) 11829) ((-168 . -846) 11808) ((-168 . -368) 11759) ((-168 . -350) 11738) ((-168 . -1144) 11717) ((-168 . -402) 11696) ((-168 . -410) 11667) ((-168 . -38) 11495) ((-168 . -111) 11391) ((-168 . -1051) 11301) ((-168 . -643) 11211) ((-168 . -713) 11039) ((-168 . -370) 11010) ((-168 . -720) 10981) ((-168 . -1034) 10877) ((-168 . -613) 10655) ((-168 . -412) 10639) ((-168 . -882) 10564) ((-168 . -1207) T) ((-168 . -400) 10548) ((-168 . -636) 10496) ((-168 . -377) 10480) ((-168 . -286) 10438) ((-168 . -309) 10403) ((-168 . -514) 10315) ((-168 . -338) 10299) ((-168 . -243) 10250) ((-168 . -1212) 10155) ((-168 . -363) 10106) ((-168 . -917) 10037) ((-168 . -556) 9948) ((-168 . -290) 9859) ((-168 . -452) 9790) ((-168 . -307) 9721) ((-168 . -233) 9672) ((-168 . -896) 9631) ((-168 . -231) 9615) ((-168 . -172) T) ((-168 . -147) 9594) ((-168 . -1045) T) ((-168 . -1052) T) ((-168 . -1105) T) ((-168 . -722) T) ((-168 . -21) T) ((-168 . -23) T) ((-168 . -1094) T) ((-168 . -610) 9576) ((-168 . -102) T) ((-168 . -25) T) ((-168 . -131) T) ((-168 . -145) 9527) ((-168 . -817) 9506) ((-162 . -1076) T) ((-162 . -490) 9487) ((-162 . -610) 9453) ((-162 . -613) 9434) ((-162 . -1094) T) ((-162 . -102) T) ((-162 . -93) T) ((-161 . -1094) T) ((-161 . -610) 9416) ((-161 . -102) T) ((-157 . -25) T) ((-157 . -102) T) ((-157 . -610) 9398) ((-157 . -1094) T) ((-156 . -1076) T) ((-156 . -490) 9379) ((-156 . -610) 9345) ((-156 . -613) 9326) ((-156 . -1094) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1076) T) ((-154 . -490) 9307) ((-154 . -610) 9273) ((-154 . -613) 9254) ((-154 . -1094) T) ((-154 . -102) T) ((-154 . -93) T) ((-152 . -1045) T) ((-152 . -1052) T) ((-152 . -1105) T) ((-152 . -722) T) ((-152 . -21) T) ((-152 . -23) T) ((-152 . -1094) T) ((-152 . -610) 9236) ((-152 . -102) T) ((-152 . -25) T) ((-152 . -131) T) ((-152 . -643) 9210) ((-152 . -613) 9179) ((-152 . -38) 9163) ((-152 . -111) 9142) ((-152 . -1051) 9126) ((-152 . -713) 9110) ((-152 . -1264) 9094) ((-144 . -840) T) ((-144 . -846) T) ((-144 . -1094) T) ((-144 . -610) 9076) ((-144 . -102) T) ((-144 . -368) T) ((-141 . -1094) T) ((-141 . -610) 9058) ((-141 . -102) T) ((-141 . -611) 9017) ((-141 . -426) 8999) ((-141 . -1092) 8981) ((-141 . -368) T) ((-141 . -235) 8963) ((-141 . -151) 8945) ((-141 . -489) 8927) ((-141 . -514) NIL) ((-141 . -309) NIL) ((-141 . -1207) T) ((-141 . -34) T) ((-141 . -107) 8909) ((-141 . -229) 8891) ((-140 . -610) 8873) ((-139 . -186) T) ((-139 . -1094) T) ((-139 . -610) 8840) ((-139 . -102) T) ((-139 . -832) 8822) ((-138 . -1076) T) ((-138 . -490) 8803) ((-138 . -610) 8769) ((-138 . -613) 8750) ((-138 . -1094) T) ((-138 . -102) T) ((-138 . -93) T) ((-137 . -1076) T) ((-137 . -490) 8731) ((-137 . -610) 8697) ((-137 . -613) 8678) ((-137 . -1094) T) ((-137 . -102) T) ((-137 . -93) T) ((-135 . -465) 8655) ((-135 . -613) 8639) ((-135 . -1034) 8623) ((-135 . -1094) T) ((-135 . -610) 8605) ((-135 . -102) T) ((-135 . -470) 8560) ((-134 . -846) T) ((-134 . -102) T) ((-134 . -610) 8542) ((-134 . -1094) T) ((-134 . -23) T) ((-134 . -25) T) ((-134 . -722) T) ((-134 . -1105) T) ((-134 . -1034) 8524) ((-134 . -613) 8506) ((-133 . -1076) T) ((-133 . -490) 8487) ((-133 . -610) 8453) ((-133 . -613) 8434) ((-133 . -1094) T) ((-133 . -102) T) ((-133 . -93) T) ((-130 . -1094) T) ((-130 . -610) 8416) ((-130 . -102) T) ((-129 . -19) 8398) ((-129 . -646) 8380) ((-129 . -288) 8355) ((-129 . -286) 8330) ((-129 . -601) 8305) ((-129 . -611) NIL) ((-129 . -489) 8287) ((-129 . -102) T) ((-129 . -1094) T) ((-129 . -514) NIL) ((-129 . -309) NIL) ((-129 . -610) 8231) ((-129 . -1207) T) ((-129 . -34) T) ((-129 . -151) 8213) ((-129 . -846) T) ((-129 . -372) 8195) ((-128 . -840) T) ((-128 . -846) T) ((-128 . -1094) T) ((-128 . -610) 8162) ((-128 . -102) T) ((-128 . -368) T) ((-128 . -490) 8144) ((-128 . -613) 8126) ((-127 . -125) 8110) ((-127 . -1006) 8094) ((-127 . -34) T) ((-127 . -1207) T) ((-127 . -610) 8026) ((-127 . -309) 7964) ((-127 . -514) 7897) ((-127 . -1094) 7875) ((-127 . -102) 7853) ((-127 . -489) 7837) ((-127 . -119) 7821) ((-126 . -125) 7805) ((-126 . -1006) 7789) ((-126 . -34) T) ((-126 . -1207) T) ((-126 . -610) 7721) ((-126 . -309) 7659) ((-126 . -514) 7592) ((-126 . -1094) 7570) ((-126 . -102) 7548) ((-126 . -489) 7532) ((-126 . -119) 7516) ((-121 . -125) 7500) ((-121 . -1006) 7484) ((-121 . -34) T) ((-121 . -1207) T) ((-121 . -610) 7416) ((-121 . -309) 7354) ((-121 . -514) 7287) ((-121 . -1094) 7265) ((-121 . -102) 7243) ((-121 . -489) 7227) ((-121 . -119) 7211) ((-117 . -987) 7188) ((-117 . -1144) NIL) ((-117 . -1034) 7165) ((-117 . -613) 7095) ((-117 . -611) NIL) ((-117 . -1016) NIL) ((-117 . -906) NIL) ((-117 . -880) 7072) ((-117 . -844) NIL) ((-117 . -793) NIL) ((-117 . -790) NIL) ((-117 . -846) NIL) ((-117 . -788) NIL) ((-117 . -787) NIL) ((-117 . -816) NIL) ((-117 . -882) NIL) ((-117 . -1207) T) ((-117 . -400) 7049) ((-117 . -636) 7026) ((-117 . -377) 7003) ((-117 . -286) 6954) ((-117 . -309) 6911) ((-117 . -514) 6819) ((-117 . -338) 6796) ((-117 . -243) T) ((-117 . -111) 6725) ((-117 . -1051) 6670) ((-117 . -290) T) ((-117 . -713) 6615) ((-117 . -643) 6560) ((-117 . -38) 6505) ((-117 . -307) T) ((-117 . -452) T) ((-117 . -172) T) ((-117 . -556) T) ((-117 . -917) T) ((-117 . -1212) T) ((-117 . -363) T) ((-117 . -233) NIL) ((-117 . -896) NIL) ((-117 . -231) 6482) ((-117 . -147) T) ((-117 . -145) NIL) ((-117 . -131) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -610) 6464) ((-117 . -1094) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1045) T) ((-117 . -1052) T) ((-117 . -1105) T) ((-117 . -722) T) ((-116 . -866) 6448) ((-116 . -917) T) ((-116 . -556) T) ((-116 . -290) T) ((-116 . -172) T) ((-116 . -613) 6420) ((-116 . -713) 6407) ((-116 . -1051) 6394) ((-116 . -111) 6379) ((-116 . -38) 6366) ((-116 . -452) T) ((-116 . -307) T) ((-116 . -1045) T) ((-116 . -1052) T) ((-116 . -1105) T) ((-116 . -722) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1094) T) ((-116 . -610) 6348) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -131) T) ((-116 . -643) 6335) ((-116 . -147) T) ((-113 . -846) T) ((-113 . -102) T) ((-113 . -610) 6317) ((-113 . -1094) T) ((-112 . -840) T) ((-112 . -846) T) ((-112 . -1094) T) ((-112 . -610) 6299) ((-112 . -102) T) ((-112 . -368) T) ((-112 . -657) T) ((-112 . -963) T) ((-112 . -611) 6281) ((-110 . -123) T) ((-110 . -372) 6263) ((-110 . -846) T) ((-110 . -151) 6245) ((-110 . -34) T) ((-110 . -1207) T) ((-110 . -610) 6227) ((-110 . -309) NIL) ((-110 . -514) NIL) ((-110 . -1094) T) ((-110 . -489) 6209) ((-110 . -611) 6191) ((-110 . -601) 6166) ((-110 . -286) 6141) ((-110 . -288) 6116) ((-110 . -646) 6098) ((-110 . -19) 6080) ((-110 . -102) T) ((-110 . -657) T) ((-109 . -610) 6062) ((-108 . -987) 6044) ((-108 . -1144) T) ((-108 . -613) 5994) ((-108 . -1034) 5954) ((-108 . -611) 5884) ((-108 . -1016) T) ((-108 . -906) NIL) ((-108 . -880) 5866) ((-108 . -844) T) ((-108 . -793) T) ((-108 . -790) T) ((-108 . -846) T) ((-108 . -788) T) ((-108 . -787) T) ((-108 . -816) T) ((-108 . -882) 5848) ((-108 . -1207) T) ((-108 . -400) 5830) ((-108 . -636) 5812) ((-108 . -377) 5794) ((-108 . -286) NIL) ((-108 . -309) NIL) ((-108 . -514) NIL) ((-108 . -338) 5776) ((-108 . -243) T) ((-108 . -111) 5710) ((-108 . -1051) 5660) ((-108 . -290) T) ((-108 . -713) 5610) ((-108 . -643) 5560) ((-108 . -38) 5510) ((-108 . -307) T) ((-108 . -452) T) ((-108 . -172) T) ((-108 . -556) T) ((-108 . -917) T) ((-108 . -1212) T) ((-108 . -363) T) ((-108 . -233) T) ((-108 . -896) NIL) ((-108 . -231) 5492) ((-108 . -147) T) ((-108 . -145) NIL) ((-108 . -131) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -610) 5434) ((-108 . -1094) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1045) T) ((-108 . -1052) T) ((-108 . -1105) T) ((-108 . -722) T) ((-105 . -1094) T) ((-105 . -610) 5416) ((-105 . -102) T) ((-103 . -125) 5400) ((-103 . -1006) 5384) ((-103 . -34) T) ((-103 . -1207) T) ((-103 . -610) 5316) ((-103 . -309) 5254) ((-103 . -514) 5187) ((-103 . -1094) 5165) ((-103 . -102) 5143) ((-103 . -489) 5127) ((-103 . -119) 5111) ((-99 . -473) T) ((-99 . -1105) T) ((-99 . -102) T) ((-99 . -610) 5093) ((-99 . -1094) T) ((-99 . -722) T) ((-99 . -286) 5072) ((-97 . -1094) T) ((-97 . -610) 5054) ((-97 . -102) T) ((-96 . -1076) T) ((-96 . -490) 5035) ((-96 . -610) 5001) ((-96 . -613) 4982) ((-96 . -1094) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1114) 4966) ((-91 . -489) 4950) ((-91 . -102) 4928) ((-91 . -1094) 4906) ((-91 . -514) 4839) ((-91 . -309) 4777) ((-91 . -610) 4709) ((-91 . -1207) T) ((-91 . -34) T) ((-91 . -107) 4693) ((-89 . -397) T) ((-89 . -610) 4675) ((-89 . -1207) T) ((-89 . -396) T) ((-88 . -385) T) ((-88 . -610) 4657) ((-88 . -1207) T) ((-88 . -396) T) ((-87 . -440) T) ((-87 . -610) 4639) ((-87 . -1207) T) ((-87 . -396) T) ((-86 . -441) T) ((-86 . -610) 4621) ((-86 . -1207) T) ((-86 . -396) T) ((-85 . -385) T) ((-85 . -610) 4603) ((-85 . -1207) T) ((-85 . -396) T) ((-84 . -385) T) ((-84 . -610) 4585) ((-84 . -1207) T) ((-84 . -396) T) ((-83 . -441) T) ((-83 . -610) 4567) ((-83 . -1207) T) ((-83 . -396) T) ((-82 . -441) T) ((-82 . -610) 4549) ((-82 . -1207) T) ((-82 . -396) T) ((-81 . -441) T) ((-81 . -610) 4531) ((-81 . -1207) T) ((-81 . -396) T) ((-81 . -613) 4472) ((-80 . -441) T) ((-80 . -610) 4454) ((-80 . -1207) T) ((-80 . -396) T) ((-79 . -441) T) ((-79 . -610) 4436) ((-79 . -1207) T) ((-79 . -396) T) ((-78 . -397) T) ((-78 . -610) 4418) ((-78 . -1207) T) ((-78 . -396) T) ((-77 . -441) T) ((-77 . -610) 4400) ((-77 . -1207) T) ((-77 . -396) T) ((-76 . -441) T) ((-76 . -610) 4382) ((-76 . -1207) T) ((-76 . -396) T) ((-75 . -397) T) ((-75 . -610) 4364) ((-75 . -1207) T) ((-75 . -396) T) ((-74 . -441) T) ((-74 . -610) 4346) ((-74 . -1207) T) ((-74 . -396) T) ((-73 . -383) T) ((-73 . -610) 4328) ((-73 . -1207) T) ((-73 . -396) T) ((-72 . -396) T) ((-72 . -1207) T) ((-72 . -610) 4310) ((-71 . -441) T) ((-71 . -610) 4292) ((-71 . -1207) T) ((-71 . -396) T) ((-70 . -383) T) ((-70 . -610) 4274) ((-70 . -1207) T) ((-70 . -396) T) ((-69 . -396) T) ((-69 . -1207) T) ((-69 . -610) 4256) ((-68 . -383) T) ((-68 . -610) 4238) ((-68 . -1207) T) ((-68 . -396) T) ((-67 . -383) T) ((-67 . -610) 4220) ((-67 . -1207) T) ((-67 . -396) T) ((-66 . -397) T) ((-66 . -610) 4202) ((-66 . -1207) T) ((-66 . -396) T) ((-65 . -385) T) ((-65 . -610) 4184) ((-65 . -1207) T) ((-65 . -396) T) ((-65 . -613) 4113) ((-64 . -441) T) ((-64 . -610) 4095) ((-64 . -1207) T) ((-64 . -396) T) ((-63 . -396) T) ((-63 . -1207) T) ((-63 . -610) 4077) ((-62 . -441) T) ((-62 . -610) 4059) ((-62 . -1207) T) ((-62 . -396) T) ((-61 . -397) T) ((-61 . -610) 4041) ((-61 . -1207) T) ((-61 . -396) T) ((-60 . -57) 4003) ((-60 . -34) T) ((-60 . -1207) T) ((-60 . -610) 3935) ((-60 . -309) 3873) ((-60 . -514) 3806) ((-60 . -1094) 3784) ((-60 . -102) 3762) ((-60 . -489) 3746) ((-58 . -19) 3730) ((-58 . -646) 3714) ((-58 . -288) 3691) ((-58 . -286) 3668) ((-58 . -601) 3645) ((-58 . -611) 3606) ((-58 . -489) 3590) ((-58 . -102) 3540) ((-58 . -1094) 3490) ((-58 . -514) 3423) ((-58 . -309) 3361) ((-58 . -610) 3273) ((-58 . -1207) T) ((-58 . -34) T) ((-58 . -151) 3257) ((-58 . -846) 3236) ((-58 . -372) 3220) ((-55 . -1094) T) ((-55 . -610) 3202) ((-55 . -102) T) ((-55 . -1034) 3184) ((-55 . -613) 3166) ((-51 . -1094) T) ((-51 . -610) 3148) ((-51 . -102) T) ((-50 . -618) 3132) ((-50 . -613) 3101) ((-50 . -643) 3075) ((-50 . -722) T) ((-50 . -1105) T) ((-50 . -1052) T) ((-50 . -1045) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1094) T) ((-50 . -610) 3057) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -131) T) ((-50 . -1034) 3041) ((-49 . -1094) T) ((-49 . -610) 3023) ((-49 . -102) T) ((-48 . -298) T) ((-48 . -613) 2956) ((-48 . -1034) 2899) ((-48 . -1094) T) ((-48 . -610) 2881) ((-48 . -102) T) ((-48 . -846) T) ((-48 . -514) 2847) ((-48 . -309) 2834) ((-48 . -27) T) ((-48 . -998) T) ((-48 . -243) T) ((-48 . -111) 2790) ((-48 . -1051) 2755) ((-48 . -290) T) ((-48 . -713) 2720) ((-48 . -643) 2685) ((-48 . -131) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1045) T) ((-48 . -1052) T) ((-48 . -1105) T) ((-48 . -722) T) ((-48 . -38) 2650) ((-48 . -307) T) ((-48 . -452) T) ((-48 . -172) T) ((-48 . -556) T) ((-48 . -917) T) ((-48 . -1212) T) ((-48 . -363) T) ((-48 . -636) 2610) ((-48 . -1016) T) ((-48 . -611) 2555) ((-48 . -147) T) ((-48 . -233) T) ((-45 . -36) 2534) ((-45 . -601) 2459) ((-45 . -309) 2263) ((-45 . -514) 2055) ((-45 . -489) 1992) ((-45 . -286) 1917) ((-45 . -288) 1842) ((-45 . -607) 1821) ((-45 . -235) 1771) ((-45 . -107) 1721) ((-45 . -229) 1671) ((-45 . -1184) 1650) ((-45 . -282) 1600) ((-45 . -151) 1550) ((-45 . -34) T) ((-45 . -1207) T) ((-45 . -610) 1532) ((-45 . -1094) T) ((-45 . -102) T) ((-45 . -611) NIL) ((-45 . -646) 1482) ((-45 . -372) 1432) ((-45 . -846) NIL) ((-45 . -1142) 1382) ((-45 . -1006) 1332) ((-45 . -1245) 1282) ((-45 . -661) 1232) ((-44 . -418) 1216) ((-44 . -740) 1200) ((-44 . -716) T) ((-44 . -757) T) ((-44 . -111) 1179) ((-44 . -1051) 1163) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1094) T) ((-44 . -610) 1145) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -131) T) ((-44 . -643) 1103) ((-44 . -713) 1087) ((-44 . -367) 1071) ((-40 . -342) 1045) ((-40 . -172) T) ((-40 . -613) 975) ((-40 . -722) T) ((-40 . -1105) T) ((-40 . -1052) T) ((-40 . -1045) T) ((-40 . -643) 920) ((-40 . -131) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -610) 902) ((-40 . -1094) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1051) 847) ((-40 . -111) 776) ((-40 . -611) 760) ((-40 . -231) 737) ((-40 . -896) 689) ((-40 . -233) 661) ((-40 . -363) T) ((-40 . -1212) T) ((-40 . -917) T) ((-40 . -556) T) ((-40 . -713) 606) ((-40 . -38) 551) ((-40 . -452) T) ((-40 . -307) T) ((-40 . -290) T) ((-40 . -243) T) ((-40 . -368) NIL) ((-40 . -350) NIL) ((-40 . -1144) NIL) ((-40 . -145) 523) ((-40 . -402) NIL) ((-40 . -410) 495) ((-40 . -147) 467) ((-40 . -370) 439) ((-40 . -377) 416) ((-40 . -636) 355) ((-40 . -412) 332) ((-40 . -1034) 220) ((-40 . -720) 192) ((-31 . -1076) T) ((-31 . -490) 173) ((-31 . -610) 139) ((-31 . -613) 120) ((-31 . -1094) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -951) T) ((-30 . -610) 102) ((0 . |EnumerationCategory|) T) ((0 . -610) 84) ((0 . -1094) T) ((0 . -102) T) ((-1 . -1094) T) ((-1 . -610) 66) ((-1 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -610) 48) ((-2 . -1094) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -610) 30) ((-3 . -1094) T) ((-3 . -102) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 789119cd..6f74efd4 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,1138 +1,1008 @@
-(30 . 3443721765)
+(30 . 3444026012)
(4411 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
- |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
- |AbelianSemiGroup| |AlgebraicallyClosedField&|
- |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
- |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst|
- |AlgebraicFunction| |Aggregate&| |Aggregate|
- |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
- |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
+ |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
+ |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
+ |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
+ |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
+ |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
+ |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
|AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList|
- |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
- |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
- |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
+ |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
+ |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
+ |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
|TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArrayFunctions2| |OneDimensionalArray|
- |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
- |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
- |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
- |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
- |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
- |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
- |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism|
- |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
- |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
- |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean|
- |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
- |BalancedPAdicInteger| |BalancedPAdicRational|
- |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
- |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
- |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
- |BinaryTree| |ByteBuffer| |Byte| |ByteOrder|
- |CancellationAbelianMonoid| |CachableSet| |CapsuleAst|
- |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor|
- |CaseAst| |CategoryAst| |CategoryConstructor| |Category|
- |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory|
- |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage|
- |CharacteristicZero| |ChangeOfVariable|
- |ComplexIntegerSolveLinearPolynomialEquation| |Collection&|
- |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping|
- |CollectAst| |ComplexRootPackage| |ColonAst| |Color|
- |CombinatorialFunction| |IntegerCombinatoricFunctions|
- |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators|
- |CommuteUnivariatePolynomialCategory| |ComplexCategory&|
- |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex|
- |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing|
- |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
+ |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
+ |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30|
+ |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55|
+ |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9|
+ |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
+ |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
+ |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons|
+ |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&|
+ |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
+ |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule|
+ |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots|
+ |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&|
+ |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&|
+ |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
+ |BinaryTree| |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid|
+ |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensor|
+ |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |CategoryConstructor|
+ |Category| |CharacterClass| |CommonDenominator|
+ |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
+ |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable|
+ |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection|
+ |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
+ |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
+ |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex|
+ |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
+ |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
- |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&|
- |ConstructorCategory| |ConstructorKind| |Constructor|
- |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
- |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
- |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
- |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
- |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
- |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
- |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database|
- |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
- |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
- |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
- |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
- |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
- |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
+ |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory|
+ |ConstructorKind| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
+ |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType|
+ |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType|
+ |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
+ |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
+ |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage|
+ |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
+ |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
+ |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
+ |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
+ |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage|
- |DirectProductCategory&| |DirectProductCategory|
- |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
- |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DomainConstructor| |DirectProductMatrixModule|
- |DirectProductModule| |DifferentialPolynomialCategory&|
- |DifferentialPolynomialCategory| |DequeueAggregate|
+ |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
+ |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
+ |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
+ |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |Domain| |DomainConstructor| |DirectProductMatrixModule| |DirectProductModule|
+ |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
+ |DequeueAggregate| |TopLevelDrawFunctions|
|TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
- |DrawNumericHack| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DrawOption|
- |DifferentialSparseMultivariatePolynomial|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
+ |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction|
- |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
- |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
- |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
- |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
- |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
- |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
- |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit|
- |ExponentialExpansion| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |Expression|
- |ExpressionSpaceODESolver| |ExpressionTubePlot|
- |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
- |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
- |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray|
- |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
- |FortranCode| |FourierComponent| |FortranCodePackage1|
- |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
- |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression|
- |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FiniteFieldCyclicGroup|
- |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
+ |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
+ |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
+ |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
+ |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
+ |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
+ |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
+ |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
+ |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
+ |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
+ |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
+ |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2|
+ |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
+ |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
- |FiniteFieldCategory| |FunctionFieldIntegralBasis|
- |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteField|
- |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
- |FiniteFieldPolynomialPackage|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
+ |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
+ |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
+ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
- |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
- |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
- |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
- |FreeModuleCat| |FortranMatrixCategory|
- |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranPackage| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
- |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
- |FractionalIdeal| |FramedModule|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
+ |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
+ |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
+ |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
+ |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
+ |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie|
+ |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat|
+ |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem|
+ |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2|
+ |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo|
+ |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule|
|FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
- |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
- |FiniteSetAggregate&| |FiniteSetAggregate|
- |FunctionSpaceComplexIntegration| |FourierSeries|
- |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
+ |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
+ |FunctionSpace| |FunctionSpaceFunctions2|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
+ |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
+ |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
- |FortranType| |FunctionCalled| |FunctionDescriptor|
- |FortranVectorCategory| |FortranVectorFunctionCategory|
- |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
- |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
- |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage|
- |GroebnerFactorizationPackage| |GroebnerInternalPackage|
- |GroebnerPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra|
- |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
- |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
+ |FunctionCalled| |FunctionDescriptor| |FortranVectorCategory|
+ |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
+ |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
+ |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage|
+ |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
+ |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
+ |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod|
- |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
- |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
- |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
- |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable|
- |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
- |HomogeneousDirectProduct| |HeadAst| |Heap|
- |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
- |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo|
- |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
- |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
+ |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
+ |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
+ |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
+ |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
+ |Pi| |HasAst| |HashTable| |HallBasis|
+ |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
+ |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
+ |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname|
+ |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
+ |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
- |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
- |IdealDecompositionPackage| |Identifier|
- |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
- |IndexedDirectProductCategory|
- |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup|
- |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst|
- |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions|
- |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst|
- |InAst| |InputByteConduit&| |InputByteConduit|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
+ |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
+ |Identifier| |IndexedDirectProductAbelianGroup|
+ |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
+ |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
+ |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
|InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps|
|IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket|
- |Infinity| |InputFormFunctions1| |InputForm|
+ |Infinity| |InputForm| |InputFormFunctions1|
|InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
|InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
|InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
- |IntegerNumberSystem| |Int16| |Int32| |Int8| |InnerTable|
- |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
- |IntervalCategory| |IntegralDomain&| |IntegralDomain|
- |ElementaryIntegration| |IntegerFactorizationPackage|
- |IntegrationFunctionsTable| |GenusZeroIntegration|
- |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
- |TranscendentalHermiteIntegration| |Integer|
+ |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int8| |InnerTable|
+ |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
+ |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
+ |IntegerFactorizationPackage| |IntegrationFunctionsTable|
+ |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
+ |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
|AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform|
- |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address|
- |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
- |IntegrationResultToFunction| |IntegrationResultFunctions2|
- |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst|
- |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
- |InnerTaylorSeries| |InfiniteTupleFunctions2|
- |InfiniteTupleFunctions3| |InnerTrigonometricManipulations|
- |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate|
- |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile|
- |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel|
- |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom|
- |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra|
- |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial|
- |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst|
- |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory|
- |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
- |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
- |RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
- |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
- |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
+ |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
+ |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger|
+ |InnerPrimeField| |InternalPrintPackage| |IntegrationResult|
+ |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots|
+ |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
+ |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage|
+ |IsAst| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
+ |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
+ |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
+ |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst|
+ |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
+ |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
+ |Kovacic| |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom|
+ |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform|
+ |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination|
+ |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction|
+ |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library|
+ |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver|
+ |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal|
+ |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&|
+ |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
+ |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperator|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage1|
- |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
- |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&|
- |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma|
- |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
- |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
- |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2|
- |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions|
+ |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
+ |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
+ |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix|
+ |MacroAst| |Magma| |MappingPackageInternalHacks1|
+ |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst|
+ |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&|
+ |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions|
|Matrix| |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
- |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
- |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
- |MakeBinaryCompiledFunction| |MakeCachableSet|
- |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting|
- |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField|
- |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&|
- |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&|
- |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&|
- |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2|
- |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
- |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
- |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
- |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
- |MultivariateFactorize| |MultivariateSquareFree|
- |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex|
+ |MultiDictionary| |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat|
+ |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction|
+ |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
+ |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
+ |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
+ |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
+ |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
+ |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
+ |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
+ |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
+ |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
+ |MultisetAggregate| |MoreSystemCommands| |MergeThing|
+ |MultivariateTaylorSeriesCategory| |MultivariateFactorize|
+ |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
|NagPolynomialRootsPackage| |NagRootFindingPackage|
|NagSeriesSummationPackage| |NagIntegrationPackage|
|NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage|
- |NagMatrixOperationsPackage| |NagEigenPackage|
- |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
- |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
- |NonAssociativeRing| |NumericComplexEigenPackage|
- |NumericContinuedFraction| |NonCommutativeOperatorDivision|
- |NetworkClientSocket| |NumberFieldIntegralBasis|
- |NumericalIntegrationProblem| |NonLinearSolvePackage|
- |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1|
- |None| |NormInMonogenicAlgebra| |NormalizationPackage|
+ |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
+ |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
+ |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
+ |NumericComplexEigenPackage| |NumericContinuedFraction|
+ |NonCommutativeOperatorDivision| |NetworkClientSocket|
+ |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
+ |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver|
+ |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage|
|NormRetractPackage| |NPCoef| |NumericRealEigenPackage|
- |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomialFunctions2|
- |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
+ |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial|
+ |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions|
|NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
- |NumericalIntegrationCategory|
- |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
- |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
- |OrderedCancellationAbelianMonoid| |OctonionCategory&|
- |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
+ |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations|
+ |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup|
+ |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
+ |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid|
+ |Octonion| |OctonionCategoryFunctions2|
|OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
- |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
- |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
- |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
- |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
- |SystemODESolver| |ODETools| |OrderedDirectProduct|
+ |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration|
+ |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE|
+ |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE|
+ |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct|
|OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
- |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
- |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
- |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
- |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
- |OnePointCompletionFunctions2| |OnePointCompletion|
- |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery|
+ |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain|
+ |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding|
+ |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
+ |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
+ |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
+ |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery|
|OperatorSignature| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
- |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory|
- |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
- |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
- |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&|
- |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage|
- |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials|
- |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory|
- |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Pair|
+ |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
+ |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
+ |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
+ |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
+ |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile|
+ |OutputForm| |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials|
+ |PadeApproximants| |PadeApproximantPackage| |PAdicInteger|
+ |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair|
|Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
- |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
- |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
- |ParametricSurface| |PartitionsAndPermutations| |Patternable|
- |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResultFunctions2| |PatternMatchResult|
- |PatternFunctions1| |PatternFunctions2| |Pattern|
- |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
+ |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve|
+ |Parser| |ParametricSurfaceFunctions2| |ParametricSurface|
+ |PartitionsAndPermutations| |Patternable| |PatternMatchListResult|
+ |PatternMatchable| |PatternMatch| |PatternMatchResult|
+ |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1|
+ |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
|PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
|AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
|PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
- |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
- |PolynomialFactorizationByRecursion|
+ |Permutation| |Permanent| |PermutationCategory| |PermutationGroup|
+ |PrimeField| |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
- |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
- |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
- |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
- |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
- |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
- |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
- |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
+ |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
+ |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
+ |PrincipalIdealDomain| |PolynomialInterpolation|
+ |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
+ |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
+ |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |FunctionSpaceAttachPredicates| |AttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
- |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
- |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
- |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
- |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
- |PortNumber| |PlottablePlaneCurveCategory|
- |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
- |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
- |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
- |Property| |PropositionalFormula| |PropositionalLogic|
- |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
- |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&|
- |PolynomialSetCategory| |PolynomialSetUtilitiesPackage|
- |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory|
- |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions|
- |PushVariables| |PAdicWildFunctionFieldIntegralBasis|
- |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage|
- |QueryEquation| |QuotientFieldCategoryFunctions2|
- |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion|
- |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField|
- |RadixExpansion| |RadixUtilities| |RandomNumberSource|
- |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
- |RecursiveAggregate| |RealClosedField&| |RealClosedField|
- |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE|
- |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
- |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant|
- |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference|
- |RegularTriangularSet| |RepresentationPackage1|
- |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage|
+ |AttachPredicates| |FunctionSpaceAttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
+ |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
+ |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
+ |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
+ |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
+ |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
+ |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
+ |PrintPackage| |Product| |Property| |PropositionalFormula|
+ |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
+ |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
+ |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
+ |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
+ |PartialTranscendentalFunctions| |PushVariables|
+ |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
+ |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
+ |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
+ |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
+ |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
+ |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
+ |RandomNumberSource| |RationalFactorize| |RationalRetractions|
+ |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
+ |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
+ |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
+ |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
+ |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
+ |Reference| |RegularTriangularSet| |RadicalEigenPackage|
+ |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
|RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result|
|ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
- |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel|
- |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&|
- |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
- |RectangularMatrixCategory| |RectangularMatrix|
- |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
- |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
+ |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain|
+ |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
+ |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix|
+ |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&|
+ |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral|
+ |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
|RepeatAst| |RealRootCharacterizationCategory&|
|RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
|RegularTriangularSetCategory&| |RegularTriangularSetCategory|
- |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled|
- |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage|
- |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
- |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
- |SpadSyntaxCategory| |SortedCache| |Scope|
+ |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled|
+ |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
+ |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
+ |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
- |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
- |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
- |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
- |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
- |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
- |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory|
- |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
- |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
- |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
- |SmithNormalForm| |SparseMultivariatePolynomial|
- |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory|
- |PolynomialSolveByFormulas| |RadicalSolvePackage|
- |TransSolvePackageService| |TransSolvePackage| |SortPackage|
- |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
+ |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
+ |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
+ |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
+ |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
+ |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
+ |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
+ |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
+ |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
+ |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
+ |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
|SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
- |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctionsNonCommutative|
- |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
- |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
- |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
- |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate|
+ |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream|
+ |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory|
+ |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
+ |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
+ |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
+ |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
- |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
- |SystemInteger| |SystemNonNegativeInteger| |SystemSolvePackage|
- |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
- |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
- |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
- |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
- |TranscendentalFunctionCategory| |Tree|
+ |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger|
+ |SystemNonNegativeInteger| |SystemSolvePackage| |System| |TableauxBumpers|
+ |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1|
+ |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
|TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
|TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TriangularSetCategory&|
- |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
- |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering|
- |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
- |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt8|
- |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
+ |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
+ |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
+ |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32|
+ |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
+ |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
- |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
- |UnivariatePolynomialFunctions2|
- |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
+ |UniversalSegmentFunctions2| |UnivariatePolynomial|
+ |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
- |UnivariatePolynomialCategoryFunctions2|
- |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
+ |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
- |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesWithExponentialSingularity|
- |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
+ |UnivariatePuiseuxSeriesConstructor|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
+ |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
- |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
- |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
- |TwoDimensionalViewport| |ThreeDimensionalViewport|
- |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation|
- |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst|
- |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
- |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra|
- |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat|
- |XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
+ |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
+ |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
+ |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
+ |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
+ |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
+ |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
+ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |unaryFunction| |lazyPseudoDivide| |zoom| |graeffe|
- |integerBound| |bitTruth| |subResultantGcdEuclidean| |triangulate|
- |leaf?| |compiledFunction| |lazyPremWithDefault| |rotate|
- |pleskenSplit| |contains?| |keys| |semiSubResultantGcdEuclidean2|
- |solveInField| |outputForm| |integralMatrixAtInfinity|
- |pushFortranOutputStack| |corrPoly| |acsch| |lazyPquo| |drawStyle|
- |reciprocalPolynomial| |inf| |semiSubResultantGcdEuclidean1|
- |wronskianMatrix| |argscript| |inverseIntegralMatrix|
- |popFortranOutputStack| |lifting| |lazyPrem| |outlineRender|
- |rootRadius| GE |qinterval| |discriminantEuclidean|
- |variationOfParameters| |superscript| |integralMatrix| |lifting1|
- |pquo| |next| |diagonals| |schwerpunkt| GT |factors| |subscript|
- |reduceBasisAtInfinity| |exprex| |prem| |axes| |setErrorBound|
- |genericPosition| LE |redpps| |nthFactor| |scripted?|
- |normalizeAtInfinity| |coerceL| |supRittWu?| |controlPanel|
- |startPolynomial| |lfunc| LT |B1solve| |nthExpon| |resetNew|
- |complementaryBasis| |coerceS| |RittWuCompare| |viewpoint| |cycleElt|
- |inHallBasis?| |factorset| |overlap| |symFunc| |integral?|
- |basisOfCommutingElements| |nil| |dimensions| |computeCycleLength|
- |reorder| |maxrank| |hcrf| |symbolTableOf| |integralAtInfinity?|
- |intcompBasis| |setref| |basisOfLeftAnnihilator| |resize|
- |computeCycleEntry| |headAst| |minrank| |hclf| |argumentListOf|
- |integralBasisAtInfinity| |choosemon| |deref|
- |basisOfRightAnnihilator| |move| |findConstructor| |heap| |condition|
- |minset| |lexico| |returnTypeOf| |ramified?| |transform| |ref|
- |basisOfLeftNucleus| |approximate| |modifyPointData| |dualSignature|
- |gcdprim| |nextSublist| |level| |comment| |ramifiedAtInfinity?|
- |pack!| |radicalEigenvectors| |basisOfRightNucleus| |complex|
- |subspace| |coerceP| |gcdcofact| |overset?| |s17dcf|
- |numberOfComponents| |eq| |singular?| |complexLimit|
- |radicalEigenvector| |basisOfMiddleNucleus| |makeViewport3D|
- |powerSum| |gcdcofactprim| |ParCond| |s17def| |create3Space| |iter|
- |singularAtInfinity?| |limit| |radicalEigenvalues| |basisOfNucleus|
- |viewport3D| |elementary| |lintgcd| |s17dgf| |redmat| |outputAsScript|
- |close| |branchPoint?| |linearlyDependent?| |eigenMatrix|
- |basisOfCenter| |alternating| |hex| |regime| |s17dhf| |outputAsTex|
- |branchPointAtInfinity?| |linearDependence| |normalise|
- |basisOfLeftNucloid| |rightFactorIfCan| |cyclic| |every?| |remove|
- |s17dlf| |sqfree| |abs| |display| BY |rationalPoint?| |solveLinear|
- |gramschmidt| |basisOfRightNucloid| |leftFactorIfCan| |dihedral|
- |any?| |inconsistent?| |s18acf| |Beta| |absolutelyIrreducible?|
- |reducedSystem| |orthonormalBasis| |basisOfCentroid|
- |monicDecomposeIfCan| |cap| |last| |host| |numFunEvals| |s18adf|
- |digamma| |genus| |duplicates?| |antisymmetricTensors|
- |radicalOfLeftTraceForm| |monicCompleteDecompose| |assoc| |cup|
- |trueEqual| |setAdaptive| |s18aef| |polygamma| |showTypeInOutput|
- |getZechTable| |mapGen| |createGenericMatrix| |binding| |divideIfCan|
- |wreath| |factorList| |adaptive?| |s18aff| |Gamma| |objectOf|
- |createZechTable| |mapExpon| |symmetricTensors| |setProperties|
- |noKaratsuba| |SFunction| |listConjugateBases| |input| |/\\|
- |function| |setScreenResolution| |s18dcf| |besselJ| |domainOf|
- |createMultiplicationTable| |commutativeEquality| |tensorProduct| |id|
- |karatsubaOnce| |skewSFunction| |matrixGcd| |library| |\\/|
- |screenResolution| |s18def| |besselY| |createMultiplicationMatrix|
- |leftMult| |permutationRepresentation| |applyRules| |karatsuba|
- |cyclotomicDecomposition| |divideIfCan!| |eval| |setMaxPoints|
- |s19aaf| |besselI| |localUnquote| |createLowComplexityTable|
- |rightMult| |completeEchelonBasis| |separate| |table|
- |cyclotomicFactorization| |leastPower| |output| |compile| |maxPoints|
- |s19abf| |besselK| |zeroOf| |arbitrary|
- |createLowComplexityNormalBasis| |makeUnit| |createRandomElement|
- |pseudoDivide| |new| |rangeIsFinite| |idealiser| |setMinPoints|
- |s19acf| |airyAi| |obj| |setColumn!| |representationType| |reverse!|
- |cyclicSubmodule| |search| |pseudoQuotient|
- |functionIsContinuousAtEndPoints| |idealiserMatrix| |s19adf|
- |minPoints| |set| |airyBi| |cache| |dilog| |createPrimitiveElement|
- |makeMulti| |standardBasisOfCyclicSubmodule| |setRow!| |composite|
- |functionIsOscillatory| |moduleSum| |parametric?| |s20acf| |subNode?|
- |sin| |tableForDiscreteLogarithm| |makeTerm| |areEquivalent?|
- |oneDimensionalArray| |subResultantGcd| |changeName| |mapUnivariate|
- |plotPolar| |s20adf| |infLex?| |cos| |factorsOfCyclicGroupSize|
- |listOfMonoms| |isAbsolutelyIrreducible?| |associatedSystem|
- |resultant| |exprHasWeightCosWXorSinWX| |mapUnivariateIfCan| |debug3D|
- |s21baf| |setEmpty!| |tan| |sizeMultiplication| |symmetricSquare|
- |meatAxe| |uncouplingMatrices| |discriminant| |exprHasAlgebraicWeight|
- |mapMatrixIfCan| |numFunEvals3D| |s21bbf| |setStatus!| |cot|
- |getMultiplicationMatrix| |factor1| |scanOneDimSubspaces|
- |associatedEquations| |pseudoRemainder| |knownInfBasis|
- |exprHasLogarithmicWeights| |mapBivariate| |s21bcf| |setAdaptive3D|
- |sort| |setCondition!| |sec| |arrayStack| |getMultiplicationTable|
- |symmetricProduct| |expt| |shiftLeft| |delta| |rootSplit|
- |combineFeatureCompatibility| |fullDisplay| |adaptive3D?| |s21bdf|
- |setValue!| |csc| |primitive?| |symmetricPower| |showArrayValues|
- |setButtonValue| |shiftRight| |sparsityIF| |relationsIdeal|
- |setScreenResolution3D| |fortranCompilerName| |empty?| |asin|
- |numberOfIrreduciblePoly| |directSum| |showScalarValues|
- |setAttributeButtonStep| |karatsubaDivide|
- |stiffnessAndStabilityFactor| |saturate| |true| |fortranLinkerArgs|
- |screenResolution3D| ~= |splitNodeOf!| |acos| |resetAttributeButtons|
- |numberOfPrimitivePoly| |solveLinearPolynomialEquationByFractions|
- |solveRetract| |monicDivide| |left| |stiffnessAndStabilityOfODEIF|
- |groebner?| |aspFilename| |setMaxPoints3D| |random| |remove!| |coerce|
- |hash| |atan| |getButtonValue| |numberOfNormalPoly| |hasSolution?|
- |mainVariable| |divideExponents| |right| |systemSizeIF|
- |groebnerIdeal| |dimensionsOf| |maxPoints3D| |subNodeOf?| |construct|
- |show| |count| |acot| |createIrreduciblePoly| |linSolve| |uniform01|
- |decrease| |unmakeSUP| |expenseOfEvaluationIF| |ideal|
- |setMinPoints3D| = |restorePrecision| |nodeOf?| |asec|
- |createPrimitivePoly| |LyndonWordsList| |normal01| |increase|
- |makeSUP| |accuracyIF| |leadingIdeal| |antiCommutator| |minPoints3D|
- |trace| |updateStatus!| |morphism| |acsc| |noLinearFactor?|
- |createNormalPoly| |LyndonWordsList1| |exponential1| |lambda|
- |vectorise| |intermediateResultsIF| |backOldPos| < |tValues|
- |commutator| |extractSplittingLeaf| |sinh| |createNormalPrimitivePoly|
- |lyndonIfCan| |chiSquare1| |extend| |subscriptedVariables|
- |generalPosition| > |tRange| |associator| |squareMatrix| |cosh|
- |createPrimitiveNormalPoly| |lyndon| |exponential| |insertRoot!|
- |truncate| |central?| |quotient| <= |plot| |complexEigenvalues|
- |transpose| |tanh| |nextIrreduciblePoly| |lyndon?| |chiSquare|
- |binarySearchTree| |order| |max| |elliptic?| |zeroDim?| >= |pointPlot|
- |complexEigenvectors| |trim| |coth| |nextPrimitivePoly|
- |numberOfComputedEntries| |factorFraction| |terms| |doubleResultant|
- |inRadical?| |calcRanges| |isConnected?| |split| |sech| |showSummary|
- |nextNormalPoly| |rst| |componentUpperBound| |squareFreePart|
- |distdfact| |cn| |in?| |fixPredicate| |connectTo| |replace| |csch|
- |nextNormalPrimitivePoly| |frst| |blue| |BumInSepFFE|
- |separateDegrees| |element?| |patternMatch| + |normalizedAssociate|
- |upperCase!| |asinh| |nextPrimitiveNormalPoly| |showAttributes|
- |lazyEvaluate| |green| |multiplyExponents| |trace2PowMod|
- |zeroDimPrime?| |patternMatchTimes| - |normalize| |upperCase| |acosh|
- |leastAffineMultiple| |lazy?| |red| |laurentIfCan| |tracePowMod|
- |zeroDimPrimary?| |bernoulli| / |outputArgs| |lowerCase!| |atanh|
- |reducedQPowers| |explicitlyEmpty?| |whitePoint| |laurentRep|
- |irreducible?| |primaryDecomp| |normInvertible?| |chebyshevT|
- |lowerCase| |setelt| |acoth| |rootOfIrreduciblePoly|
- |explicitEntries?| |uniform| |rationalPower| |parents| |decimal|
- |contract| |chebyshevU| |normFactors| |KrullNumber| |asech| |write!|
- |matrixDimensions| |binomial| |dominantTerm| |innerint|
- |leadingSupport| |npcoef| |cyclotomic| |copy| |numberOfVariables|
- |read!| |arg1| |matrixConcat3D| |poisson| |limitPlus|
- |exteriorDifferential| |shrinkable| |euler| |listexp|
- |algebraicDecompose| |multiple| |iomode| |arg2| |setelt!| |geometric|
- |split!| |totalDifferential| |physicalLength!| |label| |fixedDivisor|
- |characteristicPolynomial| |transcendentalDecompose| |applyQuote|
- |close!| |identityMatrix| |ridHack1| |setlast!| |homogeneous?|
- |physicalLength| |realEigenvalues| |laguerre| |internalDecompose|
- |autoCoerce| |reopen!| |conditions| |zeroMatrix| |interpolate|
- |setrest!| |flexibleArray| |legendre| |realEigenvectors| |decompose|
- |rightUnit| |match| |mappingAst| |nullSpace| |mkIntegral| |setfirst!|
- |result| |outputList| |elseBranch| |dmpToHdmp|
- |halfExtendedResultant2| |upDateBranches| |ruleset| |leftUnit|
- |nullary| |nullity| |cycleSplit!| |radPoly| |properties| |thenBranch|
- |hdmpToDmp| |halfExtendedResultant1| |preprocess| |mapUp!|
- |rightMinimalPolynomial| |fixedPoint| |rowEchelon| |concat!|
- |rootPoly| |translate| |generalizedInverse| |pToHdmp|
- |extendedResultant| |internalZeroSetSplit| |setleaves!| |recur|
- |column| |cycleTail| |goodPoint| |imports| |hdmpToP|
- |subResultantsChain| |internalAugment| |mat| |suchThat| |const| |row|
- |cycleLength| |chvar| |sequence| |dmpToP| |lazyPseudoQuotient|
- |possiblyInfinite?| |neglist| |curry| |maxColIndex| |cycleEntry|
- |find| |option| |iterationVar| |pToDmp| |lazyPseudoRemainder|
- |explicitlyFinite?| |multiEuclidean| |diag| |minColIndex|
- |invmultisect| |clipParametric| |bernoulliB| |nextItem|
- |extendedEuclidean| |curryRight| |maxRowIndex| |multisect|
- |clipWithRanges| |hMonic| |bivariateSLPEBR| |eulerE| |infiniteProduct|
- |euclideanSize| |curryLeft| |minRowIndex| |revert| |numberOfHues|
- |updatF| |solveLinearPolynomialEquationByRecursion| |checkPrecision|
- |numericIfCan| |evenInfiniteProduct| |sizeLess?| |constantRight|
- |antisymmetric?| |generalLambert| |yellow| |sPol| |factorByRecursion|
- |complexNumericIfCan| |oddInfiniteProduct| |simplifyPower|
- |evenlambert| |binaryTree| |iifact| |updatD|
- |factorSquareFreeByRecursion| |FormatArabic| |generalInfiniteProduct|
- |number?| |cCos| |radicalSimplify| |rightTrim| |oddlambert| |iibinom|
- |minGbasis| |randomR| |interpret| |ScanArabic| |showAll?|
- |seriesSolve| |cSin| |denominator| |leftTrim| |lambert| |iiperm|
- |lepol| |factorSFBRlcUnit| |FormatRoman| |showAllElements|
- |constantToUnaryFunction| |cLog| |numerator| |lagrange| |iipow|
- |prinshINFO| |charthRoot| |tubePlot| |cExp| |quadraticForm|
- |univariatePolynomial| |iidsum| |prindINFO| |conditionP| |f01bsf|
- |subresultantSequence| |retract| |tower| |exponentialOrder|
- |cRationalPower| |back| |integrate| |iidprod| |stop| |fprindINFO|
- |solveLinearPolynomialEquation| |f01maf| |SturmHabichtSequence|
- |completeEval| |cPower| |front| |multiplyCoefficients| |ipow|
- |prinpolINFO| |factorSquareFreePolynomial| |f01mcf|
- |SturmHabichtCoefficients| |lowerPolynomial| |seriesToOutputForm|
- |rotate!| |factorial| |prinb| |factorPolynomial| |f01qcf|
- |SturmHabicht| |raisePolynomial| |iCompose| |dequeue!| |extendIfCan|
- |multinomial| |directory| |critpOrder| |squareFreePolynomial| |f01qdf|
- |countRealRoots| |normalDeriv| |continue| |taylorQuoByVar| |enqueue!|
- |algebraicVariables| |permutation| |makeCrit| |gcdPolynomial| |f01qef|
- |SturmHabichtMultiple| |ran| |complexNumeric| |iExquo| |quatern|
- |zeroSetSplitIntoTriangularSystems| |stirling1| |virtualDegree|
- |torsion?| |f01rcf| |countRealRootsMultiple| |highCommonTerms|
- |getStream| |imagK| |zeroSetSplit| |stirling2| |categories|
- |conditionsForIdempotents| |torsionIfCan| |f01rdf| |signatureAst|
- |kernels| |mapCoef| |getRef| |imagJ| |retractIfCan|
- |reduceByQuasiMonic| |summation| |genericRightDiscriminant|
- |getGoodPrime| |f01ref| |pop!| |nthCoef| |univariate| |makeSeries|
- |imagI| |collectQuasiMonic| |factorials| |numer|
- |genericRightTraceForm| |badNum| |f02aaf| |push!| |binomThmExpt| GF2FG
- |conjugate| |removeZero| |mkcomm| |denom| |genericLeftDiscriminant|
- |mix| |f02abf| |minordet| |equality| |pomopo!| FG2F |queue| |null|
- |initiallyReduce| |polarCoordinates| |genericLeftTraceForm|
- |doubleDisc| |f02adf| |determinant| |nary?| |mapExponents| F2FG
- |nthRoot| |factor| |not| |generate| |headReduce| SEGMENT |imaginary|
- |pi| |genericRightNorm| |polyred| |f02aef| |diagonalProduct|
- |linearAssociatedLog| |sqrt| |explogs2trigs| |fractRadix| |and|
- |stronglyReduce| |solid| |infinity| |genericRightTrace|
- |padicFraction| |f02aff| |diagonal| |linearAssociatedOrder|
- |incrementBy| |trigs2explogs| |wholeRadix| |or|
- |rewriteSetWithReduction| |solid?| |genericRightMinimalPolynomial|
- |padicallyExpand| |f02agf| |diagonalMatrix| |linearAssociatedExp|
- |swap!| |cycleRagits| |xor| |autoReduced?| |expand| |denominators|
- |rightRankPolynomial| |numberOfFractionalTerms| |f02ajf|
- |scalarMatrix| |node| |convert| |createNormalElement| |fill!|
- |prefixRagits| |filterWhile| |case| |initiallyReduced?| |numerators|
- |kernel| |genericLeftNorm| |nthFractionalTerm| |f02akf| |hermite|
- |bezoutMatrix| |unary?| |setLabelValue| |sum| |minIndex| |fractRagits|
- |map| |Zero| |filterUntil| |headReduced?| |convergents| |draw|
- |genericLeftTrace| |firstNumer| |f02awf| |completeHermite|
- |bezoutResultant| |nullary?| |getCode| |maxIndex| |wholeRagits| |One|
- |stronglyReduced?| |select| |approximants|
- |genericLeftMinimalPolynomial| |firstDenom| |f02axf| |smith|
- |printCode| |entry?| |radix| |reduced?| |reducedForm| |port|
- |leftRankPolynomial| |compactFraction| |f02bbf| |completeSmith|
- |printStatement| |indices| |randnum| |normalized?| |partialQuotients|
- |lp| |generic| |partialFraction| |f02bjf| |diophantineSystem| |block|
- |index?| |reseed| |quasiComponent| |partialDenominators| |makeObject|
- |t| |rightUnits| |gcdPrimitive| |f02fjf| |csubst| |nor| |returns|
- |assert| |entries| |seed| |initials| |partialNumerators| |leftUnits|
- |symmetricGroup| |f02wef| |particularSolution| |nand| |goto| |key?|
- |rational| |basicSet| |elt| |reducedContinuedFraction| |coef|
- |compBound| |alternatingGroup| |f02xef| |mapSolve| |repeatUntilLoop|
- |symbolIfCan| |rational?| |makeRecord| |infRittWu?| |push| |tablePow|
- |abelianGroup| |f04adf| |quadratic| |whileLoop| |argument|
- |rationalIfCan| |getCurve| |bindings| |solveid| |cyclicGroup| |f04arf|
- |cubic| |forLoop| |constantKernel| |setvalue!| |formula| |listLoops|
- |lhs| |cartesian| |testModulus| |dihedralGroup| |f04asf| |quartic|
- |sin?| |systemCommand| |constantIfCan| |setchildren!| |closed?| |rhs|
- |polar| |HenselLift| |mathieu11| |f04atf| |aLinear| |zeroVector|
- |kovacic| |node?| |open?| |cylindrical| |completeHensel| |mathieu12|
- |f04axf| |aQuadratic| |zeroSquareMatrix| |laplace| |child?|
- |setClosed| |depth| |spherical| |multMonom| |mathieu22| |f04faf|
- |aCubic| |identitySquareMatrix| |normal| |equation|
- |trailingCoefficient| |distance| |nrows| |tube| |parabolic| |build|
- |f04jgf| |mathieu23| |aQuartic| |key| |lSpaceBasis| |normalizeIfCan|
- |nodes| |ncols| |unitVector| |parabolicCylindrical| |leadingIndex|
- |mathieu24| |f04maf| |radicalSolve| |finiteBasis| |polCase| |rename|
- |cosSinInfo| |ratDenom| |paraboloidal| |filename| |leadingExponent|
- |janko2| |f04mbf| |radicalRoots| |code| |principal?| |distFact|
- |rename!| |loopPoints| |ratPoly| |ellipticCylindrical| |GospersMethod|
- |f04mcf| |rubiksGroup| |not?| |contractSolve| |divisor|
- |identification| |mainValue| |generalTwoFactor| |rootPower|
- |prolateSpheroidal| |nextSubsetGray| |f04qaf| |youngGroup|
- |decomposeFunc| |parse| |useNagFunctions| |lift| |LyndonCoordinates|
- |mainDefiningPolynomial| |generalSqFr| |rootProduct|
- |oblateSpheroidal| |firstSubsetGray| |lexGroebner| |f07adf|
- |unvectorise| |rationalPoints| |reduce| |LyndonBasis| |mainForm|
- |twoFactor| |rootSimp| |bipolar| |clipPointsDefault| |totalGroebner|
- |f07aef| |bubbleSort!| |nonSingularModel| |zeroDimensional?| |rischDE|
- |setOrder| |rootKerSimp| |bipolarCylindrical| |drawToScale|
- |expressIdealMember| |f07fdf| |insertionSort!| |loadNativeModule|
- |algSplitSimple| |fglmIfCan| |rischDEsys| |derivative| |getOrder|
- |leftRank| |toroidal| |adaptive| |expr| |principalIdeal| |f07fef|
- |check| |hyperelliptic| |groebner| |monomRDE| |constantOperator|
- |less?| |conical| |unknown| |figureUnits| |LagrangeInterpolation|
- |s01eaf| |lprop| |real| |elliptic| |lexTriangular| |baseRDE|
- |userOrdered?| |modTree| |putColorInfo| |psolve| |s13aaf| |llprop|
- |imag| |integralDerivationMatrix| |squareFreeLexTriangular| |polyRDE|
- |largest| |multiEuclideanTree| |kind| |appendPoint| |wrregime|
- |s13acf| |lllp| |directProduct| |integralRepresents| |leaves|
- |belong?| |monomRDEsys| |more?| |component| |op| |variable| |rdregime|
- |s13adf| |lllip| |rank| |init| |bezoutDiscriminant|
- |integralCoordinates| |Ci| |baseRDEsys| |setVariableOrder| |ranges|
- |iterators| |bsolve| |s14aaf| |mesh?| |brace| |bfEntry| |yCoordinates|
- |Si| |substring?| |weighted| |getVariableOrder| |setProperty|
- |pointLists| |dmp2rfi| |s14abf| |mesh| |destruct|
- |inverseIntegralMatrixAtInfinity| |Ei| |rdHack1| |resetVariableOrder|
- |deleteProperty!| |makeGraphImage| |index| |se2rfi| |s14baf|
- |polygon?| |entry| |linGenPos| |suffix?| |operator| |prime?|
- |rightRank| |graphImage| |pr2dmp| |s15adf| |polygon| |setProperties!|
- |groebgen| |midpoint| |sample| |doubleRank| |groebSolve| |hasoln|
- |s15aef| |closedCurve?| |currentEnv| |getProperties| |totolex|
- |prefix?| |midpoints| |rationalFunction| |testDim| |union| |s17acf|
- |ParCondList| |pair| |closedCurve| |monomial| |setProperty!| |minPol|
- |realZeros| |taylorIfCan| |s17adf| |curve?| |lists| |multivariate|
- |getProperty| |computeBasis| |nothing| |mainCharacterization|
- |removeZeroes| |fortranLogical| |is?| |s17aef| |curve| |variables|
- |scopes| |coord| |algebraicOf| |taylorRep| |fortranInteger| |Is|
- |s17aff| |point?| |eigenvalues| |outputAsFortran| |anticoord|
- |ReduceOrder| |value| |factorSquareFree| |bfKeys| |fortranDouble|
- |addMatchRestricted| |s17agf| |enterPointData| |eigenvector|
- |henselFact| |inspect| |fortranReal| |insertMatch| |s17ahf|
- |composites| |generalizedEigenvector| |tanintegrate|
- |rewriteIdealWithQuasiMonicGenerators| |top| |infix?| |hasHi|
- |external?| |addMatch| |s17ajf| |components| |generalizedEigenvectors|
- |primextendedint| |squareFreeFactors| |mask| |fmecg| |scalarTypeOf|
- |getMatch| |s17akf| |numberOfComposites| |taylor| |eigenvectors|
- |expextendedint| |univariatePolynomialsGcds| |commonDenominator|
- |fortranCarriageReturn| |failed?| |parts| |laurent| |factorAndSplit|
- |primlimitedint| |removeRoughlyRedundantFactorsInContents|
- |clearDenominator| |fortranLiteral| |optpair| |d01anf| |member?|
- |constant| |puiseux| |rightOne| |printInfo| |explimitedint|
- |removeRedundantFactorsInContents| |splitDenominator|
- |fortranLiteralLine| |getBadValues| |d01apf| |enumerate| |leftOne|
- |primextintfrac| |removeRedundantFactorsInPols|
- |monicRightFactorIfCan| |processTemplate| |resetBadValues| |d01aqf|
- |setOfMinN| |inv| |rightZero| |primlimintfrac| |irreducibleFactors|
- |makeFR| |hasTopPredicate?| |d01asf| |elements| |ground?| |leftZero|
- |primintfldpoly| |lazyIrreducibleFactors| |OMReadError?|
- |setPrologue!| |musserTrials| |topPredicate| |d01bbf|
- |replaceKthElement| |ground| |swap| |expintfldpoly|
- |removeIrreducibleRedundantFactors| |OMUnknownSymbol?| |setTex!|
- |stopMusserTrials| |setTopPredicate| |d01fcf| |incrementKthElement|
- |leadingMonomial| |minPoly| |monomialIntegrate| |normalForm|
- |OMUnknownCD?| |setEpilogue!| |numberOfFactors| |patternVariable|
- |d01gaf| |float?| |leadingCoefficient| |freeOf?| |rules|
- |monomialIntPoly| |changeBase| |OMParseError?| |prologue|
- |modularFactor| |status| |withPredicates| |d01gbf| |integer?|
- |RemainderList| |primitiveMonomials| |operators| |inverseLaplace|
- |companionBlocks| |OMwrite| |epilogue| |operation|
- |useSingleFactorBound?| |setPredicates| |d02bbf| |symbol?| |unexpand|
- |reductum| |mainKernel| |inputOutputBinaryFile| |xCoord| |po|
- |endOfFile?| |useSingleFactorBound| |predicates| |d02bhf| |string?|
- |triangSolve| |distribute| |bothWays| |yCoord| |OMread| |readIfCan!|
- |useEisensteinCriterion?| |hasPredicate?| |d02cjf| |list?|
- |univariateSolve| |functionIsFracPolynomial?| |erf| |bytes| |zCoord|
- |OMreadFile| |readLineIfCan!| |useEisensteinCriterion| |symbolTable|
- |optional?| |d02ejf| |pair?| |realSolve| |problemPoints| |ip4Address|
- |rCoord| |OMreadStr| |readLine!| |eisensteinIrreducible?| |multiple?|
- |d02gaf| |atom?| |positiveSolve| |zerosOf| |iprint| |thetaCoord|
- |OMlistCDs| |writeLine!| |tryFunctionalDecomposition?| |generic?|
- |d02gbf| |null?| |squareFree| |singularitiesOf| |elem?| |phiCoord|
- |OMlistSymbols| |sign| |extract!| |tryFunctionalDecomposition|
- |quoted?| |d02kef| |startTable!| |linearlyDependentOverZ?|
- |polynomialZeros| |notelem| |OMsupportsCD?| |color| |nonQsign| |ptree|
- |bag| |btwFact| |inR?| |d02raf| |stopTable!| |weakBiRank|
- |linearDependenceOverZ| |inc| |f2df| |logpart| |hue|
- |OMsupportsSymbol?| |direction| |beauzamyBound| |isList| |d03edf|
- |supDimElseRittWu?| |biRank| |solveLinearlyOverQ| |ef2edf| |ratpart|
- |shade| |OMunhandledSymbol| |createThreeSpace| |bombieriNorm| |isOp|
- |d03eef| |algebraicSort| |ocf2ocdf| |mkAnswer| |nthRootIfCan|
- |OMreceive| |cyclicParents| |rootBound| |d03faf| |satisfy?|
- |moreAlgebraic?| |concat| |socf2socdf| |perfectNthPower?| |expIfCan|
- |OMsend| |cyclicEqual?| |singleFactorBound| |addBadValue| |e01baf|
- |subTriSet?| |df2fi| |perfectNthRoot| |logIfCan| |OMserve|
- |cyclicEntries| |quadraticNorm| |badValues| |e01bef| |subPolSet?|
- |edf2fi| |approxNthRoot| |sinIfCan| |makeop| |cyclicCopy|
- |infinityNorm| |retractable?| |e01bff| |internalSubPolSet?| |edf2df|
- |perfectSquare?| |cosIfCan| |opeval| |cyclic?| |scaleRoots|
- |ListOfTerms| |e01bgf| |internalInfRittWu?| |expenseOfEvaluation|
- |perfectSqrt| |tanIfCan| |evaluateInverse| |complexNormalize|
- |shiftRoots| |PDESolve| |e01bhf| |internalSubQuasiComponent?|
- |numberOfOperations| |approxSqrt| |cotIfCan| |evaluate|
- |complexElementary| |degreePartition| |e01daf| |leftFactor| |optimize|
- |subQuasiComponent?| |edf2efi| |generateIrredPoly| |secIfCan| |conjug|
- |trigs| |factorOfDegree| |rightFactorCandidate| |e01saf|
- |removeSuperfluousQuasiComponents| |signature| |dfRange|
- |complexExpand| |cscIfCan| |adjoint| |real?| |factorsOfDegree|
- |measure| |e01sbf| |subCase?| |dflist| |complexIntegrate| |asinIfCan|
- |arity| |complexForm| |pascalTriangle| |coerceImages| |e01sef|
- |removeSuperfluousCases| |eq?| |df2mf|
- |dimensionOfIrreducibleRepresentation| |acosIfCan| |getDatabase|
- |UpTriBddDenomInv| |rangePascalTriangle| |fixedPoints| |e01sff|
- |prepareDecompose| |doublyTransitive?| |ldf2vmf|
- |irreducibleRepresentation| |atanIfCan| |numericalOptimization|
- |LowTriBddDenomInv| |digit?| |sizePascalTriangle| |odd?| |e02adf|
- |branchIfCan| |edf2ef| |checkRur| |acotIfCan| |goodnessOfFit|
- |simplify| |delete| |fillPascalTriangle| |even?| |e02aef|
- |startTableGcd!| |vedf2vef| |cAcsch| |asecIfCan| |whatInfinity|
- |htrigs| |safeCeiling| |numberOfCycles| |e02agf| |stopTableGcd!|
- |df2st| |cAsech| |acscIfCan| |infinite?| |simplifyExp| |safeFloor|
- |cyclePartition| |e02ahf| |startTableInvSet!| |iroot| |f2st| |cAcoth|
- |sinhIfCan| |finite?| |simplifyLog| |setright!| |safetyMargin|
- |coerceListOfPairs| |e02ajf| |stopTableInvSet!| |size?| |ldf2lst|
- |cAtanh| |coshIfCan| |pureLex| |expandPower| |setleft!| |sumSquares|
- |coercePreimagesImages| |e02akf| |stosePrepareSubResAlgo| |exquo|
- |sdf2lst| |cAcosh| |tanhIfCan| |totalLex| |expandLog| |point|
- |euclideanNormalForm| |listRepresentation| |e02baf|
- |stoseInternalLastSubResultant| |getlo| |cAsinh| |cothIfCan|
- |reverseLex| |cos2sec| |euclideanGroebner| |permanent| |e02bbf|
- |stoseIntegralLastSubResultant| |div| |gethi| |cCsch| |sechIfCan|
- |leftLcm| |cosh2sech| |factorGroebnerBasis| |cycles| |e02bcf|
- |stoseLastSubResultant| |datalist| |cond| |outputMeasure| |cSech|
- |cschIfCan| |rightExtendedGcd| |cot2trig| |series| |groebnerFactorize|
- |cycle| |e02bdf| |stoseInvertible?sqfreg| |quo| |measure2Result|
- |cCoth| |asinhIfCan| |rightGcd| |coth2trigh| |credPol|
- |initializeGroupForWordProblem| |e02bef| |stoseInvertibleSetsqfreg|
- |att2Result| |cTanh| |acoshIfCan| |rightExactQuotient| |csc2sin|
- |redPol| |movedPoints| |e02daf| |stoseInvertible?reg| |iflist2Result|
- |cCosh| |atanhIfCan| |rightRemainder| |csch2sinh| |gbasis|
- |wordInGenerators| |e02dcf| |stoseInvertibleSetreg| |pdf2ef| |box|
- |cSinh| |acothIfCan| |rightQuotient| |sec2cos| |min|
- |brillhartIrreducible?| |critT| |wordInStrongGenerators| |e02ddf|
- |stoseInvertible?| |rem| |pdf2df| |cAcsc| |asechIfCan| |rightLcm|
- |sech2cosh| |brillhartTrials| |log10| |critM| |orbits| |e02def|
- |stoseInvertibleSet| |df2ef| |precision| |cAsec| |acschIfCan|
- |leftExtendedGcd| |sin2csc| |critB| |bitand| |li| |orbit| |e02dff|
- |stoseSquareFreePart| |fi2df| |cAcot| |pushdown| |leftGcd| |sinh2csch|
- |bitior| |critBonD| |permutationGroup| |e02gaf| |coleman|
- |balancedBinaryTree| |super| |cAtan| |pushup| |leftExactQuotient|
- |tan2trig| |critMTonD1| |wordsForStrongGenerators| |e02zaf|
- |inverseColeman| |sylvesterMatrix| |sortConstraints| |cAcos|
- |reducedDiscriminant| |leftRemainder| |tanh2trigh| |critMonD1|
- |strongGenerators| |e04dgf| |listYoungTableaus| |sumOfSquares| |cAsin|
- |idealSimplify| |leftQuotient| |tan2cot| |redPo| |generators| |e04fdf|
- |makeYoungTableau| |splitLinear| |cCsc| |definingInequation|
- |monicLeftDivide| |tanh2coth| |e04gcf| |nextColeman| |simpleBounds?|
- |cSec| |definingEquations| |monicRightDivide| |cot2tan| |polyPart|
- |isOpen?| |e04jaf| |nextLatticePermutation| |linearMatrix| Y |cCot|
- |setStatus| |leftDivide| |coth2tanh| |fullPartialFraction|
- |outputBinaryFile| |e04mbf| |nextPartition| |linearPart| |cTan|
- |quasiAlgebraicSet| |rightDivide| |removeCosSq| |primeFrobenius|
- |blankSeparate| |e04naf| |numberOfImproperPartitions| |nonLinearPart|
- |hermiteH| |removeSinSq| F |discreteLog| |semicolonSeparate| |e04ucf|
- |subSet| |quadratic?| |interval| |semiDiscriminantEuclidean| |debug|
- |laguerreL| |removeCoshSq| |decreasePrecision| |commaSeparate|
- |e04ycf| |unrankImproperPartitions0| |changeNameToObjf| |unit?|
- |chainSubResultants| D |legendreP| |removeSinhSq| |zero|
- |increasePrecision| |pile| |f01brf| |unrankImproperPartitions1| |test|
- |optAttributes| |associates?| |schema| |writeBytes!|
- |expandTrigProducts| |bits| |paren| |any| |Nul| |unitCanonical|
- |resultantReduit| |writeUInt8!| |fintegrate| |And| |unitNormalize|
- |bracket| |frobenius| |mainMonomials| |exponents| |unitNormal|
- |resultantReduitEuclidean| |writeInt8!| |coefficient| |unit| |Or|
- |computePowers| |prod| |mainCoefficients| |prefix| |iisqrt2|
- |lfextendedint| |semiResultantReduitEuclidean| |writeByte!| |coHeight|
- |Not| |flagFactor| |overlabel| |pow| |leastMonomial| |iisqrt3|
- |lflimitedint| |divide| |sqfrFactor| |overbar| |An| |mainMonomial|
- |iiexp| |lfinfieldint| |Lazard| |OMmakeConn| |printHeader| **
- |primeFactor| |prime| |UnVectorise| |quasiMonic?| |iilog|
- |lfintegrate| |Lazard2| |OMcloseConn| |returnType!| |nthFlag| |quote|
- |Vectorise| |monic?| |balancedFactorisation| |iisin| |lo|
- |lfextlimint| |nextsousResultant2| |OMconnInDevice| |argumentList!|
- |nthExponent| |supersub| |setPoly| |deepestInitial| |mapDown!| |iicos|
- |BasicMethod| |predicate| |incr| EQ |OMconnOutDevice| |resultantnaif|
- |endSubProgram| |print| |dim| |irreducibleFactor| |presuper|
- |exponent| |iteratedInitials| |viewDeltaYDefault| |iitan|
- |PollardSmallFactor| |resolve| |resultantEuclideannaif| |OMconnectTCP|
- |currentSubProgram| |nilFactor| |presub| |exQuo| |deepestTail|
- |viewDeltaXDefault| |iicot| |showTheFTable|
- |semiResultantEuclideannaif| |OMbindTCP| |newSubProgram|
- |regularRepresentation| |sub| |moebius| |head| |viewZoomDefault|
- |iisec| |clearTheFTable| |pdct| |OMopenFile| |clearTheSymbolTable|
- |traceMatrix| |rarrow| |rightRecip| |mdeg| |viewPhiDefault| |iicsc|
- |fTable| |powers| |OMopenString| |showTheSymbolTable| |randomLC|
- |assign| |name| |leftRecip| |mvar| |viewThetaDefault| |iiasin|
- |palgint0| |partition| |OMclose| |printTypes| |minimize| |slash|
- |body| |leftPower| |relativeApprox| |pointColorDefault| |iiacos|
- |palgextint0| |complete| |OMsetEncoding| |newTypeLists| |exp|
- |category| |module| |over| |rightPower| |rootOf| |lineColorDefault|
- |iiatan| |palglimint0| |pole?| |OMputApp| |typeLists| ~ |domain|
- |rightRegularRepresentation| |zag| |derivationCoordinates|
- |allRootsOf| |axesColorDefault| |iiacot| |parameters| |palgRDE0|
- |listBranches| |OMputAtp| |externalList| |package|
- |leftRegularRepresentation| |insert| |postfix| |one?|
- |definingPolynomial| |unitsColorDefault| |iiasec| |palgLODE0|
- |triangular?| |OMputAttr| |typeList| |open| |rightTraceMatrix| |infix|
- |center| |splitSquarefree| |positive?| |pointSizeDefault| |iiacsc|
- |chineseRemainder| |rewriteIdealWithRemainder| |length| |OMputBind|
- |parametersOf| |leftTraceMatrix| |vconcat| |fortran| |normalDenom|
- |negative?| |viewPosDefault| |iisinh| |divisors| |hi|
- |rewriteIdealWithHeadRemainder| |scripts| |OMputBVar| |fortranTypeOf|
- |second| |rightDiscriminant| |hconcat| |totalfract| |zero?|
- |viewSizeDefault| |iicosh| |eulerPhi| |remainder| |OMputError| |empty|
- |third| |leftDiscriminant| |rspace| |pushdterm| |augment|
- |viewDefaults| |iitanh| |fibonacci| |headRemainder| |OMputObject|
- |compound?| |operations| |represents| |vspace| |pushucoef|
- |lastSubResultant| |shift| |viewWriteDefault| |iicoth| |harmonic|
- |roughUnitIdeal?| |OMputEndApp| |getOperands| |mergeFactors| |hspace|
- |pushuconst| |lastSubResultantElseSplit| |viewWriteAvailable| |iisech|
- |jacobi| |roughEqualIdeals?| |OMputEndAtp| |getOperator| |isMult|
- |superHeight| |numberOfMonomials| |invertibleSet| |var1StepsDefault|
- |iicsch| |moebiusMu| |roughSubIdeal?| |OMputEndAttr| |nil?|
- |exprToXXP| |subHeight| |multiset| |invertible?| |var2StepsDefault|
- |iiasinh| |numberOfDivisors| |roughBase?| |OMputEndBind| |buildSyntax|
- |property| |exprToUPS| |doubleFloatFormat| |mergeDifference|
- |invertibleElseSplit?| |tubePointsDefault| |clearCache| |iiacosh|
- |sumOfDivisors| |trivialIdeal?| |OMputEndBVar| |solve| |exprToGenUPS|
- |messagePrint| |squareFreePrim| |purelyAlgebraicLeadingMonomial?|
- |tubeRadiusDefault| |iiatanh| |lcm| |sumOfKthPowerDivisors|
- |collectUpper| |OMputEndError| |triangularSystems| |localAbs|
- |members| |compdegd| |algebraicCoefficients?| |dimension| |iiacoth|
- |HermiteIntegrate| |collect| |OMputEndObject| |nativeModuleExtension|
- |units| |universe| |padecf| |univcase| |purelyTranscendental?| |crest|
- |stack| |iiasech| |append| |palgint| |collectUnder| |OMputInteger|
- |hostByteOrder| |complement| |pade| |consnewpol| |purelyAlgebraic?|
- |cfirst| |iiacsch| |gcd| |palgextint| |mainVariable?| |OMputFloat|
- |hostPlatform| |cardinality| |comp| |root| |script| |nsqfree|
- |prepareSubResAlgo| |sts2stst| |has?| |initial| |specialTrigs| |false|
- |palglimint| |mainVariables| |OMputVariable| |rootDirectory|
- |internalIntegrate0| |quotientByP| |intChoose|
- |internalLastSubResultant| |clikeUniv| |comparison| |localReal?|
- |palgRDE| |removeSquaresIfCan| |OMputString| |bumprow| |makeCos|
- |moduloP| |coefChoose| |integralLastSubResultant| |weierstrass|
- |rischNormalize| |palgLODE| |unprotectedRemoveRedundantFactors|
- |OMputSymbol| |bumptab| |makeSin| |modulus| |tex| |myDegree|
- |toseLastSubResultant| |qqq| |realElementary| |linear| |splitConstant|
- |removeRedundantFactors| |OMgetApp| |bumptab1| |iiGamma| |digits|
- |normDeriv2| |toseInvertible?| |integralBasis| |validExponential| |#|
- |pmComplexintegrate| |certainlySubVariety?| |OMgetAtp| |untab| |iiabs|
- |continuedFraction| |plenaryPower| |toseInvertibleSet|
- |localIntegralBasis| |rootNormalize| |polynomial| |pmintegrate|
- |possiblyNewVariety?| |OMgetAttr| |bat1| |plusInfinity| |bringDown|
- |light| |c02aff| |toseSquareFreePart| |qualifier| |dom| |tanQ|
- |infieldint| |probablyZeroDim?| |OMgetBind| |bat| |minusInfinity|
- |newReduc| |pastel| |c02agf| |quotedOperators| |mainExpression|
- |callForm?| |extendedint| |selectPolynomials| |OMgetBVar| |tab1|
- |logical?| |c05adf| |dark| |list| |rur| |changeWeightLevel|
- |getIdentifier| |limitedint| |selectOrPolynomials| |OMgetError| |tab|
- |character?| |c05nbf| |getSyntaxFormsFromFile| |car| |create|
- |characteristicSerie| |getConstant| |integerIfCan|
- |selectAndPolynomials| |OMgetObject| |lex| |doubleComplex?| |c05pbf|
- |surface| |cdr| |symbol| |enterInCache| |characteristicSet| |select!|
- |internalIntegrate| |quasiMonicPolynomials| |OMgetEndApp| |slex|
- |complex?| |setDifference| |c06eaf| |coordinate| |expression|
- |currentCategoryFrame| |medialSet| |delete!| |infieldIntegrate|
- |univariate?| |OMgetEndAtp| |inverse| |title| |double?|
- |setIntersection| |c06ebf| |partitions| |options| |currentScope|
- |integer| |Hausdorff| |sn| |limitedIntegrate| |univariatePolynomials|
- |OMgetEndAttr| |maxrow| |ffactor| |rule| |setUnion| |conjugates|
- |c06ecf| |pushNewContour| |Frobenius| |say| |dn| |extendedIntegrate|
- |linear?| |OMgetEndBind| |tableau| |type| |qfactor| |c06ekf| |shuffle|
- |findBinding| |apply| |transcendenceDegree| |e| |sncndn| |varselect|
- |linearPolynomials| |OMgetEndBVar| |listOfLists| |UP2ifCan|
- |shufflein| |string| |c06fpf| |contours| |extensionDegree|
- |categoryFrame| |kmax| |bivariate?| |OMgetEndError| |tanSum|
- |anfactor| |c06fqf| |sequences| |structuralConstants| |size|
- |inGroundField?| |ksec| |bivariatePolynomials| |OMgetEndObject|
- |tanAn| |fortranCharacter| |permutations| |c06frf| |coordinates|
- |leader| |transcendent?| |leadingBasisTerm| |constructor| |vark|
- |removeRoughlyRedundantFactorsInPols| |OMgetInteger| |tanNa|
- |fortranDoubleComplex| |atoms| |c06fuf| |bounds| |algebraic?|
- |ignore?| |removeConstantTerm| |removeRoughlyRedundantFactorsInPol|
- |OMgetFloat| |initTable!| |fortranComplex| |c06gbf| |makeResult|
- |high| |first| |sh| |computeInt| |void| |reset| |mkPrim| |interReduce|
- |OMgetVariable| |printInfo!| |c06gcf| |low| |rest| |mirror|
- |checkForZero| |intPatternMatch| |roughBasicSet| |OMgetString|
- |startStats!| |binaryTournament| |leftMinimalPolynomial| |substitute|
- |c06gqf| |subset?| |monomial?| |logGamma| |numeric| |write|
- |primintegrate| |crushedSet| |OMgetSymbol| |printStats!|
- |associatorDependence| |removeDuplicates| |c06gsf|
- |symmetricDifference| |rquo| |hypergeometric0F1| |save| |radical|
- |expintegrate| |rewriteSetByReducingWithParticularGenerators|
- |OMgetType| |clearTable!| |lieAlgebra?| |d01ajf| |difference| |lquo|
- |rotatez| |OMencodingBinary| |usingTable?| |jordanAlgebra?| |d01akf|
- |intersect| |width| |mindegTerm| |rotatey| |call| |readBytes!|
- |sylvesterSequence| |OMencodingSGML| |printingInfo?|
- |noncommutativeJordanAlgebra?| |d01alf| |part?| |product| |rotatex|
- |readUInt32!| |sturmSequence| |OMencodingXML| |makingStats?|
- |jordanAdmissible?| |d01amf| |latex| |LiePolyIfCan| |identity|
- |readInt32!| |boundOfCauchy| |OMencodingUnknown| |extractIfCan|
- |lieAdmissible?| |trunc| |dictionary| |readUInt16!|
- |sturmVariationsOf| |omError| |insert!| |jacobiIdentity?|
- |constantLeft| |symmetric?| |degree| |dioSolve| |dec| |readInt16!|
- |lazyVariations| |unknownEndian| |errorInfo| |interpretString|
- |powerAssociative?| |twist| |diagonal?| |quasiRegular| |newLine|
- |readUInt8!| |content| |bigEndian| |flatten| |errorKind|
- |stripCommentsAndBlanks| |byte| |alternative?| |setsubMatrix!|
- |square?| |quasiRegular?| |copies| |readInt8!| |totalDegree|
- |littleEndian| |setLength!| |flexible?| |subMatrix|
- |rectangularMatrix| |optional| |constant?| |subtractIfCan| |sayLength|
- |readByte!| |minimumDegree| |ScanRoman| |delay| |capacity|
- |rightAlternative?| |swapColumns!| |characteristic| |mindeg|
- |setPosition| |setnext!| |setFieldInfo| |monomials|
- |ScanFloatIgnoreSpaces| |findCycle| |byteBuffer| |leftAlternative?|
- |swapRows!| |round| |maxdeg| |generalizedContinuumHypothesisAssumed|
- |setprevious!| |pol| |isPlus| |ScanFloatIgnoreSpacesIfCan|
- |repeating?| |antiAssociative?| |vertConcat| |fractionPart|
- |generalizedContinuumHypothesisAssumed?| |shanksDiscLogAlgorithm| |xn|
- |isTimes| |numericalIntegration| |repeating| |associative?|
- |horizConcat| |wholePart| |quoByVar| |countable?| |reflect| |dAndcExp|
- |isExpt| |rk4| |recip| |antiCommutative?| |squareTop| |floor|
- |coefficients| |Aleph| |reify| |repSq| |isPower| |pattern| |rk4a|
- |integers| |commutative?| |elRow1!| |ceiling| |stFunc1| |unravel|
- |separant| |expPot| |rroot| |rk4qc| |oddintegers|
- |rightCharacteristicPolynomial| |elRow2!| |norm| |stFunc2|
- |leviCivitaSymbol| |isobaric?| |qPot| |qroot| |rk4f| |int|
- |outerProduct| |leftCharacteristicPolynomial| |elColumn2!|
- |mightHaveRoots| |stFuncN| |kroneckerDelta| |weights| |lookup| |froot|
- |aromberg| |mapmult| |varList| |rightNorm| |bright|
- |fractionFreeGauss!| |refine| |fixedPointExquo| |reindex|
- |differentialVariables| |normal?| |message| |nthr| |asimpson| |deriv|
- |leftNorm| |invertIfCan| |middle| |ode1| |principalAncestors|
- |extractBottom!| |basis| |firstUncouplingMatrix| |atrapezoidal|
- |gderiv| |rightTrace| |copy!| |roman| |ode2| |exportedOperators|
- |extractTop!| NOT |normalElement| |integral| |romberg| |compose|
- |leftTrace| |plus!| |recoverAfterFail| |ode| |alphanumeric|
- |insertBottom!| OR |minimalPolynomial| |primitiveElement| |simpson|
- |addiag| |someBasis| |matrix| |minus!| |showTheRoutinesTable| |mpsode|
- |alphabetic| |insertTop!| AND |position!| |nextPrime| |trapezoidal|
- |lazyIntegrate| |mantissa| |sort!| |leftScalarTimes!| |deleteRoutine!|
- UP2UTS |hexDigit| |bottom!| |eof?| |prevPrime| |rombergo| |nlde|
- |copyInto!| |rightScalarTimes!| |getExplanations| |cons| UTS2UP
- |digit| |top!| |inputBinaryFile| |primes| |simpsono| |powern|
- |sorted?| |times!| |getMeasure| LODO2FUN |charClass| |dequeue| |error|
- |increment| |selectsecond| |trapezoidalo| |mapdiv| |LiePoly| |power!|
- |changeMeasure| RF2UTS |alphanumeric?| |recolor| |charpol|
- |selectfirst| |sup| |lazyGintegrate| |arguments| |quickSort| |just|
- |changeThreshhold| |magnitude| |lowerCase?| |drawComplex| |solve1|
- |makeprod| |imagE| |power| |vector| |mr| |heapSort| |gradient|
- |selectMultiDimensionalRoutines| |double| |cross| |upperCase?|
- |drawComplexVectorField| |innerEigenvectors| |equivOperands| |imagk|
- |sincos| |shellSort| |divergence| |selectNonFiniteRoutines| |dot|
- |alphabetic?| |setRealSteps| |parseString| |equiv?| |imagj| |sinhcosh|
- |outputSpacing| |laplacian| |selectSumOfSquaresRoutines| |source|
- |scan| |hexDigit?| |setImagSteps| |subst| |unparse| |impliesOperands|
- |imagi| |subresultantVector| |plus| |outputGeneral| |hessian|
- |selectFiniteRoutines| |graphCurves| |escape| |setClipValue| *
- |binary| |implies?| |octon| |primitivePart| |outputFixed|
- |bandedHessian| |selectODEIVPRoutines| |drawCurves| |ord| |option?|
- |packageCall| |orOperands| |ODESolve| |pointData| |outputFloating|
- |jacobian| |selectPDERoutines| |scale| |range| |innerSolve1| |or?|
- |constDsolve| |parent| |exp1| |bandedJacobian|
- |selectOptimizationRoutines| |connect| |colorFunction| |innerSolve|
- |andOperands| |showTheIFTable| |extractProperty| |times| |log2|
- |duplicates| |selectIntegrationRoutines| |target| |declare!| |region|
- |curveColor| |isQuotient| |makeEq| |and?| |clearTheIFTable|
- |extractClosed| |rationalApproximation| |removeDuplicates!| |routines|
- |points| |pointColor| |modularGcdPrimitive| |iFTable| |notOperand|
- |objects| |extractIndex| |differentiate| |relerror| |linears|
- |mainSquareFreePart| |getGraph| |clip| |modularGcd|
- |showIntensityFunctions| |variable?| |base| |extractPoint|
- |complexSolve| |ddFact| |mainPrimitivePart| |putGraph| |clipBoolean|
- |reduction| |term| |expint| |traverse| |monom| |complexRoots|
- |separateFactors| |mainContent| |graphs| |style| |signAround| |term?|
- |diff| |defineProperty| |realRoots| |exptMod| |primitivePart!|
- |graphStates| |toScale| |height| |invmod| |equiv| |algDsolve|
- |closeComponent| |leadingTerm| |meshPar2Var| |failed|
- |nextsubResultant2| |ravel| |graphState| |rootsOf| |pointColorPalette|
- |powmod| |implies| |denomLODE| |modifyPoint| |common| |writable?|
- |meshFun2Var| |reshape| |LazardQuotient2| |segment| |makeViewport2D|
- |makeSketch| |curveColorPalette| |mulmod| |merge!| |indicialEquations|
- |addPointLast| |tree| |readable?| |meshPar1Var| |LazardQuotient|
- |viewport2D| |inrootof| |var1Steps| |submod| |resultantEuclidean|
- |indicialEquation| |addPoint2| |declare| |exists?| |ptFunc|
- |subResultantChain| |getPickedPoints| |droot| |char| |var2Steps|
- |addmod| |semiResultantEuclidean2| |denomRicDE| |addPoint| |extension|
- |minimumExponent| |qelt| |halfExtendedSubResultantGcd2| |colorDef|
- |space| |symmetricRemainder| |semiResultantEuclidean1|
- |leadingCoefficientRicDE| |merge| |qsetelt| |shallowExpand| |tail|
- |maximumExponent| |halfExtendedSubResultantGcd1| |intensity|
- |tubePoints| |positiveRemainder| |indiceSubResultant|
- |constantCoefficientRicDE| |deepCopy| |deepExpand| |rowEch| |xRange|
- |extendedSubResultantGcd| |update| |lighting| |tubeRadius| |bit?|
- |indiceSubResultantEuclidean| |changeVar| |shallowCopy|
- |clearFortranOutputStack| |rowEchLocal| |yRange| |exactQuotient!|
- |clipSurface| |previous| |weight| |algint|
- |semiIndiceSubResultantEuclidean| |ratDsolve| |numberOfChildren|
- |generator| |showFortranOutputStack| |rowEchelonLocal| |zRange|
- |exactQuotient| |showClipRegion| |makeVariable| |float| |algintegrate|
- |degreeSubResultant| |indicialEquationAtInfinity| |children|
- |topFortranOutputStack| |map!| |normalizedDivide|
- |primPartElseUnitCanonical!| |showRegion| |finiteBound|
- |palgintegrate| |degreeSubResultantEuclidean| |reduceLODE| |child|
- |qsetelt!| |setFormula!| |maxint| |primPartElseUnitCanonical|
- |hitherPlane| |palginfieldint| |semiDegreeSubResultantEuclidean|
- |singRicDE| |birth| |linkToFortran| |binaryFunction|
- |lazyResidueClass| |match?| |position| |eyeDistance| |complexZeros|
- |log| |bitLength| |lastSubResultantEuclidean| |polyRicDE| |internal?|
- |setLegalFortranSourceExtensions| |makeFloatFunction| |monicModulo|
- |perspective| |divisorCascade| |constantOpIfCan| |reverse| |bitCoef|
- |semiLastSubResultantEuclidean| |ricDsolve| |root?| |fracPart| |nil|
- |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
+ |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
+ |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
+ |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
+ |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
+ |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
+ |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
+ |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
+ |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf|
+ |any| |applyRules| |localUnquote| |arbitrary| |setColumn!| |setRow!|
+ |oneDimensionalArray| |associatedSystem| |uncouplingMatrices|
+ |associatedEquations| |arrayStack| |setButtonValue| |setAttributeButtonStep|
+ |resetAttributeButtons| |getButtonValue| |decrease| |increase| |morphism|
+ |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree|
+ |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant|
+ |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| |test| |setProperties|
+ |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?|
+ |unary?| |nullary?| |properties| |derivative| |constantOperator|
+ |constantOpIfCan| |integerBound| |setright!| |setleft!|
+ |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
+ |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte|
+ |setLength!| |capacity| |byteBuffer| |unknownEndian| |bigEndian|
+ |littleEndian| |subtractIfCan| |setPosition|
+ |generalizedContinuumHypothesisAssumed|
+ |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
+ |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents|
+ |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic|
+ |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?|
+ |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral|
+ |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| |find| |e|
+ |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom|
+ |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial|
+ |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm|
+ |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators|
+ |numerators| |convergents| |approximants| |reducedForm| |partialQuotients|
+ |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push|
+ |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic|
+ |parabolicCylindrical| |paraboloidal| |ellipticCylindrical|
+ |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical|
+ |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros|
+ |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius|
+ |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt|
+ |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments|
+ |operations| |dualSignature| |kind| |package| |domain| |category| |coerceP|
+ |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath|
+ |SFunction| |skewSFunction| |cyclotomicDecomposition|
+ |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints|
+ |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX|
+ |exprHasAlgebraicWeight| |exprHasLogarithmicWeights|
+ |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor|
+ |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF|
+ |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?|
+ |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees|
+ |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint|
+ |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm|
+ |ignore?| |computeInt| |checkForZero| |logGamma| |hypergeometric0F1| |rotatez|
+ |rotatey| |rotatex| |identity| |dictionary| |dioSolve| |directProduct|
+ |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| |next|
+ |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify|
+ |constructor| |separant| |initial| |leader| |isobaric?| |weights|
+ |differentialVariables| |extractBottom!| |extractTop!| |insertBottom!|
+ |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| |drawComplex|
+ |drawComplexVectorField| |setRealSteps| |setImagSteps| |setClipValue| |draw|
+ |option?| |range| |colorFunction| |curveColor| |pointColor| |clip|
+ |clipBoolean| |style| |toScale| |pointColorPalette| |curveColorPalette|
+ |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| |option| |weight|
+ |makeVariable| |finiteBound| |sortConstraints| |sumOfSquares| |splitLinear|
+ |simpleBounds?| |linearMatrix| |linearPart| |nonLinearPart| |quadratic?|
+ |changeNameToObjf| |optAttributes| |Nul| |exponents| |iisqrt2| |iisqrt3|
+ |iiexp| |iilog| |iisin| |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin|
+ |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh|
+ |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech|
+ |iiacsch| |specialTrigs| |localReal?| |rischNormalize| |realElementary|
+ |validExponential| |rootNormalize| |tanQ| |callForm?| |getIdentifier|
+ |getConstant| |type| |select!| |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!|
+ |categoryFrame| |currentEnv| |setProperties!| |getProperties| |setProperty!|
+ |getProperty| |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector|
+ |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne|
+ |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower|
+ |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?|
+ |problemPoints| |zerosOf| |singularitiesOf| |polynomialZeros| |f2df| |ef2edf|
+ |ocf2ocdf| |socf2socdf| |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation|
+ |numberOfOperations| |edf2efi| |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef|
+ |vedf2vef| |df2st| |f2st| |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure|
+ |measure2Result| |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef|
+ |fi2df| |mat| |neglist| |multiEuclidean| |extendedEuclidean| |euclideanSize|
+ |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction|
+ |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial|
+ |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef|
+ |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog|
+ |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement|
+ |setLabelValue| |getCode| |printCode| |code| |operation| |common|
+ |printStatement| |save| |stop| |block| |cond| |returns| |call| |comment|
+ |continue| |goto| |repeatUntilLoop| |whileLoop| |forLoop| |sin?| |zeroVector|
+ |zeroSquareMatrix| |identitySquareMatrix| |lSpaceBasis| |finiteBasis|
+ |principal?| |divisor| |useNagFunctions| |rationalPoints| |nonSingularModel|
+ |algSplitSimple| |hyperelliptic| |elliptic| |integralDerivationMatrix|
+ |integralRepresents| |integralCoordinates| |yCoordinates|
+ |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity|
+ |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity|
+ |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?|
+ |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?|
+ |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?|
+ |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable|
+ |createMultiplicationTable| |createMultiplicationMatrix|
+ |createLowComplexityTable| |createLowComplexityNormalBasis|
+ |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm|
+ |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix|
+ |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly|
+ |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly|
+ |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly|
+ |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly|
+ |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly|
+ |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!|
+ |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit|
+ |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence|
+ |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?|
+ |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?|
+ |alternative?| |flexible?| |rightAlternative?| |leftAlternative?|
+ |antiAssociative?| |associative?| |antiCommutative?| |commutative?|
+ |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm|
+ |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?|
+ |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral|
+ |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation|
+ |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |writable?|
+ |readable?| |exists?| |extension| |directory| |filename| |shallowExpand|
+ |deepExpand| |clearFortranOutputStack| |showFortranOutputStack|
+ |popFortranOutputStack| |pushFortranOutputStack| |topFortranOutputStack|
+ |setFormula!| |formula| |linkToFortran| |setLegalFortranSourceExtensions|
+ |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog|
+ |decreasePrecision| |increasePrecision| |bits| |unitNormalize| |unit|
+ |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent|
+ |irreducibleFactor| |nilFactor| |regularRepresentation| |traceMatrix|
+ |randomLC| |minimize| |module| |rightRegularRepresentation|
+ |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix|
+ |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult|
+ |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS|
+ |localAbs| |universe| |complement| |cardinality| |internalIntegrate0|
+ |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?|
+ |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor|
+ |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex|
+ |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble|
+ |fortranReal| |external?| |scalarTypeOf| |fortranCarriageReturn|
+ |fortranLiteral| |fortranLiteralLine| |processTemplate| |makeFR|
+ |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor|
+ |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?|
+ |useEisensteinCriterion| |eisensteinIrreducible?|
+ |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
+ |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
+ |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
+ |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
+ |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
+ |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
+ |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
+ |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
+ |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
+ |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
+ |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
+ |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
+ |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
+ |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
+ |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
+ |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
+ |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
+ |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
+ |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
+ |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
+ |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
+ |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
+ |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
+ |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
+ |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
+ |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
+ |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
+ |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
+ |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength|
+ |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports|
+ |sequence| |iterationVar| |readBytes!| |readUInt32!| |readInt32!|
+ |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!| |setFieldInfo|
+ |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis|
+ |normalElement| |minimalPolynomial| |position!| |eof?| |inputBinaryFile|
+ |increment| |incrementBy| |charpol| |solve1| |innerEigenvectors| |compile|
+ |declare| |parseString| |unparse| |flatten| |lambda| |binary| |packageCall|
+ |interpret| |innerSolve1| |innerSolve| |makeEq| |modularGcdPrimitive|
+ |modularGcd| |reduction| |signAround| |invmod| |powmod| |mulmod| |submod|
+ |addmod| |mask| |dec| |inc| |symmetricRemainder| |positiveRemainder| |bit?|
+ |algint| |algintegrate| |palgintegrate| |palginfieldint| |bitLength| |bitCoef|
+ |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?|
+ |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint|
+ |lfintegrate| |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable|
+ |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0|
+ |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi|
+ |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
+ |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
+ |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
+ |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
+ |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
+ |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
+ |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
+ |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
+ |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
+ |inverseLaplace| |inputOutputBinaryFile| |bothWays| |input| |resolve| |bytes|
+ |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer|
+ |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?|
+ |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand|
+ |complexIntegrate| |dimensionOfIrreducibleRepresentation|
+ |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
+ |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
+ |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
+ |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
+ |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG
+ |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
+ |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan|
+ |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true|
+ |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase|
+ |distFact| |identification| |LyndonCoordinates| |LyndonBasis|
+ |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular|
+ |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei|
+ |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord|
+ |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit|
+ |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem|
+ |setDifference| |setIntersection| |setUnion| |append| |null| |nil|
+ |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality|
+ |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm|
+ |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
+ |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~
+ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
+ |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
+ |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
+ |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
+ |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
+ |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag|
+ |curryRight| |curryLeft| |constantRight| |constantLeft| |twist|
+ |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat|
+ |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!|
+ |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!|
+ |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence|
+ |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates|
+ |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod|
+ |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent|
+ |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal|
+ |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
+ |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
+ |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
+ |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
+ |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
+ |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
+ |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
+ |numberOfMonomials| |multiset| |systemCommand| |mergeDifference|
+ |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
+ |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
+ |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
+ |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
+ |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
+ |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
+ |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
+ |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
+ |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
+ |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
+ |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
+ |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
+ |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
+ |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
+ |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
+ |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
+ |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
+ |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
+ |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
+ |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
+ |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
+ |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
+ |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
+ |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift|
+ |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors|
+ |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues|
+ |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1|
+ |extendedResultant| |subResultantsChain| |lazyPseudoQuotient|
+ |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric|
+ |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman|
+ |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan|
+ |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson|
+ |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono|
+ |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve|
+ |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable|
+ |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE|
+ |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE|
+ |constantCoefficientRicDE| |changeVar| |ratDsolve|
+ |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
+ |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
+ |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn|
+ |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP|
+ |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp|
+ |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp|
+ |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError|
+ |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString|
+ |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar|
+ |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr|
+ |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger|
+ |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType|
+ |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown|
+ |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?|
+ |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile|
+ |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?|
+ |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop|
+ |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |arity| |getDatabase|
+ |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?|
+ |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex|
+ |min| |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient|
+ |rightRemainder| |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd|
+ |leftExactQuotient| |leftRemainder| |leftQuotient| |times| |apply|
+ |monicLeftDivide| |monicRightDivide| |leftDivide| |rightDivide| |hermiteH|
+ |laguerreL| |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!|
+ |writeByte!| |isOpen?| |outputBinaryFile| |quo| |rem| |div| >= > ~=
+ |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket|
+ |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub|
+ |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?|
+ |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace|
+ |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint|
+ |message| |members| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus|
+ |digits| |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark|
+ |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates|
+ |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult|
+ |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed|
+ |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?|
+ |topPredicate| |setTopPredicate| |patternVariable| |withPredicates|
+ |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?|
+ |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?|
+ |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve|
+ |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages|
+ |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition|
+ |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent|
+ |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints|
+ |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit|
+ |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base|
+ |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
+ |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
+ |charthRoot| |conditionP| |solveLinearPolynomialEquation|
+ |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
+ |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
+ |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
+ |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
+ |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
+ |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
+ |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
+ |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
+ |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
+ |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
+ |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
+ |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
+ |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
+ |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
+ |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
+ |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
+ |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
+ |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
+ |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
+ |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
+ |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
+ |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
+ |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
+ |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
+ |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
+ |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?|
+ |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?|
+ |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and|
+ |merge!| |max| |resultantEuclidean| |semiResultantEuclidean2|
+ |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean|
+ |semiIndiceSubResultantEuclidean| |degreeSubResultant|
+ |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean|
+ |lastSubResultantEuclidean| |semiLastSubResultantEuclidean|
+ |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2|
+ |semiSubResultantGcdEuclidean1| |discriminantEuclidean|
+ |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit|
+ |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard|
+ |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
+ |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
+ |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
+ |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
+ |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
+ |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
+ |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
+ |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
+ |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
+ |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
+ |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
+ |linearPolynomials| |bivariate?| |bivariatePolynomials|
+ |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
+ |interReduce| |roughBasicSet| |crushedSet|
+ |rewriteSetByReducingWithParticularGenerators|
+ |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
+ |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
+ |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
+ |irreducibleFactors| |lazyIrreducibleFactors|
+ |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
+ |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
+ |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
+ |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
+ |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
+ |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
+ |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
+ |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
+ |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
+ |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
+ |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
+ |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
+ |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
+ |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
+ |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
+ |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
+ |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint|
+ |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| =
+ |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector|
+ |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
+ |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
+ |symmetricTensors| |tensorProduct| |permutationRepresentation|
+ |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
+ |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
+ |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues|
+ |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate|
+ |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal|
+ |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue|
+ |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric|
+ |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column|
+ |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex|
+ |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix|
+ |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart|
+ |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right|
+ |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!|
+ |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold|
+ |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
+ |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
+ |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
+ |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
+ |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
+ |subResultantChain| |halfExtendedSubResultantGcd2|
+ |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
+ |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
+ |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
+ |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
+ |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
+ |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
+ |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
+ |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
+ |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
+ |invertibleSet| |invertible?| |invertibleElseSplit?|
+ |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
+ |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
+ |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
+ |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
+ |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
+ |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
+ |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
+ |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
+ |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex|
+ |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
+ |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
+ |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
+ |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?|
+ |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
+ |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
+ |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
+ |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
+ |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
+ |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
+ |stoseIntegralLastSubResultant| |stoseLastSubResultant|
+ |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
+ |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
+ |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
+ |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
+ |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
+ |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence|
+ |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
+ |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature|
+ |signatureAst| |Or| |And| |Not| |xor| |not| |depth| |top| |pop!| |push!|
+ |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix|
+ |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith|
+ |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear|
+ |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic|
+ |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise|
+ |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp|
+ |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve|
+ |curve?| |curve| |point?| |enterPointData| |composites| |components|
+ |numberOfComposites| |numberOfComponents| |create3Space| |parse|
+ |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma|
+ |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi|
+ |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!|
+ |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove|
+ |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!|
+ |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim|
+ |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?|
+ |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber|
+ |numberOfVariables| |algebraicDecompose| |transcendentalDecompose|
+ |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess|
+ |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?|
+ |explicitlyFinite?| |nextItem| |init| |infiniteProduct| |evenInfiniteProduct|
+ |oddInfiniteProduct| |generalInfiniteProduct| |filterUntil| |filterWhile|
+ |generate| |showAll?| |showAllElements| |output| |cons| |delay| |findCycle|
+ |repeating?| |repeating| |exquo| |recip| |integers| |oddintegers| |int|
+ |mapmult| |deriv| |gderiv| |compose| |addiag| |lazyIntegrate| |nlde| |powern|
+ |mapdiv| |lazyGintegrate| |power| |sincos| |sinhcosh| |asin| |acos| |atan|
+ |acot| |asec| |acsc| |sinh| |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh|
+ |atanh| |acoth| |asech| |acsch| |subresultantVector| |primitivePart|
+ |pointData| |parent| |level| |extractProperty| |extractClosed| |extractIndex|
+ |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint|
+ |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy|
+ |numberOfChildren| |children| |child| |birth| |internal?| |root?| |leaf?|
+ |rhs| |lhs| |construct| |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT
+ LT |list| |string| |argscript| |superscript| |subscript| |script| |scripts|
+ |scripted?| |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf|
+ |returnTypeOf| |printHeader| |returnType!| |argumentList!| |endSubProgram|
+ |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
+ |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
+ |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
+ |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
+ |solve| |triangularSystems| |loadNativeModule| |nativeModuleExtension|
+ |hostByteOrder| |hostPlatform| |rootDirectory| |bumprow| |bumptab| |bumptab1|
+ |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
+ |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
+ |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
+ |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
+ |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
+ |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
+ |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
+ |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
+ |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
+ |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
+ |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
+ |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
+ |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
+ |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
+ |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
+ |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
+ |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
+ |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
+ |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
+ |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
+ |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
+ |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
+ |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
+ |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
+ |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction|
+ |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree|
+ |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator|
+ |clearDenominator| |splitDenominator| |monicRightFactorIfCan|
+ |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan|
+ |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce|
+ |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite|
+ |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft|
+ |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP|
+ |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order|
+ |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents|
+ |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm|
+ |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!|
+ |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail|
+ |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert|
+ |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange|
+ |differentiate| |univariatePolynomial| |integrate| ** |polynomial|
+ |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2|
+ |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP
+ LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| -
+ |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show|
+ |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs|
+ |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints|
+ |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface|
+ |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective|
+ |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes|
+ |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options|
+ |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault|
+ |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault|
+ |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault|
+ |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults|
+ |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault|
+ |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst|
+ |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis|
+ |localIntegralBasis| |qualifier| |mainExpression| |condition|
+ |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet|
+ |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree|
+ |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror|
+ |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
+ |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?|
+ |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| *
+ |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve|
+ |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?|
+ |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical|
+ |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 95c377f3..c8e5e086 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5299 +1,5299 @@
-(3195604 . 3443721788)
-((-4073 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-4052 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1849 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 34)) (-1574 (($ $) 59)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4369 (((-563) (-1 (-112) |#2|) $) 22) (((-563) |#2| $) NIL) (((-563) |#2| $ (-563)) 73)) (-2658 (((-640 |#2|) $) 13)) (-4300 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-4347 (($ (-1 |#2| |#2|) $) 29)) (-2238 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3399 (($ |#2| $ (-563)) NIL) (($ $ $ (-563)) 50)) (-1971 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1458 (((-112) (-1 (-112) |#2|) $) 21)) (-2308 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL) (($ $ (-1224 (-563))) 49)) (-2967 (($ $ (-563)) 56) (($ $ (-1224 (-563))) 55)) (-1708 (((-767) (-1 (-112) |#2|) $) 26) (((-767) |#2| $) NIL)) (-4062 (($ $ $ (-563)) 52)) (-1870 (($ $) 51)) (-1706 (($ (-640 |#2|)) 53)) (-2857 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-640 $)) 62)) (-1692 (((-858) $) 69)) (-1471 (((-112) (-1 (-112) |#2|) $) 20)) (-1718 (((-112) $ $) 72)) (-1743 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -4062 (|#1| |#1| |#1| (-563))) (-15 -4073 ((-112) |#1|)) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -2658 ((-640 |#2|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-19 |#2|) (-1208)) (T -18))
+(3185700 . 3444026033)
+((-1883 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1881 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4202 ((|#2| $ (-546) |#2|) NIL) ((|#2| $ (-1223 (-546)) |#2|) 34)) (-2423 (($ $) 59)) (-4257 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3830 (((-546) (-1 (-112) |#2|) $) 22) (((-546) |#2| $) NIL) (((-546) |#2| $ (-546)) 73)) (-2103 (((-637 |#2|) $) 13)) (-3924 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2107 (($ (-1 |#2| |#2|) $) 29)) (-4373 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2428 (($ |#2| $ (-546)) NIL) (($ $ $ (-546)) 50)) (-1431 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2105 (((-112) (-1 (-112) |#2|) $) 21)) (-4214 ((|#2| $ (-546) |#2|) NIL) ((|#2| $ (-546)) NIL) (($ $ (-1223 (-546))) 49)) (-2429 (($ $ (-546)) 56) (($ $ (-1223 (-546))) 55)) (-2104 (((-767) (-1 (-112) |#2|) $) 26) (((-767) |#2| $) NIL)) (-1882 (($ $ $ (-546)) 52)) (-3811 (($ $) 51)) (-3936 (($ (-637 |#2|)) 53)) (-4216 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-637 $)) 62)) (-4361 (((-859) $) 69)) (-2106 (((-112) (-1 (-112) |#2|) $) 20)) (-3444 (((-112) $ $) 72)) (-3074 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -1882 (|#1| |#1| |#1| (-546))) (-15 -1883 ((-112) |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4202 (|#2| |#1| (-1223 (-546)) |#2|)) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4202 (|#2| |#1| (-546) |#2|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2103 ((-637 |#2|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1|))) (-19 |#2|) (-1207)) (T -18))
NIL
-(-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -4062 (|#1| |#1| |#1| (-563))) (-15 -4073 ((-112) |#1|)) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -2658 ((-640 |#2|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-4369 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 70)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-19 |#1|) (-140) (-1208)) (T -19))
+(-10 -8 (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -1882 (|#1| |#1| |#1| (-546))) (-15 -1883 ((-112) |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4202 (|#2| |#1| (-1223 (-546)) |#2|)) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4202 (|#2| |#1| (-546) |#2|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2103 ((-637 |#2|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-3830 (((-546) (-1 (-112) |#1|) $) 97) (((-546) |#1| $) 96 (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) 95 (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 70)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 82 (|has| |#1| (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-19 |#1|) (-140) (-1207)) (T -19))
NIL
-(-13 (-373 |t#1|) (-10 -7 (-6 -4409)))
-(((-34) . T) ((-102) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T))
-((-3905 (((-3 $ "failed") $ $) 12)) (-1825 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-767) $) 16) (($ (-563) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3905 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20))
+(-13 (-372 |t#1|) (-10 -7 (-6 -4409)))
+(((-34) . T) ((-102) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-372 |#1|) . T) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1207) . T))
+((-1397 (((-3 $ "failed") $ $) 12)) (-4252 (($ $) NIL) (($ $ $) 9)) (* (($ (-915) $) NIL) (($ (-767) $) 16) (($ (-546) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -1397 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3905 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20)))
+(-10 -8 (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -1397 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20)))
(((-21) (-140)) (T -21))
-((-1825 (*1 *1 *1) (-4 *1 (-21))) (-1825 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563)))))
-(-13 (-131) (-10 -8 (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 * ($ (-563) $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-3439 (((-112) $) 10)) (-2569 (($) 15)) (* (($ (-917) $) 14) (($ (-767) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2569 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2569 (|#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15)))
+((-4252 (*1 *1 *1) (-4 *1 (-21))) (-4252 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-546)))))
+(-13 (-131) (-10 -8 (-15 -4252 ($ $)) (-15 -4252 ($ $ $)) (-15 * ($ (-546) $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3596 (((-112) $) 10)) (-4139 (($) 15)) (* (($ (-915) $) 14) (($ (-767) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 -4139 (|#1|)) (-15 * (|#1| (-915) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 -4139 (|#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15)))
(((-23) (-140)) (T -23))
-((-2239 (*1 *1) (-4 *1 (-23))) (-2569 (*1 *1) (-4 *1 (-23))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))))
-(-13 (-25) (-10 -8 (-15 (-2239) ($) -2668) (-15 -2569 ($) -2668) (-15 -3439 ((-112) $)) (-15 * ($ (-767) $))))
-(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((* (($ (-917) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13)))
+((-3047 (*1 *1) (-4 *1 (-23))) (-4139 (*1 *1) (-4 *1 (-23))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))))
+(-13 (-25) (-10 -8 (-15 (-3047) ($) -4367) (-15 -4139 ($) -4367) (-15 -3596 ((-112) $)) (-15 * ($ (-767) $))))
+(((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((* (($ (-915) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-915) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13)))
(((-25) (-140)) (T -25))
-((-1813 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))))
-(-13 (-1093) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ (-917) $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2793 (((-640 $) (-948 $)) 29) (((-640 $) (-1165 $)) 16) (((-640 $) (-1165 $) (-1169)) 20)) (-1559 (($ (-948 $)) 27) (($ (-1165 $)) 11) (($ (-1165 $) (-1169)) 54)) (-4249 (((-640 $) (-948 $)) 30) (((-640 $) (-1165 $)) 18) (((-640 $) (-1165 $) (-1169)) 19)) (-3377 (($ (-948 $)) 28) (($ (-1165 $)) 13) (($ (-1165 $) (-1169)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2793 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2793 ((-640 |#1|) (-1165 |#1|))) (-15 -2793 ((-640 |#1|) (-948 |#1|))) (-15 -1559 (|#1| (-1165 |#1|) (-1169))) (-15 -1559 (|#1| (-1165 |#1|))) (-15 -1559 (|#1| (-948 |#1|))) (-15 -4249 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4249 ((-640 |#1|) (-1165 |#1|))) (-15 -4249 ((-640 |#1|) (-948 |#1|))) (-15 -3377 (|#1| (-1165 |#1|) (-1169))) (-15 -3377 (|#1| (-1165 |#1|))) (-15 -3377 (|#1| (-948 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2793 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2793 ((-640 |#1|) (-1165 |#1|))) (-15 -2793 ((-640 |#1|) (-948 |#1|))) (-15 -1559 (|#1| (-1165 |#1|) (-1169))) (-15 -1559 (|#1| (-1165 |#1|))) (-15 -1559 (|#1| (-948 |#1|))) (-15 -4249 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4249 ((-640 |#1|) (-1165 |#1|))) (-15 -4249 ((-640 |#1|) (-948 |#1|))) (-15 -3377 (|#1| (-1165 |#1|) (-1169))) (-15 -3377 (|#1| (-1165 |#1|))) (-15 -3377 (|#1| (-948 |#1|))))
-((-1677 (((-112) $ $) 7)) (-2793 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79)) (-1559 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2185 (($ $) 93)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-4249 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85)) (-3377 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 92)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
+((-4254 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-915)))))
+(-13 (-1094) (-10 -8 (-15 -4254 ($ $ $)) (-15 * ($ (-915) $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-1702 (((-637 $) (-942 $)) 29) (((-637 $) (-1163 $)) 16) (((-637 $) (-1163 $) (-1169)) 20)) (-1290 (($ (-942 $)) 27) (($ (-1163 $)) 11) (($ (-1163 $) (-1169)) 54)) (-1291 (((-637 $) (-942 $)) 30) (((-637 $) (-1163 $)) 18) (((-637 $) (-1163 $) (-1169)) 19)) (-3591 (($ (-942 $)) 28) (($ (-1163 $)) 13) (($ (-1163 $) (-1169)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1702 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1702 ((-637 |#1|) (-1163 |#1|))) (-15 -1702 ((-637 |#1|) (-942 |#1|))) (-15 -1290 (|#1| (-1163 |#1|) (-1169))) (-15 -1290 (|#1| (-1163 |#1|))) (-15 -1290 (|#1| (-942 |#1|))) (-15 -1291 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1291 ((-637 |#1|) (-1163 |#1|))) (-15 -1291 ((-637 |#1|) (-942 |#1|))) (-15 -3591 (|#1| (-1163 |#1|) (-1169))) (-15 -3591 (|#1| (-1163 |#1|))) (-15 -3591 (|#1| (-942 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1702 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1702 ((-637 |#1|) (-1163 |#1|))) (-15 -1702 ((-637 |#1|) (-942 |#1|))) (-15 -1290 (|#1| (-1163 |#1|) (-1169))) (-15 -1290 (|#1| (-1163 |#1|))) (-15 -1290 (|#1| (-942 |#1|))) (-15 -1291 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1291 ((-637 |#1|) (-1163 |#1|))) (-15 -1291 ((-637 |#1|) (-942 |#1|))) (-15 -3591 (|#1| (-1163 |#1|) (-1169))) (-15 -3591 (|#1| (-1163 |#1|))) (-15 -3591 (|#1| (-942 |#1|))))
+((-2953 (((-112) $ $) 7)) (-1702 (((-637 $) (-942 $)) 81) (((-637 $) (-1163 $)) 80) (((-637 $) (-1163 $) (-1169)) 79)) (-1290 (($ (-942 $)) 84) (($ (-1163 $)) 83) (($ (-1163 $) (-1169)) 82)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-3427 (($ $) 93)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-1291 (((-637 $) (-942 $)) 87) (((-637 $) (-1163 $)) 86) (((-637 $) (-1163 $) (-1169)) 85)) (-3591 (($ (-942 $)) 90) (($ (-1163 $)) 89) (($ (-1163 $) (-1169)) 88)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 92)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70) (($ $ (-407 (-546))) 91)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
(((-27) (-140)) (T -27))
-((-3377 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-3377 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-1559 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1)))))
-(-13 (-363) (-998) (-10 -8 (-15 -3377 ($ (-948 $))) (-15 -3377 ($ (-1165 $))) (-15 -3377 ($ (-1165 $) (-1169))) (-15 -4249 ((-640 $) (-948 $))) (-15 -4249 ((-640 $) (-1165 $))) (-15 -4249 ((-640 $) (-1165 $) (-1169))) (-15 -1559 ($ (-948 $))) (-15 -1559 ($ (-1165 $))) (-15 -1559 ($ (-1165 $) (-1169))) (-15 -2793 ((-640 $) (-948 $))) (-15 -2793 ((-640 $) (-1165 $))) (-15 -2793 ((-640 $) (-1165 $) (-1169)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-998) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-2793 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 50) (((-640 $) $) 19) (((-640 $) $ (-1169)) 41)) (-1559 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) 52) (($ $) 17) (($ $ (-1169)) 37)) (-4249 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 48) (((-640 $) $) 15) (((-640 $) $ (-1169)) 43)) (-3377 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) NIL) (($ $) 12) (($ $ (-1169)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2793 ((-640 |#1|) |#1| (-1169))) (-15 -1559 (|#1| |#1| (-1169))) (-15 -2793 ((-640 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -4249 ((-640 |#1|) |#1| (-1169))) (-15 -3377 (|#1| |#1| (-1169))) (-15 -4249 ((-640 |#1|) |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -2793 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2793 ((-640 |#1|) (-1165 |#1|))) (-15 -2793 ((-640 |#1|) (-948 |#1|))) (-15 -1559 (|#1| (-1165 |#1|) (-1169))) (-15 -1559 (|#1| (-1165 |#1|))) (-15 -1559 (|#1| (-948 |#1|))) (-15 -4249 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4249 ((-640 |#1|) (-1165 |#1|))) (-15 -4249 ((-640 |#1|) (-948 |#1|))) (-15 -3377 (|#1| (-1165 |#1|) (-1169))) (-15 -3377 (|#1| (-1165 |#1|))) (-15 -3377 (|#1| (-948 |#1|)))) (-29 |#2|) (-13 (-846) (-555))) (T -28))
-NIL
-(-10 -8 (-15 -2793 ((-640 |#1|) |#1| (-1169))) (-15 -1559 (|#1| |#1| (-1169))) (-15 -2793 ((-640 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -4249 ((-640 |#1|) |#1| (-1169))) (-15 -3377 (|#1| |#1| (-1169))) (-15 -4249 ((-640 |#1|) |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -2793 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2793 ((-640 |#1|) (-1165 |#1|))) (-15 -2793 ((-640 |#1|) (-948 |#1|))) (-15 -1559 (|#1| (-1165 |#1|) (-1169))) (-15 -1559 (|#1| (-1165 |#1|))) (-15 -1559 (|#1| (-948 |#1|))) (-15 -4249 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4249 ((-640 |#1|) (-1165 |#1|))) (-15 -4249 ((-640 |#1|) (-948 |#1|))) (-15 -3377 (|#1| (-1165 |#1|) (-1169))) (-15 -3377 (|#1| (-1165 |#1|))) (-15 -3377 (|#1| (-948 |#1|))))
-((-1677 (((-112) $ $) 7)) (-2793 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79) (((-640 $) $) 125) (((-640 $) $ (-1169)) 123)) (-1559 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82) (($ $) 126) (($ $ (-1169)) 124)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1169)) $) 200)) (-2138 (((-407 (-1165 $)) $ (-609 $)) 232 (|has| |#1| (-555)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-2058 (((-640 (-609 $)) $) 163)) (-3905 (((-3 $ "failed") $ $) 19)) (-4135 (($ $ (-640 (-609 $)) (-640 $)) 153) (($ $ (-640 (-294 $))) 152) (($ $ (-294 $)) 151)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2185 (($ $) 93)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-4249 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85) (((-640 $) $) 129) (((-640 $) $ (-1169)) 127)) (-3377 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88) (($ $) 130) (($ $ (-1169)) 128)) (-2130 (((-3 (-948 |#1|) "failed") $) 250 (|has| |#1| (-1045))) (((-3 (-407 (-948 |#1|)) "failed") $) 234 (|has| |#1| (-555))) (((-3 |#1| "failed") $) 196) (((-3 (-563) "failed") $) 193 (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) 187) (((-3 (-609 $) "failed") $) 138) (((-3 (-407 (-563)) "failed") $) 121 (-4034 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2057 (((-948 |#1|) $) 249 (|has| |#1| (-1045))) (((-407 (-948 |#1|)) $) 233 (|has| |#1| (-555))) ((|#1| $) 195) (((-563) $) 194 (|has| |#1| (-1034 (-563)))) (((-1169) $) 186) (((-609 $) $) 137) (((-407 (-563)) $) 122 (-4034 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3094 (($ $ $) 56)) (-1476 (((-684 |#1|) (-684 $)) 240 (|has| |#1| (-1045))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 239 (|has| |#1| (-1045))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 120 (-4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-2188 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (((-684 (-563)) (-684 $)) 119 (-4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-2188 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 192 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 191 (|has| |#1| (-882 (-563))))) (-3228 (($ (-640 $)) 157) (($ $) 156)) (-2739 (((-640 (-114)) $) 164)) (-2559 (((-114) (-114)) 165)) (-3401 (((-112) $) 31)) (-2959 (((-112) $) 185 (|has| $ (-1034 (-563))))) (-2043 (($ $) 217 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 216 (|has| |#1| (-1045)))) (-2172 (($ $ (-563)) 92)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-2716 (((-1165 $) (-609 $)) 182 (|has| $ (-1045)))) (-3088 (($ $ $) 136)) (-1776 (($ $ $) 135)) (-2238 (($ (-1 $ $) (-609 $)) 171)) (-2751 (((-3 (-609 $) "failed") $) 161)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2126 (((-640 (-609 $)) $) 162)) (-2227 (($ (-114) (-640 $)) 170) (($ (-114) $) 169)) (-3939 (((-3 (-640 $) "failed") $) 211 (|has| |#1| (-1105)))) (-3959 (((-3 (-2 (|:| |val| $) (|:| -3311 (-563))) "failed") $) 220 (|has| |#1| (-1045)))) (-3930 (((-3 (-640 $) "failed") $) 213 (|has| |#1| (-25)))) (-3479 (((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-1169)) 219 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-114)) 218 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $) 212 (|has| |#1| (-1105)))) (-2602 (((-112) $ (-1169)) 168) (((-112) $ (-114)) 167)) (-2687 (($ $) 71)) (-4238 (((-767) $) 160)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 198)) (-2705 ((|#1| $) 199)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2726 (((-112) $ (-1169)) 173) (((-112) $ $) 172)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2969 (((-112) $) 184 (|has| $ (-1034 (-563))))) (-1542 (($ $ (-1169) (-767) (-1 $ $)) 224 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 223 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 222 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 221 (|has| |#1| (-1045))) (($ $ (-640 (-114)) (-640 $) (-1169)) 210 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 209 (|has| |#1| (-611 (-536)))) (($ $) 208 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 207 (|has| |#1| (-611 (-536)))) (($ $ (-1169)) 206 (|has| |#1| (-611 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-640 $))) 180) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 179) (($ $ (-640 (-114)) (-640 (-1 $ $))) 178) (($ $ (-1169) (-1 $ $)) 177) (($ $ (-1169) (-1 $ (-640 $))) 176) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 175) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 174) (($ $ (-640 $) (-640 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-640 (-294 $))) 142) (($ $ (-640 (-609 $)) (-640 $)) 141) (($ $ (-609 $) $) 140)) (-1993 (((-767) $) 59)) (-2308 (($ (-114) (-640 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-2761 (($ $ $) 159) (($ $) 158)) (-4203 (($ $ (-1169)) 248 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 247 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 246 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 245 (|has| |#1| (-1045)))) (-2033 (($ $) 227 (|has| |#1| (-555)))) (-2153 (((-1118 |#1| (-609 $)) $) 226 (|has| |#1| (-555)))) (-3402 (($ $) 183 (|has| $ (-1045)))) (-2219 (((-536) $) 254 (|has| |#1| (-611 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-555))) (((-888 (-379)) $) 190 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 189 (|has| |#1| (-611 (-888 (-563)))))) (-2150 (($ $ $) 253 (|has| |#1| (-473)))) (-1745 (($ $ $) 252 (|has| |#1| (-473)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-948 |#1|)) 251 (|has| |#1| (-1045))) (($ (-407 (-948 |#1|))) 235 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 231 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 230 (|has| |#1| (-555))) (($ (-407 |#1|)) 229 (|has| |#1| (-555))) (($ (-1118 |#1| (-609 $))) 215 (|has| |#1| (-1045))) (($ |#1|) 197) (($ (-1169)) 188) (($ (-609 $)) 139)) (-2047 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3083 (($ (-640 $)) 155) (($ $) 154)) (-2512 (((-112) (-114)) 166)) (-3223 (((-112) $ $) 40)) (-1894 (($ (-1169) (-640 $)) 205) (($ (-1169) $ $ $ $) 204) (($ (-1169) $ $ $) 203) (($ (-1169) $ $) 202) (($ (-1169) $) 201)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1169)) 244 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 243 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 242 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 241 (|has| |#1| (-1045)))) (-1779 (((-112) $ $) 133)) (-1754 (((-112) $ $) 132)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 134)) (-1743 (((-112) $ $) 131)) (-1836 (($ $ $) 66) (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 228 (|has| |#1| (-555)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172)))))
-(((-29 |#1|) (-140) (-13 (-846) (-555))) (T -29))
-((-3377 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-4249 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-3377 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-2793 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-1559 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -3377 ($ $)) (-15 -4249 ((-640 $) $)) (-15 -3377 ($ $ (-1169))) (-15 -4249 ((-640 $) $ (-1169))) (-15 -1559 ($ $)) (-15 -2793 ((-640 $) $)) (-15 -1559 ($ $ (-1169))) (-15 -2793 ((-640 $) $ (-1169)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) . T) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) -4034 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T) ((-1212) . T))
-((-4325 (((-1087 (-225)) $) NIL)) (-4314 (((-1087 (-225)) $) NIL)) (-3998 (($ $ (-225)) 125)) (-4262 (($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563)))) 82)) (-3394 (((-640 (-640 (-939 (-225)))) $) 137)) (-1692 (((-858) $) 149)))
-(((-30) (-13 (-951) (-10 -8 (-15 -4262 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -3998 ($ $ (-225)))))) (T -30))
-((-4262 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169)) (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30)))) (-3998 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
-(-13 (-951) (-10 -8 (-15 -4262 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -3998 ($ $ (-225)))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 11)) (-4212 (((-1128) $) 9)) (-1718 (((-112) $ $) NIL)))
-(((-31) (-13 (-1076) (-10 -8 (-15 -4212 ((-1128) $)) (-15 -3363 ((-1128) $))))) (T -31))
-((-4212 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))))
-(-13 (-1076) (-10 -8 (-15 -4212 ((-1128) $)) (-15 -3363 ((-1128) $))))
-((-3377 ((|#2| (-1165 |#2|) (-1169)) 42)) (-2559 (((-114) (-114)) 55)) (-2716 (((-1165 |#2|) (-609 |#2|)) 133 (|has| |#1| (-1034 (-563))))) (-2990 ((|#2| |#1| (-563)) 123 (|has| |#1| (-1034 (-563))))) (-4273 ((|#2| (-1165 |#2|) |#2|) 29)) (-4284 (((-858) (-640 |#2|)) 82)) (-3402 ((|#2| |#2|) 129 (|has| |#1| (-1034 (-563))))) (-2512 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-563))) 95 (|has| |#1| (-1034 (-563))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3377 (|#2| (-1165 |#2|) (-1169))) (-15 -2559 ((-114) (-114))) (-15 -2512 ((-112) (-114))) (-15 -4273 (|#2| (-1165 |#2|) |#2|)) (-15 -4284 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -2716 ((-1165 |#2|) (-609 |#2|))) (-15 -3402 (|#2| |#2|)) (-15 -2990 (|#2| |#1| (-563)))) |%noBranch|)) (-13 (-846) (-555)) (-430 |#1|)) (T -32))
-((-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555))))) (-3402 (*1 *2 *2) (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))) (-4273 (*1 *2 *3 *2) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555))))))
-(-10 -7 (-15 -3377 (|#2| (-1165 |#2|) (-1169))) (-15 -2559 ((-114) (-114))) (-15 -2512 ((-112) (-114))) (-15 -4273 (|#2| (-1165 |#2|) |#2|)) (-15 -4284 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -2716 ((-1165 |#2|) (-609 |#2|))) (-15 -3402 (|#2| |#2|)) (-15 -2990 (|#2| |#1| (-563)))) |%noBranch|))
-((-3001 (((-112) $ (-767)) 16)) (-2569 (($) 10)) (-2514 (((-112) $ (-767)) 15)) (-2481 (((-112) $ (-767)) 14)) (-2941 (((-112) $ $) 8)) (-1665 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -2569 (|#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))) (-15 -1665 ((-112) |#1|)) (-15 -2941 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2569 (|#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))) (-15 -1665 ((-112) |#1|)) (-15 -2941 ((-112) |#1| |#1|)))
-((-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2514 (((-112) $ (-767)) 9)) (-2481 (((-112) $ (-767)) 10)) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-1870 (($ $) 13)) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+((-3591 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-27)))) (-3591 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-637 *1)))) (-1290 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-1290 (*1 *1 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-27)))) (-1290 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-637 *1)))))
+(-13 (-363) (-998) (-10 -8 (-15 -3591 ($ (-942 $))) (-15 -3591 ($ (-1163 $))) (-15 -3591 ($ (-1163 $) (-1169))) (-15 -1291 ((-637 $) (-942 $))) (-15 -1291 ((-637 $) (-1163 $))) (-15 -1291 ((-637 $) (-1163 $) (-1169))) (-15 -1290 ($ (-942 $))) (-15 -1290 ($ (-1163 $))) (-15 -1290 ($ (-1163 $) (-1169))) (-15 -1702 ((-637 $) (-942 $))) (-15 -1702 ((-637 $) (-1163 $))) (-15 -1702 ((-637 $) (-1163 $) (-1169)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-998) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-1702 (((-637 $) (-942 $)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-1163 $) (-1169)) 50) (((-637 $) $) 19) (((-637 $) $ (-1169)) 41)) (-1290 (($ (-942 $)) NIL) (($ (-1163 $)) NIL) (($ (-1163 $) (-1169)) 52) (($ $) 17) (($ $ (-1169)) 37)) (-1291 (((-637 $) (-942 $)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-1163 $) (-1169)) 48) (((-637 $) $) 15) (((-637 $) $ (-1169)) 43)) (-3591 (($ (-942 $)) NIL) (($ (-1163 $)) NIL) (($ (-1163 $) (-1169)) NIL) (($ $) 12) (($ $ (-1169)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1702 ((-637 |#1|) |#1| (-1169))) (-15 -1290 (|#1| |#1| (-1169))) (-15 -1702 ((-637 |#1|) |#1|)) (-15 -1290 (|#1| |#1|)) (-15 -1291 ((-637 |#1|) |#1| (-1169))) (-15 -3591 (|#1| |#1| (-1169))) (-15 -1291 ((-637 |#1|) |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -1702 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1702 ((-637 |#1|) (-1163 |#1|))) (-15 -1702 ((-637 |#1|) (-942 |#1|))) (-15 -1290 (|#1| (-1163 |#1|) (-1169))) (-15 -1290 (|#1| (-1163 |#1|))) (-15 -1290 (|#1| (-942 |#1|))) (-15 -1291 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1291 ((-637 |#1|) (-1163 |#1|))) (-15 -1291 ((-637 |#1|) (-942 |#1|))) (-15 -3591 (|#1| (-1163 |#1|) (-1169))) (-15 -3591 (|#1| (-1163 |#1|))) (-15 -3591 (|#1| (-942 |#1|)))) (-29 |#2|) (-13 (-846) (-556))) (T -28))
+NIL
+(-10 -8 (-15 -1702 ((-637 |#1|) |#1| (-1169))) (-15 -1290 (|#1| |#1| (-1169))) (-15 -1702 ((-637 |#1|) |#1|)) (-15 -1290 (|#1| |#1|)) (-15 -1291 ((-637 |#1|) |#1| (-1169))) (-15 -3591 (|#1| |#1| (-1169))) (-15 -1291 ((-637 |#1|) |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -1702 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1702 ((-637 |#1|) (-1163 |#1|))) (-15 -1702 ((-637 |#1|) (-942 |#1|))) (-15 -1290 (|#1| (-1163 |#1|) (-1169))) (-15 -1290 (|#1| (-1163 |#1|))) (-15 -1290 (|#1| (-942 |#1|))) (-15 -1291 ((-637 |#1|) (-1163 |#1|) (-1169))) (-15 -1291 ((-637 |#1|) (-1163 |#1|))) (-15 -1291 ((-637 |#1|) (-942 |#1|))) (-15 -3591 (|#1| (-1163 |#1|) (-1169))) (-15 -3591 (|#1| (-1163 |#1|))) (-15 -3591 (|#1| (-942 |#1|))))
+((-2953 (((-112) $ $) 7)) (-1702 (((-637 $) (-942 $)) 81) (((-637 $) (-1163 $)) 80) (((-637 $) (-1163 $) (-1169)) 79) (((-637 $) $) 125) (((-637 $) $ (-1169)) 123)) (-1290 (($ (-942 $)) 84) (($ (-1163 $)) 83) (($ (-1163 $) (-1169)) 82) (($ $) 126) (($ $ (-1169)) 124)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1169)) $) 200)) (-3476 (((-407 (-1163 $)) $ (-608 $)) 232 (|has| |#1| (-556)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1695 (((-637 (-608 $)) $) 163)) (-1397 (((-3 $ "failed") $ $) 19)) (-1699 (($ $ (-637 (-608 $)) (-637 $)) 153) (($ $ (-637 (-293 $))) 152) (($ $ (-293 $)) 151)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-3427 (($ $) 93)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-1291 (((-637 $) (-942 $)) 87) (((-637 $) (-1163 $)) 86) (((-637 $) (-1163 $) (-1169)) 85) (((-637 $) $) 129) (((-637 $) $ (-1169)) 127)) (-3591 (($ (-942 $)) 90) (($ (-1163 $)) 89) (($ (-1163 $) (-1169)) 88) (($ $) 130) (($ $ (-1169)) 128)) (-3565 (((-3 (-942 |#1|) #1="failed") $) 250 (|has| |#1| (-1045))) (((-3 (-407 (-942 |#1|)) #1#) $) 234 (|has| |#1| (-556))) (((-3 |#1| #1#) $) 196) (((-3 (-546) #1#) $) 193 (|has| |#1| (-1034 (-546)))) (((-3 (-1169) #1#) $) 187) (((-3 (-608 $) #1#) $) 138) (((-3 (-407 (-546)) #1#) $) 121 (-3943 (-12 (|has| |#1| (-1034 (-546))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-546))))))) (-3564 (((-942 |#1|) $) 249 (|has| |#1| (-1045))) (((-407 (-942 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-546) $) 194 (|has| |#1| (-1034 (-546)))) (((-1169) $) 186) (((-608 $) $) 137) (((-407 (-546)) $) 122 (-3943 (-12 (|has| |#1| (-1034 (-546))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-546))))))) (-2949 (($ $ $) 56)) (-2408 (((-684 |#1|) (-684 $)) 240 (|has| |#1| (-1045))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 239 (|has| |#1| (-1045))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 120 (-3943 (-3247 (|has| |#1| (-1045)) (|has| |#1| (-636 (-546)))) (-3247 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))) (((-684 (-546)) (-684 $)) 119 (-3943 (-3247 (|has| |#1| (-1045)) (|has| |#1| (-636 (-546)))) (-3247 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 192 (|has| |#1| (-882 (-378)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 191 (|has| |#1| (-882 (-546))))) (-2958 (($ (-637 $)) 157) (($ $) 156)) (-1694 (((-637 (-113)) $) 164)) (-3437 (((-113) (-113)) 165)) (-2552 (((-112) $) 31)) (-3062 (((-112) $) 185 (|has| $ (-1034 (-546))))) (-3386 (($ $) 217 (|has| |#1| (-1045)))) (-3388 (((-1118 |#1| (-608 $)) $) 216 (|has| |#1| (-1045)))) (-3401 (($ $ (-546)) 92)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 53)) (-1692 (((-1163 $) (-608 $)) 182 (|has| $ (-1045)))) (-2919 (($ $ $) 136)) (-3249 (($ $ $) 135)) (-4373 (($ (-1 $ $) (-608 $)) 171)) (-1697 (((-3 (-608 $) "failed") $) 161)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-1696 (((-637 (-608 $)) $) 162)) (-2363 (($ (-113) (-637 $)) 170) (($ (-113) $) 169)) (-3212 (((-3 (-637 $) #3="failed") $) 211 (|has| |#1| (-1105)))) (-3214 (((-3 (-2 (|:| |val| $) (|:| -2543 (-546))) #3#) $) 220 (|has| |#1| (-1045)))) (-3211 (((-3 (-637 $) #3#) $) 213 (|has| |#1| (-25)))) (-1948 (((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 $))) #3#) $) 214 (|has| |#1| (-25)))) (-3213 (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $ (-1169)) 219 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $ (-113)) 218 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $) 212 (|has| |#1| (-1105)))) (-3020 (((-112) $ (-1169)) 168) (((-112) $ (-113)) 167)) (-2785 (($ $) 71)) (-2988 (((-767) $) 160)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 198)) (-1950 ((|#1| $) 199)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1693 (((-112) $ (-1169)) 173) (((-112) $ $) 172)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-3063 (((-112) $) 184 (|has| $ (-1034 (-546))))) (-4182 (($ $ (-1169) (-767) (-1 $ $)) 224 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-637 $))) 223 (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ (-637 $)))) 222 (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ $))) 221 (|has| |#1| (-1045))) (($ $ (-637 (-113)) (-637 $) (-1169)) 210 (|has| |#1| (-611 (-535)))) (($ $ (-113) $ (-1169)) 209 (|has| |#1| (-611 (-535)))) (($ $) 208 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-1169))) 207 (|has| |#1| (-611 (-535)))) (($ $ (-1169)) 206 (|has| |#1| (-611 (-535)))) (($ $ (-113) (-1 $ $)) 181) (($ $ (-113) (-1 $ (-637 $))) 180) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) 179) (($ $ (-637 (-113)) (-637 (-1 $ $))) 178) (($ $ (-1169) (-1 $ $)) 177) (($ $ (-1169) (-1 $ (-637 $))) 176) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) 175) (($ $ (-637 (-1169)) (-637 (-1 $ $))) 174) (($ $ (-637 $) (-637 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-637 (-293 $))) 142) (($ $ (-637 (-608 $)) (-637 $)) 141) (($ $ (-608 $) $) 140)) (-1739 (((-767) $) 59)) (-4214 (($ (-113) (-637 $)) 150) (($ (-113) $ $ $ $) 149) (($ (-113) $ $ $) 148) (($ (-113) $ $) 147) (($ (-113) $) 146)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-1698 (($ $ $) 159) (($ $) 158)) (-4225 (($ $ (-1169)) 248 (|has| |#1| (-1045))) (($ $ (-637 (-1169))) 247 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 246 (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) 245 (|has| |#1| (-1045)))) (-3385 (($ $) 227 (|has| |#1| (-556)))) (-3387 (((-1118 |#1| (-608 $)) $) 226 (|has| |#1| (-556)))) (-3593 (($ $) 183 (|has| $ (-1045)))) (-4385 (((-535) $) 254 (|has| |#1| (-611 (-535)))) (($ (-405 $)) 225 (|has| |#1| (-556))) (((-886 (-378)) $) 190 (|has| |#1| (-611 (-886 (-378))))) (((-886 (-546)) $) 189 (|has| |#1| (-611 (-886 (-546)))))) (-3399 (($ $ $) 253 (|has| |#1| (-473)))) (-2735 (($ $ $) 252 (|has| |#1| (-473)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ (-942 |#1|)) 251 (|has| |#1| (-1045))) (($ (-407 (-942 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-942 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-942 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1118 |#1| (-608 $))) 215 (|has| |#1| (-1045))) (($ |#1|) 197) (($ (-1169)) 188) (($ (-608 $)) 139)) (-3091 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-2975 (($ (-637 $)) 155) (($ $) 154)) (-2384 (((-112) (-113)) 166)) (-2219 (((-112) $ $) 40)) (-1949 (($ (-1169) (-637 $)) 205) (($ (-1169) $ $ $ $) 204) (($ (-1169) $ $ $) 203) (($ (-1169) $ $) 202) (($ (-1169) $) 201)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1169)) 244 (|has| |#1| (-1045))) (($ $ (-637 (-1169))) 243 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 242 (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) 241 (|has| |#1| (-1045)))) (-2951 (((-112) $ $) 133)) (-2952 (((-112) $ $) 132)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 134)) (-3074 (((-112) $ $) 131)) (-4364 (($ $ $) 66) (($ (-1118 |#1| (-608 $)) (-1118 |#1| (-608 $))) 228 (|has| |#1| (-556)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70) (($ $ (-407 (-546))) 91)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172)))))
+(((-29 |#1|) (-140) (-13 (-846) (-556))) (T -29))
+((-3591 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))) (-1291 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *3)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *4)))) (-1290 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))) (-1702 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *3)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556))))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-421 |t#1|) (-10 -8 (-15 -3591 ($ $)) (-15 -1291 ((-637 $) $)) (-15 -3591 ($ $ (-1169))) (-15 -1291 ((-637 $) $ (-1169))) (-15 -1290 ($ $)) (-15 -1702 ((-637 $) $)) (-15 -1290 ($ $ (-1169))) (-15 -1702 ((-637 $) $ (-1169)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) . T) ((-613 #2=(-407 (-942 |#1|))) |has| |#1| (-556)) ((-613 (-546)) . T) ((-613 #3=(-608 $)) . T) ((-613 #4=(-942 |#1|)) |has| |#1| (-1045)) ((-613 #5=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-611 (-886 (-378))) |has| |#1| (-611 (-886 (-378)))) ((-611 (-886 (-546))) |has| |#1| (-611 (-886 (-546)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-298) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-412 |#1|) . T) ((-421 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-608 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-643 #1#) . T) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) . T) ((-636 (-546)) -12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #1#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-378)) |has| |#1| (-882 (-378))) ((-882 (-546)) |has| |#1| (-882 (-546))) ((-880 |#1|) . T) ((-917) . T) ((-998) . T) ((-1034 (-407 (-546))) -3943 (|has| |#1| (-1034 (-407 (-546)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))))) ((-1034 #2#) |has| |#1| (-556)) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 #3#) . T) ((-1034 #4#) |has| |#1| (-1045)) ((-1034 #5#) . T) ((-1034 |#1|) . T) ((-1051 #1#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1207) . T) ((-1212) . T))
+((-3286 (((-1082 (-225)) $) NIL)) (-3287 (((-1082 (-225)) $) NIL)) (-3526 (($ $ (-225)) 125)) (-1292 (($ (-942 (-546)) (-1169) (-1169) (-1082 (-407 (-546))) (-1082 (-407 (-546)))) 82)) (-3288 (((-637 (-637 (-939 (-225)))) $) 137)) (-4361 (((-859) $) 149)))
+(((-30) (-13 (-951) (-10 -8 (-15 -1292 ($ (-942 (-546)) (-1169) (-1169) (-1082 (-407 (-546))) (-1082 (-407 (-546))))) (-15 -3526 ($ $ (-225)))))) (T -30))
+((-1292 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-942 (-546))) (-5 *3 (-1169)) (-5 *4 (-1082 (-407 (-546)))) (-5 *1 (-30)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
+(-13 (-951) (-10 -8 (-15 -1292 ($ (-942 (-546)) (-1169) (-1169) (-1082 (-407 (-546))) (-1082 (-407 (-546))))) (-15 -3526 ($ $ (-225)))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 11)) (-3083 (((-1128) $) 9)) (-3444 (((-112) $ $) NIL)))
+(((-31) (-13 (-1076) (-10 -8 (-15 -3083 ((-1128) $)) (-15 -3641 ((-1128) $))))) (T -31))
+((-3083 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))))
+(-13 (-1076) (-10 -8 (-15 -3083 ((-1128) $)) (-15 -3641 ((-1128) $))))
+((-3591 ((|#2| (-1163 |#2|) (-1169)) 42)) (-3437 (((-113) (-113)) 55)) (-1692 (((-1163 |#2|) (-608 |#2|)) 133 (|has| |#1| (-1034 (-546))))) (-1295 ((|#2| |#1| (-546)) 123 (|has| |#1| (-1034 (-546))))) (-1293 ((|#2| (-1163 |#2|) |#2|) 29)) (-1294 (((-859) (-637 |#2|)) 82)) (-3593 ((|#2| |#2|) 129 (|has| |#1| (-1034 (-546))))) (-2384 (((-112) (-113)) 17)) (** ((|#2| |#2| (-407 (-546))) 95 (|has| |#1| (-1034 (-546))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3591 (|#2| (-1163 |#2|) (-1169))) (-15 -3437 ((-113) (-113))) (-15 -2384 ((-112) (-113))) (-15 -1293 (|#2| (-1163 |#2|) |#2|)) (-15 -1294 ((-859) (-637 |#2|))) (IF (|has| |#1| (-1034 (-546))) (PROGN (-15 ** (|#2| |#2| (-407 (-546)))) (-15 -1692 ((-1163 |#2|) (-608 |#2|))) (-15 -3593 (|#2| |#2|)) (-15 -1295 (|#2| |#1| (-546)))) |%noBranch|)) (-13 (-846) (-556)) (-421 |#1|)) (T -32))
+((-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-556))))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-1034 (-546))) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-421 *3)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-608 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1034 (-546))) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-1163 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-546))) (-4 *4 (-1034 (-546))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))) (-1293 (*1 *2 *3 *2) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-32 *4 *2)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-421 *3)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *2)) (-5 *4 (-1169)) (-4 *2 (-421 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-556))))))
+(-10 -7 (-15 -3591 (|#2| (-1163 |#2|) (-1169))) (-15 -3437 ((-113) (-113))) (-15 -2384 ((-112) (-113))) (-15 -1293 (|#2| (-1163 |#2|) |#2|)) (-15 -1294 ((-859) (-637 |#2|))) (IF (|has| |#1| (-1034 (-546))) (PROGN (-15 ** (|#2| |#2| (-407 (-546)))) (-15 -1692 ((-1163 |#2|) (-608 |#2|))) (-15 -3593 (|#2| |#2|)) (-15 -1295 (|#2| |#1| (-546)))) |%noBranch|))
+((-1296 (((-112) $ (-767)) 16)) (-4139 (($) 10)) (-4134 (((-112) $ (-767)) 15)) (-4131 (((-112) $ (-767)) 14)) (-1297 (((-112) $ $) 8)) (-3814 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -4139 (|#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))) (-15 -3814 ((-112) |#1|)) (-15 -1297 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -4139 (|#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))) (-15 -3814 ((-112) |#1|)) (-15 -1297 ((-112) |#1| |#1|)))
+((-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-4134 (((-112) $ (-767)) 9)) (-4131 (((-112) $ (-767)) 10)) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-3811 (($ $) 13)) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-34) (-140)) (T -34))
-((-2941 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1870 (*1 *1 *1) (-4 *1 (-34))) (-3445 (*1 *1) (-4 *1 (-34))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2481 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-2514 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-3001 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-2569 (*1 *1) (-4 *1 (-34))) (-3610 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767)))))
-(-13 (-1208) (-10 -8 (-15 -2941 ((-112) $ $)) (-15 -1870 ($ $)) (-15 -3445 ($)) (-15 -1665 ((-112) $)) (-15 -2481 ((-112) $ (-767))) (-15 -2514 ((-112) $ (-767))) (-15 -3001 ((-112) $ (-767))) (-15 -2569 ($) -2668) (IF (|has| $ (-6 -4408)) (-15 -3610 ((-767) $)) |%noBranch|)))
-(((-1208) . T))
-((-1839 (($ $) 11)) (-1816 (($ $) 10)) (-1861 (($ $) 9)) (-1311 (($ $) 8)) (-1850 (($ $) 7)) (-1828 (($ $) 6)))
+((-1297 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3811 (*1 *1 *1) (-4 *1 (-34))) (-3979 (*1 *1) (-4 *1 (-34))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4131 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-4134 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-1296 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-4139 (*1 *1) (-4 *1 (-34))) (-4372 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767)))))
+(-13 (-1207) (-10 -8 (-15 -1297 ((-112) $ $)) (-15 -3811 ($ $)) (-15 -3979 ($)) (-15 -3814 ((-112) $)) (-15 -4131 ((-112) $ (-767))) (-15 -4134 ((-112) $ (-767))) (-15 -1296 ((-112) $ (-767))) (-15 -4139 ($) -4367) (IF (|has| $ (-6 -4408)) (-15 -4372 ((-767) $)) |%noBranch|)))
+(((-1207) . T))
+((-3904 (($ $) 11)) (-3902 (($ $) 10)) (-3906 (($ $) 9)) (-3907 (($ $) 8)) (-3905 (($ $) 7)) (-3903 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-1839 (*1 *1 *1) (-4 *1 (-35))) (-1816 (*1 *1 *1) (-4 *1 (-35))) (-1861 (*1 *1 *1) (-4 *1 (-35))) (-1311 (*1 *1 *1) (-4 *1 (-35))) (-1850 (*1 *1 *1) (-4 *1 (-35))) (-1828 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -1828 ($ $)) (-15 -1850 ($ $)) (-15 -1311 ($ $)) (-15 -1861 ($ $)) (-15 -1816 ($ $)) (-15 -1839 ($ $))))
-((-1677 (((-112) $ $) 19 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2618 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 125)) (-3446 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 148)) (-4303 (($ $) 146)) (-1551 (($) 72) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 71)) (-2208 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409))) (((-1262) $ (-563) (-563)) 178 (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 159 (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4052 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 200 (|has| $ (-6 -4409))) (($ $) 199 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3001 (((-112) $ (-767)) 8)) (-2336 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 134 (|has| $ (-6 -4409)))) (-1909 (($ $ $) 155 (|has| $ (-6 -4409)))) (-1898 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 157 (|has| $ (-6 -4409)))) (-1919 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 153 (|has| $ (-6 -4409)))) (-1849 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 189 (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-1224 (-563)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 160 (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "last" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 158 (|has| $ (-6 -4409))) (($ $ "rest" $) 156 (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "first" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 154 (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "value" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 133 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 132 (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 45 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 216)) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 55 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 175 (|has| $ (-6 -4408)))) (-3435 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 147)) (-1576 (((-3 |#2| "failed") |#1| $) 61)) (-2569 (($) 7 T CONST)) (-1574 (($ $) 201 (|has| $ (-6 -4409)))) (-4383 (($ $) 211)) (-3793 (($ $ (-767)) 142) (($ $) 140)) (-4194 (($ $) 214 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-3814 (($ $) 58 (-4034 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))) (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 220) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 215 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 54 (|has| $ (-6 -4408))) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 174 (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 52 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 176 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 173 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 172 (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 190 (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) 88) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) 188)) (-1966 (((-112) $) 192)) (-4369 (((-563) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 208) (((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 207 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) (((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) 206 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-640 |#2|) $) 79 (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 114 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 123)) (-2358 (((-112) $ $) 131 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1565 (($ (-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 169)) (-2514 (((-112) $ (-767)) 9)) (-2236 ((|#1| $) 96 (|has| |#1| (-846))) (((-563) $) 180 (|has| (-563) (-846)))) (-3088 (($ $ $) 198 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4265 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4300 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-640 |#2|) $) 80 (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 115 (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-2251 ((|#1| $) 95 (|has| |#1| (-846))) (((-563) $) 181 (|has| (-563) (-846)))) (-1776 (($ $ $) 197 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 110 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 109)) (-3652 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 225)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 128)) (-1298 (((-112) $) 124)) (-3854 (((-1151) $) 22 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1481 (($ $ (-767)) 145) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 143)) (-1304 (((-640 |#1|) $) 63)) (-2305 (((-112) |#1| $) 64)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 39)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 40) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) 219) (($ $ $ (-563)) 218)) (-3399 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) 162) (($ $ $ (-563)) 161)) (-2272 (((-640 |#1|) $) 93) (((-640 (-563)) $) 183)) (-2282 (((-112) |#1| $) 92) (((-112) (-563) $) 184)) (-1693 (((-1113) $) 21 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-3782 ((|#2| $) 97 (|has| |#1| (-846))) (($ $ (-767)) 139) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 137)) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 51) (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 171)) (-2221 (($ $ |#2|) 98 (|has| $ (-6 -4409))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 179 (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 41)) (-1976 (((-112) $) 191)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 112 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 121 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 120 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 119 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) 118 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 182 (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2295 (((-640 |#2|) $) 91) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 185)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 187) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) 186) (($ $ (-1224 (-563))) 165) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "first") 138) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "value") 126)) (-2379 (((-563) $ $) 129)) (-3863 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 48)) (-3690 (($ $ (-563)) 222) (($ $ (-1224 (-563))) 221)) (-2967 (($ $ (-563)) 164) (($ $ (-1224 (-563))) 163)) (-2889 (((-112) $) 127)) (-1951 (($ $) 151)) (-1930 (($ $) 152 (|has| $ (-6 -4409)))) (-1961 (((-767) $) 150)) (-1970 (($ $) 149)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 113 (|has| $ (-6 -4408)))) (-4062 (($ $ $ (-563)) 202 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536)))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 50) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 170)) (-1941 (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 224) (($ $ $) 223)) (-2857 (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 168) (($ (-640 $)) 167) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 136) (($ $ $) 135)) (-1692 (((-858) $) 18 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858)))))) (-4345 (((-640 $) $) 122)) (-2367 (((-112) $ $) 130 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 42)) (-1491 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") |#1| $) 108)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 111 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 195 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1754 (((-112) $ $) 194 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1718 (((-112) $ $) 20 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1766 (((-112) $ $) 196 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1743 (((-112) $ $) 193 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-36 |#1| |#2|) (-140) (-1093) (-1093)) (T -36))
-((-1491 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| -2387 *3) (|:| -2556 *4))))))
-(-13 (-1184 |t#1| |t#2|) (-661 (-2 (|:| -2387 |t#1|) (|:| -2556 |t#2|))) (-10 -8 (-15 -1491 ((-3 (-2 (|:| -2387 |t#1|) (|:| -2556 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((-102) -4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846))) ((-610 (-858)) -4034 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858)))) ((-151 #1=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-563) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-601 #2# #1#) . T) ((-601 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-646 #1#) . T) ((-661 #1#) . T) ((-846) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)) ((-1006 #1#) . T) ((-1093) -4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846))) ((-1142 #1#) . T) ((-1184 |#1| |#2|) . T) ((-1208) . T) ((-1245 #1#) . T))
-((-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-38 |#2|) (-172)) (T -37))
-NIL
-(-10 -8 (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3904 (*1 *1 *1) (-4 *1 (-35))) (-3902 (*1 *1 *1) (-4 *1 (-35))) (-3906 (*1 *1 *1) (-4 *1 (-35))) (-3907 (*1 *1 *1) (-4 *1 (-35))) (-3905 (*1 *1 *1) (-4 *1 (-35))) (-3903 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3903 ($ $)) (-15 -3905 ($ $)) (-15 -3907 ($ $)) (-15 -3906 ($ $)) (-15 -3902 ($ $)) (-15 -3904 ($ $))))
+((-2953 (((-112) $ $) 19 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3813 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 125)) (-4209 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 148)) (-4211 (($ $) 146)) (-4012 (($) 72) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 71)) (-2351 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409))) (((-1262) $ (-546) (-546)) 178 (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 159 (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-1881 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 200 (|has| $ (-6 -4409))) (($ $) 199 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-1296 (((-112) $ (-767)) 8)) (-3415 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 134 (|has| $ (-6 -4409)))) (-4201 (($ $ $) 155 (|has| $ (-6 -4409)))) (-4200 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 157 (|has| $ (-6 -4409)))) (-4203 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 153 (|has| $ (-6 -4409)))) (-4202 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 189 (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-1223 (-546)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 160 (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #1="last" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 158 (|has| $ (-6 -4409))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #3="first" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 154 (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #4="value" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 133 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 132 (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 45 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 216)) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 55 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 175 (|has| $ (-6 -4408)))) (-4210 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 147)) (-2360 (((-3 |#2| #5="failed") |#1| $) 61)) (-4139 (($) 7 T CONST)) (-2423 (($ $) 201 (|has| $ (-6 -4409)))) (-2424 (($ $) 211)) (-4213 (($ $ (-767)) 142) (($ $) 140)) (-2505 (($ $) 214 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1430 (($ $) 58 (-3943 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))) (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 220) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 215 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 54 (|has| $ (-6 -4408))) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 174 (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 56 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 52 (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 176 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 173 (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 172 (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 190 (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) 88) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) 188)) (-3853 (((-112) $) 192)) (-3830 (((-546) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 208) (((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 207 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) (((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) 206 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-637 |#2|) $) 79 (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 114 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 123)) (-3417 (((-112) $ $) 131 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-4029 (($ (-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 169)) (-4134 (((-112) $ (-767)) 9)) (-2353 ((|#1| $) 96 (|has| |#1| (-846))) (((-546) $) 180 (|has| (-546) (-846)))) (-2919 (($ $ $) 198 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3248 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3924 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-637 |#2|) $) 80 (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 115 (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408)))) (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))))) (-2354 ((|#1| $) 95 (|has| |#1| (-846))) (((-546) $) 181 (|has| (-546) (-846)))) (-3249 (($ $ $) 197 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 110 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 109)) (-3948 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 225)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 128)) (-3933 (((-112) $) 124)) (-3650 (((-1151) $) 22 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-4212 (($ $ (-767)) 145) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 143)) (-2795 (((-637 |#1|) $) 63)) (-2361 (((-112) |#1| $) 64)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 39)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 40) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) 219) (($ $ $ (-546)) 218)) (-2428 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) 162) (($ $ $ (-546)) 161)) (-2356 (((-637 |#1|) $) 93) (((-637 (-546)) $) 183)) (-2357 (((-112) |#1| $) 92) (((-112) (-546) $) 184)) (-3651 (((-1113) $) 21 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-4215 ((|#2| $) 97 (|has| |#1| (-846))) (($ $ (-767)) 139) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 137)) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 51) (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #6#) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 171)) (-2352 (($ $ |#2|) 98 (|has| $ (-6 -4409))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 179 (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 41)) (-3854 (((-112) $) 191)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 112 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) 26 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 25 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 24 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 23 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 121 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 120 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 119 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) 118 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 182 (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-2358 (((-637 |#2|) $) 91) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 185)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 187) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) 186) (($ $ (-1223 (-546))) 165) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #3#) 138) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #4#) 126)) (-3419 (((-546) $ $) 129)) (-1557 (($) 49) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 48)) (-1667 (($ $ (-546)) 222) (($ $ (-1223 (-546))) 221)) (-2429 (($ $ (-546)) 164) (($ $ (-1223 (-546))) 163)) (-4048 (((-112) $) 127)) (-4206 (($ $) 151)) (-4204 (($ $) 152 (|has| $ (-6 -4409)))) (-4207 (((-767) $) 150)) (-4208 (($ $) 149)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 113 (|has| $ (-6 -4408)))) (-1882 (($ $ $ (-546)) 202 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535)))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 50) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 170)) (-4205 (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 224) (($ $ $) 223)) (-4216 (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 168) (($ (-637 $)) 167) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 136) (($ $ $) 135)) (-4361 (((-859) $) 18 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859)))))) (-3928 (((-637 $) $) 122)) (-3418 (((-112) $ $) 130 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 42)) (-1298 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") |#1| $) 108)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 111 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 195 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2952 (((-112) $ $) 194 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3444 (((-112) $ $) 20 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3073 (((-112) $ $) 196 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3074 (((-112) $ $) 193 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-36 |#1| |#2|) (-140) (-1094) (-1094)) (T -36))
+((-1298 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -4275 *3) (|:| -2233 *4))))))
+(-13 (-1184 |t#1| |t#2|) (-661 (-2 (|:| -4275 |t#1|) (|:| -2233 |t#2|))) (-10 -8 (-15 -1298 ((-3 (-2 (|:| -4275 |t#1|) (|:| -2233 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((-102) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)) (|has| |#2| (-1094))) ((-610 (-859)) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-1094)) (|has| |#2| (-610 (-859)))) ((-151 #2=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((-611 (-535)) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))) ((-229 #1#) . T) ((-235 #1#) . T) ((-286 #3=(-546) #2#) . T) ((-286 |#1| |#2|) . T) ((-288 #3# #2#) . T) ((-288 |#1| |#2|) . T) ((-309 #2#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #2#) . T) ((-372 #2#) . T) ((-489 #2#) . T) ((-489 |#2|) . T) ((-601 #3# #2#) . T) ((-601 |#1| |#2|) . T) ((-514 #2# #2#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-607 |#1| |#2|) . T) ((-646 #2#) . T) ((-661 #2#) . T) ((-846) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)) ((-1006 #2#) . T) ((-1094) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)) (|has| |#2| (-1094))) ((-1142 #2#) . T) ((-1184 |#1| |#2|) . T) ((-1207) . T) ((-1245 #2#) . T))
+((-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-38 |#2|) (-172)) (T -37))
+NIL
+(-10 -8 (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-38 |#1|) (-140) (-172)) (T -38))
NIL
(-13 (-1045) (-713 |t#1|) (-613 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1792 (((-418 |#1|) |#1|) 41)) (-2173 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-640 (-48))) 33)) (-2951 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -2173 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -1792 ((-418 |#1|) |#1|)) (-15 -2951 ((-112) |#1|))) (-1233 (-48))) (T -39))
-((-2951 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-1792 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))))
-(-10 -7 (-15 -2173 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -1792 ((-418 |#1|) |#1|)) (-15 -2951 ((-112) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2535 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3231 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3211 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3340 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-1731 (((-407 |#2|) $) NIL)) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2802 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2003 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3750 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1432 (((-112)) NIL)) (-1421 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-3458 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 57) (($ (-1257 |#2|) |#2|) 125)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3094 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3330 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-1339 (((-1257 $) (-1257 $)) NIL)) (-2444 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2443 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-1465 (((-112) |#1| |#1|) NIL)) (-2521 (((-917)) NIL)) (-1690 (($) NIL (|has| (-407 |#2|) (-368)))) (-1409 (((-112)) NIL)) (-1398 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3054 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-4151 (($ $) NIL)) (-4036 (($) NIL (|has| (-407 |#2|) (-349)))) (-1656 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3188 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-2560 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1775 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-3401 (((-112) $) NIL)) (-1419 (((-767)) NIL)) (-1349 (((-1257 $) (-1257 $)) 102)) (-3975 (((-407 |#2|) $) NIL)) (-2454 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4035 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3990 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3854 (((-1151) $) NIL)) (-1635 (((-1262) (-767)) 79)) (-2546 (((-684 (-407 |#2|))) 51)) (-1319 (((-684 (-407 |#2|))) 44)) (-2687 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2510 (($ (-1257 |#2|) |#2|) 126)) (-1308 (((-684 (-407 |#2|))) 45)) (-1330 (((-684 (-407 |#2|))) 43)) (-2499 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2524 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 64)) (-1387 (((-1257 $)) 42)) (-3608 (((-1257 $)) 41)) (-1377 (((-112) $) NIL)) (-1368 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2522 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2552 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-2477 (((-3 |#2| "failed")) NIL)) (-1693 (((-1113) $) NIL)) (-1486 (((-767)) NIL)) (-4334 (($) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-3551 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2173 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3012 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1993 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-2308 ((|#1| $ |#1| |#1|) NIL)) (-2489 (((-3 |#2| "failed")) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1623 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 39)) (-3196 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3388 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3402 ((|#3|) 50)) (-1586 (($) NIL (|has| (-407 |#2|) (-349)))) (-3759 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 58) (((-684 (-407 |#2|)) (-1257 $)) 103)) (-2219 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-1359 (((-1257 $) (-1257 $)) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-4034 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2047 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1892 ((|#3| $) NIL)) (-3914 (((-767)) NIL)) (-1452 (((-112)) 37)) (-1443 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-4013 (((-1257 $)) 93)) (-3223 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2465 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1475 (((-112)) NIL)) (-2239 (($) 16 T CONST)) (-2253 (($) 26 T CONST)) (-3213 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-1262) (-767))))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) |#3|) (T -40))
-((-1635 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6))))
-(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-1262) (-767)))))
-((-1649 ((|#2| |#2|) 48)) (-2448 ((|#2| |#2|) 121 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-2437 ((|#2| |#2|) 86 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-2425 ((|#2| |#2|) 87 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-2458 ((|#2| (-114) |#2| (-767)) 117 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-2414 (((-1165 |#2|) |#2|) 45)) (-2402 ((|#2| |#2| (-640 (-609 |#2|))) 18) ((|#2| |#2| (-640 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1649 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -2402 (|#2| |#2| (-640 |#2|))) (-15 -2402 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -2414 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2425 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2458 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-555) (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 |#1| (-609 $)) $)) (-15 -2153 ((-1118 |#1| (-609 $)) $)) (-15 -1692 ($ (-1118 |#1| (-609 $))))))) (T -41))
-((-2458 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *5 (-609 $)) $)) (-15 -2153 ((-1118 *5 (-609 $)) $)) (-15 -1692 ($ (-1118 *5 (-609 $))))))))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2153 ((-1118 *4 (-609 $)) $)) (-15 -1692 ($ (-1118 *4 (-609 $))))))))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-609 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2153 ((-1118 *4 (-609 $)) $)) (-15 -1692 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2153 ((-1118 *4 (-609 $)) $)) (-15 -1692 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-2402 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2153 ((-1118 *3 (-609 $)) $)) (-15 -1692 ($ (-1118 *3 (-609 $))))))))))
-(-10 -7 (-15 -1649 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -2402 (|#2| |#2| (-640 |#2|))) (-15 -2402 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -2414 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2425 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2458 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2173 (((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))) 23) (((-418 |#3|) |#3| (-640 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2173 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))))) (-846) (-789) (-945 (-48) |#2| |#1|)) (T -42))
-((-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2173 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48)))))
-((-2825 (((-767) |#2|) 65)) (-2561 (((-767) |#2|) 68)) (-1489 (((-640 |#2|)) 33)) (-2470 (((-767) |#2|) 67)) (-2570 (((-767) |#2|) 64)) (-2837 (((-767) |#2|) 66)) (-1468 (((-640 (-684 |#1|))) 60)) (-1412 (((-640 |#2|)) 55)) (-1390 (((-640 |#2|) |#2|) 43)) (-1435 (((-640 |#2|)) 57)) (-1424 (((-640 |#2|)) 56)) (-1455 (((-640 (-684 |#1|))) 48)) (-1401 (((-640 |#2|)) 54)) (-1380 (((-640 |#2|) |#2|) 42)) (-1369 (((-640 |#2|)) 50)) (-1478 (((-640 (-684 |#1|))) 61)) (-1446 (((-640 |#2|)) 59)) (-4013 (((-1257 |#2|) (-1257 |#2|)) 83 (|has| |#1| (-307)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -2470 ((-767) |#2|)) (-15 -2561 ((-767) |#2|)) (-15 -2570 ((-767) |#2|)) (-15 -2825 ((-767) |#2|)) (-15 -2837 ((-767) |#2|)) (-15 -1369 ((-640 |#2|))) (-15 -1380 ((-640 |#2|) |#2|)) (-15 -1390 ((-640 |#2|) |#2|)) (-15 -1401 ((-640 |#2|))) (-15 -1412 ((-640 |#2|))) (-15 -1424 ((-640 |#2|))) (-15 -1435 ((-640 |#2|))) (-15 -1446 ((-640 |#2|))) (-15 -1455 ((-640 (-684 |#1|)))) (-15 -1468 ((-640 (-684 |#1|)))) (-15 -1478 ((-640 (-684 |#1|)))) (-15 -1489 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -4013 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|)) (-555) (-417 |#1|)) (T -43))
-((-4013 (*1 *2 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-43 *3 *4)))) (-1489 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1478 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1468 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1455 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1446 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1435 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1424 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1412 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1401 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1390 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1369 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2837 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2570 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
-(-10 -7 (-15 -2470 ((-767) |#2|)) (-15 -2561 ((-767) |#2|)) (-15 -2570 ((-767) |#2|)) (-15 -2825 ((-767) |#2|)) (-15 -2837 ((-767) |#2|)) (-15 -1369 ((-640 |#2|))) (-15 -1380 ((-640 |#2|) |#2|)) (-15 -1390 ((-640 |#2|) |#2|)) (-15 -1401 ((-640 |#2|))) (-15 -1412 ((-640 |#2|))) (-15 -1424 ((-640 |#2|))) (-15 -1435 ((-640 |#2|))) (-15 -1446 ((-640 |#2|))) (-15 -1455 ((-640 (-684 |#1|)))) (-15 -1468 ((-640 (-684 |#1|)))) (-15 -1478 ((-640 (-684 |#1|)))) (-15 -1489 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -4013 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3245 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3749 (((-1257 (-684 |#1|)) (-1257 $)) NIL) (((-1257 (-684 |#1|))) 24)) (-4039 (((-1257 $)) 51)) (-2569 (($) NIL T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-1914 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-3410 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-4017 ((|#1| $) NIL)) (-3386 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-3342 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-2214 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-3376 (($ $ (-917)) NIL)) (-3995 ((|#1| $) NIL)) (-1938 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-3436 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-3973 (((-1165 |#1|) $) NIL)) (-3912 (((-112)) 87)) (-3458 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-3951 (((-3 $ "failed") $) 14 (|has| |#1| (-555)))) (-2521 (((-917)) 52)) (-3879 (((-112)) NIL)) (-3617 (($ $ (-917)) NIL)) (-3843 (((-112)) NIL)) (-3825 (((-112)) NIL)) (-3861 (((-112)) 89)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-1927 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-3422 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-4028 ((|#1| $) NIL)) (-3398 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-3353 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-2267 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-3364 (($ $ (-917)) NIL)) (-4007 ((|#1| $) NIL)) (-3801 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-3447 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-3984 (((-1165 |#1|) $) NIL)) (-3923 (((-112)) 86)) (-3854 (((-1151) $) NIL)) (-3832 (((-112)) 94)) (-3852 (((-112)) 93)) (-3868 (((-112)) 95)) (-1693 (((-1113) $) NIL)) (-3900 (((-112)) 88)) (-2308 ((|#1| $ (-563)) 54)) (-3759 (((-1257 |#1|) $ (-1257 $)) 48) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 28) (((-684 |#1|) (-1257 $)) NIL)) (-2219 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL)) (-2122 (((-640 (-948 |#1|)) (-1257 $)) NIL) (((-640 (-948 |#1|))) NIL)) (-1745 (($ $ $) NIL)) (-3963 (((-112)) 84)) (-1692 (((-858) $) 68) (($ (-1257 |#1|)) 22)) (-4013 (((-1257 $)) 45)) (-3813 (((-640 (-1257 |#1|))) NIL (|has| |#1| (-555)))) (-1756 (($ $ $ $) NIL)) (-3942 (((-112)) 81)) (-3727 (($ (-684 |#1|) $) 18)) (-1729 (($ $ $) NIL)) (-3952 (((-112)) 85)) (-3933 (((-112)) 82)) (-3891 (((-112)) 80)) (-2239 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1135 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -1692 ($ (-1257 |#1|))))) (-363) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -44))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))))
-(-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -1692 ($ (-1257 |#1|)))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2618 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3446 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-4303 (($ $) NIL)) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409))) (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4052 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846))))) (-1640 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-2336 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409)))) (-1909 (($ $ $) 27 (|has| $ (-6 -4409)))) (-1898 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409)))) (-1919 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 29 (|has| $ (-6 -4409)))) (-1849 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-1224 (-563)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "last" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "first" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "value" (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3435 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1576 (((-3 |#2| "failed") |#1| $) 37)) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3793 (($ $ (-767)) NIL) (($ $) 24)) (-4194 (($ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) NIL)) (-1966 (((-112) $) NIL)) (-4369 (((-563) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) (((-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 18 (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 18 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1565 (($ (-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 32 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4265 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4300 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 34 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-3652 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) 41 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1481 (($ $ (-767)) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1304 (((-640 |#1|) $) 20)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3399 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 |#1|) $) NIL) (((-640 (-563)) $) NIL)) (-2282 (((-112) |#1| $) NIL) (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 23)) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1976 (((-112) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2295 (((-640 |#2|) $) NIL) (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 17)) (-1665 (((-112) $) 16)) (-3445 (($) 13)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "first") NIL) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $ "value") NIL)) (-2379 (((-563) $ $) NIL)) (-3863 (($) 12) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-3690 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2889 (((-112) $) NIL)) (-1951 (($ $) NIL)) (-1930 (($ $) NIL (|has| $ (-6 -4409)))) (-1961 (((-767) $) NIL)) (-1970 (($ $) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1941 (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL) (($ $ $) NIL)) (-2857 (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL) (($ (-640 $)) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 25) (($ $ $) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1491 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") |#1| $) 43)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1766 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-846)))) (-3610 (((-767) $) 22 (|has| $ (-6 -4408)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1093) (-1093)) (T -45))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-3829 (((-405 |#1|) |#1|) 41)) (-4147 (((-405 |#1|) |#1|) 30) (((-405 |#1|) |#1| (-637 (-48))) 33)) (-1299 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -4147 ((-405 |#1|) |#1| (-637 (-48)))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3829 ((-405 |#1|) |#1|)) (-15 -1299 ((-112) |#1|))) (-1232 (-48))) (T -39))
+((-1299 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-3829 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-48))) (-5 *2 (-405 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))))
+(-10 -7 (-15 -4147 ((-405 |#1|) |#1| (-637 (-48)))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3829 ((-405 |#1|) |#1|)) (-15 -1299 ((-112) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1798 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-2220 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2218 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1936 (((-684 (-407 |#2|)) (-1256 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-3741 (((-407 |#2|) $) NIL)) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-407 |#2|) (-350)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4384 (((-405 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1740 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3528 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1812 (((-112)) NIL)) (-1811 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| (-407 |#2|) (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-3 (-407 |#2|) #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| (-407 |#2|) (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-407 |#2|) $) NIL)) (-1946 (($ (-1256 (-407 |#2|)) (-1256 $)) NIL) (($ (-1256 (-407 |#2|))) 57) (($ (-1256 |#2|) |#2|) 125)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-350)))) (-2949 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1935 (((-684 (-407 |#2|)) $ (-1256 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-407 |#2|))) (|:| |vec| (-1256 (-407 |#2|)))) (-684 $) (-1256 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-1803 (((-1256 $) (-1256 $)) NIL)) (-4257 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3873 (((-3 $ "failed") $) NIL)) (-1790 (((-637 (-637 |#1|))) NIL (|has| |#1| (-368)))) (-1815 (((-112) |#1| |#1|) NIL)) (-3501 (((-915)) NIL)) (-3384 (($) NIL (|has| (-407 |#2|) (-368)))) (-1810 (((-112)) NIL)) (-1809 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2948 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| (-407 |#2|) (-363)))) (-3909 (($ $) NIL)) (-3222 (($) NIL (|has| (-407 |#2|) (-350)))) (-1831 (((-112) $) NIL (|has| (-407 |#2|) (-350)))) (-1921 (($ $ (-767)) NIL (|has| (-407 |#2|) (-350))) (($ $) NIL (|has| (-407 |#2|) (-350)))) (-4138 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-4186 (((-915) $) NIL (|has| (-407 |#2|) (-350))) (((-828 (-915)) $) NIL (|has| (-407 |#2|) (-350)))) (-2552 (((-112) $) NIL)) (-3788 (((-767)) NIL)) (-1804 (((-1256 $) (-1256 $)) 102)) (-3524 (((-407 |#2|) $) NIL)) (-1791 (((-637 (-942 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2171 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2167 (((-915) $) NIL (|has| (-407 |#2|) (-368)))) (-3470 ((|#3| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3650 (((-1151) $) NIL)) (-1300 (((-1262) (-767)) 79)) (-1799 (((-684 (-407 |#2|))) 51)) (-1801 (((-684 (-407 |#2|))) 44)) (-2785 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1796 (($ (-1256 |#2|) |#2|) 126)) (-1800 (((-684 (-407 |#2|))) 45)) (-1802 (((-684 (-407 |#2|))) 43)) (-1795 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1797 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 64)) (-1808 (((-1256 $)) 42)) (-4333 (((-1256 $)) 41)) (-1807 (((-112) $) NIL)) (-1806 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3856 (($) NIL (|has| (-407 |#2|) (-350)) CONST)) (-2542 (($ (-915)) NIL (|has| (-407 |#2|) (-368)))) (-1793 (((-3 |#2| #3="failed")) NIL)) (-3651 (((-1113) $) NIL)) (-1817 (((-767)) NIL)) (-2551 (($) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| (-407 |#2|) (-363)))) (-3552 (($ (-637 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-407 |#2|) (-350)))) (-4147 (((-405 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3872 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1739 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4214 ((|#1| $ |#1| |#1|) NIL)) (-1794 (((-3 |#2| #3#)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4172 (((-407 |#2|) (-1256 $)) NIL) (((-407 |#2|)) 39)) (-1922 (((-767) $) NIL (|has| (-407 |#2|) (-350))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-350)))) (-4225 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-2550 (((-684 (-407 |#2|)) (-1256 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3593 ((|#3|) 50)) (-1825 (($) NIL (|has| (-407 |#2|) (-350)))) (-3632 (((-1256 (-407 |#2|)) $ (-1256 $)) NIL) (((-684 (-407 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-407 |#2|)) $) 58) (((-684 (-407 |#2|)) (-1256 $)) 103)) (-4385 (((-1256 (-407 |#2|)) $) NIL) (($ (-1256 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-350)))) (-1805 (((-1256 $) (-1256 $)) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-546))) NIL (-3943 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-546)))))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3091 (($ $) NIL (|has| (-407 |#2|) (-350))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2749 ((|#3| $) NIL)) (-3518 (((-767)) NIL)) (-1814 (((-112)) 37)) (-1813 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2169 (((-1256 $)) 93)) (-2219 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1792 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1816 (((-112)) NIL)) (-3047 (($) 16 T CONST)) (-3053 (($) 26 T CONST)) (-3058 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-546)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-546))) NIL (|has| (-407 |#2|) (-363)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1300 ((-1262) (-767))))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) |#3|) (T -40))
+((-1300 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1232 *4)) (-5 *2 (-1262)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-407 *5))) (-14 *7 *6))))
+(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1300 ((-1262) (-767)))))
+((-1301 ((|#2| |#2|) 48)) (-1306 ((|#2| |#2|) 121 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-546)))))) (-1305 ((|#2| |#2|) 86 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-546)))))) (-1304 ((|#2| |#2|) 87 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-546)))))) (-1307 ((|#2| (-113) |#2| (-767)) 117 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-546)))))) (-1303 (((-1163 |#2|) |#2|) 45)) (-1302 ((|#2| |#2| (-637 (-608 |#2|))) 18) ((|#2| |#2| (-637 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| (-637 |#2|))) (-15 -1302 (|#2| |#2| (-637 (-608 |#2|)))) (-15 -1303 ((-1163 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-546))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -1304 (|#2| |#2|)) (-15 -1305 (|#2| |#2|)) (-15 -1306 (|#2| |#2|)) (-15 -1307 (|#2| (-113) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 |#1| (-608 $)) $)) (-15 -3387 ((-1118 |#1| (-608 $)) $)) (-15 -4361 ($ (-1118 |#1| (-608 $))))))) (T -41))
+((-1307 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) (-4 *5 (-1034 (-546))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-421 *5)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *5 (-608 $)) $)) (-15 -3387 ((-1118 *5 (-608 $)) $)) (-15 -4361 ($ (-1118 *5 (-608 $))))))))) (-1306 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))) (-1305 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))) (-1304 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))) (-1303 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1163 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $)) (-15 -3387 ((-1118 *4 (-608 $)) $)) (-15 -4361 ($ (-1118 *4 (-608 $))))))))) (-1302 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-608 *2))) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $)) (-15 -3387 ((-1118 *4 (-608 $)) $)) (-15 -4361 ($ (-1118 *4 (-608 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1302 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $)) (-15 -3387 ((-1118 *4 (-608 $)) $)) (-15 -4361 ($ (-1118 *4 (-608 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1302 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))) (-1301 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-298) (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $)) (-15 -3387 ((-1118 *3 (-608 $)) $)) (-15 -4361 ($ (-1118 *3 (-608 $))))))))))
+(-10 -7 (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| (-637 |#2|))) (-15 -1302 (|#2| |#2| (-637 (-608 |#2|)))) (-15 -1303 ((-1163 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-546))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -1304 (|#2| |#2|)) (-15 -1305 (|#2| |#2|)) (-15 -1306 (|#2| |#2|)) (-15 -1307 (|#2| (-113) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4147 (((-405 (-1163 |#3|)) (-1163 |#3|) (-637 (-48))) 23) (((-405 |#3|) |#3| (-637 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4147 ((-405 |#3|) |#3| (-637 (-48)))) (-15 -4147 ((-405 (-1163 |#3|)) (-1163 |#3|) (-637 (-48))))) (-846) (-789) (-946 (-48) |#2| |#1|)) (T -42))
+((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-405 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#3|) |#3| (-637 (-48)))) (-15 -4147 ((-405 (-1163 |#3|)) (-1163 |#3|) (-637 (-48)))))
+((-1311 (((-767) |#2|) 65)) (-1309 (((-767) |#2|) 68)) (-1324 (((-637 |#2|)) 33)) (-1308 (((-767) |#2|) 67)) (-1310 (((-767) |#2|) 64)) (-1312 (((-767) |#2|) 66)) (-1322 (((-637 (-684 |#1|))) 60)) (-1317 (((-637 |#2|)) 55)) (-1315 (((-637 |#2|) |#2|) 43)) (-1319 (((-637 |#2|)) 57)) (-1318 (((-637 |#2|)) 56)) (-1321 (((-637 (-684 |#1|))) 48)) (-1316 (((-637 |#2|)) 54)) (-1314 (((-637 |#2|) |#2|) 42)) (-1313 (((-637 |#2|)) 50)) (-1323 (((-637 (-684 |#1|))) 61)) (-1320 (((-637 |#2|)) 59)) (-2169 (((-1256 |#2|) (-1256 |#2|)) 83 (|has| |#1| (-307)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1308 ((-767) |#2|)) (-15 -1309 ((-767) |#2|)) (-15 -1310 ((-767) |#2|)) (-15 -1311 ((-767) |#2|)) (-15 -1312 ((-767) |#2|)) (-15 -1313 ((-637 |#2|))) (-15 -1314 ((-637 |#2|) |#2|)) (-15 -1315 ((-637 |#2|) |#2|)) (-15 -1316 ((-637 |#2|))) (-15 -1317 ((-637 |#2|))) (-15 -1318 ((-637 |#2|))) (-15 -1319 ((-637 |#2|))) (-15 -1320 ((-637 |#2|))) (-15 -1321 ((-637 (-684 |#1|)))) (-15 -1322 ((-637 (-684 |#1|)))) (-15 -1323 ((-637 (-684 |#1|)))) (-15 -1324 ((-637 |#2|))) (IF (|has| |#1| (-307)) (-15 -2169 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|)) (-556) (-418 |#1|)) (T -43))
+((-2169 (*1 *2 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-418 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-1324 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1323 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1322 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1321 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1320 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1319 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1318 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1317 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1316 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1315 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1314 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1313 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))) (-1312 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1310 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1309 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(-10 -7 (-15 -1308 ((-767) |#2|)) (-15 -1309 ((-767) |#2|)) (-15 -1310 ((-767) |#2|)) (-15 -1311 ((-767) |#2|)) (-15 -1312 ((-767) |#2|)) (-15 -1313 ((-637 |#2|))) (-15 -1314 ((-637 |#2|) |#2|)) (-15 -1315 ((-637 |#2|) |#2|)) (-15 -1316 ((-637 |#2|))) (-15 -1317 ((-637 |#2|))) (-15 -1318 ((-637 |#2|))) (-15 -1319 ((-637 |#2|))) (-15 -1320 ((-637 |#2|))) (-15 -1321 ((-637 (-684 |#1|)))) (-15 -1322 ((-637 (-684 |#1|)))) (-15 -1323 ((-637 (-684 |#1|)))) (-15 -1324 ((-637 |#2|))) (IF (|has| |#1| (-307)) (-15 -2169 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1927 (((-3 $ #1="failed")) NIL (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3631 (((-1256 (-684 |#1|)) (-1256 $)) NIL) (((-1256 (-684 |#1|))) 24)) (-1880 (((-1256 $)) 51)) (-4139 (($) NIL T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (|has| |#1| (-556)))) (-1854 (((-3 $ #1#)) NIL (|has| |#1| (-556)))) (-1942 (((-684 |#1|) (-1256 $)) NIL) (((-684 |#1|)) NIL)) (-1878 ((|#1| $) NIL)) (-1940 (((-684 |#1|) $ (-1256 $)) NIL) (((-684 |#1|) $) NIL)) (-2546 (((-3 $ #1#) $) NIL (|has| |#1| (-556)))) (-2057 (((-1163 (-942 |#1|))) NIL (|has| |#1| (-363)))) (-2549 (($ $ (-915)) NIL)) (-1876 ((|#1| $) NIL)) (-1856 (((-1163 |#1|) $) NIL (|has| |#1| (-556)))) (-1944 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-1874 (((-1163 |#1|) $) NIL)) (-1868 (((-112)) 87)) (-1946 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-3873 (((-3 $ #1#) $) 14 (|has| |#1| (-556)))) (-3501 (((-915)) 52)) (-1865 (((-112)) NIL)) (-2573 (($ $ (-915)) NIL)) (-1861 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-1863 (((-112)) 89)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (|has| |#1| (-556)))) (-1855 (((-3 $ #1#)) NIL (|has| |#1| (-556)))) (-1943 (((-684 |#1|) (-1256 $)) NIL) (((-684 |#1|)) NIL)) (-1879 ((|#1| $) NIL)) (-1941 (((-684 |#1|) $ (-1256 $)) NIL) (((-684 |#1|) $) NIL)) (-2547 (((-3 $ #1#) $) NIL (|has| |#1| (-556)))) (-2061 (((-1163 (-942 |#1|))) NIL (|has| |#1| (-363)))) (-2548 (($ $ (-915)) NIL)) (-1877 ((|#1| $) NIL)) (-1857 (((-1163 |#1|) $) NIL (|has| |#1| (-556)))) (-1945 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-1875 (((-1163 |#1|) $) NIL)) (-1869 (((-112)) 86)) (-3650 (((-1151) $) NIL)) (-1860 (((-112)) 94)) (-1862 (((-112)) 93)) (-1864 (((-112)) 95)) (-3651 (((-1113) $) NIL)) (-1867 (((-112)) 88)) (-4214 ((|#1| $ (-546)) 54)) (-3632 (((-1256 |#1|) $ (-1256 $)) 48) (((-684 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 28) (((-684 |#1|) (-1256 $)) NIL)) (-4385 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL)) (-2049 (((-637 (-942 |#1|)) (-1256 $)) NIL) (((-637 (-942 |#1|))) NIL)) (-2735 (($ $ $) NIL)) (-1873 (((-112)) 84)) (-4361 (((-859) $) 68) (($ (-1256 |#1|)) 22)) (-2169 (((-1256 $)) 45)) (-1858 (((-637 (-1256 |#1|))) NIL (|has| |#1| (-556)))) (-2736 (($ $ $ $) NIL)) (-1871 (((-112)) 81)) (-2933 (($ (-684 |#1|) $) 18)) (-2734 (($ $ $) NIL)) (-1872 (((-112)) 85)) (-1870 (((-112)) 82)) (-1866 (((-112)) 80)) (-3047 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1135 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-418 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -4361 ($ (-1256 |#1|))))) (-363) (-915) (-637 (-1169)) (-1256 (-684 |#1|))) (T -44))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-363)) (-14 *6 (-1256 (-684 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))))))
+(-13 (-418 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -4361 ($ (-1256 |#1|)))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3813 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4209 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4211 (($ $) NIL)) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409))) (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-1881 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846))))) (-3299 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-3415 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409)))) (-4201 (($ $ $) 27 (|has| $ (-6 -4409)))) (-4200 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409)))) (-4203 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 29 (|has| $ (-6 -4409)))) (-4202 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-1223 (-546)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #1="last" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #3="first" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #4="value" (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4210 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2360 (((-3 |#2| #5="failed") |#1| $) 37)) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-4213 (($ $ (-767)) NIL) (($ $) 24)) (-2505 (($ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #5#) |#1| $) 47) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) NIL)) (-3853 (((-112) $) NIL)) (-3830 (((-546) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) (((-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 18 (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 18 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-4029 (($ (-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846))) (((-546) $) 32 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3248 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3924 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846))) (((-546) $) 34 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-3948 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) 41 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4212 (($ $ (-767)) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2795 (((-637 |#1|) $) 20)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2428 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 |#1|) $) NIL) (((-637 (-546)) $) NIL)) (-2357 (((-112) |#1| $) NIL) (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 23)) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) #6#) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-3854 (((-112) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-2358 (((-637 |#2|) $) NIL) (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 17)) (-3814 (((-112) $) 16)) (-3979 (($) 13)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ (-546)) NIL) (($ $ (-1223 (-546))) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #3#) NIL) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $ #4#) NIL)) (-3419 (((-546) $ $) NIL)) (-1557 (($) 12) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-1667 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4048 (((-112) $) NIL)) (-4206 (($ $) NIL)) (-4204 (($ $) NIL (|has| $ (-6 -4409)))) (-4207 (((-767) $) NIL)) (-4208 (($ $) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4205 (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL) (($ $ $) NIL)) (-4216 (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL) (($ (-637 $)) NIL) (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 25) (($ $ $) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-1298 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") |#1| $) 43)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-846)))) (-4372 (((-767) $) 22 (|has| $ (-6 -4408)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1094) (-1094)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3805 (((-112) $) 12)) (-2238 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-563)) $) 25) (($ $ (-407 (-563))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3805 ((-112) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46))
+((-4352 (((-112) $) 12)) (-4373 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-546)) $) 25) (($ $ (-407 (-546))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4352 ((-112) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3805 ((-112) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3805 (((-112) $) 65)) (-2587 (($ |#1| |#2|) 64)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3871 ((|#2| $) 67)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3244 ((|#1| $ |#2|) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
+(-10 -8 (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4352 ((-112) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-4352 (((-112) $) 65)) (-3283 (($ |#1| |#2|) 64)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4363 ((|#2| $) 67)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4092 ((|#1| $ |#2|) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
(((-47 |#1| |#2|) (-140) (-1045) (-788)) (T -47))
-((-2725 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2715 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2587 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3244 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -2725 (|t#1| $)) (-15 -2715 ($ $)) (-15 -3871 (|t#2| $)) (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (-15 -3805 ((-112) $)) (-15 -2587 ($ |t#1| |t#2|)) (-15 -2750 ($ $)) (-15 -3244 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1836 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-555)) (-6 (-555)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-6 (-38 (-407 (-563)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-2793 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-1559 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-3439 (((-112) $) 11)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-2058 (((-640 (-609 $)) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4135 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-4249 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3377 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2130 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2057 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3094 (($ $ $) NIL)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2444 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3228 (($ $) NIL) (($ (-640 $)) NIL)) (-2739 (((-640 (-114)) $) NIL)) (-2559 (((-114) (-114)) NIL)) (-3401 (((-112) $) 14)) (-2959 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2143 (((-1118 (-563) (-609 $)) $) NIL)) (-2172 (($ $ (-563)) NIL)) (-3975 (((-1165 $) (-1165 $) (-609 $)) NIL) (((-1165 $) (-1165 $) (-640 (-609 $))) NIL) (($ $ (-609 $)) NIL) (($ $ (-640 (-609 $))) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2716 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 $ $) (-609 $)) NIL)) (-2751 (((-3 (-609 $) "failed") $) NIL)) (-3517 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2126 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-2602 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-2687 (($ $) NIL)) (-4238 (((-767) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2726 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1993 (((-767) $) NIL)) (-2308 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-2761 (($ $) NIL) (($ $ $) NIL)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-2153 (((-1118 (-563) (-609 $)) $) NIL)) (-3402 (($ $) NIL (|has| $ (-1045)))) (-2219 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-1692 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) NIL)) (-3914 (((-767)) NIL)) (-3083 (($ $) NIL) (($ (-640 $)) NIL)) (-2512 (((-112) (-114)) NIL)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 7 T CONST)) (-2253 (($) 12 T CONST)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 16)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (-1825 (($ $ $) 15) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) NIL) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-48) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1692 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2153 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -3975 ((-1165 $) (-1165 $) (-609 $))) (-15 -3975 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3975 ($ $ (-609 $))) (-15 -3975 ($ $ (-640 (-609 $))))))) (T -48))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2444 (*1 *1 *1) (-5 *1 (-48))) (-3975 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48)))) (-3975 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48)))))
-(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1692 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2153 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -3975 ((-1165 $) (-1165 $) (-609 $))) (-15 -3975 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3975 ($ $ (-609 $))) (-15 -3975 ($ $ (-640 (-609 $))))))
-((-1677 (((-112) $ $) NIL)) (-3392 (((-640 (-1169)) $) 17)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 7)) (-3363 (((-1174) $) 18)) (-1718 (((-112) $ $) NIL)))
-(((-49) (-13 (-1093) (-10 -8 (-15 -3392 ((-640 (-1169)) $)) (-15 -3363 ((-1174) $))))) (T -49))
-((-3392 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49)))))
-(-13 (-1093) (-10 -8 (-15 -3392 ((-640 (-1169)) $)) (-15 -3363 ((-1174) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 62)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2882 (((-112) $) 20)) (-2130 (((-3 |#1| "failed") $) 23)) (-2057 ((|#1| $) 24)) (-2750 (($ $) 28)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2725 ((|#1| $) 21)) (-3762 (($ $) 50)) (-3854 (((-1151) $) NIL)) (-1899 (((-112) $) 30)) (-1693 (((-1113) $) NIL)) (-4334 (($ (-767)) 48)) (-3372 (($ (-640 (-563))) 49)) (-3871 (((-767) $) 31)) (-1692 (((-858) $) 65) (($ (-563)) 45) (($ |#1|) 43)) (-3244 ((|#1| $ $) 19)) (-3914 (((-767)) 47)) (-2239 (($) 32 T CONST)) (-2253 (($) 14 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -2725 (|#1| $)) (-15 -3762 ($ $)) (-15 -2750 ($ $)) (-15 -3244 (|#1| $ $)) (-15 -4334 ($ (-767))) (-15 -3372 ($ (-640 (-563)))) (-15 -1899 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -3871 ((-767) $)) (-15 -2238 ($ (-1 |#1| |#1|) $)))) (-1045) (-640 (-1169))) (T -50))
-((-2725 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-3762 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-3244 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-640 (-1169))))))
-(-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -2725 (|#1| $)) (-15 -3762 ($ $)) (-15 -2750 ($ $)) (-15 -3244 (|#1| $ $)) (-15 -4334 ($ (-767))) (-15 -3372 ($ (-640 (-563)))) (-15 -1899 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -3871 ((-767) $)) (-15 -2238 ($ (-1 |#1| |#1|) $))))
-((-2882 (((-112) (-52)) 13)) (-2130 (((-3 |#1| "failed") (-52)) 21)) (-2057 ((|#1| (-52)) 22)) (-1692 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -1692 ((-52) |#1|)) (-15 -2130 ((-3 |#1| "failed") (-52))) (-15 -2882 ((-112) (-52))) (-15 -2057 (|#1| (-52)))) (-1208)) (T -51))
-((-2057 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208)))) (-2130 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-1692 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208)))))
-(-10 -7 (-15 -1692 ((-52) |#1|)) (-15 -2130 ((-3 |#1| "failed") (-52))) (-15 -2882 ((-112) (-52))) (-15 -2057 (|#1| (-52))))
-((-1677 (((-112) $ $) NIL)) (-1497 (((-1151) (-112)) 25)) (-1508 (((-858) $) 24)) (-1571 (((-770) $) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1522 (((-858) $) 16)) (-3632 (((-1097) $) 14)) (-1692 (((-858) $) 32)) (-3229 (($ (-1097) (-770)) 33)) (-1718 (((-112) $ $) 18)))
-(((-52) (-13 (-1093) (-10 -8 (-15 -3229 ($ (-1097) (-770))) (-15 -1522 ((-858) $)) (-15 -1508 ((-858) $)) (-15 -3632 ((-1097) $)) (-15 -1571 ((-770) $)) (-15 -1497 ((-1151) (-112)))))) (T -52))
-((-3229 (*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52)))))
-(-13 (-1093) (-10 -8 (-15 -3229 ($ (-1097) (-770))) (-15 -1522 ((-858) $)) (-15 -1508 ((-858) $)) (-15 -3632 ((-1097) $)) (-15 -1571 ((-770) $)) (-15 -1497 ((-1151) (-112)))))
-((-3727 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3727 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-643 |#1|) (-848 |#1|)) (T -53))
-((-3727 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))))
-(-10 -7 (-15 -3727 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1546 ((|#3| |#3| (-640 (-1169))) 35)) (-1538 ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917)) 22) ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1538 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1538 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -1546 (|#3| |#3| (-640 (-1169))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -54))
-((-1546 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-1538 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093)) (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5)))) (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1538 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1538 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1538 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -1546 (|#3| |#3| (-640 (-1169)))))
-((-1677 (((-112) $ $) NIL)) (-2130 (((-3 (-767) "failed") $) 22)) (-2057 (((-767) $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) 9)) (-1692 (((-858) $) 16) (($ (-767)) 20)) (-1560 (($) 7 T CONST)) (-1718 (((-112) $ $) 11)))
-(((-55) (-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -1560 ($) -2668)))) (T -55))
-((-1560 (*1 *1) (-5 *1 (-55))))
-(-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -1560 ($) -2668)))
-((-3001 (((-112) $ (-767)) 23)) (-1589 (($ $ (-563) |#3|) 47)) (-1572 (($ $ (-563) |#4|) 51)) (-1960 ((|#3| $ (-563)) 60)) (-2658 (((-640 |#2|) $) 30)) (-2514 (((-112) $ (-767)) 25)) (-2667 (((-112) |#2| $) 55)) (-4347 (($ (-1 |#2| |#2|) $) 38)) (-2238 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2481 (((-112) $ (-767)) 24)) (-2221 (($ $ |#2|) 35)) (-1458 (((-112) (-1 (-112) |#2|) $) 19)) (-2308 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) 27)) (-1708 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 57)) (-1870 (($ $) 34)) (-1950 ((|#4| $ (-563)) 63)) (-1692 (((-858) $) 69)) (-1471 (((-112) (-1 (-112) |#2|) $) 18)) (-1718 (((-112) $ $) 54)) (-3610 (((-767) $) 26)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#1| |#1| (-563) |#4|)) (-15 -1589 (|#1| |#1| (-563) |#3|)) (-15 -2658 ((-640 |#2|) |#1|)) (-15 -1950 (|#4| |#1| (-563))) (-15 -1960 (|#3| |#1| (-563))) (-15 -2308 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563))) (-15 -2221 (|#1| |#1| |#2|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -2667 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))) (-15 -1870 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1208) (-373 |#2|) (-373 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#1| |#1| (-563) |#4|)) (-15 -1589 (|#1| |#1| (-563) |#3|)) (-15 -2658 ((-640 |#2|) |#1|)) (-15 -1950 (|#4| |#1| (-563))) (-15 -1960 (|#3| |#1| (-563))) (-15 -2308 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563))) (-15 -2221 (|#1| |#1| |#2|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -2667 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))) (-15 -1870 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) (-563) |#1|) 44)) (-1589 (($ $ (-563) |#2|) 42)) (-1572 (($ $ (-563) |#3|) 41)) (-2569 (($) 7 T CONST)) (-1960 ((|#2| $ (-563)) 46)) (-4356 ((|#1| $ (-563) (-563) |#1|) 43)) (-4293 ((|#1| $ (-563) (-563)) 48)) (-2658 (((-640 |#1|) $) 30)) (-2380 (((-767) $) 51)) (-1565 (($ (-767) (-767) |#1|) 57)) (-2391 (((-767) $) 50)) (-2514 (((-112) $ (-767)) 9)) (-1995 (((-563) $) 55)) (-1979 (((-563) $) 53)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1986 (((-563) $) 54)) (-1969 (((-563) $) 52)) (-4347 (($ (-1 |#1| |#1|) $) 34)) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) 56)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1950 ((|#3| $ (-563)) 45)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1208) (-373 |t#1|) (-373 |t#1|)) (T -57))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1565 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2221 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-2308 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-4293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1960 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1950 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 *3)))) (-1849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4356 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1589 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-1572 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-4347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2238 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2238 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1565 ($ (-767) (-767) |t#1|)) (-15 -2221 ($ $ |t#1|)) (-15 -1995 ((-563) $)) (-15 -1986 ((-563) $)) (-15 -1979 ((-563) $)) (-15 -1969 ((-563) $)) (-15 -2380 ((-767) $)) (-15 -2391 ((-767) $)) (-15 -2308 (|t#1| $ (-563) (-563))) (-15 -4293 (|t#1| $ (-563) (-563))) (-15 -2308 (|t#1| $ (-563) (-563) |t#1|)) (-15 -1960 (|t#2| $ (-563))) (-15 -1950 (|t#3| $ (-563))) (-15 -2658 ((-640 |t#1|) $)) (-15 -1849 (|t#1| $ (-563) (-563) |t#1|)) (-15 -4356 (|t#1| $ (-563) (-563) |t#1|)) (-15 -1589 ($ $ (-563) |t#2|)) (-15 -1572 ($ $ (-563) |t#3|)) (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (-15 -4347 ($ (-1 |t#1| |t#1|) $)) (-15 -2238 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2238 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-4132 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2238 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4132 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2238 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1208) (-1208)) (T -58))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-58 *5 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4132 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2238 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 11 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1600 (($ (-640 |#1|)) 13) (($ (-767) |#1|) 14)) (-1565 (($ (-767) |#1|) 9)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 7)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1600 ($ (-640 |#1|))) (-15 -1600 ($ (-767) |#1|)))) (-1208)) (T -59))
-((-1600 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3)))) (-1600 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1600 ($ (-640 |#1|))) (-15 -1600 ($ (-767) |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL)) (-1589 (($ $ (-563) (-59 |#1|)) NIL)) (-1572 (($ $ (-563) (-59 |#1|)) NIL)) (-2569 (($) NIL T CONST)) (-1960 (((-59 |#1|) $ (-563)) NIL)) (-4356 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2658 (((-640 |#1|) $) NIL)) (-2380 (((-767) $) NIL)) (-1565 (($ (-767) (-767) |#1|) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1950 (((-59 |#1|) $ (-563)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4409))) (-1208)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4409)))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 74) (((-3 $ "failed") (-1257 (-316 (-563)))) 63) (((-3 $ "failed") (-1257 (-948 (-379)))) 94) (((-3 $ "failed") (-1257 (-948 (-563)))) 84) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 52) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 39)) (-2057 (($ (-1257 (-316 (-379)))) 70) (($ (-1257 (-316 (-563)))) 59) (($ (-1257 (-948 (-379)))) 90) (($ (-1257 (-948 (-563)))) 80) (($ (-1257 (-407 (-948 (-379))))) 48) (($ (-1257 (-407 (-948 (-563))))) 32)) (-2615 (((-1262) $) 120)) (-1692 (((-858) $) 113) (($ (-640 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 101) (($ (-1257 (-339 (-1706 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1706) (-694)))) 31)))
-(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1706) (-694))))))) (-1169)) (T -61))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1706) (-694)))) (-5 *1 (-61 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1706) (-694)))))))
-((-2615 (((-1262) $) 53) (((-1262)) 54)) (-1692 (((-858) $) 50)))
-(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -62))
-((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169)))))
-(-13 (-395) (-10 -7 (-15 -2615 ((-1262)))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 145) (((-3 $ "failed") (-1257 (-316 (-563)))) 135) (((-3 $ "failed") (-1257 (-948 (-379)))) 165) (((-3 $ "failed") (-1257 (-948 (-563)))) 155) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 124) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 112)) (-2057 (($ (-1257 (-316 (-379)))) 141) (($ (-1257 (-316 (-563)))) 131) (($ (-1257 (-948 (-379)))) 161) (($ (-1257 (-948 (-563)))) 151) (($ (-1257 (-407 (-948 (-379))))) 120) (($ (-1257 (-407 (-948 (-563))))) 105)) (-2615 (((-1262) $) 98)) (-1692 (((-858) $) 92) (($ (-640 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 32) (($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))) 90)))
-(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694))))))) (-1169)) (T -63))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))) (-5 *1 (-63 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))))))
-((-2130 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-563))) 46) (((-3 $ "failed") (-948 (-379))) 50) (((-3 $ "failed") (-948 (-563))) 54) (((-3 $ "failed") (-407 (-948 (-379)))) 36) (((-3 $ "failed") (-407 (-948 (-563)))) 29)) (-2057 (($ (-316 (-379))) 39) (($ (-316 (-563))) 44) (($ (-948 (-379))) 48) (($ (-948 (-563))) 52) (($ (-407 (-948 (-379)))) 34) (($ (-407 (-948 (-563)))) 26)) (-2615 (((-1262) $) 76)) (-1692 (((-858) $) 69) (($ (-640 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 64) (($ (-339 (-1706 (QUOTE X)) (-1706) (-694))) 25)))
-(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706 (QUOTE X)) (-1706) (-694)))))) (-1169)) (T -64))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-339 (-1706 (QUOTE X)) (-1706) (-694))) (-5 *1 (-64 *3)) (-14 *3 (-1169)))))
-(-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706 (QUOTE X)) (-1706) (-694))))))
-((-2130 (((-3 $ "failed") (-684 (-316 (-379)))) 109) (((-3 $ "failed") (-684 (-316 (-563)))) 97) (((-3 $ "failed") (-684 (-948 (-379)))) 131) (((-3 $ "failed") (-684 (-948 (-563)))) 120) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 85) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 71)) (-2057 (($ (-684 (-316 (-379)))) 105) (($ (-684 (-316 (-563)))) 93) (($ (-684 (-948 (-379)))) 127) (($ (-684 (-948 (-563)))) 116) (($ (-684 (-407 (-948 (-379))))) 81) (($ (-684 (-407 (-948 (-563))))) 64)) (-2615 (((-1262) $) 139)) (-1692 (((-858) $) 133) (($ (-640 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 31) (($ (-684 (-339 (-1706) (-1706 (QUOTE X) (QUOTE HESS)) (-694)))) 54)))
-(((-65 |#1|) (-13 (-384) (-613 (-684 (-339 (-1706) (-1706 (QUOTE X) (QUOTE HESS)) (-694))))) (-1169)) (T -65))
-NIL
-(-13 (-384) (-613 (-684 (-339 (-1706) (-1706 (QUOTE X) (QUOTE HESS)) (-694)))))
-((-2130 (((-3 $ "failed") (-316 (-379))) 59) (((-3 $ "failed") (-316 (-563))) 64) (((-3 $ "failed") (-948 (-379))) 68) (((-3 $ "failed") (-948 (-563))) 72) (((-3 $ "failed") (-407 (-948 (-379)))) 54) (((-3 $ "failed") (-407 (-948 (-563)))) 47)) (-2057 (($ (-316 (-379))) 57) (($ (-316 (-563))) 62) (($ (-948 (-379))) 66) (($ (-948 (-563))) 70) (($ (-407 (-948 (-379)))) 52) (($ (-407 (-948 (-563)))) 44)) (-2615 (((-1262) $) 81)) (-1692 (((-858) $) 75) (($ (-640 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 31) (($ (-339 (-1706) (-1706 (QUOTE XC)) (-694))) 39)))
-(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE XC)) (-694)))))) (-1169)) (T -66))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-339 (-1706) (-1706 (QUOTE XC)) (-694))) (-5 *1 (-66 *3)) (-14 *3 (-1169)))))
-(-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE XC)) (-694))))))
-((-2615 (((-1262) $) 63)) (-1692 (((-858) $) 57) (($ (-684 (-694))) 49) (($ (-640 (-330))) 48) (($ (-330)) 55) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 53)))
+((-3582 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-3283 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4092 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-4364 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363)))))
+(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -3582 (|t#1| $)) (-15 -3284 ($ $)) (-15 -4363 (|t#2| $)) (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (-15 -4352 ((-112) $)) (-15 -3283 ($ |t#1| |t#2|)) (-15 -4374 ($ $)) (-15 -4092 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -4364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-546)))) (-6 (-38 (-407 (-546)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-1702 (((-637 $) (-1163 $) (-1169)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-942 $)) NIL)) (-1290 (($ (-1163 $) (-1169)) NIL) (($ (-1163 $)) NIL) (($ (-942 $)) NIL)) (-3596 (((-112) $) 11)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1695 (((-637 (-608 $)) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1699 (($ $ (-293 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-1291 (((-637 $) (-1163 $) (-1169)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-942 $)) NIL)) (-3591 (($ (-1163 $) (-1169)) NIL) (($ (-1163 $)) NIL) (($ (-942 $)) NIL)) (-3565 (((-3 (-608 $) #1="failed") $) NIL) (((-3 (-546) #1#) $) NIL) (((-3 (-407 (-546)) #1#) $) NIL)) (-3564 (((-608 $) $) NIL) (((-546) $) NIL) (((-407 (-546)) $) NIL)) (-2949 (($ $ $) NIL)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-407 (-546)))) (|:| |vec| (-1256 (-407 (-546))))) (-684 $) (-1256 $)) NIL) (((-684 (-407 (-546))) (-684 $)) NIL)) (-4257 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2958 (($ $) NIL) (($ (-637 $)) NIL)) (-1694 (((-637 (-113)) $) NIL)) (-3437 (((-113) (-113)) NIL)) (-2552 (((-112) $) 14)) (-3062 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-3388 (((-1118 (-546) (-608 $)) $) NIL)) (-3401 (($ $ (-546)) NIL)) (-3524 (((-1163 $) (-1163 $) (-608 $)) NIL) (((-1163 $) (-1163 $) (-637 (-608 $))) NIL) (($ $ (-608 $)) NIL) (($ $ (-637 (-608 $))) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-1692 (((-1163 $) (-608 $)) NIL (|has| $ (-1045)))) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 $ $) (-608 $)) NIL)) (-1697 (((-3 (-608 $) "failed") $) NIL)) (-2048 (($ (-637 $)) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-1696 (((-637 (-608 $)) $) NIL)) (-2363 (($ (-113) $) NIL) (($ (-113) (-637 $)) NIL)) (-3020 (((-112) $ (-113)) NIL) (((-112) $ (-1169)) NIL)) (-2785 (($ $) NIL)) (-2988 (((-767) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ (-637 $)) NIL) (($ $ $) NIL)) (-1693 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-1169) (-1 $ (-637 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-637 (-113)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-113) (-1 $ (-637 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1739 (((-767) $) NIL)) (-4214 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-637 $)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1698 (($ $) NIL) (($ $ $) NIL)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-3387 (((-1118 (-546) (-608 $)) $) NIL)) (-3593 (($ $) NIL (|has| $ (-1045)))) (-4385 (((-378) $) NIL) (((-225) $) NIL) (((-168 (-378)) $) NIL)) (-4361 (((-859) $) NIL) (($ (-608 $)) NIL) (($ (-407 (-546))) NIL) (($ $) NIL) (($ (-546)) NIL) (($ (-1118 (-546) (-608 $))) NIL)) (-3518 (((-767)) NIL)) (-2975 (($ $) NIL) (($ (-637 $)) NIL)) (-2384 (((-112) (-113)) NIL)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 7 T CONST)) (-3053 (($) 12 T CONST)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 16)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (-4252 (($ $ $) 15) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-407 (-546))) NIL) (($ $ (-546)) NIL) (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL) (($ $ $) NIL) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL)))
+(((-48) (-13 (-298) (-27) (-1034 (-546)) (-1034 (-407 (-546))) (-636 (-546)) (-1016) (-636 (-407 (-546))) (-147) (-611 (-168 (-378))) (-233) (-10 -8 (-15 -4361 ($ (-1118 (-546) (-608 $)))) (-15 -3388 ((-1118 (-546) (-608 $)) $)) (-15 -3387 ((-1118 (-546) (-608 $)) $)) (-15 -4257 ($ $)) (-15 -3524 ((-1163 $) (-1163 $) (-608 $))) (-15 -3524 ((-1163 $) (-1163 $) (-637 (-608 $)))) (-15 -3524 ($ $ (-608 $))) (-15 -3524 ($ $ (-637 (-608 $))))))) (T -48))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48)))) (-4257 (*1 *1 *1) (-5 *1 (-48))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-48))) (-5 *3 (-637 (-608 (-48)))) (-5 *1 (-48)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-608 (-48)))) (-5 *1 (-48)))))
+(-13 (-298) (-27) (-1034 (-546)) (-1034 (-407 (-546))) (-636 (-546)) (-1016) (-636 (-407 (-546))) (-147) (-611 (-168 (-378))) (-233) (-10 -8 (-15 -4361 ($ (-1118 (-546) (-608 $)))) (-15 -3388 ((-1118 (-546) (-608 $)) $)) (-15 -3387 ((-1118 (-546) (-608 $)) $)) (-15 -4257 ($ $)) (-15 -3524 ((-1163 $) (-1163 $) (-608 $))) (-15 -3524 ((-1163 $) (-1163 $) (-637 (-608 $)))) (-15 -3524 ($ $ (-608 $))) (-15 -3524 ($ $ (-637 (-608 $))))))
+((-2953 (((-112) $ $) NIL)) (-2095 (((-637 (-1169)) $) 17)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 7)) (-3641 (((-1174) $) 18)) (-3444 (((-112) $ $) NIL)))
+(((-49) (-13 (-1094) (-10 -8 (-15 -2095 ((-637 (-1169)) $)) (-15 -3641 ((-1174) $))))) (T -49))
+((-2095 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-49)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49)))))
+(-13 (-1094) (-10 -8 (-15 -2095 ((-637 (-1169)) $)) (-15 -3641 ((-1174) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 62)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3051 (((-112) $) 20)) (-3565 (((-3 |#1| "failed") $) 23)) (-3564 ((|#1| $) 24)) (-4374 (($ $) 28)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3582 ((|#1| $) 21)) (-1547 (($ $) 50)) (-3650 (((-1151) $) NIL)) (-1546 (((-112) $) 30)) (-3651 (((-1113) $) NIL)) (-2551 (($ (-767)) 48)) (-4358 (($ (-637 (-546))) 49)) (-4363 (((-767) $) 31)) (-4361 (((-859) $) 65) (($ (-546)) 45) (($ |#1|) 43)) (-4092 ((|#1| $ $) 19)) (-3518 (((-767)) 47)) (-3047 (($) 32 T CONST)) (-3053 (($) 14 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 40)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -3582 (|#1| $)) (-15 -1547 ($ $)) (-15 -4374 ($ $)) (-15 -4092 (|#1| $ $)) (-15 -2551 ($ (-767))) (-15 -4358 ($ (-637 (-546)))) (-15 -1546 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -4363 ((-767) $)) (-15 -4373 ($ (-1 |#1| |#1|) $)))) (-1045) (-637 (-1169))) (T -50))
+((-3582 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-637 (-1169))))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-637 (-1169))))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-637 (-1169))))) (-4092 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-637 (-1169))))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-637 (-1169))))) (-4358 (*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-637 (-1169))))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-637 (-1169))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-637 (-1169))))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-637 (-1169))))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-637 (-1169))))))
+(-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -3582 (|#1| $)) (-15 -1547 ($ $)) (-15 -4374 ($ $)) (-15 -4092 (|#1| $ $)) (-15 -2551 ($ (-767))) (-15 -4358 ($ (-637 (-546)))) (-15 -1546 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -4363 ((-767) $)) (-15 -4373 ($ (-1 |#1| |#1|) $))))
+((-2953 (((-112) $ $) NIL)) (-1325 (((-1151) (-112)) 25)) (-1328 (((-859) $) 24)) (-1326 (((-769) $) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1329 (((-859) $) 16)) (-1327 (((-1096) $) 14)) (-4361 (((-859) $) 32)) (-1330 (($ (-1096) (-769)) 33)) (-3444 (((-112) $ $) 18)))
+(((-51) (-13 (-1094) (-10 -8 (-15 -1330 ($ (-1096) (-769))) (-15 -1329 ((-859) $)) (-15 -1328 ((-859) $)) (-15 -1327 ((-1096) $)) (-15 -1326 ((-769) $)) (-15 -1325 ((-1151) (-112)))))) (T -51))
+((-1330 (*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-51)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-51)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-51)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-51)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-51)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-51)))))
+(-13 (-1094) (-10 -8 (-15 -1330 ($ (-1096) (-769))) (-15 -1329 ((-859) $)) (-15 -1328 ((-859) $)) (-15 -1327 ((-1096) $)) (-15 -1326 ((-769) $)) (-15 -1325 ((-1151) (-112)))))
+((-3051 (((-112) (-51)) 13)) (-3565 (((-3 |#1| "failed") (-51)) 21)) (-3564 ((|#1| (-51)) 22)) (-4361 (((-51) |#1|) 18)))
+(((-52 |#1|) (-10 -7 (-15 -4361 ((-51) |#1|)) (-15 -3565 ((-3 |#1| "failed") (-51))) (-15 -3051 ((-112) (-51))) (-15 -3564 (|#1| (-51)))) (-1207)) (T -52))
+((-3564 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1207)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1207)))) (-3565 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1207)))) (-4361 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1207)))))
+(-10 -7 (-15 -4361 ((-51) |#1|)) (-15 -3565 ((-3 |#1| "failed") (-51))) (-15 -3051 ((-112) (-51))) (-15 -3564 (|#1| (-51))))
+((-2933 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2933 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-643 |#1|) (-848 |#1|)) (T -53))
+((-2933 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))))
+(-10 -7 (-15 -2933 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1332 ((|#3| |#3| (-637 (-1169))) 35)) (-1331 ((|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3| (-915)) 22) ((|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1331 (|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -1331 (|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3| (-915))) (-15 -1332 (|#3| |#3| (-637 (-1169))))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-611 (-886 |#1|))) (-13 (-421 |#2|) (-882 |#1|) (-611 (-886 |#1|)))) (T -54))
+((-1332 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))))) (-1331 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 (-1068 *5 *6 *2))) (-5 *4 (-915)) (-4 *5 (-1094)) (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-886 *5)))) (-4 *2 (-13 (-421 *6) (-882 *5) (-611 (-886 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1331 (*1 *2 *3 *2) (-12 (-5 *3 (-637 (-1068 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1331 (|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -1331 (|#3| (-637 (-1068 |#1| |#2| |#3|)) |#3| (-915))) (-15 -1332 (|#3| |#3| (-637 (-1169)))))
+((-2953 (((-112) $ $) NIL)) (-3565 (((-3 (-767) "failed") $) 22)) (-3564 (((-767) $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) 9)) (-4361 (((-859) $) 16) (($ (-767)) 20)) (-1333 (($) 7 T CONST)) (-3444 (((-112) $ $) 11)))
+(((-55) (-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -1333 ($) -4367)))) (T -55))
+((-1333 (*1 *1) (-5 *1 (-55))))
+(-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -1333 ($) -4367)))
+((-1296 (((-112) $ (-767)) 23)) (-1335 (($ $ (-546) |#3|) 47)) (-1334 (($ $ (-546) |#4|) 51)) (-3504 ((|#3| $ (-546)) 60)) (-2103 (((-637 |#2|) $) 30)) (-4134 (((-112) $ (-767)) 25)) (-3653 (((-112) |#2| $) 55)) (-2107 (($ (-1 |#2| |#2|) $) 38)) (-4373 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4131 (((-112) $ (-767)) 24)) (-2352 (($ $ |#2|) 35)) (-2105 (((-112) (-1 (-112) |#2|) $) 19)) (-4214 ((|#2| $ (-546) (-546)) NIL) ((|#2| $ (-546) (-546) |#2|) 27)) (-2104 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 57)) (-3811 (($ $) 34)) (-3503 ((|#4| $ (-546)) 63)) (-4361 (((-859) $) 69)) (-2106 (((-112) (-1 (-112) |#2|) $) 18)) (-3444 (((-112) $ $) 54)) (-4372 (((-767) $) 26)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1334 (|#1| |#1| (-546) |#4|)) (-15 -1335 (|#1| |#1| (-546) |#3|)) (-15 -2103 ((-637 |#2|) |#1|)) (-15 -3503 (|#4| |#1| (-546))) (-15 -3504 (|#3| |#1| (-546))) (-15 -4214 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546))) (-15 -2352 (|#1| |#1| |#2|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -3653 ((-112) |#2| |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))) (-15 -3811 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1207) (-372 |#2|) (-372 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1334 (|#1| |#1| (-546) |#4|)) (-15 -1335 (|#1| |#1| (-546) |#3|)) (-15 -2103 ((-637 |#2|) |#1|)) (-15 -3503 (|#4| |#1| (-546))) (-15 -3504 (|#3| |#1| (-546))) (-15 -4214 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546))) (-15 -2352 (|#1| |#1| |#2|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -3653 ((-112) |#2| |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))) (-15 -3811 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) (-546) |#1|) 44)) (-1335 (($ $ (-546) |#2|) 42)) (-1334 (($ $ (-546) |#3|) 41)) (-4139 (($) 7 T CONST)) (-3504 ((|#2| $ (-546)) 46)) (-1672 ((|#1| $ (-546) (-546) |#1|) 43)) (-3505 ((|#1| $ (-546) (-546)) 48)) (-2103 (((-637 |#1|) $) 30)) (-3507 (((-767) $) 51)) (-4029 (($ (-767) (-767) |#1|) 57)) (-3506 (((-767) $) 50)) (-4134 (((-112) $ (-767)) 9)) (-3511 (((-546) $) 55)) (-3509 (((-546) $) 53)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3510 (((-546) $) 54)) (-3508 (((-546) $) 52)) (-2107 (($ (-1 |#1| |#1|) $) 34)) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) 56)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) (-546)) 49) ((|#1| $ (-546) (-546) |#1|) 47)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-3503 ((|#3| $ (-546)) 45)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1207) (-372 |t#1|) (-372 |t#1|)) (T -57))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4029 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2352 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-546)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-546)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-546)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-546)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-767)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-767)))) (-4214 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-3505 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-4214 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-3503 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-637 *3)))) (-4202 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1672 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-546)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-1334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-546)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-2107 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4373 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4373 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -4029 ($ (-767) (-767) |t#1|)) (-15 -2352 ($ $ |t#1|)) (-15 -3511 ((-546) $)) (-15 -3510 ((-546) $)) (-15 -3509 ((-546) $)) (-15 -3508 ((-546) $)) (-15 -3507 ((-767) $)) (-15 -3506 ((-767) $)) (-15 -4214 (|t#1| $ (-546) (-546))) (-15 -3505 (|t#1| $ (-546) (-546))) (-15 -4214 (|t#1| $ (-546) (-546) |t#1|)) (-15 -3504 (|t#2| $ (-546))) (-15 -3503 (|t#3| $ (-546))) (-15 -2103 ((-637 |t#1|) $)) (-15 -4202 (|t#1| $ (-546) (-546) |t#1|)) (-15 -1672 (|t#1| $ (-546) (-546) |t#1|)) (-15 -1335 ($ $ (-546) |t#2|)) (-15 -1334 ($ $ (-546) |t#3|)) (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (-15 -2107 ($ (-1 |t#1| |t#1|) $)) (-15 -4373 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4373 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) 11 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1336 (($ (-637 |#1|)) 13) (($ (-767) |#1|) 14)) (-4029 (($ (-767) |#1|) 9)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 7)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1336 ($ (-637 |#1|))) (-15 -1336 ($ (-767) |#1|)))) (-1207)) (T -58))
+((-1336 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-58 *3)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-58 *3)) (-4 *3 (-1207)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1336 ($ (-637 |#1|))) (-15 -1336 ($ (-767) |#1|))))
+((-4256 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4257 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4373 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -4256 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4373 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1207) (-1207)) (T -59))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-59 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+(-10 -7 (-15 -4256 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4373 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) NIL)) (-1335 (($ $ (-546) (-58 |#1|)) NIL)) (-1334 (($ $ (-546) (-58 |#1|)) NIL)) (-4139 (($) NIL T CONST)) (-3504 (((-58 |#1|) $ (-546)) NIL)) (-1672 ((|#1| $ (-546) (-546) |#1|) NIL)) (-3505 ((|#1| $ (-546) (-546)) NIL)) (-2103 (((-637 |#1|) $) NIL)) (-3507 (((-767) $) NIL)) (-4029 (($ (-767) (-767) |#1|) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) (-546)) NIL) ((|#1| $ (-546) (-546) |#1|) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3503 (((-58 |#1|) $ (-546)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4409))) (-1207)) (T -60))
+NIL
+(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4409)))
+((-3565 (((-3 $ #1="failed") (-314 (-378))) 41) (((-3 $ #1#) (-314 (-546))) 46) (((-3 $ #1#) (-942 (-378))) 50) (((-3 $ #1#) (-942 (-546))) 54) (((-3 $ #1#) (-407 (-942 (-378)))) 36) (((-3 $ #1#) (-407 (-942 (-546)))) 29)) (-3564 (($ (-314 (-378))) 39) (($ (-314 (-546))) 44) (($ (-942 (-378))) 48) (($ (-942 (-546))) 52) (($ (-407 (-942 (-378)))) 34) (($ (-407 (-942 (-546)))) 26)) (-3791 (((-1262) $) 76)) (-4361 (((-859) $) 69) (($ (-637 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 64) (($ (-339 (-3936 (QUOTE X)) (-3936) (-694))) 25)))
+(((-61 |#1|) (-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936 (QUOTE X)) (-3936) (-694)))))) (-1169)) (T -61))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-339 (-3936 (QUOTE X)) (-3936) (-694))) (-5 *1 (-61 *3)) (-14 *3 (-1169)))))
+(-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936 (QUOTE X)) (-3936) (-694))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 74) (((-3 $ #1#) (-1256 (-314 (-546)))) 63) (((-3 $ #1#) (-1256 (-942 (-378)))) 94) (((-3 $ #1#) (-1256 (-942 (-546)))) 84) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 52) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 39)) (-3564 (($ (-1256 (-314 (-378)))) 70) (($ (-1256 (-314 (-546)))) 59) (($ (-1256 (-942 (-378)))) 90) (($ (-1256 (-942 (-546)))) 80) (($ (-1256 (-407 (-942 (-378))))) 48) (($ (-1256 (-407 (-942 (-546))))) 32)) (-3791 (((-1262) $) 120)) (-4361 (((-859) $) 113) (($ (-637 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 101) (($ (-1256 (-339 (-3936 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3936) (-694)))) 31)))
+(((-62 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3936) (-694))))))) (-1169)) (T -62))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3936) (-694)))) (-5 *1 (-62 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3936) (-694)))))))
+((-3791 (((-1262) $) 53) (((-1262)) 54)) (-4361 (((-859) $) 50)))
+(((-63 |#1|) (-13 (-396) (-10 -7 (-15 -3791 ((-1262))))) (-1169)) (T -63))
+((-3791 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-63 *3)) (-14 *3 (-1169)))))
+(-13 (-396) (-10 -7 (-15 -3791 ((-1262)))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 145) (((-3 $ #1#) (-1256 (-314 (-546)))) 135) (((-3 $ #1#) (-1256 (-942 (-378)))) 165) (((-3 $ #1#) (-1256 (-942 (-546)))) 155) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 124) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 112)) (-3564 (($ (-1256 (-314 (-378)))) 141) (($ (-1256 (-314 (-546)))) 131) (($ (-1256 (-942 (-378)))) 161) (($ (-1256 (-942 (-546)))) 151) (($ (-1256 (-407 (-942 (-378))))) 120) (($ (-1256 (-407 (-942 (-546))))) 105)) (-3791 (((-1262) $) 98)) (-4361 (((-859) $) 92) (($ (-637 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 32) (($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))) 90)))
+(((-64 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694))))))) (-1169)) (T -64))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))) (-5 *1 (-64 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-684 (-314 (-378)))) 109) (((-3 $ #1#) (-684 (-314 (-546)))) 97) (((-3 $ #1#) (-684 (-942 (-378)))) 131) (((-3 $ #1#) (-684 (-942 (-546)))) 120) (((-3 $ #1#) (-684 (-407 (-942 (-378))))) 85) (((-3 $ #1#) (-684 (-407 (-942 (-546))))) 71)) (-3564 (($ (-684 (-314 (-378)))) 105) (($ (-684 (-314 (-546)))) 93) (($ (-684 (-942 (-378)))) 127) (($ (-684 (-942 (-546)))) 116) (($ (-684 (-407 (-942 (-378))))) 81) (($ (-684 (-407 (-942 (-546))))) 64)) (-3791 (((-1262) $) 139)) (-4361 (((-859) $) 133) (($ (-637 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 31) (($ (-684 (-339 (-3936) (-3936 (QUOTE X) (QUOTE HESS)) (-694)))) 54)))
+(((-65 |#1|) (-13 (-385) (-613 (-684 (-339 (-3936) (-3936 (QUOTE X) (QUOTE HESS)) (-694))))) (-1169)) (T -65))
+NIL
+(-13 (-385) (-613 (-684 (-339 (-3936) (-3936 (QUOTE X) (QUOTE HESS)) (-694)))))
+((-3565 (((-3 $ #1="failed") (-314 (-378))) 59) (((-3 $ #1#) (-314 (-546))) 64) (((-3 $ #1#) (-942 (-378))) 68) (((-3 $ #1#) (-942 (-546))) 72) (((-3 $ #1#) (-407 (-942 (-378)))) 54) (((-3 $ #1#) (-407 (-942 (-546)))) 47)) (-3564 (($ (-314 (-378))) 57) (($ (-314 (-546))) 62) (($ (-942 (-378))) 66) (($ (-942 (-546))) 70) (($ (-407 (-942 (-378)))) 52) (($ (-407 (-942 (-546)))) 44)) (-3791 (((-1262) $) 81)) (-4361 (((-859) $) 75) (($ (-637 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 31) (($ (-339 (-3936) (-3936 (QUOTE XC)) (-694))) 39)))
+(((-66 |#1|) (-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE XC)) (-694)))))) (-1169)) (T -66))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-339 (-3936) (-3936 (QUOTE XC)) (-694))) (-5 *1 (-66 *3)) (-14 *3 (-1169)))))
+(-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE XC)) (-694))))))
+((-3791 (((-1262) $) 63)) (-4361 (((-859) $) 57) (($ (-684 (-694))) 49) (($ (-637 (-330))) 48) (($ (-330)) 55) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 53)))
(((-67 |#1|) (-383) (-1169)) (T -67))
NIL
(-383)
-((-2615 (((-1262) $) 64)) (-1692 (((-858) $) 58) (($ (-684 (-694))) 50) (($ (-640 (-330))) 49) (($ (-330)) 52) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 55)))
+((-3791 (((-1262) $) 64)) (-4361 (((-859) $) 58) (($ (-684 (-694))) 50) (($ (-637 (-330))) 49) (($ (-330)) 52) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 55)))
(((-68 |#1|) (-383) (-1169)) (T -68))
NIL
(-383)
-((-2615 (((-1262) $) NIL) (((-1262)) 32)) (-1692 (((-858) $) NIL)))
-(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -69))
-((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169)))))
-(-13 (-395) (-10 -7 (-15 -2615 ((-1262)))))
-((-2615 (((-1262) $) 73)) (-1692 (((-858) $) 67) (($ (-684 (-694))) 59) (($ (-640 (-330))) 61) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 58)))
+((-3791 (((-1262) $) NIL) (((-1262)) 32)) (-4361 (((-859) $) NIL)))
+(((-69 |#1|) (-13 (-396) (-10 -7 (-15 -3791 ((-1262))))) (-1169)) (T -69))
+((-3791 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169)))))
+(-13 (-396) (-10 -7 (-15 -3791 ((-1262)))))
+((-3791 (((-1262) $) 73)) (-4361 (((-859) $) 67) (($ (-684 (-694))) 59) (($ (-637 (-330))) 61) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 58)))
(((-70 |#1|) (-383) (-1169)) (T -70))
NIL
(-383)
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 103) (((-3 $ "failed") (-1257 (-316 (-563)))) 92) (((-3 $ "failed") (-1257 (-948 (-379)))) 123) (((-3 $ "failed") (-1257 (-948 (-563)))) 113) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 81) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 68)) (-2057 (($ (-1257 (-316 (-379)))) 99) (($ (-1257 (-316 (-563)))) 88) (($ (-1257 (-948 (-379)))) 119) (($ (-1257 (-948 (-563)))) 109) (($ (-1257 (-407 (-948 (-379))))) 77) (($ (-1257 (-407 (-948 (-563))))) 61)) (-2615 (((-1262) $) 136)) (-1692 (((-858) $) 130) (($ (-640 (-330))) 125) (($ (-330)) 128) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 53) (($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))) 54)))
-(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694))))))) (-1169)) (T -71))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))) (-5 *1 (-71 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))))))
-((-2615 (((-1262) $) 32) (((-1262)) 31)) (-1692 (((-858) $) 35)))
-(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -72))
-((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169)))))
-(-13 (-395) (-10 -7 (-15 -2615 ((-1262)))))
-((-2615 (((-1262) $) 63)) (-1692 (((-858) $) 57) (($ (-684 (-694))) 49) (($ (-640 (-330))) 51) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 48)))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 103) (((-3 $ #1#) (-1256 (-314 (-546)))) 92) (((-3 $ #1#) (-1256 (-942 (-378)))) 123) (((-3 $ #1#) (-1256 (-942 (-546)))) 113) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 81) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 68)) (-3564 (($ (-1256 (-314 (-378)))) 99) (($ (-1256 (-314 (-546)))) 88) (($ (-1256 (-942 (-378)))) 119) (($ (-1256 (-942 (-546)))) 109) (($ (-1256 (-407 (-942 (-378))))) 77) (($ (-1256 (-407 (-942 (-546))))) 61)) (-3791 (((-1262) $) 136)) (-4361 (((-859) $) 130) (($ (-637 (-330))) 125) (($ (-330)) 128) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 53) (($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))) 54)))
+(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694))))))) (-1169)) (T -71))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))) (-5 *1 (-71 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))))))
+((-3791 (((-1262) $) 32) (((-1262)) 31)) (-4361 (((-859) $) 35)))
+(((-72 |#1|) (-13 (-396) (-10 -7 (-15 -3791 ((-1262))))) (-1169)) (T -72))
+((-3791 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169)))))
+(-13 (-396) (-10 -7 (-15 -3791 ((-1262)))))
+((-3791 (((-1262) $) 63)) (-4361 (((-859) $) 57) (($ (-684 (-694))) 49) (($ (-637 (-330))) 51) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 48)))
(((-73 |#1|) (-383) (-1169)) (T -73))
NIL
(-383)
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 125) (((-3 $ "failed") (-1257 (-316 (-563)))) 115) (((-3 $ "failed") (-1257 (-948 (-379)))) 145) (((-3 $ "failed") (-1257 (-948 (-563)))) 135) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 105) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 93)) (-2057 (($ (-1257 (-316 (-379)))) 121) (($ (-1257 (-316 (-563)))) 111) (($ (-1257 (-948 (-379)))) 141) (($ (-1257 (-948 (-563)))) 131) (($ (-1257 (-407 (-948 (-379))))) 101) (($ (-1257 (-407 (-948 (-563))))) 86)) (-2615 (((-1262) $) 78)) (-1692 (((-858) $) 27) (($ (-640 (-330))) 68) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 71) (($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) 65)))
-(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694))))))) (-1169)) (T -74))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) (-5 *1 (-74 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 130) (((-3 $ "failed") (-1257 (-316 (-563)))) 119) (((-3 $ "failed") (-1257 (-948 (-379)))) 150) (((-3 $ "failed") (-1257 (-948 (-563)))) 140) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 108) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 95)) (-2057 (($ (-1257 (-316 (-379)))) 126) (($ (-1257 (-316 (-563)))) 115) (($ (-1257 (-948 (-379)))) 146) (($ (-1257 (-948 (-563)))) 136) (($ (-1257 (-407 (-948 (-379))))) 104) (($ (-1257 (-407 (-948 (-563))))) 88)) (-2615 (((-1262) $) 79)) (-1692 (((-858) $) 71) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) NIL) (($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE EPS)) (-1706 (QUOTE -3174)) (-694)))) 66)))
-(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE EPS)) (-1706 (QUOTE -3174)) (-694))))))) (-1169) (-1169) (-1169)) (T -75))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE X) (QUOTE EPS)) (-1706 (QUOTE -3174)) (-694)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE EPS)) (-1706 (QUOTE -3174)) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 134) (((-3 $ "failed") (-1257 (-316 (-563)))) 123) (((-3 $ "failed") (-1257 (-948 (-379)))) 154) (((-3 $ "failed") (-1257 (-948 (-563)))) 144) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 112) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 99)) (-2057 (($ (-1257 (-316 (-379)))) 130) (($ (-1257 (-316 (-563)))) 119) (($ (-1257 (-948 (-379)))) 150) (($ (-1257 (-948 (-563)))) 140) (($ (-1257 (-407 (-948 (-379))))) 108) (($ (-1257 (-407 (-948 (-563))))) 92)) (-2615 (((-1262) $) 83)) (-1692 (((-858) $) 75) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) NIL) (($ (-1257 (-339 (-1706 (QUOTE EPS)) (-1706 (QUOTE YA) (QUOTE YB)) (-694)))) 70)))
-(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE EPS)) (-1706 (QUOTE YA) (QUOTE YB)) (-694))))))) (-1169) (-1169) (-1169)) (T -76))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE EPS)) (-1706 (QUOTE YA) (QUOTE YB)) (-694)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE EPS)) (-1706 (QUOTE YA) (QUOTE YB)) (-694)))))))
-((-2130 (((-3 $ "failed") (-316 (-379))) 82) (((-3 $ "failed") (-316 (-563))) 87) (((-3 $ "failed") (-948 (-379))) 91) (((-3 $ "failed") (-948 (-563))) 95) (((-3 $ "failed") (-407 (-948 (-379)))) 77) (((-3 $ "failed") (-407 (-948 (-563)))) 70)) (-2057 (($ (-316 (-379))) 80) (($ (-316 (-563))) 85) (($ (-948 (-379))) 89) (($ (-948 (-563))) 93) (($ (-407 (-948 (-379)))) 75) (($ (-407 (-948 (-563)))) 67)) (-2615 (((-1262) $) 62)) (-1692 (((-858) $) 50) (($ (-640 (-330))) 46) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 54) (($ (-339 (-1706) (-1706 (QUOTE X)) (-694))) 47)))
-(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE X)) (-694)))))) (-1169)) (T -77))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-339 (-1706) (-1706 (QUOTE X)) (-694))) (-5 *1 (-77 *3)) (-14 *3 (-1169)))))
-(-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE X)) (-694))))))
-((-2130 (((-3 $ "failed") (-316 (-379))) 46) (((-3 $ "failed") (-316 (-563))) 51) (((-3 $ "failed") (-948 (-379))) 55) (((-3 $ "failed") (-948 (-563))) 59) (((-3 $ "failed") (-407 (-948 (-379)))) 41) (((-3 $ "failed") (-407 (-948 (-563)))) 34)) (-2057 (($ (-316 (-379))) 44) (($ (-316 (-563))) 49) (($ (-948 (-379))) 53) (($ (-948 (-563))) 57) (($ (-407 (-948 (-379)))) 39) (($ (-407 (-948 (-563)))) 31)) (-2615 (((-1262) $) 80)) (-1692 (((-858) $) 74) (($ (-640 (-330))) 66) (($ (-330)) 71) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 69) (($ (-339 (-1706) (-1706 (QUOTE X)) (-694))) 30)))
-(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE X)) (-694)))))) (-1169)) (T -78))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-339 (-1706) (-1706 (QUOTE X)) (-694))) (-5 *1 (-78 *3)) (-14 *3 (-1169)))))
-(-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706) (-1706 (QUOTE X)) (-694))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 89) (((-3 $ "failed") (-1257 (-316 (-563)))) 78) (((-3 $ "failed") (-1257 (-948 (-379)))) 109) (((-3 $ "failed") (-1257 (-948 (-563)))) 99) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 67) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 54)) (-2057 (($ (-1257 (-316 (-379)))) 85) (($ (-1257 (-316 (-563)))) 74) (($ (-1257 (-948 (-379)))) 105) (($ (-1257 (-948 (-563)))) 95) (($ (-1257 (-407 (-948 (-379))))) 63) (($ (-1257 (-407 (-948 (-563))))) 47)) (-2615 (((-1262) $) 125)) (-1692 (((-858) $) 119) (($ (-640 (-330))) 112) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 115) (($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))) 38)))
-(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694))))))) (-1169)) (T -79))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))) (-5 *1 (-79 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE XC)) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 143) (((-3 $ "failed") (-1257 (-316 (-563)))) 133) (((-3 $ "failed") (-1257 (-948 (-379)))) 163) (((-3 $ "failed") (-1257 (-948 (-563)))) 153) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 123) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 111)) (-2057 (($ (-1257 (-316 (-379)))) 139) (($ (-1257 (-316 (-563)))) 129) (($ (-1257 (-948 (-379)))) 159) (($ (-1257 (-948 (-563)))) 149) (($ (-1257 (-407 (-948 (-379))))) 119) (($ (-1257 (-407 (-948 (-563))))) 104)) (-2615 (((-1262) $) 97)) (-1692 (((-858) $) 91) (($ (-640 (-330))) 82) (($ (-330)) 89) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 87) (($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) 83)))
-(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694))))))) (-1169)) (T -80))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) (-5 *1 (-80 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 78) (((-3 $ "failed") (-1257 (-316 (-563)))) 67) (((-3 $ "failed") (-1257 (-948 (-379)))) 98) (((-3 $ "failed") (-1257 (-948 (-563)))) 88) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 56) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 43)) (-2057 (($ (-1257 (-316 (-379)))) 74) (($ (-1257 (-316 (-563)))) 63) (($ (-1257 (-948 (-379)))) 94) (($ (-1257 (-948 (-563)))) 84) (($ (-1257 (-407 (-948 (-379))))) 52) (($ (-1257 (-407 (-948 (-563))))) 36)) (-2615 (((-1262) $) 124)) (-1692 (((-858) $) 118) (($ (-640 (-330))) 109) (($ (-330)) 115) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 113) (($ (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))) 35)))
-(((-81 |#1|) (-13 (-441) (-613 (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694))))) (-1169)) (T -81))
-NIL
-(-13 (-441) (-613 (-1257 (-339 (-1706) (-1706 (QUOTE X)) (-694)))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 95) (((-3 $ "failed") (-1257 (-316 (-563)))) 84) (((-3 $ "failed") (-1257 (-948 (-379)))) 115) (((-3 $ "failed") (-1257 (-948 (-563)))) 105) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 73) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 60)) (-2057 (($ (-1257 (-316 (-379)))) 91) (($ (-1257 (-316 (-563)))) 80) (($ (-1257 (-948 (-379)))) 111) (($ (-1257 (-948 (-563)))) 101) (($ (-1257 (-407 (-948 (-379))))) 69) (($ (-1257 (-407 (-948 (-563))))) 53)) (-2615 (((-1262) $) 45)) (-1692 (((-858) $) 39) (($ (-640 (-330))) 29) (($ (-330)) 32) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 35) (($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))) 30)))
-(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694))))))) (-1169)) (T -82))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))) (-5 *1 (-82 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))))))
-((-2130 (((-3 $ "failed") (-684 (-316 (-379)))) 115) (((-3 $ "failed") (-684 (-316 (-563)))) 104) (((-3 $ "failed") (-684 (-948 (-379)))) 137) (((-3 $ "failed") (-684 (-948 (-563)))) 126) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 93) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 80)) (-2057 (($ (-684 (-316 (-379)))) 111) (($ (-684 (-316 (-563)))) 100) (($ (-684 (-948 (-379)))) 133) (($ (-684 (-948 (-563)))) 122) (($ (-684 (-407 (-948 (-379))))) 89) (($ (-684 (-407 (-948 (-563))))) 73)) (-2615 (((-1262) $) 63)) (-1692 (((-858) $) 50) (($ (-640 (-330))) 57) (($ (-330)) 46) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 55) (($ (-684 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))) 47)))
-(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694))))))) (-1169)) (T -83))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))) (-5 *1 (-83 *3)) (-14 *3 (-1169)))))
-(-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE X) (QUOTE -3174)) (-1706) (-694)))))))
-((-2130 (((-3 $ "failed") (-684 (-316 (-379)))) 112) (((-3 $ "failed") (-684 (-316 (-563)))) 100) (((-3 $ "failed") (-684 (-948 (-379)))) 134) (((-3 $ "failed") (-684 (-948 (-563)))) 123) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 88) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 74)) (-2057 (($ (-684 (-316 (-379)))) 108) (($ (-684 (-316 (-563)))) 96) (($ (-684 (-948 (-379)))) 130) (($ (-684 (-948 (-563)))) 119) (($ (-684 (-407 (-948 (-379))))) 84) (($ (-684 (-407 (-948 (-563))))) 67)) (-2615 (((-1262) $) 59)) (-1692 (((-858) $) 53) (($ (-640 (-330))) 47) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 44) (($ (-684 (-339 (-1706 (QUOTE X)) (-1706) (-694)))) 45)))
-(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE X)) (-1706) (-694))))))) (-1169)) (T -84))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1706 (QUOTE X)) (-1706) (-694)))) (-5 *1 (-84 *3)) (-14 *3 (-1169)))))
-(-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE X)) (-1706) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 104) (((-3 $ "failed") (-1257 (-316 (-563)))) 93) (((-3 $ "failed") (-1257 (-948 (-379)))) 124) (((-3 $ "failed") (-1257 (-948 (-563)))) 114) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 82) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 69)) (-2057 (($ (-1257 (-316 (-379)))) 100) (($ (-1257 (-316 (-563)))) 89) (($ (-1257 (-948 (-379)))) 120) (($ (-1257 (-948 (-563)))) 110) (($ (-1257 (-407 (-948 (-379))))) 78) (($ (-1257 (-407 (-948 (-563))))) 62)) (-2615 (((-1262) $) 46)) (-1692 (((-858) $) 40) (($ (-640 (-330))) 49) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 52) (($ (-1257 (-339 (-1706 (QUOTE X)) (-1706) (-694)))) 37)))
-(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706) (-694))))))) (-1169)) (T -85))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE X)) (-1706) (-694)))) (-5 *1 (-85 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706) (-694)))))))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 79) (((-3 $ "failed") (-1257 (-316 (-563)))) 68) (((-3 $ "failed") (-1257 (-948 (-379)))) 99) (((-3 $ "failed") (-1257 (-948 (-563)))) 89) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 57) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 44)) (-2057 (($ (-1257 (-316 (-379)))) 75) (($ (-1257 (-316 (-563)))) 64) (($ (-1257 (-948 (-379)))) 95) (($ (-1257 (-948 (-563)))) 85) (($ (-1257 (-407 (-948 (-379))))) 53) (($ (-1257 (-407 (-948 (-563))))) 37)) (-2615 (((-1262) $) 125)) (-1692 (((-858) $) 119) (($ (-640 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 114) (($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))) 36)))
-(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694))))))) (-1169)) (T -86))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))) (-5 *1 (-86 *3)) (-14 *3 (-1169)))))
-(-13 (-441) (-10 -8 (-15 -1692 ($ (-1257 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))))))
-((-2130 (((-3 $ "failed") (-684 (-316 (-379)))) 113) (((-3 $ "failed") (-684 (-316 (-563)))) 101) (((-3 $ "failed") (-684 (-948 (-379)))) 135) (((-3 $ "failed") (-684 (-948 (-563)))) 124) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 75)) (-2057 (($ (-684 (-316 (-379)))) 109) (($ (-684 (-316 (-563)))) 97) (($ (-684 (-948 (-379)))) 131) (($ (-684 (-948 (-563)))) 120) (($ (-684 (-407 (-948 (-379))))) 85) (($ (-684 (-407 (-948 (-563))))) 68)) (-2615 (((-1262) $) 59)) (-1692 (((-858) $) 53) (($ (-640 (-330))) 43) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 48) (($ (-684 (-339 (-1706 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1706) (-694)))) 44)))
-(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1706) (-694))))))) (-1169)) (T -87))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1706 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1706) (-694)))) (-5 *1 (-87 *3)) (-14 *3 (-1169)))))
-(-13 (-384) (-10 -8 (-15 -1692 ($ (-684 (-339 (-1706 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1706) (-694)))))))
-((-2615 (((-1262) $) 44)) (-1692 (((-858) $) 38) (($ (-1257 (-694))) 93) (($ (-640 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 33)))
-(((-88 |#1|) (-440) (-1169)) (T -88))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 125) (((-3 $ #1#) (-1256 (-314 (-546)))) 115) (((-3 $ #1#) (-1256 (-942 (-378)))) 145) (((-3 $ #1#) (-1256 (-942 (-546)))) 135) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 105) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 93)) (-3564 (($ (-1256 (-314 (-378)))) 121) (($ (-1256 (-314 (-546)))) 111) (($ (-1256 (-942 (-378)))) 141) (($ (-1256 (-942 (-546)))) 131) (($ (-1256 (-407 (-942 (-378))))) 101) (($ (-1256 (-407 (-942 (-546))))) 86)) (-3791 (((-1262) $) 78)) (-4361 (((-859) $) 27) (($ (-637 (-330))) 68) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 71) (($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) 65)))
+(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694))))))) (-1169)) (T -74))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) (-5 *1 (-74 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-314 (-378))) 46) (((-3 $ #1#) (-314 (-546))) 51) (((-3 $ #1#) (-942 (-378))) 55) (((-3 $ #1#) (-942 (-546))) 59) (((-3 $ #1#) (-407 (-942 (-378)))) 41) (((-3 $ #1#) (-407 (-942 (-546)))) 34)) (-3564 (($ (-314 (-378))) 44) (($ (-314 (-546))) 49) (($ (-942 (-378))) 53) (($ (-942 (-546))) 57) (($ (-407 (-942 (-378)))) 39) (($ (-407 (-942 (-546)))) 31)) (-3791 (((-1262) $) 80)) (-4361 (((-859) $) 74) (($ (-637 (-330))) 66) (($ (-330)) 71) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 69) (($ (-339 (-3936) (-3936 (QUOTE X)) (-694))) 30)))
+(((-75 |#1|) (-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE X)) (-694)))))) (-1169)) (T -75))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-339 (-3936) (-3936 (QUOTE X)) (-694))) (-5 *1 (-75 *3)) (-14 *3 (-1169)))))
+(-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE X)) (-694))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 130) (((-3 $ #1#) (-1256 (-314 (-546)))) 119) (((-3 $ #1#) (-1256 (-942 (-378)))) 150) (((-3 $ #1#) (-1256 (-942 (-546)))) 140) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 108) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 95)) (-3564 (($ (-1256 (-314 (-378)))) 126) (($ (-1256 (-314 (-546)))) 115) (($ (-1256 (-942 (-378)))) 146) (($ (-1256 (-942 (-546)))) 136) (($ (-1256 (-407 (-942 (-378))))) 104) (($ (-1256 (-407 (-942 (-546))))) 88)) (-3791 (((-1262) $) 79)) (-4361 (((-859) $) 71) (($ (-637 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) NIL) (($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE EPS)) (-3936 (QUOTE -4379)) (-694)))) 66)))
+(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE EPS)) (-3936 (QUOTE -4379)) (-694))))))) (-1169) (-1169) (-1169)) (T -76))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE X) (QUOTE EPS)) (-3936 (QUOTE -4379)) (-694)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE EPS)) (-3936 (QUOTE -4379)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 134) (((-3 $ #1#) (-1256 (-314 (-546)))) 123) (((-3 $ #1#) (-1256 (-942 (-378)))) 154) (((-3 $ #1#) (-1256 (-942 (-546)))) 144) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 112) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 99)) (-3564 (($ (-1256 (-314 (-378)))) 130) (($ (-1256 (-314 (-546)))) 119) (($ (-1256 (-942 (-378)))) 150) (($ (-1256 (-942 (-546)))) 140) (($ (-1256 (-407 (-942 (-378))))) 108) (($ (-1256 (-407 (-942 (-546))))) 92)) (-3791 (((-1262) $) 83)) (-4361 (((-859) $) 75) (($ (-637 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) NIL) (($ (-1256 (-339 (-3936 (QUOTE EPS)) (-3936 (QUOTE YA) (QUOTE YB)) (-694)))) 70)))
+(((-77 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE EPS)) (-3936 (QUOTE YA) (QUOTE YB)) (-694))))))) (-1169) (-1169) (-1169)) (T -77))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE EPS)) (-3936 (QUOTE YA) (QUOTE YB)) (-694)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE EPS)) (-3936 (QUOTE YA) (QUOTE YB)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-314 (-378))) 82) (((-3 $ #1#) (-314 (-546))) 87) (((-3 $ #1#) (-942 (-378))) 91) (((-3 $ #1#) (-942 (-546))) 95) (((-3 $ #1#) (-407 (-942 (-378)))) 77) (((-3 $ #1#) (-407 (-942 (-546)))) 70)) (-3564 (($ (-314 (-378))) 80) (($ (-314 (-546))) 85) (($ (-942 (-378))) 89) (($ (-942 (-546))) 93) (($ (-407 (-942 (-378)))) 75) (($ (-407 (-942 (-546)))) 67)) (-3791 (((-1262) $) 62)) (-4361 (((-859) $) 50) (($ (-637 (-330))) 46) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 54) (($ (-339 (-3936) (-3936 (QUOTE X)) (-694))) 47)))
+(((-78 |#1|) (-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE X)) (-694)))))) (-1169)) (T -78))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-339 (-3936) (-3936 (QUOTE X)) (-694))) (-5 *1 (-78 *3)) (-14 *3 (-1169)))))
+(-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936) (-3936 (QUOTE X)) (-694))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 89) (((-3 $ #1#) (-1256 (-314 (-546)))) 78) (((-3 $ #1#) (-1256 (-942 (-378)))) 109) (((-3 $ #1#) (-1256 (-942 (-546)))) 99) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 67) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 54)) (-3564 (($ (-1256 (-314 (-378)))) 85) (($ (-1256 (-314 (-546)))) 74) (($ (-1256 (-942 (-378)))) 105) (($ (-1256 (-942 (-546)))) 95) (($ (-1256 (-407 (-942 (-378))))) 63) (($ (-1256 (-407 (-942 (-546))))) 47)) (-3791 (((-1262) $) 125)) (-4361 (((-859) $) 119) (($ (-637 (-330))) 112) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 115) (($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))) 38)))
+(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694))))))) (-1169)) (T -79))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))) (-5 *1 (-79 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE XC)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 143) (((-3 $ #1#) (-1256 (-314 (-546)))) 133) (((-3 $ #1#) (-1256 (-942 (-378)))) 163) (((-3 $ #1#) (-1256 (-942 (-546)))) 153) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 123) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 111)) (-3564 (($ (-1256 (-314 (-378)))) 139) (($ (-1256 (-314 (-546)))) 129) (($ (-1256 (-942 (-378)))) 159) (($ (-1256 (-942 (-546)))) 149) (($ (-1256 (-407 (-942 (-378))))) 119) (($ (-1256 (-407 (-942 (-546))))) 104)) (-3791 (((-1262) $) 97)) (-4361 (((-859) $) 91) (($ (-637 (-330))) 82) (($ (-330)) 89) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 87) (($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) 83)))
+(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694))))))) (-1169)) (T -80))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) (-5 *1 (-80 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 78) (((-3 $ #1#) (-1256 (-314 (-546)))) 67) (((-3 $ #1#) (-1256 (-942 (-378)))) 98) (((-3 $ #1#) (-1256 (-942 (-546)))) 88) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 56) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 43)) (-3564 (($ (-1256 (-314 (-378)))) 74) (($ (-1256 (-314 (-546)))) 63) (($ (-1256 (-942 (-378)))) 94) (($ (-1256 (-942 (-546)))) 84) (($ (-1256 (-407 (-942 (-378))))) 52) (($ (-1256 (-407 (-942 (-546))))) 36)) (-3791 (((-1262) $) 124)) (-4361 (((-859) $) 118) (($ (-637 (-330))) 109) (($ (-330)) 115) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 113) (($ (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))) 35)))
+(((-81 |#1|) (-13 (-441) (-613 (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694))))) (-1169)) (T -81))
+NIL
+(-13 (-441) (-613 (-1256 (-339 (-3936) (-3936 (QUOTE X)) (-694)))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 79) (((-3 $ #1#) (-1256 (-314 (-546)))) 68) (((-3 $ #1#) (-1256 (-942 (-378)))) 99) (((-3 $ #1#) (-1256 (-942 (-546)))) 89) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 57) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 44)) (-3564 (($ (-1256 (-314 (-378)))) 75) (($ (-1256 (-314 (-546)))) 64) (($ (-1256 (-942 (-378)))) 95) (($ (-1256 (-942 (-546)))) 85) (($ (-1256 (-407 (-942 (-378))))) 53) (($ (-1256 (-407 (-942 (-546))))) 37)) (-3791 (((-1262) $) 125)) (-4361 (((-859) $) 119) (($ (-637 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 114) (($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))) 36)))
+(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694))))))) (-1169)) (T -82))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))) (-5 *1 (-82 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 95) (((-3 $ #1#) (-1256 (-314 (-546)))) 84) (((-3 $ #1#) (-1256 (-942 (-378)))) 115) (((-3 $ #1#) (-1256 (-942 (-546)))) 105) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 73) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 60)) (-3564 (($ (-1256 (-314 (-378)))) 91) (($ (-1256 (-314 (-546)))) 80) (($ (-1256 (-942 (-378)))) 111) (($ (-1256 (-942 (-546)))) 101) (($ (-1256 (-407 (-942 (-378))))) 69) (($ (-1256 (-407 (-942 (-546))))) 53)) (-3791 (((-1262) $) 45)) (-4361 (((-859) $) 39) (($ (-637 (-330))) 29) (($ (-330)) 32) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 35) (($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))) 30)))
+(((-83 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694))))))) (-1169)) (T -83))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))) (-5 *1 (-83 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-684 (-314 (-378)))) 115) (((-3 $ #1#) (-684 (-314 (-546)))) 104) (((-3 $ #1#) (-684 (-942 (-378)))) 137) (((-3 $ #1#) (-684 (-942 (-546)))) 126) (((-3 $ #1#) (-684 (-407 (-942 (-378))))) 93) (((-3 $ #1#) (-684 (-407 (-942 (-546))))) 80)) (-3564 (($ (-684 (-314 (-378)))) 111) (($ (-684 (-314 (-546)))) 100) (($ (-684 (-942 (-378)))) 133) (($ (-684 (-942 (-546)))) 122) (($ (-684 (-407 (-942 (-378))))) 89) (($ (-684 (-407 (-942 (-546))))) 73)) (-3791 (((-1262) $) 63)) (-4361 (((-859) $) 50) (($ (-637 (-330))) 57) (($ (-330)) 46) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 55) (($ (-684 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))) 47)))
+(((-84 |#1|) (-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694))))))) (-1169)) (T -84))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))) (-5 *1 (-84 *3)) (-14 *3 (-1169)))))
+(-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE X) (QUOTE -4379)) (-3936) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-684 (-314 (-378)))) 112) (((-3 $ #1#) (-684 (-314 (-546)))) 100) (((-3 $ #1#) (-684 (-942 (-378)))) 134) (((-3 $ #1#) (-684 (-942 (-546)))) 123) (((-3 $ #1#) (-684 (-407 (-942 (-378))))) 88) (((-3 $ #1#) (-684 (-407 (-942 (-546))))) 74)) (-3564 (($ (-684 (-314 (-378)))) 108) (($ (-684 (-314 (-546)))) 96) (($ (-684 (-942 (-378)))) 130) (($ (-684 (-942 (-546)))) 119) (($ (-684 (-407 (-942 (-378))))) 84) (($ (-684 (-407 (-942 (-546))))) 67)) (-3791 (((-1262) $) 59)) (-4361 (((-859) $) 53) (($ (-637 (-330))) 47) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 44) (($ (-684 (-339 (-3936 (QUOTE X)) (-3936) (-694)))) 45)))
+(((-85 |#1|) (-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE X)) (-3936) (-694))))))) (-1169)) (T -85))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-3936 (QUOTE X)) (-3936) (-694)))) (-5 *1 (-85 *3)) (-14 *3 (-1169)))))
+(-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE X)) (-3936) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-1256 (-314 (-378)))) 104) (((-3 $ #1#) (-1256 (-314 (-546)))) 93) (((-3 $ #1#) (-1256 (-942 (-378)))) 124) (((-3 $ #1#) (-1256 (-942 (-546)))) 114) (((-3 $ #1#) (-1256 (-407 (-942 (-378))))) 82) (((-3 $ #1#) (-1256 (-407 (-942 (-546))))) 69)) (-3564 (($ (-1256 (-314 (-378)))) 100) (($ (-1256 (-314 (-546)))) 89) (($ (-1256 (-942 (-378)))) 120) (($ (-1256 (-942 (-546)))) 110) (($ (-1256 (-407 (-942 (-378))))) 78) (($ (-1256 (-407 (-942 (-546))))) 62)) (-3791 (((-1262) $) 46)) (-4361 (((-859) $) 40) (($ (-637 (-330))) 49) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 52) (($ (-1256 (-339 (-3936 (QUOTE X)) (-3936) (-694)))) 37)))
+(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936) (-694))))))) (-1169)) (T -86))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-339 (-3936 (QUOTE X)) (-3936) (-694)))) (-5 *1 (-86 *3)) (-14 *3 (-1169)))))
+(-13 (-441) (-10 -8 (-15 -4361 ($ (-1256 (-339 (-3936 (QUOTE X)) (-3936) (-694)))))))
+((-3791 (((-1262) $) 44)) (-4361 (((-859) $) 38) (($ (-1256 (-694))) 93) (($ (-637 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 33)))
+(((-87 |#1|) (-440) (-1169)) (T -87))
NIL
(-440)
-((-2130 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-563))) 52) (((-3 $ "failed") (-948 (-379))) 56) (((-3 $ "failed") (-948 (-563))) 60) (((-3 $ "failed") (-407 (-948 (-379)))) 42) (((-3 $ "failed") (-407 (-948 (-563)))) 35)) (-2057 (($ (-316 (-379))) 45) (($ (-316 (-563))) 50) (($ (-948 (-379))) 54) (($ (-948 (-563))) 58) (($ (-407 (-948 (-379)))) 40) (($ (-407 (-948 (-563)))) 32)) (-2615 (((-1262) $) 90)) (-1692 (((-858) $) 84) (($ (-640 (-330))) 78) (($ (-330)) 81) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 76) (($ (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694))) 31)))
-(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694)))))) (-1169)) (T -89))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694))) (-5 *1 (-89 *3)) (-14 *3 (-1169)))))
-(-13 (-396) (-10 -8 (-15 -1692 ($ (-339 (-1706 (QUOTE X)) (-1706 (QUOTE -3174)) (-694))))))
-((-1622 (((-1257 (-684 |#1|)) (-684 |#1|)) 54)) (-1611 (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917)) 44)) (-1633 (((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917)) 65 (|has| |#1| (-363)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -1611 ((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -1622 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1633 ((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|)) (-555) (-651 |#1|)) (T -90))
-((-1633 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |minor| (-640 (-917))) (|:| -1420 *3) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))) (-1622 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-684 *4)) (-4 *5 (-651 *4)))) (-1611 (*1 *2 *3 *4) (-12 (-4 *5 (-555)) (-5 *2 (-2 (|:| -1957 (-684 *5)) (|:| |vec| (-1257 (-640 (-917)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))))
-(-10 -7 (-15 -1611 ((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -1622 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1633 ((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2635 ((|#1| $) 35)) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-2147 ((|#1| |#1| $) 30)) (-2136 ((|#1| $) 28)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) NIL)) (-3867 (($ |#1| $) 31)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2808 ((|#1| $) 29)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 16)) (-3445 (($) 39)) (-2369 (((-767) $) 26)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 15)) (-1692 (((-858) $) 25 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) NIL)) (-1643 (($ (-640 |#1|)) 37)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 13 (|has| |#1| (-1093)))) (-3610 (((-767) $) 10 (|has| $ (-6 -4408)))))
-(((-91 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1643 ($ (-640 |#1|))))) (-1093)) (T -91))
-((-1643 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3)))))
-(-13 (-1114 |#1|) (-10 -8 (-15 -1643 ($ (-640 |#1|)))))
-((-1692 (((-858) $) 13) (($ (-1174)) 9) (((-1174) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -1692 ((-1174) |#1|)) (-15 -1692 (|#1| (-1174))) (-15 -1692 ((-858) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -1692 ((-1174) |#1|)) (-15 -1692 (|#1| (-1174))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-1718 (((-112) $ $) 6)))
+((-3565 (((-3 $ #1="failed") (-684 (-314 (-378)))) 113) (((-3 $ #1#) (-684 (-314 (-546)))) 101) (((-3 $ #1#) (-684 (-942 (-378)))) 135) (((-3 $ #1#) (-684 (-942 (-546)))) 124) (((-3 $ #1#) (-684 (-407 (-942 (-378))))) 89) (((-3 $ #1#) (-684 (-407 (-942 (-546))))) 75)) (-3564 (($ (-684 (-314 (-378)))) 109) (($ (-684 (-314 (-546)))) 97) (($ (-684 (-942 (-378)))) 131) (($ (-684 (-942 (-546)))) 120) (($ (-684 (-407 (-942 (-378))))) 85) (($ (-684 (-407 (-942 (-546))))) 68)) (-3791 (((-1262) $) 59)) (-4361 (((-859) $) 53) (($ (-637 (-330))) 43) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 48) (($ (-684 (-339 (-3936 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3936) (-694)))) 44)))
+(((-88 |#1|) (-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3936) (-694))))))) (-1169)) (T -88))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-3936 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3936) (-694)))) (-5 *1 (-88 *3)) (-14 *3 (-1169)))))
+(-13 (-385) (-10 -8 (-15 -4361 ($ (-684 (-339 (-3936 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3936) (-694)))))))
+((-3565 (((-3 $ #1="failed") (-314 (-378))) 47) (((-3 $ #1#) (-314 (-546))) 52) (((-3 $ #1#) (-942 (-378))) 56) (((-3 $ #1#) (-942 (-546))) 60) (((-3 $ #1#) (-407 (-942 (-378)))) 42) (((-3 $ #1#) (-407 (-942 (-546)))) 35)) (-3564 (($ (-314 (-378))) 45) (($ (-314 (-546))) 50) (($ (-942 (-378))) 54) (($ (-942 (-546))) 58) (($ (-407 (-942 (-378)))) 40) (($ (-407 (-942 (-546)))) 32)) (-3791 (((-1262) $) 90)) (-4361 (((-859) $) 84) (($ (-637 (-330))) 78) (($ (-330)) 81) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 76) (($ (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694))) 31)))
+(((-89 |#1|) (-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694)))))) (-1169)) (T -89))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694))) (-5 *1 (-89 *3)) (-14 *3 (-1169)))))
+(-13 (-397) (-10 -8 (-15 -4361 ($ (-339 (-3936 (QUOTE X)) (-3936 (QUOTE -4379)) (-694))))))
+((-1338 (((-1256 (-684 |#1|)) (-684 |#1|)) 54)) (-1337 (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 (-637 (-915))))) |#2| (-915)) 44)) (-1339 (((-2 (|:| |minor| (-637 (-915))) (|:| -3674 |#2|) (|:| |minors| (-637 (-637 (-915)))) (|:| |ops| (-637 |#2|))) |#2| (-915)) 65 (|has| |#1| (-363)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -1337 ((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 (-637 (-915))))) |#2| (-915))) (-15 -1338 ((-1256 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1339 ((-2 (|:| |minor| (-637 (-915))) (|:| -3674 |#2|) (|:| |minors| (-637 (-637 (-915)))) (|:| |ops| (-637 |#2|))) |#2| (-915))) |%noBranch|)) (-556) (-653 |#1|)) (T -90))
+((-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-637 (-915))) (|:| -3674 *3) (|:| |minors| (-637 (-637 (-915)))) (|:| |ops| (-637 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-915)) (-4 *3 (-653 *5)))) (-1338 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1256 (-684 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-684 *4)) (-4 *5 (-653 *4)))) (-1337 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -1735 (-684 *5)) (|:| |vec| (-1256 (-637 (-915)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-915)) (-4 *3 (-653 *5)))))
+(-10 -7 (-15 -1337 ((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 (-637 (-915))))) |#2| (-915))) (-15 -1338 ((-1256 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1339 ((-2 (|:| |minor| (-637 (-915))) (|:| -3674 |#2|) (|:| |minors| (-637 (-637 (-915)))) (|:| |ops| (-637 |#2|))) |#2| (-915))) |%noBranch|))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3735 ((|#1| $) 35)) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-3737 ((|#1| |#1| $) 30)) (-3736 ((|#1| $) 28)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) NIL)) (-4022 (($ |#1| $) 31)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-1360 ((|#1| $) 29)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 16)) (-3979 (($) 39)) (-3734 (((-767) $) 26)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 15)) (-4361 (((-859) $) 25 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) NIL)) (-1340 (($ (-637 |#1|)) 37)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 13 (|has| |#1| (-1094)))) (-4372 (((-767) $) 10 (|has| $ (-6 -4408)))))
+(((-91 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1340 ($ (-637 |#1|))))) (-1094)) (T -91))
+((-1340 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
+(-13 (-1114 |#1|) (-10 -8 (-15 -1340 ($ (-637 |#1|)))))
+((-4361 (((-859) $) 13) (($ (-1174)) 9) (((-1174) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -4361 ((-1174) |#1|)) (-15 -4361 (|#1| (-1174))) (-15 -4361 ((-859) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -4361 ((-1174) |#1|)) (-15 -4361 (|#1| (-1174))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-3444 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1093) (-490 (-1174)))
-(((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T))
-((-1721 (($ $) 10)) (-1734 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -1734 (|#1| |#1|)) (-15 -1721 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1094) (-490 (-1174)))
+(((-102) . T) ((-613 #1=(-1174)) . T) ((-610 (-859)) . T) ((-610 #1#) . T) ((-490 #1#) . T) ((-1094) . T))
+((-3894 (($ $) 10)) (-3895 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3895 (|#1| |#1|)) (-15 -3894 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -1734 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)))
-((-1694 (($ $) 11)) (-1666 (($ $) 10)) (-1721 (($ $) 9)) (-1734 (($ $) 8)) (-1709 (($ $) 7)) (-1679 (($ $) 6)))
+(-10 -8 (-15 -3895 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)))
+((-3892 (($ $) 11)) (-3890 (($ $) 10)) (-3894 (($ $) 9)) (-3895 (($ $) 8)) (-3893 (($ $) 7)) (-3891 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-1694 (*1 *1 *1) (-4 *1 (-95))) (-1666 (*1 *1 *1) (-4 *1 (-95))) (-1721 (*1 *1 *1) (-4 *1 (-95))) (-1734 (*1 *1 *1) (-4 *1 (-95))) (-1709 (*1 *1 *1) (-4 *1 (-95))) (-1679 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -1679 ($ $)) (-15 -1709 ($ $)) (-15 -1734 ($ $)) (-15 -1721 ($ $)) (-15 -1666 ($ $)) (-15 -1694 ($ $))))
-((-1677 (((-112) $ $) NIL)) (-3352 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-96) (-13 (-1076) (-10 -8 (-15 -3352 ((-1128) $))))) (T -96))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96)))))
-(-13 (-1076) (-10 -8 (-15 -3352 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-1659 (((-379) (-1151) (-379)) 42) (((-379) (-1151) (-1151) (-379)) 41)) (-1670 (((-379) (-379)) 33)) (-1680 (((-1262)) 36)) (-3854 (((-1151) $) NIL)) (-1725 (((-379) (-1151) (-1151)) 46) (((-379) (-1151)) 48)) (-1693 (((-1113) $) NIL)) (-1695 (((-379) (-1151) (-1151)) 47)) (-1713 (((-379) (-1151) (-1151)) 49) (((-379) (-1151)) 50)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-97) (-13 (-1093) (-10 -7 (-15 -1725 ((-379) (-1151) (-1151))) (-15 -1725 ((-379) (-1151))) (-15 -1713 ((-379) (-1151) (-1151))) (-15 -1713 ((-379) (-1151))) (-15 -1695 ((-379) (-1151) (-1151))) (-15 -1680 ((-1262))) (-15 -1670 ((-379) (-379))) (-15 -1659 ((-379) (-1151) (-379))) (-15 -1659 ((-379) (-1151) (-1151) (-379))) (-6 -4408)))) (T -97))
-((-1725 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1713 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1695 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1680 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))) (-1659 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))))
-(-13 (-1093) (-10 -7 (-15 -1725 ((-379) (-1151) (-1151))) (-15 -1725 ((-379) (-1151))) (-15 -1713 ((-379) (-1151) (-1151))) (-15 -1713 ((-379) (-1151))) (-15 -1695 ((-379) (-1151) (-1151))) (-15 -1680 ((-1262))) (-15 -1670 ((-379) (-379))) (-15 -1659 ((-379) (-1151) (-379))) (-15 -1659 ((-379) (-1151) (-1151) (-379))) (-6 -4408)))
+((-3892 (*1 *1 *1) (-4 *1 (-95))) (-3890 (*1 *1 *1) (-4 *1 (-95))) (-3894 (*1 *1 *1) (-4 *1 (-95))) (-3895 (*1 *1 *1) (-4 *1 (-95))) (-3893 (*1 *1 *1) (-4 *1 (-95))) (-3891 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3891 ($ $)) (-15 -3893 ($ $)) (-15 -3895 ($ $)) (-15 -3894 ($ $)) (-15 -3890 ($ $)) (-15 -3892 ($ $))))
+((-2953 (((-112) $ $) NIL)) (-3956 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-96) (-13 (-1076) (-10 -8 (-15 -3956 ((-1128) $))))) (T -96))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96)))))
+(-13 (-1076) (-10 -8 (-15 -3956 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-1341 (((-378) (-1151) (-378)) 42) (((-378) (-1151) (-1151) (-378)) 41)) (-1342 (((-378) (-378)) 33)) (-1343 (((-1262)) 36)) (-3650 (((-1151) $) NIL)) (-1346 (((-378) (-1151) (-1151)) 46) (((-378) (-1151)) 48)) (-3651 (((-1113) $) NIL)) (-1344 (((-378) (-1151) (-1151)) 47)) (-1345 (((-378) (-1151) (-1151)) 49) (((-378) (-1151)) 50)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-97) (-13 (-1094) (-10 -7 (-15 -1346 ((-378) (-1151) (-1151))) (-15 -1346 ((-378) (-1151))) (-15 -1345 ((-378) (-1151) (-1151))) (-15 -1345 ((-378) (-1151))) (-15 -1344 ((-378) (-1151) (-1151))) (-15 -1343 ((-1262))) (-15 -1342 ((-378) (-378))) (-15 -1341 ((-378) (-1151) (-378))) (-15 -1341 ((-378) (-1151) (-1151) (-378))) (-6 -4408)))) (T -97))
+((-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1345 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1344 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1343 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-1341 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1151)) (-5 *1 (-97)))) (-1341 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1151)) (-5 *1 (-97)))))
+(-13 (-1094) (-10 -7 (-15 -1346 ((-378) (-1151) (-1151))) (-15 -1346 ((-378) (-1151))) (-15 -1345 ((-378) (-1151) (-1151))) (-15 -1345 ((-378) (-1151))) (-15 -1344 ((-378) (-1151) (-1151))) (-15 -1343 ((-1262))) (-15 -1342 ((-378) (-378))) (-15 -1341 ((-378) (-1151) (-378))) (-15 -1341 ((-378) (-1151) (-1151) (-378))) (-6 -4408)))
NIL
(((-98) (-140)) (T -98))
NIL
(-13 (-10 -7 (-6 -4408) (-6 (-4410 "*")) (-6 -4409) (-6 -4405) (-6 -4403) (-6 -4402) (-6 -4401) (-6 -4406) (-6 -4400) (-6 -4399) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4404) (-6 -4407) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4395)))
-((-1677 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-1733 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-563))) 22)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 14)) (-1693 (((-1113) $) NIL)) (-2308 ((|#1| $ |#1|) 11)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) 20)) (-2253 (($) 8 T CONST)) (-1718 (((-112) $ $) 10)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) 27) (($ $ (-767)) NIL) (($ $ (-563)) 16)) (* (($ $ $) 28)))
-(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1733 ($ (-1 |#1| |#1|))) (-15 -1733 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1733 ($ (-1 |#1| |#1| (-563)))))) (-1045)) (T -99))
-((-1733 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-1733 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
-(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1733 ($ (-1 |#1| |#1|))) (-15 -1733 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1733 ($ (-1 |#1| |#1| (-563))))))
-((-3287 (((-418 |#2|) |#2| (-640 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3287 ((-418 |#2|) |#2| |#2|)) (-15 -3287 ((-418 |#2|) |#2| (-640 |#2|)))) (-13 (-452) (-147)) (-1233 |#1|)) (T -100))
-((-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-3287 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -3287 ((-418 |#2|) |#2| |#2|)) (-15 -3287 ((-418 |#2|) |#2| (-640 |#2|))))
-((-1677 (((-112) $ $) 9)))
-(((-101 |#1|) (-10 -8 (-15 -1677 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -1677 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-1718 (((-112) $ $) 6)))
+((-2953 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-1347 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-546))) 22)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 14)) (-3651 (((-1113) $) NIL)) (-4214 ((|#1| $ |#1|) 11)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) 20)) (-3053 (($) 8 T CONST)) (-3444 (((-112) $ $) 10)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) 27) (($ $ (-767)) NIL) (($ $ (-546)) 16)) (* (($ $ $) 28)))
+(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1347 ($ (-1 |#1| |#1|))) (-15 -1347 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1347 ($ (-1 |#1| |#1| (-546)))))) (-1045)) (T -99))
+((-1347 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-1347 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-546))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
+(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1347 ($ (-1 |#1| |#1|))) (-15 -1347 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1347 ($ (-1 |#1| |#1| (-546))))))
+((-1348 (((-405 |#2|) |#2| (-637 |#2|)) 10) (((-405 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1348 ((-405 |#2|) |#2| |#2|)) (-15 -1348 ((-405 |#2|) |#2| (-637 |#2|)))) (-13 (-452) (-147)) (-1232 |#1|)) (T -100))
+((-1348 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-405 *3)) (-5 *1 (-100 *5 *3)))) (-1348 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-405 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -1348 ((-405 |#2|) |#2| |#2|)) (-15 -1348 ((-405 |#2|) |#2| (-637 |#2|))))
+((-2953 (((-112) $ $) 9)))
+(((-101 |#1|) (-10 -8 (-15 -2953 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2953 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3444 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-1677 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1718 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -1718 ((-112) $ $)) (-15 -1677 ((-112) $ $))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) 13 (|has| $ (-6 -4409)))) (-2996 (($ $ $) NIL (|has| $ (-6 -4409)))) (-3007 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1948 (($ $ (-640 |#1|)) 15)) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1700 (($ $) 11)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2218 (($ $ |#1| $) 17)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1937 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3298 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|)) 35)) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-1685 (($ $) 10)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) 12)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 9)) (-3445 (($) 16)) (-2308 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3128 (($ (-767) |#1|) 19)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -3128 ($ (-767) |#1|)) (-15 -1948 ($ $ (-640 |#1|))) (-15 -1937 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1937 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3298 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|))))) (-1093)) (T -103))
-((-3128 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093)))) (-1948 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093)))) (-1937 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-3298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2)))) (-3298 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -3128 ($ (-767) |#1|)) (-15 -1948 ($ $ (-640 |#1|))) (-15 -1937 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1937 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3298 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3298 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|)))))
-((-3138 ((|#3| |#2| |#2|) 28)) (-2248 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4410 "*"))))) (-2232 ((|#3| |#2| |#2|) 29)) (-2523 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4410 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3138 (|#3| |#2| |#2|)) (-15 -2232 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -2523 (|#1| |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-682 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104))
-((-2523 (*1 *2 *3) (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-2248 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-2232 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-3138 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))))
-(-10 -7 (-15 -3138 (|#3| |#2| |#2|)) (-15 -2232 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -2523 (|#1| |#2|))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2620 (((-640 (-1169))) 33)) (-2534 (((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169)) 35)) (-1718 (((-112) $ $) NIL)))
-(((-105) (-13 (-1093) (-10 -7 (-15 -2620 ((-640 (-1169)))) (-15 -2534 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4408)))) (T -105))
-((-2620 (*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225))))) (-5 *1 (-105)))))
-(-13 (-1093) (-10 -7 (-15 -2620 ((-640 (-1169)))) (-15 -2534 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4408)))
-((-2820 (($ (-640 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -2820 (|#1| (-640 |#2|)))) (-107 |#2|) (-1208)) (T -106))
-NIL
-(-10 -8 (-15 -2820 (|#1| (-640 |#2|))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-107 |#1|) (-140) (-1208)) (T -107))
-((-2820 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-3867 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-15 -2820 ($ (-640 |t#1|))) (-15 -2808 (|t#1| $)) (-15 -3867 ($ |t#1| $)) (-15 -2627 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-563) $) NIL (|has| (-563) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-563) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2057 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-563) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-563) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-3426 (((-112) $) NIL (|has| (-563) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-563) (-846)))) (-2238 (($ (-1 (-563) (-563)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-563) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3954 (((-563) $) NIL (|has| (-563) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-563) $) NIL)) (-2219 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 2) $) 10)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-563) $) NIL (|has| (-563) (-545)))) (-4148 (($ (-407 (-563))) 9)) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| (-563) (-816)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1836 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL)))
-(((-108) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -4148 ($ (-407 (-563))))))) (T -108))
-((-3935 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))))
-(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -4148 ($ (-407 (-563))))))
-((-1932 (((-640 (-961)) $) 14)) (-3352 (((-1169) $) 10)) (-1692 (((-858) $) 23)) (-1501 (($ (-1169) (-640 (-961))) 15)))
-(((-109) (-13 (-610 (-858)) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -1932 ((-640 (-961)) $)) (-15 -1501 ($ (-1169) (-640 (-961))))))) (T -109))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109)))) (-1501 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -1932 ((-640 (-961)) $)) (-15 -1501 ($ (-1169) (-640 (-961))))))
-((-1677 (((-112) $ $) NIL)) (-3384 (($ $) NIL)) (-2210 (($ $ $) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4052 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-1640 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-1459 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-4356 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-4293 (((-112) $ (-563)) NIL)) (-4369 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-2658 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-2200 (($ $ $) NIL)) (-2174 (($ $) NIL)) (-2292 (($ $ $) NIL)) (-1565 (($ (-767) (-112)) 8)) (-2303 (($ $ $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL)) (-4300 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3523 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL)) (-4347 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-112) $) NIL (|has| (-563) (-846)))) (-1971 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2221 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2295 (((-640 (-112)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) NIL) (((-112) $ (-563) (-112)) NIL)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1708 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-1706 (($ (-640 (-112))) NIL)) (-2857 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1692 (((-858) $) NIL)) (-3227 (($ (-767) (-112)) 9)) (-1471 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2188 (($ $ $) NIL)) (-1531 (($ $ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1517 (($ $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -3227 ($ (-767) (-112)))))) (T -110))
-((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -3227 ($ (-767) (-112)))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-2953 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3444 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3444 ((-112) $ $)) (-15 -2953 ((-112) $ $))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) 13 (|has| $ (-6 -4409)))) (-1378 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1379 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1351 (($ $ (-637 |#1|)) 15)) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #2="left" $) NIL (|has| $ (-6 -4409))) (($ $ #3="right" $) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3529 (($ $) 11)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1387 (($ $ |#1| $) 17)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1350 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1349 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-637 |#1|) |#1| |#1| |#1|)) 35)) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3530 (($ $) 10)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) 12)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 9)) (-3979 (($) 16)) (-4214 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1352 (($ (-767) |#1|) 19)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1352 ($ (-767) |#1|)) (-15 -1351 ($ $ (-637 |#1|))) (-15 -1350 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1350 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1349 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1349 ($ $ |#1| (-1 (-637 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103))
+((-1352 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-1350 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-1349 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-1349 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-637 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1352 ($ (-767) |#1|)) (-15 -1351 ($ $ (-637 |#1|))) (-15 -1350 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1350 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1349 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1349 ($ $ |#1| (-1 (-637 |#1|) |#1| |#1| |#1|)))))
+((-1353 ((|#3| |#2| |#2|) 28)) (-1355 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4410 #1="*"))))) (-1354 ((|#3| |#2| |#2|) 29)) (-1356 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4410 #1#))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1353 (|#3| |#2| |#2|)) (-15 -1354 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -1355 (|#1| |#2| |#2|)) (-15 -1356 (|#1| |#2|))) |%noBranch|)) (-1045) (-1232 |#1|) (-681 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104))
+((-1356 (*1 *2 *3) (-12 (|has| *2 (-6 (-4410 #1="*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-1355 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4410 #1#))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-1354 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
+(-10 -7 (-15 -1353 (|#3| |#2| |#2|)) (-15 -1354 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -1355 (|#1| |#2| |#2|)) (-15 -1356 (|#1| |#2|))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-1358 (((-637 (-1169))) 33)) (-1357 (((-2 (|:| |zeros| (-1146 (-225))) (|:| |ones| (-1146 (-225))) (|:| |singularities| (-1146 (-225)))) (-1169)) 35)) (-3444 (((-112) $ $) NIL)))
+(((-105) (-13 (-1094) (-10 -7 (-15 -1358 ((-637 (-1169)))) (-15 -1357 ((-2 (|:| |zeros| (-1146 (-225))) (|:| |ones| (-1146 (-225))) (|:| |singularities| (-1146 (-225)))) (-1169))) (-6 -4408)))) (T -105))
+((-1358 (*1 *2) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-105)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-2 (|:| |zeros| (-1146 (-225))) (|:| |ones| (-1146 (-225))) (|:| |singularities| (-1146 (-225))))) (-5 *1 (-105)))))
+(-13 (-1094) (-10 -7 (-15 -1358 ((-637 (-1169)))) (-15 -1357 ((-2 (|:| |zeros| (-1146 (-225))) (|:| |ones| (-1146 (-225))) (|:| |singularities| (-1146 (-225)))) (-1169))) (-6 -4408)))
+((-1361 (($ (-637 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -1361 (|#1| (-637 |#2|)))) (-107 |#2|) (-1207)) (T -106))
+NIL
+(-10 -8 (-15 -1361 (|#1| (-637 |#2|))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-107 |#1|) (-140) (-1207)) (T -107))
+((-1361 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3)))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-4022 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-15 -1361 ($ (-637 |t#1|))) (-15 -1360 (|t#1| $)) (-15 -4022 ($ |t#1| $)) (-15 -1359 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-546) $) NIL (|has| (-546) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-546) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-546) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-546) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-546) (-1034 (-546))))) (-3564 (((-546) $) NIL) (((-1169) $) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-546) (-1034 (-546)))) (((-546) $) NIL (|has| (-546) (-1034 (-546))))) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-546) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-546) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-546) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-546) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-546) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-546) (-1144)))) (-3595 (((-112) $) NIL (|has| (-546) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-546) (-846)))) (-4373 (($ (-1 (-546) (-546)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-546) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-546) (-307))) (((-407 (-546)) $) NIL)) (-3522 (((-546) $) NIL (|has| (-546) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-546)) (-637 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-546) (-546)) NIL (|has| (-546) (-309 (-546)))) (($ $ (-293 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-293 (-546)))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-1169)) (-637 (-546))) NIL (|has| (-546) (-514 (-1169) (-546)))) (($ $ (-1169) (-546)) NIL (|has| (-546) (-514 (-1169) (-546))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-546)) NIL (|has| (-546) (-286 (-546) (-546))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-546) $) NIL)) (-4385 (((-886 (-546)) $) NIL (|has| (-546) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-546) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-546) (-611 (-535)))) (((-378) $) NIL (|has| (-546) (-1016))) (((-225) $) NIL (|has| (-546) (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-546) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) 8) (($ (-546)) NIL) (($ (-1169)) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL) (((-1000 2) $) 10)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-546) (-906))) (|has| (-546) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-546) $) NIL (|has| (-546) (-545)))) (-2186 (($ (-407 (-546))) 9)) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| (-546) (-816)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-546) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-546) (-846)))) (-4364 (($ $ $) NIL) (($ (-546) (-546)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-546) $) NIL) (($ $ (-546)) NIL)))
+(((-108) (-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 2)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -2186 ($ (-407 (-546))))))) (T -108))
+((-3520 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-108)))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-108)))))
+(-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 2)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -2186 ($ (-407 (-546))))))
+((-1373 (((-637 (-961)) $) 14)) (-3956 (((-1169) $) 10)) (-4361 (((-859) $) 23)) (-1362 (($ (-1169) (-637 (-961))) 15)))
+(((-109) (-13 (-610 (-859)) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -1373 ((-637 (-961)) $)) (-15 -1362 ($ (-1169) (-637 (-961))))))) (T -109))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-637 (-961))) (-5 *1 (-109)))) (-1362 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-961))) (-5 *1 (-109)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -1373 ((-637 (-961)) $)) (-15 -1362 ($ (-1169) (-637 (-961))))))
+((-2953 (((-112) $ $) NIL)) (-2437 (($ $) NIL)) (-3732 (($ $ $) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1881 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-3299 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-112) $ (-1223 (-546)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-546) (-112)) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-3817 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-4257 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-1672 (((-112) $ (-546) (-112)) NIL (|has| $ (-6 -4409)))) (-3505 (((-112) $ (-546)) NIL)) (-3830 (((-546) (-112) $ (-546)) NIL (|has| (-112) (-1094))) (((-546) (-112) $) NIL (|has| (-112) (-1094))) (((-546) (-1 (-112) (-112)) $) NIL)) (-2103 (((-637 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3246 (($ $ $) NIL)) (-3733 (($ $) NIL)) (-1385 (($ $ $) NIL)) (-4029 (($ (-767) (-112)) 8)) (-1386 (($ $ $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL)) (-3924 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2993 (((-637 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL)) (-2107 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ (-112) $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-112) $) NIL (|has| (-546) (-846)))) (-1431 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2352 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-112)) (-637 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-637 (-293 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-2358 (((-637 (-112)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 (($ $ (-1223 (-546))) NIL) (((-112) $ (-546)) NIL) (((-112) $ (-546) (-112)) NIL)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2104 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-112) (-611 (-535))))) (-3936 (($ (-637 (-112))) NIL)) (-4216 (($ (-637 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4361 (((-859) $) NIL)) (-1925 (($ (-767) (-112)) 9)) (-2106 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3247 (($ $ $) NIL)) (-2435 (($ $ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-2436 (($ $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1925 ($ (-767) (-112)))))) (T -110))
+((-1925 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1925 ($ (-767) (-112)))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-111 |#1| |#2|) (-140) (-1045) (-1045)) (T -111))
NIL
(-13 (-643 |t#1|) (-1051 |t#2|) (-10 -7 (-6 -4403) (-6 -4402)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#2|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3384 (($ $) 10)) (-2210 (($ $ $) 15)) (-1674 (($) 7 T CONST)) (-3221 (($ $) 6)) (-3750 (((-767)) 24)) (-1690 (($) 30)) (-2200 (($ $ $) 13)) (-2174 (($ $) 9)) (-2292 (($ $ $) 16)) (-2303 (($ $ $) 17)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) 29)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) 28)) (-4252 (($ $ $) 20)) (-1693 (((-1113) $) NIL)) (-3566 (($) 8 T CONST)) (-4240 (($ $ $) 21)) (-2219 (((-536) $) 34)) (-1692 (((-858) $) 37)) (-2188 (($ $ $) 11)) (-1531 (($ $ $) 14)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 19)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 22)) (-1517 (($ $ $) 12)))
-(((-112) (-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -1674 ($) -2668) (-15 -3566 ($) -2668) (-15 -2210 ($ $ $)) (-15 -2303 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -3221 ($ $))))) (T -112))
-((-1674 (*1 *1) (-5 *1 (-112))) (-3566 (*1 *1) (-5 *1 (-112))) (-2210 (*1 *1 *1 *1) (-5 *1 (-112))) (-2303 (*1 *1 *1 *1) (-5 *1 (-112))) (-2292 (*1 *1 *1 *1) (-5 *1 (-112))) (-3221 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -1674 ($) -2668) (-15 -3566 ($) -2668) (-15 -2210 ($ $ $)) (-15 -2303 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -3221 ($ $))))
-((-2906 (((-3 (-1 |#1| (-640 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-640 |#1|))) 11) (((-3 |#1| "failed") (-114) (-640 |#1|)) 21)) (-2468 (((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-640 (-1 |#1| (-640 |#1|)))) 26)) (-2480 (((-114) |#1|) 54 (|has| |#1| (-846)))) (-4382 (((-3 |#1| "failed") (-114)) 48 (|has| |#1| (-846)))))
-(((-113 |#1|) (-10 -7 (-15 -2906 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -2906 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -2906 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2906 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -2468 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -2468 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2468 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2480 ((-114) |#1|)) (-15 -4382 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1093)) (T -113))
-((-4382 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-113 *2)))) (-2480 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-2906 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-2906 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1093)))))
-(-10 -7 (-15 -2906 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -2906 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -2906 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2906 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -2468 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -2468 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2468 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2480 ((-114) |#1|)) (-15 -4382 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-4329 (((-767) $) 72) (($ $ (-767)) 30)) (-2233 (((-112) $) 32)) (-2540 (($ $ (-1151) (-770)) 26)) (-1512 (($ $ (-45 (-1151) (-770))) 15)) (-3499 (((-3 (-770) "failed") $ (-1151)) 25)) (-1932 (((-45 (-1151) (-770)) $) 14)) (-2559 (($ (-1169)) 17) (($ (-1169) (-767)) 22)) (-2249 (((-112) $) 31)) (-2169 (((-112) $) 33)) (-3352 (((-1169) $) 8)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2602 (((-112) $ (-1169)) 10)) (-1516 (($ $ (-1 (-536) (-640 (-536)))) 52) (((-3 (-1 (-536) (-640 (-536))) "failed") $) 56)) (-1693 (((-1113) $) NIL)) (-3563 (((-112) $ (-1151)) 29)) (-2158 (($ $ (-1 (-112) $ $)) 35)) (-1463 (((-3 (-1 (-858) (-640 (-858))) "failed") $) 54) (($ $ (-1 (-858) (-640 (-858)))) 41) (($ $ (-1 (-858) (-858))) 43)) (-2550 (($ $ (-1151)) 45)) (-1870 (($ $) 63)) (-3576 (($ $ (-1 (-112) $ $)) 36)) (-1692 (((-858) $) 48)) (-2294 (($ $ (-1151)) 27)) (-2935 (((-3 (-767) "failed") $) 58)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 71)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 78)))
-(((-114) (-13 (-846) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -1932 ((-45 (-1151) (-770)) $)) (-15 -1870 ($ $)) (-15 -2559 ($ (-1169))) (-15 -2559 ($ (-1169) (-767))) (-15 -2935 ((-3 (-767) "failed") $)) (-15 -2249 ((-112) $)) (-15 -2233 ((-112) $)) (-15 -2169 ((-112) $)) (-15 -4329 ((-767) $)) (-15 -4329 ($ $ (-767))) (-15 -2158 ($ $ (-1 (-112) $ $))) (-15 -3576 ($ $ (-1 (-112) $ $))) (-15 -1463 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -1463 ($ $ (-1 (-858) (-640 (-858))))) (-15 -1463 ($ $ (-1 (-858) (-858)))) (-15 -1516 ($ $ (-1 (-536) (-640 (-536))))) (-15 -1516 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -2602 ((-112) $ (-1169))) (-15 -3563 ((-112) $ (-1151))) (-15 -2294 ($ $ (-1151))) (-15 -2550 ($ $ (-1151))) (-15 -3499 ((-3 (-770) "failed") $ (-1151))) (-15 -2540 ($ $ (-1151) (-770))) (-15 -1512 ($ $ (-45 (-1151) (-770))))))) (T -114))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))) (-1870 (*1 *1 *1) (-5 *1 (-114))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-2559 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114)))) (-2935 (*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-4329 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3576 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1463 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) (-1516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-1516 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-2602 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2294 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-3499 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114)))) (-2540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))))
-(-13 (-846) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -1932 ((-45 (-1151) (-770)) $)) (-15 -1870 ($ $)) (-15 -2559 ($ (-1169))) (-15 -2559 ($ (-1169) (-767))) (-15 -2935 ((-3 (-767) "failed") $)) (-15 -2249 ((-112) $)) (-15 -2233 ((-112) $)) (-15 -2169 ((-112) $)) (-15 -4329 ((-767) $)) (-15 -4329 ($ $ (-767))) (-15 -2158 ($ $ (-1 (-112) $ $))) (-15 -3576 ($ $ (-1 (-112) $ $))) (-15 -1463 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -1463 ($ $ (-1 (-858) (-640 (-858))))) (-15 -1463 ($ $ (-1 (-858) (-858)))) (-15 -1516 ($ $ (-1 (-536) (-640 (-536))))) (-15 -1516 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -2602 ((-112) $ (-1169))) (-15 -3563 ((-112) $ (-1151))) (-15 -2294 ($ $ (-1151))) (-15 -2550 ($ $ (-1151))) (-15 -3499 ((-3 (-770) "failed") $ (-1151))) (-15 -2540 ($ $ (-1151) (-770))) (-15 -1512 ($ $ (-45 (-1151) (-770))))))
-((-1294 (((-563) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -1294 ((-563) |#2|))) (-13 (-363) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -115))
-((-1294 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -1294 ((-563) |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $ (-563)) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3558 (($ (-1165 (-563)) (-563)) NIL)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3572 (($ $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-1775 (((-767) $) NIL)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3593 (((-563)) NIL)) (-3583 (((-563) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1751 (($ $ (-563)) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3605 (((-1149 (-563)) $) NIL)) (-3369 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-1402 (((-563) $ (-563)) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-865 |#1|) (-563)) (T -116))
-NIL
-(-865 |#1|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-116 |#1|) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-2057 (((-116 |#1|) $) NIL) (((-1169) $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-2600 (($ $) NIL) (($ (-563) $) NIL)) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-116 |#1|))) (|:| |vec| (-1257 (-116 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-116 |#1|)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-116 |#1|) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-116 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-116 |#1|) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-116 |#1|) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1144)))) (-3426 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-1776 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-2238 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-116 |#1|) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-3954 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-116 |#1|)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-1169)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|)))) (($ $ (-1169) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-116 |#1|) $) NIL)) (-2219 (((-888 (-563)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1018))) (((-225) $) NIL (|has| (-116 |#1|) (-1018)))) (-3616 (((-174 (-407 (-563))) $) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-116 |#1|)) NIL) (($ (-1169)) NIL (|has| (-116 |#1|) (-1034 (-1169))))) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))) (|has| (-116 |#1|) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3223 (((-112) $ $) NIL)) (-1402 (((-407 (-563)) $ (-563)) NIL)) (-1462 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1836 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $)))) (-563)) (T -117))
-((-1402 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563)))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563)))) (-2600 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $))))
-((-1849 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2390 (((-640 $) $) 27)) (-2358 (((-112) $ $) 32)) (-2667 (((-112) |#2| $) 36)) (-2511 (((-640 |#2|) $) 22)) (-1298 (((-112) $) 16)) (-2308 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2889 (((-112) $) 45)) (-1692 (((-858) $) 41)) (-4345 (((-640 $) $) 28)) (-1718 (((-112) $ $) 34)) (-3610 (((-767) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -2308 (|#1| |#1| "right")) (-15 -2308 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2511 ((-640 |#2|) |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -2667 ((-112) |#2| |#1|)) (-15 -3610 ((-767) |#1|))) (-119 |#2|) (-1208)) (T -118))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -2308 (|#1| |#1| "right")) (-15 -2308 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2511 ((-640 |#2|) |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -2667 ((-112) |#2| |#1|)) (-15 -3610 ((-767) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-2996 (($ $ $) 52 (|has| $ (-6 -4409)))) (-3007 (($ $ $) 54 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ "left" $) 55 (|has| $ (-6 -4409))) (($ $ "right" $) 53 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-1700 (($ $) 57)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-1685 (($ $) 59)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2379 (((-563) $ $) 44)) (-2889 (((-112) $) 46)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-119 |#1|) (-140) (-1208)) (T -119))
-((-1685 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-3007 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2996 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -1685 ($ $)) (-15 -2308 ($ $ "left")) (-15 -1700 ($ $)) (-15 -2308 ($ $ "right")) (IF (|has| $ (-6 -4409)) (PROGN (-15 -1849 ($ $ "left" $)) (-15 -3007 ($ $ $)) (-15 -1849 ($ $ "right" $)) (-15 -2996 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1735 (((-112) |#1|) 24)) (-3100 (((-767) (-767)) 23) (((-767)) 22)) (-3089 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -3089 ((-112) |#1|)) (-15 -3089 ((-112) |#1| (-112))) (-15 -3100 ((-767))) (-15 -3100 ((-767) (-767))) (-15 -1735 ((-112) |#1|))) (-1233 (-563))) (T -120))
-((-1735 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3100 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))))
-(-10 -7 (-15 -3089 ((-112) |#1|)) (-15 -3089 ((-112) |#1| (-112))) (-15 -3100 ((-767))) (-15 -3100 ((-767) (-767))) (-15 -1735 ((-112) |#1|)))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) 15)) (-1792 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2996 (($ $ $) 18 (|has| $ (-6 -4409)))) (-3007 (($ $ $) 20 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1700 (($ $) 17)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2218 (($ $ |#1| $) 23)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-1685 (($ $) 19)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1762 (($ |#1| $) 24)) (-3867 (($ |#1| $) 10)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 14)) (-3445 (($) 8)) (-2308 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1774 (($ (-640 |#1|)) 12)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1774 ($ (-640 |#1|))) (-15 -3867 ($ |#1| $)) (-15 -1762 ($ |#1| $)) (-15 -1792 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121))
-((-1774 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-1762 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-1792 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1774 ($ (-640 |#1|))) (-15 -3867 ($ |#1| $)) (-15 -1762 ($ |#1| $)) (-15 -1792 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3384 (($ $) 12)) (-2174 (($ $) 10)) (-2292 (($ $ $) 22)) (-2303 (($ $ $) 20)) (-1531 (($ $ $) 18)) (-1517 (($ $ $) 16)))
-(((-122 |#1|) (-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1517 (|#1| |#1| |#1|)) (-15 -1531 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1517 (|#1| |#1| |#1|)) (-15 -1531 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3384 (($ $) 103)) (-2210 (($ $ $) 25)) (-2208 (((-1262) $ (-563) (-563)) 66 (|has| $ (-6 -4409)))) (-4073 (((-112) $) 98 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4052 (($ $) 102 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4409)))) (-1640 (($ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3001 (((-112) $ (-767)) 37)) (-1849 (((-112) $ (-1224 (-563)) (-112)) 88 (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) 54 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4408)))) (-2569 (($) 38 T CONST)) (-1574 (($ $) 100 (|has| $ (-6 -4409)))) (-4383 (($ $) 90)) (-3814 (($ $) 68 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4408))) (($ (-112) $) 69 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-4356 (((-112) $ (-563) (-112)) 53 (|has| $ (-6 -4409)))) (-4293 (((-112) $ (-563)) 55)) (-4369 (((-563) (-112) $ (-563)) 95 (|has| (-112) (-1093))) (((-563) (-112) $) 94 (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) 93)) (-2658 (((-640 (-112)) $) 45 (|has| $ (-6 -4408)))) (-2200 (($ $ $) 26)) (-2174 (($ $) 30)) (-2292 (($ $ $) 28)) (-1565 (($ (-767) (-112)) 77)) (-2303 (($ $ $) 29)) (-2514 (((-112) $ (-767)) 36)) (-2236 (((-563) $) 63 (|has| (-563) (-846)))) (-3088 (($ $ $) 13)) (-4300 (($ $ $) 96 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3523 (((-640 (-112)) $) 46 (|has| $ (-6 -4408)))) (-2667 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 62 (|has| (-563) (-846)))) (-1776 (($ $ $) 14)) (-4347 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2481 (((-112) $ (-767)) 35)) (-3854 (((-1151) $) 9)) (-3399 (($ $ $ (-563)) 87) (($ (-112) $ (-563)) 86)) (-2272 (((-640 (-563)) $) 60)) (-2282 (((-112) (-563) $) 59)) (-1693 (((-1113) $) 10)) (-3782 (((-112) $) 64 (|has| (-563) (-846)))) (-1971 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2221 (($ $ (-112)) 65 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-112)) (-640 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2941 (((-112) $ $) 31)) (-2262 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2295 (((-640 (-112)) $) 58)) (-1665 (((-112) $) 34)) (-3445 (($) 33)) (-2308 (($ $ (-1224 (-563))) 83) (((-112) $ (-563)) 57) (((-112) $ (-563) (-112)) 56)) (-2967 (($ $ (-1224 (-563))) 85) (($ $ (-563)) 84)) (-1708 (((-767) (-112) $) 47 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4408)))) (-4062 (($ $ $ (-563)) 99 (|has| $ (-6 -4409)))) (-1870 (($ $) 32)) (-2219 (((-536) $) 67 (|has| (-112) (-611 (-536))))) (-1706 (($ (-640 (-112))) 76)) (-2857 (($ (-640 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1692 (((-858) $) 11)) (-1471 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4408)))) (-2188 (($ $ $) 27)) (-1531 (($ $ $) 105)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1517 (($ $ $) 104)) (-3610 (((-767) $) 39 (|has| $ (-6 -4408)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-1051 |#2|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-2437 (($ $) 10)) (-3732 (($ $ $) 15)) (-2368 (($) 7 T CONST)) (-1363 (($ $) 6)) (-3528 (((-767)) 24)) (-3384 (($) 30)) (-3246 (($ $ $) 13)) (-3733 (($ $) 9)) (-1385 (($ $ $) 16)) (-1386 (($ $ $) 17)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) 29)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) 28)) (-3245 (($ $ $) 20)) (-3651 (((-1113) $) NIL)) (-2370 (($) 8 T CONST)) (-3244 (($ $ $) 21)) (-4385 (((-535) $) 34)) (-4361 (((-859) $) 37)) (-3247 (($ $ $) 11)) (-2435 (($ $ $) 14)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 19)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 22)) (-2436 (($ $ $) 12)))
+(((-112) (-13 (-840) (-657) (-963) (-611 (-535)) (-10 -8 (-15 -2368 ($) -4367) (-15 -2370 ($) -4367) (-15 -3732 ($ $ $)) (-15 -1386 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -1363 ($ $))))) (T -112))
+((-2368 (*1 *1) (-5 *1 (-112))) (-2370 (*1 *1) (-5 *1 (-112))) (-3732 (*1 *1 *1 *1) (-5 *1 (-112))) (-1386 (*1 *1 *1 *1) (-5 *1 (-112))) (-1385 (*1 *1 *1 *1) (-5 *1 (-112))) (-1363 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-840) (-657) (-963) (-611 (-535)) (-10 -8 (-15 -2368 ($) -4367) (-15 -2370 ($) -4367) (-15 -3732 ($ $ $)) (-15 -1386 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -1363 ($ $))))
+((-2953 (((-112) $ $) NIL)) (-1612 (((-767) $) 72) (($ $ (-767)) 30)) (-1371 (((-112) $) 32)) (-1365 (($ $ (-1151) (-769)) 26)) (-1364 (($ $ (-45 (-1151) (-769))) 15)) (-3230 (((-3 (-769) "failed") $ (-1151)) 25)) (-1373 (((-45 (-1151) (-769)) $) 14)) (-3437 (($ (-1169)) 17) (($ (-1169) (-767)) 22)) (-1372 (((-112) $) 31)) (-1370 (((-112) $) 33)) (-3956 (((-1169) $) 8)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3020 (((-112) $ (-1169)) 10)) (-2289 (($ $ (-1 (-535) (-637 (-535)))) 52) (((-3 (-1 (-535) (-637 (-535))) "failed") $) 56)) (-3651 (((-1113) $) NIL)) (-1367 (((-112) $ (-1151)) 29)) (-1369 (($ $ (-1 (-112) $ $)) 35)) (-4032 (((-3 (-1 (-859) (-637 (-859))) "failed") $) 54) (($ $ (-1 (-859) (-637 (-859)))) 41) (($ $ (-1 (-859) (-859))) 43)) (-1366 (($ $ (-1151)) 45)) (-3811 (($ $) 63)) (-1368 (($ $ (-1 (-112) $ $)) 36)) (-4361 (((-859) $) 48)) (-3181 (($ $ (-1151)) 27)) (-2906 (((-3 (-767) "failed") $) 58)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 71)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 78)))
+(((-113) (-13 (-846) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -1373 ((-45 (-1151) (-769)) $)) (-15 -3811 ($ $)) (-15 -3437 ($ (-1169))) (-15 -3437 ($ (-1169) (-767))) (-15 -2906 ((-3 (-767) "failed") $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -1612 ((-767) $)) (-15 -1612 ($ $ (-767))) (-15 -1369 ($ $ (-1 (-112) $ $))) (-15 -1368 ($ $ (-1 (-112) $ $))) (-15 -4032 ((-3 (-1 (-859) (-637 (-859))) "failed") $)) (-15 -4032 ($ $ (-1 (-859) (-637 (-859))))) (-15 -4032 ($ $ (-1 (-859) (-859)))) (-15 -2289 ($ $ (-1 (-535) (-637 (-535))))) (-15 -2289 ((-3 (-1 (-535) (-637 (-535))) "failed") $)) (-15 -3020 ((-112) $ (-1169))) (-15 -1367 ((-112) $ (-1151))) (-15 -3181 ($ $ (-1151))) (-15 -1366 ($ $ (-1151))) (-15 -3230 ((-3 (-769) "failed") $ (-1151))) (-15 -1365 ($ $ (-1151) (-769))) (-15 -1364 ($ $ (-45 (-1151) (-769))))))) (T -113))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-113)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-769))) (-5 *1 (-113)))) (-3811 (*1 *1 *1) (-5 *1 (-113))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-113)))) (-3437 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-113)))) (-2906 (*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-113)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-113)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-113)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1368 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4032 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-637 (-859)))) (-5 *1 (-113)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-637 (-859)))) (-5 *1 (-113)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-113)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-637 (-535)))) (-5 *1 (-113)))) (-2289 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-535) (-637 (-535)))) (-5 *1 (-113)))) (-3020 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1367 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3181 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-113)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-113)))) (-3230 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-769)) (-5 *1 (-113)))) (-1365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-769)) (-5 *1 (-113)))) (-1364 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-769))) (-5 *1 (-113)))))
+(-13 (-846) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -1373 ((-45 (-1151) (-769)) $)) (-15 -3811 ($ $)) (-15 -3437 ($ (-1169))) (-15 -3437 ($ (-1169) (-767))) (-15 -2906 ((-3 (-767) "failed") $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -1612 ((-767) $)) (-15 -1612 ($ $ (-767))) (-15 -1369 ($ $ (-1 (-112) $ $))) (-15 -1368 ($ $ (-1 (-112) $ $))) (-15 -4032 ((-3 (-1 (-859) (-637 (-859))) "failed") $)) (-15 -4032 ($ $ (-1 (-859) (-637 (-859))))) (-15 -4032 ($ $ (-1 (-859) (-859)))) (-15 -2289 ($ $ (-1 (-535) (-637 (-535))))) (-15 -2289 ((-3 (-1 (-535) (-637 (-535))) "failed") $)) (-15 -3020 ((-112) $ (-1169))) (-15 -1367 ((-112) $ (-1151))) (-15 -3181 ($ $ (-1151))) (-15 -1366 ($ $ (-1151))) (-15 -3230 ((-3 (-769) "failed") $ (-1151))) (-15 -1365 ($ $ (-1151) (-769))) (-15 -1364 ($ $ (-45 (-1151) (-769))))))
+((-2903 (((-3 (-1 |#1| (-637 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-637 |#1|))) 11) (((-3 |#1| "failed") (-113) (-637 |#1|)) 21)) (-1374 (((-3 (-637 (-1 |#1| (-637 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-637 (-1 |#1| (-637 |#1|)))) 26)) (-1375 (((-113) |#1|) 54 (|has| |#1| (-846)))) (-1376 (((-3 |#1| "failed") (-113)) 48 (|has| |#1| (-846)))))
+(((-114 |#1|) (-10 -7 (-15 -2903 ((-3 |#1| "failed") (-113) (-637 |#1|))) (-15 -2903 ((-113) (-113) (-1 |#1| (-637 |#1|)))) (-15 -2903 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2903 ((-3 (-1 |#1| (-637 |#1|)) "failed") (-113))) (-15 -1374 ((-113) (-113) (-637 (-1 |#1| (-637 |#1|))))) (-15 -1374 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1374 ((-3 (-637 (-1 |#1| (-637 |#1|))) "failed") (-113))) (IF (|has| |#1| (-846)) (PROGN (-15 -1375 ((-113) |#1|)) (-15 -1376 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1094)) (T -114))
+((-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-114 *2)))) (-1375 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))) (-1374 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-637 (-1 *4 (-637 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1094)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-114 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 (-1 *4 (-637 *4)))) (-4 *4 (-1094)) (-5 *1 (-114 *4)))) (-2903 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-637 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1094)))) (-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-114 *4)))) (-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-637 *4))) (-4 *4 (-1094)) (-5 *1 (-114 *4)))) (-2903 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-637 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1094)))))
+(-10 -7 (-15 -2903 ((-3 |#1| "failed") (-113) (-637 |#1|))) (-15 -2903 ((-113) (-113) (-1 |#1| (-637 |#1|)))) (-15 -2903 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2903 ((-3 (-1 |#1| (-637 |#1|)) "failed") (-113))) (-15 -1374 ((-113) (-113) (-637 (-1 |#1| (-637 |#1|))))) (-15 -1374 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1374 ((-3 (-637 (-1 |#1| (-637 |#1|))) "failed") (-113))) (IF (|has| |#1| (-846)) (PROGN (-15 -1375 ((-113) |#1|)) (-15 -1376 ((-3 |#1| "failed") (-113)))) |%noBranch|))
+((-1377 (((-546) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1377 ((-546) |#2|))) (-13 (-363) (-1034 (-407 (-546)))) (-1232 |#1|)) (T -115))
+((-1377 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-546)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -1377 ((-546) |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-546)) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2996 (($ (-1163 (-546)) (-546)) NIL)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2997 (($ $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4186 (((-767) $) NIL)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2999 (((-546)) NIL)) (-2998 (((-546) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4183 (($ $ (-546)) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3000 (((-1146 (-546)) $) NIL)) (-3281 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-4184 (((-546) $ (-546)) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-866 |#1|) (-546)) (T -116))
+NIL
+(-866 |#1|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-116 |#1|) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-116 |#1|) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-116 |#1|) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-116 |#1|) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-116 |#1|) (-1034 (-546))))) (-3564 (((-116 |#1|) $) NIL) (((-1169) $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-116 |#1|) (-1034 (-546)))) (((-546) $) NIL (|has| (-116 |#1|) (-1034 (-546))))) (-4145 (($ $) NIL) (($ (-546) $) NIL)) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-116 |#1|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-116 |#1|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-116 |#1|))) (|:| |vec| (-1256 (-116 |#1|)))) (-684 $) (-1256 $)) NIL) (((-684 (-116 |#1|)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-116 |#1|) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-116 |#1|) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-116 |#1|) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-116 |#1|) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1144)))) (-3595 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-3249 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-4373 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-116 |#1|) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-3522 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-116 |#1|) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-116 |#1|) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-116 |#1|)) (-637 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-637 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-637 (-1169)) (-637 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|)))) (($ $ (-1169) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-116 |#1|) $) NIL)) (-4385 (((-886 (-546)) $) NIL (|has| (-116 |#1|) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-116 |#1|) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-116 |#1|) (-611 (-535)))) (((-378) $) NIL (|has| (-116 |#1|) (-1016))) (((-225) $) NIL (|has| (-116 |#1|) (-1016)))) (-3001 (((-174 (-407 (-546))) $) NIL)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-116 |#1|)) NIL) (($ (-1169)) NIL (|has| (-116 |#1|) (-1034 (-1169))))) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))) (|has| (-116 |#1|) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2219 (((-112) $ $) NIL)) (-4184 (((-407 (-546)) $ (-546)) NIL)) (-3794 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-4364 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-987 (-116 |#1|)) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $)))) (-546)) (T -117))
+((-4184 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-546)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-117 *3)) (-14 *3 (-546)))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-546)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-987 (-116 |#1|)) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $))))
+((-4202 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3421 (((-637 $) $) 27)) (-3417 (((-112) $ $) 32)) (-3653 (((-112) |#2| $) 36)) (-3420 (((-637 |#2|) $) 22)) (-3933 (((-112) $) 16)) (-4214 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4048 (((-112) $) 45)) (-4361 (((-859) $) 41)) (-3928 (((-637 $) $) 28)) (-3444 (((-112) $ $) 34)) (-4372 (((-767) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4202 (|#1| |#1| "right" |#1|)) (-15 -4202 (|#1| |#1| "left" |#1|)) (-15 -4214 (|#1| |#1| "right")) (-15 -4214 (|#1| |#1| "left")) (-15 -4202 (|#2| |#1| #1="value" |#2|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -3420 ((-637 |#2|) |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -3653 ((-112) |#2| |#1|)) (-15 -4372 ((-767) |#1|))) (-119 |#2|) (-1207)) (T -118))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4202 (|#1| |#1| "right" |#1|)) (-15 -4202 (|#1| |#1| "left" |#1|)) (-15 -4214 (|#1| |#1| "right")) (-15 -4214 (|#1| |#1| "left")) (-15 -4202 (|#2| |#1| #1="value" |#2|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -3420 ((-637 |#2|) |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -3653 ((-112) |#2| |#1|)) (-15 -4372 ((-767) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1378 (($ $ $) 52 (|has| $ (-6 -4409)))) (-1379 (($ $ $) 54 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ "left" $) 55 (|has| $ (-6 -4409))) (($ $ "right" $) 53 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-3529 (($ $) 57)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3530 (($ $) 59)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3419 (((-546) $ $) 44)) (-4048 (((-112) $) 46)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-119 |#1|) (-140) (-1207)) (T -119))
+((-3530 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-4202 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-1379 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-4202 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-1378 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))))
+(-13 (-1006 |t#1|) (-10 -8 (-15 -3530 ($ $)) (-15 -4214 ($ $ "left")) (-15 -3529 ($ $)) (-15 -4214 ($ $ "right")) (IF (|has| $ (-6 -4409)) (PROGN (-15 -4202 ($ $ "left" $)) (-15 -1379 ($ $ $)) (-15 -4202 ($ $ "right" $)) (-15 -1378 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-1382 (((-112) |#1|) 24)) (-1381 (((-767) (-767)) 23) (((-767)) 22)) (-1380 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1380 ((-112) |#1|)) (-15 -1380 ((-112) |#1| (-112))) (-15 -1381 ((-767))) (-15 -1381 ((-767) (-767))) (-15 -1382 ((-112) |#1|))) (-1232 (-546))) (T -120))
+((-1382 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))) (-1381 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))) (-1380 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))) (-1380 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))))
+(-10 -7 (-15 -1380 ((-112) |#1|)) (-15 -1380 ((-112) |#1| (-112))) (-15 -1381 ((-767))) (-15 -1381 ((-767) (-767))) (-15 -1382 ((-112) |#1|)))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) 15)) (-3829 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1378 (($ $ $) 18 (|has| $ (-6 -4409)))) (-1379 (($ $ $) 20 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #2="left" $) NIL (|has| $ (-6 -4409))) (($ $ #3="right" $) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3529 (($ $) 17)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1387 (($ $ |#1| $) 23)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3530 (($ $) 19)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1383 (($ |#1| $) 24)) (-4022 (($ |#1| $) 10)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 14)) (-3979 (($) 8)) (-4214 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1384 (($ (-637 |#1|)) 12)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1384 ($ (-637 |#1|))) (-15 -4022 ($ |#1| $)) (-15 -1383 ($ |#1| $)) (-15 -3829 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121))
+((-1384 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-4022 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-1383 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-3829 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1384 ($ (-637 |#1|))) (-15 -4022 ($ |#1| $)) (-15 -1383 ($ |#1| $)) (-15 -3829 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2437 (($ $) 12)) (-3733 (($ $) 10)) (-1385 (($ $ $) 22)) (-1386 (($ $ $) 20)) (-2435 (($ $ $) 18)) (-2436 (($ $ $) 16)))
+(((-122 |#1|) (-10 -8 (-15 -1385 (|#1| |#1| |#1|)) (-15 -1386 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1385 (|#1| |#1| |#1|)) (-15 -1386 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-2437 (($ $) 103)) (-3732 (($ $ $) 25)) (-2351 (((-1262) $ (-546) (-546)) 66 (|has| $ (-6 -4409)))) (-1883 (((-112) $) 98 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1881 (($ $) 102 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4409)))) (-3299 (($ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1296 (((-112) $ (-767)) 37)) (-4202 (((-112) $ (-1223 (-546)) (-112)) 88 (|has| $ (-6 -4409))) (((-112) $ (-546) (-112)) 54 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4408)))) (-4139 (($) 38 T CONST)) (-2423 (($ $) 100 (|has| $ (-6 -4409)))) (-2424 (($ $) 90)) (-1430 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4408))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4408))))) (-4257 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4408))))) (-1672 (((-112) $ (-546) (-112)) 53 (|has| $ (-6 -4409)))) (-3505 (((-112) $ (-546)) 55)) (-3830 (((-546) (-112) $ (-546)) 95 (|has| (-112) (-1094))) (((-546) (-112) $) 94 (|has| (-112) (-1094))) (((-546) (-1 (-112) (-112)) $) 93)) (-2103 (((-637 (-112)) $) 45 (|has| $ (-6 -4408)))) (-3246 (($ $ $) 26)) (-3733 (($ $) 30)) (-1385 (($ $ $) 28)) (-4029 (($ (-767) (-112)) 77)) (-1386 (($ $ $) 29)) (-4134 (((-112) $ (-767)) 36)) (-2353 (((-546) $) 63 (|has| (-546) (-846)))) (-2919 (($ $ $) 13)) (-3924 (($ $ $) 96 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2993 (((-637 (-112)) $) 46 (|has| $ (-6 -4408)))) (-3653 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 62 (|has| (-546) (-846)))) (-3249 (($ $ $) 14)) (-2107 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4131 (((-112) $ (-767)) 35)) (-3650 (((-1151) $) 9)) (-2428 (($ $ $ (-546)) 87) (($ (-112) $ (-546)) 86)) (-2356 (((-637 (-546)) $) 60)) (-2357 (((-112) (-546) $) 59)) (-3651 (((-1113) $) 10)) (-4215 (((-112) $) 64 (|has| (-546) (-846)))) (-1431 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2352 (($ $ (-112)) 65 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-112)) (-637 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-637 (-293 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1297 (((-112) $ $) 31)) (-2355 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-2358 (((-637 (-112)) $) 58)) (-3814 (((-112) $) 34)) (-3979 (($) 33)) (-4214 (($ $ (-1223 (-546))) 83) (((-112) $ (-546)) 57) (((-112) $ (-546) (-112)) 56)) (-2429 (($ $ (-1223 (-546))) 85) (($ $ (-546)) 84)) (-2104 (((-767) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4408)))) (-1882 (($ $ $ (-546)) 99 (|has| $ (-6 -4409)))) (-3811 (($ $) 32)) (-4385 (((-535) $) 67 (|has| (-112) (-611 (-535))))) (-3936 (($ (-637 (-112))) 76)) (-4216 (($ (-637 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4361 (((-859) $) 11)) (-2106 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4408)))) (-3247 (($ $ $) 27)) (-2435 (($ $ $) 105)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-2436 (($ $ $) 104)) (-4372 (((-767) $) 39 (|has| $ (-6 -4408)))))
(((-123) (-140)) (T -123))
-((-2174 (*1 *1 *1) (-4 *1 (-123))) (-2303 (*1 *1 *1 *1) (-4 *1 (-123))) (-2292 (*1 *1 *1 *1) (-4 *1 (-123))) (-2188 (*1 *1 *1 *1) (-4 *1 (-123))) (-2200 (*1 *1 *1 *1) (-4 *1 (-123))) (-2210 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-846) (-656) (-19 (-112)) (-10 -8 (-15 -2174 ($ $)) (-15 -2303 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -2188 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -2210 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-112)) . T) ((-611 (-536)) |has| (-112) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-646 #0#) . T) ((-656) . T) ((-19 #0#) . T) ((-846) . T) ((-1093) . T) ((-1208) . T))
-((-4347 (($ (-1 |#2| |#2|) $) 22)) (-1870 (($ $) 16)) (-3610 (((-767) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -1870 (|#1| |#1|))) (-125 |#2|) (-1093)) (T -124))
-NIL
-(-10 -8 (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -1870 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-2996 (($ $ $) 52 (|has| $ (-6 -4409)))) (-3007 (($ $ $) 54 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ "left" $) 55 (|has| $ (-6 -4409))) (($ $ "right" $) 53 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-1700 (($ $) 57)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2218 (($ $ |#1| $) 60)) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-1685 (($ $) 59)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2379 (((-563) $ $) 44)) (-2889 (((-112) $) 46)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-125 |#1|) (-140) (-1093)) (T -125))
-((-2218 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2218 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-119 |#1|) . T) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) 15)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) 19 (|has| $ (-6 -4409)))) (-2996 (($ $ $) 20 (|has| $ (-6 -4409)))) (-3007 (($ $ $) 18 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1700 (($ $) 21)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2218 (($ $ |#1| $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-1685 (($ $) NIL)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3867 (($ |#1| $) 10)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 14)) (-3445 (($) 8)) (-2308 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 17)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3800 (($ (-640 |#1|)) 12)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -3800 ($ (-640 |#1|))) (-15 -3867 ($ |#1| $)))) (-846)) (T -126))
-((-3800 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -3800 ($ (-640 |#1|))) (-15 -3867 ($ |#1| $))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) 24)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) 26 (|has| $ (-6 -4409)))) (-2996 (($ $ $) 30 (|has| $ (-6 -4409)))) (-3007 (($ $ $) 28 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1700 (($ $) 20)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2218 (($ $ |#1| $) 15)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-1685 (($ $) 19)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) 21)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 18)) (-3445 (($) 11)) (-2308 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2014 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 10 (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2014 ($ |#1|)) (-15 -2014 ($ $ |#1| $)))) (-1093)) (T -127))
-((-2014 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))) (-2014 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2014 ($ |#1|)) (-15 -2014 ($ $ |#1| $))))
-((-1677 (((-112) $ $) NIL (|has| (-129) (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-846)))) (-4052 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-129) (-846))))) (-1640 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-129) $ (-563) (-129)) 18 (|has| $ (-6 -4409))) (((-129) $ (-1224 (-563)) (-129)) NIL (|has| $ (-6 -4409)))) (-3899 (((-767) $ (-767)) 24)) (-2255 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-1459 (($ (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4408))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4408)))) (-4356 (((-129) $ (-563) (-129)) 17 (|has| $ (-6 -4409)))) (-4293 (((-129) $ (-563)) 15)) (-4369 (((-563) (-1 (-112) (-129)) $) NIL) (((-563) (-129) $) NIL (|has| (-129) (-1093))) (((-563) (-129) $ (-563)) NIL (|has| (-129) (-1093)))) (-2658 (((-640 (-129)) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) (-129)) 11)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 19 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| (-129) (-846)))) (-4300 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-846)))) (-3523 (((-640 (-129)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-2251 (((-563) $) 20 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-129) (-846)))) (-4347 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| (-129) (-1093)))) (-3399 (($ (-129) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| (-129) (-1093)))) (-3782 (((-129) $) NIL (|has| (-563) (-846)))) (-1971 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2221 (($ $ (-129)) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-640 (-129)) (-640 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-2295 (((-640 (-129)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 9)) (-2308 (((-129) $ (-563) (-129)) NIL) (((-129) $ (-563)) 16) (($ $ (-1224 (-563))) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408))) (((-767) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-129) (-611 (-536))))) (-1706 (($ (-640 (-129))) 33)) (-2857 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 34) (($ (-640 $)) NIL)) (-1692 (((-954 (-129)) $) 26) (((-1151) $) 31) (((-858) $) NIL (|has| (-129) (-610 (-858))))) (-3911 (((-767) $) 13)) (-3922 (($ (-767)) 8)) (-1471 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1718 (((-112) $ $) 23 (|has| (-129) (-1093)))) (-1766 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-129) (-846)))) (-3610 (((-767) $) 12 (|has| $ (-6 -4408)))))
-(((-128) (-13 (-19 (-129)) (-610 (-954 (-129))) (-610 (-1151)) (-10 -8 (-15 -3922 ($ (-767))) (-15 -3911 ((-767) $)) (-15 -3899 ((-767) $ (-767))) (-6 -4408)))) (T -128))
-((-3922 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-3899 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-610 (-954 (-129))) (-610 (-1151)) (-10 -8 (-15 -3922 ($ (-767))) (-15 -3911 ((-767) $)) (-15 -3899 ((-767) $ (-767))) (-6 -4408)))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) 15 T CONST)) (-1776 (($ $ $) NIL) (($) 16 T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ (-144)) 9) (((-144) $) 11)) (-3890 (($ (-767)) 6)) (-3123 (($ $ $) 18)) (-3113 (($ $ $) 17)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 13)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 14)))
-(((-129) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -3890 ($ (-767))) (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))) (T -129))
-((-3890 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-3113 (*1 *1 *1 *1) (-5 *1 (-129))) (-3123 (*1 *1 *1 *1) (-5 *1 (-129))) (-2569 (*1 *1) (-5 *1 (-129))))
-(-13 (-840) (-490 (-144)) (-10 -8 (-15 -3890 ($ (-767))) (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))
+((-3733 (*1 *1 *1) (-4 *1 (-123))) (-1386 (*1 *1 *1 *1) (-4 *1 (-123))) (-1385 (*1 *1 *1 *1) (-4 *1 (-123))) (-3247 (*1 *1 *1 *1) (-4 *1 (-123))) (-3246 (*1 *1 *1 *1) (-4 *1 (-123))) (-3732 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-846) (-657) (-19 (-112)) (-10 -8 (-15 -3733 ($ $)) (-15 -1386 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -3247 ($ $ $)) (-15 -3246 ($ $ $)) (-15 -3732 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 #1=(-112)) . T) ((-611 (-535)) |has| (-112) (-611 (-535))) ((-286 #2=(-546) #1#) . T) ((-288 #2# #1#) . T) ((-309 #1#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-372 #1#) . T) ((-489 #1#) . T) ((-601 #2# #1#) . T) ((-514 #1# #1#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-646 #1#) . T) ((-657) . T) ((-19 #1#) . T) ((-846) . T) ((-1094) . T) ((-1207) . T))
+((-2107 (($ (-1 |#2| |#2|) $) 22)) (-3811 (($ $) 16)) (-4372 (((-767) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -3811 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124))
+NIL
+(-10 -8 (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -3811 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1378 (($ $ $) 52 (|has| $ (-6 -4409)))) (-1379 (($ $ $) 54 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ #2="left" $) 55 (|has| $ (-6 -4409))) (($ $ #3="right" $) 53 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-3529 (($ $) 57)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1387 (($ $ |#1| $) 60)) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3530 (($ $) 59)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3419 (((-546) $ $) 44)) (-4048 (((-112) $) 46)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-125 |#1|) (-140) (-1094)) (T -125))
+((-1387 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1387 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) 15)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) 19 (|has| $ (-6 -4409)))) (-1378 (($ $ $) 20 (|has| $ (-6 -4409)))) (-1379 (($ $ $) 18 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #2="left" $) NIL (|has| $ (-6 -4409))) (($ $ #3="right" $) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3529 (($ $) 21)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1387 (($ $ |#1| $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3530 (($ $) NIL)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4022 (($ |#1| $) 10)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 14)) (-3979 (($) 8)) (-4214 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 17)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1388 (($ (-637 |#1|)) 12)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -1388 ($ (-637 |#1|))) (-15 -4022 ($ |#1| $)))) (-846)) (T -126))
+((-1388 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-4022 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -1388 ($ (-637 |#1|))) (-15 -4022 ($ |#1| $))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) 24)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) 26 (|has| $ (-6 -4409)))) (-1378 (($ $ $) 30 (|has| $ (-6 -4409)))) (-1379 (($ $ $) 28 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #2="left" $) NIL (|has| $ (-6 -4409))) (($ $ #3="right" $) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3529 (($ $) 20)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1387 (($ $ |#1| $) 15)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3530 (($ $) 19)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) 21)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 18)) (-3979 (($) 11)) (-4214 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1389 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1389 ($ |#1|)) (-15 -1389 ($ $ |#1| $)))) (-1094)) (T -127))
+((-1389 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-1389 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1389 ($ |#1|)) (-15 -1389 ($ $ |#1| $))))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) 7 T CONST)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) 16 T CONST)) (-3249 (($ $ $) NIL) (($) 17 T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ (-144)) 10) (((-144) $) 12)) (-1390 (($ (-767)) 6)) (-4140 (($ $ $) 19)) (-4141 (($ $ $) 18)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 14)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 15)))
+(((-128) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -1390 ($ (-767))) (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($) -4367)))) (T -128))
+((-1390 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-4141 (*1 *1 *1 *1) (-5 *1 (-128))) (-4140 (*1 *1 *1 *1) (-5 *1 (-128))) (-4139 (*1 *1) (-5 *1 (-128))))
+(-13 (-840) (-490 (-144)) (-10 -8 (-15 -1390 ($ (-767))) (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($) -4367)))
((|NonNegativeInteger|) (< |#1| 256))
-((-1677 (((-112) $ $) NIL)) (-3876 (($) 6 T CONST)) (-3898 (($) 7 T CONST)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 14)) (-3886 (($) 8 T CONST)) (-1718 (((-112) $ $) 10)))
-(((-130) (-13 (-1093) (-10 -8 (-15 -3898 ($) -2668) (-15 -3886 ($) -2668) (-15 -3876 ($) -2668)))) (T -130))
-((-3898 (*1 *1) (-5 *1 (-130))) (-3886 (*1 *1) (-5 *1 (-130))) (-3876 (*1 *1) (-5 *1 (-130))))
-(-13 (-1093) (-10 -8 (-15 -3898 ($) -2668) (-15 -3886 ($) -2668) (-15 -3876 ($) -2668)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15)))
+((-2953 (((-112) $ $) NIL (|has| (-128) (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-846)))) (-1881 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-128) (-846))))) (-3299 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-128) $ (-546) (-128)) 18 (|has| $ (-6 -4409))) (((-128) $ (-1223 (-546)) (-128)) NIL (|has| $ (-6 -4409)))) (-1391 (((-767) $ (-767)) 24)) (-4125 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094))))) (-3817 (($ (-128) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4408))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4408)))) (-1672 (((-128) $ (-546) (-128)) 17 (|has| $ (-6 -4409)))) (-3505 (((-128) $ (-546)) 15)) (-3830 (((-546) (-1 (-112) (-128)) $) NIL) (((-546) (-128) $) NIL (|has| (-128) (-1094))) (((-546) (-128) $ (-546)) NIL (|has| (-128) (-1094)))) (-2103 (((-637 (-128)) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) (-128)) 11)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 19 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| (-128) (-846)))) (-3924 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-846)))) (-2993 (((-637 (-128)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094))))) (-2354 (((-546) $) 20 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-128) (-846)))) (-2107 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| (-128) (-1094)))) (-2428 (($ (-128) $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| (-128) (-1094)))) (-4215 (((-128) $) NIL (|has| (-546) (-846)))) (-1431 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2352 (($ $ (-128)) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-128)))) NIL (-12 (|has| (-128) (-309 (-128))) (|has| (-128) (-1094)))) (($ $ (-293 (-128))) NIL (-12 (|has| (-128) (-309 (-128))) (|has| (-128) (-1094)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-309 (-128))) (|has| (-128) (-1094)))) (($ $ (-637 (-128)) (-637 (-128))) NIL (-12 (|has| (-128) (-309 (-128))) (|has| (-128) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094))))) (-2358 (((-637 (-128)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 9)) (-4214 (((-128) $ (-546) (-128)) NIL) (((-128) $ (-546)) 16) (($ $ (-1223 (-546))) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4408))) (((-767) (-128) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-128) (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-128) (-611 (-535))))) (-3936 (($ (-637 (-128))) 33)) (-4216 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 34) (($ (-637 $)) NIL)) (-4361 (((-954 (-128)) $) 26) (((-1151) $) 31) (((-859) $) NIL (|has| (-128) (-610 (-859))))) (-1392 (((-767) $) 13)) (-1393 (($ (-767)) 8)) (-2106 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| (-128) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-128) (-846)))) (-3444 (((-112) $ $) 23 (|has| (-128) (-1094)))) (-3073 (((-112) $ $) NIL (|has| (-128) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-128) (-846)))) (-4372 (((-767) $) 12 (|has| $ (-6 -4408)))))
+(((-129) (-13 (-19 (-128)) (-610 (-954 (-128))) (-610 (-1151)) (-10 -8 (-15 -1393 ($ (-767))) (-15 -1392 ((-767) $)) (-15 -1391 ((-767) $ (-767))) (-6 -4408)))) (T -129))
+((-1393 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-1391 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
+(-13 (-19 (-128)) (-610 (-954 (-128))) (-610 (-1151)) (-10 -8 (-15 -1393 ($ (-767))) (-15 -1392 ((-767) $)) (-15 -1391 ((-767) $ (-767))) (-6 -4408)))
+((-2953 (((-112) $ $) NIL)) (-1394 (($) 6 T CONST)) (-1396 (($) 7 T CONST)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 14)) (-1395 (($) 8 T CONST)) (-3444 (((-112) $ $) 10)))
+(((-130) (-13 (-1094) (-10 -8 (-15 -1396 ($) -4367) (-15 -1395 ($) -4367) (-15 -1394 ($) -4367)))) (T -130))
+((-1396 (*1 *1) (-5 *1 (-130))) (-1395 (*1 *1) (-5 *1 (-130))) (-1394 (*1 *1) (-5 *1 (-130))))
+(-13 (-1094) (-10 -8 (-15 -1396 ($) -4367) (-15 -1395 ($) -4367) (-15 -1394 ($) -4367)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15)))
(((-131) (-140)) (T -131))
-((-3905 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -3905 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3916 (((-1262) $ (-767)) 19)) (-4369 (((-767) $) 20)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)))
+((-1397 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -1397 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-1398 (((-1262) $ (-767)) 19)) (-3830 (((-767) $) 20)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)))
(((-132) (-140)) (T -132))
-((-4369 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-3916 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262)))))
-(-13 (-846) (-10 -8 (-15 -4369 ((-767) $)) (-15 -3916 ((-1262) $ (-767)))))
-(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-640 (-1128)) $) 10)) (-1718 (((-112) $ $) NIL)))
-(((-133) (-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $))))) (T -133))
-((-3363 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133)))))
-(-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $))))
-((-1677 (((-112) $ $) 34)) (-3439 (((-112) $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-767) "failed") $) 41)) (-2057 (((-767) $) 39)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) 27)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3936 (((-112)) 42)) (-3927 (((-112) (-112)) 44)) (-2994 (((-112) $) 24)) (-3946 (((-112) $) 38)) (-1692 (((-858) $) 22) (($ (-767)) 14)) (-2239 (($) 11 T CONST)) (-2253 (($) 12 T CONST)) (-3956 (($ (-767)) 15)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 25)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 26)) (-1825 (((-3 $ "failed") $ $) 30)) (-1813 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ $) 37)) (* (($ (-767) $) 33) (($ (-917) $) NIL) (($ $ $) 31)))
-(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -1825 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3956 ($ (-767))) (-15 -2994 ((-112) $)) (-15 -3946 ((-112) $)) (-15 -3936 ((-112))) (-15 -3927 ((-112) (-112)))))) (T -134))
-((-1825 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3936 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -1825 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3956 ($ (-767))) (-15 -2994 ((-112) $)) (-15 -3946 ((-112) $)) (-15 -3936 ((-112))) (-15 -3927 ((-112) (-112)))))
-((-4258 (((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2238 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4258 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2238 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-563) (-767) (-172) (-172)) (T -135))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4258 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2238 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-1677 (((-112) $ $) NIL)) (-3967 (($ (-640 |#3|)) 40)) (-1769 (($ $) 99) (($ $ (-563) (-563)) 98)) (-2569 (($) 17)) (-2130 (((-3 |#3| "failed") $) 60)) (-2057 ((|#3| $) NIL)) (-4000 (($ $ (-640 (-563))) 100)) (-4247 (((-640 |#3|) $) 36)) (-2521 (((-767) $) 44)) (-3846 (($ $ $) 93)) (-3977 (($) 43)) (-3854 (((-1151) $) NIL)) (-3988 (($) 16)) (-1693 (((-1113) $) NIL)) (-2308 ((|#3| $) 46) ((|#3| $ (-563)) 47) ((|#3| $ (-563) (-563)) 48) ((|#3| $ (-563) (-563) (-563)) 49) ((|#3| $ (-563) (-563) (-563) (-563)) 50) ((|#3| $ (-640 (-563))) 52)) (-3871 (((-767) $) 45)) (-1857 (($ $ (-563) $ (-563)) 94) (($ $ (-563) (-563)) 96)) (-1692 (((-858) $) 67) (($ |#3|) 68) (($ (-240 |#2| |#3|)) 75) (($ (-1135 |#2| |#3|)) 78) (($ (-640 |#3|)) 53) (($ (-640 $)) 58)) (-2239 (($) 69 T CONST)) (-2253 (($) 70 T CONST)) (-1718 (((-112) $ $) 80)) (-1825 (($ $) 86) (($ $ $) 84)) (-1813 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-563)) 89) (($ (-563) $) 88) (($ $ $) 95)))
-(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -1692 ($ (-240 |#2| |#3|))) (-15 -1692 ($ (-1135 |#2| |#3|))) (-15 -1692 ($ (-640 |#3|))) (-15 -1692 ($ (-640 $))) (-15 -2521 ((-767) $)) (-15 -2308 (|#3| $)) (-15 -2308 (|#3| $ (-563))) (-15 -2308 (|#3| $ (-563) (-563))) (-15 -2308 (|#3| $ (-563) (-563) (-563))) (-15 -2308 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -2308 (|#3| $ (-640 (-563)))) (-15 -3846 ($ $ $)) (-15 * ($ $ $)) (-15 -1857 ($ $ (-563) $ (-563))) (-15 -1857 ($ $ (-563) (-563))) (-15 -1769 ($ $)) (-15 -1769 ($ $ (-563) (-563))) (-15 -4000 ($ $ (-640 (-563)))) (-15 -3988 ($)) (-15 -3977 ($)) (-15 -4247 ((-640 |#3|) $)) (-15 -3967 ($ (-640 |#3|))) (-15 -2569 ($)))) (-563) (-767) (-172)) (T -136))
-((-3846 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 *2) (-4 *5 (-172)))) (-2308 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563)) (-14 *4 (-767)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2308 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2308 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2308 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-563)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1857 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-1857 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1769 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-4000 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3988 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3977 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3967 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-2569 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))))
-(-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -1692 ($ (-240 |#2| |#3|))) (-15 -1692 ($ (-1135 |#2| |#3|))) (-15 -1692 ($ (-640 |#3|))) (-15 -1692 ($ (-640 $))) (-15 -2521 ((-767) $)) (-15 -2308 (|#3| $)) (-15 -2308 (|#3| $ (-563))) (-15 -2308 (|#3| $ (-563) (-563))) (-15 -2308 (|#3| $ (-563) (-563) (-563))) (-15 -2308 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -2308 (|#3| $ (-640 (-563)))) (-15 -3846 ($ $ $)) (-15 * ($ $ $)) (-15 -1857 ($ $ (-563) $ (-563))) (-15 -1857 ($ $ (-563) (-563))) (-15 -1769 ($ $)) (-15 -1769 ($ $ (-563) (-563))) (-15 -4000 ($ $ (-640 (-563)))) (-15 -3988 ($)) (-15 -3977 ($)) (-15 -4247 ((-640 |#3|) $)) (-15 -3967 ($ (-640 |#3|))) (-15 -2569 ($))))
-((-1677 (((-112) $ $) NIL)) (-2350 (((-1128) $) 11)) (-2339 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-137) (-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))) (T -137))
-((-2339 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))))
-(-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2504 (((-1169) $) 10)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-640 (-1128)) $) 12)) (-1718 (((-112) $ $) NIL)))
-(((-138) (-13 (-1076) (-10 -8 (-15 -2504 ((-1169) $)) (-15 -3363 ((-640 (-1128)) $))))) (T -138))
-((-2504 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138)))))
-(-13 (-1076) (-10 -8 (-15 -2504 ((-1169) $)) (-15 -3363 ((-640 (-1128)) $))))
-((-1677 (((-112) $ $) NIL)) (-3457 (((-640 (-861)) $) NIL)) (-3352 (((-506) $) NIL)) (-3854 (((-1151) $) NIL)) (-2504 (((-186) $) NIL)) (-1693 (((-1113) $) NIL)) (-1404 (((-640 (-112)) $) NIL)) (-1692 (((-858) $) NIL) (((-187) $) 6)) (-2935 (((-55) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-139) (-13 (-185) (-610 (-187)))) (T -139))
-NIL
-(-13 (-185) (-610 (-187)))
-((-4011 (((-640 (-183)) $) 13)) (-1855 (((-640 (-183)) $) 14)) (-4021 (((-640 (-834)) $) 10)) (-3763 (((-139) $) 7)) (-1692 (((-858) $) 16)))
-(((-140) (-13 (-610 (-858)) (-10 -8 (-15 -3763 ((-139) $)) (-15 -4021 ((-640 (-834)) $)) (-15 -4011 ((-640 (-183)) $)) (-15 -1855 ((-640 (-183)) $))))) (T -140))
-((-3763 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3763 ((-139) $)) (-15 -4021 ((-640 (-834)) $)) (-15 -4011 ((-640 (-183)) $)) (-15 -1855 ((-640 (-183)) $))))
-((-1677 (((-112) $ $) NIL)) (-1827 (($) 15 T CONST)) (-3533 (($) NIL (|has| (-144) (-368)))) (-2582 (($ $ $) 17) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3816 (($ $ $) NIL)) (-3804 (((-112) $ $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| (-144) (-368)))) (-1582 (($) NIL) (($ (-640 (-144))) NIL)) (-3678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1691 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) 51 (|has| $ (-6 -4408)))) (-1459 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1690 (($) NIL (|has| (-144) (-368)))) (-2658 (((-640 (-144)) $) 60 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-3088 (((-144) $) NIL (|has| (-144) (-846)))) (-3523 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-144) $) 26 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1776 (((-144) $) NIL (|has| (-144) (-846)))) (-4347 (($ (-1 (-144) (-144)) $) 59 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-144) (-144)) $) 55)) (-1848 (($) 16 T CONST)) (-3990 (((-917) $) NIL (|has| (-144) (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3834 (($ $ $) 29)) (-2627 (((-144) $) 52)) (-3867 (($ (-144) $) 50)) (-2552 (($ (-917)) NIL (|has| (-144) (-368)))) (-4056 (($) 14 T CONST)) (-1693 (((-1113) $) NIL)) (-1971 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2808 (((-144) $) 53)) (-1458 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 48)) (-4067 (($) 13 T CONST)) (-3827 (($ $ $) 31) (($ $ (-144)) NIL)) (-3863 (($ (-640 (-144))) NIL) (($) NIL)) (-1708 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-1151) $) 36) (((-536) $) NIL (|has| (-144) (-611 (-536)))) (((-640 (-144)) $) 34)) (-1706 (($ (-640 (-144))) NIL)) (-3545 (($ $) 32 (|has| (-144) (-368)))) (-1692 (((-858) $) 46)) (-4077 (($ (-1151)) 12) (($ (-640 (-144))) 43)) (-3556 (((-767) $) NIL)) (-2533 (($) 49) (($ (-640 (-144))) NIL)) (-2820 (($ (-640 (-144))) NIL)) (-1471 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4032 (($) 19 T CONST)) (-4044 (($) 18 T CONST)) (-1718 (((-112) $ $) 22)) (-3610 (((-767) $) 47 (|has| $ (-6 -4408)))))
-(((-141) (-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -4077 ($ (-1151))) (-15 -4077 ($ (-640 (-144)))) (-15 -4067 ($) -2668) (-15 -4056 ($) -2668) (-15 -1827 ($) -2668) (-15 -1848 ($) -2668) (-15 -4044 ($) -2668) (-15 -4032 ($) -2668)))) (T -141))
-((-4077 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141)))) (-4067 (*1 *1) (-5 *1 (-141))) (-4056 (*1 *1) (-5 *1 (-141))) (-1827 (*1 *1) (-5 *1 (-141))) (-1848 (*1 *1) (-5 *1 (-141))) (-4044 (*1 *1) (-5 *1 (-141))) (-4032 (*1 *1) (-5 *1 (-141))))
-(-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -4077 ($ (-1151))) (-15 -4077 ($ (-640 (-144)))) (-15 -4067 ($) -2668) (-15 -4056 ($) -2668) (-15 -1827 ($) -2668) (-15 -1848 ($) -2668) (-15 -4044 ($) -2668) (-15 -4032 ($) -2668)))
-((-2674 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2655 ((|#1| |#3|) 9)) (-2663 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2655 (|#1| |#3|)) (-15 -2663 (|#3| |#3|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-373 |#2|)) (T -142))
-((-2674 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-2663 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -2655 (|#1| |#3|)) (-15 -2663 (|#3| |#3|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2101 (($ $ $) 8)) (-2081 (($ $) 7)) (-1864 (($ $ $) 6)))
+((-3830 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-1398 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262)))))
+(-13 (-846) (-10 -8 (-15 -3830 ((-767) $)) (-15 -1398 ((-1262) $ (-767)))))
+(((-102) . T) ((-610 (-859)) . T) ((-846) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-637 (-1128)) $) 10)) (-3444 (((-112) $ $) NIL)))
+(((-133) (-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $))))) (T -133))
+((-3641 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-133)))))
+(-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $))))
+((-2953 (((-112) $ $) 34)) (-3596 (((-112) $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-767) "failed") $) 41)) (-3564 (((-767) $) 39)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) 27)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1400 (((-112)) 42)) (-1399 (((-112) (-112)) 44)) (-2913 (((-112) $) 24)) (-1401 (((-112) $) 38)) (-4361 (((-859) $) 22) (($ (-767)) 14)) (-3047 (($) 11 T CONST)) (-3053 (($) 12 T CONST)) (-1402 (($ (-767)) 15)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 25)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 26)) (-4252 (((-3 $ "failed") $ $) 30)) (-4254 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL) (($ $ $) 37)) (* (($ (-767) $) 33) (($ (-915) $) NIL) (($ $ $) 31)))
+(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -4252 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1402 ($ (-767))) (-15 -2913 ((-112) $)) (-15 -1401 ((-112) $)) (-15 -1400 ((-112))) (-15 -1399 ((-112) (-112)))))) (T -134))
+((-4252 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1402 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1400 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -4252 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1402 ($ (-767))) (-15 -2913 ((-112) $)) (-15 -1401 ((-112) $)) (-15 -1400 ((-112))) (-15 -1399 ((-112) (-112)))))
+((-2953 (((-112) $ $) NIL)) (-1403 (($ (-637 |#3|)) 40)) (-3825 (($ $) 99) (($ $ (-546) (-546)) 98)) (-4139 (($) 17)) (-3565 (((-3 |#3| "failed") $) 60)) (-3564 ((|#3| $) NIL)) (-1407 (($ $ (-637 (-546))) 100)) (-1404 (((-637 |#3|) $) 36)) (-3501 (((-767) $) 44)) (-4359 (($ $ $) 93)) (-1405 (($) 43)) (-3650 (((-1151) $) NIL)) (-1406 (($) 16)) (-3651 (((-1113) $) NIL)) (-4214 ((|#3| $) 46) ((|#3| $ (-546)) 47) ((|#3| $ (-546) (-546)) 48) ((|#3| $ (-546) (-546) (-546)) 49) ((|#3| $ (-546) (-546) (-546) (-546)) 50) ((|#3| $ (-637 (-546))) 52)) (-4363 (((-767) $) 45)) (-2140 (($ $ (-546) $ (-546)) 94) (($ $ (-546) (-546)) 96)) (-4361 (((-859) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1135 |#2| |#3|)) 78) (($ (-637 |#3|)) 53) (($ (-637 $)) 58)) (-3047 (($) 69 T CONST)) (-3053 (($) 70 T CONST)) (-3444 (((-112) $ $) 80)) (-4252 (($ $) 86) (($ $ $) 84)) (-4254 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-546)) 89) (($ (-546) $) 88) (($ $ $) 95)))
+(((-135 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-546) (-767)) (-10 -8 (-15 -4361 ($ (-239 |#2| |#3|))) (-15 -4361 ($ (-1135 |#2| |#3|))) (-15 -4361 ($ (-637 |#3|))) (-15 -4361 ($ (-637 $))) (-15 -3501 ((-767) $)) (-15 -4214 (|#3| $)) (-15 -4214 (|#3| $ (-546))) (-15 -4214 (|#3| $ (-546) (-546))) (-15 -4214 (|#3| $ (-546) (-546) (-546))) (-15 -4214 (|#3| $ (-546) (-546) (-546) (-546))) (-15 -4214 (|#3| $ (-637 (-546)))) (-15 -4359 ($ $ $)) (-15 * ($ $ $)) (-15 -2140 ($ $ (-546) $ (-546))) (-15 -2140 ($ $ (-546) (-546))) (-15 -3825 ($ $)) (-15 -3825 ($ $ (-546) (-546))) (-15 -1407 ($ $ (-637 (-546)))) (-15 -1406 ($)) (-15 -1405 ($)) (-15 -1404 ((-637 |#3|) $)) (-15 -1403 ($ (-637 |#3|))) (-15 -4139 ($)))) (-546) (-767) (-172)) (T -135))
+((-4359 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 (-767)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 *2) (-4 *5 (-172)))) (-4214 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-546)) (-14 *4 (-767)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4214 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4214 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4214 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-637 (-546))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-546)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2140 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-2140 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3825 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3825 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1406 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1405 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-637 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 (-767)))) (-4139 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))))
+(-13 (-465 |#3| (-767)) (-470 (-546) (-767)) (-10 -8 (-15 -4361 ($ (-239 |#2| |#3|))) (-15 -4361 ($ (-1135 |#2| |#3|))) (-15 -4361 ($ (-637 |#3|))) (-15 -4361 ($ (-637 $))) (-15 -3501 ((-767) $)) (-15 -4214 (|#3| $)) (-15 -4214 (|#3| $ (-546))) (-15 -4214 (|#3| $ (-546) (-546))) (-15 -4214 (|#3| $ (-546) (-546) (-546))) (-15 -4214 (|#3| $ (-546) (-546) (-546) (-546))) (-15 -4214 (|#3| $ (-637 (-546)))) (-15 -4359 ($ $ $)) (-15 * ($ $ $)) (-15 -2140 ($ $ (-546) $ (-546))) (-15 -2140 ($ $ (-546) (-546))) (-15 -3825 ($ $)) (-15 -3825 ($ $ (-546) (-546))) (-15 -1407 ($ $ (-637 (-546)))) (-15 -1406 ($)) (-15 -1405 ($)) (-15 -1404 ((-637 |#3|) $)) (-15 -1403 ($ (-637 |#3|))) (-15 -4139 ($))))
+((-2555 (((-135 |#1| |#2| |#4|) (-637 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4373 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
+(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2555 ((-135 |#1| |#2| |#4|) (-637 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4373 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-546) (-767) (-172) (-172)) (T -136))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-546)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-546)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2555 ((-135 |#1| |#2| |#4|) (-637 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4373 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
+((-2953 (((-112) $ $) NIL)) (-3934 (((-1128) $) 11)) (-3935 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-137) (-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))) (T -137))
+((-3935 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))))
+(-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-1500 (((-1169) $) 10)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-637 (-1128)) $) 12)) (-3444 (((-112) $ $) NIL)))
+(((-138) (-13 (-1076) (-10 -8 (-15 -1500 ((-1169) $)) (-15 -3641 ((-637 (-1128)) $))))) (T -138))
+((-1500 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-138)))))
+(-13 (-1076) (-10 -8 (-15 -1500 ((-1169) $)) (-15 -3641 ((-637 (-1128)) $))))
+((-2953 (((-112) $ $) NIL)) (-1498 (((-637 (-861)) $) NIL)) (-3956 (((-506) $) NIL)) (-3650 (((-1151) $) NIL)) (-1500 (((-187) $) NIL)) (-3651 (((-1113) $) NIL)) (-1499 (((-637 (-112)) $) NIL)) (-4361 (((-859) $) NIL) (((-183) $) 6)) (-2906 (((-55) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-139) (-13 (-186) (-610 (-183)))) (T -139))
+NIL
+(-13 (-186) (-610 (-183)))
+((-1409 (((-637 (-184)) $) 13)) (-1408 (((-637 (-184)) $) 14)) (-1410 (((-637 (-834)) $) 10)) (-1573 (((-139) $) 7)) (-4361 (((-859) $) 16)))
+(((-140) (-13 (-610 (-859)) (-10 -8 (-15 -1573 ((-139) $)) (-15 -1410 ((-637 (-834)) $)) (-15 -1409 ((-637 (-184)) $)) (-15 -1408 ((-637 (-184)) $))))) (T -140))
+((-1573 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-637 (-834))) (-5 *1 (-140)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-637 (-184))) (-5 *1 (-140)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-637 (-184))) (-5 *1 (-140)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -1573 ((-139) $)) (-15 -1410 ((-637 (-834)) $)) (-15 -1409 ((-637 (-184)) $)) (-15 -1408 ((-637 (-184)) $))))
+((-2953 (((-112) $ $) NIL)) (-3838 (($) 15 T CONST)) (-1956 (($) NIL (|has| (-144) (-368)))) (-3642 (($ $ $) 17) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3644 (($ $ $) NIL)) (-3643 (((-112) $ $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| (-144) (-368)))) (-3647 (($) NIL) (($ (-637 (-144))) NIL)) (-1666 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-3816 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) 51 (|has| $ (-6 -4408)))) (-3817 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-4257 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-3384 (($) NIL (|has| (-144) (-368)))) (-2103 (((-637 (-144)) $) 60 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2919 (((-144) $) NIL (|has| (-144) (-846)))) (-2993 (((-637 (-144)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-144) $) 26 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-3249 (((-144) $) NIL (|has| (-144) (-846)))) (-2107 (($ (-1 (-144) (-144)) $) 59 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-144) (-144)) $) 55)) (-3840 (($) 16 T CONST)) (-2167 (((-915) $) NIL (|has| (-144) (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3646 (($ $ $) 29)) (-1359 (((-144) $) 52)) (-4022 (($ (-144) $) 50)) (-2542 (($ (-915)) NIL (|has| (-144) (-368)))) (-1413 (($) 14 T CONST)) (-3651 (((-1113) $) NIL)) (-1431 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1360 (((-144) $) 53)) (-2105 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-144)) (-637 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-293 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-637 (-293 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 48)) (-1414 (($) 13 T CONST)) (-3645 (($ $ $) 31) (($ $ (-144)) NIL)) (-1557 (($ (-637 (-144))) NIL) (($) NIL)) (-2104 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-1151) $) 36) (((-535) $) NIL (|has| (-144) (-611 (-535)))) (((-637 (-144)) $) 34)) (-3936 (($ (-637 (-144))) NIL)) (-1957 (($ $) 32 (|has| (-144) (-368)))) (-4361 (((-859) $) 46)) (-1415 (($ (-1151)) 12) (($ (-637 (-144))) 43)) (-1958 (((-767) $) NIL)) (-3648 (($) 49) (($ (-637 (-144))) NIL)) (-1361 (($ (-637 (-144))) NIL)) (-2106 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1411 (($) 19 T CONST)) (-1412 (($) 18 T CONST)) (-3444 (((-112) $ $) 22)) (-4372 (((-767) $) 47 (|has| $ (-6 -4408)))))
+(((-141) (-13 (-1094) (-611 (-1151)) (-426 (-144)) (-611 (-637 (-144))) (-10 -8 (-15 -1415 ($ (-1151))) (-15 -1415 ($ (-637 (-144)))) (-15 -1414 ($) -4367) (-15 -1413 ($) -4367) (-15 -3838 ($) -4367) (-15 -3840 ($) -4367) (-15 -1412 ($) -4367) (-15 -1411 ($) -4367)))) (T -141))
+((-1415 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))) (-1415 (*1 *1 *2) (-12 (-5 *2 (-637 (-144))) (-5 *1 (-141)))) (-1414 (*1 *1) (-5 *1 (-141))) (-1413 (*1 *1) (-5 *1 (-141))) (-3838 (*1 *1) (-5 *1 (-141))) (-3840 (*1 *1) (-5 *1 (-141))) (-1412 (*1 *1) (-5 *1 (-141))) (-1411 (*1 *1) (-5 *1 (-141))))
+(-13 (-1094) (-611 (-1151)) (-426 (-144)) (-611 (-637 (-144))) (-10 -8 (-15 -1415 ($ (-1151))) (-15 -1415 ($ (-637 (-144)))) (-15 -1414 ($) -4367) (-15 -1413 ($) -4367) (-15 -3838 ($) -4367) (-15 -3840 ($) -4367) (-15 -1412 ($) -4367) (-15 -1411 ($) -4367)))
+((-4156 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4154 ((|#1| |#3|) 9)) (-4155 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4154 (|#1| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-987 |#1|) (-372 |#2|)) (T -142))
+((-4156 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-372 *5)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-987 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-372 *4)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -4154 (|#1| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1446 (($ $ $) 8)) (-1444 (($ $) 7)) (-3494 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-2101 (*1 *1 *1 *1) (-4 *1 (-143))) (-2081 (*1 *1 *1) (-4 *1 (-143))) (-1864 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -1864 ($ $ $)) (-15 -2081 ($ $)) (-15 -2101 ($ $ $))))
-((-1677 (((-112) $ $) NIL)) (-4112 (((-112) $) 30)) (-1827 (($ $) 43)) (-4296 (($) 17)) (-3750 (((-767)) 10)) (-1690 (($) 16)) (-3284 (($) 18)) (-4156 (((-767) $) 14)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-4099 (((-112) $) 32)) (-1848 (($ $) 44)) (-3990 (((-917) $) 15)) (-3854 (((-1151) $) 38)) (-2552 (($ (-917)) 13)) (-4133 (((-112) $) 28)) (-1693 (((-1113) $) NIL)) (-4145 (($) 19)) (-2957 (((-112) $) 26)) (-1692 (((-858) $) 21)) (-4285 (($ (-767)) 11) (($ (-1151)) 42)) (-4088 (((-112) $) 36)) (-4122 (((-112) $) 34)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 7)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 8)))
-(((-144) (-13 (-840) (-10 -8 (-15 -4156 ((-767) $)) (-15 -4285 ($ (-767))) (-15 -4285 ($ (-1151))) (-15 -4296 ($)) (-15 -3284 ($)) (-15 -4145 ($)) (-15 -1827 ($ $)) (-15 -1848 ($ $)) (-15 -2957 ((-112) $)) (-15 -4133 ((-112) $)) (-15 -4122 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -4088 ((-112) $))))) (T -144))
-((-4156 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-4285 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-4285 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) (-4296 (*1 *1) (-5 *1 (-144))) (-3284 (*1 *1) (-5 *1 (-144))) (-4145 (*1 *1) (-5 *1 (-144))) (-1827 (*1 *1 *1) (-5 *1 (-144))) (-1848 (*1 *1 *1) (-5 *1 (-144))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-840) (-10 -8 (-15 -4156 ((-767) $)) (-15 -4285 ($ (-767))) (-15 -4285 ($ (-1151))) (-15 -4296 ($)) (-15 -3284 ($)) (-15 -4145 ($)) (-15 -1827 ($ $)) (-15 -1848 ($ $)) (-15 -2957 ((-112) $)) (-15 -4133 ((-112) $)) (-15 -4122 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -4088 ((-112) $))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-2047 (((-3 $ "failed") $) 35)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-1446 (*1 *1 *1 *1) (-4 *1 (-143))) (-1444 (*1 *1 *1) (-4 *1 (-143))) (-3494 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -3494 ($ $ $)) (-15 -1444 ($ $)) (-15 -1446 ($ $ $))))
+((-2953 (((-112) $ $) NIL)) (-1418 (((-112) $) 30)) (-3838 (($ $) 43)) (-1608 (($) 17)) (-3528 (((-767)) 10)) (-3384 (($) 16)) (-2964 (($) 18)) (-1424 (((-767) $) 14)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-1417 (((-112) $) 32)) (-3840 (($ $) 44)) (-2167 (((-915) $) 15)) (-3650 (((-1151) $) 38)) (-2542 (($ (-915)) 13)) (-1420 (((-112) $) 28)) (-3651 (((-1113) $) NIL)) (-1422 (($) 19)) (-1421 (((-112) $) 26)) (-4361 (((-859) $) 21)) (-1423 (($ (-767)) 11) (($ (-1151)) 42)) (-1416 (((-112) $) 36)) (-1419 (((-112) $) 34)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 7)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 8)))
+(((-144) (-13 (-840) (-10 -8 (-15 -1424 ((-767) $)) (-15 -1423 ($ (-767))) (-15 -1423 ($ (-1151))) (-15 -1608 ($)) (-15 -2964 ($)) (-15 -1422 ($)) (-15 -3838 ($ $)) (-15 -3840 ($ $)) (-15 -1421 ((-112) $)) (-15 -1420 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -1418 ((-112) $)) (-15 -1417 ((-112) $)) (-15 -1416 ((-112) $))))) (T -144))
+((-1424 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-1423 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-1423 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) (-1608 (*1 *1) (-5 *1 (-144))) (-2964 (*1 *1) (-5 *1 (-144))) (-1422 (*1 *1) (-5 *1 (-144))) (-3838 (*1 *1 *1) (-5 *1 (-144))) (-3840 (*1 *1 *1) (-5 *1 (-144))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-840) (-10 -8 (-15 -1424 ((-767) $)) (-15 -1423 ($ (-767))) (-15 -1423 ($ (-1151))) (-15 -1608 ($)) (-15 -2964 ($)) (-15 -1422 ($)) (-15 -3838 ($ $)) (-15 -3840 ($ $)) (-15 -1421 ((-112) $)) (-15 -1420 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -1418 ((-112) $)) (-15 -1417 ((-112) $)) (-15 -1416 ((-112) $))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3091 (((-3 $ "failed") $) 35)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-145) (-140)) (T -145))
-((-2047 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1045) (-10 -8 (-15 -2047 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1892 ((|#1| (-684 |#1|) |#1|) 19)))
-(((-146 |#1|) (-10 -7 (-15 -1892 (|#1| (-684 |#1|) |#1|))) (-172)) (T -146))
-((-1892 (*1 *2 *3 *2) (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -1892 (|#1| (-684 |#1|) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-3091 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1045) (-10 -8 (-15 -3091 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2749 ((|#1| (-684 |#1|) |#1|) 19)))
+(((-146 |#1|) (-10 -7 (-15 -2749 (|#1| (-684 |#1|) |#1|))) (-172)) (T -146))
+((-2749 (*1 *2 *3 *2) (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -2749 (|#1| (-684 |#1|) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-147) (-140)) (T -147))
NIL
(-13 (-1045))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1942 (((-2 (|:| -3311 (-767)) (|:| -2310 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 69)) (-1931 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 51)) (-1918 (((-2 (|:| -2310 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1952 ((|#1| |#3| |#3|) 39)) (-1542 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 19)) (-1962 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 48)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1918 ((-2 (|:| -2310 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1931 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1942 ((-2 (|:| -3311 (-767)) (|:| -2310 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1952 (|#1| |#3| |#3|)) (-15 -1542 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1962 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|))) (T -148))
-((-1962 (*1 *2 *3 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-1542 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3)))) (-1952 (*1 *2 *3 *3) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3)))) (-1931 (*1 *2 *3) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -2310 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))))
-(-10 -7 (-15 -1918 ((-2 (|:| -2310 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1931 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1942 ((-2 (|:| -3311 (-767)) (|:| -2310 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1952 (|#1| |#3| |#3|)) (-15 -1542 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1962 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|)))
-((-2066 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 31)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)))) (-545) (-166 |#1|)) (T -149))
-((-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -2066 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))))
-((-2255 (($ (-1 (-112) |#2|) $) 29)) (-3814 (($ $) 36)) (-1459 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1971 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1458 (((-112) (-1 (-112) |#2|) $) 16)) (-1708 (((-767) (-1 (-112) |#2|) $) 14) (((-767) |#2| $) NIL)) (-1471 (((-112) (-1 (-112) |#2|) $) 15)) (-3610 (((-767) $) 11)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -3814 (|#1| |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2255 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|))) (-151 |#2|) (-1208)) (T -150))
-NIL
-(-10 -8 (-15 -3814 (|#1| |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2255 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-2255 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-3814 (($ $) 41 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408))) (($ |#1| $) 42 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 40 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 49)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-151 |#1|) (-140) (-1208)) (T -151))
-((-1706 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3)))) (-1971 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2444 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2444 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-2255 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-2444 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1459 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-3814 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -1706 ($ (-640 |t#1|))) (-15 -1971 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1459 ($ (-1 (-112) |t#1|) $)) (-15 -2255 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1459 ($ |t#1| $)) (-15 -3814 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 85)) (-3401 (((-112) $) NIL)) (-2587 (($ |#2| (-640 (-917))) 55)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3729 (($ (-917)) 47)) (-3526 (((-134)) 23)) (-1692 (((-858) $) 68) (($ (-563)) 45) (($ |#2|) 46)) (-3244 ((|#2| $ (-640 (-917))) 58)) (-3914 (((-767)) 20)) (-2239 (($) 40 T CONST)) (-2253 (($) 43 T CONST)) (-1718 (((-112) $ $) 26)) (-1836 (($ $ |#2|) NIL)) (-1825 (($ $) 34) (($ $ $) 32)) (-1813 (($ $ $) 30)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -3729 ($ (-917))) (-15 -2587 ($ |#2| (-640 (-917)))) (-15 -3244 (|#2| $ (-640 (-917)))) (-15 -3951 ((-3 $ "failed") $)))) (-917) (-363) (-989 |#1| |#2|)) (T -152))
-((-3951 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-3729 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-2587 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-989 *4 *2)))))
-(-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -3729 ($ (-917))) (-15 -2587 ($ |#2| (-640 (-917)))) (-15 -3244 (|#2| $ (-640 (-917)))) (-15 -3951 ((-3 $ "failed") $))))
-((-1988 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225)) 37)) (-1981 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 64) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 65)) (-4208 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225))))) 68) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225)))) 67) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 59) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 60)))
-(((-153) (-10 -7 (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1981 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -1981 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1988 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))))))) (T -153))
-((-4208 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225))))))) (-4208 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225)))))) (-1988 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 *4)))) (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4)))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4)))))) (-1981 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-4208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1981 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -1981 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1988 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -4208 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2529 (((-640 (-1128)) $) 15)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 9)) (-1718 (((-112) $ $) NIL)))
-(((-154) (-13 (-1076) (-10 -8 (-15 -2529 ((-640 (-1128)) $)) (-15 -3363 ((-1128) $))))) (T -154))
-((-2529 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))))
-(-13 (-1076) (-10 -8 (-15 -2529 ((-640 (-1128)) $)) (-15 -3363 ((-1128) $))))
-((-4371 (((-640 (-169 |#2|)) |#1| |#2|) 45)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -4371 ((-640 (-169 |#2|)) |#1| |#2|))) (-1233 (-169 (-563))) (-13 (-363) (-844))) (T -155))
-((-4371 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -4371 ((-640 (-169 |#2|)) |#1| |#2|)))
-((-1677 (((-112) $ $) NIL)) (-2350 (((-1207) $) 12)) (-2339 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-156) (-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1207) $))))) (T -156))
-((-2339 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156)))))
-(-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1207) $))))
-((-1677 (((-112) $ $) NIL)) (-2007 (($) 15)) (-1831 (($) 14)) (-1997 (((-917)) 22)) (-3854 (((-1151) $) NIL)) (-2830 (((-563) $) 19)) (-1693 (((-1113) $) NIL)) (-1820 (($) 16)) (-2817 (($ (-563)) 23)) (-1692 (((-858) $) 29)) (-1808 (($) 17)) (-1718 (((-112) $ $) 13)) (-1813 (($ $ $) 11)) (* (($ (-917) $) 21) (($ (-225) $) 8)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -1813 ($ $ $)) (-15 -1831 ($)) (-15 -2007 ($)) (-15 -1820 ($)) (-15 -1808 ($)) (-15 -2830 ((-563) $)) (-15 -1997 ((-917))) (-15 -2817 ($ (-563)))))) (T -157))
-((-1813 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-1831 (*1 *1) (-5 *1 (-157))) (-2007 (*1 *1) (-5 *1 (-157))) (-1820 (*1 *1) (-5 *1 (-157))) (-1808 (*1 *1) (-5 *1 (-157))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) (-1997 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -1813 ($ $ $)) (-15 -1831 ($)) (-15 -2007 ($)) (-15 -1820 ($)) (-15 -1808 ($)) (-15 -2830 ((-563) $)) (-15 -1997 ((-917))) (-15 -2817 ($ (-563)))))
-((-2132 ((|#2| |#2| (-1085 |#2|)) 87) ((|#2| |#2| (-1169)) 67)) (-3846 ((|#2| |#2| (-1085 |#2|)) 86) ((|#2| |#2| (-1169)) 66)) (-2101 ((|#2| |#2| |#2|) 25)) (-2559 (((-114) (-114)) 98)) (-2073 ((|#2| (-640 |#2|)) 117)) (-2045 ((|#2| (-640 |#2|)) 135)) (-2036 ((|#2| (-640 |#2|)) 125)) (-2015 ((|#2| |#2|) 123)) (-2052 ((|#2| (-640 |#2|)) 111)) (-2063 ((|#2| (-640 |#2|)) 112)) (-2025 ((|#2| (-640 |#2|)) 133)) (-2142 ((|#2| |#2| (-1169)) 55) ((|#2| |#2|) 54)) (-2081 ((|#2| |#2|) 21)) (-1864 ((|#2| |#2| |#2|) 24)) (-2512 (((-112) (-114)) 48)) (** ((|#2| |#2| |#2|) 39)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1864 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -2142 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-1169))) (-15 -2132 (|#2| |#2| (-1169))) (-15 -2132 (|#2| |#2| (-1085 |#2|))) (-15 -3846 (|#2| |#2| (-1169))) (-15 -3846 (|#2| |#2| (-1085 |#2|))) (-15 -2015 (|#2| |#2|)) (-15 -2025 (|#2| (-640 |#2|))) (-15 -2036 (|#2| (-640 |#2|))) (-15 -2045 (|#2| (-640 |#2|))) (-15 -2052 (|#2| (-640 |#2|))) (-15 -2063 (|#2| (-640 |#2|))) (-15 -2073 (|#2| (-640 |#2|)))) (-13 (-846) (-555)) (-430 |#1|)) (T -158))
-((-2073 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3846 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-3846 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2132 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-2132 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2142 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2142 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2081 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2101 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1864 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1864 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -2142 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-1169))) (-15 -2132 (|#2| |#2| (-1169))) (-15 -2132 (|#2| |#2| (-1085 |#2|))) (-15 -3846 (|#2| |#2| (-1169))) (-15 -3846 (|#2| |#2| (-1085 |#2|))) (-15 -2015 (|#2| |#2|)) (-15 -2025 (|#2| (-640 |#2|))) (-15 -2036 (|#2| (-640 |#2|))) (-15 -2045 (|#2| (-640 |#2|))) (-15 -2052 (|#2| (-640 |#2|))) (-15 -2063 (|#2| (-640 |#2|))) (-15 -2073 (|#2| (-640 |#2|))))
-((-2120 ((|#1| |#1| |#1|) 53)) (-2111 ((|#1| |#1| |#1|) 50)) (-2101 ((|#1| |#1| |#1|) 44)) (-3358 ((|#1| |#1|) 35)) (-2090 ((|#1| |#1| (-640 |#1|)) 43)) (-2081 ((|#1| |#1|) 37)) (-1864 ((|#1| |#1| |#1|) 40)))
-(((-159 |#1|) (-10 -7 (-15 -1864 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2090 (|#1| |#1| (-640 |#1|))) (-15 -3358 (|#1| |#1|)) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#1| |#1|)) (-15 -2120 (|#1| |#1| |#1|))) (-545)) (T -159))
-((-2120 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2111 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2101 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3358 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2090 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-2081 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1864 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(-10 -7 (-15 -1864 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2090 (|#1| |#1| (-640 |#1|))) (-15 -3358 (|#1| |#1|)) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#1| |#1|)) (-15 -2120 (|#1| |#1| |#1|)))
-((-2132 (($ $ (-1169)) 12) (($ $ (-1085 $)) 11)) (-3846 (($ $ (-1169)) 10) (($ $ (-1085 $)) 9)) (-2101 (($ $ $) 8)) (-2142 (($ $) 14) (($ $ (-1169)) 13)) (-2081 (($ $) 7)) (-1864 (($ $ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-1427 (((-2 (|:| -2543 (-767)) (|:| -4369 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 69)) (-1426 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 51)) (-1425 (((-2 (|:| -4369 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1428 ((|#1| |#3| |#3|) 39)) (-4182 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 19)) (-1429 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 48)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1425 ((-2 (|:| -4369 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1426 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1427 ((-2 (|:| -2543 (-767)) (|:| -4369 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1428 (|#1| |#3| |#3|)) (-15 -4182 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1429 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1212) (-1232 |#1|) (-1232 (-407 |#2|))) (T -148))
+((-1429 (*1 *2 *3 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1232 (-407 *5))))) (-4182 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1232 *3)))) (-1428 (*1 *2 *3 *3) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1232 (-407 *4))))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1232 *3)))) (-1426 (*1 *2 *3) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1232 (-407 *5))))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -4369 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1232 (-407 *5))))))
+(-10 -7 (-15 -1425 ((-2 (|:| -4369 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1426 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1427 ((-2 (|:| -2543 (-767)) (|:| -4369 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1428 (|#1| |#3| |#3|)) (-15 -4182 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1429 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|)))
+((-3093 (((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|)) 31)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -3093 ((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|)))) (-545) (-166 |#1|)) (T -149))
+((-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 *5))) (-5 *3 (-1163 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -3093 ((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|))))
+((-4125 (($ (-1 (-112) |#2|) $) 29)) (-1430 (($ $) 36)) (-3817 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4257 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1431 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2105 (((-112) (-1 (-112) |#2|) $) 16)) (-2104 (((-767) (-1 (-112) |#2|) $) 14) (((-767) |#2| $) NIL)) (-2106 (((-112) (-1 (-112) |#2|) $) 15)) (-4372 (((-767) $) 11)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -1430 (|#1| |#1|)) (-15 -3817 (|#1| |#2| |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4125 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3817 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|))) (-151 |#2|) (-1207)) (T -150))
+NIL
+(-10 -8 (-15 -1430 (|#1| |#1|)) (-15 -3817 (|#1| |#2| |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4125 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3817 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4125 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-1430 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 40 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 49)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-151 |#1|) (-140) (-1207)) (T -151))
+((-3936 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-151 *3)))) (-1431 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1207)))) (-4257 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207)))) (-4257 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1207)))) (-4125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1207)))) (-4257 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207)))) (-3817 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207)) (-4 *2 (-1094)))) (-1430 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207)) (-4 *2 (-1094)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -3936 ($ (-637 |t#1|))) (-15 -1431 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -4257 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4257 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3817 ($ (-1 (-112) |t#1|) $)) (-15 -4125 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -4257 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3817 ($ |t#1| $)) (-15 -1430 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) 85)) (-2552 (((-112) $) NIL)) (-3283 (($ |#2| (-637 (-915))) 55)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1432 (($ (-915)) 47)) (-4326 (((-134)) 23)) (-4361 (((-859) $) 68) (($ (-546)) 45) (($ |#2|) 46)) (-4092 ((|#2| $ (-637 (-915))) 58)) (-3518 (((-767)) 20)) (-3047 (($) 40 T CONST)) (-3053 (($) 43 T CONST)) (-3444 (((-112) $ $) 26)) (-4364 (($ $ |#2|) NIL)) (-4252 (($ $) 34) (($ $ $) 32)) (-4254 (($ $ $) 30)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -1432 ($ (-915))) (-15 -3283 ($ |#2| (-637 (-915)))) (-15 -4092 (|#2| $ (-637 (-915)))) (-15 -3873 ((-3 $ "failed") $)))) (-915) (-363) (-989 |#1| |#2|)) (T -152))
+((-3873 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-915)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-637 (-915))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-915)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-637 (-915))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-915)) (-14 *5 (-989 *4 *2)))))
+(-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -1432 ($ (-915))) (-15 -3283 ($ |#2| (-637 (-915)))) (-15 -4092 (|#2| $ (-637 (-915)))) (-15 -3873 ((-3 $ "failed") $))))
+((-1434 (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225)))) (-225) (-225) (-225) (-225)) 37)) (-1433 (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546))) 64) (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921)) 65)) (-1600 (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225))))) 68) (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-939 (-225)))) 67) (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546))) 59) (((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921)) 60)))
+(((-153) (-10 -7 (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546)))) (-15 -1433 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921))) (-15 -1433 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546)))) (-15 -1434 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-939 (-225))))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225)))))))) (T -153))
+((-1600 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)) (-5 *3 (-637 (-637 (-939 (-225))))))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)) (-5 *3 (-637 (-939 (-225)))))) (-1434 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 *4)))) (|:| |xValues| (-1082 *4)) (|:| |yValues| (-1082 *4)))) (-5 *1 (-153)) (-5 *3 (-637 (-637 (-939 *4)))))) (-1433 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-407 (-546))) (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-407 (-546))) (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546)))) (-15 -1433 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921))) (-15 -1433 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-921) (-407 (-546)) (-407 (-546)))) (-15 -1434 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-939 (-225))))) (-15 -1600 ((-2 (|:| |brans| (-637 (-637 (-939 (-225))))) (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))) (-637 (-637 (-939 (-225)))))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3589 (((-637 (-1128)) $) 15)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 9)) (-3444 (((-112) $ $) NIL)))
+(((-154) (-13 (-1076) (-10 -8 (-15 -3589 ((-637 (-1128)) $)) (-15 -3641 ((-1128) $))))) (T -154))
+((-3589 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-154)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))))
+(-13 (-1076) (-10 -8 (-15 -3589 ((-637 (-1128)) $)) (-15 -3641 ((-1128) $))))
+((-1484 (((-637 (-168 |#2|)) |#1| |#2|) 45)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -1484 ((-637 (-168 |#2|)) |#1| |#2|))) (-1232 (-168 (-546))) (-13 (-363) (-844))) (T -155))
+((-1484 (*1 *2 *3 *4) (-12 (-5 *2 (-637 (-168 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1232 (-168 (-546)))) (-4 *4 (-13 (-363) (-844))))))
+(-10 -7 (-15 -1484 ((-637 (-168 |#2|)) |#1| |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3934 (((-1208) $) 12)) (-3935 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-156) (-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1208) $))))) (T -156))
+((-3935 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))))
+(-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1208) $))))
+((-2953 (((-112) $ $) NIL)) (-1436 (($) 15)) (-3491 (($) 14)) (-1435 (((-915)) 22)) (-3650 (((-1151) $) NIL)) (-3346 (((-546) $) 19)) (-3651 (((-1113) $) NIL)) (-3490 (($) 16)) (-3345 (($ (-546)) 23)) (-4361 (((-859) $) 29)) (-3489 (($) 17)) (-3444 (((-112) $ $) 13)) (-4254 (($ $ $) 11)) (* (($ (-915) $) 21) (($ (-225) $) 8)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-915) $)) (-15 * ($ (-225) $)) (-15 -4254 ($ $ $)) (-15 -3491 ($)) (-15 -1436 ($)) (-15 -3490 ($)) (-15 -3489 ($)) (-15 -3346 ((-546) $)) (-15 -1435 ((-915))) (-15 -3345 ($ (-546)))))) (T -157))
+((-4254 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3491 (*1 *1) (-5 *1 (-157))) (-1436 (*1 *1) (-5 *1 (-157))) (-3490 (*1 *1) (-5 *1 (-157))) (-3489 (*1 *1) (-5 *1 (-157))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-157)))) (-1435 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-157)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-915) $)) (-15 * ($ (-225) $)) (-15 -4254 ($ $ $)) (-15 -3491 ($)) (-15 -1436 ($)) (-15 -3490 ($)) (-15 -3489 ($)) (-15 -3346 ((-546) $)) (-15 -1435 ((-915))) (-15 -3345 ($ (-546)))))
+((-1449 ((|#2| |#2| (-1085 |#2|)) 87) ((|#2| |#2| (-1169)) 67)) (-4359 ((|#2| |#2| (-1085 |#2|)) 86) ((|#2| |#2| (-1169)) 66)) (-1446 ((|#2| |#2| |#2|) 25)) (-3437 (((-113) (-113)) 98)) (-1443 ((|#2| (-637 |#2|)) 117)) (-1440 ((|#2| (-637 |#2|)) 135)) (-1439 ((|#2| (-637 |#2|)) 125)) (-1437 ((|#2| |#2|) 123)) (-1441 ((|#2| (-637 |#2|)) 111)) (-1442 ((|#2| (-637 |#2|)) 112)) (-1438 ((|#2| (-637 |#2|)) 133)) (-1450 ((|#2| |#2| (-1169)) 55) ((|#2| |#2|) 54)) (-1444 ((|#2| |#2|) 21)) (-3494 ((|#2| |#2| |#2|) 24)) (-2384 (((-112) (-113)) 48)) (** ((|#2| |#2| |#2|) 39)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3494 (|#2| |#2| |#2|)) (-15 -1446 (|#2| |#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1169))) (-15 -1449 (|#2| |#2| (-1169))) (-15 -1449 (|#2| |#2| (-1085 |#2|))) (-15 -4359 (|#2| |#2| (-1169))) (-15 -4359 (|#2| |#2| (-1085 |#2|))) (-15 -1437 (|#2| |#2|)) (-15 -1438 (|#2| (-637 |#2|))) (-15 -1439 (|#2| (-637 |#2|))) (-15 -1440 (|#2| (-637 |#2|))) (-15 -1441 (|#2| (-637 |#2|))) (-15 -1442 (|#2| (-637 |#2|))) (-15 -1443 (|#2| (-637 |#2|)))) (-13 (-846) (-556)) (-421 |#1|)) (T -158))
+((-1443 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-556))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (-4359 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)))) (-4359 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-421 *4)))) (-1449 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)))) (-1449 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-421 *4)))) (-1450 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-421 *4)))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (-1444 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (-1446 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (-3494 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-421 *3)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-421 *4)))))
+(-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3494 (|#2| |#2| |#2|)) (-15 -1446 (|#2| |#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1169))) (-15 -1449 (|#2| |#2| (-1169))) (-15 -1449 (|#2| |#2| (-1085 |#2|))) (-15 -4359 (|#2| |#2| (-1169))) (-15 -4359 (|#2| |#2| (-1085 |#2|))) (-15 -1437 (|#2| |#2|)) (-15 -1438 (|#2| (-637 |#2|))) (-15 -1439 (|#2| (-637 |#2|))) (-15 -1440 (|#2| (-637 |#2|))) (-15 -1441 (|#2| (-637 |#2|))) (-15 -1442 (|#2| (-637 |#2|))) (-15 -1443 (|#2| (-637 |#2|))))
+((-1448 ((|#1| |#1| |#1|) 53)) (-1447 ((|#1| |#1| |#1|) 50)) (-1446 ((|#1| |#1| |#1|) 44)) (-3280 ((|#1| |#1|) 35)) (-1445 ((|#1| |#1| (-637 |#1|)) 43)) (-1444 ((|#1| |#1|) 37)) (-3494 ((|#1| |#1| |#1|) 40)))
+(((-159 |#1|) (-10 -7 (-15 -3494 (|#1| |#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-637 |#1|))) (-15 -3280 (|#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|))) (-545)) (T -159))
+((-1448 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1447 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1446 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3280 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1445 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-1444 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3494 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(-10 -7 (-15 -3494 (|#1| |#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-637 |#1|))) (-15 -3280 (|#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1447 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|)))
+((-1449 (($ $ (-1169)) 12) (($ $ (-1085 $)) 11)) (-4359 (($ $ (-1169)) 10) (($ $ (-1085 $)) 9)) (-1446 (($ $ $) 8)) (-1450 (($ $) 14) (($ $ (-1169)) 13)) (-1444 (($ $) 7)) (-3494 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-2142 (*1 *1 *1) (-4 *1 (-160))) (-2142 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-2132 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) (-3846 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-3846 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -2142 ($ $)) (-15 -2142 ($ $ (-1169))) (-15 -2132 ($ $ (-1169))) (-15 -2132 ($ $ (-1085 $))) (-15 -3846 ($ $ (-1169))) (-15 -3846 ($ $ (-1085 $)))))
+((-1450 (*1 *1 *1) (-4 *1 (-160))) (-1450 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-1449 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) (-4359 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-4359 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -1450 ($ $)) (-15 -1450 ($ $ (-1169))) (-15 -1449 ($ $ (-1169))) (-15 -1449 ($ $ (-1085 $))) (-15 -4359 ($ $ (-1169))) (-15 -4359 ($ $ (-1085 $)))))
(((-143) . T))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-640 (-1128)) $) 9)) (-1718 (((-112) $ $) NIL)))
-(((-161) (-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $))))) (T -161))
-((-3363 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161)))))
-(-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $))))
-((-1677 (((-112) $ $) NIL)) (-2152 (($ (-563)) 13) (($ $ $) 14)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 17)) (-1718 (((-112) $ $) 9)))
-(((-162) (-13 (-1093) (-10 -8 (-15 -2152 ($ (-563))) (-15 -2152 ($ $ $))))) (T -162))
-((-2152 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162)))) (-2152 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1093) (-10 -8 (-15 -2152 ($ (-563))) (-15 -2152 ($ $ $))))
-((-2559 (((-114) (-1169)) 95)))
-(((-163) (-10 -7 (-15 -2559 ((-114) (-1169))))) (T -163))
-((-2559 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -2559 ((-114) (-1169))))
-((-2706 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2706 (|#3| |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|)) (T -164))
-((-2706 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1233 *4)))))
-(-10 -7 (-15 -2706 (|#3| |#3|)))
-((-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 215)) (-1731 ((|#2| $) 95)) (-1770 (($ $) 245)) (-1618 (($ $) 239)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 39)) (-1747 (($ $) 243)) (-1596 (($ $) 237)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 137)) (-3094 (($ $ $) 220)) (-1476 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 153) (((-684 |#2|) (-684 $)) 147)) (-2444 (($ (-1165 |#2|)) 118) (((-3 $ "failed") (-407 (-1165 |#2|))) NIL)) (-3951 (((-3 $ "failed") $) 207)) (-2327 (((-3 (-407 (-563)) "failed") $) 197)) (-2317 (((-112) $) 192)) (-2306 (((-407 (-563)) $) 195)) (-2521 (((-917)) 88)) (-3054 (($ $ $) 222)) (-2164 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2179 (($) 234)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 184) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 189)) (-3975 ((|#2| $) 93)) (-4035 (((-1165 |#2|) $) 120)) (-2238 (($ (-1 |#2| |#2|) $) 101)) (-4372 (($ $) 236)) (-2433 (((-1165 |#2|) $) 119)) (-2687 (($ $) 200)) (-2178 (($) 96)) (-2075 (((-418 (-1165 $)) (-1165 $)) 87)) (-2083 (((-418 (-1165 $)) (-1165 $)) 56)) (-3012 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-3372 (($ $) 235)) (-1993 (((-767) $) 217)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 227)) (-1623 ((|#2| (-1257 $)) NIL) ((|#2|) 90)) (-4203 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3402 (((-1165 |#2|)) 113)) (-1758 (($ $) 244)) (-1607 (($ $) 238)) (-3759 (((-1257 |#2|) $ (-1257 $)) 127) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 109) (((-684 |#2|) (-1257 $)) NIL)) (-2219 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) (((-888 (-563)) $) 175) (((-888 (-379)) $) 179) (((-169 (-379)) $) 165) (((-169 (-225)) $) 160) (((-536) $) 171)) (-2150 (($ $) 97)) (-1692 (((-858) $) 136) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-407 (-563))) NIL) (($ $) NIL)) (-1892 (((-1165 |#2|) $) 23)) (-3914 (((-767)) 99)) (-1839 (($ $) 248)) (-1694 (($ $) 242)) (-1816 (($ $) 246)) (-1666 (($ $) 240)) (-2326 ((|#2| $) 231)) (-1828 (($ $) 247)) (-1679 (($ $) 241)) (-1462 (($ $) 155)) (-1718 (((-112) $ $) 103)) (-1743 (((-112) $ $) 191)) (-1825 (($ $) 105) (($ $ $) NIL)) (-1813 (($ $ $) 104)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) 265) (($ $ $) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -1692 (|#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1993 ((-767) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-169 (-225)) |#1|)) (-15 -2219 ((-169 (-379)) |#1|)) (-15 -1618 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2179 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -2164 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2326 (|#2| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2150 (|#1| |#1|)) (-15 -2178 (|#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2444 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2433 ((-1165 |#2|) |#1|)) (-15 -2219 (|#1| (-1165 |#2|))) (-15 -2444 (|#1| (-1165 |#2|))) (-15 -3402 ((-1165 |#2|))) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 ((-1165 |#2|) |#1|)) (-15 -1623 (|#2|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -4035 ((-1165 |#2|) |#1|)) (-15 -1892 ((-1165 |#2|) |#1|)) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3975 (|#2| |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -2521 ((-917))) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
-((-3914 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2521 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1623 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3402 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -1692 (|#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1993 ((-767) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-169 (-225)) |#1|)) (-15 -2219 ((-169 (-379)) |#1|)) (-15 -1618 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2179 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -2164 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2326 (|#2| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2150 (|#1| |#1|)) (-15 -2178 (|#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2444 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2433 ((-1165 |#2|) |#1|)) (-15 -2219 (|#1| (-1165 |#2|))) (-15 -2444 (|#1| (-1165 |#2|))) (-15 -3402 ((-1165 |#2|))) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 ((-1165 |#2|) |#1|)) (-15 -1623 (|#2|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -4035 ((-1165 |#2|) |#1|)) (-15 -1892 ((-1165 |#2|) |#1|)) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3975 (|#2| |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -2521 ((-917))) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3231 (($ $) 94 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3211 (((-112) $) 96 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3340 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1731 ((|#1| $) 53)) (-1770 (($ $) 227 (|has| |#1| (-1193)))) (-1618 (($ $) 210 (|has| |#1| (-1193)))) (-1597 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1798 (($ $) 113 (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2802 (((-418 $) $) 114 (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2185 (($ $) 240 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2003 (((-112) $ $) 104 (|has| |#1| (-307)))) (-3750 (((-767)) 87 (|has| |#1| (-368)))) (-1747 (($ $) 226 (|has| |#1| (-1193)))) (-1596 (($ $) 211 (|has| |#1| (-1193)))) (-1793 (($ $) 225 (|has| |#1| (-1193)))) (-1642 (($ $) 212 (|has| |#1| (-1193)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2057 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-3458 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3094 (($ $ $) 108 (|has| |#1| (-307)))) (-3330 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-1476 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2444 (($ (-1165 |#1|)) 157) (((-3 $ "failed") (-407 (-1165 |#1|))) 154 (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-2488 ((|#1| $) 252)) (-2327 (((-3 (-407 (-563)) "failed") $) 245 (|has| |#1| (-545)))) (-2317 (((-112) $) 247 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 246 (|has| |#1| (-545)))) (-2521 (((-917)) 55)) (-1690 (($) 90 (|has| |#1| (-368)))) (-3054 (($ $ $) 107 (|has| |#1| (-307)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 102 (|has| |#1| (-307)))) (-4036 (($) 148 (|has| |#1| (-349)))) (-1656 (((-112) $) 149 (|has| |#1| (-349)))) (-3188 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-2560 (((-112) $) 115 (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2164 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2179 (($) 237 (|has| |#1| (-1193)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 260 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 259 (|has| |#1| (-882 (-379))))) (-1775 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 239 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3975 ((|#1| $) 52)) (-1983 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-307)))) (-4035 (((-1165 |#1|) $) 45 (|has| |#1| (-363)))) (-3088 (($ $ $) 206 (|has| |#1| (-846)))) (-1776 (($ $ $) 205 (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) 261)) (-3990 (((-917) $) 89 (|has| |#1| (-368)))) (-4372 (($ $) 234 (|has| |#1| (-1193)))) (-2433 (((-1165 |#1|) $) 155)) (-3517 (($ (-640 $)) 100 (-4034 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 99 (-4034 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 116 (|has| |#1| (-363)))) (-2522 (($) 142 (|has| |#1| (-349)) CONST)) (-2552 (($ (-917)) 88 (|has| |#1| (-368)))) (-2178 (($) 256)) (-2498 ((|#1| $) 253)) (-1693 (((-1113) $) 10)) (-4334 (($) 159)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 101 (-4034 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3551 (($ (-640 $)) 98 (-4034 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 97 (-4034 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 145 (|has| |#1| (-349)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2083 (((-418 (-1165 $)) (-1165 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2173 (((-418 $) $) 112 (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 109 (|has| |#1| (-307)))) (-3012 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 92 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-307)))) (-3372 (($ $) 235 (|has| |#1| (-1193)))) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 263 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 262 (|has| |#1| (-514 (-1169) |#1|)))) (-1993 (((-767) $) 105 (|has| |#1| (-307)))) (-2308 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 106 (|has| |#1| (-307)))) (-1623 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-3196 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-4203 (($ $ (-1 |#1| |#1|) (-767)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-640 (-1169)) (-640 (-767))) 129 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 130 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 131 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 132 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 134 (-4034 (-2188 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4034 (-2188 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2188 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-3388 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3402 (((-1165 |#1|)) 158)) (-1805 (($ $) 224 (|has| |#1| (-1193)))) (-1655 (($ $) 213 (|has| |#1| (-1193)))) (-1586 (($) 147 (|has| |#1| (-349)))) (-1783 (($ $) 223 (|has| |#1| (-1193)))) (-1629 (($ $) 214 (|has| |#1| (-1193)))) (-1758 (($ $) 222 (|has| |#1| (-1193)))) (-1607 (($ $) 215 (|has| |#1| (-1193)))) (-3759 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2219 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) (((-1165 |#1|) $) 170) (($ (-1165 |#1|)) 156) (((-888 (-563)) $) 258 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 257 (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1018))) (((-169 (-225)) $) 208 (|has| |#1| (-1018))) (((-536) $) 207 (|has| |#1| (-611 (-536))))) (-2150 (($ $) 255)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 144 (-4034 (-2188 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-349))))) (-1413 (($ |#1| |#1|) 254)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 86 (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) 91 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2047 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4034 (-2188 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-145))))) (-1892 (((-1165 |#1|) $) 46)) (-3914 (((-767)) 28)) (-4013 (((-1257 $)) 68)) (-1839 (($ $) 233 (|has| |#1| (-1193)))) (-1694 (($ $) 221 (|has| |#1| (-1193)))) (-3223 (((-112) $ $) 95 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1816 (($ $) 232 (|has| |#1| (-1193)))) (-1666 (($ $) 220 (|has| |#1| (-1193)))) (-1861 (($ $) 231 (|has| |#1| (-1193)))) (-1721 (($ $) 219 (|has| |#1| (-1193)))) (-2326 ((|#1| $) 249 (|has| |#1| (-1193)))) (-1311 (($ $) 230 (|has| |#1| (-1193)))) (-1734 (($ $) 218 (|has| |#1| (-1193)))) (-1850 (($ $) 229 (|has| |#1| (-1193)))) (-1709 (($ $) 217 (|has| |#1| (-1193)))) (-1828 (($ $) 228 (|has| |#1| (-1193)))) (-1679 (($ $) 216 (|has| |#1| (-1193)))) (-1462 (($ $) 250 (|has| |#1| (-1054)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1 |#1| |#1|) (-767)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-640 (-1169)) (-640 (-767))) 125 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 126 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 127 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 128 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 133 (-4034 (-2188 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4034 (-2188 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2188 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1779 (((-112) $ $) 203 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 202 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 204 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 201 (|has| |#1| (-846)))) (-1836 (($ $ $) 120 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-407 (-563))) 238 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) 236 (|has| |#1| (-1193))) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363)))))
+((-2953 (((-112) $ $) NIL)) (-1451 (($ (-546)) 13) (($ $ $) 14)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 17)) (-3444 (((-112) $ $) 9)))
+(((-161) (-13 (-1094) (-10 -8 (-15 -1451 ($ (-546))) (-15 -1451 ($ $ $))))) (T -161))
+((-1451 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-161)))) (-1451 (*1 *1 *1 *1) (-5 *1 (-161))))
+(-13 (-1094) (-10 -8 (-15 -1451 ($ (-546))) (-15 -1451 ($ $ $))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-637 (-1128)) $) 9)) (-3444 (((-112) $ $) NIL)))
+(((-162) (-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $))))) (T -162))
+((-3641 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-162)))))
+(-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $))))
+((-3437 (((-113) (-1169)) 95)))
+(((-163) (-10 -7 (-15 -3437 ((-113) (-1169))))) (T -163))
+((-3437 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-113)) (-5 *1 (-163)))))
+(-10 -7 (-15 -3437 ((-113) (-1169))))
+((-1690 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1690 (|#3| |#3|))) (-1045) (-1232 |#1|) (-1232 |#2|)) (T -164))
+((-1690 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1232 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1232 *4)))))
+(-10 -7 (-15 -1690 (|#3| |#3|)))
+((-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 215)) (-3741 ((|#2| $) 95)) (-3898 (($ $) 245)) (-4054 (($ $) 239)) (-3093 (((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $)) 39)) (-3896 (($ $) 243)) (-4053 (($ $) 237)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#2| #1#) $) 139)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL) ((|#2| $) 137)) (-2949 (($ $ $) 220)) (-2408 (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 153) (((-684 |#2|) (-684 $)) 147)) (-4257 (($ (-1163 |#2|)) 118) (((-3 $ "failed") (-407 (-1163 |#2|))) NIL)) (-3873 (((-3 $ "failed") $) 207)) (-3414 (((-3 (-407 (-546)) "failed") $) 197)) (-3413 (((-112) $) 192)) (-3412 (((-407 (-546)) $) 195)) (-3501 (((-915)) 88)) (-2948 (($ $ $) 222)) (-1452 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-4042 (($) 234)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 184) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 189)) (-3524 ((|#2| $) 93)) (-2171 (((-1163 |#2|) $) 120)) (-4373 (($ (-1 |#2| |#2|) $) 101)) (-4357 (($ $) 236)) (-3470 (((-1163 |#2|) $) 119)) (-2785 (($ $) 200)) (-1454 (($) 96)) (-3094 (((-405 (-1163 $)) (-1163 $)) 87)) (-3095 (((-405 (-1163 $)) (-1163 $)) 56)) (-3872 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-4358 (($ $) 235)) (-1739 (((-767) $) 217)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 227)) (-4172 ((|#2| (-1256 $)) NIL) ((|#2|) 90)) (-4225 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3593 (((-1163 |#2|)) 113)) (-3897 (($ $) 244)) (-4049 (($ $) 238)) (-3632 (((-1256 |#2|) $ (-1256 $)) 127) (((-684 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 109) (((-684 |#2|) (-1256 $)) NIL)) (-4385 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) (((-1163 |#2|) $) NIL) (($ (-1163 |#2|)) NIL) (((-886 (-546)) $) 175) (((-886 (-378)) $) 179) (((-168 (-378)) $) 165) (((-168 (-225)) $) 160) (((-535) $) 171)) (-3399 (($ $) 97)) (-4361 (((-859) $) 136) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-407 (-546))) NIL) (($ $) NIL)) (-2749 (((-1163 |#2|) $) 23)) (-3518 (((-767)) 99)) (-3904 (($ $) 248)) (-3892 (($ $) 242)) (-3902 (($ $) 246)) (-3890 (($ $) 240)) (-2364 ((|#2| $) 231)) (-3903 (($ $) 247)) (-3891 (($ $) 241)) (-3794 (($ $) 155)) (-3444 (((-112) $ $) 103)) (-3074 (((-112) $ $) 191)) (-4252 (($ $) 105) (($ $ $) NIL)) (-4254 (($ $ $) 104)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-546))) 265) (($ $ $) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4361 (|#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -1739 ((-767) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-168 (-225)) |#1|)) (-15 -4385 ((-168 (-378)) |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4042 (|#1|)) (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -1452 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2364 (|#2| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3399 (|#1| |#1|)) (-15 -1454 (|#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4257 ((-3 |#1| "failed") (-407 (-1163 |#2|)))) (-15 -3470 ((-1163 |#2|) |#1|)) (-15 -4385 (|#1| (-1163 |#2|))) (-15 -4257 (|#1| (-1163 |#2|))) (-15 -3593 ((-1163 |#2|))) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 ((-1163 |#2|) |#1|)) (-15 -4172 (|#2|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -2171 ((-1163 |#2|) |#1|)) (-15 -2749 ((-1163 |#2|) |#1|)) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -3524 (|#2| |#1|)) (-15 -3741 (|#2| |#1|)) (-15 -3501 ((-915))) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
+((-3518 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3501 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-915)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4172 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3593 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1163 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4361 (|#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -1739 ((-767) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-168 (-225)) |#1|)) (-15 -4385 ((-168 (-378)) |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4042 (|#1|)) (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -1452 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2364 (|#2| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3399 (|#1| |#1|)) (-15 -1454 (|#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4257 ((-3 |#1| "failed") (-407 (-1163 |#2|)))) (-15 -3470 ((-1163 |#2|) |#1|)) (-15 -4385 (|#1| (-1163 |#2|))) (-15 -4257 (|#1| (-1163 |#2|))) (-15 -3593 ((-1163 |#2|))) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 ((-1163 |#2|) |#1|)) (-15 -4172 (|#2|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -2171 ((-1163 |#2|) |#1|)) (-15 -2749 ((-1163 |#2|) |#1|)) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -3524 (|#2| |#1|)) (-15 -3741 (|#2| |#1|)) (-15 -3501 ((-915))) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2220 (($ $) 94 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2218 (((-112) $) 96 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1936 (((-684 |#1|) (-1256 $)) 47) (((-684 |#1|)) 62)) (-3741 ((|#1| $) 53)) (-3898 (($ $) 227 (|has| |#1| (-1193)))) (-4054 (($ $) 210 (|has| |#1| (-1193)))) (-1826 (((-1180 (-915) (-767)) (-546)) 146 (|has| |#1| (-350)))) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4189 (($ $) 113 (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4384 (((-405 $) $) 114 (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3427 (($ $) 240 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3093 (((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1740 (((-112) $ $) 104 (|has| |#1| (-307)))) (-3528 (((-767)) 87 (|has| |#1| (-368)))) (-3896 (($ $) 226 (|has| |#1| (-1193)))) (-4053 (($ $) 211 (|has| |#1| (-1193)))) (-3900 (($ $) 225 (|has| |#1| (-1193)))) (-4052 (($ $) 212 (|has| |#1| (-1193)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 169 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 167 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 164)) (-3564 (((-546) $) 168 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 166 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 165)) (-1946 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-350)))) (-2949 (($ $ $) 108 (|has| |#1| (-307)))) (-1935 (((-684 |#1|) $ (-1256 $)) 54) (((-684 |#1|) $) 60)) (-2408 (((-684 (-546)) (-684 $)) 163 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 162 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-4257 (($ (-1163 |#1|)) 157) (((-3 $ "failed") (-407 (-1163 |#1|))) 154 (|has| |#1| (-363)))) (-3873 (((-3 $ "failed") $) 33)) (-4058 ((|#1| $) 252)) (-3414 (((-3 (-407 (-546)) "failed") $) 245 (|has| |#1| (-545)))) (-3413 (((-112) $) 247 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 246 (|has| |#1| (-545)))) (-3501 (((-915)) 55)) (-3384 (($) 90 (|has| |#1| (-368)))) (-2948 (($ $ $) 107 (|has| |#1| (-307)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 102 (|has| |#1| (-307)))) (-3222 (($) 148 (|has| |#1| (-350)))) (-1831 (((-112) $) 149 (|has| |#1| (-350)))) (-1921 (($ $ (-767)) 140 (|has| |#1| (-350))) (($ $) 139 (|has| |#1| (-350)))) (-4138 (((-112) $) 115 (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1452 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-4042 (($) 237 (|has| |#1| (-1193)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 260 (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 259 (|has| |#1| (-882 (-378))))) (-4186 (((-915) $) 151 (|has| |#1| (-350))) (((-828 (-915)) $) 137 (|has| |#1| (-350)))) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 239 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3524 ((|#1| $) 52)) (-3855 (((-3 $ "failed") $) 141 (|has| |#1| (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 111 (|has| |#1| (-307)))) (-2171 (((-1163 |#1|) $) 45 (|has| |#1| (-363)))) (-2919 (($ $ $) 206 (|has| |#1| (-846)))) (-3249 (($ $ $) 205 (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) 261)) (-2167 (((-915) $) 89 (|has| |#1| (-368)))) (-4357 (($ $) 234 (|has| |#1| (-1193)))) (-3470 (((-1163 |#1|) $) 155)) (-2048 (($ (-637 $)) 100 (-3943 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 99 (-3943 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 116 (|has| |#1| (-363)))) (-3856 (($) 142 (|has| |#1| (-350)) CONST)) (-2542 (($ (-915)) 88 (|has| |#1| (-368)))) (-1454 (($) 256)) (-4059 ((|#1| $) 253)) (-3651 (((-1113) $) 10)) (-2551 (($) 159)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 101 (-3943 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3552 (($ (-637 $)) 98 (-3943 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 97 (-3943 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 145 (|has| |#1| (-350)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3095 (((-405 (-1163 $)) (-1163 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4147 (((-405 $) $) 112 (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 109 (|has| |#1| (-307)))) (-3872 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 103 (|has| |#1| (-307)))) (-4358 (($ $) 235 (|has| |#1| (-1193)))) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 263 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 262 (|has| |#1| (-514 (-1169) |#1|)))) (-1739 (((-767) $) 105 (|has| |#1| (-307)))) (-4214 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-307)))) (-4172 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-1922 (((-767) $) 150 (|has| |#1| (-350))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-350)))) (-4225 (($ $ (-1 |#1| |#1|) (-767)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-637 (-1169)) (-637 (-767))) 129 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 130 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 131 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 132 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 134 (-3943 (-3247 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-3943 (-3247 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3247 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2550 (((-684 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3593 (((-1163 |#1|)) 158)) (-3901 (($ $) 224 (|has| |#1| (-1193)))) (-4051 (($ $) 213 (|has| |#1| (-1193)))) (-1825 (($) 147 (|has| |#1| (-350)))) (-3899 (($ $) 223 (|has| |#1| (-1193)))) (-4050 (($ $) 214 (|has| |#1| (-1193)))) (-3897 (($ $) 222 (|has| |#1| (-1193)))) (-4049 (($ $) 215 (|has| |#1| (-1193)))) (-3632 (((-1256 |#1|) $ (-1256 $)) 51) (((-684 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-684 |#1|) (-1256 $)) 66)) (-4385 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) (((-1163 |#1|) $) 170) (($ (-1163 |#1|)) 156) (((-886 (-546)) $) 258 (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) 257 (|has| |#1| (-611 (-886 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1016))) (((-168 (-225)) $) 208 (|has| |#1| (-1016))) (((-535) $) 207 (|has| |#1| (-611 (-535))))) (-3399 (($ $) 255)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 144 (-3943 (-3247 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-350))))) (-1453 (($ |#1| |#1|) 254)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38) (($ (-407 (-546))) 86 (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) 91 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3091 (($ $) 143 (|has| |#1| (-350))) (((-3 $ "failed") $) 44 (-3943 (-3247 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-145))))) (-2749 (((-1163 |#1|) $) 46)) (-3518 (((-767)) 28)) (-2169 (((-1256 $)) 68)) (-3904 (($ $) 233 (|has| |#1| (-1193)))) (-3892 (($ $) 221 (|has| |#1| (-1193)))) (-2219 (((-112) $ $) 95 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3902 (($ $) 232 (|has| |#1| (-1193)))) (-3890 (($ $) 220 (|has| |#1| (-1193)))) (-3906 (($ $) 231 (|has| |#1| (-1193)))) (-3894 (($ $) 219 (|has| |#1| (-1193)))) (-2364 ((|#1| $) 249 (|has| |#1| (-1193)))) (-3907 (($ $) 230 (|has| |#1| (-1193)))) (-3895 (($ $) 218 (|has| |#1| (-1193)))) (-3905 (($ $) 229 (|has| |#1| (-1193)))) (-3893 (($ $) 217 (|has| |#1| (-1193)))) (-3903 (($ $) 228 (|has| |#1| (-1193)))) (-3891 (($ $) 216 (|has| |#1| (-1193)))) (-3794 (($ $) 250 (|has| |#1| (-1054)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1 |#1| |#1|) (-767)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-637 (-1169)) (-637 (-767))) 125 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 126 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 127 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 128 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 133 (-3943 (-3247 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-3943 (-3247 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3247 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2951 (((-112) $ $) 203 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 202 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 204 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 201 (|has| |#1| (-846)))) (-4364 (($ $ $) 120 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-407 (-546))) 238 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) 236 (|has| |#1| (-1193))) (($ $ (-546)) 117 (|has| |#1| (-363)))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-546)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-546))) 118 (|has| |#1| (-363)))))
(((-166 |#1|) (-140) (-172)) (T -166))
-((-3975 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2178 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2150 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1413 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3012 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-1462 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))))
-(-13 (-720 |t#1| (-1165 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -1413) (-15 -2178 ($)) (-15 -2150 ($ $)) (-15 -1413 ($ |t#1| |t#1|)) (-15 -2498 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -3975 (|t#1| $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-555)) (-15 -3012 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-611 (-169 (-225)))) (-6 (-611 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -1462 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1193)) (PROGN (-6 (-1193)) (-15 -2326 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -2164 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-905)) (IF (|has| |t#1| (-307)) (-6 (-905)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1193)) ((-95) |has| |#1| (-1193)) ((-102) . T) ((-111 #0# #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4034 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-610 (-858)) . T) ((-172) . T) ((-611 (-169 (-225))) |has| |#1| (-1018)) ((-611 (-169 (-379))) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-611 #1=(-1165 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4034 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1193)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4034 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4034 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4034 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1193)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) -4034 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-643 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #1#) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) -12 (|has| |#1| (-307)) (|has| |#1| (-905))) ((-916) -4034 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1193))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1193) |has| |#1| (-1193)) ((-1196) |has| |#1| (-1193)) ((-1208) . T) ((-1212) -4034 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))
-((-2173 (((-418 |#2|) |#2|) 63)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -2173 ((-418 |#2|) |#2|))) (-307) (-1233 (-169 |#1|))) (T -167))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(-10 -7 (-15 -2173 ((-418 |#2|) |#2|)))
-((-2238 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -2238 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
-(-10 -7 (-15 -2238 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 33)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3231 (($ $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3211 (((-112) $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3340 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-1731 ((|#1| $) NIL)) (-1770 (($ $) NIL (|has| |#1| (-1193)))) (-1618 (($ $) NIL (|has| |#1| (-1193)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1798 (($ $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2802 (((-418 $) $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2185 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-307)))) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-1747 (($ $) NIL (|has| |#1| (-1193)))) (-1596 (($ $) NIL (|has| |#1| (-1193)))) (-1793 (($ $) NIL (|has| |#1| (-1193)))) (-1642 (($ $) NIL (|has| |#1| (-1193)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3458 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3094 (($ $ $) NIL (|has| |#1| (-307)))) (-3330 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2444 (($ (-1165 |#1|)) NIL) (((-3 $ "failed") (-407 (-1165 |#1|))) NIL (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 13)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2317 (((-112) $) NIL (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-2521 (((-917)) NIL)) (-1690 (($) NIL (|has| |#1| (-368)))) (-3054 (($ $ $) NIL (|has| |#1| (-307)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-307)))) (-4036 (($) NIL (|has| |#1| (-349)))) (-1656 (((-112) $) NIL (|has| |#1| (-349)))) (-3188 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-2560 (((-112) $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2164 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2179 (($) NIL (|has| |#1| (-1193)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-1775 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-3401 (((-112) $) 35)) (-2172 (($ $ (-563)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3975 ((|#1| $) 46)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-4035 (((-1165 |#1|) $) NIL (|has| |#1| (-363)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-4372 (($ $) NIL (|has| |#1| (-1193)))) (-2433 (((-1165 |#1|) $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2522 (($) NIL (|has| |#1| (-349)) CONST)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-2178 (($) NIL)) (-2498 ((|#1| $) 15)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-307)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| |#1| (-349)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2173 (((-418 $) $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-307)))) (-3012 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 47 (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-3372 (($ $) NIL (|has| |#1| (-1193)))) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-1993 (((-767) $) NIL (|has| |#1| (-307)))) (-2308 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-307)))) (-1623 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-4203 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3388 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3402 (((-1165 |#1|)) NIL)) (-1805 (($ $) NIL (|has| |#1| (-1193)))) (-1655 (($ $) NIL (|has| |#1| (-1193)))) (-1586 (($) NIL (|has| |#1| (-349)))) (-1783 (($ $) NIL (|has| |#1| (-1193)))) (-1629 (($ $) NIL (|has| |#1| (-1193)))) (-1758 (($ $) NIL (|has| |#1| (-1193)))) (-1607 (($ $) NIL (|has| |#1| (-1193)))) (-3759 (((-1257 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2219 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1018))) (((-169 (-225)) $) NIL (|has| |#1| (-1018))) (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2150 (($ $) 45)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-349))))) (-1413 (($ |#1| |#1|) 37)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 36) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2047 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1892 (((-1165 |#1|) $) NIL)) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-1193)))) (-1694 (($ $) NIL (|has| |#1| (-1193)))) (-3223 (((-112) $ $) NIL (-4034 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-1816 (($ $) NIL (|has| |#1| (-1193)))) (-1666 (($ $) NIL (|has| |#1| (-1193)))) (-1861 (($ $) NIL (|has| |#1| (-1193)))) (-1721 (($ $) NIL (|has| |#1| (-1193)))) (-2326 ((|#1| $) NIL (|has| |#1| (-1193)))) (-1311 (($ $) NIL (|has| |#1| (-1193)))) (-1734 (($ $) NIL (|has| |#1| (-1193)))) (-1850 (($ $) NIL (|has| |#1| (-1193)))) (-1709 (($ $) NIL (|has| |#1| (-1193)))) (-1828 (($ $) NIL (|has| |#1| (-1193)))) (-1679 (($ $) NIL (|has| |#1| (-1193)))) (-1462 (($ $) NIL (|has| |#1| (-1054)))) (-2239 (($) 28 T CONST)) (-2253 (($) 30 T CONST)) (-2742 (((-1151) $) 23 (|has| |#1| (-824))) (((-1151) $ (-112)) 25 (|has| |#1| (-824))) (((-1262) (-818) $) 26 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 27 (|has| |#1| (-824)))) (-3213 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 39)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) NIL (|has| |#1| (-1193))) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363)))))
-(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-172)) (T -169))
-NIL
-(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|)))
-((-2219 (((-888 |#1|) |#3|) 20)))
-(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2219 ((-888 |#1|) |#3|))) (-1093) (-13 (-611 (-888 |#1|)) (-172)) (-166 |#2|)) (T -170))
-((-2219 (*1 *2 *3) (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -2219 ((-888 |#1|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-2202 (((-112) $) 9)) (-2190 (((-112) $ (-112)) 11)) (-1565 (($) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1870 (($ $) 13)) (-1692 (((-858) $) 17)) (-2349 (((-112) $) 8)) (-1442 (((-112) $ (-112)) 10)) (-1718 (((-112) $ $) NIL)))
-(((-171) (-13 (-1093) (-10 -8 (-15 -1565 ($)) (-15 -2349 ((-112) $)) (-15 -2202 ((-112) $)) (-15 -1442 ((-112) $ (-112))) (-15 -2190 ((-112) $ (-112))) (-15 -1870 ($ $))))) (T -171))
-((-1565 (*1 *1) (-5 *1 (-171))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1442 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2190 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1870 (*1 *1 *1) (-5 *1 (-171))))
-(-13 (-1093) (-10 -8 (-15 -1565 ($)) (-15 -2349 ((-112) $)) (-15 -2202 ((-112) $)) (-15 -1442 ((-112) $ (-112))) (-15 -2190 ((-112) $ (-112))) (-15 -1870 ($ $))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-3524 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1454 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1453 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3872 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))) (-3414 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))))
+(-13 (-720 |t#1| (-1163 |t#1|)) (-412 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -1453) (-15 -1454 ($)) (-15 -3399 ($ $)) (-15 -1453 ($ |t#1| |t#1|)) (-15 -4059 (|t#1| $)) (-15 -4058 (|t#1| $)) (-15 -3524 (|t#1| $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -3872 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-611 (-168 (-225)))) (-6 (-611 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3794 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1193)) (PROGN (-6 (-1193)) (-15 -2364 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -1452 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-906)) (IF (|has| |t#1| (-307)) (-6 (-906)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1193)) ((-95) |has| |#1| (-1193)) ((-102) . T) ((-111 #1# #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3943 (|has| |#1| (-350)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-350)) (|has| |#1| (-363))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-610 (-859)) . T) ((-172) . T) ((-611 (-168 (-225))) |has| |#1| (-1016)) ((-611 (-168 (-378))) |has| |#1| (-1016)) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-611 (-886 (-378))) |has| |#1| (-611 (-886 (-378)))) ((-611 (-886 (-546))) |has| |#1| (-611 (-886 (-546)))) ((-611 #2=(-1163 |#1|)) . T) ((-231 |#1|) . T) ((-233) -3943 (|has| |#1| (-350)) (|has| |#1| (-233))) ((-243) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1193)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -3943 (|has| |#1| (-556)) (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -3943 (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-402) |has| |#1| (-350)) ((-368) -3943 (|has| |#1| (-350)) (|has| |#1| (-368))) ((-350) |has| |#1| (-350)) ((-370 |#1| #2#) . T) ((-410 |#1| #2#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1193)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -3943 (|has| |#1| (-556)) (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-643 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #2#) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-378)) |has| |#1| (-882 (-378))) ((-882 (-546)) |has| |#1| (-882 (-546))) ((-880 |#1|) . T) ((-906) -12 (|has| |#1| (-307)) (|has| |#1| (-906))) ((-917) -3943 (|has| |#1| (-350)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1193))) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| |#1| (-350)) ((-1193) |has| |#1| (-1193)) ((-1196) |has| |#1| (-1193)) ((-1207) . T) ((-1212) -3943 (|has| |#1| (-350)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))
+((-4147 (((-405 |#2|) |#2|) 63)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -4147 ((-405 |#2|) |#2|))) (-307) (-1232 (-168 |#1|))) (T -167))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1232 (-168 *4))))))
+(-10 -7 (-15 -4147 ((-405 |#2|) |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 33)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2220 (($ $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2218 (((-112) $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1936 (((-684 |#1|) (-1256 $)) NIL) (((-684 |#1|)) NIL)) (-3741 ((|#1| $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-1193)))) (-4054 (($ $) NIL (|has| |#1| (-1193)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| |#1| (-350)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4189 (($ $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4384 (((-405 $) $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3427 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-307)))) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-3896 (($ $) NIL (|has| |#1| (-1193)))) (-4053 (($ $) NIL (|has| |#1| (-1193)))) (-3900 (($ $) NIL (|has| |#1| (-1193)))) (-4052 (($ $) NIL (|has| |#1| (-1193)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-1946 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-350)))) (-2949 (($ $ $) NIL (|has| |#1| (-307)))) (-1935 (((-684 |#1|) $ (-1256 $)) NIL) (((-684 |#1|) $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-4257 (($ (-1163 |#1|)) NIL) (((-3 $ "failed") (-407 (-1163 |#1|))) NIL (|has| |#1| (-363)))) (-3873 (((-3 $ "failed") $) NIL)) (-4058 ((|#1| $) 13)) (-3414 (((-3 (-407 (-546)) #3="failed") $) NIL (|has| |#1| (-545)))) (-3413 (((-112) $) NIL (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) NIL (|has| |#1| (-545)))) (-3501 (((-915)) NIL)) (-3384 (($) NIL (|has| |#1| (-368)))) (-2948 (($ $ $) NIL (|has| |#1| (-307)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-307)))) (-3222 (($) NIL (|has| |#1| (-350)))) (-1831 (((-112) $) NIL (|has| |#1| (-350)))) (-1921 (($ $ (-767)) NIL (|has| |#1| (-350))) (($ $) NIL (|has| |#1| (-350)))) (-4138 (((-112) $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1452 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-4042 (($) NIL (|has| |#1| (-1193)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-882 (-378))))) (-4186 (((-915) $) NIL (|has| |#1| (-350))) (((-828 (-915)) $) NIL (|has| |#1| (-350)))) (-2552 (((-112) $) 35)) (-3401 (($ $ (-546)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3524 ((|#1| $) 46)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-350)))) (-1737 (((-3 (-637 $) #4="failed") (-637 $) $) NIL (|has| |#1| (-307)))) (-2171 (((-1163 |#1|) $) NIL (|has| |#1| (-363)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-4357 (($ $) NIL (|has| |#1| (-1193)))) (-3470 (((-1163 |#1|) $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-3856 (($) NIL (|has| |#1| (-350)) CONST)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-1454 (($) NIL)) (-4059 ((|#1| $) 15)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-307)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| |#1| (-350)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4147 (((-405 $) $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-307)))) (-3872 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 47 (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-307)))) (-4358 (($ $) NIL (|has| |#1| (-1193)))) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-1739 (((-767) $) NIL (|has| |#1| (-307)))) (-4214 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-307)))) (-4172 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-350))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-350)))) (-4225 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2550 (((-684 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3593 (((-1163 |#1|)) NIL)) (-3901 (($ $) NIL (|has| |#1| (-1193)))) (-4051 (($ $) NIL (|has| |#1| (-1193)))) (-1825 (($) NIL (|has| |#1| (-350)))) (-3899 (($ $) NIL (|has| |#1| (-1193)))) (-4050 (($ $) NIL (|has| |#1| (-1193)))) (-3897 (($ $) NIL (|has| |#1| (-1193)))) (-4049 (($ $) NIL (|has| |#1| (-1193)))) (-3632 (((-1256 |#1|) $ (-1256 $)) NIL) (((-684 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) NIL) (((-684 |#1|) (-1256 $)) NIL)) (-4385 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) (((-1163 |#1|) $) NIL) (($ (-1163 |#1|)) NIL) (((-886 (-546)) $) NIL (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| |#1| (-611 (-886 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1016))) (((-168 (-225)) $) NIL (|has| |#1| (-1016))) (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3399 (($ $) 45)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-350))))) (-1453 (($ |#1| |#1|) 37)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) 36) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3091 (($ $) NIL (|has| |#1| (-350))) (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2749 (((-1163 |#1|) $) NIL)) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL)) (-3904 (($ $) NIL (|has| |#1| (-1193)))) (-3892 (($ $) NIL (|has| |#1| (-1193)))) (-2219 (((-112) $ $) NIL (-3943 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3902 (($ $) NIL (|has| |#1| (-1193)))) (-3890 (($ $) NIL (|has| |#1| (-1193)))) (-3906 (($ $) NIL (|has| |#1| (-1193)))) (-3894 (($ $) NIL (|has| |#1| (-1193)))) (-2364 ((|#1| $) NIL (|has| |#1| (-1193)))) (-3907 (($ $) NIL (|has| |#1| (-1193)))) (-3895 (($ $) NIL (|has| |#1| (-1193)))) (-3905 (($ $) NIL (|has| |#1| (-1193)))) (-3893 (($ $) NIL (|has| |#1| (-1193)))) (-3903 (($ $) NIL (|has| |#1| (-1193)))) (-3891 (($ $) NIL (|has| |#1| (-1193)))) (-3794 (($ $) NIL (|has| |#1| (-1054)))) (-3047 (($) 28 T CONST)) (-3053 (($) 30 T CONST)) (-2885 (((-1151) $) 23 (|has| |#1| (-817))) (((-1151) $ (-112)) 25 (|has| |#1| (-817))) (((-1262) (-819) $) 26 (|has| |#1| (-817))) (((-1262) (-819) $ (-112)) 27 (|has| |#1| (-817)))) (-3058 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 39)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-546))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) NIL (|has| |#1| (-1193))) (($ $ (-546)) NIL (|has| |#1| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-546)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-546))) NIL (|has| |#1| (-363)))))
+(((-168 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|))) (-172)) (T -168))
+NIL
+(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|)))
+((-4373 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -4373 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-172) (-172)) (T -169))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6)))))
+(-10 -7 (-15 -4373 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|))))
+((-4385 (((-886 |#1|) |#3|) 20)))
+(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -4385 ((-886 |#1|) |#3|))) (-1094) (-13 (-611 (-886 |#1|)) (-172)) (-166 |#2|)) (T -170))
+((-4385 (*1 *2 *3) (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-886 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -4385 ((-886 |#1|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-1456 (((-112) $) 9)) (-1455 (((-112) $ (-112)) 11)) (-4029 (($) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3811 (($ $) 13)) (-4361 (((-859) $) 17)) (-4117 (((-112) $) 8)) (-4276 (((-112) $ (-112)) 10)) (-3444 (((-112) $ $) NIL)))
+(((-171) (-13 (-1094) (-10 -8 (-15 -4029 ($)) (-15 -4117 ((-112) $)) (-15 -1456 ((-112) $)) (-15 -4276 ((-112) $ (-112))) (-15 -1455 ((-112) $ (-112))) (-15 -3811 ($ $))))) (T -171))
+((-4029 (*1 *1) (-5 *1 (-171))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4276 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1455 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3811 (*1 *1 *1) (-5 *1 (-171))))
+(-13 (-1094) (-10 -8 (-15 -4029 ($)) (-15 -4117 ((-112) $)) (-15 -1456 ((-112) $)) (-15 -4276 ((-112) $ (-112))) (-15 -1455 ((-112) $ (-112))) (-15 -3811 ($ $))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-172) (-140)) (T -172))
NIL
(-13 (-1045) (-111 $ $) (-10 -7 (-6 (-4410 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1895 (($ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-1851 (($ $) 6)))
(((-173) (-140)) (T -173))
-((-1895 (*1 *1 *1) (-4 *1 (-173))))
-(-13 (-10 -8 (-15 -1895 ($ $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 ((|#1| $) 74)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL)) (-2265 (($ $) 19)) (-2309 (($ |#1| (-1149 |#1|)) 47)) (-3951 (((-3 $ "failed") $) 116)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-2275 (((-1149 |#1|) $) 81)) (-2298 (((-1149 |#1|) $) 78)) (-2285 (((-1149 |#1|) $) 79)) (-3401 (((-112) $) NIL)) (-2226 (((-1149 |#1|) $) 87)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3517 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-1751 (($ $ (-563)) 90)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-2213 (((-1149 |#1|) $) 88)) (-2242 (((-1149 (-407 |#1|)) $) 14)) (-3616 (($ (-407 |#1|)) 17) (($ |#1| (-1149 |#1|) (-1149 |#1|)) 37)) (-3369 (($ $) 92)) (-1692 (((-858) $) 126) (($ (-563)) 50) (($ |#1|) 51) (($ (-407 |#1|)) 35) (($ (-407 (-563))) NIL) (($ $) NIL)) (-3914 (((-767)) 63)) (-3223 (((-112) $ $) NIL)) (-2256 (((-1149 (-407 |#1|)) $) 18)) (-2239 (($) 25 T CONST)) (-2253 (($) 28 T CONST)) (-1718 (((-112) $ $) 34)) (-1836 (($ $ $) 114)) (-1825 (($ $) 105) (($ $ $) 102)) (-1813 (($ $ $) 100)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 |#1|) $) 110) (($ $ (-407 |#1|)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL)))
-(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3616 ($ (-407 |#1|))) (-15 -3616 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -2309 ($ |#1| (-1149 |#1|))) (-15 -2298 ((-1149 |#1|) $)) (-15 -2285 ((-1149 |#1|) $)) (-15 -2275 ((-1149 |#1|) $)) (-15 -3944 (|#1| $)) (-15 -2265 ($ $)) (-15 -2256 ((-1149 (-407 |#1|)) $)) (-15 -2242 ((-1149 (-407 |#1|)) $)) (-15 -2226 ((-1149 |#1|) $)) (-15 -2213 ((-1149 |#1|) $)) (-15 -1751 ($ $ (-563))) (-15 -3369 ($ $)))) (-307)) (T -174))
-((-3616 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-3616 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3944 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3369 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
-(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3616 ($ (-407 |#1|))) (-15 -3616 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -2309 ($ |#1| (-1149 |#1|))) (-15 -2298 ((-1149 |#1|) $)) (-15 -2285 ((-1149 |#1|) $)) (-15 -2275 ((-1149 |#1|) $)) (-15 -3944 (|#1| $)) (-15 -2265 ($ $)) (-15 -2256 ((-1149 (-407 |#1|)) $)) (-15 -2242 ((-1149 (-407 |#1|)) $)) (-15 -2226 ((-1149 |#1|) $)) (-15 -2213 ((-1149 |#1|) $)) (-15 -1751 ($ $ (-563))) (-15 -3369 ($ $))))
-((-2320 (($ (-109) $) 13)) (-3726 (((-3 (-109) "failed") (-1169) $) 12)) (-1692 (((-858) $) 16)) (-2329 (((-640 (-109)) $) 8)))
-(((-175) (-13 (-610 (-858)) (-10 -8 (-15 -2329 ((-640 (-109)) $)) (-15 -2320 ($ (-109) $)) (-15 -3726 ((-3 (-109) "failed") (-1169) $))))) (T -175))
-((-2329 (*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175)))) (-2320 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3726 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -2329 ((-640 (-109)) $)) (-15 -2320 ($ (-109) $)) (-15 -3726 ((-3 (-109) "failed") (-1169) $))))
-((-2471 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-2370 (((-939 |#1|) (-939 |#1|)) 19)) (-2426 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-2351 (((-939 |#1|) (-939 |#1|)) 17)) (-2403 (((-939 |#1|) (-939 |#1|)) 25)) (-2393 (((-939 |#1|) (-939 |#1|)) 24)) (-2382 (((-939 |#1|) (-939 |#1|)) 23)) (-2438 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-2415 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-2489 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-2360 (((-939 |#1|) (-939 |#1|)) 18)) (-2482 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-2340 (((-939 |#1|) (-939 |#1|)) 8)) (-2459 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-2449 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38)))
-(((-176 |#1|) (-10 -7 (-15 -2340 ((-939 |#1|) (-939 |#1|))) (-15 -2351 ((-939 |#1|) (-939 |#1|))) (-15 -2360 ((-939 |#1|) (-939 |#1|))) (-15 -2370 ((-939 |#1|) (-939 |#1|))) (-15 -2382 ((-939 |#1|) (-939 |#1|))) (-15 -2393 ((-939 |#1|) (-939 |#1|))) (-15 -2403 ((-939 |#1|) (-939 |#1|))) (-15 -2489 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2415 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2426 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2438 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2449 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2459 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2471 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2482 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1193) (-998))) (T -176))
-((-2482 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2471 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2438 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2426 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2415 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2393 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -2340 ((-939 |#1|) (-939 |#1|))) (-15 -2351 ((-939 |#1|) (-939 |#1|))) (-15 -2360 ((-939 |#1|) (-939 |#1|))) (-15 -2370 ((-939 |#1|) (-939 |#1|))) (-15 -2382 ((-939 |#1|) (-939 |#1|))) (-15 -2393 ((-939 |#1|) (-939 |#1|))) (-15 -2403 ((-939 |#1|) (-939 |#1|))) (-15 -2489 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2415 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2426 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2438 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2449 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2459 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2471 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2482 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|)))
-((-1892 ((|#2| |#3|) 27)))
-(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1892 (|#2| |#3|))) (-172) (-1233 |#1|) (-720 |#1| |#2|)) (T -177))
-((-1892 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2)))))
-(-10 -7 (-15 -1892 (|#2| |#3|)))
-((-1812 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 45 (|has| (-948 |#2|) (-882 |#1|)))))
-(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) (-1093) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|))
-((-2503 (((-640 |#1|) (-640 |#1|) |#1|) 38)) (-2493 (((-640 |#1|) |#1| (-640 |#1|)) 19)) (-3417 (((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|)) 33) ((|#1| (-640 |#1|) (-640 |#1|)) 31)))
-(((-179 |#1|) (-10 -7 (-15 -2493 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -3417 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -3417 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -2503 ((-640 |#1|) (-640 |#1|) |#1|))) (-307)) (T -179))
-((-2503 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-3417 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-2493 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -2493 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -3417 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -3417 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -2503 ((-640 |#1|) (-640 |#1|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-4184 (((-1207) $) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 10)) (-1692 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-180) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))) (T -180))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))
-((-1353 (((-2 (|:| |start| |#2|) (|:| -1337 (-418 |#2|))) |#2|) 61)) (-1343 ((|#1| |#1|) 54)) (-1335 (((-169 |#1|) |#2|) 84)) (-1324 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1314 ((|#2| |#2|) 83)) (-1302 (((-418 |#2|) |#2| |#1|) 114) (((-418 |#2|) |#2| |#1| (-112)) 80)) (-3975 ((|#1| |#2|) 113)) (-1293 ((|#2| |#2|) 120)) (-2173 (((-418 |#2|) |#2|) 135) (((-418 |#2|) |#2| |#1|) 32) (((-418 |#2|) |#2| |#1| (-112)) 134)) (-4381 (((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2|) 133) (((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2| (-112)) 75)) (-4371 (((-640 (-169 |#1|)) |#2| |#1|) 40) (((-640 (-169 |#1|)) |#2|) 41)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -4371 ((-640 (-169 |#1|)) |#2|)) (-15 -4371 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -4381 ((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2| (-112))) (-15 -4381 ((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2|)) (-15 -2173 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2173 ((-418 |#2|) |#2| |#1|)) (-15 -2173 ((-418 |#2|) |#2|)) (-15 -1293 (|#2| |#2|)) (-15 -3975 (|#1| |#2|)) (-15 -1302 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1302 ((-418 |#2|) |#2| |#1|)) (-15 -1314 (|#2| |#2|)) (-15 -1324 (|#1| |#2| |#1|)) (-15 -1324 (|#1| |#2|)) (-15 -1335 ((-169 |#1|) |#2|)) (-15 -1343 (|#1| |#1|)) (-15 -1353 ((-2 (|:| |start| |#2|) (|:| -1337 (-418 |#2|))) |#2|))) (-13 (-363) (-844)) (-1233 (-169 |#1|))) (T -181))
-((-1353 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -1337 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-1343 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-1335 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2)))) (-1324 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-1324 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-1302 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-1302 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3975 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-1293 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2173 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2173 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-4381 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -1337 (-640 *3)) (|:| -4079 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-4381 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -1337 (-640 *3)) (|:| -4079 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5))))) (-4371 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-4371 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(-10 -7 (-15 -4371 ((-640 (-169 |#1|)) |#2|)) (-15 -4371 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -4381 ((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2| (-112))) (-15 -4381 ((-640 (-2 (|:| -1337 (-640 |#2|)) (|:| -4079 |#1|))) |#2| |#2|)) (-15 -2173 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2173 ((-418 |#2|) |#2| |#1|)) (-15 -2173 ((-418 |#2|) |#2|)) (-15 -1293 (|#2| |#2|)) (-15 -3975 (|#1| |#2|)) (-15 -1302 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1302 ((-418 |#2|) |#2| |#1|)) (-15 -1314 (|#2| |#2|)) (-15 -1324 (|#1| |#2| |#1|)) (-15 -1324 (|#1| |#2|)) (-15 -1335 ((-169 |#1|) |#2|)) (-15 -1343 (|#1| |#1|)) (-15 -1353 ((-2 (|:| |start| |#2|) (|:| -1337 (-418 |#2|))) |#2|)))
-((-1363 (((-3 |#2| "failed") |#2|) 14)) (-1372 (((-767) |#2|) 16)) (-1382 ((|#2| |#2| |#2|) 18)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -1363 ((-3 |#2| "failed") |#2|)) (-15 -1372 ((-767) |#2|)) (-15 -1382 (|#2| |#2| |#2|))) (-1208) (-669 |#1|)) (T -182))
-((-1382 (*1 *2 *2 *2) (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))) (-1372 (*1 *2 *3) (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-669 *4)))) (-1363 (*1 *2 *2) (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))))
-(-10 -7 (-15 -1363 ((-3 |#2| "failed") |#2|)) (-15 -1372 ((-767) |#2|)) (-15 -1382 (|#2| |#2| |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3763 (((-187) $) 7)) (-1692 (((-858) $) 14)) (-4094 (((-640 (-1174)) $) 10)) (-1718 (((-112) $ $) 12)))
-(((-183) (-13 (-1093) (-10 -8 (-15 -3763 ((-187) $)) (-15 -4094 ((-640 (-1174)) $))))) (T -183))
-((-3763 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183)))))
-(-13 (-1093) (-10 -8 (-15 -3763 ((-187) $)) (-15 -4094 ((-640 (-1174)) $))))
-((-3457 (((-640 (-861)) $) 16)) (-2504 (((-186) $) 8)) (-1404 (((-640 (-112)) $) 13)) (-2935 (((-55) $) 10)))
-(((-184 |#1|) (-10 -8 (-15 -3457 ((-640 (-861)) |#1|)) (-15 -1404 ((-640 (-112)) |#1|)) (-15 -2504 ((-186) |#1|)) (-15 -2935 ((-55) |#1|))) (-185)) (T -184))
-NIL
-(-10 -8 (-15 -3457 ((-640 (-861)) |#1|)) (-15 -1404 ((-640 (-112)) |#1|)) (-15 -2504 ((-186) |#1|)) (-15 -2935 ((-55) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3457 (((-640 (-861)) $) 17)) (-3352 (((-506) $) 14)) (-3854 (((-1151) $) 9)) (-2504 (((-186) $) 19)) (-1693 (((-1113) $) 10)) (-1404 (((-640 (-112)) $) 18)) (-1692 (((-858) $) 11)) (-2935 (((-55) $) 13)) (-1718 (((-112) $ $) 6)))
-(((-185) (-140)) (T -185))
-((-2504 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112))))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861))))))
-(-13 (-831 (-506)) (-10 -8 (-15 -2504 ((-186) $)) (-15 -1404 ((-640 (-112)) $)) (-15 -3457 ((-640 (-861)) $))))
-(((-102) . T) ((-610 (-858)) . T) ((-831 (-506)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-8 (($) 7 T CONST)) (-1692 (((-858) $) 12)) (-9 (($) 6 T CONST)) (-1718 (((-112) $ $) 10)))
-(((-186) (-13 (-1093) (-10 -8 (-15 -9 ($) -2668) (-15 -8 ($) -2668) (-15 -7 ($) -2668)))) (T -186))
-((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
-(-13 (-1093) (-10 -8 (-15 -9 ($) -2668) (-15 -8 ($) -2668) (-15 -7 ($) -2668)))
-((-1677 (((-112) $ $) NIL)) (-3457 (((-640 (-861)) $) NIL)) (-3352 (((-506) $) 8)) (-3854 (((-1151) $) NIL)) (-2504 (((-186) $) 10)) (-1693 (((-1113) $) NIL)) (-1392 (((-686 $) (-1169)) 18)) (-1404 (((-640 (-112)) $) NIL)) (-1692 (((-858) $) NIL)) (-2935 (((-55) $) 12)) (-1718 (((-112) $ $) NIL)))
-(((-187) (-13 (-185) (-10 -8 (-15 -1392 ((-686 $) (-1169)))))) (T -187))
-((-1392 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187)))))
-(-13 (-185) (-10 -8 (-15 -1392 ((-686 $) (-1169)))))
-((-2917 ((|#2| |#2|) 28)) (-2927 (((-112) |#2|) 19)) (-2488 (((-316 |#1|) |#2|) 12)) (-2498 (((-316 |#1|) |#2|) 14)) (-2898 ((|#2| |#2| (-1169)) 68) ((|#2| |#2|) 69)) (-2936 (((-169 (-316 |#1|)) |#2|) 10)) (-2907 ((|#2| |#2| (-1169)) 65) ((|#2| |#2|) 59)))
-(((-188 |#1| |#2|) (-10 -7 (-15 -2898 (|#2| |#2|)) (-15 -2898 (|#2| |#2| (-1169))) (-15 -2907 (|#2| |#2|)) (-15 -2907 (|#2| |#2| (-1169))) (-15 -2488 ((-316 |#1|) |#2|)) (-15 -2498 ((-316 |#1|) |#2|)) (-15 -2927 ((-112) |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2936 ((-169 (-316 |#1|)) |#2|))) (-13 (-555) (-846) (-1034 (-563))) (-13 (-27) (-1193) (-430 (-169 |#1|)))) (T -188))
-((-2936 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2907 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-2898 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))))
-(-10 -7 (-15 -2898 (|#2| |#2|)) (-15 -2898 (|#2| |#2| (-1169))) (-15 -2907 (|#2| |#2|)) (-15 -2907 (|#2| |#2| (-1169))) (-15 -2488 ((-316 |#1|) |#2|)) (-15 -2498 ((-316 |#1|) |#2|)) (-15 -2927 ((-112) |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2936 ((-169 (-316 |#1|)) |#2|)))
-((-1415 (((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|))) 24)) (-1692 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))) 33)))
-(((-189 |#1|) (-10 -7 (-15 -1415 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -1692 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))))) (-172)) (T -189))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4)))))
-(-10 -7 (-15 -1415 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -1692 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|)))))
-((-1503 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 66)) (-1528 (((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563))) 75)) (-1426 (((-1171 (-407 (-563))) (-563)) 40)) (-4227 (((-1171 (-407 (-563))) (-563)) 52)) (-1542 (((-407 (-563)) (-1171 (-407 (-563)))) 62)) (-1437 (((-1171 (-407 (-563))) (-563)) 32)) (-1470 (((-1171 (-407 (-563))) (-563)) 48)) (-1457 (((-1171 (-407 (-563))) (-563)) 46)) (-1492 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 60)) (-3369 (((-1171 (-407 (-563))) (-563)) 25)) (-1480 (((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 64)) (-1447 (((-1171 (-407 (-563))) (-563)) 30)) (-1514 (((-1171 (-407 (-563))) (-640 (-563))) 72)))
-(((-190) (-10 -7 (-15 -3369 ((-1171 (-407 (-563))) (-563))) (-15 -1426 ((-1171 (-407 (-563))) (-563))) (-15 -1437 ((-1171 (-407 (-563))) (-563))) (-15 -1447 ((-1171 (-407 (-563))) (-563))) (-15 -1457 ((-1171 (-407 (-563))) (-563))) (-15 -1470 ((-1171 (-407 (-563))) (-563))) (-15 -4227 ((-1171 (-407 (-563))) (-563))) (-15 -1480 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1492 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1542 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -1503 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1514 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -1528 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563)))))) (T -190))
-((-1528 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1503 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-1492 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1480 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-4227 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1437 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3369 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
-(-10 -7 (-15 -3369 ((-1171 (-407 (-563))) (-563))) (-15 -1426 ((-1171 (-407 (-563))) (-563))) (-15 -1437 ((-1171 (-407 (-563))) (-563))) (-15 -1447 ((-1171 (-407 (-563))) (-563))) (-15 -1457 ((-1171 (-407 (-563))) (-563))) (-15 -1470 ((-1171 (-407 (-563))) (-563))) (-15 -4227 ((-1171 (-407 (-563))) (-563))) (-15 -1480 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1492 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1542 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -1503 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1514 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -1528 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563)))))
-((-1552 (((-418 (-1165 (-563))) (-563)) 28)) (-1540 (((-640 (-1165 (-563))) (-563)) 23)) (-1869 (((-1165 (-563)) (-563)) 21)))
-(((-191) (-10 -7 (-15 -1540 ((-640 (-1165 (-563))) (-563))) (-15 -1869 ((-1165 (-563)) (-563))) (-15 -1552 ((-418 (-1165 (-563))) (-563))))) (T -191))
-((-1552 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))) (-1869 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563)))) (-1540 (*1 *2 *3) (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))))
-(-10 -7 (-15 -1540 ((-640 (-1165 (-563))) (-563))) (-15 -1869 ((-1165 (-563)) (-563))) (-15 -1552 ((-418 (-1165 (-563))) (-563))))
-((-2803 (((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 103)) (-3013 (((-640 (-1151)) (-1149 (-225))) NIL)) (-1566 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 79)) (-2783 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) NIL)) (-3002 (((-640 (-1151)) (-640 (-225))) NIL)) (-3023 (((-225) (-1087 (-839 (-225)))) 24)) (-3033 (((-225) (-1087 (-839 (-225)))) 25)) (-1591 (((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 96)) (-1578 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-2981 (((-1151) (-225)) NIL)) (-3207 (((-1151) (-640 (-1151))) 20)) (-1602 (((-1031) (-1169) (-1169) (-1031)) 13)))
-(((-192) (-10 -7 (-15 -1566 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1578 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -1591 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))) (-15 -3207 ((-1151) (-640 (-1151)))) (-15 -1602 ((-1031) (-1169) (-1169) (-1031))))) (T -192))
-((-1602 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-192)))) (-2783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
-(-10 -7 (-15 -1566 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1578 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -1591 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))) (-15 -3207 ((-1151) (-640 (-1151)))) (-15 -1602 ((-1031) (-1169) (-1169) (-1031))))
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 55) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-1851 (*1 *1 *1) (-4 *1 (-173))))
+(-13 (-10 -8 (-15 -1851 ($ $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 ((|#1| $) 74)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL)) (-1461 (($ $) 19)) (-1465 (($ |#1| (-1146 |#1|)) 47)) (-3873 (((-3 $ "failed") $) 116)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-1462 (((-1146 |#1|) $) 81)) (-1464 (((-1146 |#1|) $) 78)) (-1463 (((-1146 |#1|) $) 79)) (-2552 (((-112) $) NIL)) (-1458 (((-1146 |#1|) $) 87)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2048 (($ (-637 $)) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ (-637 $)) NIL) (($ $ $) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-4183 (($ $ (-546)) 90)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1457 (((-1146 |#1|) $) 88)) (-1459 (((-1146 (-407 |#1|)) $) 14)) (-3001 (($ (-407 |#1|)) 17) (($ |#1| (-1146 |#1|) (-1146 |#1|)) 37)) (-3281 (($ $) 92)) (-4361 (((-859) $) 126) (($ (-546)) 50) (($ |#1|) 51) (($ (-407 |#1|)) 35) (($ (-407 (-546))) NIL) (($ $) NIL)) (-3518 (((-767)) 63)) (-2219 (((-112) $ $) NIL)) (-1460 (((-1146 (-407 |#1|)) $) 18)) (-3047 (($) 25 T CONST)) (-3053 (($) 28 T CONST)) (-3444 (((-112) $ $) 34)) (-4364 (($ $ $) 114)) (-4252 (($ $) 105) (($ $ $) 102)) (-4254 (($ $ $) 100)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 |#1|) $) 110) (($ $ (-407 |#1|)) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL)))
+(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3001 ($ (-407 |#1|))) (-15 -3001 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -1465 ($ |#1| (-1146 |#1|))) (-15 -1464 ((-1146 |#1|) $)) (-15 -1463 ((-1146 |#1|) $)) (-15 -1462 ((-1146 |#1|) $)) (-15 -3521 (|#1| $)) (-15 -1461 ($ $)) (-15 -1460 ((-1146 (-407 |#1|)) $)) (-15 -1459 ((-1146 (-407 |#1|)) $)) (-15 -1458 ((-1146 |#1|) $)) (-15 -1457 ((-1146 |#1|) $)) (-15 -4183 ($ $ (-546))) (-15 -3281 ($ $)))) (-307)) (T -174))
+((-3001 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-3001 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1465 (*1 *1 *2 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3521 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1461 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1146 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-1146 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3281 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3001 ($ (-407 |#1|))) (-15 -3001 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -1465 ($ |#1| (-1146 |#1|))) (-15 -1464 ((-1146 |#1|) $)) (-15 -1463 ((-1146 |#1|) $)) (-15 -1462 ((-1146 |#1|) $)) (-15 -3521 (|#1| $)) (-15 -1461 ($ $)) (-15 -1460 ((-1146 (-407 |#1|)) $)) (-15 -1459 ((-1146 (-407 |#1|)) $)) (-15 -1458 ((-1146 |#1|) $)) (-15 -1457 ((-1146 |#1|) $)) (-15 -4183 ($ $ (-546))) (-15 -3281 ($ $))))
+((-1466 (($ (-109) $) 13)) (-3629 (((-3 (-109) "failed") (-1169) $) 12)) (-4361 (((-859) $) 16)) (-1467 (((-637 (-109)) $) 8)))
+(((-175) (-13 (-610 (-859)) (-10 -8 (-15 -1467 ((-637 (-109)) $)) (-15 -1466 ($ (-109) $)) (-15 -3629 ((-3 (-109) "failed") (-1169) $))))) (T -175))
+((-1467 (*1 *2 *1) (-12 (-5 *2 (-637 (-109))) (-5 *1 (-175)))) (-1466 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3629 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -1467 ((-637 (-109)) $)) (-15 -1466 ($ (-109) $)) (-15 -3629 ((-3 (-109) "failed") (-1169) $))))
+((-1480 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-1471 (((-939 |#1|) (-939 |#1|)) 19)) (-1476 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-1469 (((-939 |#1|) (-939 |#1|)) 17)) (-1474 (((-939 |#1|) (-939 |#1|)) 25)) (-1473 (((-939 |#1|) (-939 |#1|)) 24)) (-1472 (((-939 |#1|) (-939 |#1|)) 23)) (-1477 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-1475 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-1794 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-1470 (((-939 |#1|) (-939 |#1|)) 18)) (-1481 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-1468 (((-939 |#1|) (-939 |#1|)) 8)) (-1479 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-1478 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38)))
+(((-176 |#1|) (-10 -7 (-15 -1468 ((-939 |#1|) (-939 |#1|))) (-15 -1469 ((-939 |#1|) (-939 |#1|))) (-15 -1470 ((-939 |#1|) (-939 |#1|))) (-15 -1471 ((-939 |#1|) (-939 |#1|))) (-15 -1472 ((-939 |#1|) (-939 |#1|))) (-15 -1473 ((-939 |#1|) (-939 |#1|))) (-15 -1474 ((-939 |#1|) (-939 |#1|))) (-15 -1794 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1475 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1476 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1477 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1478 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1479 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1480 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1481 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1193) (-998))) (T -176))
+((-1481 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1480 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1479 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1478 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1475 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1794 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1474 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1472 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))))
+(-10 -7 (-15 -1468 ((-939 |#1|) (-939 |#1|))) (-15 -1469 ((-939 |#1|) (-939 |#1|))) (-15 -1470 ((-939 |#1|) (-939 |#1|))) (-15 -1471 ((-939 |#1|) (-939 |#1|))) (-15 -1472 ((-939 |#1|) (-939 |#1|))) (-15 -1473 ((-939 |#1|) (-939 |#1|))) (-15 -1474 ((-939 |#1|) (-939 |#1|))) (-15 -1794 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1475 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1476 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1477 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1478 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1479 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1480 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1481 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|)))
+((-2749 ((|#2| |#3|) 27)))
+(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2749 (|#2| |#3|))) (-172) (-1232 |#1|) (-720 |#1| |#2|)) (T -177))
+((-2749 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1232 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2)))))
+(-10 -7 (-15 -2749 (|#2| |#3|)))
+((-3185 (((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)) 45 (|has| (-942 |#2|) (-882 |#1|)))))
+(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-942 |#2|) (-882 |#1|)) (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-942 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-942 |#2|) (-882 |#1|)) (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))) |%noBranch|))
+((-1483 (((-637 |#1|) (-637 |#1|) |#1|) 38)) (-1482 (((-637 |#1|) |#1| (-637 |#1|)) 19)) (-2239 (((-637 |#1|) (-637 (-637 |#1|)) (-637 |#1|)) 33) ((|#1| (-637 |#1|) (-637 |#1|)) 31)))
+(((-179 |#1|) (-10 -7 (-15 -1482 ((-637 |#1|) |#1| (-637 |#1|))) (-15 -2239 (|#1| (-637 |#1|) (-637 |#1|))) (-15 -2239 ((-637 |#1|) (-637 (-637 |#1|)) (-637 |#1|))) (-15 -1483 ((-637 |#1|) (-637 |#1|) |#1|))) (-307)) (T -179))
+((-1483 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2239 (*1 *2 *3 *2) (-12 (-5 *3 (-637 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2239 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-1482 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -1482 ((-637 |#1|) |#1| (-637 |#1|))) (-15 -2239 (|#1| (-637 |#1|) (-637 |#1|))) (-15 -2239 ((-637 |#1|) (-637 (-637 |#1|)) (-637 |#1|))) (-15 -1483 ((-637 |#1|) (-637 |#1|) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3726 (((-1208) $) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 10)) (-4361 (((-859) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-180) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))) (T -180))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))
+((-1492 (((-2 (|:| |start| |#2|) (|:| -2818 (-405 |#2|))) |#2|) 61)) (-1491 ((|#1| |#1|) 54)) (-1490 (((-168 |#1|) |#2|) 84)) (-1489 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1488 ((|#2| |#2|) 83)) (-1487 (((-405 |#2|) |#2| |#1|) 114) (((-405 |#2|) |#2| |#1| (-112)) 80)) (-3524 ((|#1| |#2|) 113)) (-1486 ((|#2| |#2|) 120)) (-4147 (((-405 |#2|) |#2|) 135) (((-405 |#2|) |#2| |#1|) 32) (((-405 |#2|) |#2| |#1| (-112)) 134)) (-1485 (((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2|) 133) (((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2| (-112)) 75)) (-1484 (((-637 (-168 |#1|)) |#2| |#1|) 40) (((-637 (-168 |#1|)) |#2|) 41)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -1484 ((-637 (-168 |#1|)) |#2|)) (-15 -1484 ((-637 (-168 |#1|)) |#2| |#1|)) (-15 -1485 ((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2| (-112))) (-15 -1485 ((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2|)) (-15 -4147 ((-405 |#2|) |#2| |#1| (-112))) (-15 -4147 ((-405 |#2|) |#2| |#1|)) (-15 -4147 ((-405 |#2|) |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -3524 (|#1| |#2|)) (-15 -1487 ((-405 |#2|) |#2| |#1| (-112))) (-15 -1487 ((-405 |#2|) |#2| |#1|)) (-15 -1488 (|#2| |#2|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -1489 (|#1| |#2|)) (-15 -1490 ((-168 |#1|) |#2|)) (-15 -1491 (|#1| |#1|)) (-15 -1492 ((-2 (|:| |start| |#2|) (|:| -2818 (-405 |#2|))) |#2|))) (-13 (-363) (-844)) (-1232 (-168 |#1|))) (T -181))
+((-1492 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -2818 (-405 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1491 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1490 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1232 *2)))) (-1489 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1489 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-1487 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-3524 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-4147 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1485 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-637 (-2 (|:| -2818 (-637 *3)) (|:| -1691 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1485 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-637 (-2 (|:| -2818 (-637 *3)) (|:| -1691 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1232 (-168 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-637 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-637 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))))
+(-10 -7 (-15 -1484 ((-637 (-168 |#1|)) |#2|)) (-15 -1484 ((-637 (-168 |#1|)) |#2| |#1|)) (-15 -1485 ((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2| (-112))) (-15 -1485 ((-637 (-2 (|:| -2818 (-637 |#2|)) (|:| -1691 |#1|))) |#2| |#2|)) (-15 -4147 ((-405 |#2|) |#2| |#1| (-112))) (-15 -4147 ((-405 |#2|) |#2| |#1|)) (-15 -4147 ((-405 |#2|) |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -3524 (|#1| |#2|)) (-15 -1487 ((-405 |#2|) |#2| |#1| (-112))) (-15 -1487 ((-405 |#2|) |#2| |#1|)) (-15 -1488 (|#2| |#2|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -1489 (|#1| |#2|)) (-15 -1490 ((-168 |#1|) |#2|)) (-15 -1491 (|#1| |#1|)) (-15 -1492 ((-2 (|:| |start| |#2|) (|:| -2818 (-405 |#2|))) |#2|)))
+((-1493 (((-3 |#2| "failed") |#2|) 14)) (-1494 (((-767) |#2|) 16)) (-1495 ((|#2| |#2| |#2|) 18)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -1493 ((-3 |#2| "failed") |#2|)) (-15 -1494 ((-767) |#2|)) (-15 -1495 (|#2| |#2| |#2|))) (-1207) (-669 |#1|)) (T -182))
+((-1495 (*1 *2 *2 *2) (-12 (-4 *3 (-1207)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))) (-1494 (*1 *2 *3) (-12 (-4 *4 (-1207)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-669 *4)))) (-1493 (*1 *2 *2) (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))))
+(-10 -7 (-15 -1493 ((-3 |#2| "failed") |#2|)) (-15 -1494 ((-767) |#2|)) (-15 -1495 (|#2| |#2| |#2|)))
+((-2953 (((-112) $ $) NIL)) (-1498 (((-637 (-861)) $) NIL)) (-3956 (((-506) $) 8)) (-3650 (((-1151) $) NIL)) (-1500 (((-187) $) 10)) (-3651 (((-1113) $) NIL)) (-1496 (((-686 $) (-1169)) 18)) (-1499 (((-637 (-112)) $) NIL)) (-4361 (((-859) $) NIL)) (-2906 (((-55) $) 12)) (-3444 (((-112) $ $) NIL)))
+(((-183) (-13 (-186) (-10 -8 (-15 -1496 ((-686 $) (-1169)))))) (T -183))
+((-1496 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-183))) (-5 *1 (-183)))))
+(-13 (-186) (-10 -8 (-15 -1496 ((-686 $) (-1169)))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1573 (((-183) $) 7)) (-4361 (((-859) $) 14)) (-1497 (((-637 (-1174)) $) 10)) (-3444 (((-112) $ $) 12)))
+(((-184) (-13 (-1094) (-10 -8 (-15 -1573 ((-183) $)) (-15 -1497 ((-637 (-1174)) $))))) (T -184))
+((-1573 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-184)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-184)))))
+(-13 (-1094) (-10 -8 (-15 -1573 ((-183) $)) (-15 -1497 ((-637 (-1174)) $))))
+((-1498 (((-637 (-861)) $) 16)) (-1500 (((-187) $) 8)) (-1499 (((-637 (-112)) $) 13)) (-2906 (((-55) $) 10)))
+(((-185 |#1|) (-10 -8 (-15 -1498 ((-637 (-861)) |#1|)) (-15 -1499 ((-637 (-112)) |#1|)) (-15 -1500 ((-187) |#1|)) (-15 -2906 ((-55) |#1|))) (-186)) (T -185))
+NIL
+(-10 -8 (-15 -1498 ((-637 (-861)) |#1|)) (-15 -1499 ((-637 (-112)) |#1|)) (-15 -1500 ((-187) |#1|)) (-15 -2906 ((-55) |#1|)))
+((-2953 (((-112) $ $) 7)) (-1498 (((-637 (-861)) $) 17)) (-3956 (((-506) $) 14)) (-3650 (((-1151) $) 9)) (-1500 (((-187) $) 19)) (-3651 (((-1113) $) 10)) (-1499 (((-637 (-112)) $) 18)) (-4361 (((-859) $) 11)) (-2906 (((-55) $) 13)) (-3444 (((-112) $ $) 6)))
+(((-186) (-140)) (T -186))
+((-1500 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-637 (-112))))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-637 (-861))))))
+(-13 (-832 (-506)) (-10 -8 (-15 -1500 ((-187) $)) (-15 -1499 ((-637 (-112)) $)) (-15 -1498 ((-637 (-861)) $))))
+(((-102) . T) ((-610 (-859)) . T) ((-832 (-506)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-8 (($) 7 T CONST)) (-4361 (((-859) $) 12)) (-9 (($) 6 T CONST)) (-3444 (((-112) $ $) 10)))
+(((-187) (-13 (-1094) (-10 -8 (-15 -9 ($) -4367) (-15 -8 ($) -4367) (-15 -7 ($) -4367)))) (T -187))
+((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187))))
+(-13 (-1094) (-10 -8 (-15 -9 ($) -4367) (-15 -8 ($) -4367) (-15 -7 ($) -4367)))
+((-4057 ((|#2| |#2|) 28)) (-4060 (((-112) |#2|) 19)) (-4058 (((-314 |#1|) |#2|) 12)) (-4059 (((-314 |#1|) |#2|) 14)) (-4055 ((|#2| |#2| (-1169)) 68) ((|#2| |#2|) 69)) (-4061 (((-168 (-314 |#1|)) |#2|) 10)) (-4056 ((|#2| |#2| (-1169)) 65) ((|#2| |#2|) 59)))
+(((-188 |#1| |#2|) (-10 -7 (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1169))) (-15 -4056 (|#2| |#2|)) (-15 -4056 (|#2| |#2| (-1169))) (-15 -4058 ((-314 |#1|) |#2|)) (-15 -4059 ((-314 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4061 ((-168 (-314 |#1|)) |#2|))) (-13 (-556) (-846) (-1034 (-546))) (-13 (-27) (-1193) (-421 (-168 |#1|)))) (T -188))
+((-4061 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-168 (-314 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3)))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4059 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-314 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-314 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4056 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3)))))) (-4055 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *4)))))) (-4055 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3)))))))
+(-10 -7 (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1169))) (-15 -4056 (|#2| |#2|)) (-15 -4056 (|#2| |#2| (-1169))) (-15 -4058 ((-314 |#1|) |#2|)) (-15 -4059 ((-314 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4061 ((-168 (-314 |#1|)) |#2|)))
+((-1504 (((-1256 (-684 (-942 |#1|))) (-1256 (-684 |#1|))) 24)) (-4361 (((-1256 (-684 (-407 (-942 |#1|)))) (-1256 (-684 |#1|))) 33)))
+(((-189 |#1|) (-10 -7 (-15 -1504 ((-1256 (-684 (-942 |#1|))) (-1256 (-684 |#1|)))) (-15 -4361 ((-1256 (-684 (-407 (-942 |#1|)))) (-1256 (-684 |#1|))))) (-172)) (T -189))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-1256 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1256 (-684 (-407 (-942 *4))))) (-5 *1 (-189 *4)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1256 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1256 (-684 (-942 *4)))) (-5 *1 (-189 *4)))))
+(-10 -7 (-15 -1504 ((-1256 (-684 (-942 |#1|))) (-1256 (-684 |#1|)))) (-15 -4361 ((-1256 (-684 (-407 (-942 |#1|)))) (-1256 (-684 |#1|)))))
+((-1512 (((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546)))) 66)) (-1514 (((-1171 (-407 (-546))) (-637 (-546)) (-637 (-546))) 75)) (-1505 (((-1171 (-407 (-546))) (-546)) 40)) (-4269 (((-1171 (-407 (-546))) (-546)) 52)) (-4182 (((-407 (-546)) (-1171 (-407 (-546)))) 62)) (-1506 (((-1171 (-407 (-546))) (-546)) 32)) (-1509 (((-1171 (-407 (-546))) (-546)) 48)) (-1508 (((-1171 (-407 (-546))) (-546)) 46)) (-1511 (((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546)))) 60)) (-3281 (((-1171 (-407 (-546))) (-546)) 25)) (-1510 (((-407 (-546)) (-1171 (-407 (-546))) (-1171 (-407 (-546)))) 64)) (-1507 (((-1171 (-407 (-546))) (-546)) 30)) (-1513 (((-1171 (-407 (-546))) (-637 (-546))) 72)))
+(((-190) (-10 -7 (-15 -3281 ((-1171 (-407 (-546))) (-546))) (-15 -1505 ((-1171 (-407 (-546))) (-546))) (-15 -1506 ((-1171 (-407 (-546))) (-546))) (-15 -1507 ((-1171 (-407 (-546))) (-546))) (-15 -1508 ((-1171 (-407 (-546))) (-546))) (-15 -1509 ((-1171 (-407 (-546))) (-546))) (-15 -4269 ((-1171 (-407 (-546))) (-546))) (-15 -1510 ((-407 (-546)) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -1511 ((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -4182 ((-407 (-546)) (-1171 (-407 (-546))))) (-15 -1512 ((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -1513 ((-1171 (-407 (-546))) (-637 (-546)))) (-15 -1514 ((-1171 (-407 (-546))) (-637 (-546)) (-637 (-546)))))) (T -190))
+((-1514 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-1171 (-407 (-546)))) (-5 *2 (-407 (-546))) (-5 *1 (-190)))) (-1511 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))) (-1510 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 (-407 (-546)))) (-5 *2 (-407 (-546))) (-5 *1 (-190)))) (-4269 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-1506 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-1505 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))) (-3281 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(-10 -7 (-15 -3281 ((-1171 (-407 (-546))) (-546))) (-15 -1505 ((-1171 (-407 (-546))) (-546))) (-15 -1506 ((-1171 (-407 (-546))) (-546))) (-15 -1507 ((-1171 (-407 (-546))) (-546))) (-15 -1508 ((-1171 (-407 (-546))) (-546))) (-15 -1509 ((-1171 (-407 (-546))) (-546))) (-15 -4269 ((-1171 (-407 (-546))) (-546))) (-15 -1510 ((-407 (-546)) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -1511 ((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -4182 ((-407 (-546)) (-1171 (-407 (-546))))) (-15 -1512 ((-1171 (-407 (-546))) (-1171 (-407 (-546))) (-1171 (-407 (-546))))) (-15 -1513 ((-1171 (-407 (-546))) (-637 (-546)))) (-15 -1514 ((-1171 (-407 (-546))) (-637 (-546)) (-637 (-546)))))
+((-1516 (((-405 (-1163 (-546))) (-546)) 28)) (-1515 (((-637 (-1163 (-546))) (-546)) 23)) (-3190 (((-1163 (-546)) (-546)) 21)))
+(((-191) (-10 -7 (-15 -1515 ((-637 (-1163 (-546))) (-546))) (-15 -3190 ((-1163 (-546)) (-546))) (-15 -1516 ((-405 (-1163 (-546))) (-546))))) (T -191))
+((-1516 (*1 *2 *3) (-12 (-5 *2 (-405 (-1163 (-546)))) (-5 *1 (-191)) (-5 *3 (-546)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-191)) (-5 *3 (-546)))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-637 (-1163 (-546)))) (-5 *1 (-191)) (-5 *3 (-546)))))
+(-10 -7 (-15 -1515 ((-637 (-1163 (-546))) (-546))) (-15 -3190 ((-1163 (-546)) (-546))) (-15 -1516 ((-405 (-1163 (-546))) (-546))))
+((-1703 (((-1146 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 103)) (-1724 (((-637 (-1151)) (-1146 (-225))) NIL)) (-1517 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 79)) (-1701 (((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225)))) NIL)) (-1723 (((-637 (-1151)) (-637 (-225))) NIL)) (-1725 (((-225) (-1082 (-838 (-225)))) 24)) (-1726 (((-225) (-1082 (-838 (-225)))) 25)) (-1519 (((-378) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 96)) (-1518 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-1721 (((-1151) (-225)) NIL)) (-2956 (((-1151) (-637 (-1151))) 20)) (-1520 (((-1031) (-1169) (-1169) (-1031)) 13)))
+(((-192) (-10 -7 (-15 -1517 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1518 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -1519 ((-378) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))) (-15 -2956 ((-1151) (-637 (-1151)))) (-15 -1520 ((-1031) (-1169) (-1169) (-1031))))) (T -192))
+((-1520 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-192)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-192)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-192)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-225))) (-5 *4 (-1169)) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-637 (-225))) (-5 *1 (-192)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-378)) (-5 *1 (-192)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
+(-10 -7 (-15 -1517 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1518 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -1519 ((-378) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))) (-15 -2956 ((-1151) (-637 (-1151)))) (-15 -1520 ((-1031) (-1169) (-1169) (-1031))))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 55) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-193) (-783)) (T -193))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 60) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 60) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-194) (-783)) (T -194))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 69) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 69) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-195) (-783)) (T -195))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 56) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 56) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-196) (-783)) (T -196))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 67) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 67) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-197) (-783)) (T -197))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 73) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 73) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-198) (-783)) (T -198))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 80) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 80) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-199) (-783)) (T -199))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 70) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 70) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-200) (-783)) (T -200))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 65)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 65)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-201) (-783)) (T -201))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-202) (-783)) (T -202))
NIL
(-783)
-((-1677 (((-112) $ $) NIL)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 78) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 78) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-203) (-783)) (T -203))
NIL
(-783)
-((-1613 (((-3 (-2 (|:| -2516 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 85)) (-1636 (((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-1624 (((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 74)))
-(((-204) (-10 -7 (-15 -1613 ((-3 (-2 (|:| -2516 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1624 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1636 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
-((-1636 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-563)) (-5 *1 (-204)))) (-1624 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-204)))) (-1613 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2516 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(-10 -7 (-15 -1613 ((-3 (-2 (|:| -2516 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1624 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1636 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1701 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1686 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 128)) (-1672 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225)))) 87)) (-1661 (((-379) (-684 (-316 (-225)))) 111)) (-4163 (((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169))) 108)) (-1741 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 30)) (-1715 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1542 (((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225)))) 100)) (-1650 (((-379) (-379) (-640 (-379))) 105) (((-379) (-379) (-379)) 103)) (-1727 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36)))
-(((-205) (-10 -7 (-15 -1650 ((-379) (-379) (-379))) (-15 -1650 ((-379) (-379) (-640 (-379)))) (-15 -1661 ((-379) (-684 (-316 (-225))))) (-15 -4163 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1542 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -1672 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -1686 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1715 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1727 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1741 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
-((-1741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-1542 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169))) (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1650 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1650 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))))
-(-10 -7 (-15 -1650 ((-379) (-379) (-379))) (-15 -1650 ((-379) (-379) (-640 (-379)))) (-15 -1661 ((-379) (-684 (-316 (-225))))) (-15 -4163 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1542 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -1672 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -1686 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1715 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1727 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1741 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-4160 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1718 (((-112) $ $) NIL)))
+((-1521 (((-3 (-2 (|:| -2887 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 85)) (-1523 (((-546) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-1522 (((-3 (-637 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 74)))
+(((-204) (-10 -7 (-15 -1521 ((-3 (-2 (|:| -2887 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1522 ((-3 (-637 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1523 ((-546) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
+((-1523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-546)) (-5 *1 (-204)))) (-1522 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-637 (-225))) (-5 *1 (-204)))) (-1521 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2887 (-113)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(-10 -7 (-15 -1521 ((-3 (-2 (|:| -2887 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1522 ((-3 (-637 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1523 ((-546) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-1528 (((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1527 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 128)) (-1526 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-684 (-314 (-225)))) 87)) (-1525 (((-378) (-684 (-314 (-225)))) 111)) (-2502 (((-684 (-314 (-225))) (-1256 (-314 (-225))) (-637 (-1169))) 108)) (-1531 (((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 30)) (-1529 (((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-4182 (((-684 (-314 (-225))) (-684 (-314 (-225))) (-637 (-1169)) (-1256 (-314 (-225)))) 100)) (-1524 (((-378) (-378) (-637 (-378))) 105) (((-378) (-378) (-378)) 103)) (-1530 (((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36)))
+(((-205) (-10 -7 (-15 -1524 ((-378) (-378) (-378))) (-15 -1524 ((-378) (-378) (-637 (-378)))) (-15 -1525 ((-378) (-684 (-314 (-225))))) (-15 -2502 ((-684 (-314 (-225))) (-1256 (-314 (-225))) (-637 (-1169)))) (-15 -4182 ((-684 (-314 (-225))) (-684 (-314 (-225))) (-637 (-1169)) (-1256 (-314 (-225))))) (-15 -1526 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-684 (-314 (-225))))) (-15 -1527 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1529 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1530 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1531 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
+((-1531 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-205)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-684 (-314 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-205)))) (-4182 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-684 (-314 (-225)))) (-5 *3 (-637 (-1169))) (-5 *4 (-1256 (-314 (-225)))) (-5 *1 (-205)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *4 (-637 (-1169))) (-5 *2 (-684 (-314 (-225)))) (-5 *1 (-205)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-684 (-314 (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1524 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-378))) (-5 *2 (-378)) (-5 *1 (-205)))) (-1524 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-205)))))
+(-10 -7 (-15 -1524 ((-378) (-378) (-378))) (-15 -1524 ((-378) (-378) (-637 (-378)))) (-15 -1525 ((-378) (-684 (-314 (-225))))) (-15 -2502 ((-684 (-314 (-225))) (-1256 (-314 (-225))) (-637 (-1169)))) (-15 -4182 ((-684 (-314 (-225))) (-684 (-314 (-225))) (-637 (-1169)) (-1256 (-314 (-225))))) (-15 -1526 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-684 (-314 (-225))))) (-15 -1527 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1529 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1530 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1531 ((-378) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2791 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3444 (((-112) $ $) NIL)))
(((-206) (-796)) (T -206))
NIL
(-796)
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-4160 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 62)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2791 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 62)) (-3444 (((-112) $ $) NIL)))
(((-207) (-796)) (T -207))
NIL
(-796)
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-4160 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 66)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2791 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 66)) (-3444 (((-112) $ $) NIL)))
(((-208) (-796)) (T -208))
NIL
(-796)
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-4160 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2791 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-3444 (((-112) $ $) NIL)))
(((-209) (-796)) (T -209))
NIL
(-796)
-((-3994 (((-640 (-1169)) (-1169) (-767)) 23)) (-1752 (((-316 (-225)) (-316 (-225))) 31)) (-1777 (((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 73)) (-1764 (((-112) (-225) (-225) (-640 (-316 (-225)))) 44)))
-(((-210) (-10 -7 (-15 -3994 ((-640 (-1169)) (-1169) (-767))) (-15 -1752 ((-316 (-225)) (-316 (-225)))) (-15 -1764 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) (T -210))
-((-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1764 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210)) (-5 *3 (-1169)))))
-(-10 -7 (-15 -3994 ((-640 (-1169)) (-1169) (-767))) (-15 -1752 ((-316 (-225)) (-316 (-225)))) (-15 -1764 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 26)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2900 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 57)) (-1718 (((-112) $ $) NIL)))
+((-4349 (((-637 (-1169)) (-1169) (-767)) 23)) (-1532 (((-314 (-225)) (-314 (-225))) 31)) (-1534 (((-112) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 73)) (-1533 (((-112) (-225) (-225) (-637 (-314 (-225)))) 44)))
+(((-210) (-10 -7 (-15 -4349 ((-637 (-1169)) (-1169) (-767))) (-15 -1532 ((-314 (-225)) (-314 (-225)))) (-15 -1533 ((-112) (-225) (-225) (-637 (-314 (-225))))) (-15 -1534 ((-112) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) (T -210))
+((-1534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1533 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-637 (-314 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-314 (-225))) (-5 *1 (-210)))) (-4349 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-637 (-1169))) (-5 *1 (-210)) (-5 *3 (-1169)))))
+(-10 -7 (-15 -4349 ((-637 (-1169)) (-1169) (-767))) (-15 -1532 ((-314 (-225)) (-314 (-225)))) (-15 -1533 ((-112) (-225) (-225) (-637 (-314 (-225))))) (-15 -1534 ((-112) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 26)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3054 (((-1031) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 57)) (-3444 (((-112) $ $) NIL)))
(((-211) (-891)) (T -211))
NIL
(-891)
-((-1677 (((-112) $ $) NIL)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 21)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2900 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 21)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3054 (((-1031) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) NIL)) (-3444 (((-112) $ $) NIL)))
(((-212) (-891)) (T -212))
NIL
(-891)
-((-1677 (((-112) $ $) NIL)) (-4301 ((|#2| $ (-767) |#2|) 11)) (-4293 ((|#2| $ (-767)) 10)) (-1565 (($) 8)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 18)) (-1718 (((-112) $ $) 13)))
-(((-213 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1565 ($)) (-15 -4293 (|#2| $ (-767))) (-15 -4301 (|#2| $ (-767) |#2|)))) (-917) (-1093)) (T -213))
-((-1565 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093)))) (-4293 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)))) (-4301 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) (-4 *2 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -1565 ($)) (-15 -4293 (|#2| $ (-767))) (-15 -4301 (|#2| $ (-767) |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1651 (((-1262) $) 36) (((-1262) $ (-917) (-917)) 38)) (-2308 (($ $ (-985)) 19) (((-245 (-1151)) $ (-1169)) 15)) (-1463 (((-1262) $) 34)) (-1692 (((-858) $) 31) (($ (-640 |#1|)) 8)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $ $) 27)) (-1813 (($ $ $) 22)))
-(((-214 |#1|) (-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -2308 ($ $ (-985))) (-15 -2308 ((-245 (-1151)) $ (-1169))) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $)) (-15 -1651 ((-1262) $ (-917) (-917))))) (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $))))) (T -214))
-((-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $))))))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ *3)) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $))))))) (-1813 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $))))))) (-1825 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $))))))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -1651 (*2 $))))))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -1651 (*2 $))))))) (-1651 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -1651 (*2 $))))))))
-(-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -2308 ($ $ (-985))) (-15 -2308 ((-245 (-1151)) $ (-1169))) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $)) (-15 -1651 ((-1262) $ (-917) (-917)))))
-((-1788 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1788 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
-((-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
-(-10 -7 (-15 -1788 (|#2| |#4| (-1 |#2| |#2|))))
-((-1833 ((|#2| |#2| (-767) |#2|) 42)) (-1822 ((|#2| |#2| (-767) |#2|) 38)) (-4225 (((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|)))) 56)) (-1810 (((-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|))) |#2|) 52)) (-1844 (((-112) |#2|) 49)) (-2619 (((-418 |#2|) |#2|) 76)) (-2173 (((-418 |#2|) |#2|) 75)) (-4234 ((|#2| |#2| (-767) |#2|) 36)) (-1799 (((-2 (|:| |cont| |#1|) (|:| -1337 (-640 (-2 (|:| |irr| |#2|) (|:| -3259 (-563)))))) |#2| (-112)) 68)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -2173 ((-418 |#2|) |#2|)) (-15 -2619 ((-418 |#2|) |#2|)) (-15 -1799 ((-2 (|:| |cont| |#1|) (|:| -1337 (-640 (-2 (|:| |irr| |#2|) (|:| -3259 (-563)))))) |#2| (-112))) (-15 -1810 ((-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|))) |#2|)) (-15 -4225 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|))))) (-15 -4234 (|#2| |#2| (-767) |#2|)) (-15 -1822 (|#2| |#2| (-767) |#2|)) (-15 -1833 (|#2| |#2| (-767) |#2|)) (-15 -1844 ((-112) |#2|))) (-349) (-1233 |#1|)) (T -216))
-((-1844 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-1833 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-1822 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-4234 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -3248 *5)))) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5)) (-5 *1 (-216 *4 *5)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -3248 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5)))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -2173 ((-418 |#2|) |#2|)) (-15 -2619 ((-418 |#2|) |#2|)) (-15 -1799 ((-2 (|:| |cont| |#1|) (|:| -1337 (-640 (-2 (|:| |irr| |#2|) (|:| -3259 (-563)))))) |#2| (-112))) (-15 -1810 ((-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|))) |#2|)) (-15 -4225 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -3248 |#2|))))) (-15 -4234 (|#2| |#2| (-767) |#2|)) (-15 -1822 (|#2| |#2| (-767) |#2|)) (-15 -1833 (|#2| |#2| (-767) |#2|)) (-15 -1844 ((-112) |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-563) $) NIL (|has| (-563) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-563) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2057 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-563) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-563) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-3426 (((-112) $) NIL (|has| (-563) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-563) (-846)))) (-2238 (($ (-1 (-563) (-563)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-563) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3954 (((-563) $) NIL (|has| (-563) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-563) $) NIL)) (-1856 (($ (-407 (-563))) 9)) (-2219 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 10) $) 10)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-563) $) NIL (|has| (-563) (-545)))) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| (-563) (-816)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1836 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL)))
-(((-217) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -1856 ($ (-407 (-563))))))) (T -217))
-((-3935 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))) (-1856 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))))
-(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -1856 ($ (-407 (-563))))))
-((-1677 (((-112) $ $) NIL)) (-2922 (((-1111) $) 13)) (-3854 (((-1151) $) NIL)) (-3333 (((-483) $) 10)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 25) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 15)) (-1718 (((-112) $ $) NIL)))
-(((-218) (-13 (-1076) (-10 -8 (-15 -3333 ((-483) $)) (-15 -2922 ((-1111) $)) (-15 -3363 ((-1128) $))))) (T -218))
-((-3333 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218)))))
-(-13 (-1076) (-10 -8 (-15 -3333 ((-483) $)) (-15 -2922 ((-1111) $)) (-15 -3363 ((-1128) $))))
-((-2062 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151)) 28) (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|))) 24)) (-1866 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)) 17)))
-(((-219 |#1| |#2|) (-10 -7 (-15 -2062 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -2062 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -1866 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -219))
-((-1866 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1169)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-1193) (-955) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151)) (-4 *3 (-13 (-1193) (-955) (-29 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
-(-10 -7 (-15 -2062 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -2062 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -1866 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112))))
-((-2062 (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)) 46) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|))))) 43) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151)) 47) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|)))) 20)))
-(((-220 |#1|) (-10 -7 (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (T -220))
-((-2062 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6)))) (-5 *5 (-1151)) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5)))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
-(-10 -7 (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -2062 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151))))
-((-2444 (((-2 (|:| -3929 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|)) 21)) (-2212 (((-640 (-316 |#2|)) (-316 |#2|) (-917)) 42)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -2444 ((-2 (|:| -3929 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -2212 ((-640 (-316 |#2|)) (-316 |#2|) (-917)))) (-1045) (-13 (-555) (-846))) (T -221))
-((-2212 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846))) (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -3929 (-1165 *4)) (|:| |deg| (-917)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846))))))
-(-10 -7 (-15 -2444 ((-2 (|:| -3929 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -2212 ((-640 (-316 |#2|)) (-316 |#2|) (-917))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4068 ((|#1| $) NIL)) (-2635 ((|#1| $) 25)) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-2080 (($ $) NIL)) (-1574 (($ $) 31)) (-2147 ((|#1| |#1| $) NIL)) (-2136 ((|#1| $) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3419 (((-767) $) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) NIL)) (-4045 ((|#1| |#1| $) 28)) (-4033 ((|#1| |#1| $) 30)) (-3867 (($ |#1| $) NIL)) (-4238 (((-767) $) 27)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2071 ((|#1| $) NIL)) (-4022 ((|#1| $) 26)) (-4012 ((|#1| $) 24)) (-2808 ((|#1| $) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2099 ((|#1| |#1| $) NIL)) (-1665 (((-112) $) 9)) (-3445 (($) NIL)) (-2088 ((|#1| $) NIL)) (-4078 (($) NIL) (($ (-640 |#1|)) 16)) (-2369 (((-767) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4057 ((|#1| $) 13)) (-2820 (($ (-640 |#1|)) NIL)) (-2061 ((|#1| $) NIL)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -4078 ($ (-640 |#1|))))) (-1093)) (T -222))
-((-4078 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3)))))
-(-13 (-254 |#1|) (-10 -8 (-15 -4078 ($ (-640 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1888 (($ (-316 |#1|)) 23)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2882 (((-112) $) NIL)) (-2130 (((-3 (-316 |#1|) "failed") $) NIL)) (-2057 (((-316 |#1|) $) NIL)) (-2750 (($ $) 31)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-2238 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-2725 (((-316 |#1|) $) NIL)) (-3762 (($ $) 30)) (-3854 (((-1151) $) NIL)) (-1899 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($ (-767)) NIL)) (-1877 (($ $) 32)) (-3871 (((-563) $) NIL)) (-1692 (((-858) $) 54) (($ (-563)) NIL) (($ (-316 |#1|)) NIL)) (-3244 (((-316 |#1|) $ $) NIL)) (-3914 (((-767)) NIL)) (-2239 (($) 25 T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) 28)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 19)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 24) (($ (-316 |#1|) $) 18)))
-(((-223 |#1| |#2|) (-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2725 ((-316 |#1|) $)) (-15 -3762 ($ $)) (-15 -2750 ($ $)) (-15 -3244 ((-316 |#1|) $ $)) (-15 -4334 ($ (-767))) (-15 -1899 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -3871 ((-563) $)) (-15 -2238 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1888 ($ (-316 |#1|))) (-15 -1877 ($ $)))) (-13 (-1045) (-846)) (-640 (-1169))) (T -223))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-3762 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-3244 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-1877 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))))
-(-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2725 ((-316 |#1|) $)) (-15 -3762 ($ $)) (-15 -2750 ($ $)) (-15 -3244 ((-316 |#1|) $ $)) (-15 -4334 ($ (-767))) (-15 -1899 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -3871 ((-563) $)) (-15 -2238 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1888 ($ (-316 |#1|))) (-15 -1877 ($ $))))
-((-3773 (((-112) (-1151)) 22)) (-3784 (((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112)) 32)) (-3795 (((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)) 73) (((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112)) 74)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3773 ((-112) (-1151))) (-15 -3784 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3795 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3795 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -224))
-((-3795 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6)) (-4 *6 (-13 (-1193) (-29 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *5 *6)))) (-3795 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169)) (-5 *5 (-839 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3784 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1193) (-29 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *6 *4)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4))))))
-(-10 -7 (-15 -3773 ((-112) (-1151))) (-15 -3784 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3795 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3795 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 87)) (-3944 (((-563) $) 99)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-1763 (($ $) NIL)) (-1770 (($ $) 75)) (-1618 (($ $) 63)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) 54)) (-2003 (((-112) $ $) NIL)) (-1747 (($ $) 73)) (-1596 (($ $) 61)) (-2807 (((-563) $) 116)) (-1793 (($ $) 78)) (-1642 (($ $) 65)) (-2569 (($) NIL T CONST)) (-3925 (($ $) NIL)) (-2130 (((-3 (-563) "failed") $) 115) (((-3 (-407 (-563)) "failed") $) 112)) (-2057 (((-563) $) 113) (((-407 (-563)) $) 110)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 92)) (-4193 (((-407 (-563)) $ (-767)) 108) (((-407 (-563)) $ (-767) (-767)) 107)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3107 (((-917)) 27) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-3414 (((-112) $) NIL)) (-2179 (($) 37)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-1775 (((-563) $) 33)) (-3401 (((-112) $) 88)) (-2172 (($ $ (-563)) NIL)) (-3975 (($ $) NIL)) (-3426 (((-112) $) 86)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) 51) (($) 32 (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-1776 (($ $ $) 50) (($) 31 (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-4051 (((-563) $) 25)) (-4181 (($ $) 28)) (-3101 (($ $) 55)) (-4372 (($ $) 60)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-3217 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-1693 (((-1113) $) 90)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL)) (-3954 (($ $) NIL)) (-4341 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) 100)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3311 (((-563) $) 26)) (-4171 (($) 36)) (-3372 (($ $) 59)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3605 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-4203 (($ $ (-767)) NIL) (($ $) 93)) (-3206 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-1805 (($ $) 76)) (-1655 (($ $) 66)) (-1783 (($ $) 77)) (-1629 (($ $) 64)) (-1758 (($ $) 74)) (-1607 (($ $) 62)) (-2219 (((-379) $) 104) (((-225) $) 101) (((-888 (-379)) $) NIL) (((-536) $) 43)) (-1692 (((-858) $) 40) (($ (-563)) 58) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 58) (($ (-407 (-563))) NIL)) (-3914 (((-767)) NIL)) (-3965 (($ $) NIL)) (-3227 (((-917)) 30) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-4212 (((-917)) 23)) (-1839 (($ $) 81)) (-1694 (($ $) 69) (($ $ $) 109)) (-3223 (((-112) $ $) NIL)) (-1816 (($ $) 79)) (-1666 (($ $) 67)) (-1861 (($ $) 84)) (-1721 (($ $) 72)) (-1311 (($ $) 82)) (-1734 (($ $) 70)) (-1850 (($ $) 83)) (-1709 (($ $) 71)) (-1828 (($ $) 80)) (-1679 (($ $) 68)) (-1462 (($ $) 117)) (-2239 (($) 34 T CONST)) (-2253 (($) 35 T CONST)) (-2742 (((-1151) $) 17) (((-1151) $ (-112)) 19) (((-1262) (-818) $) 20) (((-1262) (-818) $ (-112)) 21)) (-1507 (($ $) 96)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1474 (($ $ $) 98)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 52)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 44)) (-1836 (($ $ $) 85) (($ $ (-563)) 53)) (-1825 (($ $) 45) (($ $ $) 47)) (-1813 (($ $ $) 46)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 56) (($ $ (-407 (-563))) 127) (($ $ $) 57)) (* (($ (-917) $) 29) (($ (-767) $) NIL) (($ (-563) $) 49) (($ $ $) 48) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-225) (-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -1836 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -4171 ($)) (-15 -4181 ($ $)) (-15 -3101 ($ $)) (-15 -1694 ($ $ $)) (-15 -1507 ($ $)) (-15 -1474 ($ $ $)) (-15 -4193 ((-407 (-563)) $ (-767))) (-15 -4193 ((-407 (-563)) $ (-767) (-767)))))) (T -225))
-((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225)))) (-4171 (*1 *1) (-5 *1 (-225))) (-4181 (*1 *1 *1) (-5 *1 (-225))) (-3101 (*1 *1 *1) (-5 *1 (-225))) (-1694 (*1 *1 *1 *1) (-5 *1 (-225))) (-1507 (*1 *1 *1) (-5 *1 (-225))) (-1474 (*1 *1 *1 *1) (-5 *1 (-225))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) (-4193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))))
-(-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -1836 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -4171 ($)) (-15 -4181 ($ $)) (-15 -3101 ($ $)) (-15 -1694 ($ $ $)) (-15 -1507 ($ $)) (-15 -1474 ($ $ $)) (-15 -4193 ((-407 (-563)) $ (-767))) (-15 -4193 ((-407 (-563)) $ (-767) (-767)))))
-((-1496 (((-169 (-225)) (-767) (-169 (-225))) 11) (((-225) (-767) (-225)) 12)) (-3806 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3818 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1485 (((-169 (-225)) (-169 (-225))) 25) (((-225) (-225)) 24)) (-1534 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 43) (((-225) (-225) (-225)) 35)) (-1558 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 48) (((-225) (-225) (-225)) 45)) (-1521 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-1545 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-1583 (((-169 (-225)) (-169 (-225))) 60) (((-225) (-225)) 59)) (-1570 (((-225) (-225)) 54) (((-169 (-225)) (-169 (-225))) 58)) (-1507 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-1474 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 30) (((-225) (-225) (-225)) 26)))
-(((-226) (-10 -7 (-15 -1507 ((-225) (-225))) (-15 -1507 ((-169 (-225)) (-169 (-225)))) (-15 -1474 ((-225) (-225) (-225))) (-15 -1474 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3806 ((-225) (-225))) (-15 -3806 ((-169 (-225)) (-169 (-225)))) (-15 -1485 ((-225) (-225))) (-15 -1485 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-767) (-225))) (-15 -1496 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -1521 ((-225) (-225) (-225))) (-15 -1521 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1534 ((-225) (-225) (-225))) (-15 -1534 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1545 ((-225) (-225) (-225))) (-15 -1545 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1558 ((-225) (-225) (-225))) (-15 -1558 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1570 ((-169 (-225)) (-169 (-225)))) (-15 -1570 ((-225) (-225))) (-15 -1583 ((-225) (-225))) (-15 -1583 ((-169 (-225)) (-169 (-225)))) (-15 -3818 ((-225) (-225) (-225))) (-15 -3818 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
-((-3818 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3818 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1558 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1558 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
-(-10 -7 (-15 -1507 ((-225) (-225))) (-15 -1507 ((-169 (-225)) (-169 (-225)))) (-15 -1474 ((-225) (-225) (-225))) (-15 -1474 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3806 ((-225) (-225))) (-15 -3806 ((-169 (-225)) (-169 (-225)))) (-15 -1485 ((-225) (-225))) (-15 -1485 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-767) (-225))) (-15 -1496 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -1521 ((-225) (-225) (-225))) (-15 -1521 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1534 ((-225) (-225) (-225))) (-15 -1534 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1545 ((-225) (-225) (-225))) (-15 -1545 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1558 ((-225) (-225) (-225))) (-15 -1558 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1570 ((-169 (-225)) (-169 (-225)))) (-15 -1570 ((-225) (-225))) (-15 -1583 ((-225) (-225))) (-15 -1583 ((-169 (-225)) (-169 (-225)))) (-15 -3818 ((-225) (-225) (-225))) (-15 -3818 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767) (-767)) NIL)) (-3934 (($ $ $) NIL)) (-1769 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-1943 (($ |#1| |#1| |#1|) 32)) (-3870 (((-112) $) NIL)) (-3924 (($ $ (-563) (-563)) NIL)) (-3913 (($ $ (-563) (-563)) NIL)) (-3901 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3953 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3892 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-1589 (($ $ (-563) (-1257 |#1|)) NIL)) (-1572 (($ $ (-563) (-1257 |#1|)) NIL)) (-4165 (($ |#1| |#1| |#1|) 31)) (-2217 (($ (-767) |#1|) NIL)) (-2569 (($) NIL T CONST)) (-1940 (($ $) NIL (|has| |#1| (-307)))) (-1960 (((-1257 |#1|) $ (-563)) NIL)) (-3829 (($ |#1|) 30)) (-3837 (($ |#1|) 29)) (-3847 (($ |#1|) 28)) (-2521 (((-767) $) NIL (|has| |#1| (-555)))) (-4356 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2658 (((-640 |#1|) $) NIL)) (-1929 (((-767) $) NIL (|has| |#1| (-555)))) (-1917 (((-640 (-1257 |#1|)) $) NIL (|has| |#1| (-555)))) (-2380 (((-767) $) NIL)) (-1565 (($ (-767) (-767) |#1|) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2157 ((|#1| $) NIL (|has| |#1| (-6 (-4410 "*"))))) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4040 (($ (-640 (-640 |#1|))) 11)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3734 (((-640 (-640 |#1|)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3694 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3856 (($) 12)) (-3943 (($ $ $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2206 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-3881 (((-112) $) NIL)) (-2168 ((|#1| $) NIL (|has| |#1| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1950 (((-1257 |#1|) $ (-563)) NIL)) (-1692 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) 15) (((-1257 |#1|) (-1257 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 20)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-227 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3856 ($)) (-15 -3847 ($ |#1|)) (-15 -3837 ($ |#1|)) (-15 -3829 ($ |#1|)) (-15 -4165 ($ |#1| |#1| |#1|)) (-15 -1943 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1193))) (T -227))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) (-5 *1 (-227 *3)))) (-3856 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3847 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3837 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3829 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-4165 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1943 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
-(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3856 ($)) (-15 -3847 ($ |#1|)) (-15 -3837 ($ |#1|)) (-15 -3829 ($ |#1|)) (-15 -4165 ($ |#1| |#1| |#1|)) (-15 -1943 ($ |#1| |#1| |#1|))))
-((-3678 (($ (-1 (-112) |#2|) $) 15)) (-1691 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-3863 (($) NIL) (($ (-640 |#2|)) 11)) (-1718 (((-112) $ $) 22)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -3863 (|#1| (-640 |#2|))) (-15 -3863 (|#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-229 |#2|) (-1093)) (T -228))
-NIL
-(-10 -8 (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -3863 (|#1| (-640 |#2|))) (-15 -3863 (|#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-229 |#1|) (-140) (-1093)) (T -229))
+((-2953 (((-112) $ $) NIL)) (-1535 ((|#2| $ (-767) |#2|) 11)) (-3505 ((|#2| $ (-767)) 10)) (-4029 (($) 8)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 18)) (-3444 (((-112) $ $) 13)))
+(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -4029 ($)) (-15 -3505 (|#2| $ (-767))) (-15 -1535 (|#2| $ (-767) |#2|)))) (-915) (-1094)) (T -213))
+((-4029 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1094)))) (-3505 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-915)))) (-1535 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-915)) (-4 *2 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -4029 ($)) (-15 -3505 (|#2| $ (-767))) (-15 -1535 (|#2| $ (-767) |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2122 (((-1262) $) 36) (((-1262) $ (-915) (-915)) 38)) (-4214 (($ $ (-985)) 19) (((-245 (-1151)) $ (-1169)) 15)) (-4032 (((-1262) $) 34)) (-4361 (((-859) $) 31) (($ (-637 |#1|)) 8)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $ $) 27)) (-4254 (($ $ $) 22)))
+(((-214 |#1|) (-13 (-1094) (-613 (-637 |#1|)) (-10 -8 (-15 -4214 ($ $ (-985))) (-15 -4214 ((-245 (-1151)) $ (-1169))) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $)) (-15 -2122 ((-1262) $ (-915) (-915))))) (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $))))) (T -214))
+((-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $))))))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ *3)) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $))))))) (-4254 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $))))))) (-4252 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $))))))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $)) (-15 -2122 (*2 $))))))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $)) (-15 -2122 (*2 $))))))) (-2122 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $)) (-15 -2122 (*2 $))))))))
+(-13 (-1094) (-613 (-637 |#1|)) (-10 -8 (-15 -4214 ($ $ (-985))) (-15 -4214 ((-245 (-1151)) $ (-1169))) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $)) (-15 -2122 ((-1262) $ (-915) (-915)))))
+((-1536 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1536 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
+((-1536 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1232 (-407 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
+(-10 -7 (-15 -1536 (|#2| |#4| (-1 |#2| |#2|))))
+((-1540 ((|#2| |#2| (-767) |#2|) 42)) (-1539 ((|#2| |#2| (-767) |#2|) 38)) (-2508 (((-637 |#2|) (-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|)))) 56)) (-1538 (((-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|))) |#2|) 52)) (-1541 (((-112) |#2|) 49)) (-4148 (((-405 |#2|) |#2|) 76)) (-4147 (((-405 |#2|) |#2|) 75)) (-2509 ((|#2| |#2| (-767) |#2|) 36)) (-1537 (((-2 (|:| |cont| |#1|) (|:| -2818 (-637 (-2 (|:| |irr| |#2|) (|:| -2537 (-546)))))) |#2| (-112)) 68)))
+(((-216 |#1| |#2|) (-10 -7 (-15 -4147 ((-405 |#2|) |#2|)) (-15 -4148 ((-405 |#2|) |#2|)) (-15 -1537 ((-2 (|:| |cont| |#1|) (|:| -2818 (-637 (-2 (|:| |irr| |#2|) (|:| -2537 (-546)))))) |#2| (-112))) (-15 -1538 ((-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|))) |#2|)) (-15 -2508 ((-637 |#2|) (-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|))))) (-15 -2509 (|#2| |#2| (-767) |#2|)) (-15 -1539 (|#2| |#2| (-767) |#2|)) (-15 -1540 (|#2| |#2| (-767) |#2|)) (-15 -1541 ((-112) |#2|))) (-350) (-1232 |#1|)) (T -216))
+((-1541 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))) (-1540 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4)))) (-1539 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4)))) (-2509 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| |deg| (-767)) (|:| -2960 *5)))) (-4 *5 (-1232 *4)) (-4 *4 (-350)) (-5 *2 (-637 *5)) (-5 *1 (-216 *4 *5)))) (-1538 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-637 (-2 (|:| |deg| (-767)) (|:| -2960 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-350)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1232 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-405 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-405 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -4147 ((-405 |#2|) |#2|)) (-15 -4148 ((-405 |#2|) |#2|)) (-15 -1537 ((-2 (|:| |cont| |#1|) (|:| -2818 (-637 (-2 (|:| |irr| |#2|) (|:| -2537 (-546)))))) |#2| (-112))) (-15 -1538 ((-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|))) |#2|)) (-15 -2508 ((-637 |#2|) (-637 (-2 (|:| |deg| (-767)) (|:| -2960 |#2|))))) (-15 -2509 (|#2| |#2| (-767) |#2|)) (-15 -1539 (|#2| |#2| (-767) |#2|)) (-15 -1540 (|#2| |#2| (-767) |#2|)) (-15 -1541 ((-112) |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-546) $) NIL (|has| (-546) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-546) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-546) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-546) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-546) (-1034 (-546))))) (-3564 (((-546) $) NIL) (((-1169) $) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-546) (-1034 (-546)))) (((-546) $) NIL (|has| (-546) (-1034 (-546))))) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-546) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-546) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-546) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-546) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-546) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-546) (-1144)))) (-3595 (((-112) $) NIL (|has| (-546) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-546) (-846)))) (-4373 (($ (-1 (-546) (-546)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-546) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-546) (-307))) (((-407 (-546)) $) NIL)) (-3522 (((-546) $) NIL (|has| (-546) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-546)) (-637 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-546) (-546)) NIL (|has| (-546) (-309 (-546)))) (($ $ (-293 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-293 (-546)))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-1169)) (-637 (-546))) NIL (|has| (-546) (-514 (-1169) (-546)))) (($ $ (-1169) (-546)) NIL (|has| (-546) (-514 (-1169) (-546))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-546)) NIL (|has| (-546) (-286 (-546) (-546))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-546) $) NIL)) (-1542 (($ (-407 (-546))) 9)) (-4385 (((-886 (-546)) $) NIL (|has| (-546) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-546) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-546) (-611 (-535)))) (((-378) $) NIL (|has| (-546) (-1016))) (((-225) $) NIL (|has| (-546) (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-546) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) 8) (($ (-546)) NIL) (($ (-1169)) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL) (((-1000 10) $) 10)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-546) (-906))) (|has| (-546) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-546) $) NIL (|has| (-546) (-545)))) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| (-546) (-816)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-546) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-546) (-846)))) (-4364 (($ $ $) NIL) (($ (-546) (-546)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-546) $) NIL) (($ $ (-546)) NIL)))
+(((-217) (-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 10)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -1542 ($ (-407 (-546))))))) (T -217))
+((-3520 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-217)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-217)))))
+(-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 10)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -1542 ($ (-407 (-546))))))
+((-2953 (((-112) $ $) NIL)) (-3727 (((-1108) $) 13)) (-3650 (((-1151) $) NIL)) (-3586 (((-483) $) 10)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 25) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 15)) (-3444 (((-112) $ $) NIL)))
+(((-218) (-13 (-1076) (-10 -8 (-15 -3586 ((-483) $)) (-15 -3727 ((-1108) $)) (-15 -3641 ((-1128) $))))) (T -218))
+((-3586 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-218)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218)))))
+(-13 (-1076) (-10 -8 (-15 -3586 ((-483) $)) (-15 -3727 ((-1108) $)) (-15 -3641 ((-1128) $))))
+((-4227 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1085 (-838 |#2|)) (-1151)) 28) (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1085 (-838 |#2|))) 24)) (-1543 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1169) (-838 |#2|) (-838 |#2|) (-112)) 17)))
+(((-219 |#1| |#2|) (-10 -7 (-15 -4227 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1085 (-838 |#2|)))) (-15 -4227 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1085 (-838 |#2|)) (-1151))) (-15 -1543 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1169) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-956) (-29 |#1|))) (T -219))
+((-1543 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1169)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-4 *3 (-13 (-1193) (-956) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-838 *3)))) (-4227 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-838 *3))) (-5 *5 (-1151)) (-4 *3 (-13 (-1193) (-956) (-29 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *6 *3)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-838 *3))) (-4 *3 (-13 (-1193) (-956) (-29 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5 *3)))))
+(-10 -7 (-15 -4227 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1085 (-838 |#2|)))) (-15 -4227 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1085 (-838 |#2|)) (-1151))) (-15 -1543 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-637 (-838 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1169) (-838 |#2|) (-838 |#2|) (-112))))
+((-4227 (((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|)))) (-1151)) 46) (((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|))))) 43) (((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|))) (-1151)) 47) (((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|)))) 20)))
+(((-220 |#1|) (-10 -7 (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|))))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|))) (-1151))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|)))))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|)))) (-1151)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (T -220))
+((-4227 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-838 (-407 (-942 *6))))) (-5 *5 (-1151)) (-5 *3 (-407 (-942 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 (-314 *6))) (|:| |f2| (-637 (-838 (-314 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-220 *6)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-838 (-407 (-942 *5))))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 (-314 *5))) (|:| |f2| (-637 (-838 (-314 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5)))) (-4227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-942 *6))) (-5 *4 (-1085 (-838 (-314 *6)))) (-5 *5 (-1151)) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 (-314 *6))) (|:| |f2| (-637 (-838 (-314 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *6)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1085 (-838 (-314 *5)))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |f1| (-838 (-314 *5))) (|:| |f2| (-637 (-838 (-314 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5)))))
+(-10 -7 (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|))))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-314 |#1|))) (-1151))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|)))))) (-15 -4227 ((-3 (|:| |f1| (-838 (-314 |#1|))) (|:| |f2| (-637 (-838 (-314 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-407 (-942 |#1|)) (-1085 (-838 (-407 (-942 |#1|)))) (-1151))))
+((-4257 (((-2 (|:| -2161 (-1163 |#1|)) (|:| |deg| (-915))) (-1163 |#1|)) 21)) (-4378 (((-637 (-314 |#2|)) (-314 |#2|) (-915)) 42)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -4257 ((-2 (|:| -2161 (-1163 |#1|)) (|:| |deg| (-915))) (-1163 |#1|))) (-15 -4378 ((-637 (-314 |#2|)) (-314 |#2|) (-915)))) (-1045) (-13 (-556) (-846))) (T -221))
+((-4378 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-4 *6 (-13 (-556) (-846))) (-5 *2 (-637 (-314 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-314 *6)) (-4 *5 (-1045)))) (-4257 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2161 (-1163 *4)) (|:| |deg| (-915)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1163 *4)) (-4 *5 (-13 (-556) (-846))))))
+(-10 -7 (-15 -4257 ((-2 (|:| -2161 (-1163 |#1|)) (|:| |deg| (-915))) (-1163 |#1|))) (-15 -4378 ((-637 (-314 |#2|)) (-314 |#2|) (-915))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1585 ((|#1| $) NIL)) (-3735 ((|#1| $) 25)) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-3392 (($ $) NIL)) (-2423 (($ $) 31)) (-3737 ((|#1| |#1| $) NIL)) (-3736 ((|#1| $) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-4248 (((-767) $) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) NIL)) (-1583 ((|#1| |#1| $) 28)) (-1582 ((|#1| |#1| $) 30)) (-4022 (($ |#1| $) NIL)) (-2988 (((-767) $) 27)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-3391 ((|#1| $) NIL)) (-1581 ((|#1| $) 26)) (-1580 ((|#1| $) 24)) (-1360 ((|#1| $) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3394 ((|#1| |#1| $) NIL)) (-3814 (((-112) $) 9)) (-3979 (($) NIL)) (-3393 ((|#1| $) NIL)) (-1586 (($) NIL) (($ (-637 |#1|)) 16)) (-3734 (((-767) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-1584 ((|#1| $) 13)) (-1361 (($ (-637 |#1|)) NIL)) (-3390 ((|#1| $) NIL)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -1586 ($ (-637 |#1|))))) (-1094)) (T -222))
+((-1586 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))))
+(-13 (-254 |#1|) (-10 -8 (-15 -1586 ($ (-637 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1545 (($ (-314 |#1|)) 23)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3051 (((-112) $) NIL)) (-3565 (((-3 (-314 |#1|) "failed") $) NIL)) (-3564 (((-314 |#1|) $) NIL)) (-4374 (($ $) 31)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-4373 (($ (-1 (-314 |#1|) (-314 |#1|)) $) NIL)) (-3582 (((-314 |#1|) $) NIL)) (-1547 (($ $) 30)) (-3650 (((-1151) $) NIL)) (-1546 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($ (-767)) NIL)) (-1544 (($ $) 32)) (-4363 (((-546) $) NIL)) (-4361 (((-859) $) 54) (($ (-546)) NIL) (($ (-314 |#1|)) NIL)) (-4092 (((-314 |#1|) $ $) NIL)) (-3518 (((-767)) NIL)) (-3047 (($) 25 T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) 28)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 19)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 24) (($ (-314 |#1|) $) 18)))
+(((-223 |#1| |#2|) (-13 (-618 (-314 |#1|)) (-1034 (-314 |#1|)) (-10 -8 (-15 -3582 ((-314 |#1|) $)) (-15 -1547 ($ $)) (-15 -4374 ($ $)) (-15 -4092 ((-314 |#1|) $ $)) (-15 -2551 ($ (-767))) (-15 -1546 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -4363 ((-546) $)) (-15 -4373 ($ (-1 (-314 |#1|) (-314 |#1|)) $)) (-15 -1545 ($ (-314 |#1|))) (-15 -1544 ($ $)))) (-13 (-1045) (-846)) (-637 (-1169))) (T -223))
+((-3582 (*1 *2 *1) (-12 (-5 *2 (-314 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-637 (-1169))))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-637 (-1169))))) (-4092 (*1 *2 *1 *1) (-12 (-5 *2 (-314 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-637 (-1169))))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-314 *3) (-314 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-637 (-1169))))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-314 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-637 (-1169))))) (-1544 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-637 (-1169))))))
+(-13 (-618 (-314 |#1|)) (-1034 (-314 |#1|)) (-10 -8 (-15 -3582 ((-314 |#1|) $)) (-15 -1547 ($ $)) (-15 -4374 ($ $)) (-15 -4092 ((-314 |#1|) $ $)) (-15 -2551 ($ (-767))) (-15 -1546 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -4363 ((-546) $)) (-15 -4373 ($ (-1 (-314 |#1|) (-314 |#1|)) $)) (-15 -1545 ($ (-314 |#1|))) (-15 -1544 ($ $))))
+((-1548 (((-112) (-1151)) 22)) (-1549 (((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112)) 32)) (-1550 (((-3 (-112) "failed") (-1163 |#2|) (-838 |#2|) (-838 |#2|) (-112)) 73) (((-3 (-112) "failed") (-942 |#1|) (-1169) (-838 |#2|) (-838 |#2|) (-112)) 74)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -1548 ((-112) (-1151))) (-15 -1549 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -1550 ((-3 (-112) "failed") (-942 |#1|) (-1169) (-838 |#2|) (-838 |#2|) (-112))) (-15 -1550 ((-3 (-112) "failed") (-1163 |#2|) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-29 |#1|))) (T -224))
+((-1550 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1163 *6)) (-5 *4 (-838 *6)) (-4 *6 (-13 (-1193) (-29 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-224 *5 *6)))) (-1550 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1169)) (-5 *5 (-838 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1549 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1193) (-29 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-224 *6 *4)))) (-1548 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4))))))
+(-10 -7 (-15 -1548 ((-112) (-1151))) (-15 -1549 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -1550 ((-3 (-112) "failed") (-942 |#1|) (-1169) (-838 |#2|) (-838 |#2|) (-112))) (-15 -1550 ((-3 (-112) "failed") (-1163 |#2|) (-838 |#2|) (-838 |#2|) (-112))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 87)) (-3521 (((-546) $) 99)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4185 (($ $) NIL)) (-3898 (($ $) 75)) (-4054 (($ $) 63)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) 54)) (-1740 (((-112) $ $) NIL)) (-3896 (($ $) 73)) (-4053 (($ $) 61)) (-4038 (((-546) $) 116)) (-3900 (($ $) 78)) (-4052 (($ $) 65)) (-4139 (($) NIL T CONST)) (-3519 (($ $) NIL)) (-3565 (((-3 (-546) #1="failed") $) 115) (((-3 (-407 (-546)) #1#) $) 112)) (-3564 (((-546) $) 113) (((-407 (-546)) $) 110)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) 92)) (-1895 (((-407 (-546)) $ (-767)) 108) (((-407 (-546)) $ (-767) (-767)) 107)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2516 (((-915)) 27) (((-915) (-915)) NIL (|has| $ (-6 -4399)))) (-3594 (((-112) $) NIL)) (-4042 (($) 37)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL)) (-4186 (((-546) $) 33)) (-2552 (((-112) $) 88)) (-3401 (($ $ (-546)) NIL)) (-3524 (($ $) NIL)) (-3595 (((-112) $) 86)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-2919 (($ $ $) 51) (($) 32 (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-3249 (($ $ $) 50) (($) 31 (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-2517 (((-546) $) 25)) (-1894 (($ $) 28)) (-1893 (($ $) 55)) (-4357 (($ $) 60)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-1924 (((-915) (-546)) NIL (|has| $ (-6 -4399)))) (-3651 (((-1113) $) 90)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL)) (-3522 (($ $) NIL)) (-3662 (($ (-546) (-546)) NIL) (($ (-546) (-546) (-915)) 100)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-2543 (((-546) $) 26)) (-1892 (($) 36)) (-4358 (($ $) 59)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3000 (((-915)) NIL) (((-915) (-915)) NIL (|has| $ (-6 -4399)))) (-4225 (($ $ (-767)) NIL) (($ $) 93)) (-1923 (((-915) (-546)) NIL (|has| $ (-6 -4399)))) (-3901 (($ $) 76)) (-4051 (($ $) 66)) (-3899 (($ $) 77)) (-4050 (($ $) 64)) (-3897 (($ $) 74)) (-4049 (($ $) 62)) (-4385 (((-378) $) 104) (((-225) $) 101) (((-886 (-378)) $) NIL) (((-535) $) 43)) (-4361 (((-859) $) 40) (($ (-546)) 58) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-546)) 58) (($ (-407 (-546))) NIL)) (-3518 (((-767)) NIL)) (-3523 (($ $) NIL)) (-1925 (((-915)) 30) (((-915) (-915)) NIL (|has| $ (-6 -4399)))) (-3083 (((-915)) 23)) (-3904 (($ $) 81)) (-3892 (($ $) 69) (($ $ $) 109)) (-2219 (((-112) $ $) NIL)) (-3902 (($ $) 79)) (-3890 (($ $) 67)) (-3906 (($ $) 84)) (-3894 (($ $) 72)) (-3907 (($ $) 82)) (-3895 (($ $) 70)) (-3905 (($ $) 83)) (-3893 (($ $) 71)) (-3903 (($ $) 80)) (-3891 (($ $) 68)) (-3794 (($ $) 117)) (-3047 (($) 34 T CONST)) (-3053 (($) 35 T CONST)) (-2885 (((-1151) $) 17) (((-1151) $ (-112)) 19) (((-1262) (-819) $) 20) (((-1262) (-819) $ (-112)) 21)) (-3798 (($ $) 96)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-3795 (($ $ $) 98)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 52)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 44)) (-4364 (($ $ $) 85) (($ $ (-546)) 53)) (-4252 (($ $) 45) (($ $ $) 47)) (-4254 (($ $ $) 46)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 56) (($ $ (-407 (-546))) 127) (($ $ $) 57)) (* (($ (-915) $) 29) (($ (-767) $) NIL) (($ (-546) $) 49) (($ $ $) 48) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-225) (-13 (-404) (-233) (-817) (-1193) (-611 (-535)) (-10 -8 (-15 -4364 ($ $ (-546))) (-15 ** ($ $ $)) (-15 -1892 ($)) (-15 -1894 ($ $)) (-15 -1893 ($ $)) (-15 -3892 ($ $ $)) (-15 -3798 ($ $)) (-15 -3795 ($ $ $)) (-15 -1895 ((-407 (-546)) $ (-767))) (-15 -1895 ((-407 (-546)) $ (-767) (-767)))))) (T -225))
+((** (*1 *1 *1 *1) (-5 *1 (-225))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-225)))) (-1892 (*1 *1) (-5 *1 (-225))) (-1894 (*1 *1 *1) (-5 *1 (-225))) (-1893 (*1 *1 *1) (-5 *1 (-225))) (-3892 (*1 *1 *1 *1) (-5 *1 (-225))) (-3798 (*1 *1 *1) (-5 *1 (-225))) (-3795 (*1 *1 *1 *1) (-5 *1 (-225))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-225)))) (-1895 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-225)))))
+(-13 (-404) (-233) (-817) (-1193) (-611 (-535)) (-10 -8 (-15 -4364 ($ $ (-546))) (-15 ** ($ $ $)) (-15 -1892 ($)) (-15 -1894 ($ $)) (-15 -1893 ($ $)) (-15 -3892 ($ $ $)) (-15 -3798 ($ $)) (-15 -3795 ($ $ $)) (-15 -1895 ((-407 (-546)) $ (-767))) (-15 -1895 ((-407 (-546)) $ (-767) (-767)))))
+((-3797 (((-168 (-225)) (-767) (-168 (-225))) 11) (((-225) (-767) (-225)) 12)) (-1551 (((-168 (-225)) (-168 (-225))) 13) (((-225) (-225)) 14)) (-1552 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3796 (((-168 (-225)) (-168 (-225))) 25) (((-225) (-225)) 24)) (-3800 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 43) (((-225) (-225) (-225)) 35)) (-3802 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 48) (((-225) (-225) (-225)) 45)) (-3799 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3801 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3804 (((-168 (-225)) (-168 (-225))) 60) (((-225) (-225)) 59)) (-3803 (((-225) (-225)) 54) (((-168 (-225)) (-168 (-225))) 58)) (-3798 (((-168 (-225)) (-168 (-225))) 8) (((-225) (-225)) 9)) (-3795 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 30) (((-225) (-225) (-225)) 26)))
+(((-226) (-10 -7 (-15 -3798 ((-225) (-225))) (-15 -3798 ((-168 (-225)) (-168 (-225)))) (-15 -3795 ((-225) (-225) (-225))) (-15 -3795 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1551 ((-225) (-225))) (-15 -1551 ((-168 (-225)) (-168 (-225)))) (-15 -3796 ((-225) (-225))) (-15 -3796 ((-168 (-225)) (-168 (-225)))) (-15 -3797 ((-225) (-767) (-225))) (-15 -3797 ((-168 (-225)) (-767) (-168 (-225)))) (-15 -3799 ((-225) (-225) (-225))) (-15 -3799 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3800 ((-225) (-225) (-225))) (-15 -3800 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3801 ((-225) (-225) (-225))) (-15 -3801 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3802 ((-225) (-225) (-225))) (-15 -3802 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3803 ((-168 (-225)) (-168 (-225)))) (-15 -3803 ((-225) (-225))) (-15 -3804 ((-225) (-225))) (-15 -3804 ((-168 (-225)) (-168 (-225)))) (-15 -1552 ((-225) (-225) (-225))) (-15 -1552 ((-168 (-225)) (-168 (-225)) (-168 (-225)))))) (T -226))
+((-1552 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1552 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3801 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3801 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3800 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3800 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3797 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-3797 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
+(-10 -7 (-15 -3798 ((-225) (-225))) (-15 -3798 ((-168 (-225)) (-168 (-225)))) (-15 -3795 ((-225) (-225) (-225))) (-15 -3795 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1551 ((-225) (-225))) (-15 -1551 ((-168 (-225)) (-168 (-225)))) (-15 -3796 ((-225) (-225))) (-15 -3796 ((-168 (-225)) (-168 (-225)))) (-15 -3797 ((-225) (-767) (-225))) (-15 -3797 ((-168 (-225)) (-767) (-168 (-225)))) (-15 -3799 ((-225) (-225) (-225))) (-15 -3799 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3800 ((-225) (-225) (-225))) (-15 -3800 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3801 ((-225) (-225) (-225))) (-15 -3801 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3802 ((-225) (-225) (-225))) (-15 -3802 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3803 ((-168 (-225)) (-168 (-225)))) (-15 -3803 ((-225) (-225))) (-15 -3804 ((-225) (-225))) (-15 -3804 ((-168 (-225)) (-168 (-225)))) (-15 -1552 ((-225) (-225) (-225))) (-15 -1552 ((-168 (-225)) (-168 (-225)) (-168 (-225)))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767) (-767)) NIL)) (-2480 (($ $ $) NIL)) (-3825 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-4288 (($ |#1| |#1| |#1|) 32)) (-3513 (((-112) $) NIL)) (-2479 (($ $ (-546) (-546)) NIL)) (-2478 (($ $ (-546) (-546)) NIL)) (-2477 (($ $ (-546) (-546) (-546) (-546)) NIL)) (-2482 (($ $) NIL)) (-3515 (((-112) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-2476 (($ $ (-546) (-546) $) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546)) $) NIL)) (-1335 (($ $ (-546) (-1256 |#1|)) NIL)) (-1334 (($ $ (-546) (-1256 |#1|)) NIL)) (-4262 (($ |#1| |#1| |#1|) 31)) (-3744 (($ (-767) |#1|) NIL)) (-4139 (($) NIL T CONST)) (-3502 (($ $) NIL (|has| |#1| (-307)))) (-3504 (((-1256 |#1|) $ (-546)) NIL)) (-1553 (($ |#1|) 30)) (-1554 (($ |#1|) 29)) (-1555 (($ |#1|) 28)) (-3501 (((-767) $) NIL (|has| |#1| (-556)))) (-1672 ((|#1| $ (-546) (-546) |#1|) NIL)) (-3505 ((|#1| $ (-546) (-546)) NIL)) (-2103 (((-637 |#1|) $) NIL)) (-3500 (((-767) $) NIL (|has| |#1| (-556)))) (-3499 (((-637 (-1256 |#1|)) $) NIL (|has| |#1| (-556)))) (-3507 (((-767) $) NIL)) (-4029 (($ (-767) (-767) |#1|) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3738 ((|#1| $) NIL (|has| |#1| (-6 (-4410 #1="*"))))) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-3516 (($ (-637 (-637 |#1|))) 11)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4008 (((-637 (-637 |#1|)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4004 (((-3 $ #2="failed") $) NIL (|has| |#1| (-363)))) (-1556 (($) 12)) (-2481 (($ $ $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-3872 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-556)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) (-546)) NIL) ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546))) NIL)) (-3743 (($ (-637 |#1|)) NIL) (($ (-637 $)) NIL)) (-3514 (((-112) $) NIL)) (-3739 ((|#1| $) NIL (|has| |#1| (-6 (-4410 #1#))))) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3503 (((-1256 |#1|) $ (-546)) NIL)) (-4361 (($ (-1256 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-546) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) 15) (((-1256 |#1|) (-1256 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 20)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-227 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -1556 ($)) (-15 -1555 ($ |#1|)) (-15 -1554 ($ |#1|)) (-15 -1553 ($ |#1|)) (-15 -4262 ($ |#1| |#1| |#1|)) (-15 -4288 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1193))) (T -227))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) (-5 *1 (-227 *3)))) (-1556 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1555 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1554 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1553 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-4262 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-4288 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -1556 ($)) (-15 -1555 ($ |#1|)) (-15 -1554 ($ |#1|)) (-15 -1553 ($ |#1|)) (-15 -4262 ($ |#1| |#1| |#1|)) (-15 -4288 ($ |#1| |#1| |#1|))))
+((-1666 (($ (-1 (-112) |#2|) $) 15)) (-3816 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-1557 (($) NIL) (($ (-637 |#2|)) 11)) (-3444 (((-112) $ $) 22)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -1666 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -1557 (|#1| (-637 |#2|))) (-15 -1557 (|#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228))
+NIL
+(-10 -8 (-15 -1666 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -1557 (|#1| (-637 |#2|))) (-15 -1557 (|#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-229 |#1|) (-140) (-1094)) (T -229))
NIL
(-13 (-235 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-4203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 11) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 19) (($ $ (-767)) NIL) (($ $) 16)) (-3213 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -3213 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3213 (|#1| |#1| (-1169))) (-15 -3213 (|#1| |#1| (-640 (-1169)))) (-15 -3213 (|#1| |#1| (-1169) (-767))) (-15 -3213 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3213 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3213 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-4225 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 11) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) 19) (($ $ (-767)) NIL) (($ $) 16)) (-3058 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3058 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3058 (|#1| |#1| (-1169))) (-15 -3058 (|#1| |#1| (-637 (-1169)))) (-15 -3058 (|#1| |#1| (-1169) (-767))) (-15 -3058 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3058 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3058 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230))
NIL
-(-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -3213 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3213 (|#1| |#1| (-1169))) (-15 -3213 (|#1| |#1| (-640 (-1169)))) (-15 -3213 (|#1| |#1| (-1169) (-767))) (-15 -3213 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3213 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3213 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-4203 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3058 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3058 (|#1| |#1| (-1169))) (-15 -3058 (|#1| |#1| (-637 (-1169)))) (-15 -3058 (|#1| |#1| (-1169) (-767))) (-15 -3058 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3058 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3058 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4225 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-767)) 51) (($ $ (-637 (-1169)) (-637 (-767))) 44 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 42 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-767)) 49) (($ $ (-637 (-1169)) (-637 (-767))) 48 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 46 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-231 |#1|) (-140) (-1045)) (T -231))
-((-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-4203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-3213 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))))
-(-13 (-1045) (-10 -8 (-15 -4203 ($ $ (-1 |t#1| |t#1|))) (-15 -4203 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -3213 ($ $ (-1 |t#1| |t#1|))) (-15 -3213 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-233) |has| |#1| (-233)) ((-643 $) . T) ((-722) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-4203 (($ $) NIL) (($ $ (-767)) 10)) (-3213 (($ $) 8) (($ $ (-767)) 12)))
-(((-232 |#1|) (-10 -8 (-15 -3213 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-767))) (-15 -3213 (|#1| |#1|)) (-15 -4203 (|#1| |#1|))) (-233)) (T -232))
-NIL
-(-10 -8 (-15 -3213 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-767))) (-15 -3213 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-4203 (($ $) 38) (($ $ (-767)) 36)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $) 37) (($ $ (-767)) 35)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-4225 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))))
+(-13 (-1045) (-10 -8 (-15 -4225 ($ $ (-1 |t#1| |t#1|))) (-15 -4225 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -3058 ($ $ (-1 |t#1| |t#1|))) (-15 -3058 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-233) |has| |#1| (-233)) ((-643 $) . T) ((-722) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-4225 (($ $) NIL) (($ $ (-767)) 10)) (-3058 (($ $) 8) (($ $ (-767)) 12)))
+(((-232 |#1|) (-10 -8 (-15 -3058 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-767))) (-15 -3058 (|#1| |#1|)) (-15 -4225 (|#1| |#1|))) (-233)) (T -232))
+NIL
+(-10 -8 (-15 -3058 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-767))) (-15 -3058 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4225 (($ $) 38) (($ $ (-767)) 36)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $) 37) (($ $ (-767)) 35)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-233) (-140)) (T -233))
-((-4203 (*1 *1 *1) (-4 *1 (-233))) (-3213 (*1 *1 *1) (-4 *1 (-233))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-3213 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))))
-(-13 (-1045) (-10 -8 (-15 -4203 ($ $)) (-15 -3213 ($ $)) (-15 -4203 ($ $ (-767))) (-15 -3213 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-3863 (($) 12) (($ (-640 |#2|)) NIL)) (-1870 (($ $) 14)) (-1706 (($ (-640 |#2|)) 10)) (-1692 (((-858) $) 21)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -3863 (|#1| (-640 |#2|))) (-15 -3863 (|#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1870 (|#1| |#1|))) (-235 |#2|) (-1093)) (T -234))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -3863 (|#1| (-640 |#2|))) (-15 -3863 (|#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1870 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-235 |#1|) (-140) (-1093)) (T -235))
-((-3863 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3)))) (-1691 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1093)))) (-3678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1093)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3863 ($)) (-15 -3863 ($ (-640 |t#1|))) (IF (|has| $ (-6 -4408)) (PROGN (-15 -1691 ($ |t#1| $)) (-15 -1691 ($ (-1 (-112) |t#1|) $)) (-15 -3678 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-3872 (((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563)))) 27)))
-(((-236) (-10 -7 (-15 -3872 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563))))))) (T -236))
-((-3872 (*1 *2 *3) (-12 (-5 *3 (-294 (-948 (-563)))) (-5 *2 (-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767)))))) (-5 *1 (-236)))))
-(-10 -7 (-15 -3872 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563))))))
-((-3750 (((-767)) 51)) (-1476 (((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 49) (((-684 |#3|) (-684 $)) 41) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3526 (((-134)) 57)) (-4203 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1692 (((-1257 |#3|) $) NIL) (($ |#3|) NIL) (((-858) $) NIL) (($ (-563)) 12) (($ (-407 (-563))) NIL)) (-3914 (((-767)) 15)) (-1836 (($ $ |#3|) 54)))
-(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)) (-15 -3914 ((-767))) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1692 (|#1| |#3|)) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1476 ((-684 |#3|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3750 ((-767))) (-15 -1836 (|#1| |#1| |#3|)) (-15 -3526 ((-134))) (-15 -1692 ((-1257 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1208)) (T -237))
-((-3526 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3750 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3914 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
-(-10 -8 (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)) (-15 -3914 ((-767))) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1692 (|#1| |#3|)) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1476 ((-684 |#3|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3750 ((-767))) (-15 -1836 (|#1| |#1| |#3|)) (-15 -3526 ((-134))) (-15 -1692 ((-1257 |#3|) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-3439 (((-112) $) 72 (|has| |#2| (-131)))) (-2392 (($ (-917)) 125 (|has| |#2| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-4092 (($ $ $) 121 (|has| |#2| (-789)))) (-3905 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-3001 (((-112) $ (-767)) 8)) (-3750 (((-767)) 107 (|has| |#2| (-368)))) (-2807 (((-563) $) 119 (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) 52 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-2130 (((-3 (-563) "failed") $) 67 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) 64 (-2188 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1093)))) (-2057 (((-563) $) 66 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) 63 (-2188 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 62 (|has| |#2| (-1093)))) (-1476 (((-684 (-563)) (-684 $)) 106 (-2188 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 105 (-2188 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 104 (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) 103 (|has| |#2| (-1045)))) (-3951 (((-3 $ "failed") $) 79 (|has| |#2| (-722)))) (-1690 (($) 110 (|has| |#2| (-368)))) (-4356 ((|#2| $ (-563) |#2|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#2| $ (-563)) 51)) (-3414 (((-112) $) 117 (|has| |#2| (-844)))) (-2658 (((-640 |#2|) $) 30 (|has| $ (-6 -4408)))) (-3401 (((-112) $) 81 (|has| |#2| (-722)))) (-3426 (((-112) $) 118 (|has| |#2| (-844)))) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 116 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3523 (((-640 |#2|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 115 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-4347 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2|) $) 35)) (-3990 (((-917) $) 109 (|has| |#2| (-368)))) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#2| (-1093)))) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-2552 (($ (-917)) 108 (|has| |#2| (-368)))) (-1693 (((-1113) $) 21 (|has| |#2| (-1093)))) (-3782 ((|#2| $) 42 (|has| (-563) (-846)))) (-2221 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#2| $ (-563) |#2|) 50) ((|#2| $ (-563)) 49)) (-4121 ((|#2| $ $) 124 (|has| |#2| (-1045)))) (-2509 (($ (-1257 |#2|)) 126)) (-3526 (((-134)) 123 (|has| |#2| (-363)))) (-4203 (($ $) 98 (-2188 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-2188 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 94 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 93 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 92 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 91 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 84 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1045)))) (-1708 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-1257 |#2|) $) 127) (($ (-563)) 68 (-4034 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) 65 (-2188 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 60 (|has| |#2| (-1093))) (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-3914 (((-767)) 102 (|has| |#2| (-1045)))) (-1471 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-1462 (($ $) 120 (|has| |#2| (-844)))) (-2239 (($) 71 (|has| |#2| (-131)) CONST)) (-2253 (($) 82 (|has| |#2| (-722)) CONST)) (-3213 (($ $) 97 (-2188 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 95 (-2188 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 90 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 89 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 88 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 87 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 86 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1045)))) (-1779 (((-112) $ $) 113 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1754 (((-112) $ $) 112 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1718 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-1766 (((-112) $ $) 114 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1743 (((-112) $ $) 111 (-4034 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1836 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1825 (($ $ $) 100 (|has| |#2| (-1045))) (($ $) 99 (|has| |#2| (-1045)))) (-1813 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-767)) 80 (|has| |#2| (-722))) (($ $ (-917)) 77 (|has| |#2| (-722)))) (* (($ (-563) $) 101 (|has| |#2| (-1045))) (($ $ $) 78 (|has| |#2| (-722))) (($ $ |#2|) 76 (|has| |#2| (-722))) (($ |#2| $) 75 (|has| |#2| (-722))) (($ (-767) $) 73 (|has| |#2| (-131))) (($ (-917) $) 70 (|has| |#2| (-25)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-238 |#1| |#2|) (-140) (-767) (-1208)) (T -238))
-((-2509 (*1 *1 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4)))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1208)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))))
-(-13 (-601 (-563) |t#2|) (-610 (-1257 |t#2|)) (-10 -8 (-6 -4408) (-15 -2509 ($ (-1257 |t#2|))) (IF (|has| |t#2| (-1093)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -2392 ($ (-917))) (-15 -4121 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1264 |t#2|)) |%noBranch|)))
-(((-21) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4034 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4034 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-613 #0=(-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-613 (-563)) -4034 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-613 |#2|) -4034 (|has| |#2| (-1093)) (|has| |#2| (-172))) ((-610 (-858)) -4034 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-610 (-858))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-610 (-1257 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #1=(-563) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-411 |#2|) |has| |#2| (-1093)) ((-489 |#2|) . T) ((-601 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) -4034 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-643 $) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-636 (-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))) ((-636 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -4034 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -4034 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -4034 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-791) -4034 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -4034 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))) ((-1034 #0#) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-1034 (-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) ((-1034 |#2|) |has| |#2| (-1093)) ((-1051 |#2|) -4034 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1105) -4034 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1093) -4034 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1208) . T) ((-1264 |#2|) |has| |#2| (-363)))
-((-4132 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2444 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2238 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4132 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2444 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2238 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-767) (-1208) (-1208)) (T -239))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
-(-10 -7 (-15 -4132 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2444 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2238 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3439 (((-112) $) NIL (|has| |#2| (-131)))) (-2392 (($ (-917)) 56 (|has| |#2| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) 60 (|has| |#2| (-789)))) (-3905 (((-3 $ "failed") $ $) 49 (|has| |#2| (-131)))) (-3001 (((-112) $ (-767)) 17)) (-3750 (((-767)) NIL (|has| |#2| (-368)))) (-2807 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1093)))) (-2057 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 27 (|has| |#2| (-1093)))) (-1476 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3951 (((-3 $ "failed") $) 53 (|has| |#2| (-722)))) (-1690 (($) NIL (|has| |#2| (-368)))) (-4356 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ (-563)) 51)) (-3414 (((-112) $) NIL (|has| |#2| (-844)))) (-2658 (((-640 |#2|) $) 15 (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (|has| |#2| (-722)))) (-3426 (((-112) $) NIL (|has| |#2| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 20 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3523 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 (((-563) $) 50 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4347 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2|) $) 41)) (-3990 (((-917) $) NIL (|has| |#2| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#2| (-1093)))) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#2| (-368)))) (-1693 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3782 ((|#2| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) 21)) (-4121 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2509 (($ (-1257 |#2|)) 18)) (-3526 (((-134)) NIL (|has| |#2| (-363)))) (-4203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1708 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#2|) $) 10) (($ (-563)) NIL (-4034 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 13 (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3914 (((-767)) NIL (|has| |#2| (-1045)))) (-1471 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#2| (-844)))) (-2239 (($) 35 (|has| |#2| (-131)) CONST)) (-2253 (($) 38 (|has| |#2| (-722)) CONST)) (-3213 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) 26 (|has| |#2| (-1093)))) (-1766 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1743 (((-112) $ $) 58 (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1813 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) 44 (|has| |#2| (-722))) (($ $ |#2|) 42 (|has| |#2| (-722))) (($ |#2| $) 43 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-240 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1208)) (T -240))
+((-4225 (*1 *1 *1) (-4 *1 (-233))) (-3058 (*1 *1 *1) (-4 *1 (-233))) (-4225 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-3058 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))))
+(-13 (-1045) (-10 -8 (-15 -4225 ($ $)) (-15 -3058 ($ $)) (-15 -4225 ($ $ (-767))) (-15 -3058 ($ $ (-767)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-1557 (($) 12) (($ (-637 |#2|)) NIL)) (-3811 (($ $) 14)) (-3936 (($ (-637 |#2|)) 10)) (-4361 (((-859) $) 21)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -1557 (|#1| (-637 |#2|))) (-15 -1557 (|#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -3811 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -1557 (|#1| (-637 |#2|))) (-15 -1557 (|#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -3811 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-235 |#1|) (-140) (-1094)) (T -235))
+((-1557 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-3816 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-1666 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1557 ($)) (-15 -1557 ($ (-637 |t#1|))) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3816 ($ |t#1| $)) (-15 -3816 ($ (-1 (-112) |t#1|) $)) (-15 -1666 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-1558 (((-2 (|:| |varOrder| (-637 (-1169))) (|:| |inhom| (-3 (-637 (-1256 (-767))) "failed")) (|:| |hom| (-637 (-1256 (-767))))) (-293 (-942 (-546)))) 27)))
+(((-236) (-10 -7 (-15 -1558 ((-2 (|:| |varOrder| (-637 (-1169))) (|:| |inhom| (-3 (-637 (-1256 (-767))) "failed")) (|:| |hom| (-637 (-1256 (-767))))) (-293 (-942 (-546))))))) (T -236))
+((-1558 (*1 *2 *3) (-12 (-5 *3 (-293 (-942 (-546)))) (-5 *2 (-2 (|:| |varOrder| (-637 (-1169))) (|:| |inhom| (-3 (-637 (-1256 (-767))) "failed")) (|:| |hom| (-637 (-1256 (-767)))))) (-5 *1 (-236)))))
+(-10 -7 (-15 -1558 ((-2 (|:| |varOrder| (-637 (-1169))) (|:| |inhom| (-3 (-637 (-1256 (-767))) "failed")) (|:| |hom| (-637 (-1256 (-767))))) (-293 (-942 (-546))))))
+((-3528 (((-767)) 51)) (-2408 (((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 $) (-1256 $)) 49) (((-684 |#3|) (-684 $)) 41) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-4326 (((-134)) 57)) (-4225 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-4361 (((-1256 |#3|) $) NIL) (($ |#3|) NIL) (((-859) $) NIL) (($ (-546)) 12) (($ (-407 (-546))) NIL)) (-3518 (((-767)) 15)) (-4364 (($ $ |#3|) 54)))
+(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)) (-15 -3518 ((-767))) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -4361 (|#1| |#3|)) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2408 ((-684 |#3|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 |#1|) (-1256 |#1|))) (-15 -3528 ((-767))) (-15 -4364 (|#1| |#1| |#3|)) (-15 -4326 ((-134))) (-15 -4361 ((-1256 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1207)) (T -237))
+((-4326 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1207)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3528 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3518 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
+(-10 -8 (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)) (-15 -3518 ((-767))) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -4361 (|#1| |#3|)) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2408 ((-684 |#3|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 |#1|) (-1256 |#1|))) (-15 -3528 ((-767))) (-15 -4364 (|#1| |#1| |#3|)) (-15 -4326 ((-134))) (-15 -4361 ((-1256 |#3|) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-3596 (((-112) $) 72 (|has| |#2| (-131)))) (-4122 (($ (-915)) 125 (|has| |#2| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-2784 (($ $ $) 121 (|has| |#2| (-789)))) (-1397 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-1296 (((-112) $ (-767)) 8)) (-3528 (((-767)) 107 (|has| |#2| (-368)))) (-4038 (((-546) $) 119 (|has| |#2| (-844)))) (-4202 ((|#2| $ (-546) |#2|) 52 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 67 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-3 (-407 (-546)) #1#) $) 64 (-3247 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1094)))) (-3564 (((-546) $) 66 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-407 (-546)) $) 63 (-3247 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-2408 (((-684 (-546)) (-684 $)) 106 (-3247 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 105 (-3247 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 104 (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) 103 (|has| |#2| (-1045)))) (-3873 (((-3 $ "failed") $) 79 (|has| |#2| (-722)))) (-3384 (($) 110 (|has| |#2| (-368)))) (-1672 ((|#2| $ (-546) |#2|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#2| $ (-546)) 51)) (-3594 (((-112) $) 117 (|has| |#2| (-844)))) (-2103 (((-637 |#2|) $) 30 (|has| $ (-6 -4408)))) (-2552 (((-112) $) 81 (|has| |#2| (-722)))) (-3595 (((-112) $) 118 (|has| |#2| (-844)))) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 116 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2993 (((-637 |#2|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 115 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2107 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2|) $) 35)) (-2167 (((-915) $) 109 (|has| |#2| (-368)))) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#2| (-1094)))) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-2542 (($ (-915)) 108 (|has| |#2| (-368)))) (-3651 (((-1113) $) 21 (|has| |#2| (-1094)))) (-4215 ((|#2| $) 42 (|has| (-546) (-846)))) (-2352 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#2| $ (-546) |#2|) 50) ((|#2| $ (-546)) 49)) (-4251 ((|#2| $ $) 124 (|has| |#2| (-1045)))) (-1559 (($ (-1256 |#2|)) 126)) (-4326 (((-134)) 123 (|has| |#2| (-363)))) (-4225 (($ $) 98 (-3247 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-3247 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 94 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) 93 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 92 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) 91 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 84 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1045)))) (-2104 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-1256 |#2|) $) 127) (($ (-546)) 68 (-3943 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-546))) 65 (-3247 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-859) $) 18 (|has| |#2| (-610 (-859))))) (-3518 (((-767)) 102 (|has| |#2| (-1045)))) (-2106 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-3794 (($ $) 120 (|has| |#2| (-844)))) (-3047 (($) 71 (|has| |#2| (-131)) CONST)) (-3053 (($) 82 (|has| |#2| (-722)) CONST)) (-3058 (($ $) 97 (-3247 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 95 (-3247 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 90 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) 89 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 88 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) 87 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 86 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1045)))) (-2951 (((-112) $ $) 113 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2952 (((-112) $ $) 112 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3444 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-3073 (((-112) $ $) 114 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3074 (((-112) $ $) 111 (-3943 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-4364 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-4252 (($ $ $) 100 (|has| |#2| (-1045))) (($ $) 99 (|has| |#2| (-1045)))) (-4254 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-767)) 80 (|has| |#2| (-722))) (($ $ (-915)) 77 (|has| |#2| (-722)))) (* (($ (-546) $) 101 (|has| |#2| (-1045))) (($ $ $) 78 (|has| |#2| (-722))) (($ $ |#2|) 76 (|has| |#2| (-722))) (($ |#2| $) 75 (|has| |#2| (-722))) (($ (-767) $) 73 (|has| |#2| (-131))) (($ (-915) $) 70 (|has| |#2| (-25)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-238 |#1| |#2|) (-140) (-767) (-1207)) (T -238))
+((-1559 (*1 *1 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-238 *3 *4)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1207)))) (-4251 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-722)))))
+(-13 (-601 (-546) |t#2|) (-610 (-1256 |t#2|)) (-10 -8 (-6 -4408) (-15 -1559 ($ (-1256 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-412 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -4122 ($ (-915))) (-15 -4251 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1264 |t#2|)) |%noBranch|)))
+(((-21) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -3943 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3943 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-613 #1=(-407 (-546))) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))) ((-613 (-546)) -3943 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-613 |#2|) -3943 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-610 (-859)) -3943 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-610 (-859))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-610 (-1256 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #2=(-546) |#2|) . T) ((-288 #2# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-412 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-601 #2# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-643 |#2|) -3943 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-643 $) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-636 (-546)) -12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045))) ((-636 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -3943 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -3943 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -3943 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-793) -3943 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -3943 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))) ((-1034 #1#) -12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094))) ((-1034 (-546)) -12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) ((-1034 |#2|) |has| |#2| (-1094)) ((-1051 |#2|) -3943 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1105) -3943 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1094) -3943 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1207) . T) ((-1264 |#2|) |has| |#2| (-363)))
+((-2953 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3596 (((-112) $) NIL (|has| |#2| (-131)))) (-4122 (($ (-915)) 56 (|has| |#2| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) 60 (|has| |#2| (-789)))) (-1397 (((-3 $ "failed") $ $) 49 (|has| |#2| (-131)))) (-1296 (((-112) $ (-767)) 17)) (-3528 (((-767)) NIL (|has| |#2| (-368)))) (-4038 (((-546) $) NIL (|has| |#2| (-844)))) (-4202 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1094)))) (-3564 (((-546) $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) ((|#2| $) 27 (|has| |#2| (-1094)))) (-2408 (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3873 (((-3 $ "failed") $) 53 (|has| |#2| (-722)))) (-3384 (($) NIL (|has| |#2| (-368)))) (-1672 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ (-546)) 51)) (-3594 (((-112) $) NIL (|has| |#2| (-844)))) (-2103 (((-637 |#2|) $) 15 (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (|has| |#2| (-722)))) (-3595 (((-112) $) NIL (|has| |#2| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 20 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2993 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 (((-546) $) 50 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2107 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2|) $) 41)) (-2167 (((-915) $) NIL (|has| |#2| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#2| (-1094)))) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#2| (-368)))) (-3651 (((-1113) $) NIL (|has| |#2| (-1094)))) (-4215 ((|#2| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ (-546) |#2|) NIL) ((|#2| $ (-546)) 21)) (-4251 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-1559 (($ (-1256 |#2|)) 18)) (-4326 (((-134)) NIL (|has| |#2| (-363)))) (-4225 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2104 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#2|) $) 10) (($ (-546)) NIL (-3943 (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-610 (-859))))) (-3518 (((-767)) NIL (|has| |#2| (-1045)))) (-2106 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#2| (-844)))) (-3047 (($) 35 (|has| |#2| (-131)) CONST)) (-3053 (($) 38 (|has| |#2| (-722)) CONST)) (-3058 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3444 (((-112) $ $) 26 (|has| |#2| (-1094)))) (-3073 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3074 (((-112) $ $) 58 (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-4254 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-915)) NIL (|has| |#2| (-722)))) (* (($ (-546) $) NIL (|has| |#2| (-1045))) (($ $ $) 44 (|has| |#2| (-722))) (($ $ |#2|) 42 (|has| |#2| (-722))) (($ |#2| $) 43 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-915) $) NIL (|has| |#2| (-25)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-239 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1207)) (T -239))
NIL
(-238 |#1| |#2|)
-((-3906 (((-563) (-640 (-1151))) 24) (((-563) (-1151)) 19)) (-3716 (((-1262) (-640 (-1151))) 29) (((-1262) (-1151)) 28)) (-3883 (((-1151)) 14)) (-3895 (((-1151) (-563) (-1151)) 16)) (-3412 (((-640 (-1151)) (-640 (-1151)) (-563) (-1151)) 25) (((-1151) (-1151) (-563) (-1151)) 23)) (-3996 (((-640 (-1151)) (-640 (-1151))) 13) (((-640 (-1151)) (-1151)) 11)))
-(((-241) (-10 -7 (-15 -3996 ((-640 (-1151)) (-1151))) (-15 -3996 ((-640 (-1151)) (-640 (-1151)))) (-15 -3883 ((-1151))) (-15 -3895 ((-1151) (-563) (-1151))) (-15 -3412 ((-1151) (-1151) (-563) (-1151))) (-15 -3412 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3716 ((-1262) (-1151))) (-15 -3716 ((-1262) (-640 (-1151)))) (-15 -3906 ((-563) (-1151))) (-15 -3906 ((-563) (-640 (-1151)))))) (T -241))
-((-3906 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3412 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *1 (-241)))) (-3412 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3895 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3883 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)))) (-3996 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151)))))
-(-10 -7 (-15 -3996 ((-640 (-1151)) (-1151))) (-15 -3996 ((-640 (-1151)) (-640 (-1151)))) (-15 -3883 ((-1151))) (-15 -3895 ((-1151) (-563) (-1151))) (-15 -3412 ((-1151) (-1151) (-563) (-1151))) (-15 -3412 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3716 ((-1262) (-1151))) (-15 -3716 ((-1262) (-640 (-1151)))) (-15 -3906 ((-563) (-1151))) (-15 -3906 ((-563) (-640 (-1151)))))
-((** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 16)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) 23) (($ $ (-407 (-563))) NIL)))
-(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-243)) (T -242))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 40)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 44)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 41)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 43) (($ $ (-407 (-563))) 42)))
+((-4256 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-4257 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4373 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18)))
+(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -4256 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4257 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4373 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-767) (-1207) (-1207)) (T -240))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-240 *5 *6 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5)) (-5 *1 (-240 *6 *7 *5)))))
+(-10 -7 (-15 -4256 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4257 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4373 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|))))
+((-1563 (((-546) (-637 (-1151))) 24) (((-546) (-1151)) 19)) (-1562 (((-1262) (-637 (-1151))) 29) (((-1262) (-1151)) 28)) (-1560 (((-1151)) 14)) (-1561 (((-1151) (-546) (-1151)) 16)) (-4187 (((-637 (-1151)) (-637 (-1151)) (-546) (-1151)) 25) (((-1151) (-1151) (-546) (-1151)) 23)) (-3005 (((-637 (-1151)) (-637 (-1151))) 13) (((-637 (-1151)) (-1151)) 11)))
+(((-241) (-10 -7 (-15 -3005 ((-637 (-1151)) (-1151))) (-15 -3005 ((-637 (-1151)) (-637 (-1151)))) (-15 -1560 ((-1151))) (-15 -1561 ((-1151) (-546) (-1151))) (-15 -4187 ((-1151) (-1151) (-546) (-1151))) (-15 -4187 ((-637 (-1151)) (-637 (-1151)) (-546) (-1151))) (-15 -1562 ((-1262) (-1151))) (-15 -1562 ((-1262) (-637 (-1151)))) (-15 -1563 ((-546) (-1151))) (-15 -1563 ((-546) (-637 (-1151)))))) (T -241))
+((-1563 (*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-546)) (-5 *1 (-241)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-546)) (-5 *1 (-241)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) (-4187 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 (-1151))) (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *1 (-241)))) (-4187 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-241)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-241)))) (-1560 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-241)))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151)))))
+(-10 -7 (-15 -3005 ((-637 (-1151)) (-1151))) (-15 -3005 ((-637 (-1151)) (-637 (-1151)))) (-15 -1560 ((-1151))) (-15 -1561 ((-1151) (-546) (-1151))) (-15 -4187 ((-1151) (-1151) (-546) (-1151))) (-15 -4187 ((-637 (-1151)) (-637 (-1151)) (-546) (-1151))) (-15 -1562 ((-1262) (-1151))) (-15 -1562 ((-1262) (-637 (-1151)))) (-15 -1563 ((-546) (-1151))) (-15 -1563 ((-546) (-637 (-1151)))))
+((** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 16)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ (-407 (-546)) $) 23) (($ $ (-407 (-546))) NIL)))
+(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-546))) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|))) (-243)) (T -242))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-546))) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 40)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 44)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 41)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ (-407 (-546)) $) 43) (($ $ (-407 (-546))) 42)))
(((-243) (-140)) (T -243))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563)))) (-2687 (*1 *1 *1) (-4 *1 (-243))))
-(-13 (-290) (-38 (-407 (-563))) (-10 -8 (-15 ** ($ $ (-563))) (-15 -2687 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-290) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-722) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-4303 (($ $) 57)) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3928 (($ $ $) 53 (|has| $ (-6 -4409)))) (-3917 (($ $ $) 52 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-4328 (($ $) 56)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1333 (($ $) 55)) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 59)) (-3333 (($ $) 58)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47)) (-2379 (((-563) $ $) 44)) (-2889 (((-112) $) 46)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1941 (($ $ $) 54 (|has| $ (-6 -4409)))) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-244 |#1|) (-140) (-1208)) (T -244))
-((-1481 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3333 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-1333 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-1941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3928 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3917 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -1481 (|t#1| $)) (-15 -3333 ($ $)) (-15 -4303 ($ $)) (-15 -4328 ($ $)) (-15 -1333 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -1941 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -3917 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) NIL)) (-3446 ((|#1| $) NIL)) (-4303 (($ $) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4052 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-1640 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1909 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) NIL)) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3435 ((|#1| $) NIL)) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3793 (($ $) NIL) (($ $ (-767)) NIL)) (-4194 (($ $) NIL (|has| |#1| (-1093)))) (-3814 (($ $) 7 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-1966 (((-112) $) NIL)) (-4369 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4265 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4300 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3652 (($ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3867 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1976 (((-112) $) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-2379 (((-563) $ $) NIL)) (-3690 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3042 (($ (-640 |#1|)) 22)) (-2889 (((-112) $) NIL)) (-1951 (($ $) NIL)) (-1930 (($ $) NIL (|has| $ (-6 -4409)))) (-1961 (((-767) $) NIL)) (-1970 (($ $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-1941 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2857 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1692 (($ (-640 |#1|)) 17) (((-640 |#1|) $) 18) (((-858) $) 21 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) 14 (|has| $ (-6 -4408)))))
-(((-245 |#1|) (-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -3042 ($ (-640 |#1|))) (-15 -2308 ($ $ "unique")) (-15 -2308 ($ $ "sort")) (-15 -2308 ((-767) $ "count")))) (-846)) (T -245))
-((-3042 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))))
-(-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -3042 ($ (-640 |#1|))) (-15 -2308 ($ $ "unique")) (-15 -2308 ($ $ "sort")) (-15 -2308 ((-767) $ "count"))))
-((-3937 (((-3 (-767) "failed") |#1| |#1| (-767)) 26)))
-(((-246 |#1|) (-10 -7 (-15 -3937 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-563)))))) (T -246))
-((-3937 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563)))))) (-5 *1 (-246 *3)))))
-(-10 -7 (-15 -3937 ((-3 (-767) "failed") |#1| |#1| (-767))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-860 |#1|)) $) NIL)) (-2138 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-3231 (($ $) NIL (|has| |#2| (-555)))) (-3211 (((-112) $) NIL (|has| |#2| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL (|has| |#2| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-1612 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1373 (($ $ (-640 (-563))) NIL)) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#2| (-905)))) (-2159 (($ $ |#2| (-240 (-3610 |#1|) (-767)) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#2| (-240 (-3610 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-860 |#1|)) NIL)) (-3908 (((-240 (-3610 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2170 (($ (-1 (-240 (-3610 |#1|) (-767)) (-240 (-3610 |#1|) (-767))) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-1698 (((-3 (-860 |#1|) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#2| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3311 (-767))) "failed") $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#2| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-1623 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4203 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-3871 (((-240 (-3610 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-240 (-3610 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-247 |#1| |#2|) (-13 (-945 |#2| (-240 (-3610 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -247))
-((-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045)))))
-(-13 (-945 |#2| (-240 (-3610 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563))))))
-((-1677 (((-112) $ $) NIL)) (-1794 (((-1262) $) 17)) (-3957 (((-183) $) 11)) (-3947 (($ (-183)) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3763 (((-249) $) 7)) (-1692 (((-858) $) 9)) (-1718 (((-112) $ $) 15)))
-(((-248) (-13 (-1093) (-10 -8 (-15 -3763 ((-249) $)) (-15 -3957 ((-183) $)) (-15 -3947 ($ (-183))) (-15 -1794 ((-1262) $))))) (T -248))
-((-3763 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248)))))
-(-13 (-1093) (-10 -8 (-15 -3763 ((-249) $)) (-15 -3957 ((-183) $)) (-15 -3947 ($ (-183))) (-15 -1794 ((-1262) $))))
-((-1677 (((-112) $ $) NIL)) (-3457 (((-640 (-861)) $) NIL)) (-3352 (((-506) $) NIL)) (-3854 (((-1151) $) NIL)) (-2504 (((-186) $) NIL)) (-1693 (((-1113) $) NIL)) (-1404 (((-640 (-112)) $) NIL)) (-1692 (((-858) $) NIL) (((-187) $) 6)) (-2935 (((-55) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-249) (-13 (-185) (-610 (-187)))) (T -249))
-NIL
-(-13 (-185) (-610 (-187)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2392 (($ (-917)) NIL (|has| |#4| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) NIL (|has| |#4| (-789)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#4| (-368)))) (-2807 (((-563) $) NIL (|has| |#4| (-844)))) (-1849 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-2057 ((|#4| $) NIL (|has| |#4| (-1093))) (((-563) $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-1476 (((-2 (|:| -1957 (-684 |#4|)) (|:| |vec| (-1257 |#4|))) (-684 $) (-1257 $)) NIL (|has| |#4| (-1045))) (((-684 |#4|) (-684 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))))) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-1690 (($) NIL (|has| |#4| (-368)))) (-4356 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#4| $ (-563)) NIL)) (-3414 (((-112) $) NIL (|has| |#4| (-844)))) (-2658 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-3426 (((-112) $) NIL (|has| |#4| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3523 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-4347 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#4| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#4| (-368)))) (-1693 (((-1113) $) NIL)) (-3782 ((|#4| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#4|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-2295 (((-640 |#4|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#4| $ (-563) |#4|) NIL) ((|#4| $ (-563)) 12)) (-4121 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-2509 (($ (-1257 |#4|)) NIL)) (-3526 (((-134)) NIL (|has| |#4| (-363)))) (-4203 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-1708 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#4|) $) NIL) (((-858) $) NIL) (($ |#4|) NIL (|has| |#4| (-1093))) (($ (-563)) NIL (-4034 (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-3914 (((-767)) NIL (|has| |#4| (-1045)))) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#4| (-844)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) CONST)) (-3213 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1743 (((-112) $ $) NIL (-4034 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1836 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))) (($ $ (-917)) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 14) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-4034 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) (-917) (-1045) (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-643 |#2|)) (T -250))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-546)))) (-2785 (*1 *1 *1) (-4 *1 (-243))))
+(-13 (-290) (-38 (-407 (-546))) (-10 -8 (-15 ** ($ $ (-546))) (-15 -2785 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-290) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-722) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-4211 (($ $) 57)) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1565 (($ $ $) 53 (|has| $ (-6 -4409)))) (-1564 (($ $ $) 52 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-1567 (($ $) 56)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1566 (($ $) 55)) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4212 ((|#1| $) 59)) (-3586 (($ $) 58)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47)) (-3419 (((-546) $ $) 44)) (-4048 (((-112) $) 46)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4205 (($ $ $) 54 (|has| $ (-6 -4409)))) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-244 |#1|) (-140) (-1207)) (T -244))
+((-4212 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-4205 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-1565 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207)))) (-1564 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207)))))
+(-13 (-1006 |t#1|) (-10 -8 (-15 -4212 (|t#1| $)) (-15 -3586 ($ $)) (-15 -4211 ($ $)) (-15 -1567 ($ $)) (-15 -1566 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -4205 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1564 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) NIL)) (-4209 ((|#1| $) NIL)) (-4211 (($ $) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1881 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-3299 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4201 (($ $ $) NIL (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) NIL)) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4210 ((|#1| $) NIL)) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-4213 (($ $) NIL) (($ $ (-767)) NIL)) (-2505 (($ $) NIL (|has| |#1| (-1094)))) (-1430 (($ $) 7 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3817 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3853 (((-112) $) NIL)) (-3830 (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094))) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) (-1 (-112) |#1|) $) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3248 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3924 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3948 (($ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4212 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4022 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3854 (((-112) $) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1223 (-546))) NIL) ((|#1| $ (-546)) NIL) ((|#1| $ (-546) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-3419 (((-546) $ $) NIL)) (-1667 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-1568 (($ (-637 |#1|)) 22)) (-4048 (((-112) $) NIL)) (-4206 (($ $) NIL)) (-4204 (($ $) NIL (|has| $ (-6 -4409)))) (-4207 (((-767) $) NIL)) (-4208 (($ $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4205 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4216 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-637 $)) NIL) (($ $ |#1|) NIL)) (-4361 (($ (-637 |#1|)) 17) (((-637 |#1|) $) 18) (((-859) $) 21 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) 14 (|has| $ (-6 -4408)))))
+(((-245 |#1|) (-13 (-661 |#1|) (-490 (-637 |#1|)) (-10 -8 (-15 -1568 ($ (-637 |#1|))) (-15 -4214 ($ $ "unique")) (-15 -4214 ($ $ "sort")) (-15 -4214 ((-767) $ "count")))) (-846)) (T -245))
+((-1568 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))))
+(-13 (-661 |#1|) (-490 (-637 |#1|)) (-10 -8 (-15 -1568 ($ (-637 |#1|))) (-15 -4214 ($ $ "unique")) (-15 -4214 ($ $ "sort")) (-15 -4214 ((-767) $ "count"))))
+((-1569 (((-3 (-767) "failed") |#1| |#1| (-767)) 26)))
+(((-246 |#1|) (-10 -7 (-15 -1569 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-546)))))) (T -246))
+((-1569 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-546)))))) (-5 *1 (-246 *3)))))
+(-10 -7 (-15 -1569 ((-3 (-767) "failed") |#1| |#1| (-767))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-860 |#1|)) $) NIL)) (-3476 (((-1163 $) $ (-860 |#1|)) NIL) (((-1163 |#2|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-2220 (($ $) NIL (|has| |#2| (-556)))) (-2218 (((-112) $) NIL (|has| |#2| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-860 |#1|))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL (|has| |#2| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-860 |#1|) #2#) $) NIL)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-860 |#1|) $) NIL)) (-4171 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2094 (($ $ (-637 (-546))) NIL)) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#2| (-906)))) (-1756 (($ $ |#2| (-239 (-4372 |#1|) (-767)) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#2|) (-860 |#1|)) NIL) (($ (-1163 $) (-860 |#1|)) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#2| (-239 (-4372 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-860 |#1|)) NIL)) (-3209 (((-239 (-4372 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-1757 (($ (-1 (-239 (-4372 |#1|) (-767)) (-239 (-4372 |#1|) (-767))) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-3475 (((-3 (-860 |#1|) #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#2| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2543 (-767))) #3#) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#2| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-906)))) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-637 (-860 |#1|)) (-637 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-637 (-860 |#1|)) (-637 $)) NIL)) (-4172 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4225 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4363 (((-239 (-4372 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-860 |#1|) (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#2| (-556)))) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-239 (-4372 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#2| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#2| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#2| (-38 (-407 (-546))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-247 |#1| |#2|) (-13 (-946 |#2| (-239 (-4372 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546)))))) (-637 (-1169)) (-1045)) (T -247))
+((-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-247 *3 *4)) (-14 *3 (-637 (-1169))) (-4 *4 (-1045)))))
+(-13 (-946 |#2| (-239 (-4372 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546))))))
+((-2953 (((-112) $ $) NIL)) (-1570 (((-1262) $) 17)) (-1572 (((-184) $) 11)) (-1571 (($ (-184)) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1573 (((-249) $) 7)) (-4361 (((-859) $) 9)) (-3444 (((-112) $ $) 15)))
+(((-248) (-13 (-1094) (-10 -8 (-15 -1573 ((-249) $)) (-15 -1572 ((-184) $)) (-15 -1571 ($ (-184))) (-15 -1570 ((-1262) $))))) (T -248))
+((-1573 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-184)) (-5 *1 (-248)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-184)) (-5 *1 (-248)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248)))))
+(-13 (-1094) (-10 -8 (-15 -1573 ((-249) $)) (-15 -1572 ((-184) $)) (-15 -1571 ($ (-184))) (-15 -1570 ((-1262) $))))
+((-2953 (((-112) $ $) NIL)) (-1498 (((-637 (-861)) $) NIL)) (-3956 (((-506) $) NIL)) (-3650 (((-1151) $) NIL)) (-1500 (((-187) $) NIL)) (-3651 (((-1113) $) NIL)) (-1499 (((-637 (-112)) $) NIL)) (-4361 (((-859) $) NIL) (((-183) $) 6)) (-2906 (((-55) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-249) (-13 (-186) (-610 (-183)))) (T -249))
+NIL
+(-13 (-186) (-610 (-183)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4122 (($ (-915)) NIL (|has| |#4| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) NIL (|has| |#4| (-789)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#4| (-368)))) (-4038 (((-546) $) NIL (|has| |#4| (-844)))) (-4202 ((|#4| $ (-546) |#4|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1094))) (((-3 (-546) #1#) $) NIL (-12 (|has| |#4| (-1034 (-546))) (|has| |#4| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#4| (-1034 (-407 (-546)))) (|has| |#4| (-1094))))) (-3564 ((|#4| $) NIL (|has| |#4| (-1094))) (((-546) $) NIL (-12 (|has| |#4| (-1034 (-546))) (|has| |#4| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-546)))) (|has| |#4| (-1094))))) (-2408 (((-2 (|:| -1735 (-684 |#4|)) (|:| |vec| (-1256 |#4|))) (-684 $) (-1256 $)) NIL (|has| |#4| (-1045))) (((-684 |#4|) (-684 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045)))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))))) (-3873 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-3384 (($) NIL (|has| |#4| (-368)))) (-1672 ((|#4| $ (-546) |#4|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#4| $ (-546)) NIL)) (-3594 (((-112) $) NIL (|has| |#4| (-844)))) (-2103 (((-637 |#4|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-3595 (((-112) $) NIL (|has| |#4| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2993 (((-637 |#4|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2107 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#4| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#4| (-368)))) (-3651 (((-1113) $) NIL)) (-4215 ((|#4| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#4|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2358 (((-637 |#4|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#4| $ (-546) |#4|) NIL) ((|#4| $ (-546)) 12)) (-4251 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-1559 (($ (-1256 |#4|)) NIL)) (-4326 (((-134)) NIL (|has| |#4| (-363)))) (-4225 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-2104 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#4|) $) NIL) (((-859) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-546)) NIL (-3943 (-12 (|has| |#4| (-1034 (-546))) (|has| |#4| (-1094))) (|has| |#4| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#4| (-1034 (-407 (-546)))) (|has| |#4| (-1094))))) (-3518 (((-767)) NIL (|has| |#4| (-1045)))) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#4| (-844)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) CONST)) (-3058 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3074 (((-112) $ $) NIL (-3943 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-4364 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))) (($ $ (-915)) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 14) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-3943 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-546))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) (-915) (-1045) (-1116 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-643 |#2|)) (T -250))
NIL
(-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2392 (($ (-917)) NIL (|has| |#3| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) NIL (|has| |#3| (-789)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#3| (-368)))) (-2807 (((-563) $) NIL (|has| |#3| (-844)))) (-1849 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-2057 ((|#3| $) NIL (|has| |#3| (-1093))) (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-1476 (((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))))) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-1690 (($) NIL (|has| |#3| (-368)))) (-4356 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#3| $ (-563)) NIL)) (-3414 (((-112) $) NIL (|has| |#3| (-844)))) (-2658 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-3426 (((-112) $) NIL (|has| |#3| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3523 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4347 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#3| |#3|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#3| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#3| (-368)))) (-1693 (((-1113) $) NIL)) (-3782 ((|#3| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2295 (((-640 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) 11)) (-4121 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2509 (($ (-1257 |#3|)) NIL)) (-3526 (((-134)) NIL (|has| |#3| (-363)))) (-4203 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-1708 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#3|) $) NIL) (((-858) $) NIL) (($ |#3|) NIL (|has| |#3| (-1093))) (($ (-563)) NIL (-4034 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-3914 (((-767)) NIL (|has| |#3| (-1045)))) (-1471 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#3| (-844)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) CONST)) (-3213 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1743 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1836 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))) (($ $ (-917)) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 13) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-4034 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4122 (($ (-915)) NIL (|has| |#3| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) NIL (|has| |#3| (-789)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#3| (-368)))) (-4038 (((-546) $) NIL (|has| |#3| (-844)))) (-4202 ((|#3| $ (-546) |#3|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1094))) (((-3 (-546) #1#) $) NIL (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))) (-3564 ((|#3| $) NIL (|has| |#3| (-1094))) (((-546) $) NIL (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))) (-2408 (((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 $) (-1256 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045)))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))))) (-3873 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-3384 (($) NIL (|has| |#3| (-368)))) (-1672 ((|#3| $ (-546) |#3|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#3| $ (-546)) NIL)) (-3594 (((-112) $) NIL (|has| |#3| (-844)))) (-2103 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-3595 (((-112) $) NIL (|has| |#3| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2993 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2107 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#3| |#3|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#3| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#3| (-368)))) (-3651 (((-1113) $) NIL)) (-4215 ((|#3| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-637 |#3|) (-637 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-2358 (((-637 |#3|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#3| $ (-546) |#3|) NIL) ((|#3| $ (-546)) 11)) (-4251 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-1559 (($ (-1256 |#3|)) NIL)) (-4326 (((-134)) NIL (|has| |#3| (-363)))) (-4225 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-2104 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#3|) $) NIL) (((-859) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-546)) NIL (-3943 (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094))))) (-3518 (((-767)) NIL (|has| |#3| (-1045)))) (-2106 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#3| (-844)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) CONST)) (-3058 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3074 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4364 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))) (($ $ (-915)) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 13) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-3943 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-643 |#2|)) (-767) (-1045) (-643 |#2|)) (T -251))
NIL
(-13 (-238 |#1| |#3|) (-643 |#2|))
-((-3989 (((-640 (-767)) $) 47) (((-640 (-767)) $ |#3|) 50)) (-4329 (((-767) $) 49) (((-767) $ |#3|) 52)) (-3968 (($ $) 65)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1775 (((-767) $ |#3|) 39) (((-767) $) 36)) (-4340 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 77)) (-3760 ((|#4| $) 58)) (-3978 (((-112) $) 56)) (-3564 (($ $) 64)) (-1542 (($ $ (-640 (-294 $))) 97) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-640 |#3|) (-640 |#2|)) 84)) (-4203 (($ $ |#4|) NIL) (($ $ (-640 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4001 (((-640 |#3|) $) 75)) (-3871 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-640 (-767)) $ (-640 |#4|)) NIL) (((-767) $ |#3|) 44)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-407 (-563))) NIL) (($ $) NIL)))
-(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1542 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#3| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#3| |#1|)) (-15 -4340 ((-1 |#1| (-767)) |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3760 (|#4| |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -4329 ((-767) |#1| |#3|)) (-15 -3989 ((-640 (-767)) |#1| |#3|)) (-15 -4329 ((-767) |#1|)) (-15 -3989 ((-640 (-767)) |#1|)) (-15 -3871 ((-767) |#1| |#3|)) (-15 -1775 ((-767) |#1|)) (-15 -1775 ((-767) |#1| |#3|)) (-15 -4001 ((-640 |#3|) |#1|)) (-15 -4340 ((-1 |#1| (-767)) |#3|)) (-15 -1692 (|#1| |#3|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -3871 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -3871 ((-767) |#1| |#4|)) (-15 -1692 (|#1| |#4|)) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#4| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -3871 (|#5| |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -4203 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4203 (|#1| |#1| |#4| (-767))) (-15 -4203 (|#1| |#1| (-640 |#4|))) (-15 -4203 (|#1| |#1| |#4|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252))
+((-1578 (((-637 (-767)) $) 47) (((-637 (-767)) $ |#3|) 50)) (-1612 (((-767) $) 49) (((-767) $ |#3|) 52)) (-1574 (($ $) 65)) (-3565 (((-3 |#2| #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 (-546) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4186 (((-767) $ |#3|) 39) (((-767) $) 36)) (-1613 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 77)) (-1576 ((|#4| $) 58)) (-1577 (((-112) $) 56)) (-1575 (($ $) 64)) (-4182 (($ $ (-637 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-637 |#4|) (-637 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-637 |#4|) (-637 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-637 |#3|) (-637 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-637 |#3|) (-637 |#2|)) 84)) (-4225 (($ $ |#4|) NIL) (($ $ (-637 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-637 |#4|) (-637 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1579 (((-637 |#3|) $) 75)) (-4363 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-637 (-767)) $ (-637 |#4|)) NIL) (((-767) $ |#3|) 44)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-407 (-546))) NIL) (($ $) NIL)))
+(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4182 (|#1| |#1| (-637 |#3|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#3| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#3|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#3| |#1|)) (-15 -1613 ((-1 |#1| (-767)) |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1576 (|#4| |#1|)) (-15 -1577 ((-112) |#1|)) (-15 -1612 ((-767) |#1| |#3|)) (-15 -1578 ((-637 (-767)) |#1| |#3|)) (-15 -1612 ((-767) |#1|)) (-15 -1578 ((-637 (-767)) |#1|)) (-15 -4363 ((-767) |#1| |#3|)) (-15 -4186 ((-767) |#1|)) (-15 -4186 ((-767) |#1| |#3|)) (-15 -1579 ((-637 |#3|) |#1|)) (-15 -1613 ((-1 |#1| (-767)) |#3|)) (-15 -4361 (|#1| |#3|)) (-15 -3565 ((-3 |#3| #1="failed") |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -4363 ((-637 (-767)) |#1| (-637 |#4|))) (-15 -4363 ((-767) |#1| |#4|)) (-15 -4361 (|#1| |#4|)) (-15 -3565 ((-3 |#4| #1#) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#4| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4363 (|#5| |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4225 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -4225 (|#1| |#1| |#4| (-767))) (-15 -4225 (|#1| |#1| (-637 |#4|))) (-15 -4225 (|#1| |#1| |#4|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252))
NIL
-(-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1542 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#3| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#3| |#1|)) (-15 -4340 ((-1 |#1| (-767)) |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3760 (|#4| |#1|)) (-15 -3978 ((-112) |#1|)) (-15 -4329 ((-767) |#1| |#3|)) (-15 -3989 ((-640 (-767)) |#1| |#3|)) (-15 -4329 ((-767) |#1|)) (-15 -3989 ((-640 (-767)) |#1|)) (-15 -3871 ((-767) |#1| |#3|)) (-15 -1775 ((-767) |#1|)) (-15 -1775 ((-767) |#1| |#3|)) (-15 -4001 ((-640 |#3|) |#1|)) (-15 -4340 ((-1 |#1| (-767)) |#3|)) (-15 -1692 (|#1| |#3|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -3871 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -3871 ((-767) |#1| |#4|)) (-15 -1692 (|#1| |#4|)) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#4| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -3871 (|#5| |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -4203 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4203 (|#1| |#1| |#4| (-767))) (-15 -4203 (|#1| |#1| (-640 |#4|))) (-15 -4203 (|#1| |#1| |#4|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3989 (((-640 (-767)) $) 214) (((-640 (-767)) $ |#2|) 212)) (-4329 (((-767) $) 213) (((-767) $ |#2|) 211)) (-2605 (((-640 |#3|) $) 110)) (-2138 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-3231 (($ $) 88 (|has| |#1| (-555)))) (-3211 (((-112) $) 90 (|has| |#1| (-555)))) (-3897 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-1798 (($ $) 98 (|has| |#1| (-452)))) (-2802 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-3968 (($ $) 207)) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2057 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) ((|#2| $) 222)) (-1612 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2750 (($ $) 154)) (-1476 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-4151 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2738 (((-640 $) $) 109)) (-2560 (((-112) $) 96 (|has| |#1| (-905)))) (-2159 (($ $ |#1| |#4| $) 172)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ |#2|) 217) (((-767) $) 216)) (-3401 (((-112) $) 31)) (-3481 (((-767) $) 169)) (-2595 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3919 (((-640 $) $) 126)) (-3805 (((-112) $) 152)) (-2587 (($ |#1| |#4|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#3|) 120)) (-3908 ((|#4| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3088 (($ $ $) 79 (|has| |#1| (-846)))) (-1776 (($ $ $) 78 (|has| |#1| (-846)))) (-2170 (($ (-1 |#4| |#4|) $) 171)) (-2238 (($ (-1 |#1| |#1|) $) 151)) (-4340 (((-1 $ (-767)) |#2|) 219) (((-1 $ (-767)) $) 206 (|has| |#1| (-233)))) (-1698 (((-3 |#3| "failed") $) 123)) (-2715 (($ $) 149)) (-2725 ((|#1| $) 148)) (-3760 ((|#3| $) 209)) (-3517 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3854 (((-1151) $) 9)) (-3978 (((-112) $) 210)) (-3939 (((-3 (-640 $) "failed") $) 114)) (-3930 (((-3 (-640 $) "failed") $) 115)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3311 (-767))) "failed") $) 113)) (-3564 (($ $) 208)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 166)) (-2705 ((|#1| $) 167)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3551 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) 202 (|has| |#1| (-233)))) (-1623 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4203 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-767)) 236 (|has| |#1| (-233))) (($ $ (-1169)) 234 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 233 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 232 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 231 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-4001 (((-640 |#2|) $) 218)) (-3871 ((|#4| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129) (((-767) $ |#2|) 215)) (-2219 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2188 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-563))) 72 (-4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) 168)) (-3244 ((|#1| $ |#4|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2047 (((-3 $ "failed") $) 73 (-4034 (-2188 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 28)) (-2148 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-767)) 235 (|has| |#1| (-233))) (($ $ (-1169)) 230 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 229 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 228 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 227 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1779 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4182 (|#1| |#1| (-637 |#3|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#3| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#3|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#3| |#1|)) (-15 -1613 ((-1 |#1| (-767)) |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1576 (|#4| |#1|)) (-15 -1577 ((-112) |#1|)) (-15 -1612 ((-767) |#1| |#3|)) (-15 -1578 ((-637 (-767)) |#1| |#3|)) (-15 -1612 ((-767) |#1|)) (-15 -1578 ((-637 (-767)) |#1|)) (-15 -4363 ((-767) |#1| |#3|)) (-15 -4186 ((-767) |#1|)) (-15 -4186 ((-767) |#1| |#3|)) (-15 -1579 ((-637 |#3|) |#1|)) (-15 -1613 ((-1 |#1| (-767)) |#3|)) (-15 -4361 (|#1| |#3|)) (-15 -3565 ((-3 |#3| #1="failed") |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -4363 ((-637 (-767)) |#1| (-637 |#4|))) (-15 -4363 ((-767) |#1| |#4|)) (-15 -4361 (|#1| |#4|)) (-15 -3565 ((-3 |#4| #1#) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#4| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4363 (|#5| |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4225 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -4225 (|#1| |#1| |#4| (-767))) (-15 -4225 (|#1| |#1| (-637 |#4|))) (-15 -4225 (|#1| |#1| |#4|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1578 (((-637 (-767)) $) 214) (((-637 (-767)) $ |#2|) 212)) (-1612 (((-767) $) 213) (((-767) $ |#2|) 211)) (-3474 (((-637 |#3|) $) 110)) (-3476 (((-1163 $) $ |#3|) 125) (((-1163 |#1|) $) 124)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-2220 (($ $) 88 (|has| |#1| (-556)))) (-2218 (((-112) $) 90 (|has| |#1| (-556)))) (-3208 (((-767) $) 112) (((-767) $ (-637 |#3|)) 111)) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 100 (|has| |#1| (-906)))) (-4189 (($ $) 98 (|has| |#1| (-452)))) (-4384 (((-405 $) $) 97 (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 103 (|has| |#1| (-906)))) (-1574 (($ $) 207)) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| #2="failed") $) 164) (((-3 (-407 (-546)) #2#) $) 161 (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) 159 (|has| |#1| (-1034 (-546)))) (((-3 |#3| #2#) $) 136) (((-3 |#2| #2#) $) 221)) (-3564 ((|#1| $) 163) (((-407 (-546)) $) 162 (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) 160 (|has| |#1| (-1034 (-546)))) ((|#3| $) 137) ((|#2| $) 222)) (-4171 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-4374 (($ $) 154)) (-2408 (((-684 (-546)) (-684 $)) 134 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 133 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3873 (((-3 $ "failed") $) 33)) (-3909 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3207 (((-637 $) $) 109)) (-4138 (((-112) $) 96 (|has| |#1| (-906)))) (-1756 (($ $ |#1| |#4| $) 172)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 83 (-12 (|has| |#3| (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ |#2|) 217) (((-767) $) 216)) (-2552 (((-112) $) 31)) (-2560 (((-767) $) 169)) (-3477 (($ (-1163 |#1|) |#3|) 117) (($ (-1163 $) |#3|) 116)) (-3210 (((-637 $) $) 126)) (-4352 (((-112) $) 152)) (-3283 (($ |#1| |#4|) 153) (($ $ |#3| (-767)) 119) (($ $ (-637 |#3|) (-637 (-767))) 118)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3209 ((|#4| $) 170) (((-767) $ |#3|) 122) (((-637 (-767)) $ (-637 |#3|)) 121)) (-2919 (($ $ $) 79 (|has| |#1| (-846)))) (-3249 (($ $ $) 78 (|has| |#1| (-846)))) (-1757 (($ (-1 |#4| |#4|) $) 171)) (-4373 (($ (-1 |#1| |#1|) $) 151)) (-1613 (((-1 $ (-767)) |#2|) 219) (((-1 $ (-767)) $) 206 (|has| |#1| (-233)))) (-3475 (((-3 |#3| #3="failed") $) 123)) (-3284 (($ $) 149)) (-3582 ((|#1| $) 148)) (-1576 ((|#3| $) 209)) (-2048 (($ (-637 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3650 (((-1151) $) 9)) (-1577 (((-112) $) 210)) (-3212 (((-3 (-637 $) #3#) $) 114)) (-3211 (((-3 (-637 $) #3#) $) 115)) (-3213 (((-3 (-2 (|:| |var| |#3|) (|:| -2543 (-767))) #3#) $) 113)) (-1575 (($ $) 208)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 166)) (-1950 ((|#1| $) 167)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 95 (|has| |#1| (-452)))) (-3552 (($ (-637 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 102 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 101 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 99 (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-637 $) (-637 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-637 |#3|) (-637 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-637 |#3|) (-637 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-637 |#2|) (-637 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-637 |#2|) (-637 |#1|)) 202 (|has| |#1| (-233)))) (-4172 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4225 (($ $ |#3|) 42) (($ $ (-637 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-637 |#3|) (-637 (-767))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-767)) 236 (|has| |#1| (-233))) (($ $ (-1169)) 234 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 233 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 232 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 231 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1579 (((-637 |#2|) $) 218)) (-4363 ((|#4| $) 150) (((-767) $ |#3|) 130) (((-637 (-767)) $ (-637 |#3|)) 129) (((-767) $ |#2|) 215)) (-4385 (((-886 (-378)) $) 82 (-12 (|has| |#3| (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) 81 (-12 (|has| |#3| (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) 80 (-12 (|has| |#3| (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 104 (-3247 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-546))) 72 (-3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546)))))) (($ $) 85 (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) 168)) (-4092 ((|#1| $ |#4|) 155) (($ $ |#3| (-767)) 128) (($ $ (-637 |#3|) (-637 (-767))) 127)) (-3091 (((-3 $ #1#) $) 73 (-3943 (-3247 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 28)) (-1755 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 89 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ |#3|) 38) (($ $ (-637 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-637 |#3|) (-637 (-767))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-767)) 235 (|has| |#1| (-233))) (($ $ (-1169)) 230 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 229 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 228 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 227 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2951 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 75 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 77 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 74 (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 158 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 157 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-253 |#1| |#2| |#3| |#4|) (-140) (-1045) (-846) (-266 |t#2|) (-789)) (T -253))
-((-4340 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3871 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3989 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-4329 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-3564 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-3968 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))))
-(-13 (-945 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -4340 ((-1 $ (-767)) |t#2|)) (-15 -4001 ((-640 |t#2|) $)) (-15 -1775 ((-767) $ |t#2|)) (-15 -1775 ((-767) $)) (-15 -3871 ((-767) $ |t#2|)) (-15 -3989 ((-640 (-767)) $)) (-15 -4329 ((-767) $)) (-15 -3989 ((-640 (-767)) $ |t#2|)) (-15 -4329 ((-767) $ |t#2|)) (-15 -3978 ((-112) $)) (-15 -3760 (|t#3| $)) (-15 -3564 ($ $)) (-15 -3968 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -4340 ((-1 $ (-767)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#4| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-4068 ((|#1| $) 54)) (-2635 ((|#1| $) 44)) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2080 (($ $) 60)) (-1574 (($ $) 48)) (-2147 ((|#1| |#1| $) 46)) (-2136 ((|#1| $) 45)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3419 (((-767) $) 61)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-4045 ((|#1| |#1| $) 52)) (-4033 ((|#1| |#1| $) 51)) (-3867 (($ |#1| $) 40)) (-4238 (((-767) $) 55)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2071 ((|#1| $) 62)) (-4022 ((|#1| $) 50)) (-4012 ((|#1| $) 49)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2099 ((|#1| |#1| $) 58)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2088 ((|#1| $) 59)) (-4078 (($) 57) (($ (-640 |#1|)) 56)) (-2369 (((-767) $) 43)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4057 ((|#1| $) 53)) (-2820 (($ (-640 |#1|)) 42)) (-2061 ((|#1| $) 63)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-254 |#1|) (-140) (-1208)) (T -254))
-((-4078 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-4068 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4045 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4033 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-1574 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(-13 (-1114 |t#1|) (-991 |t#1|) (-10 -8 (-15 -4078 ($)) (-15 -4078 ($ (-640 |t#1|))) (-15 -4238 ((-767) $)) (-15 -4068 (|t#1| $)) (-15 -4057 (|t#1| $)) (-15 -4045 (|t#1| |t#1| $)) (-15 -4033 (|t#1| |t#1| $)) (-15 -4022 (|t#1| $)) (-15 -4012 (|t#1| $)) (-15 -1574 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-991 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1114 |#1|) . T) ((-1208) . T))
-((-4089 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 139)) (-2286 (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 160) (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 158) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 163) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 159) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 150) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 149) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 129) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 127) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379))) 128) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 125)) (-2243 (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 162) (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 161) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 165) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 164) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 152) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 151) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 135) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 134) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379))) 133) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 132) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379))) 100) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 99) (((-1258) (-1 (-225) (-225)) (-1087 (-379))) 96) (((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263))) 95)))
-(((-255) (-10 -7 (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -4089 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255))
-((-4089 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))))
-(-10 -7 (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -4089 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-2243 (((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))) 96)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -2243 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))))) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|)) (T -256))
-((-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-1258)) (-5 *1 (-256 *6 *7)))))
-(-10 -7 (-15 -2243 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263)))))
-((-4123 (((-563) (-563)) 50)) (-4134 (((-563) (-563)) 51)) (-4146 (((-225) (-225)) 52)) (-4113 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225))) 49)) (-4100 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112)) 47)))
-(((-257) (-10 -7 (-15 -4100 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -4113 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -4123 ((-563) (-563))) (-15 -4134 ((-563) (-563))) (-15 -4146 ((-225) (-225))))) (T -257))
-((-4146 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-4113 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *2 (-1259)) (-5 *1 (-257)))) (-4100 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257)))))
-(-10 -7 (-15 -4100 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -4113 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -4123 ((-563) (-563))) (-15 -4134 ((-563) (-563))) (-15 -4146 ((-225) (-225))))
-((-1692 (((-1085 (-379)) (-1085 (-316 |#1|))) 16)))
-(((-258 |#1|) (-10 -7 (-15 -1692 ((-1085 (-379)) (-1085 (-316 |#1|))))) (-13 (-846) (-555) (-611 (-379)))) (T -258))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-1085 (-316 *4))) (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379))) (-5 *1 (-258 *4)))))
-(-10 -7 (-15 -1692 ((-1085 (-379)) (-1085 (-316 |#1|)))))
-((-2286 (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 71) (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 70) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379))) 61) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 60) (((-1126 (-225)) (-875 |#1|) (-1085 (-379))) 52) (((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 51)) (-2243 (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 74) (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 73) (((-1259) |#1| (-1085 (-379)) (-1085 (-379))) 64) (((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 63) (((-1259) (-875 |#1|) (-1085 (-379))) 56) (((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 55) (((-1258) (-873 |#1|) (-1085 (-379))) 43) (((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263))) 42) (((-1258) |#1| (-1085 (-379))) 35) (((-1258) |#1| (-1085 (-379)) (-640 (-263))) 34)))
-(((-259 |#1|) (-10 -7 (-15 -2243 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) |#1| (-1085 (-379)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))))) (-13 (-611 (-536)) (-1093))) (T -259))
-((-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))))
-(-10 -7 (-15 -2243 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) |#1| (-1085 (-379)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))))
-((-2243 (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263))) 23) (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225))) 24) (((-1258) (-640 (-939 (-225))) (-640 (-263))) 16) (((-1258) (-640 (-939 (-225)))) 17) (((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263))) 20) (((-1258) (-640 (-225)) (-640 (-225))) 21)))
-(((-260) (-10 -7 (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2243 ((-1258) (-640 (-939 (-225))))) (-15 -2243 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263)))))) (T -260))
-((-2243 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260)))))
-(-10 -7 (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2243 ((-1258) (-640 (-939 (-225))))) (-15 -2243 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263)))))
-((-1362 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-4286 (((-917) (-640 (-263)) (-917)) 52)) (-4274 (((-917) (-640 (-263)) (-917)) 51)) (-3532 (((-640 (-379)) (-640 (-263)) (-640 (-379))) 68)) (-4318 (((-379) (-640 (-263)) (-379)) 57)) (-4307 (((-917) (-640 (-263)) (-917)) 53)) (-4237 (((-112) (-640 (-263)) (-112)) 27)) (-3695 (((-1151) (-640 (-263)) (-1151)) 19)) (-4228 (((-1151) (-640 (-263)) (-1151)) 26)) (-4296 (((-1126 (-225)) (-640 (-263))) 46)) (-2528 (((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379)))) 40)) (-4250 (((-870) (-640 (-263)) (-870)) 32)) (-4263 (((-870) (-640 (-263)) (-870)) 33)) (-2607 (((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-4218 (((-112) (-640 (-263)) (-112)) 14)) (-2472 (((-112) (-640 (-263)) (-112)) 13)))
-(((-261) (-10 -7 (-15 -2472 ((-112) (-640 (-263)) (-112))) (-15 -4218 ((-112) (-640 (-263)) (-112))) (-15 -1362 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3695 ((-1151) (-640 (-263)) (-1151))) (-15 -4228 ((-1151) (-640 (-263)) (-1151))) (-15 -4237 ((-112) (-640 (-263)) (-112))) (-15 -4250 ((-870) (-640 (-263)) (-870))) (-15 -4263 ((-870) (-640 (-263)) (-870))) (-15 -2528 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -4274 ((-917) (-640 (-263)) (-917))) (-15 -4286 ((-917) (-640 (-263)) (-917))) (-15 -4296 ((-1126 (-225)) (-640 (-263)))) (-15 -4307 ((-917) (-640 (-263)) (-917))) (-15 -4318 ((-379) (-640 (-263)) (-379))) (-15 -2607 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3532 ((-640 (-379)) (-640 (-263)) (-640 (-379)))))) (T -261))
-((-3532 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2607 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4318 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4307 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4274 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2528 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4263 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4250 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4237 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4228 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3695 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-1362 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4218 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2472 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))))
-(-10 -7 (-15 -2472 ((-112) (-640 (-263)) (-112))) (-15 -4218 ((-112) (-640 (-263)) (-112))) (-15 -1362 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3695 ((-1151) (-640 (-263)) (-1151))) (-15 -4228 ((-1151) (-640 (-263)) (-1151))) (-15 -4237 ((-112) (-640 (-263)) (-112))) (-15 -4250 ((-870) (-640 (-263)) (-870))) (-15 -4263 ((-870) (-640 (-263)) (-870))) (-15 -2528 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -4274 ((-917) (-640 (-263)) (-917))) (-15 -4286 ((-917) (-640 (-263)) (-917))) (-15 -4296 ((-1126 (-225)) (-640 (-263)))) (-15 -4307 ((-917) (-640 (-263)) (-917))) (-15 -4318 ((-379) (-640 (-263)) (-379))) (-15 -2607 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3532 ((-640 (-379)) (-640 (-263)) (-640 (-379)))))
-((-1972 (((-3 |#1| "failed") (-640 (-263)) (-1169)) 17)))
-(((-262 |#1|) (-10 -7 (-15 -1972 ((-3 |#1| "failed") (-640 (-263)) (-1169)))) (-1208)) (T -262))
-((-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *1 (-262 *2)) (-4 *2 (-1208)))))
-(-10 -7 (-15 -1972 ((-3 |#1| "failed") (-640 (-263)) (-1169))))
-((-1677 (((-112) $ $) NIL)) (-1362 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 12)) (-4286 (($ (-917)) 74)) (-4274 (($ (-917)) 73)) (-3245 (($ (-640 (-379))) 80)) (-4318 (($ (-379)) 56)) (-4307 (($ (-917)) 75)) (-4237 (($ (-112)) 21)) (-3695 (($ (-1151)) 16)) (-4228 (($ (-1151)) 17)) (-4296 (($ (-1126 (-225))) 69)) (-2528 (($ (-640 (-1087 (-379)))) 65)) (-4166 (($ (-640 (-1087 (-379)))) 57) (($ (-640 (-1087 (-407 (-563))))) 64)) (-4197 (($ (-379)) 27) (($ (-870)) 31)) (-4157 (((-112) (-640 $) (-1169)) 90)) (-1972 (((-3 (-52) "failed") (-640 $) (-1169)) 92)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-4187 (($ (-379)) 32) (($ (-870)) 33)) (-3759 (($ (-1 (-939 (-225)) (-939 (-225)))) 55)) (-2607 (($ (-1 (-939 (-225)) (-939 (-225)))) 76)) (-4175 (($ (-1 (-225) (-225))) 37) (($ (-1 (-225) (-225) (-225))) 41) (($ (-1 (-225) (-225) (-225) (-225))) 45)) (-1692 (((-858) $) 86)) (-4208 (($ (-112)) 22) (($ (-640 (-1087 (-379)))) 50)) (-2472 (($ (-112)) 23)) (-1718 (((-112) $ $) 88)))
-(((-263) (-13 (-1093) (-10 -8 (-15 -2472 ($ (-112))) (-15 -4208 ($ (-112))) (-15 -1362 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3695 ($ (-1151))) (-15 -4228 ($ (-1151))) (-15 -4237 ($ (-112))) (-15 -4208 ($ (-640 (-1087 (-379))))) (-15 -3759 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -4197 ($ (-379))) (-15 -4197 ($ (-870))) (-15 -4187 ($ (-379))) (-15 -4187 ($ (-870))) (-15 -4175 ($ (-1 (-225) (-225)))) (-15 -4175 ($ (-1 (-225) (-225) (-225)))) (-15 -4175 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -4318 ($ (-379))) (-15 -4166 ($ (-640 (-1087 (-379))))) (-15 -4166 ($ (-640 (-1087 (-407 (-563)))))) (-15 -2528 ($ (-640 (-1087 (-379))))) (-15 -4296 ($ (-1126 (-225)))) (-15 -4274 ($ (-917))) (-15 -4286 ($ (-917))) (-15 -4307 ($ (-917))) (-15 -2607 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -3245 ($ (-640 (-379)))) (-15 -1972 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -4157 ((-112) (-640 $) (-1169)))))) (T -263))
-((-2472 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-4197 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4197 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-4318 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4166 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-4166 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52)) (-5 *1 (-263)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112)) (-5 *1 (-263)))))
-(-13 (-1093) (-10 -8 (-15 -2472 ($ (-112))) (-15 -4208 ($ (-112))) (-15 -1362 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3695 ($ (-1151))) (-15 -4228 ($ (-1151))) (-15 -4237 ($ (-112))) (-15 -4208 ($ (-640 (-1087 (-379))))) (-15 -3759 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -4197 ($ (-379))) (-15 -4197 ($ (-870))) (-15 -4187 ($ (-379))) (-15 -4187 ($ (-870))) (-15 -4175 ($ (-1 (-225) (-225)))) (-15 -4175 ($ (-1 (-225) (-225) (-225)))) (-15 -4175 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -4318 ($ (-379))) (-15 -4166 ($ (-640 (-1087 (-379))))) (-15 -4166 ($ (-640 (-1087 (-407 (-563)))))) (-15 -2528 ($ (-640 (-1087 (-379))))) (-15 -4296 ($ (-1126 (-225)))) (-15 -4274 ($ (-917))) (-15 -4286 ($ (-917))) (-15 -4307 ($ (-917))) (-15 -2607 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -3245 ($ (-640 (-379)))) (-15 -1972 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -4157 ((-112) (-640 $) (-1169)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3989 (((-640 (-767)) $) NIL) (((-640 (-767)) $ |#2|) NIL)) (-4329 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-2605 (((-640 |#3|) $) NIL)) (-2138 (((-1165 $) $ |#3|) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 |#3|)) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3968 (($ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1118 |#1| |#2|) "failed") $) 21)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1118 |#1| |#2|) $) NIL)) (-1612 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-531 |#3|) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))))) (-1775 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#1|) |#3|) NIL) (($ (-1165 $) |#3|) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#3|) NIL)) (-3908 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-1698 (((-3 |#3| "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3760 ((|#3| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3978 (((-112) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3311 (-767))) "failed") $) NIL)) (-3564 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-640 |#3|) (-640 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-1623 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4203 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4001 (((-640 |#2|) $) NIL)) (-3871 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1118 |#1| |#2|)) 30) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1613 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-637 *4)))) (-4186 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-4363 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-637 (-767))))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1578 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-637 (-767))))) (-1612 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-1574 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-1613 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))))
+(-13 (-946 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -1613 ((-1 $ (-767)) |t#2|)) (-15 -1579 ((-637 |t#2|) $)) (-15 -4186 ((-767) $ |t#2|)) (-15 -4186 ((-767) $)) (-15 -4363 ((-767) $ |t#2|)) (-15 -1578 ((-637 (-767)) $)) (-15 -1612 ((-767) $)) (-15 -1578 ((-637 (-767)) $ |t#2|)) (-15 -1612 ((-767) $ |t#2|)) (-15 -1577 ((-112) $)) (-15 -1576 (|t#3| $)) (-15 -1575 ($ $)) (-15 -1574 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -1613 ((-1 $ (-767)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#3| (-611 (-535)))) ((-611 (-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#3| (-611 (-886 (-378))))) ((-611 (-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#3| (-611 (-886 (-546))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-896 |#3|) . T) ((-882 (-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#3| (-882 (-378)))) ((-882 (-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#3| (-882 (-546)))) ((-946 |#1| |#4| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) |has| |#1| (-906)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1585 ((|#1| $) 54)) (-3735 ((|#1| $) 44)) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-3392 (($ $) 60)) (-2423 (($ $) 48)) (-3737 ((|#1| |#1| $) 46)) (-3736 ((|#1| $) 45)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-4248 (((-767) $) 61)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-1583 ((|#1| |#1| $) 52)) (-1582 ((|#1| |#1| $) 51)) (-4022 (($ |#1| $) 40)) (-2988 (((-767) $) 55)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-3391 ((|#1| $) 62)) (-1581 ((|#1| $) 50)) (-1580 ((|#1| $) 49)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3394 ((|#1| |#1| $) 58)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-3393 ((|#1| $) 59)) (-1586 (($) 57) (($ (-637 |#1|)) 56)) (-3734 (((-767) $) 43)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1584 ((|#1| $) 53)) (-1361 (($ (-637 |#1|)) 42)) (-3390 ((|#1| $) 63)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-254 |#1|) (-140) (-1207)) (T -254))
+((-1586 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-254 *3)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1583 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1582 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(-13 (-1114 |t#1|) (-991 |t#1|) (-10 -8 (-15 -1586 ($)) (-15 -1586 ($ (-637 |t#1|))) (-15 -2988 ((-767) $)) (-15 -1585 (|t#1| $)) (-15 -1584 (|t#1| $)) (-15 -1583 (|t#1| |t#1| $)) (-15 -1582 (|t#1| |t#1| $)) (-15 -1581 (|t#1| $)) (-15 -1580 (|t#1| $)) (-15 -2423 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-991 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1114 |#1|) . T) ((-1207) . T))
+((-1587 (((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378))) 71) (((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261))) 70) (((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378))) 61) (((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261))) 60) (((-1126 (-225)) (-875 |#1|) (-1085 (-378))) 52) (((-1126 (-225)) (-875 |#1|) (-1085 (-378)) (-637 (-261))) 51)) (-1594 (((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378))) 74) (((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261))) 73) (((-1260) |#1| (-1085 (-378)) (-1085 (-378))) 64) (((-1260) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261))) 63) (((-1260) (-875 |#1|) (-1085 (-378))) 56) (((-1260) (-875 |#1|) (-1085 (-378)) (-637 (-261))) 55) (((-1259) (-873 |#1|) (-1085 (-378))) 43) (((-1259) (-873 |#1|) (-1085 (-378)) (-637 (-261))) 42) (((-1259) |#1| (-1085 (-378))) 35) (((-1259) |#1| (-1085 (-378)) (-637 (-261))) 34)))
+(((-255 |#1|) (-10 -7 (-15 -1594 ((-1259) |#1| (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) |#1| (-1085 (-378)))) (-15 -1594 ((-1259) (-873 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-873 |#1|) (-1085 (-378)))) (-15 -1594 ((-1260) (-875 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-875 |#1|) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) (-875 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-875 |#1|) (-1085 (-378)))) (-15 -1594 ((-1260) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) |#1| (-1085 (-378)) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378)))) (-15 -1594 ((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378))))) (-13 (-611 (-535)) (-1094))) (T -255))
+((-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-378))) (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *5)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *6)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-378))) (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *5)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *6)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1260)) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-378))) (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *5)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-378))) (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *5)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-378))) (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1259)) (-5 *1 (-255 *5)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1259)) (-5 *1 (-255 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1259)) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094))))))
+(-10 -7 (-15 -1594 ((-1259) |#1| (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) |#1| (-1085 (-378)))) (-15 -1594 ((-1259) (-873 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-873 |#1|) (-1085 (-378)))) (-15 -1594 ((-1260) (-875 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-875 |#1|) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) (-875 |#1|) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-875 |#1|) (-1085 (-378)))) (-15 -1594 ((-1260) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) |#1| (-1085 (-378)) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) |#1| (-1085 (-378)) (-1085 (-378)))) (-15 -1594 ((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-878 |#1|) (-1085 (-378)) (-1085 (-378)))) (-15 -1587 ((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-878 |#1|) (-1085 (-378)) (-1085 (-378)))))
+((-1588 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 139)) (-1587 (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378))) 160) (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 158) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378))) 163) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 159) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378))) 150) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 149) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378))) 129) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261))) 127) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378))) 128) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261))) 125)) (-1594 (((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378))) 162) (((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 161) (((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378))) 165) (((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 164) (((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378))) 152) (((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261))) 151) (((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378))) 135) (((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261))) 134) (((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378))) 133) (((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261))) 132) (((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378))) 100) (((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261))) 99) (((-1259) (-1 (-225) (-225)) (-1082 (-378))) 96) (((-1259) (-1 (-225) (-225)) (-1082 (-378)) (-637 (-261))) 95)))
+(((-256) (-10 -7 (-15 -1594 ((-1259) (-1 (-225) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-1 (-225) (-225)) (-1082 (-378)))) (-15 -1594 ((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1594 ((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1594 ((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)))) (-15 -1588 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256))
+((-1588 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1259)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1259)) (-5 *1 (-256)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-256)))))
+(-10 -7 (-15 -1594 ((-1259) (-1 (-225) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-1 (-225) (-225)) (-1082 (-378)))) (-15 -1594 ((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1259) (-873 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1594 ((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-875 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-378)) (-1082 (-378)))) (-15 -1594 ((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1594 ((-1260) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)))) (-15 -1587 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)) (-637 (-261)))) (-15 -1587 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1082 (-378)) (-1082 (-378)))) (-15 -1588 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-1594 (((-1259) (-293 |#2|) (-1169) (-1169) (-637 (-261))) 96)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -1594 ((-1259) (-293 |#2|) (-1169) (-1169) (-637 (-261))))) (-13 (-556) (-846) (-1034 (-546))) (-421 |#1|)) (T -257))
+((-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1169)) (-5 *5 (-637 (-261))) (-4 *7 (-421 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-1259)) (-5 *1 (-257 *6 *7)))))
+(-10 -7 (-15 -1594 ((-1259) (-293 |#2|) (-1169) (-1169) (-637 (-261)))))
+((-1591 (((-546) (-546)) 50)) (-1592 (((-546) (-546)) 51)) (-1593 (((-225) (-225)) 52)) (-1590 (((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225))) 49)) (-1589 (((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225)) (-112)) 47)))
+(((-258) (-10 -7 (-15 -1589 ((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225)) (-112))) (-15 -1590 ((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225)))) (-15 -1591 ((-546) (-546))) (-15 -1592 ((-546) (-546))) (-15 -1593 ((-225) (-225))))) (T -258))
+((-1593 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-258)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-258)))) (-1590 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1082 (-225))) (-5 *2 (-1260)) (-5 *1 (-258)))) (-1589 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1082 (-225))) (-5 *5 (-112)) (-5 *2 (-1260)) (-5 *1 (-258)))))
+(-10 -7 (-15 -1589 ((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225)) (-112))) (-15 -1590 ((-1260) (-1 (-168 (-225)) (-168 (-225))) (-1082 (-225)) (-1082 (-225)))) (-15 -1591 ((-546) (-546))) (-15 -1592 ((-546) (-546))) (-15 -1593 ((-225) (-225))))
+((-4361 (((-1085 (-378)) (-1085 (-314 |#1|))) 16)))
+(((-259 |#1|) (-10 -7 (-15 -4361 ((-1085 (-378)) (-1085 (-314 |#1|))))) (-13 (-846) (-556) (-611 (-378)))) (T -259))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-1085 (-314 *4))) (-4 *4 (-13 (-846) (-556) (-611 (-378)))) (-5 *2 (-1085 (-378))) (-5 *1 (-259 *4)))))
+(-10 -7 (-15 -4361 ((-1085 (-378)) (-1085 (-314 |#1|)))))
+((-1594 (((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225)) (-637 (-261))) 23) (((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225))) 24) (((-1259) (-637 (-939 (-225))) (-637 (-261))) 16) (((-1259) (-637 (-939 (-225)))) 17) (((-1259) (-637 (-225)) (-637 (-225)) (-637 (-261))) 20) (((-1259) (-637 (-225)) (-637 (-225))) 21)))
+(((-260) (-10 -7 (-15 -1594 ((-1259) (-637 (-225)) (-637 (-225)))) (-15 -1594 ((-1259) (-637 (-225)) (-637 (-225)) (-637 (-261)))) (-15 -1594 ((-1259) (-637 (-939 (-225))))) (-15 -1594 ((-1259) (-637 (-939 (-225))) (-637 (-261)))) (-15 -1594 ((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225)))) (-15 -1594 ((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225)) (-637 (-261)))))) (T -260))
+((-1594 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-637 (-225))) (-5 *4 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *4 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-637 (-225))) (-5 *4 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))))
+(-10 -7 (-15 -1594 ((-1259) (-637 (-225)) (-637 (-225)))) (-15 -1594 ((-1259) (-637 (-225)) (-637 (-225)) (-637 (-261)))) (-15 -1594 ((-1259) (-637 (-939 (-225))))) (-15 -1594 ((-1259) (-637 (-939 (-225))) (-637 (-261)))) (-15 -1594 ((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225)))) (-15 -1594 ((-1260) (-637 (-225)) (-637 (-225)) (-637 (-225)) (-637 (-261)))))
+((-2953 (((-112) $ $) NIL)) (-4296 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 12)) (-1607 (($ (-915)) 74)) (-1606 (($ (-915)) 73)) (-1927 (($ (-637 (-378))) 80)) (-1610 (($ (-378)) 56)) (-1609 (($ (-915)) 75)) (-1603 (($ (-112)) 21)) (-4298 (($ (-1151)) 16)) (-1602 (($ (-1151)) 17)) (-1608 (($ (-1126 (-225))) 69)) (-2085 (($ (-637 (-1082 (-378)))) 65)) (-1596 (($ (-637 (-1082 (-378)))) 57) (($ (-637 (-1082 (-407 (-546))))) 64)) (-1599 (($ (-378)) 27) (($ (-870)) 31)) (-1595 (((-112) (-637 $) (-1169)) 90)) (-1611 (((-3 (-51) "failed") (-637 $) (-1169)) 92)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1598 (($ (-378)) 32) (($ (-870)) 33)) (-3632 (($ (-1 (-939 (-225)) (-939 (-225)))) 55)) (-2396 (($ (-1 (-939 (-225)) (-939 (-225)))) 76)) (-1597 (($ (-1 (-225) (-225))) 37) (($ (-1 (-225) (-225) (-225))) 41) (($ (-1 (-225) (-225) (-225) (-225))) 45)) (-4361 (((-859) $) 86)) (-1600 (($ (-112)) 22) (($ (-637 (-1082 (-378)))) 50)) (-2080 (($ (-112)) 23)) (-3444 (((-112) $ $) 88)))
+(((-261) (-13 (-1094) (-10 -8 (-15 -2080 ($ (-112))) (-15 -1600 ($ (-112))) (-15 -4296 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4298 ($ (-1151))) (-15 -1602 ($ (-1151))) (-15 -1603 ($ (-112))) (-15 -1600 ($ (-637 (-1082 (-378))))) (-15 -3632 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1599 ($ (-378))) (-15 -1599 ($ (-870))) (-15 -1598 ($ (-378))) (-15 -1598 ($ (-870))) (-15 -1597 ($ (-1 (-225) (-225)))) (-15 -1597 ($ (-1 (-225) (-225) (-225)))) (-15 -1597 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1610 ($ (-378))) (-15 -1596 ($ (-637 (-1082 (-378))))) (-15 -1596 ($ (-637 (-1082 (-407 (-546)))))) (-15 -2085 ($ (-637 (-1082 (-378))))) (-15 -1608 ($ (-1126 (-225)))) (-15 -1606 ($ (-915))) (-15 -1607 ($ (-915))) (-15 -1609 ($ (-915))) (-15 -2396 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1927 ($ (-637 (-378)))) (-15 -1611 ((-3 (-51) "failed") (-637 $) (-1169))) (-15 -1595 ((-112) (-637 $) (-1169)))))) (T -261))
+((-2080 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-261)))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-261)))) (-1602 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-261)))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-261)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-261)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-261)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-261)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-261)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-261)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-407 (-546))))) (-5 *1 (-261)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) (-1606 (*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-261)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-261)))) (-1611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *2 (-51)) (-5 *1 (-261)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *2 (-112)) (-5 *1 (-261)))))
+(-13 (-1094) (-10 -8 (-15 -2080 ($ (-112))) (-15 -1600 ($ (-112))) (-15 -4296 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4298 ($ (-1151))) (-15 -1602 ($ (-1151))) (-15 -1603 ($ (-112))) (-15 -1600 ($ (-637 (-1082 (-378))))) (-15 -3632 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1599 ($ (-378))) (-15 -1599 ($ (-870))) (-15 -1598 ($ (-378))) (-15 -1598 ($ (-870))) (-15 -1597 ($ (-1 (-225) (-225)))) (-15 -1597 ($ (-1 (-225) (-225) (-225)))) (-15 -1597 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1610 ($ (-378))) (-15 -1596 ($ (-637 (-1082 (-378))))) (-15 -1596 ($ (-637 (-1082 (-407 (-546)))))) (-15 -2085 ($ (-637 (-1082 (-378))))) (-15 -1608 ($ (-1126 (-225)))) (-15 -1606 ($ (-915))) (-15 -1607 ($ (-915))) (-15 -1609 ($ (-915))) (-15 -2396 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1927 ($ (-637 (-378)))) (-15 -1611 ((-3 (-51) "failed") (-637 $) (-1169))) (-15 -1595 ((-112) (-637 $) (-1169)))))
+((-4296 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-637 (-261)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1607 (((-915) (-637 (-261)) (-915)) 52)) (-1606 (((-915) (-637 (-261)) (-915)) 51)) (-4266 (((-637 (-378)) (-637 (-261)) (-637 (-378))) 68)) (-1610 (((-378) (-637 (-261)) (-378)) 57)) (-1609 (((-915) (-637 (-261)) (-915)) 53)) (-1603 (((-112) (-637 (-261)) (-112)) 27)) (-4298 (((-1151) (-637 (-261)) (-1151)) 19)) (-1602 (((-1151) (-637 (-261)) (-1151)) 26)) (-1608 (((-1126 (-225)) (-637 (-261))) 46)) (-2085 (((-637 (-1082 (-378))) (-637 (-261)) (-637 (-1082 (-378)))) 40)) (-1604 (((-870) (-637 (-261)) (-870)) 32)) (-1605 (((-870) (-637 (-261)) (-870)) 33)) (-2396 (((-1 (-939 (-225)) (-939 (-225))) (-637 (-261)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-1601 (((-112) (-637 (-261)) (-112)) 14)) (-2080 (((-112) (-637 (-261)) (-112)) 13)))
+(((-262) (-10 -7 (-15 -2080 ((-112) (-637 (-261)) (-112))) (-15 -1601 ((-112) (-637 (-261)) (-112))) (-15 -4296 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-637 (-261)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4298 ((-1151) (-637 (-261)) (-1151))) (-15 -1602 ((-1151) (-637 (-261)) (-1151))) (-15 -1603 ((-112) (-637 (-261)) (-112))) (-15 -1604 ((-870) (-637 (-261)) (-870))) (-15 -1605 ((-870) (-637 (-261)) (-870))) (-15 -2085 ((-637 (-1082 (-378))) (-637 (-261)) (-637 (-1082 (-378))))) (-15 -1606 ((-915) (-637 (-261)) (-915))) (-15 -1607 ((-915) (-637 (-261)) (-915))) (-15 -1608 ((-1126 (-225)) (-637 (-261)))) (-15 -1609 ((-915) (-637 (-261)) (-915))) (-15 -1610 ((-378) (-637 (-261)) (-378))) (-15 -2396 ((-1 (-939 (-225)) (-939 (-225))) (-637 (-261)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -4266 ((-637 (-378)) (-637 (-261)) (-637 (-378)))))) (T -262))
+((-4266 (*1 *2 *3 *2) (-12 (-5 *2 (-637 (-378))) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-2396 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1610 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1609 (*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-262)))) (-1607 (*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1606 (*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-2085 (*1 *2 *3 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1605 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1604 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1603 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1602 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-4298 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-4296 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-1601 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))) (-2080 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(-10 -7 (-15 -2080 ((-112) (-637 (-261)) (-112))) (-15 -1601 ((-112) (-637 (-261)) (-112))) (-15 -4296 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-637 (-261)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4298 ((-1151) (-637 (-261)) (-1151))) (-15 -1602 ((-1151) (-637 (-261)) (-1151))) (-15 -1603 ((-112) (-637 (-261)) (-112))) (-15 -1604 ((-870) (-637 (-261)) (-870))) (-15 -1605 ((-870) (-637 (-261)) (-870))) (-15 -2085 ((-637 (-1082 (-378))) (-637 (-261)) (-637 (-1082 (-378))))) (-15 -1606 ((-915) (-637 (-261)) (-915))) (-15 -1607 ((-915) (-637 (-261)) (-915))) (-15 -1608 ((-1126 (-225)) (-637 (-261)))) (-15 -1609 ((-915) (-637 (-261)) (-915))) (-15 -1610 ((-378) (-637 (-261)) (-378))) (-15 -2396 ((-1 (-939 (-225)) (-939 (-225))) (-637 (-261)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -4266 ((-637 (-378)) (-637 (-261)) (-637 (-378)))))
+((-1611 (((-3 |#1| "failed") (-637 (-261)) (-1169)) 17)))
+(((-263 |#1|) (-10 -7 (-15 -1611 ((-3 |#1| "failed") (-637 (-261)) (-1169)))) (-1207)) (T -263))
+((-1611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *1 (-263 *2)) (-4 *2 (-1207)))))
+(-10 -7 (-15 -1611 ((-3 |#1| "failed") (-637 (-261)) (-1169))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1578 (((-637 (-767)) $) NIL) (((-637 (-767)) $ |#2|) NIL)) (-1612 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-3474 (((-637 |#3|) $) NIL)) (-3476 (((-1163 $) $ |#3|) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 |#3|)) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1574 (($ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1118 |#1| |#2|) #2#) $) 21)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1118 |#1| |#2|) $) NIL)) (-4171 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-531 |#3|) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-882 (-378))) (|has| |#3| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| |#1| (-882 (-546))) (|has| |#3| (-882 (-546)))))) (-4186 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#1|) |#3|) NIL) (($ (-1163 $) |#3|) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-637 |#3|) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#3|) NIL)) (-3209 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-637 (-767)) $ (-637 |#3|)) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-1613 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3475 (((-3 |#3| #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-1576 ((|#3| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-1577 (((-112) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| |#3|) (|:| -2543 (-767))) #3#) $) NIL)) (-1575 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-637 |#3|) (-637 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-637 |#3|) (-637 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-637 |#2|) (-637 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-637 |#2|) (-637 |#1|)) NIL (|has| |#1| (-233)))) (-4172 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4225 (($ $ |#3|) NIL) (($ $ (-637 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-637 |#3|) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1579 (((-637 |#2|) $) NIL)) (-4363 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-637 (-767)) $ (-637 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#3| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#3| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| |#1| (-611 (-535))) (|has| |#3| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1118 |#1| |#2|)) 30) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-637 |#3|) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ |#3|) NIL) (($ $ (-637 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-637 |#3|) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846) (-266 |#2|)) (T -264))
NIL
(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|)))
-((-4329 (((-767) $) 30)) (-2130 (((-3 |#2| "failed") $) 17)) (-2057 ((|#2| $) 27)) (-4203 (($ $) 12) (($ $ (-767)) 15)) (-1692 (((-858) $) 26) (($ |#2|) 10)) (-1718 (((-112) $ $) 20)) (-1743 (((-112) $ $) 29)))
-(((-265 |#1| |#2|) (-10 -8 (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -4329 ((-767) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265))
+((-1612 (((-767) $) 30)) (-3565 (((-3 |#2| "failed") $) 17)) (-3564 ((|#2| $) 27)) (-4225 (($ $) 12) (($ $ (-767)) 15)) (-4361 (((-859) $) 26) (($ |#2|) 10)) (-3444 (((-112) $ $) 20)) (-3074 (((-112) $ $) 29)))
+(((-265 |#1| |#2|) (-10 -8 (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -1612 ((-767) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| "failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265))
NIL
-(-10 -8 (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -4329 ((-767) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-4329 (((-767) $) 22)) (-2517 ((|#1| $) 23)) (-2130 (((-3 |#1| "failed") $) 27)) (-2057 ((|#1| $) 28)) (-1775 (((-767) $) 24)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-4340 (($ |#1| (-767)) 25)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-4203 (($ $) 21) (($ $ (-767)) 20)) (-1692 (((-858) $) 11) (($ |#1|) 26)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)))
+(-10 -8 (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -1612 ((-767) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| "failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-1612 (((-767) $) 22)) (-4246 ((|#1| $) 23)) (-3565 (((-3 |#1| "failed") $) 27)) (-3564 ((|#1| $) 28)) (-4186 (((-767) $) 24)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-1613 (($ |#1| (-767)) 25)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4225 (($ $) 21) (($ $ (-767)) 20)) (-4361 (((-859) $) 11) (($ |#1|) 26)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)))
(((-266 |#1|) (-140) (-846)) (T -266))
-((-1692 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4340 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -4340 ($ |t#1| (-767))) (-15 -1775 ((-767) $)) (-15 -2517 (|t#1| $)) (-15 -4329 ((-767) $)) (-15 -4203 ($ $)) (-15 -4203 ($ $ (-767))) (-15 -1692 ($ |t#1|))))
-(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1093) . T))
-((-2605 (((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 41)) (-3994 (((-640 (-1169)) (-316 (-225)) (-767)) 80)) (-3148 (((-3 (-316 (-225)) "failed") (-316 (-225))) 51)) (-3157 (((-316 (-225)) (-316 (-225))) 67)) (-3139 (((-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 26)) (-3164 (((-112) (-640 (-316 (-225)))) 84)) (-3200 (((-112) (-316 (-225))) 24)) (-3222 (((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))))) 105)) (-3192 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 87)) (-3183 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 86)) (-3173 (((-684 (-225)) (-640 (-316 (-225))) (-767)) 94)) (-3719 (((-112) (-316 (-225))) 20) (((-112) (-640 (-316 (-225)))) 85)) (-4351 (((-640 (-225)) (-640 (-839 (-225))) (-225)) 14)) (-2894 (((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 100)) (-3210 (((-1031) (-1169) (-1031)) 34)))
-(((-267) (-10 -7 (-15 -4351 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -3139 ((-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -3148 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3157 ((-316 (-225)) (-316 (-225)))) (-15 -3164 ((-112) (-640 (-316 (-225))))) (-15 -3719 ((-112) (-640 (-316 (-225))))) (-15 -3719 ((-112) (-316 (-225)))) (-15 -3173 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -3183 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3192 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3200 ((-112) (-316 (-225)))) (-15 -2605 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -3994 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -3210 ((-1031) (-1169) (-1031))) (-15 -2894 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -3222 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))))))) (T -267))
-((-3222 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))))) (-5 *2 (-640 (-1151))) (-5 *1 (-267)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-3210 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-3173 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-267)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3148 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-267)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4)) (-5 *1 (-267)))))
-(-10 -7 (-15 -4351 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -3139 ((-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -3148 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3157 ((-316 (-225)) (-316 (-225)))) (-15 -3164 ((-112) (-640 (-316 (-225))))) (-15 -3719 ((-112) (-640 (-316 (-225))))) (-15 -3719 ((-112) (-316 (-225)))) (-15 -3173 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -3183 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3192 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3200 ((-112) (-316 (-225)))) (-15 -2605 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -3994 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -3210 ((-1031) (-1169) (-1031))) (-15 -2894 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -3222 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))))))
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 44)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 26) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-4361 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))))
+(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -1613 ($ |t#1| (-767))) (-15 -4186 ((-767) $)) (-15 -4246 (|t#1| $)) (-15 -1612 ((-767) $)) (-15 -4225 ($ $)) (-15 -4225 ($ $ (-767))) (-15 -4361 ($ |t#1|))))
+(((-102) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1094) . T))
+((-3474 (((-637 (-1169)) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 41)) (-4349 (((-637 (-1169)) (-314 (-225)) (-767)) 80)) (-1616 (((-3 (-314 (-225)) "failed") (-314 (-225))) 51)) (-1617 (((-314 (-225)) (-314 (-225))) 67)) (-1615 (((-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 26)) (-1618 (((-112) (-637 (-314 (-225)))) 84)) (-1622 (((-112) (-314 (-225))) 24)) (-1624 (((-637 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))))) 105)) (-1621 (((-637 (-314 (-225))) (-637 (-314 (-225)))) 87)) (-1620 (((-637 (-314 (-225))) (-637 (-314 (-225)))) 86)) (-1619 (((-684 (-225)) (-637 (-314 (-225))) (-767)) 94)) (-3317 (((-112) (-314 (-225))) 20) (((-112) (-637 (-314 (-225)))) 85)) (-1614 (((-637 (-225)) (-637 (-838 (-225))) (-225)) 14)) (-1712 (((-378) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 100)) (-1623 (((-1031) (-1169) (-1031)) 34)))
+(((-267) (-10 -7 (-15 -1614 ((-637 (-225)) (-637 (-838 (-225))) (-225))) (-15 -1615 ((-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))))) (-15 -1616 ((-3 (-314 (-225)) "failed") (-314 (-225)))) (-15 -1617 ((-314 (-225)) (-314 (-225)))) (-15 -1618 ((-112) (-637 (-314 (-225))))) (-15 -3317 ((-112) (-637 (-314 (-225))))) (-15 -3317 ((-112) (-314 (-225)))) (-15 -1619 ((-684 (-225)) (-637 (-314 (-225))) (-767))) (-15 -1620 ((-637 (-314 (-225))) (-637 (-314 (-225))))) (-15 -1621 ((-637 (-314 (-225))) (-637 (-314 (-225))))) (-15 -1622 ((-112) (-314 (-225)))) (-15 -3474 ((-637 (-1169)) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -4349 ((-637 (-1169)) (-314 (-225)) (-767))) (-15 -1623 ((-1031) (-1169) (-1031))) (-15 -1712 ((-378) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -1624 ((-637 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))))) (T -267))
+((-1624 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))))) (-5 *2 (-637 (-1151))) (-5 *1 (-267)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) (-5 *2 (-378)) (-5 *1 (-267)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))) (-4349 (*1 *2 *3 *4) (-12 (-5 *3 (-314 (-225))) (-5 *4 (-767)) (-5 *2 (-637 (-1169))) (-5 *1 (-267)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) (-5 *2 (-637 (-1169))) (-5 *1 (-267)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1621 (*1 *2 *2) (-12 (-5 *2 (-637 (-314 (-225)))) (-5 *1 (-267)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-637 (-314 (-225)))) (-5 *1 (-267)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-267)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-314 (-225))) (-5 *1 (-267)))) (-1616 (*1 *2 *2) (|partial| -12 (-5 *2 (-314 (-225))) (-5 *1 (-267)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (-5 *1 (-267)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-838 (-225)))) (-5 *4 (-225)) (-5 *2 (-637 *4)) (-5 *1 (-267)))))
+(-10 -7 (-15 -1614 ((-637 (-225)) (-637 (-838 (-225))) (-225))) (-15 -1615 ((-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))))) (-15 -1616 ((-3 (-314 (-225)) "failed") (-314 (-225)))) (-15 -1617 ((-314 (-225)) (-314 (-225)))) (-15 -1618 ((-112) (-637 (-314 (-225))))) (-15 -3317 ((-112) (-637 (-314 (-225))))) (-15 -3317 ((-112) (-314 (-225)))) (-15 -1619 ((-684 (-225)) (-637 (-314 (-225))) (-767))) (-15 -1620 ((-637 (-314 (-225))) (-637 (-314 (-225))))) (-15 -1621 ((-637 (-314 (-225))) (-637 (-314 (-225))))) (-15 -1622 ((-112) (-314 (-225)))) (-15 -3474 ((-637 (-1169)) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -4349 ((-637 (-1169)) (-314 (-225)) (-767))) (-15 -1623 ((-1031) (-1169) (-1031))) (-15 -1712 ((-378) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -1624 ((-637 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 44)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 26) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-268) (-835)) (T -268))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 58) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 54)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 34) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 36)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 58) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 54)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 34) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 36)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-269) (-835)) (T -269))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 76) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 73)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 44) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 55)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 76) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 73)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 44) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 55)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-270) (-835)) (T -270))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 50)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 31) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 50)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 31) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-271) (-835)) (T -271))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 50)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 28) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 50)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 28) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-272) (-835)) (T -272))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 73)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 28) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 73)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 28) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-273) (-835)) (T -273))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 77)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 25) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 77)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 25) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3444 (((-112) $ $) NIL)))
(((-274) (-835)) (T -274))
NIL
(-835)
-((-1677 (((-112) $ $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3240 (((-640 (-563)) $) 18)) (-3871 (((-767) $) 16)) (-1692 (((-858) $) 22) (($ (-640 (-563))) 14)) (-3230 (($ (-767)) 19)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 9)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 10)))
-(((-275) (-13 (-846) (-10 -8 (-15 -1692 ($ (-640 (-563)))) (-15 -3871 ((-767) $)) (-15 -3240 ((-640 (-563)) $)) (-15 -3230 ($ (-767)))))) (T -275))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
-(-13 (-846) (-10 -8 (-15 -1692 ($ (-640 (-563)))) (-15 -3871 ((-767) $)) (-15 -3240 ((-640 (-563)) $)) (-15 -3230 ($ (-767)))))
-((-1770 ((|#2| |#2|) 75)) (-1618 ((|#2| |#2|) 63)) (-3565 (((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 115)) (-1747 ((|#2| |#2|) 73)) (-1596 ((|#2| |#2|) 61)) (-1793 ((|#2| |#2|) 77)) (-1642 ((|#2| |#2|) 65)) (-2179 ((|#2|) 44)) (-2559 (((-114) (-114)) 94)) (-4372 ((|#2| |#2|) 59)) (-3577 (((-112) |#2|) 134)) (-3452 ((|#2| |#2|) 182)) (-3314 ((|#2| |#2|) 158)) (-3261 ((|#2|) 57)) (-3251 ((|#2|) 56)) (-3428 ((|#2| |#2|) 178)) (-3288 ((|#2| |#2|) 154)) (-3474 ((|#2| |#2|) 186)) (-3335 ((|#2| |#2|) 162)) (-3278 ((|#2| |#2|) 150)) (-3268 ((|#2| |#2|) 152)) (-3484 ((|#2| |#2|) 188)) (-3345 ((|#2| |#2|) 164)) (-3464 ((|#2| |#2|) 184)) (-3325 ((|#2| |#2|) 160)) (-3441 ((|#2| |#2|) 180)) (-3299 ((|#2| |#2|) 156)) (-3516 ((|#2| |#2|) 194)) (-3379 ((|#2| |#2|) 170)) (-3494 ((|#2| |#2|) 190)) (-3356 ((|#2| |#2|) 166)) (-3539 ((|#2| |#2|) 198)) (-3404 ((|#2| |#2|) 174)) (-3550 ((|#2| |#2|) 200)) (-3416 ((|#2| |#2|) 176)) (-3527 ((|#2| |#2|) 196)) (-3391 ((|#2| |#2|) 172)) (-3506 ((|#2| |#2|) 192)) (-3367 ((|#2| |#2|) 168)) (-3372 ((|#2| |#2|) 60)) (-1805 ((|#2| |#2|) 78)) (-1655 ((|#2| |#2|) 66)) (-1783 ((|#2| |#2|) 76)) (-1629 ((|#2| |#2|) 64)) (-1758 ((|#2| |#2|) 74)) (-1607 ((|#2| |#2|) 62)) (-2512 (((-112) (-114)) 92)) (-1839 ((|#2| |#2|) 81)) (-1694 ((|#2| |#2|) 69)) (-1816 ((|#2| |#2|) 79)) (-1666 ((|#2| |#2|) 67)) (-1861 ((|#2| |#2|) 83)) (-1721 ((|#2| |#2|) 71)) (-1311 ((|#2| |#2|) 84)) (-1734 ((|#2| |#2|) 72)) (-1850 ((|#2| |#2|) 82)) (-1709 ((|#2| |#2|) 70)) (-1828 ((|#2| |#2|) 80)) (-1679 ((|#2| |#2|) 68)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -3372 (|#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1679 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1770 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2179 (|#2|)) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -3251 (|#2|)) (-15 -3261 (|#2|)) (-15 -3268 (|#2| |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3288 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3367 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -3527 (|#2| |#2|)) (-15 -3539 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3565 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3577 ((-112) |#2|))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998))) (T -276))
-((-3577 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-998))))) (-3565 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-276 *4 *2)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3539 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3527 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3441 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3416 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3345 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3314 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3288 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3278 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3261 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-3251 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-998))))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) (-2179 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1734 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))))
-(-10 -7 (-15 -3372 (|#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1679 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1770 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2179 (|#2|)) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -3251 (|#2|)) (-15 -3261 (|#2|)) (-15 -3268 (|#2| |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3288 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3367 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -3527 (|#2| |#2|)) (-15 -3539 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3565 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3577 ((-112) |#2|)))
-((-3609 (((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169)) 135)) (-3633 ((|#2| (-407 (-563)) |#2|) 51)) (-3620 ((|#2| |#2| (-609 |#2|)) 128)) (-3587 (((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169)) 127)) (-3598 ((|#2| |#2| (-1169)) 20) ((|#2| |#2|) 23)) (-1826 ((|#2| |#2| (-1169)) 141) ((|#2| |#2|) 139)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -1826 (|#2| |#2|)) (-15 -1826 (|#2| |#2| (-1169))) (-15 -3587 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -3598 (|#2| |#2|)) (-15 -3598 (|#2| |#2| (-1169))) (-15 -3609 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -3620 (|#2| |#2| (-609 |#2|))) (-15 -3633 (|#2| (-407 (-563)) |#2|))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -277))
-((-3633 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-3620 (*1 *2 *2 *3) (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)))) (-3609 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *5 *2)))) (-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3))) (|:| |vals| (-640 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-1826 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))))
-(-10 -7 (-15 -1826 (|#2| |#2|)) (-15 -1826 (|#2| |#2| (-1169))) (-15 -3587 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -3598 (|#2| |#2|)) (-15 -3598 (|#2| |#2| (-1169))) (-15 -3609 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -3620 (|#2| |#2| (-609 |#2|))) (-15 -3633 (|#2| (-407 (-563)) |#2|)))
-((-3015 (((-3 |#3| "failed") |#3|) 111)) (-1770 ((|#3| |#3|) 132)) (-2896 (((-3 |#3| "failed") |#3|) 82)) (-1618 ((|#3| |#3|) 122)) (-2993 (((-3 |#3| "failed") |#3|) 58)) (-1747 ((|#3| |#3|) 130)) (-2878 (((-3 |#3| "failed") |#3|) 46)) (-1596 ((|#3| |#3|) 120)) (-3035 (((-3 |#3| "failed") |#3|) 113)) (-1793 ((|#3| |#3|) 134)) (-2915 (((-3 |#3| "failed") |#3|) 84)) (-1642 ((|#3| |#3|) 124)) (-2850 (((-3 |#3| "failed") |#3| (-767)) 36)) (-2869 (((-3 |#3| "failed") |#3|) 74)) (-4372 ((|#3| |#3|) 119)) (-2860 (((-3 |#3| "failed") |#3|) 44)) (-3372 ((|#3| |#3|) 118)) (-3046 (((-3 |#3| "failed") |#3|) 114)) (-1805 ((|#3| |#3|) 135)) (-2925 (((-3 |#3| "failed") |#3|) 85)) (-1655 ((|#3| |#3|) 125)) (-3025 (((-3 |#3| "failed") |#3|) 112)) (-1783 ((|#3| |#3|) 133)) (-2905 (((-3 |#3| "failed") |#3|) 83)) (-1629 ((|#3| |#3|) 123)) (-3004 (((-3 |#3| "failed") |#3|) 60)) (-1758 ((|#3| |#3|) 131)) (-2887 (((-3 |#3| "failed") |#3|) 48)) (-1607 ((|#3| |#3|) 121)) (-3075 (((-3 |#3| "failed") |#3|) 66)) (-1839 ((|#3| |#3|) 138)) (-2954 (((-3 |#3| "failed") |#3|) 105)) (-1694 ((|#3| |#3|) 143)) (-3057 (((-3 |#3| "failed") |#3|) 62)) (-1816 ((|#3| |#3|) 136)) (-2934 (((-3 |#3| "failed") |#3|) 50)) (-1666 ((|#3| |#3|) 126)) (-3097 (((-3 |#3| "failed") |#3|) 70)) (-1861 ((|#3| |#3|) 140)) (-2974 (((-3 |#3| "failed") |#3|) 54)) (-1721 ((|#3| |#3|) 128)) (-3109 (((-3 |#3| "failed") |#3|) 72)) (-1311 ((|#3| |#3|) 141)) (-2983 (((-3 |#3| "failed") |#3|) 56)) (-1734 ((|#3| |#3|) 129)) (-3085 (((-3 |#3| "failed") |#3|) 68)) (-1850 ((|#3| |#3|) 139)) (-2964 (((-3 |#3| "failed") |#3|) 108)) (-1709 ((|#3| |#3|) 144)) (-3066 (((-3 |#3| "failed") |#3|) 64)) (-1828 ((|#3| |#3|) 137)) (-2944 (((-3 |#3| "failed") |#3|) 52)) (-1679 ((|#3| |#3|) 127)) (** ((|#3| |#3| (-407 (-563))) 40 (|has| |#1| (-363)))))
-(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3372 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1629 (|#3| |#3|)) (-15 -1642 (|#3| |#3|)) (-15 -1655 (|#3| |#3|)) (-15 -1666 (|#3| |#3|)) (-15 -1679 (|#3| |#3|)) (-15 -1694 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1734 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1850 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) (-38 (-407 (-563))) (-1248 |#1|) (-1219 |#1| |#2|)) (T -278))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5)))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1734 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))))
-(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3372 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1629 (|#3| |#3|)) (-15 -1642 (|#3| |#3|)) (-15 -1655 (|#3| |#3|)) (-15 -1666 (|#3| |#3|)) (-15 -1679 (|#3| |#3|)) (-15 -1694 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1734 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1850 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)) (-15 -1311 (|#3| |#3|))))
-((-3015 (((-3 |#3| "failed") |#3|) 66)) (-1770 ((|#3| |#3|) 129)) (-2896 (((-3 |#3| "failed") |#3|) 50)) (-1618 ((|#3| |#3|) 117)) (-2993 (((-3 |#3| "failed") |#3|) 62)) (-1747 ((|#3| |#3|) 127)) (-2878 (((-3 |#3| "failed") |#3|) 46)) (-1596 ((|#3| |#3|) 115)) (-3035 (((-3 |#3| "failed") |#3|) 70)) (-1793 ((|#3| |#3|) 131)) (-2915 (((-3 |#3| "failed") |#3|) 54)) (-1642 ((|#3| |#3|) 119)) (-2850 (((-3 |#3| "failed") |#3| (-767)) 35)) (-2869 (((-3 |#3| "failed") |#3|) 44)) (-4372 ((|#3| |#3|) 104)) (-2860 (((-3 |#3| "failed") |#3|) 42)) (-3372 ((|#3| |#3|) 114)) (-3046 (((-3 |#3| "failed") |#3|) 72)) (-1805 ((|#3| |#3|) 132)) (-2925 (((-3 |#3| "failed") |#3|) 56)) (-1655 ((|#3| |#3|) 120)) (-3025 (((-3 |#3| "failed") |#3|) 68)) (-1783 ((|#3| |#3|) 130)) (-2905 (((-3 |#3| "failed") |#3|) 52)) (-1629 ((|#3| |#3|) 118)) (-3004 (((-3 |#3| "failed") |#3|) 64)) (-1758 ((|#3| |#3|) 128)) (-2887 (((-3 |#3| "failed") |#3|) 48)) (-1607 ((|#3| |#3|) 116)) (-3075 (((-3 |#3| "failed") |#3|) 74)) (-1839 ((|#3| |#3|) 135)) (-2954 (((-3 |#3| "failed") |#3|) 58)) (-1694 ((|#3| |#3|) 123)) (-3057 (((-3 |#3| "failed") |#3|) 105)) (-1816 ((|#3| |#3|) 133)) (-2934 (((-3 |#3| "failed") |#3|) 94)) (-1666 ((|#3| |#3|) 121)) (-3097 (((-3 |#3| "failed") |#3|) 109)) (-1861 ((|#3| |#3|) 137)) (-2974 (((-3 |#3| "failed") |#3|) 101)) (-1721 ((|#3| |#3|) 125)) (-3109 (((-3 |#3| "failed") |#3|) 110)) (-1311 ((|#3| |#3|) 138)) (-2983 (((-3 |#3| "failed") |#3|) 103)) (-1734 ((|#3| |#3|) 126)) (-3085 (((-3 |#3| "failed") |#3|) 76)) (-1850 ((|#3| |#3|) 136)) (-2964 (((-3 |#3| "failed") |#3|) 60)) (-1709 ((|#3| |#3|) 124)) (-3066 (((-3 |#3| "failed") |#3|) 106)) (-1828 ((|#3| |#3|) 134)) (-2944 (((-3 |#3| "failed") |#3|) 97)) (-1679 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-407 (-563))) 40 (|has| |#1| (-363)))))
-(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3372 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1629 (|#3| |#3|)) (-15 -1642 (|#3| |#3|)) (-15 -1655 (|#3| |#3|)) (-15 -1666 (|#3| |#3|)) (-15 -1679 (|#3| |#3|)) (-15 -1694 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1734 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1850 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) (-38 (-407 (-563))) (-1217 |#1|) (-1240 |#1| |#2|) (-979 |#2|)) (T -279))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5)) (-4 *6 (-979 *5)))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1734 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))))
-(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3372 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1629 (|#3| |#3|)) (-15 -1642 (|#3| |#3|)) (-15 -1655 (|#3| |#3|)) (-15 -1666 (|#3| |#3|)) (-15 -1679 (|#3| |#3|)) (-15 -1694 (|#3| |#3|)) (-15 -1709 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1734 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1850 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)) (-15 -1311 (|#3| |#3|))))
-((-4211 (((-112) $) 18)) (-3722 (((-183) $) 7)) (-3478 (((-3 (-1169) "failed") $) 14)) (-3468 (((-3 (-640 $) "failed") $) NIL)) (-3655 (((-3 (-1169) "failed") $) 20)) (-3666 (((-3 (-1097) "failed") $) 17)) (-3904 (((-112) $) 15)) (-1692 (((-858) $) NIL)) (-3644 (((-112) $) 9)))
-(((-280) (-13 (-610 (-858)) (-10 -8 (-15 -3722 ((-183) $)) (-15 -3904 ((-112) $)) (-15 -3666 ((-3 (-1097) "failed") $)) (-15 -4211 ((-112) $)) (-15 -3655 ((-3 (-1169) "failed") $)) (-15 -3644 ((-112) $)) (-15 -3478 ((-3 (-1169) "failed") $)) (-15 -3468 ((-3 (-640 $) "failed") $))))) (T -280))
-((-3722 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3666 (*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3655 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3478 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-3468 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3722 ((-183) $)) (-15 -3904 ((-112) $)) (-15 -3666 ((-3 (-1097) "failed") $)) (-15 -4211 ((-112) $)) (-15 -3655 ((-3 (-1169) "failed") $)) (-15 -3644 ((-112) $)) (-15 -3478 ((-3 (-1169) "failed") $)) (-15 -3468 ((-3 (-640 $) "failed") $))))
-((-2255 (($ (-1 (-112) |#2|) $) 24)) (-3814 (($ $) 36)) (-1691 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1459 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-4265 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3399 (($ |#2| $ (-563)) 20) (($ $ $ (-563)) 22)) (-2967 (($ $ (-563)) 11) (($ $ (-1224 (-563))) 14)) (-1941 (($ $ |#2|) 30) (($ $ $) NIL)) (-2857 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-640 $)) NIL)))
-(((-281 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -4265 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -1941 (|#1| |#1| |#2|)) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2255 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -3814 (|#1| |#1|))) (-282 |#2|) (-1208)) (T -281))
-NIL
-(-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -4265 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -1941 (|#1| |#1| |#2|)) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2255 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -3814 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) 85)) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-4194 (($ $) 83 (|has| |#1| (-1093)))) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1093)))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-4265 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3867 (($ |#1| $ (-563)) 88) (($ $ $ (-563)) 87)) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-3690 (($ $ (-563)) 91) (($ $ (-1224 (-563))) 90)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 70)) (-1941 (($ $ |#1|) 93) (($ $ $) 92)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-282 |#1|) (-140) (-1208)) (T -282))
-((-1941 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-1941 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-3867 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-3867 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-4265 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-3678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1691 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-4194 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))))
-(-13 (-646 |t#1|) (-10 -8 (-6 -4409) (-15 -1941 ($ $ |t#1|)) (-15 -1941 ($ $ $)) (-15 -3690 ($ $ (-563))) (-15 -3690 ($ $ (-1224 (-563)))) (-15 -1691 ($ (-1 (-112) |t#1|) $)) (-15 -3867 ($ |t#1| $ (-563))) (-15 -3867 ($ $ $ (-563))) (-15 -4265 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3678 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -1691 ($ |t#1| $)) (-15 -4194 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -4265 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
+((-2953 (((-112) $ $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1626 (((-637 (-546)) $) 18)) (-4363 (((-767) $) 16)) (-4361 (((-859) $) 22) (($ (-637 (-546))) 14)) (-1625 (($ (-767)) 19)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 9)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 10)))
+(((-275) (-13 (-846) (-10 -8 (-15 -4361 ($ (-637 (-546)))) (-15 -4363 ((-767) $)) (-15 -1626 ((-637 (-546)) $)) (-15 -1625 ($ (-767)))))) (T -275))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-275)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-275)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
+(-13 (-846) (-10 -8 (-15 -4361 ($ (-637 (-546)))) (-15 -4363 ((-767) $)) (-15 -1626 ((-637 (-546)) $)) (-15 -1625 ($ (-767)))))
+((-3898 ((|#2| |#2|) 75)) (-4054 ((|#2| |#2|) 63)) (-1655 (((-3 |#2| "failed") |#2| (-637 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 115)) (-3896 ((|#2| |#2|) 73)) (-4053 ((|#2| |#2|) 61)) (-3900 ((|#2| |#2|) 77)) (-4052 ((|#2| |#2|) 65)) (-4042 ((|#2|) 44)) (-3437 (((-113) (-113)) 94)) (-4357 ((|#2| |#2|) 59)) (-1656 (((-112) |#2|) 134)) (-1645 ((|#2| |#2|) 182)) (-1633 ((|#2| |#2|) 158)) (-1628 ((|#2|) 57)) (-1627 ((|#2|) 56)) (-1643 ((|#2| |#2|) 178)) (-1631 ((|#2| |#2|) 154)) (-1647 ((|#2| |#2|) 186)) (-1635 ((|#2| |#2|) 162)) (-1630 ((|#2| |#2|) 150)) (-1629 ((|#2| |#2|) 152)) (-1648 ((|#2| |#2|) 188)) (-1636 ((|#2| |#2|) 164)) (-1646 ((|#2| |#2|) 184)) (-1634 ((|#2| |#2|) 160)) (-1644 ((|#2| |#2|) 180)) (-1632 ((|#2| |#2|) 156)) (-1651 ((|#2| |#2|) 194)) (-1639 ((|#2| |#2|) 170)) (-1649 ((|#2| |#2|) 190)) (-1637 ((|#2| |#2|) 166)) (-1653 ((|#2| |#2|) 198)) (-1641 ((|#2| |#2|) 174)) (-1654 ((|#2| |#2|) 200)) (-1642 ((|#2| |#2|) 176)) (-1652 ((|#2| |#2|) 196)) (-1640 ((|#2| |#2|) 172)) (-1650 ((|#2| |#2|) 192)) (-1638 ((|#2| |#2|) 168)) (-4358 ((|#2| |#2|) 60)) (-3901 ((|#2| |#2|) 78)) (-4051 ((|#2| |#2|) 66)) (-3899 ((|#2| |#2|) 76)) (-4050 ((|#2| |#2|) 64)) (-3897 ((|#2| |#2|) 74)) (-4049 ((|#2| |#2|) 62)) (-2384 (((-112) (-113)) 92)) (-3904 ((|#2| |#2|) 81)) (-3892 ((|#2| |#2|) 69)) (-3902 ((|#2| |#2|) 79)) (-3890 ((|#2| |#2|) 67)) (-3906 ((|#2| |#2|) 83)) (-3894 ((|#2| |#2|) 71)) (-3907 ((|#2| |#2|) 84)) (-3895 ((|#2| |#2|) 72)) (-3905 ((|#2| |#2|) 82)) (-3893 ((|#2| |#2|) 70)) (-3903 ((|#2| |#2|) 80)) (-3891 ((|#2| |#2|) 68)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -4358 (|#2| |#2|)) (-15 -4357 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -4042 (|#2|)) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1627 (|#2|)) (-15 -1628 (|#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 ((-3 |#2| "failed") |#2| (-637 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1656 ((-112) |#2|))) (-13 (-846) (-556)) (-13 (-421 |#1|) (-998))) (T -276))
+((-1656 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-421 *4) (-998))))) (-1655 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-637 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-421 *4) (-998))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-276 *4 *2)))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1637 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1631 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-1628 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-1627 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-421 *3) (-998))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-421 *4) (-998))))) (-4042 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-556))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4357 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))) (-4358 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-421 *3) (-998))))))
+(-10 -7 (-15 -4358 (|#2| |#2|)) (-15 -4357 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -4042 (|#2|)) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1627 (|#2|)) (-15 -1628 (|#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 ((-3 |#2| "failed") |#2| (-637 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1656 ((-112) |#2|)))
+((-1659 (((-3 |#2| "failed") (-637 (-608 |#2|)) |#2| (-1169)) 135)) (-1661 ((|#2| (-407 (-546)) |#2|) 51)) (-1660 ((|#2| |#2| (-608 |#2|)) 128)) (-1657 (((-2 (|:| |func| |#2|) (|:| |kers| (-637 (-608 |#2|))) (|:| |vals| (-637 |#2|))) |#2| (-1169)) 127)) (-1658 ((|#2| |#2| (-1169)) 20) ((|#2| |#2|) 23)) (-2743 ((|#2| |#2| (-1169)) 141) ((|#2| |#2|) 139)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -2743 (|#2| |#2|)) (-15 -2743 (|#2| |#2| (-1169))) (-15 -1657 ((-2 (|:| |func| |#2|) (|:| |kers| (-637 (-608 |#2|))) (|:| |vals| (-637 |#2|))) |#2| (-1169))) (-15 -1658 (|#2| |#2|)) (-15 -1658 (|#2| |#2| (-1169))) (-15 -1659 ((-3 |#2| "failed") (-637 (-608 |#2|)) |#2| (-1169))) (-15 -1660 (|#2| |#2| (-608 |#2|))) (-15 -1661 (|#2| (-407 (-546)) |#2|))) (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -277))
+((-1661 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-546))) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-1660 (*1 *2 *2 *3) (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *4 *2)))) (-1659 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-637 (-608 *2))) (-5 *4 (-1169)) (-4 *2 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *5 *2)))) (-1658 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-637 (-608 *3))) (|:| |vals| (-637 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-2743 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))))
+(-10 -7 (-15 -2743 (|#2| |#2|)) (-15 -2743 (|#2| |#2| (-1169))) (-15 -1657 ((-2 (|:| |func| |#2|) (|:| |kers| (-637 (-608 |#2|))) (|:| |vals| (-637 |#2|))) |#2| (-1169))) (-15 -1658 (|#2| |#2|)) (-15 -1658 (|#2| |#2| (-1169))) (-15 -1659 ((-3 |#2| "failed") (-637 (-608 |#2|)) |#2| (-1169))) (-15 -1660 (|#2| |#2| (-608 |#2|))) (-15 -1661 (|#2| (-407 (-546)) |#2|)))
+((-3365 (((-3 |#3| #1="failed") |#3|) 111)) (-3898 ((|#3| |#3|) 132)) (-3353 (((-3 |#3| #1#) |#3|) 82)) (-4054 ((|#3| |#3|) 122)) (-3363 (((-3 |#3| #1#) |#3|) 58)) (-3896 ((|#3| |#3|) 130)) (-3351 (((-3 |#3| #1#) |#3|) 46)) (-4053 ((|#3| |#3|) 120)) (-3367 (((-3 |#3| #1#) |#3|) 113)) (-3900 ((|#3| |#3|) 134)) (-3355 (((-3 |#3| #1#) |#3|) 84)) (-4052 ((|#3| |#3|) 124)) (-3348 (((-3 |#3| #1#) |#3| (-767)) 36)) (-3350 (((-3 |#3| #1#) |#3|) 74)) (-4357 ((|#3| |#3|) 119)) (-3349 (((-3 |#3| #1#) |#3|) 44)) (-4358 ((|#3| |#3|) 118)) (-3368 (((-3 |#3| #1#) |#3|) 114)) (-3901 ((|#3| |#3|) 135)) (-3356 (((-3 |#3| #1#) |#3|) 85)) (-4051 ((|#3| |#3|) 125)) (-3366 (((-3 |#3| #1#) |#3|) 112)) (-3899 ((|#3| |#3|) 133)) (-3354 (((-3 |#3| #1#) |#3|) 83)) (-4050 ((|#3| |#3|) 123)) (-3364 (((-3 |#3| #1#) |#3|) 60)) (-3897 ((|#3| |#3|) 131)) (-3352 (((-3 |#3| #1#) |#3|) 48)) (-4049 ((|#3| |#3|) 121)) (-3371 (((-3 |#3| #1#) |#3|) 66)) (-3904 ((|#3| |#3|) 138)) (-3359 (((-3 |#3| #1#) |#3|) 105)) (-3892 ((|#3| |#3|) 143)) (-3369 (((-3 |#3| #1#) |#3|) 62)) (-3902 ((|#3| |#3|) 136)) (-3357 (((-3 |#3| #1#) |#3|) 50)) (-3890 ((|#3| |#3|) 126)) (-3373 (((-3 |#3| #1#) |#3|) 70)) (-3906 ((|#3| |#3|) 140)) (-3361 (((-3 |#3| #1#) |#3|) 54)) (-3894 ((|#3| |#3|) 128)) (-3374 (((-3 |#3| #1#) |#3|) 72)) (-3907 ((|#3| |#3|) 141)) (-3362 (((-3 |#3| #1#) |#3|) 56)) (-3895 ((|#3| |#3|) 129)) (-3372 (((-3 |#3| #1#) |#3|) 68)) (-3905 ((|#3| |#3|) 139)) (-3360 (((-3 |#3| #1#) |#3|) 108)) (-3893 ((|#3| |#3|) 144)) (-3370 (((-3 |#3| #1#) |#3|) 64)) (-3903 ((|#3| |#3|) 137)) (-3358 (((-3 |#3| #1#) |#3|) 52)) (-3891 ((|#3| |#3|) 127)) (** ((|#3| |#3| (-407 (-546))) 40 (|has| |#1| (-363)))))
+(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-546)))) |%noBranch|) (-15 -4358 (|#3| |#3|)) (-15 -4357 (|#3| |#3|)) (-15 -4053 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4052 (|#3| |#3|)) (-15 -4051 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)))) (-38 (-407 (-546))) (-1249 |#1|) (-1220 |#1| |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-546))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1220 *4 *5)))) (-4358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4357 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1220 *3 *4)))))
+(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-546)))) |%noBranch|) (-15 -4358 (|#3| |#3|)) (-15 -4357 (|#3| |#3|)) (-15 -4053 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4052 (|#3| |#3|)) (-15 -4051 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|))))
+((-3365 (((-3 |#3| #1="failed") |#3|) 66)) (-3898 ((|#3| |#3|) 129)) (-3353 (((-3 |#3| #1#) |#3|) 50)) (-4054 ((|#3| |#3|) 117)) (-3363 (((-3 |#3| #1#) |#3|) 62)) (-3896 ((|#3| |#3|) 127)) (-3351 (((-3 |#3| #1#) |#3|) 46)) (-4053 ((|#3| |#3|) 115)) (-3367 (((-3 |#3| #1#) |#3|) 70)) (-3900 ((|#3| |#3|) 131)) (-3355 (((-3 |#3| #1#) |#3|) 54)) (-4052 ((|#3| |#3|) 119)) (-3348 (((-3 |#3| #1#) |#3| (-767)) 35)) (-3350 (((-3 |#3| #1#) |#3|) 44)) (-4357 ((|#3| |#3|) 104)) (-3349 (((-3 |#3| #1#) |#3|) 42)) (-4358 ((|#3| |#3|) 114)) (-3368 (((-3 |#3| #1#) |#3|) 72)) (-3901 ((|#3| |#3|) 132)) (-3356 (((-3 |#3| #1#) |#3|) 56)) (-4051 ((|#3| |#3|) 120)) (-3366 (((-3 |#3| #1#) |#3|) 68)) (-3899 ((|#3| |#3|) 130)) (-3354 (((-3 |#3| #1#) |#3|) 52)) (-4050 ((|#3| |#3|) 118)) (-3364 (((-3 |#3| #1#) |#3|) 64)) (-3897 ((|#3| |#3|) 128)) (-3352 (((-3 |#3| #1#) |#3|) 48)) (-4049 ((|#3| |#3|) 116)) (-3371 (((-3 |#3| #1#) |#3|) 74)) (-3904 ((|#3| |#3|) 135)) (-3359 (((-3 |#3| #1#) |#3|) 58)) (-3892 ((|#3| |#3|) 123)) (-3369 (((-3 |#3| #1#) |#3|) 105)) (-3902 ((|#3| |#3|) 133)) (-3357 (((-3 |#3| #1#) |#3|) 94)) (-3890 ((|#3| |#3|) 121)) (-3373 (((-3 |#3| #1#) |#3|) 109)) (-3906 ((|#3| |#3|) 137)) (-3361 (((-3 |#3| #1#) |#3|) 101)) (-3894 ((|#3| |#3|) 125)) (-3374 (((-3 |#3| #1#) |#3|) 110)) (-3907 ((|#3| |#3|) 138)) (-3362 (((-3 |#3| #1#) |#3|) 103)) (-3895 ((|#3| |#3|) 126)) (-3372 (((-3 |#3| #1#) |#3|) 76)) (-3905 ((|#3| |#3|) 136)) (-3360 (((-3 |#3| #1#) |#3|) 60)) (-3893 ((|#3| |#3|) 124)) (-3370 (((-3 |#3| #1#) |#3|) 106)) (-3903 ((|#3| |#3|) 134)) (-3358 (((-3 |#3| #1#) |#3|) 97)) (-3891 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-407 (-546))) 40 (|has| |#1| (-363)))))
+(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-546)))) |%noBranch|) (-15 -4358 (|#3| |#3|)) (-15 -4357 (|#3| |#3|)) (-15 -4053 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4052 (|#3| |#3|)) (-15 -4051 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)))) (-38 (-407 (-546))) (-1218 |#1|) (-1241 |#1| |#2|) (-979 |#2|)) (T -279))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-546))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1218 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1241 *4 *5)) (-4 *6 (-979 *5)))) (-4358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4357 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4)))))
+(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-546)))) |%noBranch|) (-15 -4358 (|#3| |#3|)) (-15 -4357 (|#3| |#3|)) (-15 -4053 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4052 (|#3| |#3|)) (-15 -4051 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|))))
+((-3241 (((-112) $) 18)) (-1665 (((-184) $) 7)) (-3983 (((-3 (-1169) "failed") $) 14)) (-3982 (((-3 (-637 $) "failed") $) NIL)) (-1663 (((-3 (-1169) "failed") $) 20)) (-1664 (((-3 (-1096) "failed") $) 17)) (-4368 (((-112) $) 15)) (-4361 (((-859) $) NIL)) (-1662 (((-112) $) 9)))
+(((-280) (-13 (-610 (-859)) (-10 -8 (-15 -1665 ((-184) $)) (-15 -4368 ((-112) $)) (-15 -1664 ((-3 (-1096) "failed") $)) (-15 -3241 ((-112) $)) (-15 -1663 ((-3 (-1169) "failed") $)) (-15 -1662 ((-112) $)) (-15 -3983 ((-3 (-1169) "failed") $)) (-15 -3982 ((-3 (-637 $) "failed") $))))) (T -280))
+((-1665 (*1 *2 *1) (-12 (-5 *2 (-184)) (-5 *1 (-280)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-280)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1663 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3983 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-637 (-280))) (-5 *1 (-280)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -1665 ((-184) $)) (-15 -4368 ((-112) $)) (-15 -1664 ((-3 (-1096) "failed") $)) (-15 -3241 ((-112) $)) (-15 -1663 ((-3 (-1169) "failed") $)) (-15 -1662 ((-112) $)) (-15 -3983 ((-3 (-1169) "failed") $)) (-15 -3982 ((-3 (-637 $) "failed") $))))
+((-4125 (($ (-1 (-112) |#2|) $) 24)) (-1430 (($ $) 36)) (-3816 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3817 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3248 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2428 (($ |#2| $ (-546)) 20) (($ $ $ (-546)) 22)) (-2429 (($ $ (-546)) 11) (($ $ (-1223 (-546))) 14)) (-4205 (($ $ |#2|) 30) (($ $ $) NIL)) (-4216 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-637 $)) NIL)))
+(((-281 |#1| |#2|) (-10 -8 (-15 -3248 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -3248 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#2|)) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -3817 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4125 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3817 (|#1| |#2| |#1|)) (-15 -1430 (|#1| |#1|))) (-282 |#2|) (-1207)) (T -281))
+NIL
+(-10 -8 (-15 -3248 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -3248 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#2|)) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -3817 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4125 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3817 (|#1| |#2| |#1|)) (-15 -1430 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) 85)) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2505 (($ $) 83 (|has| |#1| (-1094)))) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-3248 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4022 (($ |#1| $ (-546)) 88) (($ $ $ (-546)) 87)) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-1667 (($ $ (-546)) 91) (($ $ (-1223 (-546))) 90)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 70)) (-4205 (($ $ |#1|) 93) (($ $ $) 92)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-282 |#1|) (-140) (-1207)) (T -282))
+((-4205 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)))) (-4205 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-4022 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-282 *2)) (-4 *2 (-1207)))) (-4022 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-3248 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-1666 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))) (-3816 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-1094)))) (-2505 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-1094)))) (-3248 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-846)))))
+(-13 (-646 |t#1|) (-10 -8 (-6 -4409) (-15 -4205 ($ $ |t#1|)) (-15 -4205 ($ $ $)) (-15 -1667 ($ $ (-546))) (-15 -1667 ($ $ (-1223 (-546)))) (-15 -3816 ($ (-1 (-112) |t#1|) $)) (-15 -4022 ($ |t#1| $ (-546))) (-15 -4022 ($ $ $ (-546))) (-15 -3248 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1666 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3816 ($ |t#1| $)) (-15 -2505 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -3248 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
((** (($ $ $) 10)))
(((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-4372 (($ $) 6)) (-3372 (($ $) 7)) (** (($ $ $) 8)))
+((-4357 (($ $) 6)) (-4358 (($ $) 7)) (** (($ $ $) 8)))
(((-284) (-140)) (T -284))
-((** (*1 *1 *1 *1) (-4 *1 (-284))) (-3372 (*1 *1 *1) (-4 *1 (-284))) (-4372 (*1 *1 *1) (-4 *1 (-284))))
-(-13 (-10 -8 (-15 -4372 ($ $)) (-15 -3372 ($ $)) (-15 ** ($ $ $))))
-((-3730 (((-640 (-1149 |#1|)) (-1149 |#1|) |#1|) 35)) (-3704 ((|#2| |#2| |#1|) 38)) (-3717 ((|#2| |#2| |#1|) 40)) (-1800 ((|#2| |#2| |#1|) 39)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -3704 (|#2| |#2| |#1|)) (-15 -1800 (|#2| |#2| |#1|)) (-15 -3717 (|#2| |#2| |#1|)) (-15 -3730 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|))) (-363) (-1248 |#1|)) (T -285))
-((-3730 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4)))) (-3717 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-1800 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-3704 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -3704 (|#2| |#2| |#1|)) (-15 -1800 (|#2| |#2| |#1|)) (-15 -3717 (|#2| |#2| |#1|)) (-15 -3730 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|)))
-((-2308 ((|#2| $ |#1|) 6)))
-(((-286 |#1| |#2|) (-140) (-1093) (-1208)) (T -286))
-((-2308 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))))
-(-13 (-10 -8 (-15 -2308 (|t#2| $ |t#1|))))
-((-4356 ((|#3| $ |#2| |#3|) 12)) (-4293 ((|#3| $ |#2|) 10)))
-(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -4356 (|#3| |#1| |#2| |#3|)) (-15 -4293 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1093) (-1208)) (T -287))
-NIL
-(-10 -8 (-15 -4356 (|#3| |#1| |#2| |#3|)) (-15 -4293 (|#3| |#1| |#2|)))
-((-1849 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4409)))) (-4356 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) 11)) (-2308 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-288 |#1| |#2|) (-140) (-1093) (-1208)) (T -288))
-((-2308 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4293 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4356 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))))
-(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -2308 (|t#2| $ |t#1| |t#2|)) (-15 -4293 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -4356 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-284))) (-4358 (*1 *1 *1) (-4 *1 (-284))) (-4357 (*1 *1 *1) (-4 *1 (-284))))
+(-13 (-10 -8 (-15 -4357 ($ $)) (-15 -4358 ($ $)) (-15 ** ($ $ $))))
+((-1671 (((-637 (-1146 |#1|)) (-1146 |#1|) |#1|) 35)) (-1668 ((|#2| |#2| |#1|) 38)) (-1670 ((|#2| |#2| |#1|) 40)) (-1669 ((|#2| |#2| |#1|) 39)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -1668 (|#2| |#2| |#1|)) (-15 -1669 (|#2| |#2| |#1|)) (-15 -1670 (|#2| |#2| |#1|)) (-15 -1671 ((-637 (-1146 |#1|)) (-1146 |#1|) |#1|))) (-363) (-1249 |#1|)) (T -285))
+((-1671 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-637 (-1146 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1146 *4)) (-4 *5 (-1249 *4)))) (-1670 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))) (-1669 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))) (-1668 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -1668 (|#2| |#2| |#1|)) (-15 -1669 (|#2| |#2| |#1|)) (-15 -1670 (|#2| |#2| |#1|)) (-15 -1671 ((-637 (-1146 |#1|)) (-1146 |#1|) |#1|)))
+((-4214 ((|#2| $ |#1|) 6)))
+(((-286 |#1| |#2|) (-140) (-1094) (-1207)) (T -286))
+((-4214 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4214 (|t#2| $ |t#1|))))
+((-1672 ((|#3| $ |#2| |#3|) 12)) (-3505 ((|#3| $ |#2|) 10)))
+(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -1672 (|#3| |#1| |#2| |#3|)) (-15 -3505 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1207)) (T -287))
+NIL
+(-10 -8 (-15 -1672 (|#3| |#1| |#2| |#3|)) (-15 -3505 (|#3| |#1| |#2|)))
+((-4202 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4409)))) (-1672 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) 11)) (-4214 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-288 |#1| |#2|) (-140) (-1094) (-1207)) (T -288))
+((-4214 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))) (-3505 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))) (-4202 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))) (-1672 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))))
+(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4214 (|t#2| $ |t#1| |t#2|)) (-15 -3505 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -4202 (|t#2| $ |t#1| |t#2|)) (-15 -1672 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-286 |#1| |#2|) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 33)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 39)) (-3231 (($ $) 36)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) 31)) (-2444 (($ |#2| |#3|) 18)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3593 ((|#3| $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 19)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3322 (((-3 $ "failed") $ $) NIL)) (-1993 (((-767) $) 32)) (-2308 ((|#2| $ |#2|) 41)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 23)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 27 T CONST)) (-2253 (($) 34 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 35)))
-(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -3593 (|#3| $)) (-15 -1692 (|#2| $)) (-15 -2444 ($ |#2| |#3|)) (-15 -3322 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -2687 ($ $)) (-15 -2308 (|#2| $ |#2|)))) (-172) (-1233 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
-((-3951 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1692 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2444 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3322 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2687 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2308 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-307) (-10 -8 (-15 -3593 (|#3| $)) (-15 -1692 (|#2| $)) (-15 -2444 ($ |#2| |#3|)) (-15 -3322 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -2687 ($ $)) (-15 -2308 (|#2| $ |#2|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 33)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 39)) (-2220 (($ $) 36)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) 31)) (-4257 (($ |#2| |#3|) 18)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2999 ((|#3| $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 19)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-2544 (((-3 $ "failed") $ $) NIL)) (-1739 (((-767) $) 32)) (-4214 ((|#2| $ |#2|) 41)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 23)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 27 T CONST)) (-3053 (($) 34 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 35)))
+(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -2999 (|#3| $)) (-15 -4361 (|#2| $)) (-15 -4257 ($ |#2| |#3|)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -3873 ((-3 $ "failed") $)) (-15 -2785 ($ $)) (-15 -4214 (|#2| $ |#2|)))) (-172) (-1232 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
+((-3873 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4361 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4257 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1232 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2544 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2785 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4214 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1232 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
+(-13 (-307) (-10 -8 (-15 -2999 (|#3| $)) (-15 -4361 (|#2| $)) (-15 -4257 ($ |#2| |#3|)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -3873 ((-3 $ "failed") $)) (-15 -2785 ($ $)) (-15 -4214 (|#2| $ |#2|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-290) (-140)) (T -290))
NIL
(-13 (-1045) (-111 $ $) (-10 -7 (-6 -4401)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-2588 (($ (-1169) (-1169) (-1097) $) 17)) (-2566 (($ (-1169) (-640 (-961)) $) 22)) (-2606 (((-640 (-1078)) $) 10)) (-2596 (((-3 (-1097) "failed") (-1169) (-1169) $) 16)) (-2576 (((-3 (-640 (-961)) "failed") (-1169) $) 21)) (-3445 (($) 7)) (-2575 (($) 23)) (-1692 (((-858) $) 27)) (-3741 (($) 24)))
-(((-291) (-13 (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -2606 ((-640 (-1078)) $)) (-15 -2596 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -2588 ($ (-1169) (-1169) (-1097) $)) (-15 -2576 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -2566 ($ (-1169) (-640 (-961)) $)) (-15 -2575 ($)) (-15 -3741 ($))))) (T -291))
-((-3445 (*1 *1) (-5 *1 (-291))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291)))) (-2596 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291)))) (-2588 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291)))) (-2576 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291)))) (-2566 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291)))) (-2575 (*1 *1) (-5 *1 (-291))) (-3741 (*1 *1) (-5 *1 (-291))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -2606 ((-640 (-1078)) $)) (-15 -2596 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -2588 ($ (-1169) (-1169) (-1097) $)) (-15 -2576 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -2566 ($ (-1169) (-640 (-961)) $)) (-15 -2575 ($)) (-15 -3741 ($))))
-((-2642 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 85)) (-2632 (((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|)))) 80) (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767)) 38)) (-2652 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 82)) (-2625 (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|)))) 62)) (-2614 (((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|)))) 61)) (-1892 (((-948 |#1|) (-684 (-407 (-948 |#1|)))) 50) (((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169)) 51)))
-(((-292 |#1|) (-10 -7 (-15 -1892 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -1892 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -2614 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -2625 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -2632 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -2632 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -2642 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -2652 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))))) (-452)) (T -292))
-((-2652 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-2642 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-2632 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6)))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452)) (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))) (-5 *1 (-292 *4)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169)) (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
-(-10 -7 (-15 -1892 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -1892 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -2614 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -2625 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -2632 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -2632 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -2642 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -2652 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))))
-((-2238 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -2238 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1208) (-1208)) (T -293))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))))
-(-10 -7 (-15 -2238 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3439 (((-112) $) NIL (|has| |#1| (-21)))) (-2706 (($ $) 12)) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4135 (($ $ $) 94 (|has| |#1| (-302)))) (-2569 (($) NIL (-4034 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-2688 (($ $) 50 (|has| |#1| (-21)))) (-2670 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-2350 ((|#1| $) 11)) (-3951 (((-3 $ "failed") $) 59 (|has| |#1| (-722)))) (-3401 (((-112) $) NIL (|has| |#1| (-722)))) (-2238 (($ (-1 |#1| |#1|) $) 14)) (-2339 ((|#1| $) 10)) (-2696 (($ $) 49 (|has| |#1| (-21)))) (-2679 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2687 (($ $) 63 (-4034 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2660 (((-640 $) $) 84 (|has| |#1| (-555)))) (-1542 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 21 (|has| |#1| (-514 (-1169) |#1|)))) (-2377 (($ |#1| |#1|) 9)) (-3526 (((-134)) 89 (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 86 (|has| |#1| (-896 (-1169))))) (-2150 (($ $ $) NIL (|has| |#1| (-473)))) (-1745 (($ $ $) NIL (|has| |#1| (-473)))) (-1692 (($ (-563)) NIL (|has| |#1| (-1045))) (((-112) $) 36 (|has| |#1| (-1093))) (((-858) $) 35 (|has| |#1| (-1093)))) (-3914 (((-767)) 66 (|has| |#1| (-1045)))) (-2239 (($) 46 (|has| |#1| (-21)) CONST)) (-2253 (($) 56 (|has| |#1| (-722)) CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169))))) (-1718 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1093)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 91 (-4034 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1825 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1813 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-563)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-917)) NIL (|has| |#1| (-1105)))) (* (($ $ |#1|) 54 (|has| |#1| (-1105))) (($ |#1| $) 53 (|has| |#1| (-1105))) (($ $ $) 52 (|has| |#1| (-1105))) (($ (-563) $) 69 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25)))))
-(((-294 |#1|) (-13 (-1208) (-10 -8 (-15 -1718 ($ |#1| |#1|)) (-15 -2377 ($ |#1| |#1|)) (-15 -2706 ($ $)) (-15 -2339 (|#1| $)) (-15 -2350 (|#1| $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1542 ($ $ $)) (-15 -1542 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1813 ($ |#1| $)) (-15 -1813 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2696 ($ $)) (-15 -2688 ($ $)) (-15 -1825 ($ |#1| $)) (-15 -1825 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -2679 ((-3 $ "failed") $)) (-15 -2670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2679 ((-3 $ "failed") $)) (-15 -2670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -2660 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -1836 ($ $ $)) (-15 -2687 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -4135 ($ $ $)) |%noBranch|))) (-1208)) (T -294))
-((-1718 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2377 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2706 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2339 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2350 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-1542 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)) (-5 *1 (-294 *2)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-1813 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-1813 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-2696 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-2688 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1825 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1825 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-2679 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-2670 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555)) (-4 *3 (-1208)))) (-4135 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (-1836 (*1 *1 *1 *1) (-4034 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) (-2687 (*1 *1 *1) (-4034 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))))
-(-13 (-1208) (-10 -8 (-15 -1718 ($ |#1| |#1|)) (-15 -2377 ($ |#1| |#1|)) (-15 -2706 ($ $)) (-15 -2339 (|#1| $)) (-15 -2350 (|#1| $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1542 ($ $ $)) (-15 -1542 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1813 ($ |#1| $)) (-15 -1813 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2696 ($ $)) (-15 -2688 ($ $)) (-15 -1825 ($ |#1| $)) (-15 -1825 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -2679 ((-3 $ "failed") $)) (-15 -2670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2679 ((-3 $ "failed") $)) (-15 -2670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -2660 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -1836 ($ $ $)) (-15 -2687 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -4135 ($ $ $)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) NIL)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-295 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093)) (T -295))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-1677 (($ (-1169) (-1169) (-1096) $) 17)) (-1675 (($ (-1169) (-637 (-961)) $) 22)) (-1679 (((-637 (-1078)) $) 10)) (-1678 (((-3 (-1096) "failed") (-1169) (-1169) $) 16)) (-1676 (((-3 (-637 (-961)) "failed") (-1169) $) 21)) (-3979 (($) 7)) (-1674 (($) 23)) (-4361 (((-859) $) 27)) (-1673 (($) 24)))
+(((-291) (-13 (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -1679 ((-637 (-1078)) $)) (-15 -1678 ((-3 (-1096) "failed") (-1169) (-1169) $)) (-15 -1677 ($ (-1169) (-1169) (-1096) $)) (-15 -1676 ((-3 (-637 (-961)) "failed") (-1169) $)) (-15 -1675 ($ (-1169) (-637 (-961)) $)) (-15 -1674 ($)) (-15 -1673 ($))))) (T -291))
+((-3979 (*1 *1) (-5 *1 (-291))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-637 (-1078))) (-5 *1 (-291)))) (-1678 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-291)))) (-1677 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-1096)) (-5 *1 (-291)))) (-1676 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-637 (-961))) (-5 *1 (-291)))) (-1675 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-961))) (-5 *1 (-291)))) (-1674 (*1 *1) (-5 *1 (-291))) (-1673 (*1 *1) (-5 *1 (-291))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -1679 ((-637 (-1078)) $)) (-15 -1678 ((-3 (-1096) "failed") (-1169) (-1169) $)) (-15 -1677 ($ (-1169) (-1169) (-1096) $)) (-15 -1676 ((-3 (-637 (-961)) "failed") (-1169) $)) (-15 -1675 ($ (-1169) (-637 (-961)) $)) (-15 -1674 ($)) (-15 -1673 ($))))
+((-1683 (((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |geneigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|)))) 85)) (-1682 (((-637 (-684 (-407 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|)))))) (-684 (-407 (-942 |#1|)))) 80) (((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|))) (-767) (-767)) 38)) (-1684 (((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|)))) 82)) (-1681 (((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|)))) 62)) (-1680 (((-637 (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (-684 (-407 (-942 |#1|)))) 61)) (-2749 (((-942 |#1|) (-684 (-407 (-942 |#1|)))) 50) (((-942 |#1|) (-684 (-407 (-942 |#1|))) (-1169)) 51)))
+(((-292 |#1|) (-10 -7 (-15 -2749 ((-942 |#1|) (-684 (-407 (-942 |#1|))) (-1169))) (-15 -2749 ((-942 |#1|) (-684 (-407 (-942 |#1|))))) (-15 -1680 ((-637 (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (-684 (-407 (-942 |#1|))))) (-15 -1681 ((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|))))) (-15 -1682 ((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|))) (-767) (-767))) (-15 -1682 ((-637 (-684 (-407 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|)))))) (-684 (-407 (-942 |#1|))))) (-15 -1683 ((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |geneigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|))))) (-15 -1684 ((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|)))))) (-452)) (T -292))
+((-1684 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-637 (-2 (|:| |eigval| (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-942 *4)))))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-637 (-2 (|:| |eigval| (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4)))) (|:| |geneigvec| (-637 (-684 (-407 (-942 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-942 *4)))))) (-1682 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-942 *5)) (-1158 (-1169) (-942 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 *4)))) (-4 *5 (-452)) (-5 *2 (-637 (-684 (-407 (-942 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-942 *5)))))) (-1682 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-942 *6)) (-1158 (-1169) (-942 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-637 (-684 (-407 (-942 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-942 *6)))))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-942 *5)) (-1158 (-1169) (-942 *5)))) (-4 *5 (-452)) (-5 *2 (-637 (-684 (-407 (-942 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-942 *5)))))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-942 *4)))) (-4 *4 (-452)) (-5 *2 (-637 (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4))))) (-5 *1 (-292 *4)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-942 *4)))) (-5 *2 (-942 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-942 *5)))) (-5 *4 (-1169)) (-5 *2 (-942 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
+(-10 -7 (-15 -2749 ((-942 |#1|) (-684 (-407 (-942 |#1|))) (-1169))) (-15 -2749 ((-942 |#1|) (-684 (-407 (-942 |#1|))))) (-15 -1680 ((-637 (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (-684 (-407 (-942 |#1|))))) (-15 -1681 ((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|))))) (-15 -1682 ((-637 (-684 (-407 (-942 |#1|)))) (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|))) (-684 (-407 (-942 |#1|))) (-767) (-767))) (-15 -1682 ((-637 (-684 (-407 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|)))))) (-684 (-407 (-942 |#1|))))) (-15 -1683 ((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |geneigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|))))) (-15 -1684 ((-637 (-2 (|:| |eigval| (-3 (-407 (-942 |#1|)) (-1158 (-1169) (-942 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 |#1|))))))) (-684 (-407 (-942 |#1|))))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3596 (((-112) $) NIL (|has| |#1| (-21)))) (-1690 (($ $) 12)) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1699 (($ $ $) 94 (|has| |#1| (-298)))) (-4139 (($) NIL (-3943 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-1688 (($ $) 50 (|has| |#1| (-21)))) (-1686 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-3934 ((|#1| $) 11)) (-3873 (((-3 $ "failed") $) 59 (|has| |#1| (-722)))) (-2552 (((-112) $) NIL (|has| |#1| (-722)))) (-4373 (($ (-1 |#1| |#1|) $) 14)) (-3935 ((|#1| $) 10)) (-1689 (($ $) 49 (|has| |#1| (-21)))) (-1687 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2785 (($ $) 63 (-3943 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-1685 (((-637 $) $) 84 (|has| |#1| (-556)))) (-4182 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 21 (|has| |#1| (-514 (-1169) |#1|)))) (-3634 (($ |#1| |#1|) 9)) (-4326 (((-134)) 89 (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 86 (|has| |#1| (-896 (-1169))))) (-3399 (($ $ $) NIL (|has| |#1| (-473)))) (-2735 (($ $ $) NIL (|has| |#1| (-473)))) (-4361 (($ (-546)) NIL (|has| |#1| (-1045))) (((-112) $) 36 (|has| |#1| (-1094))) (((-859) $) 35 (|has| |#1| (-1094)))) (-3518 (((-767)) 66 (|has| |#1| (-1045)))) (-3047 (($) 46 (|has| |#1| (-21)) CONST)) (-3053 (($) 56 (|has| |#1| (-722)) CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169))))) (-3444 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1094)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 91 (-3943 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-4252 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4254 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-546)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-915)) NIL (|has| |#1| (-1105)))) (* (($ $ |#1|) 54 (|has| |#1| (-1105))) (($ |#1| $) 53 (|has| |#1| (-1105))) (($ $ $) 52 (|has| |#1| (-1105))) (($ (-546) $) 69 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-915) $) NIL (|has| |#1| (-25)))))
+(((-293 |#1|) (-13 (-1207) (-10 -8 (-15 -3444 ($ |#1| |#1|)) (-15 -3634 ($ |#1| |#1|)) (-15 -1690 ($ $)) (-15 -3935 (|#1| $)) (-15 -3934 (|#1| $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -4182 ($ $ $)) (-15 -4182 ($ $ (-637 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4254 ($ |#1| $)) (-15 -4254 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1689 ($ $)) (-15 -1688 ($ $)) (-15 -4252 ($ |#1| $)) (-15 -4252 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1687 ((-3 $ "failed") $)) (-15 -1686 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1687 ((-3 $ "failed") $)) (-15 -1686 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -1685 ((-637 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -4364 ($ $ $)) (-15 -2785 ($ $))) |%noBranch|) (IF (|has| |#1| (-298)) (-15 -1699 ($ $ $)) |%noBranch|))) (-1207)) (T -293))
+((-3444 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3634 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-1690 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3935 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3934 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)) (-5 *1 (-293 *2)))) (-4182 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-293 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-4254 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-4254 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-1689 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1688 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-4252 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1687 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-722)) (-4 *2 (-1207)))) (-1686 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-722)) (-4 *2 (-1207)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-637 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-556)) (-4 *3 (-1207)))) (-1699 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-298)) (-4 *2 (-1207)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1105)) (-4 *2 (-1207)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1105)) (-4 *2 (-1207)))) (-4364 (*1 *1 *1 *1) (-3943 (-12 (-5 *1 (-293 *2)) (-4 *2 (-363)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-473)) (-4 *2 (-1207))))) (-2785 (*1 *1 *1) (-3943 (-12 (-5 *1 (-293 *2)) (-4 *2 (-363)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-473)) (-4 *2 (-1207))))))
+(-13 (-1207) (-10 -8 (-15 -3444 ($ |#1| |#1|)) (-15 -3634 ($ |#1| |#1|)) (-15 -1690 ($ $)) (-15 -3935 (|#1| $)) (-15 -3934 (|#1| $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -4182 ($ $ $)) (-15 -4182 ($ $ (-637 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4254 ($ |#1| $)) (-15 -4254 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1689 ($ $)) (-15 -1688 ($ $)) (-15 -4252 ($ |#1| $)) (-15 -4252 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1687 ((-3 $ "failed") $)) (-15 -1686 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1687 ((-3 $ "failed") $)) (-15 -1686 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -1685 ((-637 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -4364 ($ $ $)) (-15 -2785 ($ $))) |%noBranch|) (IF (|has| |#1| (-298)) (-15 -1699 ($ $ $)) |%noBranch|)))
+((-4373 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14)))
+(((-294 |#1| |#2|) (-10 -7 (-15 -4373 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1207) (-1207)) (T -294))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-293 *6)) (-5 *1 (-294 *5 *6)))))
+(-10 -7 (-15 -4373 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) NIL)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) NIL)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-295 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1094) (-1094)) (T -295))
NIL
(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))
-((-4079 (((-312) (-1151) (-640 (-1151))) 16) (((-312) (-1151) (-1151)) 15) (((-312) (-640 (-1151))) 14) (((-312) (-1151)) 12)))
-(((-296) (-10 -7 (-15 -4079 ((-312) (-1151))) (-15 -4079 ((-312) (-640 (-1151)))) (-15 -4079 ((-312) (-1151) (-1151))) (-15 -4079 ((-312) (-1151) (-640 (-1151)))))) (T -296))
-((-4079 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-4079 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))))
-(-10 -7 (-15 -4079 ((-312) (-1151))) (-15 -4079 ((-312) (-640 (-1151)))) (-15 -4079 ((-312) (-1151) (-1151))) (-15 -4079 ((-312) (-1151) (-640 (-1151)))))
-((-2238 ((|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)) 18)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2238 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)))) (-302) (-1208)) (T -297))
-((-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6)) (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2)))))
-(-10 -7 (-15 -2238 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|))))
-((-2238 ((|#2| (-1 |#2| |#1|) (-609 |#1|)) 17)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -2238 (|#2| (-1 |#2| |#1|) (-609 |#1|)))) (-302) (-302)) (T -298))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))))
-(-10 -7 (-15 -2238 (|#2| (-1 |#2| |#1|) (-609 |#1|))))
-((-1801 (((-112) (-225)) 10)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -1801 ((-112) (-225)))) (-225) (-225)) (T -299))
-((-1801 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1801 ((-112) (-225))))
-((-2793 (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 92)) (-2803 (((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225)))) 106) (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 61)) (-3013 (((-640 (-1151)) (-1149 (-225))) NIL)) (-2783 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) 58)) (-2814 (((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225)))) 49)) (-3002 (((-640 (-1151)) (-640 (-225))) NIL)) (-3023 (((-225) (-1087 (-839 (-225)))) 25)) (-3033 (((-225) (-1087 (-839 (-225)))) 26)) (-2771 (((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 54)) (-2981 (((-1151) (-225)) NIL)))
-(((-300) (-10 -7 (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -2771 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2793 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2814 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))))) (T -300))
-((-3013 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))))
-(-10 -7 (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -2771 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2793 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2803 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2814 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))))
-((-2058 (((-640 (-609 $)) $) 30)) (-4135 (($ $ (-294 $)) 80) (($ $ (-640 (-294 $))) 122) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2130 (((-3 (-609 $) "failed") $) 112)) (-2057 (((-609 $) $) 111)) (-3228 (($ $) 19) (($ (-640 $)) 55)) (-2739 (((-640 (-114)) $) 38)) (-2559 (((-114) (-114)) 90)) (-2959 (((-112) $) 130)) (-2238 (($ (-1 $ $) (-609 $)) 88)) (-2751 (((-3 (-609 $) "failed") $) 92)) (-2227 (($ (-114) $) 60) (($ (-114) (-640 $)) 99)) (-2602 (((-112) $ (-114)) 116) (((-112) $ (-1169)) 115)) (-4238 (((-767) $) 46)) (-2726 (((-112) $ $) 58) (((-112) $ (-1169)) 50)) (-2969 (((-112) $) 128)) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) 120) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 83) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) 68) (($ $ (-1169) (-1 $ $)) 74) (($ $ (-640 (-114)) (-640 (-1 $ $))) 82) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 84) (($ $ (-114) (-1 $ (-640 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2308 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-640 $)) 108)) (-2761 (($ $) 52) (($ $ $) 118)) (-3083 (($ $) 17) (($ (-640 $)) 54)) (-2512 (((-112) (-114)) 22)))
-(((-301 |#1|) (-10 -8 (-15 -2959 ((-112) |#1|)) (-15 -2969 ((-112) |#1|)) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2726 ((-112) |#1| (-1169))) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2238 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2227 (|#1| (-114) (-640 |#1|))) (-15 -2227 (|#1| (-114) |#1|)) (-15 -2602 ((-112) |#1| (-1169))) (-15 -2602 ((-112) |#1| (-114))) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2739 ((-640 (-114)) |#1|)) (-15 -2058 ((-640 (-609 |#1|)) |#1|)) (-15 -2751 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4238 ((-767) |#1|)) (-15 -2761 (|#1| |#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -3228 (|#1| (-640 |#1|))) (-15 -3228 (|#1| |#1|)) (-15 -3083 (|#1| (-640 |#1|))) (-15 -3083 (|#1| |#1|)) (-15 -4135 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4135 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4135 (|#1| |#1| (-294 |#1|))) (-15 -2308 (|#1| (-114) (-640 |#1|))) (-15 -2308 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2130 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2057 ((-609 |#1|) |#1|))) (-302)) (T -301))
-((-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))))
-(-10 -8 (-15 -2959 ((-112) |#1|)) (-15 -2969 ((-112) |#1|)) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2726 ((-112) |#1| (-1169))) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2238 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2227 (|#1| (-114) (-640 |#1|))) (-15 -2227 (|#1| (-114) |#1|)) (-15 -2602 ((-112) |#1| (-1169))) (-15 -2602 ((-112) |#1| (-114))) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2739 ((-640 (-114)) |#1|)) (-15 -2058 ((-640 (-609 |#1|)) |#1|)) (-15 -2751 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4238 ((-767) |#1|)) (-15 -2761 (|#1| |#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -3228 (|#1| (-640 |#1|))) (-15 -3228 (|#1| |#1|)) (-15 -3083 (|#1| (-640 |#1|))) (-15 -3083 (|#1| |#1|)) (-15 -4135 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4135 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4135 (|#1| |#1| (-294 |#1|))) (-15 -2308 (|#1| (-114) (-640 |#1|))) (-15 -2308 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2130 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2057 ((-609 |#1|) |#1|)))
-((-1677 (((-112) $ $) 7)) (-2058 (((-640 (-609 $)) $) 44)) (-4135 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-2130 (((-3 (-609 $) "failed") $) 69)) (-2057 (((-609 $) $) 70)) (-3228 (($ $) 51) (($ (-640 $)) 50)) (-2739 (((-640 (-114)) $) 43)) (-2559 (((-114) (-114)) 42)) (-2959 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-2716 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-2238 (($ (-1 $ $) (-609 $)) 36)) (-2751 (((-3 (-609 $) "failed") $) 46)) (-3854 (((-1151) $) 9)) (-2126 (((-640 (-609 $)) $) 45)) (-2227 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-2602 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-4238 (((-767) $) 47)) (-1693 (((-1113) $) 10)) (-2726 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-2969 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2308 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-2761 (($ $) 49) (($ $ $) 48)) (-3402 (($ $) 24 (|has| $ (-1045)))) (-1692 (((-858) $) 11) (($ (-609 $)) 68)) (-3083 (($ $) 53) (($ (-640 $)) 52)) (-2512 (((-112) (-114)) 41)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)))
-(((-302) (-140)) (T -302))
-((-2308 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2308 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2308 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2308 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302)))) (-4135 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-3083 (*1 *1 *1) (-4 *1 (-302))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-3228 (*1 *1 *1) (-4 *1 (-302))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-2761 (*1 *1 *1) (-4 *1 (-302))) (-2761 (*1 *1 *1 *1) (-4 *1 (-302))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) (-2751 (*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114))))) (-2559 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2512 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2602 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2602 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-2227 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302)))) (-2726 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2726 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) (-5 *2 (-1165 *1)))) (-3402 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))))
-(-13 (-846) (-1034 (-609 $)) (-514 (-609 $) $) (-309 $) (-10 -8 (-15 -2308 ($ (-114) $)) (-15 -2308 ($ (-114) $ $)) (-15 -2308 ($ (-114) $ $ $)) (-15 -2308 ($ (-114) $ $ $ $)) (-15 -2308 ($ (-114) (-640 $))) (-15 -4135 ($ $ (-294 $))) (-15 -4135 ($ $ (-640 (-294 $)))) (-15 -4135 ($ $ (-640 (-609 $)) (-640 $))) (-15 -3083 ($ $)) (-15 -3083 ($ (-640 $))) (-15 -3228 ($ $)) (-15 -3228 ($ (-640 $))) (-15 -2761 ($ $)) (-15 -2761 ($ $ $)) (-15 -4238 ((-767) $)) (-15 -2751 ((-3 (-609 $) "failed") $)) (-15 -2126 ((-640 (-609 $)) $)) (-15 -2058 ((-640 (-609 $)) $)) (-15 -2739 ((-640 (-114)) $)) (-15 -2559 ((-114) (-114))) (-15 -2512 ((-112) (-114))) (-15 -2602 ((-112) $ (-114))) (-15 -2602 ((-112) $ (-1169))) (-15 -2227 ($ (-114) $)) (-15 -2227 ($ (-114) (-640 $))) (-15 -2238 ($ (-1 $ $) (-609 $))) (-15 -2726 ((-112) $ $)) (-15 -2726 ((-112) $ (-1169))) (-15 -1542 ($ $ (-640 (-1169)) (-640 (-1 $ $)))) (-15 -1542 ($ $ (-640 (-1169)) (-640 (-1 $ (-640 $))))) (-15 -1542 ($ $ (-1169) (-1 $ (-640 $)))) (-15 -1542 ($ $ (-1169) (-1 $ $))) (-15 -1542 ($ $ (-640 (-114)) (-640 (-1 $ $)))) (-15 -1542 ($ $ (-640 (-114)) (-640 (-1 $ (-640 $))))) (-15 -1542 ($ $ (-114) (-1 $ (-640 $)))) (-15 -1542 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -2716 ((-1165 $) (-609 $))) (-15 -3402 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-563))) (PROGN (-15 -2969 ((-112) $)) (-15 -2959 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-613 #0=(-609 $)) . T) ((-610 (-858)) . T) ((-309 $) . T) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-846) . T) ((-1034 #0#) . T) ((-1093) . T))
-((-1967 (((-640 |#1|) (-640 |#1|)) 10)))
-(((-303 |#1|) (-10 -7 (-15 -1967 ((-640 |#1|) (-640 |#1|)))) (-844)) (T -303))
-((-1967 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3)))))
-(-10 -7 (-15 -1967 ((-640 |#1|) (-640 |#1|))))
-((-2238 (((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)) 17)))
-(((-304 |#1| |#2|) (-10 -7 (-15 -2238 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) (-1045) (-1045)) (T -304))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6)))))
-(-10 -7 (-15 -2238 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|))))
-((-2972 (((-1257 (-316 (-379))) (-1257 (-316 (-225)))) 105)) (-2858 (((-1087 (-839 (-225))) (-1087 (-839 (-379)))) 40)) (-3013 (((-640 (-1151)) (-1149 (-225))) 87)) (-3082 (((-316 (-379)) (-948 (-225))) 50)) (-3095 (((-225) (-948 (-225))) 46)) (-3044 (((-1151) (-379)) 170)) (-2848 (((-839 (-225)) (-839 (-379))) 34)) (-2903 (((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225)))) 144)) (-3055 (((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) 182) (((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) 180)) (-1957 (((-684 (-225)) (-640 (-225)) (-767)) 14)) (-2952 (((-1257 (-694)) (-640 (-225))) 94)) (-3002 (((-640 (-1151)) (-640 (-225))) 75)) (-4188 (((-3 (-316 (-225)) "failed") (-316 (-225))) 120)) (-1801 (((-112) (-225) (-1087 (-839 (-225)))) 109)) (-3073 (((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 199)) (-3023 (((-225) (-1087 (-839 (-225)))) 107)) (-3033 (((-225) (-1087 (-839 (-225)))) 108)) (-3118 (((-225) (-407 (-563))) 27)) (-2991 (((-1151) (-379)) 73)) (-2828 (((-225) (-379)) 17)) (-2894 (((-379) (-1257 (-316 (-225)))) 155)) (-2839 (((-316 (-225)) (-316 (-379))) 23)) (-2876 (((-407 (-563)) (-316 (-225))) 53)) (-2913 (((-316 (-407 (-563))) (-316 (-225))) 69)) (-2962 (((-316 (-379)) (-316 (-225))) 98)) (-2885 (((-225) (-316 (-225))) 54)) (-2932 (((-640 (-225)) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) 64)) (-2923 (((-1087 (-839 (-225))) (-1087 (-839 (-225)))) 61)) (-2981 (((-1151) (-225)) 72)) (-2942 (((-694) (-225)) 90)) (-2867 (((-407 (-563)) (-225)) 55)) (-3106 (((-316 (-379)) (-225)) 49)) (-2219 (((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379))))) 43)) (-2857 (((-1031) (-640 (-1031))) 166) (((-1031) (-1031) (-1031)) 163)) (-3064 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 196)))
-(((-305) (-10 -7 (-15 -2828 ((-225) (-379))) (-15 -2839 ((-316 (-225)) (-316 (-379)))) (-15 -2848 ((-839 (-225)) (-839 (-379)))) (-15 -2858 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2219 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -2867 ((-407 (-563)) (-225))) (-15 -2876 ((-407 (-563)) (-316 (-225)))) (-15 -2885 ((-225) (-316 (-225)))) (-15 -4188 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2894 ((-379) (-1257 (-316 (-225))))) (-15 -2903 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -2913 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -2923 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -2932 ((-640 (-225)) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))) (-15 -2942 ((-694) (-225))) (-15 -2952 ((-1257 (-694)) (-640 (-225)))) (-15 -2962 ((-316 (-379)) (-316 (-225)))) (-15 -2972 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -1801 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -2991 ((-1151) (-379))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))) (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -2857 ((-1031) (-1031) (-1031))) (-15 -2857 ((-1031) (-640 (-1031)))) (-15 -3044 ((-1151) (-379))) (-15 -3055 ((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -3055 ((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -3064 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3073 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3082 ((-316 (-379)) (-948 (-225)))) (-15 -3095 ((-225) (-948 (-225)))) (-15 -3106 ((-316 (-379)) (-225))) (-15 -3118 ((-225) (-407 (-563)))) (-15 -1957 ((-684 (-225)) (-640 (-225)) (-767))))) (T -305))
-((-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-305)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2857 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-1801 (*1 *2 *3 *4) (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379)))) (-5 *1 (-305)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *2 (-640 (-225))) (-5 *1 (-305)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563)))) (-5 *1 (-305)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563)))) (-5 *1 (-305)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-4188 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-640 (-1087 (-839 (-379))))) (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(-10 -7 (-15 -2828 ((-225) (-379))) (-15 -2839 ((-316 (-225)) (-316 (-379)))) (-15 -2848 ((-839 (-225)) (-839 (-379)))) (-15 -2858 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2219 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -2867 ((-407 (-563)) (-225))) (-15 -2876 ((-407 (-563)) (-316 (-225)))) (-15 -2885 ((-225) (-316 (-225)))) (-15 -4188 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2894 ((-379) (-1257 (-316 (-225))))) (-15 -2903 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -2913 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -2923 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -2932 ((-640 (-225)) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))) (-15 -2942 ((-694) (-225))) (-15 -2952 ((-1257 (-694)) (-640 (-225)))) (-15 -2962 ((-316 (-379)) (-316 (-225)))) (-15 -2972 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -1801 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -2981 ((-1151) (-225))) (-15 -2991 ((-1151) (-379))) (-15 -3002 ((-640 (-1151)) (-640 (-225)))) (-15 -3013 ((-640 (-1151)) (-1149 (-225)))) (-15 -3023 ((-225) (-1087 (-839 (-225))))) (-15 -3033 ((-225) (-1087 (-839 (-225))))) (-15 -2857 ((-1031) (-1031) (-1031))) (-15 -2857 ((-1031) (-640 (-1031)))) (-15 -3044 ((-1151) (-379))) (-15 -3055 ((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -3055 ((-1031) (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -3064 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3073 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3082 ((-316 (-379)) (-948 (-225)))) (-15 -3095 ((-225) (-948 (-225)))) (-15 -3106 ((-316 (-379)) (-225))) (-15 -3118 ((-225) (-407 (-563)))) (-15 -1957 ((-684 (-225)) (-640 (-225)) (-767))))
-((-2003 (((-112) $ $) 11)) (-3094 (($ $ $) 15)) (-3054 (($ $ $) 14)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 43)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3551 (($ $ $) 21) (($ (-640 $)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3012 (((-3 $ "failed") $ $) 18)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 46)))
-(((-306 |#1|) (-10 -8 (-15 -1977 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -1984 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1984 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -2003 ((-112) |#1| |#1|)) (-15 -2461 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -2474 ((-2 (|:| -2310 (-640 |#1|)) (|:| -4334 |#1|)) (-640 |#1|))) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
-NIL
-(-10 -8 (-15 -1977 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -1984 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1984 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -2003 ((-112) |#1| |#1|)) (-15 -2461 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -2474 ((-2 (|:| -2310 (-640 |#1|)) (|:| -4334 |#1|)) (-640 |#1|))) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-3401 (((-112) $) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-1691 (((-311) (-1151) (-637 (-1151))) 16) (((-311) (-1151) (-1151)) 15) (((-311) (-637 (-1151))) 14) (((-311) (-1151)) 12)))
+(((-296) (-10 -7 (-15 -1691 ((-311) (-1151))) (-15 -1691 ((-311) (-637 (-1151)))) (-15 -1691 ((-311) (-1151) (-1151))) (-15 -1691 ((-311) (-1151) (-637 (-1151)))))) (T -296))
+((-1691 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-1151))) (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296)))) (-1691 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-311)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296)))))
+(-10 -7 (-15 -1691 ((-311) (-1151))) (-15 -1691 ((-311) (-637 (-1151)))) (-15 -1691 ((-311) (-1151) (-1151))) (-15 -1691 ((-311) (-1151) (-637 (-1151)))))
+((-1695 (((-637 (-608 $)) $) 30)) (-1699 (($ $ (-293 $)) 80) (($ $ (-637 (-293 $))) 122) (($ $ (-637 (-608 $)) (-637 $)) NIL)) (-3565 (((-3 (-608 $) "failed") $) 112)) (-3564 (((-608 $) $) 111)) (-2958 (($ $) 19) (($ (-637 $)) 55)) (-1694 (((-637 (-113)) $) 38)) (-3437 (((-113) (-113)) 90)) (-3062 (((-112) $) 130)) (-4373 (($ (-1 $ $) (-608 $)) 88)) (-1697 (((-3 (-608 $) "failed") $) 92)) (-2363 (($ (-113) $) 60) (($ (-113) (-637 $)) 99)) (-3020 (((-112) $ (-113)) 116) (((-112) $ (-1169)) 115)) (-2988 (((-767) $) 46)) (-1693 (((-112) $ $) 58) (((-112) $ (-1169)) 50)) (-3063 (((-112) $) 128)) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL) (($ $ (-637 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) 83) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-1169) (-1 $ (-637 $))) 68) (($ $ (-1169) (-1 $ $)) 74) (($ $ (-637 (-113)) (-637 (-1 $ $))) 82) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) 84) (($ $ (-113) (-1 $ (-637 $))) 70) (($ $ (-113) (-1 $ $)) 76)) (-4214 (($ (-113) $) 61) (($ (-113) $ $) 62) (($ (-113) $ $ $) 63) (($ (-113) $ $ $ $) 64) (($ (-113) (-637 $)) 108)) (-1698 (($ $) 52) (($ $ $) 118)) (-2975 (($ $) 17) (($ (-637 $)) 54)) (-2384 (((-112) (-113)) 22)))
+(((-297 |#1|) (-10 -8 (-15 -3062 ((-112) |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| |#1|)))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| |#1|)))) (-15 -1693 ((-112) |#1| (-1169))) (-15 -1693 ((-112) |#1| |#1|)) (-15 -4373 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -2363 (|#1| (-113) (-637 |#1|))) (-15 -2363 (|#1| (-113) |#1|)) (-15 -3020 ((-112) |#1| (-1169))) (-15 -3020 ((-112) |#1| (-113))) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1694 ((-637 (-113)) |#1|)) (-15 -1695 ((-637 (-608 |#1|)) |#1|)) (-15 -1697 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -2988 ((-767) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -2958 (|#1| (-637 |#1|))) (-15 -2958 (|#1| |#1|)) (-15 -2975 (|#1| (-637 |#1|))) (-15 -2975 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -1699 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -1699 (|#1| |#1| (-293 |#1|))) (-15 -4214 (|#1| (-113) (-637 |#1|))) (-15 -4214 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -3565 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3564 ((-608 |#1|) |#1|))) (-298)) (T -297))
+((-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-297 *3)) (-4 *3 (-298)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-297 *4)) (-4 *4 (-298)))))
+(-10 -8 (-15 -3062 ((-112) |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| |#1|)))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| |#1|)))) (-15 -1693 ((-112) |#1| (-1169))) (-15 -1693 ((-112) |#1| |#1|)) (-15 -4373 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -2363 (|#1| (-113) (-637 |#1|))) (-15 -2363 (|#1| (-113) |#1|)) (-15 -3020 ((-112) |#1| (-1169))) (-15 -3020 ((-112) |#1| (-113))) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1694 ((-637 (-113)) |#1|)) (-15 -1695 ((-637 (-608 |#1|)) |#1|)) (-15 -1697 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -2988 ((-767) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -2958 (|#1| (-637 |#1|))) (-15 -2958 (|#1| |#1|)) (-15 -2975 (|#1| (-637 |#1|))) (-15 -2975 (|#1| |#1|)) (-15 -1699 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -1699 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -1699 (|#1| |#1| (-293 |#1|))) (-15 -4214 (|#1| (-113) (-637 |#1|))) (-15 -4214 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -3565 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3564 ((-608 |#1|) |#1|)))
+((-2953 (((-112) $ $) 7)) (-1695 (((-637 (-608 $)) $) 44)) (-1699 (($ $ (-293 $)) 56) (($ $ (-637 (-293 $))) 55) (($ $ (-637 (-608 $)) (-637 $)) 54)) (-3565 (((-3 (-608 $) "failed") $) 69)) (-3564 (((-608 $) $) 70)) (-2958 (($ $) 51) (($ (-637 $)) 50)) (-1694 (((-637 (-113)) $) 43)) (-3437 (((-113) (-113)) 42)) (-3062 (((-112) $) 22 (|has| $ (-1034 (-546))))) (-1692 (((-1163 $) (-608 $)) 25 (|has| $ (-1045)))) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-4373 (($ (-1 $ $) (-608 $)) 36)) (-1697 (((-3 (-608 $) "failed") $) 46)) (-3650 (((-1151) $) 9)) (-1696 (((-637 (-608 $)) $) 45)) (-2363 (($ (-113) $) 38) (($ (-113) (-637 $)) 37)) (-3020 (((-112) $ (-113)) 40) (((-112) $ (-1169)) 39)) (-2988 (((-767) $) 47)) (-3651 (((-1113) $) 10)) (-1693 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-3063 (((-112) $) 23 (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) 67) (($ $ (-637 (-608 $)) (-637 $)) 66) (($ $ (-637 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-637 $) (-637 $)) 62) (($ $ (-637 (-1169)) (-637 (-1 $ $))) 33) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) 32) (($ $ (-1169) (-1 $ (-637 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-637 (-113)) (-637 (-1 $ $))) 29) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) 28) (($ $ (-113) (-1 $ (-637 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4214 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-637 $)) 57)) (-1698 (($ $) 49) (($ $ $) 48)) (-3593 (($ $) 24 (|has| $ (-1045)))) (-4361 (((-859) $) 11) (($ (-608 $)) 68)) (-2975 (($ $) 53) (($ (-637 $)) 52)) (-2384 (((-112) (-113)) 41)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)))
+(((-298) (-140)) (T -298))
+((-4214 (*1 *1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-4214 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-4214 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-4214 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 *1)) (-4 *1 (-298)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-298)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-293 *1))) (-4 *1 (-298)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-608 *1))) (-5 *3 (-637 *1)) (-4 *1 (-298)))) (-2975 (*1 *1 *1) (-4 *1 (-298))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-298)))) (-2958 (*1 *1 *1) (-4 *1 (-298))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-298)))) (-1698 (*1 *1 *1) (-4 *1 (-298))) (-1698 (*1 *1 *1 *1) (-4 *1 (-298))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-767)))) (-1697 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-298)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-637 (-608 *1))) (-4 *1 (-298)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-637 (-608 *1))) (-4 *1 (-298)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-637 (-113))))) (-3437 (*1 *2 *2) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-2384 (*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3020 (*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3020 (*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-2363 (*1 *1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113)))) (-2363 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 *1)) (-4 *1 (-298)))) (-4373 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-298)))) (-1693 (*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112)))) (-1693 (*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-1 *1 *1))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-637 *1))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 (-1 *1 *1))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-637 *1))) (-4 *1 (-298)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-298)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-1045)) (-4 *1 (-298)) (-5 *2 (-1163 *1)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-298)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-1034 (-546))) (-4 *1 (-298)) (-5 *2 (-112)))) (-3062 (*1 *2 *1) (-12 (-4 *1 (-1034 (-546))) (-4 *1 (-298)) (-5 *2 (-112)))))
+(-13 (-846) (-1034 (-608 $)) (-514 (-608 $) $) (-309 $) (-10 -8 (-15 -4214 ($ (-113) $)) (-15 -4214 ($ (-113) $ $)) (-15 -4214 ($ (-113) $ $ $)) (-15 -4214 ($ (-113) $ $ $ $)) (-15 -4214 ($ (-113) (-637 $))) (-15 -1699 ($ $ (-293 $))) (-15 -1699 ($ $ (-637 (-293 $)))) (-15 -1699 ($ $ (-637 (-608 $)) (-637 $))) (-15 -2975 ($ $)) (-15 -2975 ($ (-637 $))) (-15 -2958 ($ $)) (-15 -2958 ($ (-637 $))) (-15 -1698 ($ $)) (-15 -1698 ($ $ $)) (-15 -2988 ((-767) $)) (-15 -1697 ((-3 (-608 $) "failed") $)) (-15 -1696 ((-637 (-608 $)) $)) (-15 -1695 ((-637 (-608 $)) $)) (-15 -1694 ((-637 (-113)) $)) (-15 -3437 ((-113) (-113))) (-15 -2384 ((-112) (-113))) (-15 -3020 ((-112) $ (-113))) (-15 -3020 ((-112) $ (-1169))) (-15 -2363 ($ (-113) $)) (-15 -2363 ($ (-113) (-637 $))) (-15 -4373 ($ (-1 $ $) (-608 $))) (-15 -1693 ((-112) $ $)) (-15 -1693 ((-112) $ (-1169))) (-15 -4182 ($ $ (-637 (-1169)) (-637 (-1 $ $)))) (-15 -4182 ($ $ (-637 (-1169)) (-637 (-1 $ (-637 $))))) (-15 -4182 ($ $ (-1169) (-1 $ (-637 $)))) (-15 -4182 ($ $ (-1169) (-1 $ $))) (-15 -4182 ($ $ (-637 (-113)) (-637 (-1 $ $)))) (-15 -4182 ($ $ (-637 (-113)) (-637 (-1 $ (-637 $))))) (-15 -4182 ($ $ (-113) (-1 $ (-637 $)))) (-15 -4182 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -1692 ((-1163 $) (-608 $))) (-15 -3593 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-546))) (PROGN (-15 -3063 ((-112) $)) (-15 -3062 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-613 #1=(-608 $)) . T) ((-610 (-859)) . T) ((-309 $) . T) ((-514 (-608 $) $) . T) ((-514 $ $) . T) ((-846) . T) ((-1034 #1#) . T) ((-1094) . T))
+((-4373 ((|#2| (-1 |#2| |#1|) (-1151) (-608 |#1|)) 18)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -4373 (|#2| (-1 |#2| |#1|) (-1151) (-608 |#1|)))) (-298) (-1207)) (T -299))
+((-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-608 *6)) (-4 *6 (-298)) (-4 *2 (-1207)) (-5 *1 (-299 *6 *2)))))
+(-10 -7 (-15 -4373 (|#2| (-1 |#2| |#1|) (-1151) (-608 |#1|))))
+((-4373 ((|#2| (-1 |#2| |#1|) (-608 |#1|)) 17)))
+(((-300 |#1| |#2|) (-10 -7 (-15 -4373 (|#2| (-1 |#2| |#1|) (-608 |#1|)))) (-298) (-298)) (T -300))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-298)) (-4 *2 (-298)) (-5 *1 (-300 *5 *2)))))
+(-10 -7 (-15 -4373 (|#2| (-1 |#2| |#1|) (-608 |#1|))))
+((-1702 (((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225)))) 92)) (-1703 (((-1146 (-225)) (-1256 (-314 (-225))) (-637 (-1169)) (-1082 (-838 (-225)))) 106) (((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225)))) 61)) (-1724 (((-637 (-1151)) (-1146 (-225))) NIL)) (-1701 (((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225)))) 58)) (-1704 (((-637 (-225)) (-942 (-407 (-546))) (-1169) (-1082 (-838 (-225)))) 49)) (-1723 (((-637 (-1151)) (-637 (-225))) NIL)) (-1725 (((-225) (-1082 (-838 (-225)))) 25)) (-1726 (((-225) (-1082 (-838 (-225)))) 26)) (-1700 (((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 54)) (-1721 (((-1151) (-225)) NIL)))
+(((-301) (-10 -7 (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -1700 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225))))) (-15 -1702 ((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-1256 (-314 (-225))) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1704 ((-637 (-225)) (-942 (-407 (-546))) (-1169) (-1082 (-838 (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))))) (T -301))
+((-1724 (*1 *2 *3) (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-301)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-301)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-301)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *4 (-1169)) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-637 (-225))) (-5 *1 (-301)))) (-1703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *4 (-637 (-1169))) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301)))) (-1703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-225))) (-5 *4 (-637 (-1169))) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301)))) (-1702 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-225))) (-5 *4 (-637 (-1169))) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-225))) (-5 *4 (-1169)) (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-637 (-225))) (-5 *1 (-301)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))))
+(-10 -7 (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -1700 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1701 ((-637 (-225)) (-314 (-225)) (-1169) (-1082 (-838 (-225))))) (-15 -1702 ((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-314 (-225)) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1703 ((-1146 (-225)) (-1256 (-314 (-225))) (-637 (-1169)) (-1082 (-838 (-225))))) (-15 -1704 ((-637 (-225)) (-942 (-407 (-546))) (-1169) (-1082 (-838 (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))))
+((-2134 (((-112) (-225)) 10)))
+(((-302 |#1| |#2|) (-10 -7 (-15 -2134 ((-112) (-225)))) (-225) (-225)) (T -302))
+((-2134 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2134 ((-112) (-225))))
+((-1720 (((-1256 (-314 (-378))) (-1256 (-314 (-225)))) 105)) (-1708 (((-1082 (-838 (-225))) (-1082 (-838 (-378)))) 40)) (-1724 (((-637 (-1151)) (-1146 (-225))) 87)) (-1731 (((-314 (-378)) (-942 (-225))) 50)) (-1732 (((-225) (-942 (-225))) 46)) (-1727 (((-1151) (-378)) 170)) (-1707 (((-838 (-225)) (-838 (-378))) 34)) (-1713 (((-2 (|:| |additions| (-546)) (|:| |multiplications| (-546)) (|:| |exponentiations| (-546)) (|:| |functionCalls| (-546))) (-1256 (-314 (-225)))) 144)) (-1728 (((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031)))) 182) (((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) 180)) (-1735 (((-684 (-225)) (-637 (-225)) (-767)) 14)) (-1718 (((-1256 (-694)) (-637 (-225))) 94)) (-1723 (((-637 (-1151)) (-637 (-225))) 75)) (-3045 (((-3 (-314 (-225)) "failed") (-314 (-225))) 120)) (-2134 (((-112) (-225) (-1082 (-838 (-225)))) 109)) (-1730 (((-1031) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 199)) (-1725 (((-225) (-1082 (-838 (-225)))) 107)) (-1726 (((-225) (-1082 (-838 (-225)))) 108)) (-1734 (((-225) (-407 (-546))) 27)) (-1722 (((-1151) (-378)) 73)) (-1705 (((-225) (-378)) 17)) (-1712 (((-378) (-1256 (-314 (-225)))) 155)) (-1706 (((-314 (-225)) (-314 (-378))) 23)) (-1710 (((-407 (-546)) (-314 (-225))) 53)) (-1714 (((-314 (-407 (-546))) (-314 (-225))) 69)) (-1719 (((-314 (-378)) (-314 (-225))) 98)) (-1711 (((-225) (-314 (-225))) 54)) (-1716 (((-637 (-225)) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) 64)) (-1715 (((-1082 (-838 (-225))) (-1082 (-838 (-225)))) 61)) (-1721 (((-1151) (-225)) 72)) (-1717 (((-694) (-225)) 90)) (-1709 (((-407 (-546)) (-225)) 55)) (-1733 (((-314 (-378)) (-225)) 49)) (-4385 (((-637 (-1082 (-838 (-225)))) (-637 (-1082 (-838 (-378))))) 43)) (-4216 (((-1031) (-637 (-1031))) 166) (((-1031) (-1031) (-1031)) 163)) (-1729 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 196)))
+(((-303) (-10 -7 (-15 -1705 ((-225) (-378))) (-15 -1706 ((-314 (-225)) (-314 (-378)))) (-15 -1707 ((-838 (-225)) (-838 (-378)))) (-15 -1708 ((-1082 (-838 (-225))) (-1082 (-838 (-378))))) (-15 -4385 ((-637 (-1082 (-838 (-225)))) (-637 (-1082 (-838 (-378)))))) (-15 -1709 ((-407 (-546)) (-225))) (-15 -1710 ((-407 (-546)) (-314 (-225)))) (-15 -1711 ((-225) (-314 (-225)))) (-15 -3045 ((-3 (-314 (-225)) "failed") (-314 (-225)))) (-15 -1712 ((-378) (-1256 (-314 (-225))))) (-15 -1713 ((-2 (|:| |additions| (-546)) (|:| |multiplications| (-546)) (|:| |exponentiations| (-546)) (|:| |functionCalls| (-546))) (-1256 (-314 (-225))))) (-15 -1714 ((-314 (-407 (-546))) (-314 (-225)))) (-15 -1715 ((-1082 (-838 (-225))) (-1082 (-838 (-225))))) (-15 -1716 ((-637 (-225)) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))) (-15 -1717 ((-694) (-225))) (-15 -1718 ((-1256 (-694)) (-637 (-225)))) (-15 -1719 ((-314 (-378)) (-314 (-225)))) (-15 -1720 ((-1256 (-314 (-378))) (-1256 (-314 (-225))))) (-15 -2134 ((-112) (-225) (-1082 (-838 (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1722 ((-1151) (-378))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))) (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -4216 ((-1031) (-1031) (-1031))) (-15 -4216 ((-1031) (-637 (-1031)))) (-15 -1727 ((-1151) (-378))) (-15 -1728 ((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))))) (-15 -1728 ((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))))) (-15 -1729 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1730 ((-1031) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -1731 ((-314 (-378)) (-942 (-225)))) (-15 -1732 ((-225) (-942 (-225)))) (-15 -1733 ((-314 (-378)) (-225))) (-15 -1734 ((-225) (-407 (-546)))) (-15 -1735 ((-684 (-225)) (-637 (-225)) (-767))))) (T -303))
+((-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-303)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-407 (-546))) (-5 *2 (-225)) (-5 *1 (-303)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-314 (-378))) (-5 *1 (-303)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-942 (-225))) (-5 *2 (-225)) (-5 *1 (-303)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-942 (-225))) (-5 *2 (-314 (-378))) (-5 *1 (-303)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1031)) (-5 *1 (-303)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-303)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-303)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *2 (-1031)) (-5 *1 (-303)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1151)) (-5 *1 (-303)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-637 (-1031))) (-5 *2 (-1031)) (-5 *1 (-303)))) (-4216 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-303)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-303)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-303)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-303)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-303)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1151)) (-5 *1 (-303)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-303)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-838 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-303)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *2 (-1256 (-314 (-378)))) (-5 *1 (-303)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-314 (-378))) (-5 *1 (-303)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1256 (-694))) (-5 *1 (-303)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-303)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *2 (-637 (-225))) (-5 *1 (-303)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-1082 (-838 (-225)))) (-5 *1 (-303)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-314 (-407 (-546)))) (-5 *1 (-303)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *2 (-2 (|:| |additions| (-546)) (|:| |multiplications| (-546)) (|:| |exponentiations| (-546)) (|:| |functionCalls| (-546)))) (-5 *1 (-303)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *2 (-378)) (-5 *1 (-303)))) (-3045 (*1 *2 *2) (|partial| -12 (-5 *2 (-314 (-225))) (-5 *1 (-303)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-225)) (-5 *1 (-303)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-407 (-546))) (-5 *1 (-303)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-546))) (-5 *1 (-303)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-637 (-1082 (-838 (-378))))) (-5 *2 (-637 (-1082 (-838 (-225))))) (-5 *1 (-303)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-378)))) (-5 *2 (-1082 (-838 (-225)))) (-5 *1 (-303)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-225))) (-5 *1 (-303)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-314 (-378))) (-5 *2 (-314 (-225))) (-5 *1 (-303)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-225)) (-5 *1 (-303)))))
+(-10 -7 (-15 -1705 ((-225) (-378))) (-15 -1706 ((-314 (-225)) (-314 (-378)))) (-15 -1707 ((-838 (-225)) (-838 (-378)))) (-15 -1708 ((-1082 (-838 (-225))) (-1082 (-838 (-378))))) (-15 -4385 ((-637 (-1082 (-838 (-225)))) (-637 (-1082 (-838 (-378)))))) (-15 -1709 ((-407 (-546)) (-225))) (-15 -1710 ((-407 (-546)) (-314 (-225)))) (-15 -1711 ((-225) (-314 (-225)))) (-15 -3045 ((-3 (-314 (-225)) "failed") (-314 (-225)))) (-15 -1712 ((-378) (-1256 (-314 (-225))))) (-15 -1713 ((-2 (|:| |additions| (-546)) (|:| |multiplications| (-546)) (|:| |exponentiations| (-546)) (|:| |functionCalls| (-546))) (-1256 (-314 (-225))))) (-15 -1714 ((-314 (-407 (-546))) (-314 (-225)))) (-15 -1715 ((-1082 (-838 (-225))) (-1082 (-838 (-225))))) (-15 -1716 ((-637 (-225)) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))) (-15 -1717 ((-694) (-225))) (-15 -1718 ((-1256 (-694)) (-637 (-225)))) (-15 -1719 ((-314 (-378)) (-314 (-225)))) (-15 -1720 ((-1256 (-314 (-378))) (-1256 (-314 (-225))))) (-15 -2134 ((-112) (-225) (-1082 (-838 (-225))))) (-15 -1721 ((-1151) (-225))) (-15 -1722 ((-1151) (-378))) (-15 -1723 ((-637 (-1151)) (-637 (-225)))) (-15 -1724 ((-637 (-1151)) (-1146 (-225)))) (-15 -1725 ((-225) (-1082 (-838 (-225))))) (-15 -1726 ((-225) (-1082 (-838 (-225))))) (-15 -4216 ((-1031) (-1031) (-1031))) (-15 -4216 ((-1031) (-637 (-1031)))) (-15 -1727 ((-1151) (-378))) (-15 -1728 ((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))))) (-15 -1728 ((-1031) (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))))) (-15 -1729 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1730 ((-1031) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -1731 ((-314 (-378)) (-942 (-225)))) (-15 -1732 ((-225) (-942 (-225)))) (-15 -1733 ((-314 (-378)) (-225))) (-15 -1734 ((-225) (-407 (-546)))) (-15 -1735 ((-684 (-225)) (-637 (-225)) (-767))))
+((-1736 (((-637 |#1|) (-637 |#1|)) 10)))
+(((-304 |#1|) (-10 -7 (-15 -1736 ((-637 |#1|) (-637 |#1|)))) (-844)) (T -304))
+((-1736 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-844)) (-5 *1 (-304 *3)))))
+(-10 -7 (-15 -1736 ((-637 |#1|) (-637 |#1|))))
+((-4373 (((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)) 17)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -4373 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) (-1045) (-1045)) (T -305))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-305 *5 *6)))))
+(-10 -7 (-15 -4373 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|))))
+((-1740 (((-112) $ $) 11)) (-2949 (($ $ $) 15)) (-2948 (($ $ $) 14)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 43)) (-1737 (((-3 (-637 $) "failed") (-637 $) $) 53)) (-3552 (($ $ $) 21) (($ (-637 $)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3872 (((-3 $ "failed") $ $) 18)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 46)))
+(((-306 |#1|) (-10 -8 (-15 -1737 ((-3 (-637 |#1|) "failed") (-637 |#1|) |#1|)) (-15 -1738 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1738 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2949 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -3129 ((-3 (-637 |#1|) "failed") (-637 |#1|) |#1|)) (-15 -3130 ((-2 (|:| -4369 (-637 |#1|)) (|:| -2551 |#1|)) (-637 |#1|))) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
+NIL
+(-10 -8 (-15 -1737 ((-3 (-637 |#1|) "failed") (-637 |#1|) |#1|)) (-15 -1738 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1738 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2949 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -3129 ((-3 (-637 |#1|) "failed") (-637 |#1|) |#1|)) (-15 -3130 ((-2 (|:| -4369 (-637 |#1|)) (|:| -2551 |#1|)) (-637 |#1|))) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-2552 (((-112) $) 31)) (-1737 (((-3 (-637 $) "failed") (-637 $) $) 53)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-307) (-140)) (T -307))
-((-2003 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-3263 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-307)))) (-3054 (*1 *1 *1 *1) (-4 *1 (-307))) (-3094 (*1 *1 *1 *1) (-4 *1 (-307))) (-1984 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1))) (-4 *1 (-307)))) (-1984 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1977 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307)))))
-(-13 (-916) (-10 -8 (-15 -2003 ((-112) $ $)) (-15 -1993 ((-767) $)) (-15 -3263 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3054 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1984 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $)) (-15 -1984 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1977 ((-3 (-640 $) "failed") (-640 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1542 (($ $ (-640 |#2|) (-640 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-640 (-294 |#2|))) NIL)))
-(((-308 |#1| |#2|) (-10 -8 (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|)))) (-309 |#2|) (-1093)) (T -308))
-NIL
-(-10 -8 (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|))))
-((-1542 (($ $ (-640 |#1|) (-640 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-640 (-294 |#1|))) 10)))
-(((-309 |#1|) (-140) (-1093)) (T -309))
-((-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093)))))
-(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -1542 ($ $ (-294 |t#1|))) (-15 -1542 ($ $ (-640 (-294 |t#1|))))))
+((-1740 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-3271 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-307)))) (-2948 (*1 *1 *1 *1) (-4 *1 (-307))) (-2949 (*1 *1 *1 *1) (-4 *1 (-307))) (-1738 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1))) (-4 *1 (-307)))) (-1738 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1737 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-637 *1)) (-4 *1 (-307)))))
+(-13 (-917) (-10 -8 (-15 -1740 ((-112) $ $)) (-15 -1739 ((-767) $)) (-15 -3271 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2948 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -1738 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $)) (-15 -1738 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1737 ((-3 (-637 $) "failed") (-637 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-4182 (($ $ (-637 |#2|) (-637 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-637 (-293 |#2|))) NIL)))
+(((-308 |#1| |#2|) (-10 -8 (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|)))) (-309 |#2|) (-1094)) (T -308))
+NIL
+(-10 -8 (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|))))
+((-4182 (($ $ (-637 |#1|) (-637 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-637 (-293 |#1|))) 10)))
+(((-309 |#1|) (-140) (-1094)) (T -309))
+((-4182 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-4182 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-293 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))))
+(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -4182 ($ $ (-293 |t#1|))) (-15 -4182 ($ $ (-637 (-293 |t#1|))))))
(((-514 |#1| |#1|) . T))
-((-1542 ((|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))) 25)))
-(((-310 |#1|) (-10 -7 (-15 -1542 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))))) (-38 (-407 (-563)))) (T -310))
-((-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563)))))))
-(-10 -7 (-15 -1542 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563))))))
-((-1677 (((-112) $ $) NIL)) (-1407 (((-563) $) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 9)) (-1692 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-311) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -1407 ((-563) $))))) (T -311))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -1407 ((-563) $))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 7)) (-1718 (((-112) $ $) 9)))
-(((-312) (-1093)) (T -312))
-NIL
-(-1093)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 61)) (-3944 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-1243 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 24)) (-2057 (((-1243 |#1| |#2| |#3| |#4|) $) NIL) (((-1169) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-1243 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1257 (-1243 |#1| |#2| |#3| |#4|)))) (-684 $) (-1257 $)) NIL) (((-684 (-1243 |#1| |#2| |#3| |#4|)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-1243 |#1| |#2| |#3| |#4|) $) 20)) (-1983 (((-3 $ "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)))) (-3426 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1776 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2238 (($ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) $) NIL)) (-1876 (((-3 (-839 |#2|) "failed") $) 79)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-3954 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-1243 |#1| |#2| |#3| |#4|)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-294 (-1243 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-1169)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1169) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-286 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-1243 |#1| |#2| |#3| |#4|) $) 17)) (-2219 (((-888 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-536)))) (((-379) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018))) (((-225) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-1243 |#1| |#2| |#3| |#4|)) 28) (($ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (($ (-1242 |#2| |#3| |#4|)) 35)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))) (|has| (-1243 |#1| |#2| |#3| |#4|) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-2239 (($) 40 T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1836 (($ $ $) 33) (($ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) 30)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-1243 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL)))
-(((-313 |#1| |#2| |#3| |#4|) (-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -1876 ((-3 (-839 |#2|) "failed") $)) (-15 -1692 ($ (-1242 |#2| |#3| |#4|))))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -313))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4) (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-1876 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4))))
-(-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -1876 ((-3 (-839 |#2|) "failed") $)) (-15 -1692 ($ (-1242 |#2| |#3| |#4|)))))
-((-2238 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -2238 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-846) (-846)) (T -314))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))))
-(-10 -7 (-15 -2238 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|))))
-((-2651 (((-52) |#2| (-294 |#2|) (-767)) 33) (((-52) |#2| (-294 |#2|)) 24) (((-52) |#2| (-767)) 28) (((-52) |#2|) 25) (((-52) (-1169)) 21)) (-3049 (((-52) |#2| (-294 |#2|) (-407 (-563))) 51) (((-52) |#2| (-294 |#2|)) 48) (((-52) |#2| (-407 (-563))) 50) (((-52) |#2|) 49) (((-52) (-1169)) 47)) (-2669 (((-52) |#2| (-294 |#2|) (-407 (-563))) 46) (((-52) |#2| (-294 |#2|)) 43) (((-52) |#2| (-407 (-563))) 45) (((-52) |#2|) 44) (((-52) (-1169)) 42)) (-2659 (((-52) |#2| (-294 |#2|) (-563)) 39) (((-52) |#2| (-294 |#2|)) 35) (((-52) |#2| (-563)) 38) (((-52) |#2|) 36) (((-52) (-1169)) 34)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -2651 ((-52) (-1169))) (-15 -2651 ((-52) |#2|)) (-15 -2651 ((-52) |#2| (-767))) (-15 -2651 ((-52) |#2| (-294 |#2|))) (-15 -2651 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2659 ((-52) (-1169))) (-15 -2659 ((-52) |#2|)) (-15 -2659 ((-52) |#2| (-563))) (-15 -2659 ((-52) |#2| (-294 |#2|))) (-15 -2659 ((-52) |#2| (-294 |#2|) (-563))) (-15 -2669 ((-52) (-1169))) (-15 -2669 ((-52) |#2|)) (-15 -2669 ((-52) |#2| (-407 (-563)))) (-15 -2669 ((-52) |#2| (-294 |#2|))) (-15 -2669 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3049 ((-52) (-1169))) (-15 -3049 ((-52) |#2|)) (-15 -3049 ((-52) |#2| (-407 (-563)))) (-15 -3049 ((-52) |#2| (-294 |#2|))) (-15 -3049 ((-52) |#2| (-294 |#2|) (-407 (-563))))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -315))
-((-3049 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2669 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2659 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2651 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))))
-(-10 -7 (-15 -2651 ((-52) (-1169))) (-15 -2651 ((-52) |#2|)) (-15 -2651 ((-52) |#2| (-767))) (-15 -2651 ((-52) |#2| (-294 |#2|))) (-15 -2651 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2659 ((-52) (-1169))) (-15 -2659 ((-52) |#2|)) (-15 -2659 ((-52) |#2| (-563))) (-15 -2659 ((-52) |#2| (-294 |#2|))) (-15 -2659 ((-52) |#2| (-294 |#2|) (-563))) (-15 -2669 ((-52) (-1169))) (-15 -2669 ((-52) |#2|)) (-15 -2669 ((-52) |#2| (-407 (-563)))) (-15 -2669 ((-52) |#2| (-294 |#2|))) (-15 -2669 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3049 ((-52) (-1169))) (-15 -3049 ((-52) |#2|)) (-15 -3049 ((-52) |#2| (-407 (-563)))) (-15 -3049 ((-52) |#2| (-294 |#2|))) (-15 -3049 ((-52) |#2| (-294 |#2|) (-407 (-563)))))
-((-1677 (((-112) $ $) NIL)) (-2793 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-1559 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-3439 (((-112) $) 26 (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-2605 (((-640 (-1169)) $) 349)) (-2138 (((-407 (-1165 $)) $ (-609 $)) NIL (|has| |#1| (-555)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-2058 (((-640 (-609 $)) $) NIL)) (-1770 (($ $) 159 (|has| |#1| (-555)))) (-1618 (($ $) 135 (|has| |#1| (-555)))) (-2132 (($ $ (-1085 $)) 220 (|has| |#1| (-555))) (($ $ (-1169)) 216 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) NIL (-4034 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-4135 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) 366) (($ $ (-640 (-609 $)) (-640 $)) 410)) (-2093 (((-418 (-1165 $)) (-1165 $)) 294 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-1798 (($ $) NIL (|has| |#1| (-555)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-555)))) (-2185 (($ $) NIL (|has| |#1| (-555)))) (-2003 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1747 (($ $) 155 (|has| |#1| (-555)))) (-1596 (($ $) 131 (|has| |#1| (-555)))) (-2012 (($ $ (-563)) 67 (|has| |#1| (-555)))) (-1793 (($ $) 163 (|has| |#1| (-555)))) (-1642 (($ $) 139 (|has| |#1| (-555)))) (-2569 (($) NIL (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-4249 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-3377 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) 122 (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-2130 (((-3 (-609 $) "failed") $) 17) (((-3 (-1169) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-948 |#1|)) "failed") $) NIL (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 45 (-4034 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2057 (((-609 $) $) 11) (((-1169) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-948 |#1|)) $) NIL (|has| |#1| (-555))) (((-948 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-563)) $) 305 (-4034 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3094 (($ $ $) NIL (|has| |#1| (-555)))) (-1476 (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 115 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 105 (|has| |#1| (-1045))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (-2444 (($ $) 86 (|has| |#1| (-555)))) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-3054 (($ $ $) NIL (|has| |#1| (-555)))) (-3846 (($ $ (-1085 $)) 224 (|has| |#1| (-555))) (($ $ (-1169)) 222 (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-555)))) (-2560 (((-112) $) NIL (|has| |#1| (-555)))) (-1496 (($ $ $) 190 (|has| |#1| (-555)))) (-2179 (($) 125 (|has| |#1| (-555)))) (-2101 (($ $ $) 210 (|has| |#1| (-555)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 372 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 379 (|has| |#1| (-882 (-379))))) (-3228 (($ $) NIL) (($ (-640 $)) NIL)) (-2739 (((-640 (-114)) $) NIL)) (-2559 (((-114) (-114)) 265)) (-3401 (((-112) $) 24 (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-2959 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2043 (($ $) 66 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 81 (|has| |#1| (-1045)))) (-2020 (((-112) $) 59 (|has| |#1| (-555)))) (-2172 (($ $ (-563)) NIL (|has| |#1| (-555)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-2716 (((-1165 $) (-609 $)) 266 (|has| $ (-1045)))) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 $ $) (-609 $)) 406)) (-2751 (((-3 (-609 $) "failed") $) NIL)) (-4372 (($ $) 129 (|has| |#1| (-555)))) (-3114 (($ $) 235 (|has| |#1| (-555)))) (-3517 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-3854 (((-1151) $) NIL)) (-2126 (((-640 (-609 $)) $) 48)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) 411)) (-3939 (((-3 (-640 $) "failed") $) NIL (|has| |#1| (-1105)))) (-3959 (((-3 (-2 (|:| |val| $) (|:| -3311 (-563))) "failed") $) NIL (|has| |#1| (-1045)))) (-3930 (((-3 (-640 $) "failed") $) 414 (|has| |#1| (-25)))) (-3479 (((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 $))) "failed") $) 418 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $) NIL (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-114)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-1169)) NIL (|has| |#1| (-1045)))) (-2602 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) 50)) (-2687 (($ $) NIL (-4034 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-4025 (($ $ (-1169)) 239 (|has| |#1| (-555))) (($ $ (-1085 $)) 241 (|has| |#1| (-555)))) (-4238 (((-767) $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) 42)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 287 (|has| |#1| (-555)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-2726 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2142 (($ $ (-1169)) 214 (|has| |#1| (-555))) (($ $) 212 (|has| |#1| (-555)))) (-2081 (($ $) 206 (|has| |#1| (-555)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 292 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-2173 (((-418 $) $) NIL (|has| |#1| (-555)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-555)))) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-3372 (($ $) 127 (|has| |#1| (-555)))) (-2969 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 405) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) 359) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) NIL (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-611 (-536)))) (($ $) NIL (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 347 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 346 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-1993 (((-767) $) NIL (|has| |#1| (-555)))) (-2772 (($ $) 227 (|has| |#1| (-555)))) (-2308 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-2761 (($ $) NIL) (($ $ $) NIL)) (-1585 (($ $) 237 (|has| |#1| (-555)))) (-1485 (($ $) 188 (|has| |#1| (-555)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-2033 (($ $) 68 (|has| |#1| (-555)))) (-2153 (((-1118 |#1| (-609 $)) $) 83 (|has| |#1| (-555)))) (-3402 (($ $) 303 (|has| $ (-1045)))) (-1805 (($ $) 165 (|has| |#1| (-555)))) (-1655 (($ $) 141 (|has| |#1| (-555)))) (-1783 (($ $) 161 (|has| |#1| (-555)))) (-1629 (($ $) 137 (|has| |#1| (-555)))) (-1758 (($ $) 157 (|has| |#1| (-555)))) (-1607 (($ $) 133 (|has| |#1| (-555)))) (-2219 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-555))) (((-536) $) 344 (|has| |#1| (-611 (-536))))) (-2150 (($ $ $) NIL (|has| |#1| (-473)))) (-1745 (($ $ $) NIL (|has| |#1| (-473)))) (-1692 (((-858) $) 404) (($ (-609 $)) 395) (($ (-1169)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-555))) (($ (-48)) 298 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (($ (-1118 |#1| (-609 $))) 85 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) NIL (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) NIL (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) NIL (|has| |#1| (-555))) (($ (-948 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 33 (-4034 (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))))) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL (|has| |#1| (-1045)))) (-3083 (($ $) NIL) (($ (-640 $)) NIL)) (-1864 (($ $ $) 208 (|has| |#1| (-555)))) (-1534 (($ $ $) 194 (|has| |#1| (-555)))) (-1558 (($ $ $) 198 (|has| |#1| (-555)))) (-1521 (($ $ $) 192 (|has| |#1| (-555)))) (-1545 (($ $ $) 196 (|has| |#1| (-555)))) (-2512 (((-112) (-114)) 9)) (-1839 (($ $) 171 (|has| |#1| (-555)))) (-1694 (($ $) 147 (|has| |#1| (-555)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) 167 (|has| |#1| (-555)))) (-1666 (($ $) 143 (|has| |#1| (-555)))) (-1861 (($ $) 175 (|has| |#1| (-555)))) (-1721 (($ $) 151 (|has| |#1| (-555)))) (-1894 (($ (-1169) $) NIL) (($ (-1169) $ $) NIL) (($ (-1169) $ $ $) NIL) (($ (-1169) $ $ $ $) NIL) (($ (-1169) (-640 $)) NIL)) (-1583 (($ $) 202 (|has| |#1| (-555)))) (-1570 (($ $) 200 (|has| |#1| (-555)))) (-1311 (($ $) 177 (|has| |#1| (-555)))) (-1734 (($ $) 153 (|has| |#1| (-555)))) (-1850 (($ $) 173 (|has| |#1| (-555)))) (-1709 (($ $) 149 (|has| |#1| (-555)))) (-1828 (($ $) 169 (|has| |#1| (-555)))) (-1679 (($ $) 145 (|has| |#1| (-555)))) (-1462 (($ $) 180 (|has| |#1| (-555)))) (-2239 (($) 20 (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) CONST)) (-2536 (($ $) 231 (|has| |#1| (-555)))) (-2253 (($) 22 (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-1507 (($ $) 182 (|has| |#1| (-555))) (($ $ $) 184 (|has| |#1| (-555)))) (-2547 (($ $) 229 (|has| |#1| (-555)))) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-2525 (($ $) 233 (|has| |#1| (-555)))) (-1474 (($ $ $) 186 (|has| |#1| (-555)))) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 78)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 76)) (-1836 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 96 (|has| |#1| (-555))) (($ $ $) 41 (-4034 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1825 (($ $ $) 39 (-4034 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ $) 28 (-4034 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-1813 (($ $ $) 37 (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (** (($ $ $) 61 (|has| |#1| (-555))) (($ $ (-407 (-563))) 300 (|has| |#1| (-555))) (($ $ (-563)) 72 (-4034 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 69 (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ $ (-917)) 74 (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (* (($ (-407 (-563)) $) NIL (|has| |#1| (-555))) (($ $ (-407 (-563))) NIL (|has| |#1| (-555))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 35 (-4034 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ (-563) $) 31 (-4034 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-917) $) NIL (-4034 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))))
-(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2444 ($ $)) (-15 -2020 ((-112) $)) (-15 -2012 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -2083 ((-418 (-1165 $)) (-1165 $))) (-15 -2093 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-846)) (T -316))
-((-2444 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) (-2093 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))))
-(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2444 ($ $)) (-15 -2020 ((-112) $)) (-15 -2012 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -2083 ((-418 (-1165 $)) (-1165 $))) (-15 -2093 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|)))
-((-2031 (((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)) 87) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 83) (((-52) |#2| (-114) (-294 |#2|) |#2|) 85) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 86) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 79) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 81) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 82) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 80) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 88) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 84)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2031 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-555) (-611 (-536))) (-430 |#1|)) (T -317))
-((-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-2031 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2031 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2031 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2031 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-640 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2031 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2031 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2031 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6)))))
-(-10 -7 (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2031 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2031 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2031 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2031 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|))))
-((-2048 (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151)) 45) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563)) 46) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151)) 42) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563)) 43)) (-2041 (((-1 (-225) (-225)) (-225)) 44)))
-(((-318) (-10 -7 (-15 -2041 ((-1 (-225) (-225)) (-225))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151))))) (T -318))
-((-2048 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2041 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
-(-10 -7 (-15 -2041 ((-1 (-225) (-225)) (-225))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -2048 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 25)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 20)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) 31)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) 16)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-2059 (((-407 (-563)) $) 17)) (-1761 (($ (-1242 |#1| |#2| |#3|)) 11)) (-3311 (((-1242 |#1| |#2| |#3|) $) 12)) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-3871 (((-407 (-563)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 10)) (-1692 (((-858) $) 37) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) 29)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 27)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 32)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-319 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-788) (-10 -8 (-15 -1761 ($ (-1242 |#1| |#2| |#3|))) (-15 -3311 ((-1242 |#1| |#2| |#3|) $)) (-15 -2059 ((-407 (-563)) $)))) (-13 (-363) (-846)) (-1169) |#1|) (T -319))
-((-1761 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))))
-(-13 (-1238 |#1|) (-788) (-10 -8 (-15 -1761 ($ (-1242 |#1| |#2| |#3|))) (-15 -3311 ((-1242 |#1| |#2| |#3|) $)) (-15 -2059 ((-407 (-563)) $))))
-((-2172 (((-2 (|:| -3311 (-767)) (|:| -2310 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767)) 24)) (-4372 (((-640 (-2 (|:| -2310 (-767)) (|:| |logand| |#1|))) (-418 |#1|)) 28)))
-(((-320 |#1|) (-10 -7 (-15 -2172 ((-2 (|:| -3311 (-767)) (|:| -2310 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -4372 ((-640 (-2 (|:| -2310 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) (-555)) (T -320))
-((-4372 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-555)) (-5 *2 (-640 (-2 (|:| -2310 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-555)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *5) (|:| |radicand| (-640 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767)))))
-(-10 -7 (-15 -2172 ((-2 (|:| -3311 (-767)) (|:| -2310 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -4372 ((-640 (-2 (|:| -2310 (-767)) (|:| |logand| |#1|))) (-418 |#1|))))
-((-2605 (((-640 |#2|) (-1165 |#4|)) 43)) (-2106 ((|#3| (-563)) 46)) (-2086 (((-1165 |#4|) (-1165 |#3|)) 30)) (-2096 (((-1165 |#4|) (-1165 |#4|) (-563)) 55)) (-2078 (((-1165 |#3|) (-1165 |#4|)) 21)) (-3871 (((-640 (-767)) (-1165 |#4|) (-640 |#2|)) 40)) (-2069 (((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|)) 35)))
-(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2069 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -3871 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2605 ((-640 |#2|) (-1165 |#4|))) (-15 -2078 ((-1165 |#3|) (-1165 |#4|))) (-15 -2086 ((-1165 |#4|) (-1165 |#3|))) (-15 -2096 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -2106 (|#3| (-563)))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|)) (T -321))
-((-2106 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))) (-2096 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846)) (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2069 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -3871 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2605 ((-640 |#2|) (-1165 |#4|))) (-15 -2078 ((-1165 |#3|) (-1165 |#4|))) (-15 -2086 ((-1165 |#4|) (-1165 |#3|))) (-15 -2096 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -2106 (|#3| (-563))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 14)) (-1787 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-563)))) $) 18)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767) $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-1347 ((|#1| $ (-563)) NIL)) (-2137 (((-563) $ (-563)) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-1499 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (($ (-1 (-563) (-563)) $) 10)) (-3854 (((-1151) $) NIL)) (-2116 (($ $ $) NIL (|has| (-563) (-788)))) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ |#1|) NIL)) (-3244 (((-563) |#1| $) NIL)) (-2239 (($) 15 T CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) 21 (|has| |#1| (-846)))) (-1825 (($ $) 11) (($ $ $) 20)) (-1813 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL) (($ (-563) |#1|) 19)))
-(((-322 |#1|) (-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -322))
-NIL
-(-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-1787 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))) $) 27)) (-3905 (((-3 $ "failed") $ $) 19)) (-3750 (((-767) $) 28)) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 32)) (-2057 ((|#1| $) 33)) (-1347 ((|#1| $ (-563)) 25)) (-2137 ((|#2| $ (-563)) 26)) (-1499 (($ (-1 |#1| |#1|) $) 22)) (-2127 (($ (-1 |#2| |#2|) $) 23)) (-3854 (((-1151) $) 9)) (-2116 (($ $ $) 21 (|has| |#2| (-788)))) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ |#1|) 31)) (-3244 ((|#2| |#1| $) 24)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ |#2| |#1|) 29)))
-(((-323 |#1| |#2|) (-140) (-1093) (-131)) (T -323))
-((-1813 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-767)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4)))))) (-2137 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093)) (-4 *2 (-131)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1093)))) (-3244 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-2127 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-2116 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)) (-4 *3 (-788)))))
-(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -1813 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3750 ((-767) $)) (-15 -1787 ((-640 (-2 (|:| |gen| |t#1|) (|:| -3372 |t#2|))) $)) (-15 -2137 (|t#2| $ (-563))) (-15 -1347 (|t#1| $ (-563))) (-15 -3244 (|t#2| |t#1| $)) (-15 -2127 ($ (-1 |t#2| |t#2|) $)) (-15 -1499 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -2116 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-1034 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1787 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767) $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-1347 ((|#1| $ (-563)) NIL)) (-2137 (((-767) $ (-563)) NIL)) (-1499 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (($ (-1 (-767) (-767)) $) NIL)) (-3854 (((-1151) $) NIL)) (-2116 (($ $ $) NIL (|has| (-767) (-788)))) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ |#1|) NIL)) (-3244 (((-767) |#1| $) NIL)) (-2239 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL)))
-(((-324 |#1|) (-323 |#1| (-767)) (-1093)) (T -324))
+((-4182 ((|#1| (-1 |#1| (-546)) (-1171 (-407 (-546)))) 25)))
+(((-310 |#1|) (-10 -7 (-15 -4182 (|#1| (-1 |#1| (-546)) (-1171 (-407 (-546)))))) (-38 (-407 (-546)))) (T -310))
+((-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-546))) (-5 *4 (-1171 (-407 (-546)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-546)))))))
+(-10 -7 (-15 -4182 (|#1| (-1 |#1| (-546)) (-1171 (-407 (-546))))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 7)) (-3444 (((-112) $ $) 9)))
+(((-311) (-1094)) (T -311))
+NIL
+(-1094)
+((-2953 (((-112) $ $) NIL)) (-3912 (((-546) $) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 9)) (-4361 (((-859) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-312) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3912 ((-546) $))))) (T -312))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-312)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-312)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3912 ((-546) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 61)) (-3521 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-1243 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-546)))) (((-3 (-1237 |#2| |#3| |#4|) #2#) $) 24)) (-3564 (((-1243 |#1| |#2| |#3| |#4|) $) NIL) (((-1169) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-546)))) (((-546) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-546)))) (((-1237 |#2| |#3| |#4|) $) NIL)) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-1243 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1256 (-1243 |#1| |#2| |#3| |#4|)))) (-684 $) (-1256 $)) NIL) (((-684 (-1243 |#1| |#2| |#3| |#4|)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-1243 |#1| |#2| |#3| |#4|) $) 20)) (-3855 (((-3 $ "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)))) (-3595 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-3249 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-4373 (($ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) $) NIL)) (-4198 (((-3 (-838 |#2|) "failed") $) 79)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-3522 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-1243 |#1| |#2| |#3| |#4|)) (-637 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-637 (-293 (-1243 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-637 (-1169)) (-637 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1169) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-286 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-1243 |#1| |#2| |#3| |#4|) $) 17)) (-4385 (((-886 (-546)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-535)))) (((-378) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1016))) (((-225) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-1243 |#1| |#2| |#3| |#4|)) 28) (($ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (($ (-1237 |#2| |#3| |#4|)) 35)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-906))) (|has| (-1243 |#1| |#2| |#3| |#4|) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3047 (($) 40 T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-4364 (($ $ $) 33) (($ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) 30)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-1243 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL)))
+(((-313 |#1| |#2| |#3| |#4|) (-13 (-987 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1237 |#2| |#3| |#4|)) (-10 -8 (-15 -4198 ((-3 (-838 |#2|) "failed") $)) (-15 -4361 ($ (-1237 |#2| |#3| |#4|))))) (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)) (-13 (-27) (-1193) (-421 |#1|)) (-1169) |#2|) (T -313))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4) (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-4198 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452))) (-5 *2 (-838 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4))))
+(-13 (-987 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1237 |#2| |#3| |#4|)) (-10 -8 (-15 -4198 ((-3 (-838 |#2|) "failed") $)) (-15 -4361 ($ (-1237 |#2| |#3| |#4|)))))
+((-2953 (((-112) $ $) NIL)) (-1702 (((-637 $) $ (-1169)) NIL (|has| |#1| (-556))) (((-637 $) $) NIL (|has| |#1| (-556))) (((-637 $) (-1163 $) (-1169)) NIL (|has| |#1| (-556))) (((-637 $) (-1163 $)) NIL (|has| |#1| (-556))) (((-637 $) (-942 $)) NIL (|has| |#1| (-556)))) (-1290 (($ $ (-1169)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1163 $) (-1169)) NIL (|has| |#1| (-556))) (($ (-1163 $)) NIL (|has| |#1| (-556))) (($ (-942 $)) NIL (|has| |#1| (-556)))) (-3596 (((-112) $) 26 (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))) (-3474 (((-637 (-1169)) $) 349)) (-3476 (((-407 (-1163 $)) $ (-608 $)) NIL (|has| |#1| (-556)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-1695 (((-637 (-608 $)) $) NIL)) (-3898 (($ $) 159 (|has| |#1| (-556)))) (-4054 (($ $) 135 (|has| |#1| (-556)))) (-1449 (($ $ (-1085 $)) 220 (|has| |#1| (-556))) (($ $ (-1169)) 216 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) NIL (-3943 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))) (-1699 (($ $ (-293 $)) NIL) (($ $ (-637 (-293 $))) 366) (($ $ (-637 (-608 $)) (-637 $)) 410)) (-3096 (((-405 (-1163 $)) (-1163 $)) 294 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4189 (($ $) NIL (|has| |#1| (-556)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-556)))) (-3427 (($ $) NIL (|has| |#1| (-556)))) (-1740 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3896 (($ $) 155 (|has| |#1| (-556)))) (-4053 (($ $) 131 (|has| |#1| (-556)))) (-1741 (($ $ (-546)) 67 (|has| |#1| (-556)))) (-3900 (($ $) 163 (|has| |#1| (-556)))) (-4052 (($ $) 139 (|has| |#1| (-556)))) (-4139 (($) NIL (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-1291 (((-637 $) $ (-1169)) NIL (|has| |#1| (-556))) (((-637 $) $) NIL (|has| |#1| (-556))) (((-637 $) (-1163 $) (-1169)) NIL (|has| |#1| (-556))) (((-637 $) (-1163 $)) NIL (|has| |#1| (-556))) (((-637 $) (-942 $)) NIL (|has| |#1| (-556)))) (-3591 (($ $ (-1169)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1163 $) (-1169)) 122 (|has| |#1| (-556))) (($ (-1163 $)) NIL (|has| |#1| (-556))) (($ (-942 $)) NIL (|has| |#1| (-556)))) (-3565 (((-3 (-608 $) #1="failed") $) 17) (((-3 (-1169) #1#) $) NIL) (((-3 |#1| #1#) $) 419) (((-3 (-48) #1#) $) 322 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))))) (((-3 (-546) #1#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-942 |#1|)) #1#) $) NIL (|has| |#1| (-556))) (((-3 (-942 |#1|) #1#) $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-546)) #1#) $) 45 (-3943 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-3564 (((-608 $) $) 11) (((-1169) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-942 |#1|)) $) NIL (|has| |#1| (-556))) (((-942 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-546)) $) 305 (-3943 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-2949 (($ $ $) NIL (|has| |#1| (-556)))) (-2408 (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 115 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 105 (|has| |#1| (-1045))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))) (-4257 (($ $) 86 (|has| |#1| (-556)))) (-3873 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-2948 (($ $ $) NIL (|has| |#1| (-556)))) (-4359 (($ $ (-1085 $)) 224 (|has| |#1| (-556))) (($ $ (-1169)) 222 (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-556)))) (-4138 (((-112) $) NIL (|has| |#1| (-556)))) (-3797 (($ $ $) 190 (|has| |#1| (-556)))) (-4042 (($) 125 (|has| |#1| (-556)))) (-1446 (($ $ $) 210 (|has| |#1| (-556)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 372 (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 379 (|has| |#1| (-882 (-378))))) (-2958 (($ $) NIL) (($ (-637 $)) NIL)) (-1694 (((-637 (-113)) $) NIL)) (-3437 (((-113) (-113)) 265)) (-2552 (((-112) $) 24 (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-3062 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-3386 (($ $) 66 (|has| |#1| (-1045)))) (-3388 (((-1118 |#1| (-608 $)) $) 81 (|has| |#1| (-1045)))) (-1742 (((-112) $) 59 (|has| |#1| (-556)))) (-3401 (($ $ (-546)) NIL (|has| |#1| (-556)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| |#1| (-556)))) (-1692 (((-1163 $) (-608 $)) 266 (|has| $ (-1045)))) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 $ $) (-608 $)) 406)) (-1697 (((-3 (-608 $) "failed") $) NIL)) (-4357 (($ $) 129 (|has| |#1| (-556)))) (-2387 (($ $) 235 (|has| |#1| (-556)))) (-2048 (($ (-637 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3650 (((-1151) $) NIL)) (-1696 (((-637 (-608 $)) $) 48)) (-2363 (($ (-113) $) NIL) (($ (-113) (-637 $)) 411)) (-3212 (((-3 (-637 $) #3="failed") $) NIL (|has| |#1| (-1105)))) (-3214 (((-3 (-2 (|:| |val| $) (|:| -2543 (-546))) #3#) $) NIL (|has| |#1| (-1045)))) (-3211 (((-3 (-637 $) #3#) $) 414 (|has| |#1| (-25)))) (-1948 (((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 $))) #3#) $) 418 (|has| |#1| (-25)))) (-3213 (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $) NIL (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $ (-113)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) #3#) $ (-1169)) NIL (|has| |#1| (-1045)))) (-3020 (((-112) $ (-113)) NIL) (((-112) $ (-1169)) 50)) (-2785 (($ $) NIL (-3943 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3221 (($ $ (-1169)) 239 (|has| |#1| (-556))) (($ $ (-1085 $)) 241 (|has| |#1| (-556)))) (-2988 (((-767) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) 42)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 287 (|has| |#1| (-556)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1693 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-1450 (($ $ (-1169)) 214 (|has| |#1| (-556))) (($ $) 212 (|has| |#1| (-556)))) (-1444 (($ $) 206 (|has| |#1| (-556)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 292 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4147 (((-405 $) $) NIL (|has| |#1| (-556)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-556)))) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-556)))) (-4358 (($ $) 127 (|has| |#1| (-556)))) (-3063 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) 405) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-1169) (-1 $ (-637 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-637 (-113)) (-637 (-1 $ $))) 359) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-113) (-1 $ (-637 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1169)) NIL (|has| |#1| (-611 (-535)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-611 (-535)))) (($ $) NIL (|has| |#1| (-611 (-535)))) (($ $ (-113) $ (-1169)) 347 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-113)) (-637 $) (-1169)) 346 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ (-637 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-637 $))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-1739 (((-767) $) NIL (|has| |#1| (-556)))) (-2385 (($ $) 227 (|has| |#1| (-556)))) (-4214 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-637 $)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-1698 (($ $) NIL) (($ $ $) NIL)) (-2386 (($ $) 237 (|has| |#1| (-556)))) (-3796 (($ $) 188 (|has| |#1| (-556)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-3385 (($ $) 68 (|has| |#1| (-556)))) (-3387 (((-1118 |#1| (-608 $)) $) 83 (|has| |#1| (-556)))) (-3593 (($ $) 303 (|has| $ (-1045)))) (-3901 (($ $) 165 (|has| |#1| (-556)))) (-4051 (($ $) 141 (|has| |#1| (-556)))) (-3899 (($ $) 161 (|has| |#1| (-556)))) (-4050 (($ $) 137 (|has| |#1| (-556)))) (-3897 (($ $) 157 (|has| |#1| (-556)))) (-4049 (($ $) 133 (|has| |#1| (-556)))) (-4385 (((-886 (-546)) $) NIL (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| |#1| (-611 (-886 (-378))))) (($ (-405 $)) NIL (|has| |#1| (-556))) (((-535) $) 344 (|has| |#1| (-611 (-535))))) (-3399 (($ $ $) NIL (|has| |#1| (-473)))) (-2735 (($ $ $) NIL (|has| |#1| (-473)))) (-4361 (((-859) $) 404) (($ (-608 $)) 395) (($ (-1169)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 298 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))))) (($ (-1118 |#1| (-608 $))) 85 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-942 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-942 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-942 |#1|))) NIL (|has| |#1| (-556))) (($ (-942 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-546)))))) (($ (-546)) 33 (-3943 (|has| |#1| (-1034 (-546))) (|has| |#1| (-1045))))) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL (|has| |#1| (-1045)))) (-2975 (($ $) NIL) (($ (-637 $)) NIL)) (-3494 (($ $ $) 208 (|has| |#1| (-556)))) (-3800 (($ $ $) 194 (|has| |#1| (-556)))) (-3802 (($ $ $) 198 (|has| |#1| (-556)))) (-3799 (($ $ $) 192 (|has| |#1| (-556)))) (-3801 (($ $ $) 196 (|has| |#1| (-556)))) (-2384 (((-112) (-113)) 9)) (-3904 (($ $) 171 (|has| |#1| (-556)))) (-3892 (($ $) 147 (|has| |#1| (-556)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) 167 (|has| |#1| (-556)))) (-3890 (($ $) 143 (|has| |#1| (-556)))) (-3906 (($ $) 175 (|has| |#1| (-556)))) (-3894 (($ $) 151 (|has| |#1| (-556)))) (-1949 (($ (-1169) $) NIL) (($ (-1169) $ $) NIL) (($ (-1169) $ $ $) NIL) (($ (-1169) $ $ $ $) NIL) (($ (-1169) (-637 $)) NIL)) (-3804 (($ $) 202 (|has| |#1| (-556)))) (-3803 (($ $) 200 (|has| |#1| (-556)))) (-3907 (($ $) 177 (|has| |#1| (-556)))) (-3895 (($ $) 153 (|has| |#1| (-556)))) (-3905 (($ $) 173 (|has| |#1| (-556)))) (-3893 (($ $) 149 (|has| |#1| (-556)))) (-3903 (($ $) 169 (|has| |#1| (-556)))) (-3891 (($ $) 145 (|has| |#1| (-556)))) (-3794 (($ $) 180 (|has| |#1| (-556)))) (-3047 (($) 20 (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))) CONST)) (-2389 (($ $) 231 (|has| |#1| (-556)))) (-3053 (($) 22 (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-3798 (($ $) 182 (|has| |#1| (-556))) (($ $ $) 184 (|has| |#1| (-556)))) (-2390 (($ $) 229 (|has| |#1| (-556)))) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-2388 (($ $) 233 (|has| |#1| (-556)))) (-3795 (($ $ $) 186 (|has| |#1| (-556)))) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 78)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 76)) (-4364 (($ (-1118 |#1| (-608 $)) (-1118 |#1| (-608 $))) 96 (|has| |#1| (-556))) (($ $ $) 41 (-3943 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-4252 (($ $ $) 39 (-3943 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))) (($ $) 28 (-3943 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))) (-4254 (($ $ $) 37 (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))) (** (($ $ $) 61 (|has| |#1| (-556))) (($ $ (-407 (-546))) 300 (|has| |#1| (-556))) (($ $ (-546)) 72 (-3943 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 69 (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ $ (-915)) 74 (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (* (($ (-407 (-546)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-546))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 35 (-3943 (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ (-546) $) 31 (-3943 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))))) (($ (-915) $) NIL (-3943 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))))))
+(((-314 |#1|) (-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-627)) (-6 (-1132)) (-15 -4257 ($ $)) (-15 -1742 ((-112) $)) (-15 -1741 ($ $ (-546))) (IF (|has| |#1| (-452)) (PROGN (-15 -3095 ((-405 (-1163 $)) (-1163 $))) (-15 -3096 ((-405 (-1163 $)) (-1163 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-546))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-846)) (T -314))
+((-4257 (*1 *1 *1) (-12 (-5 *1 (-314 *2)) (-4 *2 (-556)) (-4 *2 (-846)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-314 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-1741 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-314 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-3095 (*1 *2 *3) (-12 (-5 *2 (-405 (-1163 *1))) (-5 *1 (-314 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846)))) (-3096 (*1 *2 *3) (-12 (-5 *2 (-405 (-1163 *1))) (-5 *1 (-314 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846)))))
+(-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-627)) (-6 (-1132)) (-15 -4257 ($ $)) (-15 -1742 ((-112) $)) (-15 -1741 ($ $ (-546))) (IF (|has| |#1| (-452)) (PROGN (-15 -3095 ((-405 (-1163 $)) (-1163 $))) (-15 -3096 ((-405 (-1163 $)) (-1163 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-546))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|)))
+((-4373 (((-314 |#2|) (-1 |#2| |#1|) (-314 |#1|)) 13)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -4373 ((-314 |#2|) (-1 |#2| |#1|) (-314 |#1|)))) (-846) (-846)) (T -315))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-314 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-5 *2 (-314 *6)) (-5 *1 (-315 *5 *6)))))
+(-10 -7 (-15 -4373 ((-314 |#2|) (-1 |#2| |#1|) (-314 |#1|))))
+((-4144 (((-51) |#2| (-293 |#2|) (-767)) 33) (((-51) |#2| (-293 |#2|)) 24) (((-51) |#2| (-767)) 28) (((-51) |#2|) 25) (((-51) (-1169)) 21)) (-4233 (((-51) |#2| (-293 |#2|) (-407 (-546))) 51) (((-51) |#2| (-293 |#2|)) 48) (((-51) |#2| (-407 (-546))) 50) (((-51) |#2|) 49) (((-51) (-1169)) 47)) (-4196 (((-51) |#2| (-293 |#2|) (-407 (-546))) 46) (((-51) |#2| (-293 |#2|)) 43) (((-51) |#2| (-407 (-546))) 45) (((-51) |#2|) 44) (((-51) (-1169)) 42)) (-4193 (((-51) |#2| (-293 |#2|) (-546)) 39) (((-51) |#2| (-293 |#2|)) 35) (((-51) |#2| (-546)) 38) (((-51) |#2|) 36) (((-51) (-1169)) 34)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -4144 ((-51) (-1169))) (-15 -4144 ((-51) |#2|)) (-15 -4144 ((-51) |#2| (-767))) (-15 -4144 ((-51) |#2| (-293 |#2|))) (-15 -4144 ((-51) |#2| (-293 |#2|) (-767))) (-15 -4193 ((-51) (-1169))) (-15 -4193 ((-51) |#2|)) (-15 -4193 ((-51) |#2| (-546))) (-15 -4193 ((-51) |#2| (-293 |#2|))) (-15 -4193 ((-51) |#2| (-293 |#2|) (-546))) (-15 -4196 ((-51) (-1169))) (-15 -4196 ((-51) |#2|)) (-15 -4196 ((-51) |#2| (-407 (-546)))) (-15 -4196 ((-51) |#2| (-293 |#2|))) (-15 -4196 ((-51) |#2| (-293 |#2|) (-407 (-546)))) (-15 -4233 ((-51) (-1169))) (-15 -4233 ((-51) |#2|)) (-15 -4233 ((-51) |#2| (-407 (-546)))) (-15 -4233 ((-51) |#2| (-293 |#2|))) (-15 -4233 ((-51) |#2| (-293 |#2|) (-407 (-546))))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -316))
+((-4233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-546))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4))))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-546))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-4196 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4))))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-546)) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-4193 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4))))) (-4144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-4144 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4))))))
+(-10 -7 (-15 -4144 ((-51) (-1169))) (-15 -4144 ((-51) |#2|)) (-15 -4144 ((-51) |#2| (-767))) (-15 -4144 ((-51) |#2| (-293 |#2|))) (-15 -4144 ((-51) |#2| (-293 |#2|) (-767))) (-15 -4193 ((-51) (-1169))) (-15 -4193 ((-51) |#2|)) (-15 -4193 ((-51) |#2| (-546))) (-15 -4193 ((-51) |#2| (-293 |#2|))) (-15 -4193 ((-51) |#2| (-293 |#2|) (-546))) (-15 -4196 ((-51) (-1169))) (-15 -4196 ((-51) |#2|)) (-15 -4196 ((-51) |#2| (-407 (-546)))) (-15 -4196 ((-51) |#2| (-293 |#2|))) (-15 -4196 ((-51) |#2| (-293 |#2|) (-407 (-546)))) (-15 -4233 ((-51) (-1169))) (-15 -4233 ((-51) |#2|)) (-15 -4233 ((-51) |#2| (-407 (-546)))) (-15 -4233 ((-51) |#2| (-293 |#2|))) (-15 -4233 ((-51) |#2| (-293 |#2|) (-407 (-546)))))
+((-1743 (((-51) |#2| (-113) (-293 |#2|) (-637 |#2|)) 87) (((-51) |#2| (-113) (-293 |#2|) (-293 |#2|)) 83) (((-51) |#2| (-113) (-293 |#2|) |#2|) 85) (((-51) (-293 |#2|) (-113) (-293 |#2|) |#2|) 86) (((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|))) 79) (((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 |#2|)) 81) (((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 |#2|)) 82) (((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|))) 80) (((-51) (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|)) 88) (((-51) (-293 |#2|) (-113) (-293 |#2|) (-293 |#2|)) 84)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) (-293 |#2|))) (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|)))) (-15 -1743 ((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|)))) (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) |#2|)) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) |#2|)) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) (-293 |#2|))) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) (-637 |#2|)))) (-13 (-846) (-556) (-611 (-535))) (-421 |#1|)) (T -317))
+((-1743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-5 *6 (-637 *3)) (-4 *3 (-421 *7)) (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *7 *3)))) (-1743 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-1743 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-1743 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-113)) (-4 *5 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *5)))) (-1743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 (-113))) (-5 *6 (-637 (-293 *8))) (-4 *8 (-421 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *7 *8)))) (-1743 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-637 *7)) (-5 *4 (-637 (-113))) (-5 *5 (-293 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *7)))) (-1743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 (-293 *8))) (-5 *4 (-637 (-113))) (-5 *5 (-293 *8)) (-5 *6 (-637 *8)) (-4 *8 (-421 *7)) (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *7 *8)))) (-1743 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-637 (-293 *7))) (-5 *4 (-637 (-113))) (-5 *5 (-293 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *7)))) (-1743 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-113)) (-5 *5 (-637 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *7)))) (-1743 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-113)) (-4 *6 (-421 *5)) (-4 *5 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) (-293 |#2|))) (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|)))) (-15 -1743 ((-51) (-637 (-293 |#2|)) (-637 (-113)) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 |#2|))) (-15 -1743 ((-51) (-637 |#2|) (-637 (-113)) (-293 |#2|) (-637 (-293 |#2|)))) (-15 -1743 ((-51) (-293 |#2|) (-113) (-293 |#2|) |#2|)) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) |#2|)) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) (-293 |#2|))) (-15 -1743 ((-51) |#2| (-113) (-293 |#2|) (-637 |#2|))))
+((-1745 (((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546) (-1151)) 45) (((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546)) 46) (((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546) (-1151)) 42) (((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546)) 43)) (-1744 (((-1 (-225) (-225)) (-225)) 44)))
+(((-318) (-10 -7 (-15 -1744 ((-1 (-225) (-225)) (-225))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546) (-1151))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546) (-1151))))) (T -318))
+((-1745 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225))) (-5 *6 (-225)) (-5 *7 (-546)) (-5 *8 (-1151)) (-5 *2 (-1203 (-923))) (-5 *1 (-318)))) (-1745 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225))) (-5 *6 (-225)) (-5 *7 (-546)) (-5 *2 (-1203 (-923))) (-5 *1 (-318)))) (-1745 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225))) (-5 *6 (-546)) (-5 *7 (-1151)) (-5 *2 (-1203 (-923))) (-5 *1 (-318)))) (-1745 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225))) (-5 *6 (-546)) (-5 *2 (-1203 (-923))) (-5 *1 (-318)))) (-1744 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(-10 -7 (-15 -1744 ((-1 (-225) (-225)) (-225))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-1 (-225) (-225)) (-546) (-1151))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546))) (-15 -1745 ((-1203 (-923)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-225) (-546) (-1151))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 25)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) NIL) (($ $ (-407 (-546)) (-407 (-546))) NIL)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) 20)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) 31)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) NIL) (((-407 (-546)) $ (-407 (-546))) 16)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) NIL) (($ $ (-407 (-546))) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-407 (-546))) NIL) (($ $ (-1075) (-407 (-546))) NIL) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))))))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-1746 (((-407 (-546)) $) 17)) (-3483 (($ (-1237 |#1| |#2| |#3|)) 11)) (-2543 (((-1237 |#1| |#2| |#3|) $) 12)) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) NIL) (($ $ $) NIL (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-4363 (((-407 (-546)) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 10)) (-4361 (((-859) $) 37) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) 29)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 27)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 32)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-319 |#1| |#2| |#3|) (-13 (-1239 |#1|) (-788) (-10 -8 (-15 -3483 ($ (-1237 |#1| |#2| |#3|))) (-15 -2543 ((-1237 |#1| |#2| |#3|) $)) (-15 -1746 ((-407 (-546)) $)))) (-13 (-363) (-846)) (-1169) |#1|) (T -319))
+((-3483 (*1 *1 *2) (-12 (-5 *2 (-1237 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-1237 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))))
+(-13 (-1239 |#1|) (-788) (-10 -8 (-15 -3483 ($ (-1237 |#1| |#2| |#3|))) (-15 -2543 ((-1237 |#1| |#2| |#3|) $)) (-15 -1746 ((-407 (-546)) $))))
+((-3401 (((-2 (|:| -2543 (-767)) (|:| -4369 |#1|) (|:| |radicand| (-637 |#1|))) (-405 |#1|) (-767)) 24)) (-4357 (((-637 (-2 (|:| -4369 (-767)) (|:| |logand| |#1|))) (-405 |#1|)) 28)))
+(((-320 |#1|) (-10 -7 (-15 -3401 ((-2 (|:| -2543 (-767)) (|:| -4369 |#1|) (|:| |radicand| (-637 |#1|))) (-405 |#1|) (-767))) (-15 -4357 ((-637 (-2 (|:| -4369 (-767)) (|:| |logand| |#1|))) (-405 |#1|)))) (-556)) (T -320))
+((-4357 (*1 *2 *3) (-12 (-5 *3 (-405 *4)) (-4 *4 (-556)) (-5 *2 (-637 (-2 (|:| -4369 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-405 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *5) (|:| |radicand| (-637 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767)))))
+(-10 -7 (-15 -3401 ((-2 (|:| -2543 (-767)) (|:| -4369 |#1|) (|:| |radicand| (-637 |#1|))) (-405 |#1|) (-767))) (-15 -4357 ((-637 (-2 (|:| -4369 (-767)) (|:| |logand| |#1|))) (-405 |#1|))))
+((-3474 (((-637 |#2|) (-1163 |#4|)) 43)) (-1751 ((|#3| (-546)) 46)) (-1749 (((-1163 |#4|) (-1163 |#3|)) 30)) (-1750 (((-1163 |#4|) (-1163 |#4|) (-546)) 55)) (-1748 (((-1163 |#3|) (-1163 |#4|)) 21)) (-4363 (((-637 (-767)) (-1163 |#4|) (-637 |#2|)) 40)) (-1747 (((-1163 |#3|) (-1163 |#4|) (-637 |#2|) (-637 |#3|)) 35)))
+(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1747 ((-1163 |#3|) (-1163 |#4|) (-637 |#2|) (-637 |#3|))) (-15 -4363 ((-637 (-767)) (-1163 |#4|) (-637 |#2|))) (-15 -3474 ((-637 |#2|) (-1163 |#4|))) (-15 -1748 ((-1163 |#3|) (-1163 |#4|))) (-15 -1749 ((-1163 |#4|) (-1163 |#3|))) (-15 -1750 ((-1163 |#4|) (-1163 |#4|) (-546))) (-15 -1751 (|#3| (-546)))) (-789) (-846) (-1045) (-946 |#3| |#1| |#2|)) (T -321))
+((-1751 (*1 *2 *3) (-12 (-5 *3 (-546)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))) (-1750 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *7)) (-5 *3 (-546)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1163 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1163 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1163 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1163 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1163 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-637 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4363 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *8)) (-5 *4 (-637 *6)) (-4 *6 (-846)) (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-637 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-5 *5 (-637 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1163 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1747 ((-1163 |#3|) (-1163 |#4|) (-637 |#2|) (-637 |#3|))) (-15 -4363 ((-637 (-767)) (-1163 |#4|) (-637 |#2|))) (-15 -3474 ((-637 |#2|) (-1163 |#4|))) (-15 -1748 ((-1163 |#3|) (-1163 |#4|))) (-15 -1749 ((-1163 |#4|) (-1163 |#3|))) (-15 -1750 ((-1163 |#4|) (-1163 |#4|) (-546))) (-15 -1751 (|#3| (-546))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 14)) (-4188 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-546)))) $) 18)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767) $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-2819 ((|#1| $ (-546)) NIL)) (-1754 (((-546) $ (-546)) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2417 (($ (-1 |#1| |#1|) $) NIL)) (-1753 (($ (-1 (-546) (-546)) $) 10)) (-3650 (((-1151) $) NIL)) (-1752 (($ $ $) NIL (|has| (-546) (-788)))) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ |#1|) NIL)) (-4092 (((-546) |#1| $) NIL)) (-3047 (($) 15 T CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) 21 (|has| |#1| (-846)))) (-4252 (($ $) 11) (($ $ $) 20)) (-4254 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ (-546)) NIL) (($ (-546) |#1|) 19)))
+(((-322 |#1|) (-13 (-21) (-713 (-546)) (-323 |#1| (-546)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -322))
+NIL
+(-13 (-21) (-713 (-546)) (-323 |#1| (-546)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4188 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))) $) 27)) (-1397 (((-3 $ "failed") $ $) 19)) (-3528 (((-767) $) 28)) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| "failed") $) 32)) (-3564 ((|#1| $) 33)) (-2819 ((|#1| $ (-546)) 25)) (-1754 ((|#2| $ (-546)) 26)) (-2417 (($ (-1 |#1| |#1|) $) 22)) (-1753 (($ (-1 |#2| |#2|) $) 23)) (-3650 (((-1151) $) 9)) (-1752 (($ $ $) 21 (|has| |#2| (-788)))) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ |#1|) 31)) (-4092 ((|#2| |#1| $) 24)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ |#2| |#1|) 29)))
+(((-323 |#1| |#2|) (-140) (-1094) (-131)) (T -323))
+((-4254 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-767)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4)))))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-4092 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-1753 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-2417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-788)))))
+(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -4254 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3528 ((-767) $)) (-15 -4188 ((-637 (-2 (|:| |gen| |t#1|) (|:| -4358 |t#2|))) $)) (-15 -1754 (|t#2| $ (-546))) (-15 -2819 (|t#1| $ (-546))) (-15 -4092 (|t#2| |t#1| $)) (-15 -1753 ($ (-1 |t#2| |t#2|) $)) (-15 -2417 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -1752 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-1034 |#1|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4188 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767) $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-2819 ((|#1| $ (-546)) NIL)) (-1754 (((-767) $ (-546)) NIL)) (-2417 (($ (-1 |#1| |#1|) $) NIL)) (-1753 (($ (-1 (-767) (-767)) $) NIL)) (-3650 (((-1151) $) NIL)) (-1752 (($ $ $) NIL (|has| (-767) (-788)))) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ |#1|) NIL)) (-4092 (((-767) |#1| $) NIL)) (-3047 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL)))
+(((-324 |#1|) (-323 |#1| (-767)) (-1094)) (T -324))
NIL
(-323 |#1| (-767))
-((-4151 (($ $) 51)) (-2159 (($ $ |#2| |#3| $) 14)) (-2170 (($ (-1 |#3| |#3|) $) 33)) (-2695 (((-112) $) 24)) (-2705 ((|#2| $) 26)) (-3012 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3885 ((|#2| $) 47)) (-3955 (((-640 |#2|) $) 36)) (-2148 (($ $ $ (-767)) 20)) (-1836 (($ $ |#2|) 40)))
-(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -4151 (|#1| |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2148 (|#1| |#1| |#1| (-767))) (-15 -2159 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3955 ((-640 |#2|) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2695 ((-112) |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1836 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325))
+((-3909 (($ $) 51)) (-1756 (($ $ |#2| |#3| $) 14)) (-1757 (($ (-1 |#3| |#3|) $) 33)) (-1951 (((-112) $) 24)) (-1950 ((|#2| $) 26)) (-3872 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3206 ((|#2| $) 47)) (-4232 (((-637 |#2|) $) 36)) (-1755 (($ $ $ (-767)) 20)) (-4364 (($ $ |#2|) 40)))
+(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1755 (|#1| |#1| |#1| (-767))) (-15 -1756 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1757 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4232 ((-637 |#2|) |#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1951 ((-112) |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4364 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325))
NIL
-(-10 -8 (-15 -4151 (|#1| |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2148 (|#1| |#1| |#1| (-767))) (-15 -2159 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3955 ((-640 |#2|) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2695 ((-112) |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1836 (|#1| |#1| |#2|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 91 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 89 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 86)) (-2057 (((-563) $) 90 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 88 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 87)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-4151 (($ $) 75 (|has| |#1| (-452)))) (-2159 (($ $ |#1| |#2| $) 79)) (-3401 (((-112) $) 31)) (-3481 (((-767) $) 82)) (-3805 (((-112) $) 65)) (-2587 (($ |#1| |#2|) 64)) (-3908 ((|#2| $) 81)) (-2170 (($ (-1 |#2| |#2|) $) 80)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 85)) (-2705 ((|#1| $) 84)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-555)))) (-3871 ((|#2| $) 67)) (-3885 ((|#1| $) 76 (|has| |#1| (-452)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50) (($ (-407 (-563))) 60 (-4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-3955 (((-640 |#1|) $) 83)) (-3244 ((|#1| $ |#2|) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-2148 (($ $ $ (-767)) 78 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
+(-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1755 (|#1| |#1| |#1| (-767))) (-15 -1756 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1757 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4232 ((-637 |#2|) |#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1951 ((-112) |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4364 (|#1| |#1| |#2|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 91 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 89 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 86)) (-3564 (((-546) $) 90 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 88 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 87)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-3909 (($ $) 75 (|has| |#1| (-452)))) (-1756 (($ $ |#1| |#2| $) 79)) (-2552 (((-112) $) 31)) (-2560 (((-767) $) 82)) (-4352 (((-112) $) 65)) (-3283 (($ |#1| |#2|) 64)) (-3209 ((|#2| $) 81)) (-1757 (($ (-1 |#2| |#2|) $) 80)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 85)) (-1950 ((|#1| $) 84)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-4363 ((|#2| $) 67)) (-3206 ((|#1| $) 76 (|has| |#1| (-452)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-546))) 60 (-3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))))) (-4232 (((-637 |#1|) $) 83)) (-4092 ((|#1| $ |#2|) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-1755 (($ $ $ (-767)) 78 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
(((-326 |#1| |#2|) (-140) (-1045) (-788)) (T -326))
-((-2695 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-640 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-2159 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2148 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-3012 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-555)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452)))))
-(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -2695 ((-112) $)) (-15 -2705 (|t#1| $)) (-15 -3955 ((-640 |t#1|) $)) (-15 -3481 ((-767) $)) (-15 -3908 (|t#2| $)) (-15 -2170 ($ (-1 |t#2| |t#2|) $)) (-15 -2159 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2148 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-555)) (-15 -3012 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3885 (|t#1| $)) (-15 -4151 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-411 |#1|) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1878 (((-112) (-112)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) NIL)) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-1093)))) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-1889 (($ $ (-563)) NIL)) (-1900 (((-767) $) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4265 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3867 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1910 (($ (-640 |#1|)) NIL)) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3690 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-1941 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1910 ($ (-640 |#1|))) (-15 -1900 ((-767) $)) (-15 -1889 ($ $ (-563))) (-15 -1878 ((-112) (-112))))) (-1208)) (T -327))
-((-1910 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-1889 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1910 ($ (-640 |#1|))) (-15 -1900 ((-767) $)) (-15 -1889 ($ $ (-563))) (-15 -1878 ((-112) (-112)))))
-((-3761 (((-112) $) 42)) (-3728 (((-767)) 22)) (-1731 ((|#2| $) 46) (($ $ (-917)) 100)) (-3750 (((-767)) 101)) (-3458 (($ (-1257 |#2|)) 20)) (-4002 (((-112) $) 114)) (-3975 ((|#2| $) 48) (($ $ (-917)) 98)) (-4035 (((-1165 |#2|) $) NIL) (((-1165 $) $ (-917)) 94)) (-2196 (((-1165 |#2|) $) 82)) (-2184 (((-1165 |#2|) $) 79) (((-3 (-1165 |#2|) "failed") $ $) 76)) (-2207 (($ $ (-1165 |#2|)) 53)) (-3740 (((-829 (-917))) 28) (((-917)) 43)) (-3526 (((-134)) 25)) (-3871 (((-829 (-917)) $) 30) (((-917) $) 116)) (-2220 (($) 107)) (-3759 (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $)) 39)) (-2047 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3772 (((-112) $) 41)))
-(((-328 |#1| |#2|) (-10 -8 (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-767))) (-15 -2047 (|#1| |#1|)) (-15 -2184 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -2184 ((-1165 |#2|) |#1|)) (-15 -2196 ((-1165 |#2|) |#1|)) (-15 -2207 (|#1| |#1| (-1165 |#2|))) (-15 -4002 ((-112) |#1|)) (-15 -2220 (|#1|)) (-15 -1731 (|#1| |#1| (-917))) (-15 -3975 (|#1| |#1| (-917))) (-15 -4035 ((-1165 |#1|) |#1| (-917))) (-15 -1731 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3871 ((-917) |#1|)) (-15 -3740 ((-917))) (-15 -4035 ((-1165 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -3728 ((-767))) (-15 -3740 ((-829 (-917)))) (-15 -3871 ((-829 (-917)) |#1|)) (-15 -3761 ((-112) |#1|)) (-15 -3772 ((-112) |#1|)) (-15 -3526 ((-134)))) (-329 |#2|) (-363)) (T -328))
-((-3526 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3740 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3728 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3740 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3750 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
-(-10 -8 (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-767))) (-15 -2047 (|#1| |#1|)) (-15 -2184 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -2184 ((-1165 |#2|) |#1|)) (-15 -2196 ((-1165 |#2|) |#1|)) (-15 -2207 (|#1| |#1| (-1165 |#2|))) (-15 -4002 ((-112) |#1|)) (-15 -2220 (|#1|)) (-15 -1731 (|#1| |#1| (-917))) (-15 -3975 (|#1| |#1| (-917))) (-15 -4035 ((-1165 |#1|) |#1| (-917))) (-15 -1731 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3871 ((-917) |#1|)) (-15 -3740 ((-917))) (-15 -4035 ((-1165 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -3728 ((-767))) (-15 -3740 ((-829 (-917)))) (-15 -3871 ((-829 (-917)) |#1|)) (-15 -3761 ((-112) |#1|)) (-15 -3772 ((-112) |#1|)) (-15 -3526 ((-134))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3761 (((-112) $) 95)) (-3728 (((-767)) 91)) (-1731 ((|#1| $) 141) (($ $ (-917)) 138 (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) 123 (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2003 (((-112) $ $) 60)) (-3750 (((-767)) 113 (|has| |#1| (-368)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 102)) (-2057 ((|#1| $) 103)) (-3458 (($ (-1257 |#1|)) 147)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1690 (($) 110 (|has| |#1| (-368)))) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-4036 (($) 125 (|has| |#1| (-368)))) (-1656 (((-112) $) 126 (|has| |#1| (-368)))) (-3188 (($ $ (-767)) 88 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) 72)) (-1775 (((-917) $) 128 (|has| |#1| (-368))) (((-829 (-917)) $) 85 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) 31)) (-4024 (($) 136 (|has| |#1| (-368)))) (-4002 (((-112) $) 135 (|has| |#1| (-368)))) (-3975 ((|#1| $) 142) (($ $ (-917)) 139 (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-4035 (((-1165 |#1|) $) 146) (((-1165 $) $ (-917)) 140 (|has| |#1| (-368)))) (-3990 (((-917) $) 111 (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) 132 (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) 133 (|has| |#1| (-368)))) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-2522 (($) 115 (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) 112 (|has| |#1| (-368)))) (-3751 (((-112) $) 94)) (-1693 (((-1113) $) 10)) (-4334 (($) 134 (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 122 (|has| |#1| (-368)))) (-2173 (((-418 $) $) 75)) (-3740 (((-829 (-917))) 92) (((-917)) 144)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3196 (((-767) $) 127 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 86 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) 100)) (-4203 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) 93) (((-917) $) 143)) (-3402 (((-1165 |#1|)) 145)) (-1586 (($) 124 (|has| |#1| (-368)))) (-2220 (($) 137 (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) 149) (((-684 |#1|) (-1257 $)) 148)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 121 (|has| |#1| (-368)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-2047 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) 28)) (-4013 (((-1257 $)) 151) (((-1257 $) (-917)) 150)) (-3223 (((-112) $ $) 40)) (-3772 (((-112) $) 96)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3715 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-3213 (($ $) 118 (|has| |#1| (-368))) (($ $ (-767)) 116 (|has| |#1| (-368)))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66) (($ $ |#1|) 99)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+((-1951 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-637 *3)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1757 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-1756 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-1755 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-3872 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-556)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-3909 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452)))))
+(-13 (-47 |t#1| |t#2|) (-412 |t#1|) (-10 -8 (-15 -1951 ((-112) $)) (-15 -1950 (|t#1| $)) (-15 -4232 ((-637 |t#1|) $)) (-15 -2560 ((-767) $)) (-15 -3209 (|t#2| $)) (-15 -1757 ($ (-1 |t#2| |t#2|) $)) (-15 -1756 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -1755 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -3872 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3206 (|t#1| $)) (-15 -3909 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-412 |#1|) . T) ((-556) |has| |#1| (-556)) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-2142 (((-112) (-112)) NIL)) (-4202 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) NIL)) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-2505 (($ $) NIL (|has| |#1| (-1094)))) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2143 (($ $ (-546)) NIL)) (-2144 (((-767) $) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3248 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4022 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2145 (($ (-637 |#1|)) NIL)) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-1667 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4205 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2145 ($ (-637 |#1|))) (-15 -2144 ((-767) $)) (-15 -2143 ($ $ (-546))) (-15 -2142 ((-112) (-112))))) (-1207)) (T -327))
+((-2145 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-327 *3)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1207)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-327 *3)) (-4 *3 (-1207)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1207)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2145 ($ (-637 |#1|))) (-15 -2144 ((-767) $)) (-15 -2143 ($ $ (-546))) (-15 -2142 ((-112) (-112)))))
+((-4347 (((-112) $) 42)) (-4344 (((-767)) 22)) (-3741 ((|#2| $) 46) (($ $ (-915)) 100)) (-3528 (((-767)) 101)) (-1946 (($ (-1256 |#2|)) 20)) (-2168 (((-112) $) 114)) (-3524 ((|#2| $) 48) (($ $ (-915)) 98)) (-2171 (((-1163 |#2|) $) NIL) (((-1163 $) $ (-915)) 94)) (-1759 (((-1163 |#2|) $) 82)) (-1758 (((-1163 |#2|) $) 79) (((-3 (-1163 |#2|) "failed") $ $) 76)) (-1760 (($ $ (-1163 |#2|)) 53)) (-4345 (((-828 (-915))) 28) (((-915)) 43)) (-4326 (((-134)) 25)) (-4363 (((-828 (-915)) $) 30) (((-915) $) 116)) (-1761 (($) 107)) (-3632 (((-1256 |#2|) $) NIL) (((-684 |#2|) (-1256 $)) 39)) (-3091 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4348 (((-112) $) 41)))
+(((-328 |#1| |#2|) (-10 -8 (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3528 ((-767))) (-15 -3091 (|#1| |#1|)) (-15 -1758 ((-3 (-1163 |#2|) "failed") |#1| |#1|)) (-15 -1758 ((-1163 |#2|) |#1|)) (-15 -1759 ((-1163 |#2|) |#1|)) (-15 -1760 (|#1| |#1| (-1163 |#2|))) (-15 -2168 ((-112) |#1|)) (-15 -1761 (|#1|)) (-15 -3741 (|#1| |#1| (-915))) (-15 -3524 (|#1| |#1| (-915))) (-15 -2171 ((-1163 |#1|) |#1| (-915))) (-15 -3741 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -4363 ((-915) |#1|)) (-15 -4345 ((-915))) (-15 -2171 ((-1163 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -4344 ((-767))) (-15 -4345 ((-828 (-915)))) (-15 -4363 ((-828 (-915)) |#1|)) (-15 -4347 ((-112) |#1|)) (-15 -4348 ((-112) |#1|)) (-15 -4326 ((-134)))) (-329 |#2|) (-363)) (T -328))
+((-4326 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4345 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-828 (-915))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4344 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4345 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-915)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3528 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
+(-10 -8 (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3528 ((-767))) (-15 -3091 (|#1| |#1|)) (-15 -1758 ((-3 (-1163 |#2|) "failed") |#1| |#1|)) (-15 -1758 ((-1163 |#2|) |#1|)) (-15 -1759 ((-1163 |#2|) |#1|)) (-15 -1760 (|#1| |#1| (-1163 |#2|))) (-15 -2168 ((-112) |#1|)) (-15 -1761 (|#1|)) (-15 -3741 (|#1| |#1| (-915))) (-15 -3524 (|#1| |#1| (-915))) (-15 -2171 ((-1163 |#1|) |#1| (-915))) (-15 -3741 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -4363 ((-915) |#1|)) (-15 -4345 ((-915))) (-15 -2171 ((-1163 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -4344 ((-767))) (-15 -4345 ((-828 (-915)))) (-15 -4363 ((-828 (-915)) |#1|)) (-15 -4347 ((-112) |#1|)) (-15 -4348 ((-112) |#1|)) (-15 -4326 ((-134))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-4347 (((-112) $) 95)) (-4344 (((-767)) 91)) (-3741 ((|#1| $) 141) (($ $ (-915)) 138 (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) 123 (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-1740 (((-112) $ $) 60)) (-3528 (((-767)) 113 (|has| |#1| (-368)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| "failed") $) 102)) (-3564 ((|#1| $) 103)) (-1946 (($ (-1256 |#1|)) 147)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-3384 (($) 110 (|has| |#1| (-368)))) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-3222 (($) 125 (|has| |#1| (-368)))) (-1831 (((-112) $) 126 (|has| |#1| (-368)))) (-1921 (($ $ (-767)) 88 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) 72)) (-4186 (((-915) $) 128 (|has| |#1| (-368))) (((-828 (-915)) $) 85 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) 31)) (-2170 (($) 136 (|has| |#1| (-368)))) (-2168 (((-112) $) 135 (|has| |#1| (-368)))) (-3524 ((|#1| $) 142) (($ $ (-915)) 139 (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2171 (((-1163 |#1|) $) 146) (((-1163 $) $ (-915)) 140 (|has| |#1| (-368)))) (-2167 (((-915) $) 111 (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) 132 (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) 133 (|has| |#1| (-368)))) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3856 (($) 115 (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) 112 (|has| |#1| (-368)))) (-4346 (((-112) $) 94)) (-3651 (((-1113) $) 10)) (-2551 (($) 134 (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 122 (|has| |#1| (-368)))) (-4147 (((-405 $) $) 75)) (-4345 (((-828 (-915))) 92) (((-915)) 144)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-1922 (((-767) $) 127 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 86 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) 100)) (-4225 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) 93) (((-915) $) 143)) (-3593 (((-1163 |#1|)) 145)) (-1825 (($) 124 (|has| |#1| (-368)))) (-1761 (($) 137 (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) 149) (((-684 |#1|) (-1256 $)) 148)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 121 (|has| |#1| (-368)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ |#1|) 101)) (-3091 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) 28)) (-2169 (((-1256 $)) 151) (((-1256 $) (-915)) 150)) (-2219 (((-112) $ $) 40)) (-4348 (((-112) $) 96)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-4343 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-3058 (($ $) 118 (|has| |#1| (-368))) (($ $ (-767)) 116 (|has| |#1| (-368)))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66) (($ $ |#1|) 99)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
(((-329 |#1|) (-140) (-363)) (T -329))
-((-4013 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *4)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-3402 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-3740 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1)) (-4 *1 (-329 *4)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1731 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-2220 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4024 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-4334 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-2184 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))))
-(-13 (-1276 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -4013 ((-1257 $))) (-15 -4013 ((-1257 $) (-917))) (-15 -3759 ((-1257 |t#1|) $)) (-15 -3759 ((-684 |t#1|) (-1257 $))) (-15 -3458 ($ (-1257 |t#1|))) (-15 -4035 ((-1165 |t#1|) $)) (-15 -3402 ((-1165 |t#1|))) (-15 -3740 ((-917))) (-15 -3871 ((-917) $)) (-15 -3975 (|t#1| $)) (-15 -1731 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -4035 ((-1165 $) $ (-917))) (-15 -3975 ($ $ (-917))) (-15 -1731 ($ $ (-917))) (-15 -2220 ($)) (-15 -4024 ($)) (-15 -4002 ((-112) $)) (-15 -4334 ($)) (-15 -2207 ($ $ (-1165 |t#1|))) (-15 -2196 ((-1165 |t#1|) $)) (-15 -2184 ((-1165 |t#1|) $)) (-15 -2184 ((-3 (-1165 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4034 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1276 |#1|) . T) ((-363) . T) ((-402) -4034 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-368)) ((-1212) . T) ((-1264 |#1|) . T))
-((-1677 (((-112) $ $) NIL)) (-2325 (($ (-1168) $) 87)) (-2064 (($) 76)) (-2234 (((-1113) (-1113)) 9)) (-3819 (($) 77)) (-2293 (($) 89) (($ (-316 (-694))) 97) (($ (-316 (-696))) 93) (($ (-316 (-689))) 101) (($ (-316 (-379))) 108) (($ (-316 (-563))) 104) (($ (-316 (-169 (-379)))) 112)) (-2315 (($ (-1168) $) 88)) (-2271 (($ (-640 (-858))) 78)) (-2261 (((-1262) $) 74)) (-2744 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2304 (($ (-1113)) 50)) (-2250 (((-1097) $) 24)) (-2334 (($ (-1085 (-948 (-563))) $) 84) (($ (-1085 (-948 (-563))) (-948 (-563)) $) 85)) (-2097 (($ (-1113)) 86)) (-3043 (($ (-1168) $) 114) (($ (-1168) $ $) 115)) (-4255 (($ (-1169) (-640 (-1169))) 75)) (-1408 (($ (-1151)) 81) (($ (-640 (-1151))) 79)) (-1692 (((-858) $) 117)) (-2409 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1665 (-112)) (|:| -2618 (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -4166 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3363 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3363 $))) (|:| |commonBranch| (-2 (|:| -3352 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $) 43)) (-3838 (($ (-1151)) 186)) (-2281 (($ (-640 $)) 113)) (-3351 (($ (-1169) (-1151)) 119) (($ (-1169) (-316 (-696))) 159) (($ (-1169) (-316 (-694))) 160) (($ (-1169) (-316 (-689))) 161) (($ (-1169) (-684 (-696))) 122) (($ (-1169) (-684 (-694))) 125) (($ (-1169) (-684 (-689))) 128) (($ (-1169) (-1257 (-696))) 131) (($ (-1169) (-1257 (-694))) 134) (($ (-1169) (-1257 (-689))) 137) (($ (-1169) (-684 (-316 (-696)))) 140) (($ (-1169) (-684 (-316 (-694)))) 143) (($ (-1169) (-684 (-316 (-689)))) 146) (($ (-1169) (-1257 (-316 (-696)))) 149) (($ (-1169) (-1257 (-316 (-694)))) 152) (($ (-1169) (-1257 (-316 (-689)))) 155) (($ (-1169) (-640 (-948 (-563))) (-316 (-696))) 156) (($ (-1169) (-640 (-948 (-563))) (-316 (-694))) 157) (($ (-1169) (-640 (-948 (-563))) (-316 (-689))) 158) (($ (-1169) (-316 (-563))) 183) (($ (-1169) (-316 (-379))) 184) (($ (-1169) (-316 (-169 (-379)))) 185) (($ (-1169) (-684 (-316 (-563)))) 164) (($ (-1169) (-684 (-316 (-379)))) 167) (($ (-1169) (-684 (-316 (-169 (-379))))) 170) (($ (-1169) (-1257 (-316 (-563)))) 173) (($ (-1169) (-1257 (-316 (-379)))) 176) (($ (-1169) (-1257 (-316 (-169 (-379))))) 179) (($ (-1169) (-640 (-948 (-563))) (-316 (-563))) 180) (($ (-1169) (-640 (-948 (-563))) (-316 (-379))) 181) (($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379)))) 182)) (-1718 (((-112) $ $) NIL)))
-(((-330) (-13 (-1093) (-10 -8 (-15 -2334 ($ (-1085 (-948 (-563))) $)) (-15 -2334 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -2325 ($ (-1168) $)) (-15 -2315 ($ (-1168) $)) (-15 -2304 ($ (-1113))) (-15 -2097 ($ (-1113))) (-15 -1408 ($ (-1151))) (-15 -1408 ($ (-640 (-1151)))) (-15 -3838 ($ (-1151))) (-15 -2293 ($)) (-15 -2293 ($ (-316 (-694)))) (-15 -2293 ($ (-316 (-696)))) (-15 -2293 ($ (-316 (-689)))) (-15 -2293 ($ (-316 (-379)))) (-15 -2293 ($ (-316 (-563)))) (-15 -2293 ($ (-316 (-169 (-379))))) (-15 -3043 ($ (-1168) $)) (-15 -3043 ($ (-1168) $ $)) (-15 -3351 ($ (-1169) (-1151))) (-15 -3351 ($ (-1169) (-316 (-696)))) (-15 -3351 ($ (-1169) (-316 (-694)))) (-15 -3351 ($ (-1169) (-316 (-689)))) (-15 -3351 ($ (-1169) (-684 (-696)))) (-15 -3351 ($ (-1169) (-684 (-694)))) (-15 -3351 ($ (-1169) (-684 (-689)))) (-15 -3351 ($ (-1169) (-1257 (-696)))) (-15 -3351 ($ (-1169) (-1257 (-694)))) (-15 -3351 ($ (-1169) (-1257 (-689)))) (-15 -3351 ($ (-1169) (-684 (-316 (-696))))) (-15 -3351 ($ (-1169) (-684 (-316 (-694))))) (-15 -3351 ($ (-1169) (-684 (-316 (-689))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-696))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-694))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-689))))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -3351 ($ (-1169) (-316 (-563)))) (-15 -3351 ($ (-1169) (-316 (-379)))) (-15 -3351 ($ (-1169) (-316 (-169 (-379))))) (-15 -3351 ($ (-1169) (-684 (-316 (-563))))) (-15 -3351 ($ (-1169) (-684 (-316 (-379))))) (-15 -3351 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-563))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-379))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -2281 ($ (-640 $))) (-15 -2064 ($)) (-15 -3819 ($)) (-15 -2271 ($ (-640 (-858)))) (-15 -4255 ($ (-1169) (-640 (-1169)))) (-15 -2744 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2409 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1665 (-112)) (|:| -2618 (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -4166 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3363 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3363 $))) (|:| |commonBranch| (-2 (|:| -3352 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -2261 ((-1262) $)) (-15 -2250 ((-1097) $)) (-15 -2234 ((-1113) (-1113)))))) (T -330))
-((-2334 (*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330)))) (-2334 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563))) (-5 *1 (-330)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-2315 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-2304 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-2293 (*1 *1) (-5 *1 (-330))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3043 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-3043 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-696))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-694))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-689))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-563))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-3351 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330)))) (-2064 (*1 *1) (-5 *1 (-330))) (-3819 (*1 *1) (-5 *1 (-330))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -1665 (-112)) (|:| -2618 (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |blockBranch| (-640 (-330))) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -4166 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3363 (-330)))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3363 (-330)))) (|:| |commonBranch| (-2 (|:| -3352 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858))))) (-5 *1 (-330)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
-(-13 (-1093) (-10 -8 (-15 -2334 ($ (-1085 (-948 (-563))) $)) (-15 -2334 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -2325 ($ (-1168) $)) (-15 -2315 ($ (-1168) $)) (-15 -2304 ($ (-1113))) (-15 -2097 ($ (-1113))) (-15 -1408 ($ (-1151))) (-15 -1408 ($ (-640 (-1151)))) (-15 -3838 ($ (-1151))) (-15 -2293 ($)) (-15 -2293 ($ (-316 (-694)))) (-15 -2293 ($ (-316 (-696)))) (-15 -2293 ($ (-316 (-689)))) (-15 -2293 ($ (-316 (-379)))) (-15 -2293 ($ (-316 (-563)))) (-15 -2293 ($ (-316 (-169 (-379))))) (-15 -3043 ($ (-1168) $)) (-15 -3043 ($ (-1168) $ $)) (-15 -3351 ($ (-1169) (-1151))) (-15 -3351 ($ (-1169) (-316 (-696)))) (-15 -3351 ($ (-1169) (-316 (-694)))) (-15 -3351 ($ (-1169) (-316 (-689)))) (-15 -3351 ($ (-1169) (-684 (-696)))) (-15 -3351 ($ (-1169) (-684 (-694)))) (-15 -3351 ($ (-1169) (-684 (-689)))) (-15 -3351 ($ (-1169) (-1257 (-696)))) (-15 -3351 ($ (-1169) (-1257 (-694)))) (-15 -3351 ($ (-1169) (-1257 (-689)))) (-15 -3351 ($ (-1169) (-684 (-316 (-696))))) (-15 -3351 ($ (-1169) (-684 (-316 (-694))))) (-15 -3351 ($ (-1169) (-684 (-316 (-689))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-696))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-694))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-689))))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -3351 ($ (-1169) (-316 (-563)))) (-15 -3351 ($ (-1169) (-316 (-379)))) (-15 -3351 ($ (-1169) (-316 (-169 (-379))))) (-15 -3351 ($ (-1169) (-684 (-316 (-563))))) (-15 -3351 ($ (-1169) (-684 (-316 (-379))))) (-15 -3351 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-563))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-379))))) (-15 -3351 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -3351 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -2281 ($ (-640 $))) (-15 -2064 ($)) (-15 -3819 ($)) (-15 -2271 ($ (-640 (-858)))) (-15 -4255 ($ (-1169) (-640 (-1169)))) (-15 -2744 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2409 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1665 (-112)) (|:| -2618 (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -4166 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3363 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3363 $))) (|:| |commonBranch| (-2 (|:| -3352 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -2261 ((-1262) $)) (-15 -2250 ((-1097) $)) (-15 -2234 ((-1113) (-1113)))))
-((-1677 (((-112) $ $) NIL)) (-2345 (((-112) $) 11)) (-1596 (($ |#1|) 8)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1607 (($ |#1|) 9)) (-1692 (((-858) $) 17)) (-2326 ((|#1| $) 12)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 19)))
-(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -1596 ($ |#1|)) (-15 -1607 ($ |#1|)) (-15 -2345 ((-112) $)) (-15 -2326 (|#1| $)))) (-846)) (T -331))
-((-1596 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-1607 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-2326 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))))
-(-13 (-846) (-10 -8 (-15 -1596 ($ |#1|)) (-15 -1607 ($ |#1|)) (-15 -2345 ((-112) $)) (-15 -2326 (|#1| $))))
-((-2356 (((-330) (-1169) (-948 (-563))) 23)) (-2365 (((-330) (-1169) (-948 (-563))) 27)) (-1907 (((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563)))) 26) (((-330) (-1169) (-948 (-563)) (-948 (-563))) 24)) (-2375 (((-330) (-1169) (-948 (-563))) 31)))
-(((-332) (-10 -7 (-15 -2356 ((-330) (-1169) (-948 (-563)))) (-15 -1907 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -1907 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -2365 ((-330) (-1169) (-948 (-563)))) (-15 -2375 ((-330) (-1169) (-948 (-563)))))) (T -332))
-((-2375 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))))
-(-10 -7 (-15 -2356 ((-330) (-1169) (-948 (-563)))) (-15 -1907 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -1907 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -2365 ((-330) (-1169) (-948 (-563)))) (-15 -2375 ((-330) (-1169) (-948 (-563)))))
-((-2238 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33)))
-(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2238 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
-(-10 -7 (-15 -2238 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|))))
-((-2410 (((-112) $) 14)))
-(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2410 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334))
-NIL
-(-10 -8 (-15 -2410 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2444 (($ $) 26)) (-2410 (((-112) $) 25)) (-3854 (((-1151) $) 9)) (-1716 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-1693 (((-1113) $) 10)) (-4334 (((-3 |#4| "failed") $) 24)) (-2421 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-563)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1913 (((-2 (|:| -1526 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20)))
-(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1233 |t#1|) (-1233 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335))
-((-1716 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-2421 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-2421 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-2421 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -1526 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-4334 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-2421 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1716 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -2421 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -2421 ($ |t#4|)) (-15 -2421 ($ |t#1| |t#1|)) (-15 -2421 ($ |t#1| |t#1| (-563))) (-15 -1913 ((-2 (|:| -1526 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2444 ($ $)) (-15 -2410 ((-112) $)) (-15 -4334 ((-3 |t#4| "failed") $)) (-15 -2421 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2444 (($ $) 33)) (-2410 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-2388 (((-1257 |#4|) $) 125)) (-1716 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-1693 (((-1113) $) NIL)) (-4334 (((-3 |#4| "failed") $) 36)) (-2398 (((-1257 |#4|) $) 118)) (-2421 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-563)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1913 (((-2 (|:| -1526 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1692 (((-858) $) 17)) (-2239 (($) 14 T CONST)) (-1718 (((-112) $ $) 20)) (-1825 (($ $) 27) (($ $ $) NIL)) (-1813 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 23)))
-(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2398 ((-1257 |#4|) $)) (-15 -2388 ((-1257 |#4|) $)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336))
-((-2398 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-2388 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
-(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2398 ((-1257 |#4|) $)) (-15 -2388 ((-1257 |#4|) $))))
-((-1542 (($ $ (-1169) |#2|) NIL) (($ $ (-640 (-1169)) (-640 |#2|)) 20) (($ $ (-640 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-2308 (($ $ |#2|) 11)))
-(((-337 |#1| |#2|) (-10 -8 (-15 -2308 (|#1| |#1| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1542 (|#1| |#1| (-1169) |#2|))) (-338 |#2|) (-1093)) (T -337))
-NIL
-(-10 -8 (-15 -2308 (|#1| |#1| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1542 (|#1| |#1| (-1169) |#2|)))
-((-2238 (($ (-1 |#1| |#1|) $) 6)) (-1542 (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 16 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-640 |#1|) (-640 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-2308 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
-(((-338 |#1|) (-140) (-1093)) (T -338))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093)))))
-(-13 (-10 -8 (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1169) |t#1|)) (-6 (-514 (-1169) |t#1|)) |%noBranch|)))
+((-2169 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1256 *1)) (-4 *1 (-329 *3)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-915)) (-4 *4 (-363)) (-5 *2 (-1256 *1)) (-4 *1 (-329 *4)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1256 *3)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1163 *3)))) (-3593 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1163 *3)))) (-4345 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-915)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-915)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2171 (*1 *2 *1 *3) (-12 (-5 *3 (-915)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1163 *1)) (-4 *1 (-329 *4)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1761 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2170 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-2551 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1760 (*1 *1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1163 *3)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1163 *3)))) (-1758 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1163 *3)))))
+(-13 (-1275 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -2169 ((-1256 $))) (-15 -2169 ((-1256 $) (-915))) (-15 -3632 ((-1256 |t#1|) $)) (-15 -3632 ((-684 |t#1|) (-1256 $))) (-15 -1946 ($ (-1256 |t#1|))) (-15 -2171 ((-1163 |t#1|) $)) (-15 -3593 ((-1163 |t#1|))) (-15 -4345 ((-915))) (-15 -4363 ((-915) $)) (-15 -3524 (|t#1| $)) (-15 -3741 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-350)) (-15 -2171 ((-1163 $) $ (-915))) (-15 -3524 ($ $ (-915))) (-15 -3741 ($ $ (-915))) (-15 -1761 ($)) (-15 -2170 ($)) (-15 -2168 ((-112) $)) (-15 -2551 ($)) (-15 -1760 ($ $ (-1163 |t#1|))) (-15 -1759 ((-1163 |t#1|) $)) (-15 -1758 ((-1163 |t#1|) $)) (-15 -1758 ((-3 (-1163 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3943 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1275 |#1|) . T) ((-363) . T) ((-402) -3943 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-350) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1034 |#1|) . T) ((-1051 #1#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| |#1| (-368)) ((-1212) . T) ((-1264 |#1|) . T))
+((-2953 (((-112) $ $) NIL)) (-1779 (($ (-1168) $) 87)) (-1770 (($) 76)) (-1762 (((-1113) (-1113)) 9)) (-1769 (($) 77)) (-1773 (($) 89) (($ (-314 (-694))) 97) (($ (-314 (-696))) 93) (($ (-314 (-689))) 101) (($ (-314 (-378))) 108) (($ (-314 (-546))) 104) (($ (-314 (-168 (-378)))) 112)) (-1778 (($ (-1168) $) 88)) (-1768 (($ (-637 (-859))) 78)) (-1764 (((-1262) $) 74)) (-1766 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1777 (($ (-1113)) 50)) (-1763 (((-1096) $) 24)) (-1780 (($ (-1085 (-942 (-546))) $) 84) (($ (-1085 (-942 (-546))) (-942 (-546)) $) 85)) (-1776 (($ (-1113)) 86)) (-1772 (($ (-1168) $) 114) (($ (-1168) $ $) 115)) (-1767 (($ (-1169) (-637 (-1169))) 75)) (-1775 (($ (-1151)) 81) (($ (-637 (-1151))) 79)) (-4361 (((-859) $) 117)) (-1765 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-637 (-942 (-546)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3814 (-112)) (|:| -3813 (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |blockBranch| (-637 $)) (|:| |commentBranch| (-637 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -1596 (-1085 (-942 (-546)))) (|:| |span| (-942 (-546))) (|:| -3641 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3641 $))) (|:| |commonBranch| (-2 (|:| -3956 (-1169)) (|:| |contents| (-637 (-1169))))) (|:| |printBranch| (-637 (-859)))) $) 43)) (-1774 (($ (-1151)) 186)) (-1771 (($ (-637 $)) 113)) (-2971 (($ (-1169) (-1151)) 119) (($ (-1169) (-314 (-696))) 159) (($ (-1169) (-314 (-694))) 160) (($ (-1169) (-314 (-689))) 161) (($ (-1169) (-684 (-696))) 122) (($ (-1169) (-684 (-694))) 125) (($ (-1169) (-684 (-689))) 128) (($ (-1169) (-1256 (-696))) 131) (($ (-1169) (-1256 (-694))) 134) (($ (-1169) (-1256 (-689))) 137) (($ (-1169) (-684 (-314 (-696)))) 140) (($ (-1169) (-684 (-314 (-694)))) 143) (($ (-1169) (-684 (-314 (-689)))) 146) (($ (-1169) (-1256 (-314 (-696)))) 149) (($ (-1169) (-1256 (-314 (-694)))) 152) (($ (-1169) (-1256 (-314 (-689)))) 155) (($ (-1169) (-637 (-942 (-546))) (-314 (-696))) 156) (($ (-1169) (-637 (-942 (-546))) (-314 (-694))) 157) (($ (-1169) (-637 (-942 (-546))) (-314 (-689))) 158) (($ (-1169) (-314 (-546))) 183) (($ (-1169) (-314 (-378))) 184) (($ (-1169) (-314 (-168 (-378)))) 185) (($ (-1169) (-684 (-314 (-546)))) 164) (($ (-1169) (-684 (-314 (-378)))) 167) (($ (-1169) (-684 (-314 (-168 (-378))))) 170) (($ (-1169) (-1256 (-314 (-546)))) 173) (($ (-1169) (-1256 (-314 (-378)))) 176) (($ (-1169) (-1256 (-314 (-168 (-378))))) 179) (($ (-1169) (-637 (-942 (-546))) (-314 (-546))) 180) (($ (-1169) (-637 (-942 (-546))) (-314 (-378))) 181) (($ (-1169) (-637 (-942 (-546))) (-314 (-168 (-378)))) 182)) (-3444 (((-112) $ $) NIL)))
+(((-330) (-13 (-1094) (-10 -8 (-15 -1780 ($ (-1085 (-942 (-546))) $)) (-15 -1780 ($ (-1085 (-942 (-546))) (-942 (-546)) $)) (-15 -1779 ($ (-1168) $)) (-15 -1778 ($ (-1168) $)) (-15 -1777 ($ (-1113))) (-15 -1776 ($ (-1113))) (-15 -1775 ($ (-1151))) (-15 -1775 ($ (-637 (-1151)))) (-15 -1774 ($ (-1151))) (-15 -1773 ($)) (-15 -1773 ($ (-314 (-694)))) (-15 -1773 ($ (-314 (-696)))) (-15 -1773 ($ (-314 (-689)))) (-15 -1773 ($ (-314 (-378)))) (-15 -1773 ($ (-314 (-546)))) (-15 -1773 ($ (-314 (-168 (-378))))) (-15 -1772 ($ (-1168) $)) (-15 -1772 ($ (-1168) $ $)) (-15 -2971 ($ (-1169) (-1151))) (-15 -2971 ($ (-1169) (-314 (-696)))) (-15 -2971 ($ (-1169) (-314 (-694)))) (-15 -2971 ($ (-1169) (-314 (-689)))) (-15 -2971 ($ (-1169) (-684 (-696)))) (-15 -2971 ($ (-1169) (-684 (-694)))) (-15 -2971 ($ (-1169) (-684 (-689)))) (-15 -2971 ($ (-1169) (-1256 (-696)))) (-15 -2971 ($ (-1169) (-1256 (-694)))) (-15 -2971 ($ (-1169) (-1256 (-689)))) (-15 -2971 ($ (-1169) (-684 (-314 (-696))))) (-15 -2971 ($ (-1169) (-684 (-314 (-694))))) (-15 -2971 ($ (-1169) (-684 (-314 (-689))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-696))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-694))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-689))))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-696)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-694)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-689)))) (-15 -2971 ($ (-1169) (-314 (-546)))) (-15 -2971 ($ (-1169) (-314 (-378)))) (-15 -2971 ($ (-1169) (-314 (-168 (-378))))) (-15 -2971 ($ (-1169) (-684 (-314 (-546))))) (-15 -2971 ($ (-1169) (-684 (-314 (-378))))) (-15 -2971 ($ (-1169) (-684 (-314 (-168 (-378)))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-546))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-378))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-168 (-378)))))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-546)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-378)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-168 (-378))))) (-15 -1771 ($ (-637 $))) (-15 -1770 ($)) (-15 -1769 ($)) (-15 -1768 ($ (-637 (-859)))) (-15 -1767 ($ (-1169) (-637 (-1169)))) (-15 -1766 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1765 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-637 (-942 (-546)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3814 (-112)) (|:| -3813 (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |blockBranch| (-637 $)) (|:| |commentBranch| (-637 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -1596 (-1085 (-942 (-546)))) (|:| |span| (-942 (-546))) (|:| -3641 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3641 $))) (|:| |commonBranch| (-2 (|:| -3956 (-1169)) (|:| |contents| (-637 (-1169))))) (|:| |printBranch| (-637 (-859)))) $)) (-15 -1764 ((-1262) $)) (-15 -1763 ((-1096) $)) (-15 -1762 ((-1113) (-1113)))))) (T -330))
+((-1780 (*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-942 (-546)))) (-5 *1 (-330)))) (-1780 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085 (-942 (-546)))) (-5 *3 (-942 (-546))) (-5 *1 (-330)))) (-1779 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-330)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-1773 (*1 *1) (-5 *1 (-330))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-694))) (-5 *1 (-330)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-696))) (-5 *1 (-330)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-689))) (-5 *1 (-330)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-5 *1 (-330)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-5 *1 (-330)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-314 (-168 (-378)))) (-5 *1 (-330)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1772 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-696))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-694))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-689))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-696))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-694))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-689))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-696)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-694)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-689)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-696)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-694)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-689)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-696))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-694))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-689))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-546))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-378))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-168 (-378)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-546)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-378)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-168 (-378))))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-546)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-378)))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-168 (-378))))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-546))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-378))) (-5 *1 (-330)))) (-2971 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-168 (-378)))) (-5 *1 (-330)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-5 *1 (-330)))) (-1770 (*1 *1) (-5 *1 (-330))) (-1769 (*1 *1) (-5 *1 (-330))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-330)))) (-1767 (*1 *1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-637 (-942 (-546)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -3814 (-112)) (|:| -3813 (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |blockBranch| (-637 (-330))) (|:| |commentBranch| (-637 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -1596 (-1085 (-942 (-546)))) (|:| |span| (-942 (-546))) (|:| -3641 (-330)))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3641 (-330)))) (|:| |commonBranch| (-2 (|:| -3956 (-1169)) (|:| |contents| (-637 (-1169))))) (|:| |printBranch| (-637 (-859))))) (-5 *1 (-330)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-330)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
+(-13 (-1094) (-10 -8 (-15 -1780 ($ (-1085 (-942 (-546))) $)) (-15 -1780 ($ (-1085 (-942 (-546))) (-942 (-546)) $)) (-15 -1779 ($ (-1168) $)) (-15 -1778 ($ (-1168) $)) (-15 -1777 ($ (-1113))) (-15 -1776 ($ (-1113))) (-15 -1775 ($ (-1151))) (-15 -1775 ($ (-637 (-1151)))) (-15 -1774 ($ (-1151))) (-15 -1773 ($)) (-15 -1773 ($ (-314 (-694)))) (-15 -1773 ($ (-314 (-696)))) (-15 -1773 ($ (-314 (-689)))) (-15 -1773 ($ (-314 (-378)))) (-15 -1773 ($ (-314 (-546)))) (-15 -1773 ($ (-314 (-168 (-378))))) (-15 -1772 ($ (-1168) $)) (-15 -1772 ($ (-1168) $ $)) (-15 -2971 ($ (-1169) (-1151))) (-15 -2971 ($ (-1169) (-314 (-696)))) (-15 -2971 ($ (-1169) (-314 (-694)))) (-15 -2971 ($ (-1169) (-314 (-689)))) (-15 -2971 ($ (-1169) (-684 (-696)))) (-15 -2971 ($ (-1169) (-684 (-694)))) (-15 -2971 ($ (-1169) (-684 (-689)))) (-15 -2971 ($ (-1169) (-1256 (-696)))) (-15 -2971 ($ (-1169) (-1256 (-694)))) (-15 -2971 ($ (-1169) (-1256 (-689)))) (-15 -2971 ($ (-1169) (-684 (-314 (-696))))) (-15 -2971 ($ (-1169) (-684 (-314 (-694))))) (-15 -2971 ($ (-1169) (-684 (-314 (-689))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-696))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-694))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-689))))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-696)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-694)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-689)))) (-15 -2971 ($ (-1169) (-314 (-546)))) (-15 -2971 ($ (-1169) (-314 (-378)))) (-15 -2971 ($ (-1169) (-314 (-168 (-378))))) (-15 -2971 ($ (-1169) (-684 (-314 (-546))))) (-15 -2971 ($ (-1169) (-684 (-314 (-378))))) (-15 -2971 ($ (-1169) (-684 (-314 (-168 (-378)))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-546))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-378))))) (-15 -2971 ($ (-1169) (-1256 (-314 (-168 (-378)))))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-546)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-378)))) (-15 -2971 ($ (-1169) (-637 (-942 (-546))) (-314 (-168 (-378))))) (-15 -1771 ($ (-637 $))) (-15 -1770 ($)) (-15 -1769 ($)) (-15 -1768 ($ (-637 (-859)))) (-15 -1767 ($ (-1169) (-637 (-1169)))) (-15 -1766 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1765 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-637 (-942 (-546)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3814 (-112)) (|:| -3813 (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859)))))) (|:| |blockBranch| (-637 $)) (|:| |commentBranch| (-637 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -1596 (-1085 (-942 (-546)))) (|:| |span| (-942 (-546))) (|:| -3641 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3641 $))) (|:| |commonBranch| (-2 (|:| -3956 (-1169)) (|:| |contents| (-637 (-1169))))) (|:| |printBranch| (-637 (-859)))) $)) (-15 -1764 ((-1262) $)) (-15 -1763 ((-1096) $)) (-15 -1762 ((-1113) (-1113)))))
+((-2953 (((-112) $ $) NIL)) (-1781 (((-112) $) 11)) (-4053 (($ |#1|) 8)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4049 (($ |#1|) 9)) (-4361 (((-859) $) 17)) (-2364 ((|#1| $) 12)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 19)))
+(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -4053 ($ |#1|)) (-15 -4049 ($ |#1|)) (-15 -1781 ((-112) $)) (-15 -2364 (|#1| $)))) (-846)) (T -331))
+((-4053 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-4049 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-2364 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))))
+(-13 (-846) (-10 -8 (-15 -4053 ($ |#1|)) (-15 -4049 ($ |#1|)) (-15 -1781 ((-112) $)) (-15 -2364 (|#1| $))))
+((-1782 (((-330) (-1169) (-942 (-546))) 23)) (-1783 (((-330) (-1169) (-942 (-546))) 27)) (-2458 (((-330) (-1169) (-1085 (-942 (-546))) (-1085 (-942 (-546)))) 26) (((-330) (-1169) (-942 (-546)) (-942 (-546))) 24)) (-1784 (((-330) (-1169) (-942 (-546))) 31)))
+(((-332) (-10 -7 (-15 -1782 ((-330) (-1169) (-942 (-546)))) (-15 -2458 ((-330) (-1169) (-942 (-546)) (-942 (-546)))) (-15 -2458 ((-330) (-1169) (-1085 (-942 (-546))) (-1085 (-942 (-546))))) (-15 -1783 ((-330) (-1169) (-942 (-546)))) (-15 -1784 ((-330) (-1169) (-942 (-546)))))) (T -332))
+((-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2458 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-942 (-546)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2458 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(-10 -7 (-15 -1782 ((-330) (-1169) (-942 (-546)))) (-15 -2458 ((-330) (-1169) (-942 (-546)) (-942 (-546)))) (-15 -2458 ((-330) (-1169) (-1085 (-942 (-546))) (-1085 (-942 (-546))))) (-15 -1783 ((-330) (-1169) (-942 (-546)))) (-15 -1784 ((-330) (-1169) (-942 (-546)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4257 (($ $) 33)) (-1787 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-1785 (((-1256 |#4|) $) 125)) (-2127 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3651 (((-1113) $) NIL)) (-2551 (((-3 |#4| "failed") $) 36)) (-1786 (((-1256 |#4|) $) 118)) (-1788 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-546)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3846 (((-2 (|:| -2466 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4361 (((-859) $) 17)) (-3047 (($) 14 T CONST)) (-3444 (((-112) $ $) 20)) (-4252 (($ $) 27) (($ $ $) NIL)) (-4254 (($ $ $) 25)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 23)))
+(((-333 |#1| |#2| |#3| |#4|) (-13 (-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1786 ((-1256 |#4|) $)) (-15 -1785 ((-1256 |#4|) $)))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -333))
+((-1786 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-1785 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
+(-13 (-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1786 ((-1256 |#4|) $)) (-15 -1785 ((-1256 |#4|) $))))
+((-4373 (((-333 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-333 |#1| |#2| |#3| |#4|)) 33)))
+(((-334 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4373 ((-333 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-333 |#1| |#2| |#3| |#4|)))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1232 |#5|) (-1232 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -334))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-333 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-407 *10))) (-5 *2 (-333 *9 *10 *11 *12)) (-5 *1 (-334 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
+(-10 -7 (-15 -4373 ((-333 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-333 |#1| |#2| |#3| |#4|))))
+((-1787 (((-112) $) 14)))
+(((-335 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1787 ((-112) |#1|))) (-336 |#2| |#3| |#4| |#5|) (-363) (-1232 |#2|) (-1232 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -335))
+NIL
+(-10 -8 (-15 -1787 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4257 (($ $) 26)) (-1787 (((-112) $) 25)) (-3650 (((-1151) $) 9)) (-2127 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3651 (((-1113) $) 10)) (-2551 (((-3 |#4| "failed") $) 24)) (-1788 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-546)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3846 (((-2 (|:| -2466 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20)))
+(((-336 |#1| |#2| |#3| |#4|) (-140) (-363) (-1232 |t#1|) (-1232 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -336))
+((-2127 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-336 *3 *4 *5 *6)))) (-1788 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *1 (-336 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-1788 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-407 *3))) (-4 *1 (-336 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-1788 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-546)) (-4 *2 (-363)) (-4 *4 (-1232 *2)) (-4 *5 (-1232 (-407 *4))) (-4 *1 (-336 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -2466 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-4257 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-2551 (*1 *2 *1) (|partial| -12 (-4 *1 (-336 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-1788 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3))) (-4 *1 (-336 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2127 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -1788 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -1788 ($ |t#4|)) (-15 -1788 ($ |t#1| |t#1|)) (-15 -1788 ($ |t#1| |t#1| (-546))) (-15 -3846 ((-2 (|:| -2466 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4257 ($ $)) (-15 -1787 ((-112) $)) (-15 -2551 ((-3 |t#4| "failed") $)) (-15 -1788 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-4182 (($ $ (-1169) |#2|) NIL) (($ $ (-637 (-1169)) (-637 |#2|)) 20) (($ $ (-637 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-637 |#2|) (-637 |#2|)) NIL)) (-4214 (($ $ |#2|) 11)))
+(((-337 |#1| |#2|) (-10 -8 (-15 -4214 (|#1| |#1| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 |#2|))) (-15 -4182 (|#1| |#1| (-1169) |#2|))) (-338 |#2|) (-1094)) (T -337))
+NIL
+(-10 -8 (-15 -4214 (|#1| |#1| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 |#2|))) (-15 -4182 (|#1| |#1| (-1169) |#2|)))
+((-4373 (($ (-1 |#1| |#1|) $) 6)) (-4182 (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 16 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-637 (-293 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-637 |#1|) (-637 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4214 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
+(((-338 |#1|) (-140) (-1094)) (T -338))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094)))))
+(-13 (-10 -8 (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1169) |t#1|)) (-6 (-514 (-1169) |t#1|)) |%noBranch|)))
(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1169)) $) NIL)) (-2432 (((-112)) 89) (((-112) (-112)) 90)) (-2058 (((-640 (-609 $)) $) NIL)) (-1770 (($ $) NIL)) (-1618 (($ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4135 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2185 (($ $) NIL)) (-1747 (($ $) NIL)) (-1596 (($ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-609 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 69) (((-3 $ "failed") (-1169)) 95) (((-3 $ "failed") (-316 (-563))) 57 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-407 (-948 (-563)))) 63 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-948 (-563))) 58 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-316 (-379))) 87 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-407 (-948 (-379)))) 81 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-948 (-379))) 76 (|has| |#3| (-1034 (-379))))) (-2057 (((-609 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 70) (($ (-1169)) 96) (($ (-316 (-563))) 59 (|has| |#3| (-1034 (-563)))) (($ (-407 (-948 (-563)))) 64 (|has| |#3| (-1034 (-563)))) (($ (-948 (-563))) 60 (|has| |#3| (-1034 (-563)))) (($ (-316 (-379))) 88 (|has| |#3| (-1034 (-379)))) (($ (-407 (-948 (-379)))) 82 (|has| |#3| (-1034 (-379)))) (($ (-948 (-379))) 78 (|has| |#3| (-1034 (-379))))) (-3951 (((-3 $ "failed") $) NIL)) (-2179 (($) 10)) (-3228 (($ $) NIL) (($ (-640 $)) NIL)) (-2739 (((-640 (-114)) $) NIL)) (-2559 (((-114) (-114)) NIL)) (-3401 (((-112) $) NIL)) (-2959 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2716 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 $ $) (-609 $)) NIL)) (-2751 (((-3 (-609 $) "failed") $) NIL)) (-3101 (($ $) 92)) (-4372 (($ $) NIL)) (-3854 (((-1151) $) NIL)) (-2126 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) 91) (($ (-114) (-640 $)) NIL)) (-2602 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-4238 (((-767) $) NIL)) (-1693 (((-1113) $) NIL)) (-2726 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-3372 (($ $) NIL)) (-2969 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2308 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2761 (($ $) NIL) (($ $ $) NIL)) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-3402 (($ $) NIL (|has| $ (-1045)))) (-1758 (($ $) NIL)) (-1607 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-609 $)) NIL) (($ |#3|) NIL) (($ (-563)) NIL) (((-316 |#3|) $) 94)) (-3914 (((-767)) NIL)) (-3083 (($ $) NIL) (($ (-640 $)) NIL)) (-2512 (((-112) (-114)) NIL)) (-1694 (($ $) NIL)) (-1666 (($ $) NIL)) (-1679 (($ $) NIL)) (-1462 (($ $) NIL)) (-2239 (($) 93 T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2057 ($ (-316 |#3|))) (-15 -2130 ((-3 $ "failed") (-316 |#3|))) (-15 -2057 ($ (-1169))) (-15 -2130 ((-3 $ "failed") (-1169))) (-15 -1692 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2057 ($ (-316 (-563)))) (-15 -2130 ((-3 $ "failed") (-316 (-563)))) (-15 -2057 ($ (-407 (-948 (-563))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2057 ($ (-948 (-563)))) (-15 -2130 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2057 ($ (-316 (-379)))) (-15 -2130 ((-3 $ "failed") (-316 (-379)))) (-15 -2057 ($ (-407 (-948 (-379))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2057 ($ (-948 (-379)))) (-15 -2130 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -1462 ($ $)) (-15 -2185 ($ $)) (-15 -3372 ($ $)) (-15 -4372 ($ $)) (-15 -3101 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -1618 ($ $)) (-15 -1666 ($ $)) (-15 -1679 ($ $)) (-15 -1694 ($ $)) (-15 -1747 ($ $)) (-15 -1758 ($ $)) (-15 -1770 ($ $)) (-15 -2179 ($)) (-15 -2605 ((-640 (-1169)) $)) (-15 -2432 ((-112))) (-15 -2432 ((-112) (-112))))) (-640 (-1169)) (-640 (-1169)) (-387)) (T -339))
-((-2057 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-4372 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3101 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1607 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1618 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1666 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1679 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1694 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1758 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1770 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2179 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-2432 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))))
-(-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2057 ($ (-316 |#3|))) (-15 -2130 ((-3 $ "failed") (-316 |#3|))) (-15 -2057 ($ (-1169))) (-15 -2130 ((-3 $ "failed") (-1169))) (-15 -1692 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2057 ($ (-316 (-563)))) (-15 -2130 ((-3 $ "failed") (-316 (-563)))) (-15 -2057 ($ (-407 (-948 (-563))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2057 ($ (-948 (-563)))) (-15 -2130 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2057 ($ (-316 (-379)))) (-15 -2130 ((-3 $ "failed") (-316 (-379)))) (-15 -2057 ($ (-407 (-948 (-379))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2057 ($ (-948 (-379)))) (-15 -2130 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -1462 ($ $)) (-15 -2185 ($ $)) (-15 -3372 ($ $)) (-15 -4372 ($ $)) (-15 -3101 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -1618 ($ $)) (-15 -1666 ($ $)) (-15 -1679 ($ $)) (-15 -1694 ($ $)) (-15 -1747 ($ $)) (-15 -1758 ($ $)) (-15 -1770 ($ $)) (-15 -2179 ($)) (-15 -2605 ((-640 (-1169)) $)) (-15 -2432 ((-112))) (-15 -2432 ((-112) (-112)))))
-((-2238 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2238 (|#8| (-1 |#5| |#1|) |#4|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9))))))
-(-10 -7 (-15 -2238 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2535 (((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) $) 37)) (-3458 (($ (-1257 (-407 |#3|)) (-1257 $)) NIL) (($ (-1257 (-407 |#3|))) NIL) (($ (-1257 |#3|) |#3|) 160)) (-1339 (((-1257 $) (-1257 $)) 144)) (-2443 (((-640 (-640 |#2|))) 117)) (-1465 (((-112) |#2| |#2|) 72)) (-4151 (($ $) 137)) (-1419 (((-767)) 31)) (-1349 (((-1257 $) (-1257 $)) 197)) (-2454 (((-640 (-948 |#2|)) (-1169)) 109)) (-1377 (((-112) $) 157)) (-1368 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-2477 (((-3 |#3| "failed")) 49)) (-1486 (((-767)) 169)) (-2308 ((|#2| $ |#2| |#2|) 130)) (-2489 (((-3 |#3| "failed")) 67)) (-4203 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1359 (((-1257 $) (-1257 $)) 150)) (-2465 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1475 (((-112)) 32)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2443 ((-640 (-640 |#2|)))) (-15 -2454 ((-640 (-948 |#2|)) (-1169))) (-15 -2465 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2477 ((-3 |#3| "failed"))) (-15 -2489 ((-3 |#3| "failed"))) (-15 -2308 (|#2| |#1| |#2| |#2|)) (-15 -4151 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1368 ((-112) |#1| |#3|)) (-15 -1368 ((-112) |#1| |#2|)) (-15 -3458 (|#1| (-1257 |#3|) |#3|)) (-15 -2535 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1339 ((-1257 |#1|) (-1257 |#1|))) (-15 -1349 ((-1257 |#1|) (-1257 |#1|))) (-15 -1359 ((-1257 |#1|) (-1257 |#1|))) (-15 -1368 ((-112) |#1|)) (-15 -1377 ((-112) |#1|)) (-15 -1465 ((-112) |#2| |#2|)) (-15 -1475 ((-112))) (-15 -1486 ((-767))) (-15 -1419 ((-767))) (-15 -4203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3458 (|#1| (-1257 (-407 |#3|)))) (-15 -3458 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|)))) (-342 |#2| |#3| |#4|) (-1212) (-1233 |#2|) (-1233 (-407 |#3|))) (T -341))
-((-1419 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1486 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1475 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1465 (*1 *2 *3 *3) (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-2489 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-2477 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-2443 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
-(-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2443 ((-640 (-640 |#2|)))) (-15 -2454 ((-640 (-948 |#2|)) (-1169))) (-15 -2465 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2477 ((-3 |#3| "failed"))) (-15 -2489 ((-3 |#3| "failed"))) (-15 -2308 (|#2| |#1| |#2| |#2|)) (-15 -4151 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1368 ((-112) |#1| |#3|)) (-15 -1368 ((-112) |#1| |#2|)) (-15 -3458 (|#1| (-1257 |#3|) |#3|)) (-15 -2535 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1339 ((-1257 |#1|) (-1257 |#1|))) (-15 -1349 ((-1257 |#1|) (-1257 |#1|))) (-15 -1359 ((-1257 |#1|) (-1257 |#1|))) (-15 -1368 ((-112) |#1|)) (-15 -1377 ((-112) |#1|)) (-15 -1465 ((-112) |#2| |#2|)) (-15 -1475 ((-112))) (-15 -1486 ((-767))) (-15 -1419 ((-767))) (-15 -4203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3458 (|#1| (-1257 (-407 |#3|)))) (-15 -3458 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2535 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 195)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-3231 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-3211 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3340 (((-684 (-407 |#2|)) (-1257 $)) 47) (((-684 (-407 |#2|))) 62)) (-1731 (((-407 |#2|) $) 53)) (-1597 (((-1181 (-917) (-767)) (-563)) 146 (|has| (-407 |#2|) (-349)))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-2802 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-2003 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-3750 (((-767)) 87 (|has| (-407 |#2|) (-368)))) (-1432 (((-112)) 212)) (-1421 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 169 (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2057 (((-563) $) 168 (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) 165)) (-3458 (($ (-1257 (-407 |#2|)) (-1257 $)) 49) (($ (-1257 (-407 |#2|))) 65) (($ (-1257 |#2|) |#2|) 194)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-3094 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3330 (((-684 (-407 |#2|)) $ (-1257 $)) 54) (((-684 (-407 |#2|)) $) 60)) (-1476 (((-684 (-563)) (-684 $)) 163 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) 161) (((-684 (-407 |#2|)) (-684 $)) 160)) (-1339 (((-1257 $) (-1257 $)) 200)) (-2444 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-2443 (((-640 (-640 |#1|))) 181 (|has| |#1| (-368)))) (-1465 (((-112) |#1| |#1|) 216)) (-2521 (((-917)) 55)) (-1690 (($) 90 (|has| (-407 |#2|) (-368)))) (-1409 (((-112)) 209)) (-1398 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-3054 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 102 (|has| (-407 |#2|) (-363)))) (-4151 (($ $) 187)) (-4036 (($) 148 (|has| (-407 |#2|) (-349)))) (-1656 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-3188 (($ $ (-767)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-2560 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-1775 (((-917) $) 151 (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) 137 (|has| (-407 |#2|) (-349)))) (-3401 (((-112) $) 31)) (-1419 (((-767)) 219)) (-1349 (((-1257 $) (-1257 $)) 201)) (-3975 (((-407 |#2|) $) 52)) (-2454 (((-640 (-948 |#1|)) (-1169)) 182 (|has| |#1| (-363)))) (-1983 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| (-407 |#2|) (-363)))) (-4035 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-3990 (((-917) $) 89 (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) 155)) (-3517 (($ (-640 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-3854 (((-1151) $) 9)) (-2546 (((-684 (-407 |#2|))) 196)) (-1319 (((-684 (-407 |#2|))) 198)) (-2687 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-2510 (($ (-1257 |#2|) |#2|) 192)) (-1308 (((-684 (-407 |#2|))) 197)) (-1330 (((-684 (-407 |#2|))) 199)) (-2499 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-2524 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 193)) (-1387 (((-1257 $)) 205)) (-3608 (((-1257 $)) 206)) (-1377 (((-112) $) 204)) (-1368 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-2522 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-2552 (($ (-917)) 88 (|has| (-407 |#2|) (-368)))) (-2477 (((-3 |#2| "failed")) 184)) (-1693 (((-1113) $) 10)) (-1486 (((-767)) 218)) (-4334 (($) 159)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| (-407 |#2|) (-363)))) (-3551 (($ (-640 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 145 (|has| (-407 |#2|) (-349)))) (-2173 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-3012 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| (-407 |#2|) (-363)))) (-1993 (((-767) $) 105 (|has| (-407 |#2|) (-363)))) (-2308 ((|#1| $ |#1| |#1|) 186)) (-2489 (((-3 |#2| "failed")) 185)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-1623 (((-407 |#2|) (-1257 $)) 48) (((-407 |#2|)) 61)) (-3196 (((-767) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-4203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 130 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 131 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 132 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2188 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2188 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3388 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-3402 ((|#3|) 158)) (-1586 (($) 147 (|has| (-407 |#2|) (-349)))) (-3759 (((-1257 (-407 |#2|)) $ (-1257 $)) 51) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) 50) (((-1257 (-407 |#2|)) $) 67) (((-684 (-407 |#2|)) (-1257 $)) 66)) (-2219 (((-1257 (-407 |#2|)) $) 64) (($ (-1257 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| (-407 |#2|) (-349)))) (-1359 (((-1257 $) (-1257 $)) 202)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-563))) 86 (-4034 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-563)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-2047 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-1892 ((|#3| $) 46)) (-3914 (((-767)) 28)) (-1452 (((-112)) 215)) (-1443 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-4013 (((-1257 $)) 68)) (-3223 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-2465 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1475 (((-112)) 217)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 126 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 127 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 128 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2188 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 133 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2188 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4034 (-2188 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2188 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-563)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) 118 (|has| (-407 |#2|) (-363)))))
-(((-342 |#1| |#2| |#3|) (-140) (-1212) (-1233 |t#1|) (-1233 (-407 |t#2|))) (T -342))
-((-1419 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-1486 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-1475 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1465 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1452 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1443 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1443 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-1432 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1421 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1421 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-1409 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1398 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1398 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-3608 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1387 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-1330 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1319 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1308 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-2546 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-2510 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))) (-1368 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1368 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-2308 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-2489 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-2477 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-2465 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-640 (-948 *4))))) (-2443 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3))))))
-(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -1419 ((-767))) (-15 -1486 ((-767))) (-15 -1475 ((-112))) (-15 -1465 ((-112) |t#1| |t#1|)) (-15 -1452 ((-112))) (-15 -1443 ((-112) |t#1|)) (-15 -1443 ((-112) |t#2|)) (-15 -1432 ((-112))) (-15 -1421 ((-112) |t#1|)) (-15 -1421 ((-112) |t#2|)) (-15 -1409 ((-112))) (-15 -1398 ((-112) |t#1|)) (-15 -1398 ((-112) |t#2|)) (-15 -3608 ((-1257 $))) (-15 -1387 ((-1257 $))) (-15 -1377 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1359 ((-1257 $) (-1257 $))) (-15 -1349 ((-1257 $) (-1257 $))) (-15 -1339 ((-1257 $) (-1257 $))) (-15 -1330 ((-684 (-407 |t#2|)))) (-15 -1319 ((-684 (-407 |t#2|)))) (-15 -1308 ((-684 (-407 |t#2|)))) (-15 -2546 ((-684 (-407 |t#2|)))) (-15 -2535 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3458 ($ (-1257 |t#2|) |t#2|)) (-15 -2524 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2510 ($ (-1257 |t#2|) |t#2|)) (-15 -2499 ((-2 (|:| |num| (-684 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1368 ((-112) $ |t#1|)) (-15 -1368 ((-112) $ |t#2|)) (-15 -4203 ($ $ (-1 |t#2| |t#2|))) (-15 -4151 ($ $)) (-15 -2308 (|t#1| $ |t#1| |t#1|)) (-15 -2489 ((-3 |t#2| "failed"))) (-15 -2477 ((-3 |t#2| "failed"))) (-15 -2465 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -2454 ((-640 (-948 |t#1|)) (-1169))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -2443 ((-640 (-640 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-613 #0#) -4034 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-613 #1#) . T) ((-613 (-563)) . T) ((-613 $) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4034 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4034 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-555) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #0#) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #1#) . T) ((-643 $) . T) ((-636 #1#) . T) ((-636 (-563)) |has| (-407 |#2|) (-636 (-563))) ((-713 #0#) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-713 #1#) . T) ((-713 $) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-720 #1# |#3|) . T) ((-722) . T) ((-896 (-1169)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) ((-916) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-563))) |has| (-407 |#2|) (-1034 (-407 (-563)))) ((-1034 #1#) . T) ((-1034 (-563)) |has| (-407 |#2|) (-1034 (-563))) ((-1051 #0#) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| (-407 |#2|) (-349)) ((-1212) -4034 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-906 |#1|) "failed") $) NIL)) (-2057 (((-906 |#1|) $) NIL)) (-3458 (($ (-1257 (-906 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-906 |#1|) (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| (-906 |#1|) (-368)))) (-1656 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| (-906 |#1|) (-368)))) (-4002 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3975 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3990 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2196 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-2184 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-2207 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-1498 (((-954 (-1113))) NIL)) (-4334 (($) NIL (|has| (-906 |#1|) (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 (-906 |#1|))) NIL)) (-1586 (($) NIL (|has| (-906 |#1|) (-368)))) (-2220 (($) NIL (|has| (-906 |#1|) (-368)))) (-3759 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2047 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3213 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-343 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1498 ((-954 (-1113)))))) (-917) (-917)) (T -343))
-((-1498 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))))
-(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1498 ((-954 (-1113))))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 43)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) 40 (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 115)) (-2057 ((|#1| $) 86)) (-3458 (($ (-1257 |#1|)) 104)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) 98 (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) 129 (|has| |#1| (-368)))) (-1656 (((-112) $) 47 (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) 44 (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) 45)) (-4024 (($) 131 (|has| |#1| (-368)))) (-4002 (((-112) $) NIL (|has| |#1| (-368)))) (-3975 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) 90) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) 139 (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 146)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) 70 (|has| |#1| (-368)))) (-3751 (((-112) $) 118)) (-1693 (((-1113) $) NIL)) (-1498 (((-954 (-1113))) 41)) (-4334 (($) 127 (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 93 (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) 66) (((-917)) 67)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) 130 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 125 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 |#1|)) 96)) (-1586 (($) 128 (|has| |#1| (-368)))) (-2220 (($) 136 (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) 58) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) 142) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 74)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) 138)) (-4013 (((-1257 $)) 117) (((-1257 $) (-917)) 72)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) 48 T CONST)) (-2253 (($) 77 T CONST)) (-3715 (($ $) 81 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 46)) (-1836 (($ $ $) 144) (($ $ |#1|) 145)) (-1825 (($ $) 126) (($ $ $) NIL)) (-1813 (($ $ $) 60)) (** (($ $ (-917)) 148) (($ $ (-767)) 149) (($ $ (-563)) 147)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 76) (($ $ $) 75) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1498 ((-954 (-1113)))))) (-349) (-1165 |#1|)) (T -344))
-((-1498 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1165 *3)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -1498 ((-954 (-1113))))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3458 (($ (-1257 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| |#1| (-368)))) (-1656 (((-112) $) NIL (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| |#1| (-368)))) (-4002 (((-112) $) NIL (|has| |#1| (-368)))) (-3975 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-1498 (((-954 (-1113))) NIL)) (-4334 (($) NIL (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 |#1|)) NIL)) (-1586 (($) NIL (|has| |#1| (-368)))) (-2220 (($) NIL (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1498 ((-954 (-1113)))))) (-349) (-917)) (T -345))
-((-1498 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -1498 ((-954 (-1113))))))
-((-1619 (((-767) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) 42)) (-1509 (((-954 (-1113)) (-1165 |#1|)) 85)) (-1523 (((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) (-1165 |#1|)) 78)) (-1535 (((-684 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) 86)) (-1547 (((-3 (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) "failed") (-917)) 13)) (-1561 (((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) (-917)) 18)))
-(((-346 |#1|) (-10 -7 (-15 -1509 ((-954 (-1113)) (-1165 |#1|))) (-15 -1523 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) (-1165 |#1|))) (-15 -1535 ((-684 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1619 ((-767) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1547 ((-3 (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) "failed") (-917))) (-15 -1561 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) (-917)))) (-349)) (T -346))
-((-1561 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1165 *4) (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1547 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))) (-5 *1 (-346 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113))) (-5 *1 (-346 *4)))))
-(-10 -7 (-15 -1509 ((-954 (-1113)) (-1165 |#1|))) (-15 -1523 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) (-1165 |#1|))) (-15 -1535 ((-684 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1619 ((-767) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1547 ((-3 (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) "failed") (-917))) (-15 -1561 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) (-917))))
-((-1692 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -1692 (|#3| |#1|)) (-15 -1692 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347))
-((-1692 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4)))))
-(-10 -7 (-15 -1692 (|#3| |#1|)) (-15 -1692 (|#1| |#3|)))
-((-1656 (((-112) $) 49)) (-1775 (((-829 (-917)) $) 21) (((-917) $) 51)) (-1983 (((-3 $ "failed") $) 16)) (-2522 (($) 9)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 92)) (-3196 (((-3 (-767) "failed") $ $) 70) (((-767) $) 59)) (-4203 (($ $ (-767)) NIL) (($ $) 8)) (-1586 (($) 43)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 34)) (-2047 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-348 |#1|) (-10 -8 (-15 -1775 ((-917) |#1|)) (-15 -3196 ((-767) |#1|)) (-15 -1656 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 -2054 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2047 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -3196 ((-3 (-767) "failed") |#1| |#1|)) (-15 -1775 ((-829 (-917)) |#1|)) (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-349)) (T -348))
-NIL
-(-10 -8 (-15 -1775 ((-917) |#1|)) (-15 -3196 ((-767) |#1|)) (-15 -1656 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 -2054 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2047 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -3196 ((-3 (-767) "failed") |#1| |#1|)) (-15 -1775 ((-829 (-917)) |#1|)) (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-1597 (((-1181 (-917) (-767)) (-563)) 94)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2003 (((-112) $ $) 60)) (-3750 (((-767)) 104)) (-2569 (($) 17 T CONST)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1690 (($) 107)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-4036 (($) 92)) (-1656 (((-112) $) 91)) (-3188 (($ $) 80) (($ $ (-767)) 79)) (-2560 (((-112) $) 72)) (-1775 (((-829 (-917)) $) 82) (((-917) $) 89)) (-3401 (((-112) $) 31)) (-1983 (((-3 $ "failed") $) 103)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3990 (((-917) $) 106)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-2522 (($) 102 T CONST)) (-2552 (($ (-917)) 105)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 95)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3196 (((-3 (-767) "failed") $ $) 81) (((-767) $) 90)) (-4203 (($ $ (-767)) 100) (($ $) 98)) (-1586 (($) 93)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 96)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-2047 (((-3 $ "failed") $) 83) (($ $) 97)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-767)) 101) (($ $) 99)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
-(((-349) (-140)) (T -349))
-((-2047 (*1 *1 *1) (-4 *1 (-349))) (-2054 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1)))) (-1608 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))))) (-1597 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767))))) (-1586 (*1 *1) (-4 *1 (-349))) (-4036 (*1 *1) (-4 *1 (-349))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) (-1573 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-402) (-368) (-1144) (-233) (-10 -8 (-15 -2047 ($ $)) (-15 -2054 ((-3 (-1257 $) "failed") (-684 $))) (-15 -1608 ((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563)))))) (-15 -1597 ((-1181 (-917) (-767)) (-563))) (-15 -1586 ($)) (-15 -4036 ($)) (-15 -1656 ((-112) $)) (-15 -3196 ((-767) $)) (-15 -1775 ((-917) $)) (-15 -1573 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T))
-((-3619 (((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|) 53)) (-3608 (((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 51)))
-(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -350))
-((-3619 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3608 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-1619 (((-767)) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-906 |#1|) "failed") $) NIL)) (-2057 (((-906 |#1|) $) NIL)) (-3458 (($ (-1257 (-906 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-906 |#1|) (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| (-906 |#1|) (-368)))) (-1656 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| (-906 |#1|) (-368)))) (-4002 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3975 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3990 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2196 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-2184 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-2207 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-1644 (((-1257 (-640 (-2 (|:| -2618 (-906 |#1|)) (|:| -2552 (-1113)))))) NIL)) (-1630 (((-684 (-906 |#1|))) NIL)) (-4334 (($) NIL (|has| (-906 |#1|) (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 (-906 |#1|))) NIL)) (-1586 (($) NIL (|has| (-906 |#1|) (-368)))) (-2220 (($) NIL (|has| (-906 |#1|) (-368)))) (-3759 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2047 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3213 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-351 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 (-906 |#1|)) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 (-906 |#1|)))) (-15 -1619 ((-767))))) (-917) (-917)) (T -351))
-((-1644 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2618 (-906 *3)) (|:| -2552 (-1113)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1630 (*1 *2) (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1619 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))))
-(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 (-906 |#1|)) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 (-906 |#1|)))) (-15 -1619 ((-767)))))
-((-1677 (((-112) $ $) 61)) (-3439 (((-112) $) 74)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) 92) (($ $ (-917)) 90 (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) 148 (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-1619 (((-767)) 89)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) 162 (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 112)) (-2057 ((|#1| $) 91)) (-3458 (($ (-1257 |#1|)) 58)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) 158 (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) 149 (|has| |#1| (-368)))) (-1656 (((-112) $) NIL (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) 98 (|has| |#1| (-368)))) (-4002 (((-112) $) 175 (|has| |#1| (-368)))) (-3975 ((|#1| $) 94) (($ $ (-917)) 93 (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) 189) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) 134 (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) 73 (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) 70 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 82 (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) 69 (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 193)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) 137 (|has| |#1| (-368)))) (-3751 (((-112) $) 108)) (-1693 (((-1113) $) NIL)) (-1644 (((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) 83)) (-1630 (((-684 |#1|)) 87)) (-4334 (($) 96 (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 150 (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) 151)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) 62)) (-3402 (((-1165 |#1|)) 152)) (-1586 (($) 133 (|has| |#1| (-368)))) (-2220 (($) NIL (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) 106) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) 124) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 57)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) 156)) (-4013 (((-1257 $)) 172) (((-1257 $) (-917)) 101)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) 117 T CONST)) (-2253 (($) 33 T CONST)) (-3715 (($ $) 107 (|has| |#1| (-368))) (($ $ (-767)) 99 (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 183)) (-1836 (($ $ $) 104) (($ $ |#1|) 105)) (-1825 (($ $) 177) (($ $ $) 181)) (-1813 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 138)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 186) (($ $ $) 142) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 |#1|))) (-15 -1619 ((-767))))) (-349) (-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (T -352))
-((-1644 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2)))) (-1630 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113))))))))) (-1619 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113))))))))))
-(-13 (-329 |#1|) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 |#1|))) (-15 -1619 ((-767)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-1619 (((-767)) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3458 (($ (-1257 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| |#1| (-368)))) (-1656 (((-112) $) NIL (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| |#1| (-368)))) (-4002 (((-112) $) NIL (|has| |#1| (-368)))) (-3975 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-1644 (((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113)))))) NIL)) (-1630 (((-684 |#1|)) NIL)) (-4334 (($) NIL (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 |#1|)) NIL)) (-1586 (($) NIL (|has| |#1| (-368)))) (-2220 (($) NIL (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 |#1|))) (-15 -1619 ((-767))))) (-349) (-917)) (T -353))
-((-1644 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-1630 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-1619 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -1644 ((-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))))) (-15 -1630 ((-684 |#1|))) (-15 -1619 ((-767)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-906 |#1|) "failed") $) NIL)) (-2057 (((-906 |#1|) $) NIL)) (-3458 (($ (-1257 (-906 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-906 |#1|) (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| (-906 |#1|) (-368)))) (-1656 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| (-906 |#1|) (-368)))) (-4002 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3975 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3990 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2196 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-2184 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-2207 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL (|has| (-906 |#1|) (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 (-906 |#1|))) NIL)) (-1586 (($) NIL (|has| (-906 |#1|) (-368)))) (-2220 (($) NIL (|has| (-906 |#1|) (-368)))) (-3759 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2047 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3213 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-354 |#1| |#2|) (-329 (-906 |#1|)) (-917) (-917)) (T -354))
-NIL
-(-329 (-906 |#1|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) 120 (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) 139 (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 93)) (-2057 ((|#1| $) 90)) (-3458 (($ (-1257 |#1|)) 85)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) 82 (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) 42 (|has| |#1| (-368)))) (-1656 (((-112) $) NIL (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) 121 (|has| |#1| (-368)))) (-4002 (((-112) $) 74 (|has| |#1| (-368)))) (-3975 ((|#1| $) 39) (($ $ (-917)) 43 (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) 65) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) 97 (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) 95 (|has| |#1| (-368)))) (-3751 (((-112) $) 141)) (-1693 (((-1113) $) NIL)) (-4334 (($) 36 (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 115 (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) 138)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) 59)) (-3402 (((-1165 |#1|)) 88)) (-1586 (($) 126 (|has| |#1| (-368)))) (-2220 (($) NIL (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) 53) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) 137) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 87)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) 143)) (-4013 (((-1257 $)) 109) (((-1257 $) (-917)) 49)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) 111 T CONST)) (-2253 (($) 32 T CONST)) (-3715 (($ $) 68 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 107)) (-1836 (($ $ $) 99) (($ $ |#1|) 100)) (-1825 (($ $) 80) (($ $ $) 105)) (-1813 (($ $ $) 103)) (** (($ $ (-917)) NIL) (($ $ (-767)) 44) (($ $ (-563)) 129)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 78) (($ $ $) 56) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1165 |#1|)) (T -355))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1169)) $) NIL)) (-1789 (((-112)) 89) (((-112) (-112)) 90)) (-1695 (((-637 (-608 $)) $) NIL)) (-3898 (($ $) NIL)) (-4054 (($ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1699 (($ $ (-293 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL)) (-3427 (($ $) NIL)) (-3896 (($ $) NIL)) (-4053 (($ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-608 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-314 |#3|)) 69) (((-3 $ "failed") (-1169)) 95) (((-3 $ "failed") (-314 (-546))) 57 (|has| |#3| (-1034 (-546)))) (((-3 $ "failed") (-407 (-942 (-546)))) 63 (|has| |#3| (-1034 (-546)))) (((-3 $ "failed") (-942 (-546))) 58 (|has| |#3| (-1034 (-546)))) (((-3 $ "failed") (-314 (-378))) 87 (|has| |#3| (-1034 (-378)))) (((-3 $ "failed") (-407 (-942 (-378)))) 81 (|has| |#3| (-1034 (-378)))) (((-3 $ "failed") (-942 (-378))) 76 (|has| |#3| (-1034 (-378))))) (-3564 (((-608 $) $) NIL) ((|#3| $) NIL) (($ (-314 |#3|)) 70) (($ (-1169)) 96) (($ (-314 (-546))) 59 (|has| |#3| (-1034 (-546)))) (($ (-407 (-942 (-546)))) 64 (|has| |#3| (-1034 (-546)))) (($ (-942 (-546))) 60 (|has| |#3| (-1034 (-546)))) (($ (-314 (-378))) 88 (|has| |#3| (-1034 (-378)))) (($ (-407 (-942 (-378)))) 82 (|has| |#3| (-1034 (-378)))) (($ (-942 (-378))) 78 (|has| |#3| (-1034 (-378))))) (-3873 (((-3 $ "failed") $) NIL)) (-4042 (($) 10)) (-2958 (($ $) NIL) (($ (-637 $)) NIL)) (-1694 (((-637 (-113)) $) NIL)) (-3437 (((-113) (-113)) NIL)) (-2552 (((-112) $) NIL)) (-3062 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-1692 (((-1163 $) (-608 $)) NIL (|has| $ (-1045)))) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 $ $) (-608 $)) NIL)) (-1697 (((-3 (-608 $) "failed") $) NIL)) (-1893 (($ $) 92)) (-4357 (($ $) NIL)) (-3650 (((-1151) $) NIL)) (-1696 (((-637 (-608 $)) $) NIL)) (-2363 (($ (-113) $) 91) (($ (-113) (-637 $)) NIL)) (-3020 (((-112) $ (-113)) NIL) (((-112) $ (-1169)) NIL)) (-2988 (((-767) $) NIL)) (-3651 (((-1113) $) NIL)) (-1693 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-4358 (($ $) NIL)) (-3063 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-1169) (-1 $ (-637 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-637 (-113)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-113) (-1 $ (-637 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4214 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-637 $)) NIL)) (-1698 (($ $) NIL) (($ $ $) NIL)) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL)) (-3593 (($ $) NIL (|has| $ (-1045)))) (-3897 (($ $) NIL)) (-4049 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-608 $)) NIL) (($ |#3|) NIL) (($ (-546)) NIL) (((-314 |#3|) $) 94)) (-3518 (((-767)) NIL)) (-2975 (($ $) NIL) (($ (-637 $)) NIL)) (-2384 (((-112) (-113)) NIL)) (-3892 (($ $) NIL)) (-3890 (($ $) NIL)) (-3891 (($ $) NIL)) (-3794 (($ $) NIL)) (-3047 (($) 93 T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL)))
+(((-339 |#1| |#2| |#3|) (-13 (-298) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -3564 ($ (-314 |#3|))) (-15 -3565 ((-3 $ "failed") (-314 |#3|))) (-15 -3564 ($ (-1169))) (-15 -3565 ((-3 $ "failed") (-1169))) (-15 -4361 ((-314 |#3|) $)) (IF (|has| |#3| (-1034 (-546))) (PROGN (-15 -3564 ($ (-314 (-546)))) (-15 -3565 ((-3 $ "failed") (-314 (-546)))) (-15 -3564 ($ (-407 (-942 (-546))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-546))))) (-15 -3564 ($ (-942 (-546)))) (-15 -3565 ((-3 $ "failed") (-942 (-546))))) |%noBranch|) (IF (|has| |#3| (-1034 (-378))) (PROGN (-15 -3564 ($ (-314 (-378)))) (-15 -3565 ((-3 $ "failed") (-314 (-378)))) (-15 -3564 ($ (-407 (-942 (-378))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-378))))) (-15 -3564 ($ (-942 (-378)))) (-15 -3565 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -3794 ($ $)) (-15 -3427 ($ $)) (-15 -4358 ($ $)) (-15 -4357 ($ $)) (-15 -1893 ($ $)) (-15 -4053 ($ $)) (-15 -4049 ($ $)) (-15 -4054 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -3892 ($ $)) (-15 -3896 ($ $)) (-15 -3897 ($ $)) (-15 -3898 ($ $)) (-15 -4042 ($)) (-15 -3474 ((-637 (-1169)) $)) (-15 -1789 ((-112))) (-15 -1789 ((-112) (-112))))) (-637 (-1169)) (-637 (-1169)) (-387)) (T -339))
+((-3564 (*1 *1 *2) (-12 (-5 *2 (-314 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-314 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 *2)) (-14 *4 (-637 *2)) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 *2)) (-14 *4 (-637 *2)) (-4 *5 (-387)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-314 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-546)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-546)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-942 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-378)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-378)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3427 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4358 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4357 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-1893 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4053 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4054 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3896 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-4042 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169))) (-4 *4 (-387)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-1789 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387)))))
+(-13 (-298) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -3564 ($ (-314 |#3|))) (-15 -3565 ((-3 $ "failed") (-314 |#3|))) (-15 -3564 ($ (-1169))) (-15 -3565 ((-3 $ "failed") (-1169))) (-15 -4361 ((-314 |#3|) $)) (IF (|has| |#3| (-1034 (-546))) (PROGN (-15 -3564 ($ (-314 (-546)))) (-15 -3565 ((-3 $ "failed") (-314 (-546)))) (-15 -3564 ($ (-407 (-942 (-546))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-546))))) (-15 -3564 ($ (-942 (-546)))) (-15 -3565 ((-3 $ "failed") (-942 (-546))))) |%noBranch|) (IF (|has| |#3| (-1034 (-378))) (PROGN (-15 -3564 ($ (-314 (-378)))) (-15 -3565 ((-3 $ "failed") (-314 (-378)))) (-15 -3564 ($ (-407 (-942 (-378))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-378))))) (-15 -3564 ($ (-942 (-378)))) (-15 -3565 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -3794 ($ $)) (-15 -3427 ($ $)) (-15 -4358 ($ $)) (-15 -4357 ($ $)) (-15 -1893 ($ $)) (-15 -4053 ($ $)) (-15 -4049 ($ $)) (-15 -4054 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -3892 ($ $)) (-15 -3896 ($ $)) (-15 -3897 ($ $)) (-15 -3898 ($ $)) (-15 -4042 ($)) (-15 -3474 ((-637 (-1169)) $)) (-15 -1789 ((-112))) (-15 -1789 ((-112) (-112)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-902 |#1|) (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| (-902 |#1|) (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-902 |#1|) "failed") $) NIL)) (-3564 (((-902 |#1|) $) NIL)) (-1946 (($ (-1256 (-902 |#1|))) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-902 |#1|) (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-902 |#1|) (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| (-902 |#1|) (-368)))) (-1831 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368)))) (($ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| (-902 |#1|) (-368))) (((-828 (-915)) $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| (-902 |#1|) (-368)))) (-2168 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-3524 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-902 |#1|) (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 (-902 |#1|)) $) NIL) (((-1163 $) $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-2167 (((-915) $) NIL (|has| (-902 |#1|) (-368)))) (-1759 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368)))) (-1758 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-1163 (-902 |#1|)) "failed") $ $) NIL (|has| (-902 |#1|) (-368)))) (-1760 (($ $ (-1163 (-902 |#1|))) NIL (|has| (-902 |#1|) (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-902 |#1|) (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL (|has| (-902 |#1|) (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-902 |#1|) (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 (-902 |#1|))) NIL)) (-1825 (($) NIL (|has| (-902 |#1|) (-368)))) (-1761 (($) NIL (|has| (-902 |#1|) (-368)))) (-3632 (((-1256 (-902 |#1|)) $) NIL) (((-684 (-902 |#1|)) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-902 |#1|) (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-902 |#1|)) NIL)) (-3091 (($ $) NIL (|has| (-902 |#1|) (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3058 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ (-902 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-902 |#1|)) NIL) (($ (-902 |#1|) $) NIL)))
+(((-340 |#1| |#2|) (-329 (-902 |#1|)) (-915) (-915)) (T -340))
+NIL
+(-329 (-902 |#1|))
+((-1798 (((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) $) 37)) (-1946 (($ (-1256 (-407 |#3|)) (-1256 $)) NIL) (($ (-1256 (-407 |#3|))) NIL) (($ (-1256 |#3|) |#3|) 160)) (-1803 (((-1256 $) (-1256 $)) 144)) (-1790 (((-637 (-637 |#2|))) 117)) (-1815 (((-112) |#2| |#2|) 72)) (-3909 (($ $) 137)) (-3788 (((-767)) 31)) (-1804 (((-1256 $) (-1256 $)) 197)) (-1791 (((-637 (-942 |#2|)) (-1169)) 109)) (-1807 (((-112) $) 157)) (-1806 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-1793 (((-3 |#3| "failed")) 49)) (-1817 (((-767)) 169)) (-4214 ((|#2| $ |#2| |#2|) 130)) (-1794 (((-3 |#3| "failed")) 67)) (-4225 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1805 (((-1256 $) (-1256 $)) 150)) (-1792 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1816 (((-112)) 32)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -1790 ((-637 (-637 |#2|)))) (-15 -1791 ((-637 (-942 |#2|)) (-1169))) (-15 -1792 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1793 ((-3 |#3| "failed"))) (-15 -1794 ((-3 |#3| "failed"))) (-15 -4214 (|#2| |#1| |#2| |#2|)) (-15 -3909 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1806 ((-112) |#1| |#3|)) (-15 -1806 ((-112) |#1| |#2|)) (-15 -1946 (|#1| (-1256 |#3|) |#3|)) (-15 -1798 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1803 ((-1256 |#1|) (-1256 |#1|))) (-15 -1804 ((-1256 |#1|) (-1256 |#1|))) (-15 -1805 ((-1256 |#1|) (-1256 |#1|))) (-15 -1806 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1815 ((-112) |#2| |#2|)) (-15 -1816 ((-112))) (-15 -1817 ((-767))) (-15 -3788 ((-767))) (-15 -4225 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4225 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -1946 (|#1| (-1256 (-407 |#3|)))) (-15 -1946 (|#1| (-1256 (-407 |#3|)) (-1256 |#1|)))) (-342 |#2| |#3| |#4|) (-1212) (-1232 |#2|) (-1232 (-407 |#3|))) (T -341))
+((-3788 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1817 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1816 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1815 (*1 *2 *3 *3) (-12 (-4 *3 (-1212)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-1794 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1793 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-5 *2 (-637 (-942 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-1790 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-637 (-637 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
+(-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -1790 ((-637 (-637 |#2|)))) (-15 -1791 ((-637 (-942 |#2|)) (-1169))) (-15 -1792 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1793 ((-3 |#3| "failed"))) (-15 -1794 ((-3 |#3| "failed"))) (-15 -4214 (|#2| |#1| |#2| |#2|)) (-15 -3909 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1806 ((-112) |#1| |#3|)) (-15 -1806 ((-112) |#1| |#2|)) (-15 -1946 (|#1| (-1256 |#3|) |#3|)) (-15 -1798 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1803 ((-1256 |#1|) (-1256 |#1|))) (-15 -1804 ((-1256 |#1|) (-1256 |#1|))) (-15 -1805 ((-1256 |#1|) (-1256 |#1|))) (-15 -1806 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1815 ((-112) |#2| |#2|)) (-15 -1816 ((-112))) (-15 -1817 ((-767))) (-15 -3788 ((-767))) (-15 -4225 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4225 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -1946 (|#1| (-1256 (-407 |#3|)))) (-15 -1946 (|#1| (-1256 (-407 |#3|)) (-1256 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1798 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 195)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-2220 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-2218 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-1936 (((-684 (-407 |#2|)) (-1256 $)) 47) (((-684 (-407 |#2|))) 62)) (-3741 (((-407 |#2|) $) 53)) (-1826 (((-1180 (-915) (-767)) (-546)) 146 (|has| (-407 |#2|) (-350)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-4384 (((-405 $) $) 114 (|has| (-407 |#2|) (-363)))) (-1740 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-3528 (((-767)) 87 (|has| (-407 |#2|) (-368)))) (-1812 (((-112)) 212)) (-1811 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 169 (|has| (-407 |#2|) (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 167 (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-3 (-407 |#2|) #1#) $) 164)) (-3564 (((-546) $) 168 (|has| (-407 |#2|) (-1034 (-546)))) (((-407 (-546)) $) 166 (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-407 |#2|) $) 165)) (-1946 (($ (-1256 (-407 |#2|)) (-1256 $)) 49) (($ (-1256 (-407 |#2|))) 65) (($ (-1256 |#2|) |#2|) 194)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-350)))) (-2949 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-1935 (((-684 (-407 |#2|)) $ (-1256 $)) 54) (((-684 (-407 |#2|)) $) 60)) (-2408 (((-684 (-546)) (-684 $)) 163 (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 162 (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-407 |#2|))) (|:| |vec| (-1256 (-407 |#2|)))) (-684 $) (-1256 $)) 161) (((-684 (-407 |#2|)) (-684 $)) 160)) (-1803 (((-1256 $) (-1256 $)) 200)) (-4257 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3873 (((-3 $ "failed") $) 33)) (-1790 (((-637 (-637 |#1|))) 181 (|has| |#1| (-368)))) (-1815 (((-112) |#1| |#1|) 216)) (-3501 (((-915)) 55)) (-3384 (($) 90 (|has| (-407 |#2|) (-368)))) (-1810 (((-112)) 209)) (-1809 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-2948 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 102 (|has| (-407 |#2|) (-363)))) (-3909 (($ $) 187)) (-3222 (($) 148 (|has| (-407 |#2|) (-350)))) (-1831 (((-112) $) 149 (|has| (-407 |#2|) (-350)))) (-1921 (($ $ (-767)) 140 (|has| (-407 |#2|) (-350))) (($ $) 139 (|has| (-407 |#2|) (-350)))) (-4138 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-4186 (((-915) $) 151 (|has| (-407 |#2|) (-350))) (((-828 (-915)) $) 137 (|has| (-407 |#2|) (-350)))) (-2552 (((-112) $) 31)) (-3788 (((-767)) 219)) (-1804 (((-1256 $) (-1256 $)) 201)) (-3524 (((-407 |#2|) $) 52)) (-1791 (((-637 (-942 |#1|)) (-1169)) 182 (|has| |#1| (-363)))) (-3855 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 111 (|has| (-407 |#2|) (-363)))) (-2171 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-2167 (((-915) $) 89 (|has| (-407 |#2|) (-368)))) (-3470 ((|#3| $) 155)) (-2048 (($ (-637 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-3650 (((-1151) $) 9)) (-1799 (((-684 (-407 |#2|))) 196)) (-1801 (((-684 (-407 |#2|))) 198)) (-2785 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-1796 (($ (-1256 |#2|) |#2|) 192)) (-1800 (((-684 (-407 |#2|))) 197)) (-1802 (((-684 (-407 |#2|))) 199)) (-1795 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1797 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 193)) (-1808 (((-1256 $)) 205)) (-4333 (((-1256 $)) 206)) (-1807 (((-112) $) 204)) (-1806 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3856 (($) 142 (|has| (-407 |#2|) (-350)) CONST)) (-2542 (($ (-915)) 88 (|has| (-407 |#2|) (-368)))) (-1793 (((-3 |#2| "failed")) 184)) (-3651 (((-1113) $) 10)) (-1817 (((-767)) 218)) (-2551 (($) 159)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 101 (|has| (-407 |#2|) (-363)))) (-3552 (($ (-637 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 145 (|has| (-407 |#2|) (-350)))) (-4147 (((-405 $) $) 112 (|has| (-407 |#2|) (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-3872 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 103 (|has| (-407 |#2|) (-363)))) (-1739 (((-767) $) 105 (|has| (-407 |#2|) (-363)))) (-4214 ((|#1| $ |#1| |#1|) 186)) (-1794 (((-3 |#2| "failed")) 185)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-4172 (((-407 |#2|) (-1256 $)) 48) (((-407 |#2|)) 61)) (-1922 (((-767) $) 150 (|has| (-407 |#2|) (-350))) (((-3 (-767) "failed") $ $) 138 (|has| (-407 |#2|) (-350)))) (-4225 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-637 (-1169)) (-637 (-767))) 129 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 130 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-637 (-1169))) 131 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 132 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3247 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) 136 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3247 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-2550 (((-684 (-407 |#2|)) (-1256 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-3593 ((|#3|) 158)) (-1825 (($) 147 (|has| (-407 |#2|) (-350)))) (-3632 (((-1256 (-407 |#2|)) $ (-1256 $)) 51) (((-684 (-407 |#2|)) (-1256 $) (-1256 $)) 50) (((-1256 (-407 |#2|)) $) 67) (((-684 (-407 |#2|)) (-1256 $)) 66)) (-4385 (((-1256 (-407 |#2|)) $) 64) (($ (-1256 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 144 (|has| (-407 |#2|) (-350)))) (-1805 (((-1256 $) (-1256 $)) 202)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-546))) 86 (-3943 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-546)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-3091 (($ $) 143 (|has| (-407 |#2|) (-350))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-2749 ((|#3| $) 46)) (-3518 (((-767)) 28)) (-1814 (((-112)) 215)) (-1813 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2169 (((-1256 $)) 68)) (-2219 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-1792 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1816 (((-112)) 217)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-637 (-1169)) (-637 (-767))) 125 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 126 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-637 (-1169))) 127 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 128 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3247 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 133 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3247 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) 135 (-3943 (-3247 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3247 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-546)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-546))) 118 (|has| (-407 |#2|) (-363)))))
+(((-342 |#1| |#2| |#3|) (-140) (-1212) (-1232 |t#1|) (-1232 (-407 |t#2|))) (T -342))
+((-3788 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-767)))) (-1817 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-767)))) (-1816 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1815 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1814 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1813 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1813 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112)))) (-1812 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1811 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1811 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112)))) (-1810 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1809 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1809 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112)))) (-4333 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1808 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))) (-1804 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))) (-1802 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1801 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1800 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1799 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1232 (-407 *3))))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1232 (-407 *3))))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))) (-1806 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))) (-3909 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-407 *3))))) (-4214 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-407 *3))))) (-1794 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1232 (-407 *2))) (-4 *2 (-1232 *3)))) (-1793 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1232 (-407 *2))) (-4 *2 (-1232 *3)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1212)) (-4 *6 (-1232 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-637 (-942 *4))))) (-1790 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-637 (-637 *3))))))
+(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -3788 ((-767))) (-15 -1817 ((-767))) (-15 -1816 ((-112))) (-15 -1815 ((-112) |t#1| |t#1|)) (-15 -1814 ((-112))) (-15 -1813 ((-112) |t#1|)) (-15 -1813 ((-112) |t#2|)) (-15 -1812 ((-112))) (-15 -1811 ((-112) |t#1|)) (-15 -1811 ((-112) |t#2|)) (-15 -1810 ((-112))) (-15 -1809 ((-112) |t#1|)) (-15 -1809 ((-112) |t#2|)) (-15 -4333 ((-1256 $))) (-15 -1808 ((-1256 $))) (-15 -1807 ((-112) $)) (-15 -1806 ((-112) $)) (-15 -1805 ((-1256 $) (-1256 $))) (-15 -1804 ((-1256 $) (-1256 $))) (-15 -1803 ((-1256 $) (-1256 $))) (-15 -1802 ((-684 (-407 |t#2|)))) (-15 -1801 ((-684 (-407 |t#2|)))) (-15 -1800 ((-684 (-407 |t#2|)))) (-15 -1799 ((-684 (-407 |t#2|)))) (-15 -1798 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1946 ($ (-1256 |t#2|) |t#2|)) (-15 -1797 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1796 ($ (-1256 |t#2|) |t#2|)) (-15 -1795 ((-2 (|:| |num| (-684 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1806 ((-112) $ |t#1|)) (-15 -1806 ((-112) $ |t#2|)) (-15 -4225 ($ $ (-1 |t#2| |t#2|))) (-15 -3909 ($ $)) (-15 -4214 (|t#1| $ |t#1| |t#1|)) (-15 -1794 ((-3 |t#2| "failed"))) (-15 -1793 ((-3 |t#2| "failed"))) (-15 -1792 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1791 ((-637 (-942 |t#1|)) (-1169))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -1790 ((-637 (-637 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-38 #2=(-407 |#2|)) . T) ((-38 $) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #1# #1#) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-613 #1#) -3943 (|has| (-407 |#2|) (-1034 (-407 (-546)))) (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-613 #2#) . T) ((-613 (-546)) . T) ((-613 $) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-610 (-859)) . T) ((-172) . T) ((-611 |#3|) . T) ((-231 #2#) |has| (-407 |#2|) (-363)) ((-233) -3943 (|has| (-407 |#2|) (-350)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-290) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-307) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-363) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-350)) ((-368) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-368))) ((-350) |has| (-407 |#2|) (-350)) ((-370 #2# |#3|) . T) ((-410 #2# |#3|) . T) ((-377 #2#) . T) ((-412 #2#) . T) ((-452) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-556) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-643 #1#) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-643 #2#) . T) ((-643 $) . T) ((-636 #2#) . T) ((-636 (-546)) |has| (-407 |#2|) (-636 (-546))) ((-713 #1#) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-713 #2#) . T) ((-713 $) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-720 #2# |#3|) . T) ((-722) . T) ((-896 (-1169)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) ((-917) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-546))) |has| (-407 |#2|) (-1034 (-407 (-546)))) ((-1034 #2#) . T) ((-1034 (-546)) |has| (-407 |#2|) (-1034 (-546))) ((-1051 #1#) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))) ((-1051 #2#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| (-407 |#2|) (-350)) ((-1212) -3943 (|has| (-407 |#2|) (-350)) (|has| (-407 |#2|) (-363))))
+((-4373 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-343 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4373 (|#8| (-1 |#5| |#1|) |#4|))) (-1212) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1212) (-1232 |#5|) (-1232 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -343))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *9 (-1232 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-343 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1232 (-407 *9))))))
+(-10 -7 (-15 -4373 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-902 |#1|) (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| (-902 |#1|) (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-902 |#1|) "failed") $) NIL)) (-3564 (((-902 |#1|) $) NIL)) (-1946 (($ (-1256 (-902 |#1|))) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-902 |#1|) (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-902 |#1|) (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| (-902 |#1|) (-368)))) (-1831 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368)))) (($ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| (-902 |#1|) (-368))) (((-828 (-915)) $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| (-902 |#1|) (-368)))) (-2168 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-3524 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-902 |#1|) (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 (-902 |#1|)) $) NIL) (((-1163 $) $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-2167 (((-915) $) NIL (|has| (-902 |#1|) (-368)))) (-1759 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368)))) (-1758 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-1163 (-902 |#1|)) "failed") $ $) NIL (|has| (-902 |#1|) (-368)))) (-1760 (($ $ (-1163 (-902 |#1|))) NIL (|has| (-902 |#1|) (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-902 |#1|) (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-1818 (((-954 (-1113))) NIL)) (-2551 (($) NIL (|has| (-902 |#1|) (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-902 |#1|) (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 (-902 |#1|))) NIL)) (-1825 (($) NIL (|has| (-902 |#1|) (-368)))) (-1761 (($) NIL (|has| (-902 |#1|) (-368)))) (-3632 (((-1256 (-902 |#1|)) $) NIL) (((-684 (-902 |#1|)) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-902 |#1|) (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-902 |#1|)) NIL)) (-3091 (($ $) NIL (|has| (-902 |#1|) (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3058 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ (-902 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-902 |#1|)) NIL) (($ (-902 |#1|) $) NIL)))
+(((-344 |#1| |#2|) (-13 (-329 (-902 |#1|)) (-10 -7 (-15 -1818 ((-954 (-1113)))))) (-915) (-915)) (T -344))
+((-1818 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))))
+(-13 (-329 (-902 |#1|)) (-10 -7 (-15 -1818 ((-954 (-1113))))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 43)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) 40 (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) 115)) (-3564 ((|#1| $) 86)) (-1946 (($ (-1256 |#1|)) 104)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) 98 (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) 129 (|has| |#1| (-368)))) (-1831 (((-112) $) 47 (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) 44 (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) 45)) (-2170 (($) 131 (|has| |#1| (-368)))) (-2168 (((-112) $) NIL (|has| |#1| (-368)))) (-3524 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) 90) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) 139 (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) NIL (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) NIL (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 146)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) 70 (|has| |#1| (-368)))) (-4346 (((-112) $) 118)) (-3651 (((-1113) $) NIL)) (-1818 (((-954 (-1113))) 41)) (-2551 (($) 127 (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 93 (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) 66) (((-915)) 67)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) 130 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 125 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 |#1|)) 96)) (-1825 (($) 128 (|has| |#1| (-368)))) (-1761 (($) 136 (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) 58) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) 142) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 74)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) 138)) (-2169 (((-1256 $)) 117) (((-1256 $) (-915)) 72)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) 48 T CONST)) (-3053 (($) 77 T CONST)) (-4343 (($ $) 81 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) 46)) (-4364 (($ $ $) 144) (($ $ |#1|) 145)) (-4252 (($ $) 126) (($ $ $) NIL)) (-4254 (($ $ $) 60)) (** (($ $ (-915)) 148) (($ $ (-767)) 149) (($ $ (-546)) 147)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 76) (($ $ $) 75) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1818 ((-954 (-1113)))))) (-350) (-1163 |#1|)) (T -345))
+((-1818 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-350)) (-14 *4 (-1163 *3)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1818 ((-954 (-1113))))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-1946 (($ (-1256 |#1|)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| |#1| (-368)))) (-1831 (((-112) $) NIL (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| |#1| (-368)))) (-2168 (((-112) $) NIL (|has| |#1| (-368)))) (-3524 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) NIL) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) NIL (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) NIL (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-1818 (((-954 (-1113))) NIL)) (-2551 (($) NIL (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 |#1|)) NIL)) (-1825 (($) NIL (|has| |#1| (-368)))) (-1761 (($) NIL (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) NIL) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) NIL)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-346 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1818 ((-954 (-1113)))))) (-350) (-915)) (T -346))
+((-1818 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-346 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1818 ((-954 (-1113))))))
+((-1828 (((-767) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) 42)) (-1819 (((-954 (-1113)) (-1163 |#1|)) 85)) (-1820 (((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) (-1163 |#1|)) 78)) (-1821 (((-684 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) 86)) (-1822 (((-3 (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) "failed") (-915)) 13)) (-1823 (((-3 (-1163 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) (-915)) 18)))
+(((-347 |#1|) (-10 -7 (-15 -1819 ((-954 (-1113)) (-1163 |#1|))) (-15 -1820 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) (-1163 |#1|))) (-15 -1821 ((-684 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1828 ((-767) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1822 ((-3 (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) "failed") (-915))) (-15 -1823 ((-3 (-1163 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) (-915)))) (-350)) (T -347))
+((-1823 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-3 (-1163 *4) (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))) (-5 *1 (-347 *4)) (-4 *4 (-350)))) (-1822 (*1 *2 *3) (|partial| -12 (-5 *3 (-915)) (-5 *2 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))) (-5 *1 (-347 *4)) (-4 *4 (-350)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))) (-4 *4 (-350)) (-5 *2 (-767)) (-5 *1 (-347 *4)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))) (-4 *4 (-350)) (-5 *2 (-684 *4)) (-5 *1 (-347 *4)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))) (-5 *1 (-347 *4)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-954 (-1113))) (-5 *1 (-347 *4)))))
+(-10 -7 (-15 -1819 ((-954 (-1113)) (-1163 |#1|))) (-15 -1820 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) (-1163 |#1|))) (-15 -1821 ((-684 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1828 ((-767) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1822 ((-3 (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) "failed") (-915))) (-15 -1823 ((-3 (-1163 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) (-915))))
+((-4361 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-348 |#1| |#2| |#3|) (-10 -7 (-15 -4361 (|#3| |#1|)) (-15 -4361 (|#1| |#3|))) (-329 |#2|) (-350) (-329 |#2|)) (T -348))
+((-4361 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-329 *4)) (-5 *1 (-348 *2 *4 *3)) (-4 *3 (-329 *4)))) (-4361 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-329 *4)) (-5 *1 (-348 *3 *4 *2)) (-4 *3 (-329 *4)))))
+(-10 -7 (-15 -4361 (|#3| |#1|)) (-15 -4361 (|#1| |#3|)))
+((-1831 (((-112) $) 49)) (-4186 (((-828 (-915)) $) 21) (((-915) $) 51)) (-3855 (((-3 $ "failed") $) 16)) (-3856 (($) 9)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 92)) (-1922 (((-3 (-767) "failed") $ $) 70) (((-767) $) 59)) (-4225 (($ $ (-767)) NIL) (($ $) 8)) (-1825 (($) 43)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 34)) (-3091 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-349 |#1|) (-10 -8 (-15 -4186 ((-915) |#1|)) (-15 -1922 ((-767) |#1|)) (-15 -1831 ((-112) |#1|)) (-15 -1825 (|#1|)) (-15 -3092 ((-3 (-1256 |#1|) "failed") (-684 |#1|))) (-15 -3091 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-3 (-767) "failed") |#1| |#1|)) (-15 -4186 ((-828 (-915)) |#1|)) (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)))) (-350)) (T -349))
+NIL
+(-10 -8 (-15 -4186 ((-915) |#1|)) (-15 -1922 ((-767) |#1|)) (-15 -1831 ((-112) |#1|)) (-15 -1825 (|#1|)) (-15 -3092 ((-3 (-1256 |#1|) "failed") (-684 |#1|))) (-15 -3091 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-3 (-767) "failed") |#1| |#1|)) (-15 -4186 ((-828 (-915)) |#1|)) (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1826 (((-1180 (-915) (-767)) (-546)) 94)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-1740 (((-112) $ $) 60)) (-3528 (((-767)) 104)) (-4139 (($) 17 T CONST)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-3384 (($) 107)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-3222 (($) 92)) (-1831 (((-112) $) 91)) (-1921 (($ $) 80) (($ $ (-767)) 79)) (-4138 (((-112) $) 72)) (-4186 (((-828 (-915)) $) 82) (((-915) $) 89)) (-2552 (((-112) $) 31)) (-3855 (((-3 $ "failed") $) 103)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2167 (((-915) $) 106)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3856 (($) 102 T CONST)) (-2542 (($ (-915)) 105)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 95)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-1922 (((-3 (-767) "failed") $ $) 81) (((-767) $) 90)) (-4225 (($ $ (-767)) 100) (($ $) 98)) (-1825 (($) 93)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 96)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67)) (-3091 (((-3 $ "failed") $) 83) (($ $) 97)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-767)) 101) (($ $) 99)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
+(((-350) (-140)) (T -350))
+((-3091 (*1 *1 *1) (-4 *1 (-350))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-350)) (-5 *2 (-1256 *1)))) (-1827 (*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-350)) (-5 *3 (-546)) (-5 *2 (-1180 (-915) (-767))))) (-1825 (*1 *1) (-4 *1 (-350))) (-3222 (*1 *1) (-4 *1 (-350))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-767)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-915)))) (-1824 (*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-402) (-368) (-1144) (-233) (-10 -8 (-15 -3091 ($ $)) (-15 -3092 ((-3 (-1256 $) "failed") (-684 $))) (-15 -1827 ((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546)))))) (-15 -1826 ((-1180 (-915) (-767)) (-546))) (-15 -1825 ($)) (-15 -3222 ($)) (-15 -1831 ((-112) $)) (-15 -1922 ((-767) $)) (-15 -4186 ((-915) $)) (-15 -1824 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) . T) ((-1212) . T))
+((-4334 (((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|) 53)) (-4333 (((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 51)))
+(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))) (-1232 |#1|) (-410 |#1| |#2|)) (T -351))
+((-4334 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-4333 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-410 *3 *4)))))
+(-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-902 |#1|) (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1828 (((-767)) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| (-902 |#1|) (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-902 |#1|) "failed") $) NIL)) (-3564 (((-902 |#1|) $) NIL)) (-1946 (($ (-1256 (-902 |#1|))) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-902 |#1|) (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-902 |#1|) (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| (-902 |#1|) (-368)))) (-1831 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368)))) (($ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| (-902 |#1|) (-368))) (((-828 (-915)) $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| (-902 |#1|) (-368)))) (-2168 (((-112) $) NIL (|has| (-902 |#1|) (-368)))) (-3524 (((-902 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-902 |#1|) (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 (-902 |#1|)) $) NIL) (((-1163 $) $ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-2167 (((-915) $) NIL (|has| (-902 |#1|) (-368)))) (-1759 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368)))) (-1758 (((-1163 (-902 |#1|)) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-1163 (-902 |#1|)) "failed") $ $) NIL (|has| (-902 |#1|) (-368)))) (-1760 (($ $ (-1163 (-902 |#1|))) NIL (|has| (-902 |#1|) (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-902 |#1|) (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| (-902 |#1|) (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-1830 (((-1256 (-637 (-2 (|:| -3813 (-902 |#1|)) (|:| -2542 (-1113)))))) NIL)) (-1829 (((-684 (-902 |#1|))) NIL)) (-2551 (($) NIL (|has| (-902 |#1|) (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-902 |#1|) (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| (-902 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 (-902 |#1|))) NIL)) (-1825 (($) NIL (|has| (-902 |#1|) (-368)))) (-1761 (($) NIL (|has| (-902 |#1|) (-368)))) (-3632 (((-1256 (-902 |#1|)) $) NIL) (((-684 (-902 |#1|)) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-902 |#1|) (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-902 |#1|)) NIL)) (-3091 (($ $) NIL (|has| (-902 |#1|) (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| (-902 |#1|) (-145)) (|has| (-902 |#1|) (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3058 (($ $) NIL (|has| (-902 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-902 |#1|) (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ (-902 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-902 |#1|)) NIL) (($ (-902 |#1|) $) NIL)))
+(((-352 |#1| |#2|) (-13 (-329 (-902 |#1|)) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 (-902 |#1|)) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 (-902 |#1|)))) (-15 -1828 ((-767))))) (-915) (-915)) (T -352))
+((-1830 (*1 *2) (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 (-902 *3)) (|:| -2542 (-1113)))))) (-5 *1 (-352 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))) (-1829 (*1 *2) (-12 (-5 *2 (-684 (-902 *3))) (-5 *1 (-352 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))) (-1828 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))))
+(-13 (-329 (-902 |#1|)) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 (-902 |#1|)) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 (-902 |#1|)))) (-15 -1828 ((-767)))))
+((-2953 (((-112) $ $) 61)) (-3596 (((-112) $) 74)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) 92) (($ $ (-915)) 90 (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) 148 (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1828 (((-767)) 89)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) 162 (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) 112)) (-3564 ((|#1| $) 91)) (-1946 (($ (-1256 |#1|)) 58)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) 158 (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) 149 (|has| |#1| (-368)))) (-1831 (((-112) $) NIL (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) 98 (|has| |#1| (-368)))) (-2168 (((-112) $) 175 (|has| |#1| (-368)))) (-3524 ((|#1| $) 94) (($ $ (-915)) 93 (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) 189) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) 134 (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) 73 (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) 70 (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) 82 (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) 69 (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 193)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) 137 (|has| |#1| (-368)))) (-4346 (((-112) $) 108)) (-3651 (((-1113) $) NIL)) (-1830 (((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) 83)) (-1829 (((-684 |#1|)) 87)) (-2551 (($) 96 (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 150 (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) 151)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) 62)) (-3593 (((-1163 |#1|)) 152)) (-1825 (($) 133 (|has| |#1| (-368)))) (-1761 (($) NIL (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) 106) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) 124) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 57)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) 156)) (-2169 (((-1256 $)) 172) (((-1256 $) (-915)) 101)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) 117 T CONST)) (-3053 (($) 33 T CONST)) (-4343 (($ $) 107 (|has| |#1| (-368))) (($ $ (-767)) 99 (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) 183)) (-4364 (($ $ $) 104) (($ $ |#1|) 105)) (-4252 (($ $) 177) (($ $ $) 181)) (-4254 (($ $ $) 179)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 138)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 186) (($ $ $) 142) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 |#1|))) (-15 -1828 ((-767))))) (-350) (-3 (-1163 |#1|) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (T -353))
+((-1830 (*1 *2) (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1163 *3) *2)))) (-1829 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1163 *3) (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113))))))))) (-1828 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1163 *3) (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113))))))))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 |#1|))) (-15 -1828 ((-767)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1828 (((-767)) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-1946 (($ (-1256 |#1|)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| |#1| (-368)))) (-1831 (((-112) $) NIL (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| |#1| (-368)))) (-2168 (((-112) $) NIL (|has| |#1| (-368)))) (-3524 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) NIL) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) NIL (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) NIL (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-1830 (((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113)))))) NIL)) (-1829 (((-684 |#1|)) NIL)) (-2551 (($) NIL (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 |#1|)) NIL)) (-1825 (($) NIL (|has| |#1| (-368)))) (-1761 (($) NIL (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) NIL) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) NIL)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-354 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 |#1|))) (-15 -1828 ((-767))))) (-350) (-915)) (T -354))
+((-1830 (*1 *2) (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))) (-1829 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))) (-1828 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1830 ((-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))))) (-15 -1829 ((-684 |#1|))) (-15 -1828 ((-767)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) 120 (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) 139 (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) 93)) (-3564 ((|#1| $) 90)) (-1946 (($ (-1256 |#1|)) 85)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) 82 (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) 42 (|has| |#1| (-368)))) (-1831 (((-112) $) NIL (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) 121 (|has| |#1| (-368)))) (-2168 (((-112) $) 74 (|has| |#1| (-368)))) (-3524 ((|#1| $) 39) (($ $ (-915)) 43 (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) 65) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) 97 (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) NIL (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) NIL (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) 95 (|has| |#1| (-368)))) (-4346 (((-112) $) 141)) (-3651 (((-1113) $) NIL)) (-2551 (($) 36 (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 115 (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) 138)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) 59)) (-3593 (((-1163 |#1|)) 88)) (-1825 (($) 126 (|has| |#1| (-368)))) (-1761 (($) NIL (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) 53) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) 137) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 87)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) 143)) (-2169 (((-1256 $)) 109) (((-1256 $) (-915)) 49)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) 111 T CONST)) (-3053 (($) 32 T CONST)) (-4343 (($ $) 68 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) 107)) (-4364 (($ $ $) 99) (($ $ |#1|) 100)) (-4252 (($ $) 80) (($ $ $) 105)) (-4254 (($ $ $) 103)) (** (($ $ (-915)) NIL) (($ $ (-767)) 44) (($ $ (-546)) 129)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 78) (($ $ $) 56) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-355 |#1| |#2|) (-329 |#1|) (-350) (-1163 |#1|)) (T -355))
NIL
(-329 |#1|)
-((-1851 ((|#1| (-1165 |#2|)) 52)))
-(((-356 |#1| |#2|) (-10 -7 (-15 -1851 (|#1| (-1165 |#2|)))) (-13 (-402) (-10 -7 (-15 -1692 (|#1| |#2|)) (-15 -3990 ((-917) |#1|)) (-15 -4013 ((-1257 |#1|) (-917))) (-15 -3715 (|#1| |#1|)))) (-349)) (T -356))
-((-1851 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -1692 (*2 *4)) (-15 -3990 ((-917) *2)) (-15 -4013 ((-1257 *2) (-917))) (-15 -3715 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
-(-10 -7 (-15 -1851 (|#1| (-1165 |#2|))))
-((-1840 (((-954 (-1165 |#1|)) (-1165 |#1|)) 36)) (-1690 (((-1165 |#1|) (-917) (-917)) 112) (((-1165 |#1|) (-917)) 111)) (-1656 (((-112) (-1165 |#1|)) 84)) (-1681 (((-917) (-917)) 71)) (-1696 (((-917) (-917)) 74)) (-1667 (((-917) (-917)) 69)) (-4002 (((-112) (-1165 |#1|)) 88)) (-1784 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 100)) (-1817 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 103)) (-1806 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 102)) (-1795 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 101)) (-1771 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 97)) (-1829 (((-1165 |#1|) (-1165 |#1|)) 62)) (-1722 (((-1165 |#1|) (-917)) 106)) (-1759 (((-1165 |#1|) (-917)) 109)) (-1748 (((-1165 |#1|) (-917)) 108)) (-1736 (((-1165 |#1|) (-917)) 107)) (-1710 (((-1165 |#1|) (-917)) 104)))
-(((-357 |#1|) (-10 -7 (-15 -1656 ((-112) (-1165 |#1|))) (-15 -4002 ((-112) (-1165 |#1|))) (-15 -1667 ((-917) (-917))) (-15 -1681 ((-917) (-917))) (-15 -1696 ((-917) (-917))) (-15 -1710 ((-1165 |#1|) (-917))) (-15 -1722 ((-1165 |#1|) (-917))) (-15 -1736 ((-1165 |#1|) (-917))) (-15 -1748 ((-1165 |#1|) (-917))) (-15 -1759 ((-1165 |#1|) (-917))) (-15 -1771 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1784 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1795 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1806 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1817 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1690 ((-1165 |#1|) (-917))) (-15 -1690 ((-1165 |#1|) (-917) (-917))) (-15 -1829 ((-1165 |#1|) (-1165 |#1|))) (-15 -1840 ((-954 (-1165 |#1|)) (-1165 |#1|)))) (-349)) (T -357))
-((-1840 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1165 *4)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1690 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1817 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1806 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1795 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1784 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1771 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))))
-(-10 -7 (-15 -1656 ((-112) (-1165 |#1|))) (-15 -4002 ((-112) (-1165 |#1|))) (-15 -1667 ((-917) (-917))) (-15 -1681 ((-917) (-917))) (-15 -1696 ((-917) (-917))) (-15 -1710 ((-1165 |#1|) (-917))) (-15 -1722 ((-1165 |#1|) (-917))) (-15 -1736 ((-1165 |#1|) (-917))) (-15 -1748 ((-1165 |#1|) (-917))) (-15 -1759 ((-1165 |#1|) (-917))) (-15 -1771 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1784 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1795 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1806 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1817 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1690 ((-1165 |#1|) (-917))) (-15 -1690 ((-1165 |#1|) (-917) (-917))) (-15 -1829 ((-1165 |#1|) (-1165 |#1|))) (-15 -1840 ((-954 (-1165 |#1|)) (-1165 |#1|))))
-((-2066 (((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|) 33)))
-(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2066 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -358))
-((-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))))
-(-10 -7 (-15 -2066 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3458 (($ (-1257 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| |#1| (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| |#1| (-368)))) (-1656 (((-112) $) NIL (|has| |#1| (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| |#1| (-368)))) (-4002 (((-112) $) NIL (|has| |#1| (-368)))) (-3975 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-2196 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-2184 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2207 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| |#1| (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL (|has| |#1| (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| |#1| (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 |#1|)) NIL)) (-1586 (($) NIL (|has| |#1| (-368)))) (-2220 (($) NIL (|has| |#1| (-368)))) (-3759 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2047 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3213 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-359 |#1| |#2|) (-329 |#1|) (-349) (-917)) (T -359))
+((-1846 (((-954 (-1163 |#1|)) (-1163 |#1|)) 36)) (-3384 (((-1163 |#1|) (-915) (-915)) 112) (((-1163 |#1|) (-915)) 111)) (-1831 (((-112) (-1163 |#1|)) 84)) (-1833 (((-915) (-915)) 71)) (-1834 (((-915) (-915)) 74)) (-1832 (((-915) (-915)) 69)) (-2168 (((-112) (-1163 |#1|)) 88)) (-1841 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 100)) (-1844 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 103)) (-1843 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 102)) (-1842 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 101)) (-1840 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 97)) (-1845 (((-1163 |#1|) (-1163 |#1|)) 62)) (-1836 (((-1163 |#1|) (-915)) 106)) (-1839 (((-1163 |#1|) (-915)) 109)) (-1838 (((-1163 |#1|) (-915)) 108)) (-1837 (((-1163 |#1|) (-915)) 107)) (-1835 (((-1163 |#1|) (-915)) 104)))
+(((-356 |#1|) (-10 -7 (-15 -1831 ((-112) (-1163 |#1|))) (-15 -2168 ((-112) (-1163 |#1|))) (-15 -1832 ((-915) (-915))) (-15 -1833 ((-915) (-915))) (-15 -1834 ((-915) (-915))) (-15 -1835 ((-1163 |#1|) (-915))) (-15 -1836 ((-1163 |#1|) (-915))) (-15 -1837 ((-1163 |#1|) (-915))) (-15 -1838 ((-1163 |#1|) (-915))) (-15 -1839 ((-1163 |#1|) (-915))) (-15 -1840 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1841 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1842 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1843 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1844 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3384 ((-1163 |#1|) (-915))) (-15 -3384 ((-1163 |#1|) (-915) (-915))) (-15 -1845 ((-1163 |#1|) (-1163 |#1|))) (-15 -1846 ((-954 (-1163 |#1|)) (-1163 |#1|)))) (-350)) (T -356))
+((-1846 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-954 (-1163 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1163 *4)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-3384 (*1 *2 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1844 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-1843 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-1842 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-1841 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-1840 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
+(-10 -7 (-15 -1831 ((-112) (-1163 |#1|))) (-15 -2168 ((-112) (-1163 |#1|))) (-15 -1832 ((-915) (-915))) (-15 -1833 ((-915) (-915))) (-15 -1834 ((-915) (-915))) (-15 -1835 ((-1163 |#1|) (-915))) (-15 -1836 ((-1163 |#1|) (-915))) (-15 -1837 ((-1163 |#1|) (-915))) (-15 -1838 ((-1163 |#1|) (-915))) (-15 -1839 ((-1163 |#1|) (-915))) (-15 -1840 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1841 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1842 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1843 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -1844 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3384 ((-1163 |#1|) (-915))) (-15 -3384 ((-1163 |#1|) (-915) (-915))) (-15 -1845 ((-1163 |#1|) (-1163 |#1|))) (-15 -1846 ((-954 (-1163 |#1|)) (-1163 |#1|))))
+((-1847 ((|#1| (-1163 |#2|)) 52)))
+(((-357 |#1| |#2|) (-10 -7 (-15 -1847 (|#1| (-1163 |#2|)))) (-13 (-402) (-10 -7 (-15 -4361 (|#1| |#2|)) (-15 -2167 ((-915) |#1|)) (-15 -2169 ((-1256 |#1|) (-915))) (-15 -4343 (|#1| |#1|)))) (-350)) (T -357))
+((-1847 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-4 *2 (-13 (-402) (-10 -7 (-15 -4361 (*2 *4)) (-15 -2167 ((-915) *2)) (-15 -2169 ((-1256 *2) (-915))) (-15 -4343 (*2 *2))))) (-5 *1 (-357 *2 *4)))))
+(-10 -7 (-15 -1847 (|#1| (-1163 |#2|))))
+((-3093 (((-3 (-637 |#3|) "failed") (-637 |#3|) |#3|) 33)))
+(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3093 ((-3 (-637 |#3|) "failed") (-637 |#3|) |#3|))) (-350) (-1232 |#1|) (-1232 |#2|)) (T -358))
+((-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-350)) (-5 *1 (-358 *4 *5 *3)))))
+(-10 -7 (-15 -3093 ((-3 (-637 |#3|) "failed") (-637 |#3|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| |#1| (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-1946 (($ (-1256 |#1|)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| |#1| (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| |#1| (-368)))) (-1831 (((-112) $) NIL (|has| |#1| (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| |#1| (-368))) (((-828 (-915)) $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| |#1| (-368)))) (-2168 (((-112) $) NIL (|has| |#1| (-368)))) (-3524 ((|#1| $) NIL) (($ $ (-915)) NIL (|has| |#1| (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 |#1|) $) NIL) (((-1163 $) $ (-915)) NIL (|has| |#1| (-368)))) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-1759 (((-1163 |#1|) $) NIL (|has| |#1| (-368)))) (-1758 (((-1163 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1163 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1760 (($ $ (-1163 |#1|)) NIL (|has| |#1| (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| |#1| (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL (|has| |#1| (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| |#1| (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 |#1|)) NIL)) (-1825 (($) NIL (|has| |#1| (-368)))) (-1761 (($) NIL (|has| |#1| (-368)))) (-3632 (((-1256 |#1|) $) NIL) (((-684 |#1|) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) NIL)) (-3091 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3058 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-359 |#1| |#2|) (-329 |#1|) (-350) (-915)) (T -359))
NIL
(-329 |#1|)
-((-2455 (((-112) (-640 (-948 |#1|))) 33)) (-2478 (((-640 (-948 |#1|)) (-640 (-948 |#1|))) 45)) (-2466 (((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|))) 40)))
-(((-360 |#1| |#2|) (-10 -7 (-15 -2455 ((-112) (-640 (-948 |#1|)))) (-15 -2466 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -2478 ((-640 (-948 |#1|)) (-640 (-948 |#1|))))) (-452) (-640 (-1169))) (T -360))
-((-2478 (*1 *2 *2) (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-2466 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169))))))
-(-10 -7 (-15 -2455 ((-112) (-640 (-948 |#1|)))) (-15 -2466 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -2478 ((-640 (-948 |#1|)) (-640 (-948 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767) $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) 15)) (-1347 ((|#1| $ (-563)) NIL)) (-1357 (((-563) $ (-563)) NIL)) (-1499 (($ (-1 |#1| |#1|) $) 32)) (-1510 (($ (-1 (-563) (-563)) $) 24)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 26)) (-1693 (((-1113) $) NIL)) (-1337 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-563)))) $) 28)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) 38) (($ |#1|) NIL)) (-2253 (($) 9 T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ |#1| (-563)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -3750 ((-767) $)) (-15 -1357 ((-563) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1510 ($ (-1 (-563) (-563)) $)) (-15 -1499 ($ (-1 |#1| |#1|) $)) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-563)))) $)))) (-1093)) (T -361))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-1357 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-563))))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))))
-(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -3750 ((-767) $)) (-15 -1357 ((-563) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1510 ($ (-1 (-563) (-563)) $)) (-15 -1499 ($ (-1 |#1| |#1|) $)) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-563)))) $))))
-((-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 13)) (-3231 (($ $) 14)) (-2802 (((-418 $) $) 29)) (-2560 (((-112) $) 25)) (-2687 (($ $) 18)) (-3551 (($ $ $) 22) (($ (-640 $)) NIL)) (-2173 (((-418 $) $) 30)) (-3012 (((-3 $ "failed") $ $) 21)) (-1993 (((-767) $) 24)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 34)) (-3223 (((-112) $ $) 15)) (-1836 (($ $ $) 32)))
-(((-362 |#1|) (-10 -8 (-15 -1836 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2560 ((-112) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1993 ((-767) |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3223 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
-NIL
-(-10 -8 (-15 -1836 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2560 ((-112) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1993 ((-767) |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3223 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-3401 (((-112) $) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
+((-2379 (((-112) (-637 (-942 |#1|))) 33)) (-2381 (((-637 (-942 |#1|)) (-637 (-942 |#1|))) 45)) (-2380 (((-3 (-637 (-942 |#1|)) "failed") (-637 (-942 |#1|))) 40)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -2379 ((-112) (-637 (-942 |#1|)))) (-15 -2380 ((-3 (-637 (-942 |#1|)) "failed") (-637 (-942 |#1|)))) (-15 -2381 ((-637 (-942 |#1|)) (-637 (-942 |#1|))))) (-452) (-637 (-1169))) (T -360))
+((-2381 (*1 *2 *2) (-12 (-5 *2 (-637 (-942 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-637 (-1169))))) (-2380 (*1 *2 *2) (|partial| -12 (-5 *2 (-637 (-942 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-637 (-1169))))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-637 (-1169))))))
+(-10 -7 (-15 -2379 ((-112) (-637 (-942 |#1|)))) (-15 -2380 ((-3 (-637 (-942 |#1|)) "failed") (-637 (-942 |#1|)))) (-15 -2381 ((-637 (-942 |#1|)) (-637 (-942 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767) $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) 15)) (-2819 ((|#1| $ (-546)) NIL)) (-2820 (((-546) $ (-546)) NIL)) (-2417 (($ (-1 |#1| |#1|) $) 32)) (-2418 (($ (-1 (-546) (-546)) $) 24)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 26)) (-3651 (((-1113) $) NIL)) (-2818 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-546)))) $) 28)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) 38) (($ |#1|) NIL)) (-3053 (($) 9 T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL) (($ |#1| (-546)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-546))) (-15 -3528 ((-767) $)) (-15 -2820 ((-546) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2418 ($ (-1 (-546) (-546)) $)) (-15 -2417 ($ (-1 |#1| |#1|) $)) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-546)))) $)))) (-1094)) (T -361))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2820 (*1 *2 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-546) (-546))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-546))))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))))
+(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-546))) (-15 -3528 ((-767) $)) (-15 -2820 ((-546) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2418 ($ (-1 (-546) (-546)) $)) (-15 -2417 ($ (-1 |#1| |#1|) $)) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-546)))) $))))
+((-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 13)) (-2220 (($ $) 14)) (-4384 (((-405 $) $) 29)) (-4138 (((-112) $) 25)) (-2785 (($ $) 18)) (-3552 (($ $ $) 22) (($ (-637 $)) NIL)) (-4147 (((-405 $) $) 30)) (-3872 (((-3 $ "failed") $ $) 21)) (-1739 (((-767) $) 24)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 34)) (-2219 (((-112) $ $) 15)) (-4364 (($ $ $) 32)))
+(((-362 |#1|) (-10 -8 (-15 -4364 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4138 ((-112) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1739 ((-767) |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|)) (-15 -2219 ((-112) |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
+NIL
+(-10 -8 (-15 -4364 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4138 ((-112) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1739 ((-767) |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|)) (-15 -2219 ((-112) |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-2552 (((-112) $) 31)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
(((-363) (-140)) (T -363))
-((-1836 (*1 *1 *1 *1) (-4 *1 (-363))))
-(-13 (-307) (-1212) (-243) (-10 -8 (-15 -1836 ($ $ $)) (-6 -4406) (-6 -4400)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-1677 (((-112) $ $) 7)) (-1862 ((|#2| $ |#2|) 13)) (-1905 (($ $ (-1151)) 18)) (-1872 ((|#2| $) 14)) (-3409 (($ |#1|) 20) (($ |#1| (-1151)) 19)) (-3352 ((|#1| $) 16)) (-3854 (((-1151) $) 9)) (-1883 (((-1151) $) 15)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1895 (($ $) 17)) (-1718 (((-112) $ $) 6)))
-(((-364 |#1| |#2|) (-140) (-1093) (-1093)) (T -364))
-((-3409 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093)) (-4 *4 (-1093)))) (-1905 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1895 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-1151)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1862 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -3409 ($ |t#1|)) (-15 -3409 ($ |t#1| (-1151))) (-15 -1905 ($ $ (-1151))) (-15 -1895 ($ $)) (-15 -3352 (|t#1| $)) (-15 -1883 ((-1151) $)) (-15 -1872 (|t#2| $)) (-15 -1862 (|t#2| $ |t#2|))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-1862 ((|#1| $ |#1|) 30)) (-1905 (($ $ (-1151)) 22)) (-2765 (((-3 |#1| "failed") $) 29)) (-1872 ((|#1| $) 27)) (-3409 (($ (-388)) 21) (($ (-388) (-1151)) 20)) (-3352 (((-388) $) 24)) (-3854 (((-1151) $) NIL)) (-1883 (((-1151) $) 25)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19)) (-1895 (($ $) 23)) (-1718 (((-112) $ $) 18)))
-(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -2765 ((-3 |#1| "failed") $)))) (-1093)) (T -365))
-((-2765 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093)))))
-(-13 (-364 (-388) |#1|) (-10 -8 (-15 -2765 ((-3 |#1| "failed") $))))
-((-3749 (((-1257 (-684 |#2|)) (-1257 $)) 61)) (-3410 (((-684 |#2|) (-1257 $)) 120)) (-4017 ((|#2| $) 32)) (-3386 (((-684 |#2|) $ (-1257 $)) 123)) (-3342 (((-3 $ "failed") $) 75)) (-3995 ((|#2| $) 35)) (-1938 (((-1165 |#2|) $) 83)) (-3436 ((|#2| (-1257 $)) 106)) (-3973 (((-1165 |#2|) $) 28)) (-3912 (((-112)) 100)) (-3458 (($ (-1257 |#2|) (-1257 $)) 113)) (-3951 (((-3 $ "failed") $) 79)) (-3843 (((-112)) 95)) (-3825 (((-112)) 90)) (-3861 (((-112)) 53)) (-3422 (((-684 |#2|) (-1257 $)) 118)) (-4028 ((|#2| $) 31)) (-3398 (((-684 |#2|) $ (-1257 $)) 122)) (-3353 (((-3 $ "failed") $) 73)) (-4007 ((|#2| $) 34)) (-3801 (((-1165 |#2|) $) 82)) (-3447 ((|#2| (-1257 $)) 104)) (-3984 (((-1165 |#2|) $) 26)) (-3923 (((-112)) 99)) (-3832 (((-112)) 92)) (-3852 (((-112)) 51)) (-3868 (((-112)) 87)) (-3900 (((-112)) 101)) (-3759 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 111)) (-3963 (((-112)) 97)) (-3813 (((-640 (-1257 |#2|))) 86)) (-3942 (((-112)) 98)) (-3952 (((-112)) 96)) (-3933 (((-112)) 46)) (-3891 (((-112)) 102)))
-(((-366 |#1| |#2|) (-10 -8 (-15 -1938 ((-1165 |#2|) |#1|)) (-15 -3801 ((-1165 |#2|) |#1|)) (-15 -3813 ((-640 (-1257 |#2|)))) (-15 -3342 ((-3 |#1| "failed") |#1|)) (-15 -3353 ((-3 |#1| "failed") |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 -3825 ((-112))) (-15 -3832 ((-112))) (-15 -3843 ((-112))) (-15 -3852 ((-112))) (-15 -3861 ((-112))) (-15 -3868 ((-112))) (-15 -3891 ((-112))) (-15 -3900 ((-112))) (-15 -3912 ((-112))) (-15 -3923 ((-112))) (-15 -3933 ((-112))) (-15 -3942 ((-112))) (-15 -3952 ((-112))) (-15 -3963 ((-112))) (-15 -3973 ((-1165 |#2|) |#1|)) (-15 -3984 ((-1165 |#2|) |#1|)) (-15 -3410 ((-684 |#2|) (-1257 |#1|))) (-15 -3422 ((-684 |#2|) (-1257 |#1|))) (-15 -3436 (|#2| (-1257 |#1|))) (-15 -3447 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3995 (|#2| |#1|)) (-15 -4007 (|#2| |#1|)) (-15 -4017 (|#2| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3386 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3398 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3749 ((-1257 (-684 |#2|)) (-1257 |#1|)))) (-367 |#2|) (-172)) (T -366))
-((-3963 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3952 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3942 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3933 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3923 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3912 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3900 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3891 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3868 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3861 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3852 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3843 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3832 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3825 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3813 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
-(-10 -8 (-15 -1938 ((-1165 |#2|) |#1|)) (-15 -3801 ((-1165 |#2|) |#1|)) (-15 -3813 ((-640 (-1257 |#2|)))) (-15 -3342 ((-3 |#1| "failed") |#1|)) (-15 -3353 ((-3 |#1| "failed") |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 -3825 ((-112))) (-15 -3832 ((-112))) (-15 -3843 ((-112))) (-15 -3852 ((-112))) (-15 -3861 ((-112))) (-15 -3868 ((-112))) (-15 -3891 ((-112))) (-15 -3900 ((-112))) (-15 -3912 ((-112))) (-15 -3923 ((-112))) (-15 -3933 ((-112))) (-15 -3942 ((-112))) (-15 -3952 ((-112))) (-15 -3963 ((-112))) (-15 -3973 ((-1165 |#2|) |#1|)) (-15 -3984 ((-1165 |#2|) |#1|)) (-15 -3410 ((-684 |#2|) (-1257 |#1|))) (-15 -3422 ((-684 |#2|) (-1257 |#1|))) (-15 -3436 (|#2| (-1257 |#1|))) (-15 -3447 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3995 (|#2| |#1|)) (-15 -4007 (|#2| |#1|)) (-15 -4017 (|#2| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3386 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3398 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3749 ((-1257 (-684 |#2|)) (-1257 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3245 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) 19)) (-3749 (((-1257 (-684 |#1|)) (-1257 $)) 78)) (-4039 (((-1257 $)) 81)) (-2569 (($) 17 T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-1914 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-3410 (((-684 |#1|) (-1257 $)) 65)) (-4017 ((|#1| $) 74)) (-3386 (((-684 |#1|) $ (-1257 $)) 76)) (-3342 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-3376 (($ $ (-917)) 28)) (-3995 ((|#1| $) 72)) (-1938 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-3436 ((|#1| (-1257 $)) 67)) (-3973 (((-1165 |#1|) $) 63)) (-3912 (((-112)) 57)) (-3458 (($ (-1257 |#1|) (-1257 $)) 69)) (-3951 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-2521 (((-917)) 80)) (-3879 (((-112)) 54)) (-3617 (($ $ (-917)) 33)) (-3843 (((-112)) 50)) (-3825 (((-112)) 48)) (-3861 (((-112)) 52)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-1927 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-3422 (((-684 |#1|) (-1257 $)) 66)) (-4028 ((|#1| $) 75)) (-3398 (((-684 |#1|) $ (-1257 $)) 77)) (-3353 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-3364 (($ $ (-917)) 29)) (-4007 ((|#1| $) 73)) (-3801 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-3447 ((|#1| (-1257 $)) 68)) (-3984 (((-1165 |#1|) $) 64)) (-3923 (((-112)) 58)) (-3854 (((-1151) $) 9)) (-3832 (((-112)) 49)) (-3852 (((-112)) 51)) (-3868 (((-112)) 53)) (-1693 (((-1113) $) 10)) (-3900 (((-112)) 56)) (-3759 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70)) (-2122 (((-640 (-948 |#1|)) (-1257 $)) 79)) (-1745 (($ $ $) 25)) (-3963 (((-112)) 62)) (-1692 (((-858) $) 11)) (-3813 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-1756 (($ $ $ $) 26)) (-3942 (((-112)) 60)) (-1729 (($ $ $) 24)) (-3952 (((-112)) 61)) (-3933 (((-112)) 59)) (-3891 (((-112)) 55)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4364 (*1 *1 *1 *1) (-4 *1 (-363))))
+(-13 (-307) (-1212) (-243) (-10 -8 (-15 -4364 ($ $ $)) (-6 -4406) (-6 -4400)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-2953 (((-112) $ $) NIL)) (-1848 ((|#1| $ |#1|) 30)) (-1852 (($ $ (-1151)) 22)) (-4034 (((-3 |#1| "failed") $) 29)) (-1849 ((|#1| $) 27)) (-1853 (($ (-388)) 21) (($ (-388) (-1151)) 20)) (-3956 (((-388) $) 24)) (-3650 (((-1151) $) NIL)) (-1850 (((-1151) $) 25)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19)) (-1851 (($ $) 23)) (-3444 (((-112) $ $) 18)))
+(((-364 |#1|) (-13 (-365 (-388) |#1|) (-10 -8 (-15 -4034 ((-3 |#1| "failed") $)))) (-1094)) (T -364))
+((-4034 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1094)))))
+(-13 (-365 (-388) |#1|) (-10 -8 (-15 -4034 ((-3 |#1| "failed") $))))
+((-2953 (((-112) $ $) 7)) (-1848 ((|#2| $ |#2|) 13)) (-1852 (($ $ (-1151)) 18)) (-1849 ((|#2| $) 14)) (-1853 (($ |#1|) 20) (($ |#1| (-1151)) 19)) (-3956 ((|#1| $) 16)) (-3650 (((-1151) $) 9)) (-1850 (((-1151) $) 15)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-1851 (($ $) 17)) (-3444 (((-112) $ $) 6)))
+(((-365 |#1| |#2|) (-140) (-1094) (-1094)) (T -365))
+((-1853 (*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1853 (*1 *1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *1 (-365 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-365 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1851 (*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1151)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1848 (*1 *2 *1 *2) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -1853 ($ |t#1|)) (-15 -1853 ($ |t#1| (-1151))) (-15 -1852 ($ $ (-1151))) (-15 -1851 ($ $)) (-15 -3956 (|t#1| $)) (-15 -1850 ((-1151) $)) (-15 -1849 (|t#2| $)) (-15 -1848 (|t#2| $ |t#2|))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3631 (((-1256 (-684 |#2|)) (-1256 $)) 61)) (-1942 (((-684 |#2|) (-1256 $)) 120)) (-1878 ((|#2| $) 32)) (-1940 (((-684 |#2|) $ (-1256 $)) 123)) (-2546 (((-3 $ "failed") $) 75)) (-1876 ((|#2| $) 35)) (-1856 (((-1163 |#2|) $) 83)) (-1944 ((|#2| (-1256 $)) 106)) (-1874 (((-1163 |#2|) $) 28)) (-1868 (((-112)) 100)) (-1946 (($ (-1256 |#2|) (-1256 $)) 113)) (-3873 (((-3 $ "failed") $) 79)) (-1861 (((-112)) 95)) (-1859 (((-112)) 90)) (-1863 (((-112)) 53)) (-1943 (((-684 |#2|) (-1256 $)) 118)) (-1879 ((|#2| $) 31)) (-1941 (((-684 |#2|) $ (-1256 $)) 122)) (-2547 (((-3 $ "failed") $) 73)) (-1877 ((|#2| $) 34)) (-1857 (((-1163 |#2|) $) 82)) (-1945 ((|#2| (-1256 $)) 104)) (-1875 (((-1163 |#2|) $) 26)) (-1869 (((-112)) 99)) (-1860 (((-112)) 92)) (-1862 (((-112)) 51)) (-1864 (((-112)) 87)) (-1867 (((-112)) 101)) (-3632 (((-1256 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) (-1256 $) (-1256 $)) 111)) (-1873 (((-112)) 97)) (-1858 (((-637 (-1256 |#2|))) 86)) (-1871 (((-112)) 98)) (-1872 (((-112)) 96)) (-1870 (((-112)) 46)) (-1866 (((-112)) 102)))
+(((-366 |#1| |#2|) (-10 -8 (-15 -1856 ((-1163 |#2|) |#1|)) (-15 -1857 ((-1163 |#2|) |#1|)) (-15 -1858 ((-637 (-1256 |#2|)))) (-15 -2546 ((-3 |#1| "failed") |#1|)) (-15 -2547 ((-3 |#1| "failed") |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-112))) (-15 -1868 ((-112))) (-15 -1869 ((-112))) (-15 -1870 ((-112))) (-15 -1871 ((-112))) (-15 -1872 ((-112))) (-15 -1873 ((-112))) (-15 -1874 ((-1163 |#2|) |#1|)) (-15 -1875 ((-1163 |#2|) |#1|)) (-15 -1942 ((-684 |#2|) (-1256 |#1|))) (-15 -1943 ((-684 |#2|) (-1256 |#1|))) (-15 -1944 (|#2| (-1256 |#1|))) (-15 -1945 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1876 (|#2| |#1|)) (-15 -1877 (|#2| |#1|)) (-15 -1878 (|#2| |#1|)) (-15 -1879 (|#2| |#1|)) (-15 -1940 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -1941 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -3631 ((-1256 (-684 |#2|)) (-1256 |#1|)))) (-367 |#2|) (-172)) (T -366))
+((-1873 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1872 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1871 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1870 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1869 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1868 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1867 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1866 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1864 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1863 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1862 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1861 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1860 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1859 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1858 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-637 (-1256 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
+(-10 -8 (-15 -1856 ((-1163 |#2|) |#1|)) (-15 -1857 ((-1163 |#2|) |#1|)) (-15 -1858 ((-637 (-1256 |#2|)))) (-15 -2546 ((-3 |#1| "failed") |#1|)) (-15 -2547 ((-3 |#1| "failed") |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-112))) (-15 -1868 ((-112))) (-15 -1869 ((-112))) (-15 -1870 ((-112))) (-15 -1871 ((-112))) (-15 -1872 ((-112))) (-15 -1873 ((-112))) (-15 -1874 ((-1163 |#2|) |#1|)) (-15 -1875 ((-1163 |#2|) |#1|)) (-15 -1942 ((-684 |#2|) (-1256 |#1|))) (-15 -1943 ((-684 |#2|) (-1256 |#1|))) (-15 -1944 (|#2| (-1256 |#1|))) (-15 -1945 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1876 (|#2| |#1|)) (-15 -1877 (|#2| |#1|)) (-15 -1878 (|#2| |#1|)) (-15 -1879 (|#2| |#1|)) (-15 -1940 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -1941 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -3631 ((-1256 (-684 |#2|)) (-1256 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1927 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) 19)) (-3631 (((-1256 (-684 |#1|)) (-1256 $)) 78)) (-1880 (((-1256 $)) 81)) (-4139 (($) 17 T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed")) 40 (|has| |#1| (-556)))) (-1854 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-1942 (((-684 |#1|) (-1256 $)) 65)) (-1878 ((|#1| $) 74)) (-1940 (((-684 |#1|) $ (-1256 $)) 76)) (-2546 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-2549 (($ $ (-915)) 28)) (-1876 ((|#1| $) 72)) (-1856 (((-1163 |#1|) $) 42 (|has| |#1| (-556)))) (-1944 ((|#1| (-1256 $)) 67)) (-1874 (((-1163 |#1|) $) 63)) (-1868 (((-112)) 57)) (-1946 (($ (-1256 |#1|) (-1256 $)) 69)) (-3873 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3501 (((-915)) 80)) (-1865 (((-112)) 54)) (-2573 (($ $ (-915)) 33)) (-1861 (((-112)) 50)) (-1859 (((-112)) 48)) (-1863 (((-112)) 52)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed")) 41 (|has| |#1| (-556)))) (-1855 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-1943 (((-684 |#1|) (-1256 $)) 66)) (-1879 ((|#1| $) 75)) (-1941 (((-684 |#1|) $ (-1256 $)) 77)) (-2547 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-2548 (($ $ (-915)) 29)) (-1877 ((|#1| $) 73)) (-1857 (((-1163 |#1|) $) 43 (|has| |#1| (-556)))) (-1945 ((|#1| (-1256 $)) 68)) (-1875 (((-1163 |#1|) $) 64)) (-1869 (((-112)) 58)) (-3650 (((-1151) $) 9)) (-1860 (((-112)) 49)) (-1862 (((-112)) 51)) (-1864 (((-112)) 53)) (-3651 (((-1113) $) 10)) (-1867 (((-112)) 56)) (-3632 (((-1256 |#1|) $ (-1256 $)) 71) (((-684 |#1|) (-1256 $) (-1256 $)) 70)) (-2049 (((-637 (-942 |#1|)) (-1256 $)) 79)) (-2735 (($ $ $) 25)) (-1873 (((-112)) 62)) (-4361 (((-859) $) 11)) (-1858 (((-637 (-1256 |#1|))) 44 (|has| |#1| (-556)))) (-2736 (($ $ $ $) 26)) (-1871 (((-112)) 60)) (-2734 (($ $ $) 24)) (-1872 (((-112)) 61)) (-1870 (((-112)) 59)) (-1866 (((-112)) 55)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 30)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-367 |#1|) (-140) (-172)) (T -367))
-((-4039 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3)))) (-2521 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))))) (-3398 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 *4)))) (-3759 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-3963 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3952 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3942 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3933 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3923 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3912 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3900 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3891 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3879 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3868 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3861 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3852 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3843 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3832 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3825 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3951 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3353 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3342 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3813 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-640 (-1257 *3))))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-2299 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-640 *1)))) (-4 *1 (-367 *3)))) (-2288 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-640 *1)))) (-4 *1 (-367 *3)))) (-1927 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-1914 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-3245 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))))
-(-13 (-740 |t#1|) (-10 -8 (-15 -4039 ((-1257 $))) (-15 -2521 ((-917))) (-15 -2122 ((-640 (-948 |t#1|)) (-1257 $))) (-15 -3749 ((-1257 (-684 |t#1|)) (-1257 $))) (-15 -3398 ((-684 |t#1|) $ (-1257 $))) (-15 -3386 ((-684 |t#1|) $ (-1257 $))) (-15 -4028 (|t#1| $)) (-15 -4017 (|t#1| $)) (-15 -4007 (|t#1| $)) (-15 -3995 (|t#1| $)) (-15 -3759 ((-1257 |t#1|) $ (-1257 $))) (-15 -3759 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -3458 ($ (-1257 |t#1|) (-1257 $))) (-15 -3447 (|t#1| (-1257 $))) (-15 -3436 (|t#1| (-1257 $))) (-15 -3422 ((-684 |t#1|) (-1257 $))) (-15 -3410 ((-684 |t#1|) (-1257 $))) (-15 -3984 ((-1165 |t#1|) $)) (-15 -3973 ((-1165 |t#1|) $)) (-15 -3963 ((-112))) (-15 -3952 ((-112))) (-15 -3942 ((-112))) (-15 -3933 ((-112))) (-15 -3923 ((-112))) (-15 -3912 ((-112))) (-15 -3900 ((-112))) (-15 -3891 ((-112))) (-15 -3879 ((-112))) (-15 -3868 ((-112))) (-15 -3861 ((-112))) (-15 -3852 ((-112))) (-15 -3843 ((-112))) (-15 -3832 ((-112))) (-15 -3825 ((-112))) (IF (|has| |t#1| (-555)) (PROGN (-15 -3951 ((-3 $ "failed") $)) (-15 -3353 ((-3 $ "failed") $)) (-15 -3342 ((-3 $ "failed") $)) (-15 -3813 ((-640 (-1257 |t#1|)))) (-15 -3801 ((-1165 |t#1|) $)) (-15 -1938 ((-1165 |t#1|) $)) (-15 -2299 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -2288 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -1927 ((-3 $ "failed"))) (-15 -1914 ((-3 $ "failed"))) (-15 -3245 ((-3 $ "failed"))) (-6 -4405)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3750 (((-767)) 16)) (-1690 (($) 13)) (-3990 (((-917) $) 14)) (-3854 (((-1151) $) 9)) (-2552 (($ (-917)) 15)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
+((-1880 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1256 *1)) (-4 *1 (-367 *3)))) (-3501 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-915)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-637 (-942 *4))))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1256 (-684 *4))))) (-1941 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1940 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3632 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1256 *4)))) (-3632 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1163 *3)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1163 *3)))) (-1873 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1872 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1871 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1870 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1869 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1868 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1867 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1866 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1865 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1864 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1863 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1862 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1861 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1860 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1859 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3873 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2547 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2546 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1858 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-637 (-1256 *3))))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1163 *3)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1163 *3)))) (-2064 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2169 (-637 *1)))) (-4 *1 (-367 *3)))) (-2063 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2169 (-637 *1)))) (-4 *1 (-367 *3)))) (-1855 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1854 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1927 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(-13 (-740 |t#1|) (-10 -8 (-15 -1880 ((-1256 $))) (-15 -3501 ((-915))) (-15 -2049 ((-637 (-942 |t#1|)) (-1256 $))) (-15 -3631 ((-1256 (-684 |t#1|)) (-1256 $))) (-15 -1941 ((-684 |t#1|) $ (-1256 $))) (-15 -1940 ((-684 |t#1|) $ (-1256 $))) (-15 -1879 (|t#1| $)) (-15 -1878 (|t#1| $)) (-15 -1877 (|t#1| $)) (-15 -1876 (|t#1| $)) (-15 -3632 ((-1256 |t#1|) $ (-1256 $))) (-15 -3632 ((-684 |t#1|) (-1256 $) (-1256 $))) (-15 -1946 ($ (-1256 |t#1|) (-1256 $))) (-15 -1945 (|t#1| (-1256 $))) (-15 -1944 (|t#1| (-1256 $))) (-15 -1943 ((-684 |t#1|) (-1256 $))) (-15 -1942 ((-684 |t#1|) (-1256 $))) (-15 -1875 ((-1163 |t#1|) $)) (-15 -1874 ((-1163 |t#1|) $)) (-15 -1873 ((-112))) (-15 -1872 ((-112))) (-15 -1871 ((-112))) (-15 -1870 ((-112))) (-15 -1869 ((-112))) (-15 -1868 ((-112))) (-15 -1867 ((-112))) (-15 -1866 ((-112))) (-15 -1865 ((-112))) (-15 -1864 ((-112))) (-15 -1863 ((-112))) (-15 -1862 ((-112))) (-15 -1861 ((-112))) (-15 -1860 ((-112))) (-15 -1859 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -3873 ((-3 $ "failed") $)) (-15 -2547 ((-3 $ "failed") $)) (-15 -2546 ((-3 $ "failed") $)) (-15 -1858 ((-637 (-1256 |t#1|)))) (-15 -1857 ((-1163 |t#1|) $)) (-15 -1856 ((-1163 |t#1|) $)) (-15 -2064 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -2063 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -1855 ((-3 $ "failed"))) (-15 -1854 ((-3 $ "failed"))) (-15 -1927 ((-3 $ "failed"))) (-6 -4405)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3528 (((-767)) 16)) (-3384 (($) 13)) (-2167 (((-915) $) 14)) (-3650 (((-1151) $) 9)) (-2542 (($ (-915)) 15)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
(((-368) (-140)) (T -368))
-((-3750 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) (-1690 (*1 *1) (-4 *1 (-368))))
-(-13 (-1093) (-10 -8 (-15 -3750 ((-767))) (-15 -2552 ($ (-917))) (-15 -3990 ((-917) $)) (-15 -1690 ($))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-3340 (((-684 |#2|) (-1257 $)) 40)) (-3458 (($ (-1257 |#2|) (-1257 $)) 34)) (-3330 (((-684 |#2|) $ (-1257 $)) 42)) (-1623 ((|#2| (-1257 $)) 13)) (-3759 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 25)))
-(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3340 ((-684 |#2|) (-1257 |#1|))) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3330 ((-684 |#2|) |#1| (-1257 |#1|)))) (-370 |#2| |#3|) (-172) (-1233 |#2|)) (T -369))
-NIL
-(-10 -8 (-15 -3340 ((-684 |#2|) (-1257 |#1|))) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3330 ((-684 |#2|) |#1| (-1257 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3340 (((-684 |#1|) (-1257 $)) 47)) (-1731 ((|#1| $) 53)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3458 (($ (-1257 |#1|) (-1257 $)) 49)) (-3330 (((-684 |#1|) $ (-1257 $)) 54)) (-3951 (((-3 $ "failed") $) 33)) (-2521 (((-917)) 55)) (-3401 (((-112) $) 31)) (-3975 ((|#1| $) 52)) (-4035 ((|#2| $) 45 (|has| |#1| (-363)))) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1623 ((|#1| (-1257 $)) 48)) (-3759 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-2047 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1892 ((|#2| $) 46)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-370 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -370))
-((-2521 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-917)))) (-3330 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4)))) (-3759 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2)) (-4 *2 (-172)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1233 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -2521 ((-917))) (-15 -3330 ((-684 |t#1|) $ (-1257 $))) (-15 -1731 (|t#1| $)) (-15 -3975 (|t#1| $)) (-15 -3759 ((-1257 |t#1|) $ (-1257 $))) (-15 -3759 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -3458 ($ (-1257 |t#1|) (-1257 $))) (-15 -1623 (|t#1| (-1257 $))) (-15 -3340 ((-684 |t#1|) (-1257 $))) (-15 -1892 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -4035 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-4132 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2444 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2238 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4132 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1208) (-373 |#1|) (-1208) (-373 |#3|)) (T -371))
-((-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4132 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4073 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4052 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1640 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4383 (($ $) 25)) (-4369 (((-563) (-1 (-112) |#2|) $) NIL) (((-563) |#2| $) 11) (((-563) |#2| $ (-563)) NIL)) (-4300 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-372 |#1| |#2|) (-10 -8 (-15 -4052 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4383 (|#1| |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1208)) (T -372))
-NIL
-(-10 -8 (-15 -4052 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4383 (|#1| |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-4369 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 70)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-373 |#1|) (-140) (-1208)) (T -373))
-((-4300 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-4383 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-4073 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-4369 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-563)))) (-4369 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-563)))) (-4369 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)))) (-4300 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-1640 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112)))) (-4062 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-1574 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-4052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-4052 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))))
-(-13 (-646 |t#1|) (-10 -8 (-6 -4408) (-15 -4300 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4383 ($ $)) (-15 -1640 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4073 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4369 ((-563) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -4369 ((-563) |t#1| $)) (-15 -4369 ((-563) |t#1| $ (-563)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -4300 ($ $ $)) (-15 -1640 ($ $)) (-15 -4073 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -4062 ($ $ $ (-563))) (-15 -1574 ($ $)) (-15 -4052 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -4052 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3994 (((-640 |#1|) $) 32)) (-3862 (($ $ (-767)) 33)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3817 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 36)) (-3794 (($ $) 34)) (-3828 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 37)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1542 (($ $ |#1| $) 31) (($ $ (-640 |#1|) (-640 $)) 30)) (-3871 (((-767) $) 38)) (-1706 (($ $ $) 29)) (-1692 (((-858) $) 11) (($ |#1|) 41) (((-1272 |#1| |#2|) $) 40) (((-1281 |#1| |#2|) $) 39)) (-2310 ((|#2| (-1281 |#1| |#2|) $) 42)) (-2239 (($) 18 T CONST)) (-4084 (($ (-667 |#1|)) 35)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3528 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-368)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-915)))) (-3384 (*1 *1) (-4 *1 (-368))))
+(-13 (-1094) (-10 -8 (-15 -3528 ((-767))) (-15 -2542 ($ (-915))) (-15 -2167 ((-915) $)) (-15 -3384 ($))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-1936 (((-684 |#2|) (-1256 $)) 40)) (-1946 (($ (-1256 |#2|) (-1256 $)) 34)) (-1935 (((-684 |#2|) $ (-1256 $)) 42)) (-4172 ((|#2| (-1256 $)) 13)) (-3632 (((-1256 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) (-1256 $) (-1256 $)) 25)))
+(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -1936 ((-684 |#2|) (-1256 |#1|))) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1935 ((-684 |#2|) |#1| (-1256 |#1|)))) (-370 |#2| |#3|) (-172) (-1232 |#2|)) (T -369))
+NIL
+(-10 -8 (-15 -1936 ((-684 |#2|) (-1256 |#1|))) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1935 ((-684 |#2|) |#1| (-1256 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1936 (((-684 |#1|) (-1256 $)) 47)) (-3741 ((|#1| $) 53)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-1946 (($ (-1256 |#1|) (-1256 $)) 49)) (-1935 (((-684 |#1|) $ (-1256 $)) 54)) (-3873 (((-3 $ "failed") $) 33)) (-3501 (((-915)) 55)) (-2552 (((-112) $) 31)) (-3524 ((|#1| $) 52)) (-2171 ((|#2| $) 45 (|has| |#1| (-363)))) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4172 ((|#1| (-1256 $)) 48)) (-3632 (((-1256 |#1|) $ (-1256 $)) 51) (((-684 |#1|) (-1256 $) (-1256 $)) 50)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38)) (-3091 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2749 ((|#2| $) 46)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-370 |#1| |#2|) (-140) (-172) (-1232 |t#1|)) (T -370))
+((-3501 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-915)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172)))) (-3632 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4)))) (-3632 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1232 *4)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1232 *2)) (-4 *2 (-172)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1232 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3501 ((-915))) (-15 -1935 ((-684 |t#1|) $ (-1256 $))) (-15 -3741 (|t#1| $)) (-15 -3524 (|t#1| $)) (-15 -3632 ((-1256 |t#1|) $ (-1256 $))) (-15 -3632 ((-684 |t#1|) (-1256 $) (-1256 $))) (-15 -1946 ($ (-1256 |t#1|) (-1256 $))) (-15 -4172 (|t#1| (-1256 $))) (-15 -1936 ((-684 |t#1|) (-1256 $))) (-15 -2749 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2171 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-1883 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1881 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3299 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2424 (($ $) 25)) (-3830 (((-546) (-1 (-112) |#2|) $) NIL) (((-546) |#2| $) 11) (((-546) |#2| $ (-546)) NIL)) (-3924 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-371 |#1| |#2|) (-10 -8 (-15 -1881 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 ((-112) |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3299 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1207)) (T -371))
+NIL
+(-10 -8 (-15 -1881 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 ((-112) |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3299 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-3830 (((-546) (-1 (-112) |#1|) $) 97) (((-546) |#1| $) 96 (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) 95 (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 70)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 82 (|has| |#1| (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-372 |#1|) (-140) (-1207)) (T -372))
+((-3924 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-3299 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-3830 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-546)))) (-3830 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-546)))) (-3830 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846)))) (-3299 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-846)) (-5 *2 (-112)))) (-1882 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-546)) (|has| *1 (-6 -4409)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2423 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-1881 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846)))))
+(-13 (-646 |t#1|) (-10 -8 (-6 -4408) (-15 -3924 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2424 ($ $)) (-15 -3299 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1883 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3830 ((-546) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3830 ((-546) |t#1| $)) (-15 -3830 ((-546) |t#1| $ (-546)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -3924 ($ $ $)) (-15 -3299 ($ $)) (-15 -1883 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -1882 ($ $ $ (-546))) (-15 -2423 ($ $)) (-15 -1881 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -1881 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1207) . T))
+((-4256 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4257 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4373 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4257 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1207) (-372 |#1|) (-1207) (-372 |#3|)) (T -373))
+((-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-4 *2 (-372 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *2 (-372 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-372 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4257 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4349 (((-637 |#1|) $) 32)) (-4362 (($ $ (-767)) 33)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4354 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 36)) (-4351 (($ $) 34)) (-4355 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 37)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4182 (($ $ |#1| $) 31) (($ $ (-637 |#1|) (-637 $)) 30)) (-4363 (((-767) $) 38)) (-3936 (($ $ $) 29)) (-4361 (((-859) $) 11) (($ |#1|) 41) (((-1272 |#1| |#2|) $) 40) (((-1281 |#1| |#2|) $) 39)) (-4369 ((|#2| (-1281 |#1| |#2|) $) 42)) (-3047 (($) 18 T CONST)) (-1884 (($ (-667 |#1|)) 35)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-374 |#1| |#2|) (-140) (-846) (-172)) (T -374))
-((-2310 (*1 *2 *3 *1) (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-1692 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1272 *3 *4)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1281 *3 *4)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-3828 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3817 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4084 (*1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-640 *3)))) (-1542 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172)))))
-(-13 (-631 |t#2|) (-10 -8 (-15 -2310 (|t#2| (-1281 |t#1| |t#2|) $)) (-15 -1692 ($ |t#1|)) (-15 -1692 ((-1272 |t#1| |t#2|) $)) (-15 -1692 ((-1281 |t#1| |t#2|) $)) (-15 -3871 ((-767) $)) (-15 -3828 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -3817 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -4084 ($ (-667 |t#1|))) (-15 -3794 ($ $)) (-15 -3862 ($ $ (-767))) (-15 -3994 ((-640 |t#1|) $)) (-15 -1542 ($ $ |t#1| $)) (-15 -1542 ($ $ (-640 |t#1|) (-640 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-631 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1093) . T))
-((-4118 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-4095 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4107 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -4095 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4107 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4118 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1208) (-13 (-373 |#1|) (-10 -7 (-6 -4409)))) (T -375))
-((-4118 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))) (-4107 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))) (-4095 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))))
-(-10 -7 (-15 -4095 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4107 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4118 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1476 (((-684 |#2|) (-684 $)) NIL) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 22) (((-684 (-563)) (-684 $)) 14)))
-(((-376 |#1| |#2|) (-10 -8 (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 |#2|) (-684 |#1|)))) (-377 |#2|) (-1045)) (T -376))
-NIL
-(-10 -8 (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 |#2|) (-684 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-1476 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 43 (|has| |#1| (-636 (-563)))) (((-684 (-563)) (-684 $)) 42 (|has| |#1| (-636 (-563))))) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-4369 (*1 *2 *3 *1) (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-4361 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1272 *3 *4)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1281 *3 *4)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-4355 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4354 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-4351 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-4362 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-637 *3)))) (-4182 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172)))))
+(-13 (-632 |t#2|) (-10 -8 (-15 -4369 (|t#2| (-1281 |t#1| |t#2|) $)) (-15 -4361 ($ |t#1|)) (-15 -4361 ((-1272 |t#1| |t#2|) $)) (-15 -4361 ((-1281 |t#1| |t#2|) $)) (-15 -4363 ((-767) $)) (-15 -4355 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -4354 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -1884 ($ (-667 |t#1|))) (-15 -4351 ($ $)) (-15 -4362 ($ $ (-767))) (-15 -4349 ((-637 |t#1|) $)) (-15 -4182 ($ $ |t#1| $)) (-15 -4182 ($ $ (-637 |t#1|) (-637 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#2|) . T) ((-632 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1094) . T))
+((-1887 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-1885 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1886 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -1885 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1886 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1887 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1207) (-13 (-372 |#1|) (-10 -7 (-6 -4409)))) (T -375))
+((-1887 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))) (-1886 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))) (-1885 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))))
+(-10 -7 (-15 -1885 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1886 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1887 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2408 (((-684 |#2|) (-684 $)) NIL) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 22) (((-684 (-546)) (-684 $)) 14)))
+(((-376 |#1| |#2|) (-10 -8 (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 |#2|) (-684 |#1|)))) (-377 |#2|) (-1045)) (T -376))
+NIL
+(-10 -8 (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 |#2|) (-684 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2408 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 35) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 43 (|has| |#1| (-636 (-546)))) (((-684 (-546)) (-684 $)) 42 (|has| |#1| (-636 (-546))))) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-377 |#1|) (-140) (-1045)) (T -377))
NIL
-(-13 (-636 |t#1|) (-10 -7 (IF (|has| |t#1| (-636 (-563))) (-6 (-636 (-563))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-4214 (((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|) 51) (((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|) 50) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|) 47) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|) 41)) (-4224 (((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|) 30) (((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|) 18)))
-(((-378 |#1|) (-10 -7 (-15 -4214 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -4214 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -4214 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -4214 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -4224 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -4224 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|))) (-13 (-363) (-844))) (T -378))
-((-4224 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563))))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -4214 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -4214 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -4214 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -4214 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -4224 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -4224 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 33)) (-3944 (((-563) $) 56)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-1763 (($ $) 110)) (-1770 (($ $) 83)) (-1618 (($ $) 72)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) 44)) (-2003 (((-112) $ $) NIL)) (-1747 (($ $) 81)) (-1596 (($ $) 70)) (-2807 (((-563) $) 65)) (-3462 (($ $ (-563)) 63)) (-1793 (($ $) NIL)) (-1642 (($ $) NIL)) (-2569 (($) NIL T CONST)) (-3925 (($ $) 112)) (-2130 (((-3 (-563) "failed") $) 188) (((-3 (-407 (-563)) "failed") $) 184)) (-2057 (((-563) $) 186) (((-407 (-563)) $) 182)) (-3094 (($ $ $) NIL)) (-4204 (((-563) $ $) 103)) (-3951 (((-3 $ "failed") $) 114)) (-4193 (((-407 (-563)) $ (-767)) 189) (((-407 (-563)) $ (-767) (-767)) 181)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3107 (((-917)) 74) (((-917) (-917)) 99 (|has| $ (-6 -4399)))) (-3414 (((-112) $) 106)) (-2179 (($) 39)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-4128 (((-1262) (-767)) 152)) (-4141 (((-1262)) 157) (((-1262) (-767)) 158)) (-4162 (((-1262)) 159) (((-1262) (-767)) 160)) (-4152 (((-1262)) 155) (((-1262) (-767)) 156)) (-1775 (((-563) $) 59)) (-3401 (((-112) $) 38)) (-2172 (($ $ (-563)) NIL)) (-1826 (($ $) 48)) (-3975 (($ $) NIL)) (-3426 (((-112) $) 35)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL) (($) NIL (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-1776 (($ $ $) NIL) (($) 100 (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-4051 (((-563) $) 17)) (-4181 (($) 88) (($ $) 93)) (-3101 (($) 92) (($ $) 94)) (-4372 (($ $) 84)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 116)) (-3217 (((-917) (-563)) 43 (|has| $ (-6 -4399)))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) 54)) (-3954 (($ $) 109)) (-4341 (($ (-563) (-563)) 107) (($ (-563) (-563) (-917)) 108)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3311 (((-563) $) 19)) (-4171 (($) 95)) (-3372 (($ $) 80)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3605 (((-917)) 101) (((-917) (-917)) 102 (|has| $ (-6 -4399)))) (-4203 (($ $ (-767)) NIL) (($ $) 115)) (-3206 (((-917) (-563)) 47 (|has| $ (-6 -4399)))) (-1805 (($ $) NIL)) (-1655 (($ $) NIL)) (-1783 (($ $) NIL)) (-1629 (($ $) NIL)) (-1758 (($ $) 82)) (-1607 (($ $) 71)) (-2219 (((-379) $) 174) (((-225) $) 176) (((-888 (-379)) $) NIL) (((-1151) $) 162) (((-536) $) 172) (($ (-225)) 180)) (-1692 (((-858) $) 164) (($ (-563)) 185) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 185) (($ (-407 (-563))) NIL) (((-225) $) 177)) (-3914 (((-767)) NIL)) (-3965 (($ $) 111)) (-3227 (((-917)) 55) (((-917) (-917)) 67 (|has| $ (-6 -4399)))) (-4212 (((-917)) 104)) (-1839 (($ $) 87)) (-1694 (($ $) 46) (($ $ $) 53)) (-3223 (((-112) $ $) NIL)) (-1816 (($ $) 85)) (-1666 (($ $) 37)) (-1861 (($ $) NIL)) (-1721 (($ $) NIL)) (-1311 (($ $) NIL)) (-1734 (($ $) NIL)) (-1850 (($ $) NIL)) (-1709 (($ $) NIL)) (-1828 (($ $) 86)) (-1679 (($ $) 49)) (-1462 (($ $) 52)) (-2239 (($) 34 T CONST)) (-2253 (($) 41 T CONST)) (-2742 (((-1151) $) 27) (((-1151) $ (-112)) 29) (((-1262) (-818) $) 30) (((-1262) (-818) $ (-112)) 31)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 51)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 42)) (-1836 (($ $ $) 45) (($ $ (-563)) 40)) (-1825 (($ $) 36) (($ $ $) 50)) (-1813 (($ $ $) 62)) (** (($ $ (-917)) 68) (($ $ (-767)) NIL) (($ $ (-563)) 89) (($ $ (-407 (-563))) 125) (($ $ $) 117)) (* (($ (-917) $) 66) (($ (-767) $) NIL) (($ (-563) $) 69) (($ $ $) 61) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-379) (-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -1836 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -1826 ($ $)) (-15 -4204 ((-563) $ $)) (-15 -3462 ($ $ (-563))) (-15 -4193 ((-407 (-563)) $ (-767))) (-15 -4193 ((-407 (-563)) $ (-767) (-767))) (-15 -4181 ($)) (-15 -3101 ($)) (-15 -4171 ($)) (-15 -1694 ($ $ $)) (-15 -4181 ($ $)) (-15 -3101 ($ $)) (-15 -4162 ((-1262))) (-15 -4162 ((-1262) (-767))) (-15 -4152 ((-1262))) (-15 -4152 ((-1262) (-767))) (-15 -4141 ((-1262))) (-15 -4141 ((-1262) (-767))) (-15 -4128 ((-1262) (-767))) (-6 -4399) (-6 -4391)))) (T -379))
-((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-1826 (*1 *1 *1) (-5 *1 (-379))) (-4204 (*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-4193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-4181 (*1 *1) (-5 *1 (-379))) (-3101 (*1 *1) (-5 *1 (-379))) (-4171 (*1 *1) (-5 *1 (-379))) (-1694 (*1 *1 *1 *1) (-5 *1 (-379))) (-4181 (*1 *1 *1) (-5 *1 (-379))) (-3101 (*1 *1 *1) (-5 *1 (-379))) (-4162 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-4152 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-4141 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))))
-(-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -1836 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -1826 ($ $)) (-15 -4204 ((-563) $ $)) (-15 -3462 ($ $ (-563))) (-15 -4193 ((-407 (-563)) $ (-767))) (-15 -4193 ((-407 (-563)) $ (-767) (-767))) (-15 -4181 ($)) (-15 -3101 ($)) (-15 -4171 ($)) (-15 -1694 ($ $ $)) (-15 -4181 ($ $)) (-15 -3101 ($ $)) (-15 -4162 ((-1262))) (-15 -4162 ((-1262) (-767))) (-15 -4152 ((-1262))) (-15 -4152 ((-1262) (-767))) (-15 -4141 ((-1262))) (-15 -4141 ((-1262) (-767))) (-15 -4128 ((-1262) (-767))) (-6 -4399) (-6 -4391)))
-((-3510 (((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|) 46) (((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|) 45) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|) 42) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|) 36)) (-4233 (((-640 |#1|) (-407 (-948 (-563))) |#1|) 20) (((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|) 30)))
-(((-380 |#1|) (-10 -7 (-15 -3510 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -3510 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -3510 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -3510 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -4233 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -4233 ((-640 |#1|) (-407 (-948 (-563))) |#1|))) (-13 (-844) (-363))) (T -380))
-((-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-4233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-563))))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))))
-(-10 -7 (-15 -3510 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -3510 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -3510 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -3510 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -4233 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -4233 ((-640 |#1|) (-407 (-948 (-563))) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) 26)) (-2057 ((|#2| $) 28)) (-2750 (($ $) NIL)) (-3481 (((-767) $) 10)) (-3919 (((-640 $) $) 20)) (-3805 (((-112) $) NIL)) (-4223 (($ |#2| |#1|) 18)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4243 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2715 ((|#2| $) 15)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 44) (($ |#2|) 27)) (-3955 (((-640 |#1|) $) 17)) (-3244 ((|#1| $ |#2|) 46)) (-2239 (($) 29 T CONST)) (-2891 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -381))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))))
-(-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#2| "failed") $) 44)) (-2057 ((|#2| $) 45)) (-2750 (($ $) 30)) (-3481 (((-767) $) 34)) (-3919 (((-640 $) $) 35)) (-3805 (((-112) $) 38)) (-4223 (($ |#2| |#1|) 39)) (-2238 (($ (-1 |#1| |#1|) $) 40)) (-4243 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2715 ((|#2| $) 33)) (-2725 ((|#1| $) 32)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ |#2|) 43)) (-3955 (((-640 |#1|) $) 36)) (-3244 ((|#1| $ |#2|) 41)) (-2239 (($) 18 T CONST)) (-2891 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-382 |#1| |#2|) (-140) (-1045) (-1093)) (T -382))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) (-3244 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)))) (-4223 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-3919 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-382 *3 *4)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-767)))) (-2715 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))))
-(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3244 (|t#1| $ |t#2|)) (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (-15 -4223 ($ |t#2| |t#1|)) (-15 -3805 ((-112) $)) (-15 -2891 ((-640 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3955 ((-640 |t#1|) $)) (-15 -3919 ((-640 $) $)) (-15 -3481 ((-767) $)) (-15 -2715 (|t#2| $)) (-15 -2725 (|t#1| $)) (-15 -4243 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2750 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8) (($ (-684 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 11)))
-(((-383) (-140)) (T -383))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-4 *1 (-383)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-684 (-694)))) (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-330))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))))))
-(((-610 (-858)) . T) ((-395) . T) ((-1208) . T))
-((-2130 (((-3 $ "failed") (-684 (-316 (-379)))) 21) (((-3 $ "failed") (-684 (-316 (-563)))) 19) (((-3 $ "failed") (-684 (-948 (-379)))) 17) (((-3 $ "failed") (-684 (-948 (-563)))) 15) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 11)) (-2057 (($ (-684 (-316 (-379)))) 22) (($ (-684 (-316 (-563)))) 20) (($ (-684 (-948 (-379)))) 18) (($ (-684 (-948 (-563)))) 16) (($ (-684 (-407 (-948 (-379))))) 14) (($ (-684 (-407 (-948 (-563))))) 12)) (-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 23)))
-(((-384) (-140)) (T -384))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-330))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))) (-15 -2057 ($ (-684 (-316 (-379))))) (-15 -2130 ((-3 $ "failed") (-684 (-316 (-379))))) (-15 -2057 ($ (-684 (-316 (-563))))) (-15 -2130 ((-3 $ "failed") (-684 (-316 (-563))))) (-15 -2057 ($ (-684 (-948 (-379))))) (-15 -2130 ((-3 $ "failed") (-684 (-948 (-379))))) (-15 -2057 ($ (-684 (-948 (-563))))) (-15 -2130 ((-3 $ "failed") (-684 (-948 (-563))))) (-15 -2057 ($ (-684 (-407 (-948 (-379)))))) (-15 -2130 ((-3 $ "failed") (-684 (-407 (-948 (-379)))))) (-15 -2057 ($ (-684 (-407 (-948 (-563)))))) (-15 -2130 ((-3 $ "failed") (-684 (-407 (-948 (-563))))))))
-(((-610 (-858)) . T) ((-395) . T) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-2587 (($ |#1| |#2|) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1867 ((|#2| $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 29)) (-2239 (($) 12 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -385))
+(-13 (-636 |t#1|) (-10 -7 (IF (|has| |t#1| (-636 (-546))) (-6 (-636 (-546))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 33)) (-3521 (((-546) $) 56)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4185 (($ $) 110)) (-3898 (($ $) 83)) (-4054 (($ $) 72)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) 44)) (-1740 (((-112) $ $) NIL)) (-3896 (($ $) 81)) (-4053 (($ $) 70)) (-4038 (((-546) $) 65)) (-2741 (($ $ (-546)) 63)) (-3900 (($ $) NIL)) (-4052 (($ $) NIL)) (-4139 (($) NIL T CONST)) (-3519 (($ $) 112)) (-3565 (((-3 (-546) #1="failed") $) 188) (((-3 (-407 (-546)) #1#) $) 184)) (-3564 (((-546) $) 186) (((-407 (-546)) $) 182)) (-2949 (($ $ $) NIL)) (-1896 (((-546) $ $) 103)) (-3873 (((-3 $ "failed") $) 114)) (-1895 (((-407 (-546)) $ (-767)) 189) (((-407 (-546)) $ (-767) (-767)) 181)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2516 (((-915)) 74) (((-915) (-915)) 99 (|has| $ (-6 -4399)))) (-3594 (((-112) $) 106)) (-4042 (($) 39)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL)) (-1888 (((-1262) (-767)) 152)) (-1889 (((-1262)) 157) (((-1262) (-767)) 158)) (-1891 (((-1262)) 159) (((-1262) (-767)) 160)) (-1890 (((-1262)) 155) (((-1262) (-767)) 156)) (-4186 (((-546) $) 59)) (-2552 (((-112) $) 38)) (-3401 (($ $ (-546)) NIL)) (-2743 (($ $) 48)) (-3524 (($ $) NIL)) (-3595 (((-112) $) 35)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL) (($) NIL (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-3249 (($ $ $) NIL) (($) 100 (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-2517 (((-546) $) 17)) (-1894 (($) 88) (($ $) 93)) (-1893 (($) 92) (($ $) 94)) (-4357 (($ $) 84)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 116)) (-1924 (((-915) (-546)) 43 (|has| $ (-6 -4399)))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) 54)) (-3522 (($ $) 109)) (-3662 (($ (-546) (-546)) 107) (($ (-546) (-546) (-915)) 108)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-2543 (((-546) $) 19)) (-1892 (($) 95)) (-4358 (($ $) 80)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3000 (((-915)) 101) (((-915) (-915)) 102 (|has| $ (-6 -4399)))) (-4225 (($ $ (-767)) NIL) (($ $) 115)) (-1923 (((-915) (-546)) 47 (|has| $ (-6 -4399)))) (-3901 (($ $) NIL)) (-4051 (($ $) NIL)) (-3899 (($ $) NIL)) (-4050 (($ $) NIL)) (-3897 (($ $) 82)) (-4049 (($ $) 71)) (-4385 (((-378) $) 174) (((-225) $) 176) (((-886 (-378)) $) NIL) (((-1151) $) 162) (((-535) $) 172) (($ (-225)) 180)) (-4361 (((-859) $) 164) (($ (-546)) 185) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-546)) 185) (($ (-407 (-546))) NIL) (((-225) $) 177)) (-3518 (((-767)) NIL)) (-3523 (($ $) 111)) (-1925 (((-915)) 55) (((-915) (-915)) 67 (|has| $ (-6 -4399)))) (-3083 (((-915)) 104)) (-3904 (($ $) 87)) (-3892 (($ $) 46) (($ $ $) 53)) (-2219 (((-112) $ $) NIL)) (-3902 (($ $) 85)) (-3890 (($ $) 37)) (-3906 (($ $) NIL)) (-3894 (($ $) NIL)) (-3907 (($ $) NIL)) (-3895 (($ $) NIL)) (-3905 (($ $) NIL)) (-3893 (($ $) NIL)) (-3903 (($ $) 86)) (-3891 (($ $) 49)) (-3794 (($ $) 52)) (-3047 (($) 34 T CONST)) (-3053 (($) 41 T CONST)) (-2885 (((-1151) $) 27) (((-1151) $ (-112)) 29) (((-1262) (-819) $) 30) (((-1262) (-819) $ (-112)) 31)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 51)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 42)) (-4364 (($ $ $) 45) (($ $ (-546)) 40)) (-4252 (($ $) 36) (($ $ $) 50)) (-4254 (($ $ $) 62)) (** (($ $ (-915)) 68) (($ $ (-767)) NIL) (($ $ (-546)) 89) (($ $ (-407 (-546))) 125) (($ $ $) 117)) (* (($ (-915) $) 66) (($ (-767) $) NIL) (($ (-546) $) 69) (($ $ $) 61) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-378) (-13 (-404) (-233) (-611 (-1151)) (-817) (-610 (-225)) (-1193) (-611 (-535)) (-615 (-225)) (-10 -8 (-15 -4364 ($ $ (-546))) (-15 ** ($ $ $)) (-15 -2743 ($ $)) (-15 -1896 ((-546) $ $)) (-15 -2741 ($ $ (-546))) (-15 -1895 ((-407 (-546)) $ (-767))) (-15 -1895 ((-407 (-546)) $ (-767) (-767))) (-15 -1894 ($)) (-15 -1893 ($)) (-15 -1892 ($)) (-15 -3892 ($ $ $)) (-15 -1894 ($ $)) (-15 -1893 ($ $)) (-15 -1891 ((-1262))) (-15 -1891 ((-1262) (-767))) (-15 -1890 ((-1262))) (-15 -1890 ((-1262) (-767))) (-15 -1889 ((-1262))) (-15 -1889 ((-1262) (-767))) (-15 -1888 ((-1262) (-767))) (-6 -4399) (-6 -4391)))) (T -378))
+((** (*1 *1 *1 *1) (-5 *1 (-378))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-378)))) (-2743 (*1 *1 *1) (-5 *1 (-378))) (-1896 (*1 *2 *1 *1) (-12 (-5 *2 (-546)) (-5 *1 (-378)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-378)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-378)))) (-1895 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-378)))) (-1894 (*1 *1) (-5 *1 (-378))) (-1893 (*1 *1) (-5 *1 (-378))) (-1892 (*1 *1) (-5 *1 (-378))) (-3892 (*1 *1 *1 *1) (-5 *1 (-378))) (-1894 (*1 *1 *1) (-5 *1 (-378))) (-1893 (*1 *1 *1) (-5 *1 (-378))) (-1891 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378)))) (-1890 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378)))) (-1889 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378)))))
+(-13 (-404) (-233) (-611 (-1151)) (-817) (-610 (-225)) (-1193) (-611 (-535)) (-615 (-225)) (-10 -8 (-15 -4364 ($ $ (-546))) (-15 ** ($ $ $)) (-15 -2743 ($ $)) (-15 -1896 ((-546) $ $)) (-15 -2741 ($ $ (-546))) (-15 -1895 ((-407 (-546)) $ (-767))) (-15 -1895 ((-407 (-546)) $ (-767) (-767))) (-15 -1894 ($)) (-15 -1893 ($)) (-15 -1892 ($)) (-15 -3892 ($ $ $)) (-15 -1894 ($ $)) (-15 -1893 ($ $)) (-15 -1891 ((-1262))) (-15 -1891 ((-1262) (-767))) (-15 -1890 ((-1262))) (-15 -1890 ((-1262) (-767))) (-15 -1889 ((-1262))) (-15 -1889 ((-1262) (-767))) (-15 -1888 ((-1262) (-767))) (-6 -4399) (-6 -4391)))
+((-1897 (((-637 (-293 (-942 (-168 |#1|)))) (-293 (-407 (-942 (-168 (-546))))) |#1|) 51) (((-637 (-293 (-942 (-168 |#1|)))) (-407 (-942 (-168 (-546)))) |#1|) 50) (((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-293 (-407 (-942 (-168 (-546)))))) |#1|) 47) (((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-407 (-942 (-168 (-546))))) |#1|) 41)) (-1898 (((-637 (-637 (-168 |#1|))) (-637 (-407 (-942 (-168 (-546))))) (-637 (-1169)) |#1|) 30) (((-637 (-168 |#1|)) (-407 (-942 (-168 (-546)))) |#1|) 18)))
+(((-379 |#1|) (-10 -7 (-15 -1897 ((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-407 (-942 (-168 (-546))))) |#1|)) (-15 -1897 ((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-293 (-407 (-942 (-168 (-546)))))) |#1|)) (-15 -1897 ((-637 (-293 (-942 (-168 |#1|)))) (-407 (-942 (-168 (-546)))) |#1|)) (-15 -1897 ((-637 (-293 (-942 (-168 |#1|)))) (-293 (-407 (-942 (-168 (-546))))) |#1|)) (-15 -1898 ((-637 (-168 |#1|)) (-407 (-942 (-168 (-546)))) |#1|)) (-15 -1898 ((-637 (-637 (-168 |#1|))) (-637 (-407 (-942 (-168 (-546))))) (-637 (-1169)) |#1|))) (-13 (-363) (-844))) (T -379))
+((-1898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-407 (-942 (-168 (-546)))))) (-5 *4 (-637 (-1169))) (-5 *2 (-637 (-637 (-168 *5)))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-363) (-844))))) (-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 (-168 (-546))))) (-5 *2 (-637 (-168 *4))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-407 (-942 (-168 (-546)))))) (-5 *2 (-637 (-293 (-942 (-168 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 (-168 (-546))))) (-5 *2 (-637 (-293 (-942 (-168 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-293 (-407 (-942 (-168 (-546))))))) (-5 *2 (-637 (-637 (-293 (-942 (-168 *4)))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 (-168 (-546)))))) (-5 *2 (-637 (-637 (-293 (-942 (-168 *4)))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844))))))
+(-10 -7 (-15 -1897 ((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-407 (-942 (-168 (-546))))) |#1|)) (-15 -1897 ((-637 (-637 (-293 (-942 (-168 |#1|))))) (-637 (-293 (-407 (-942 (-168 (-546)))))) |#1|)) (-15 -1897 ((-637 (-293 (-942 (-168 |#1|)))) (-407 (-942 (-168 (-546)))) |#1|)) (-15 -1897 ((-637 (-293 (-942 (-168 |#1|)))) (-293 (-407 (-942 (-168 (-546))))) |#1|)) (-15 -1898 ((-637 (-168 |#1|)) (-407 (-942 (-168 (-546)))) |#1|)) (-15 -1898 ((-637 (-637 (-168 |#1|))) (-637 (-407 (-942 (-168 (-546))))) (-637 (-1169)) |#1|)))
+((-3987 (((-637 (-293 (-942 |#1|))) (-293 (-407 (-942 (-546)))) |#1|) 46) (((-637 (-293 (-942 |#1|))) (-407 (-942 (-546))) |#1|) 45) (((-637 (-637 (-293 (-942 |#1|)))) (-637 (-293 (-407 (-942 (-546))))) |#1|) 42) (((-637 (-637 (-293 (-942 |#1|)))) (-637 (-407 (-942 (-546)))) |#1|) 36)) (-1899 (((-637 |#1|) (-407 (-942 (-546))) |#1|) 20) (((-637 (-637 |#1|)) (-637 (-407 (-942 (-546)))) (-637 (-1169)) |#1|) 30)))
+(((-380 |#1|) (-10 -7 (-15 -3987 ((-637 (-637 (-293 (-942 |#1|)))) (-637 (-407 (-942 (-546)))) |#1|)) (-15 -3987 ((-637 (-637 (-293 (-942 |#1|)))) (-637 (-293 (-407 (-942 (-546))))) |#1|)) (-15 -3987 ((-637 (-293 (-942 |#1|))) (-407 (-942 (-546))) |#1|)) (-15 -3987 ((-637 (-293 (-942 |#1|))) (-293 (-407 (-942 (-546)))) |#1|)) (-15 -1899 ((-637 (-637 |#1|)) (-637 (-407 (-942 (-546)))) (-637 (-1169)) |#1|)) (-15 -1899 ((-637 |#1|) (-407 (-942 (-546))) |#1|))) (-13 (-844) (-363))) (T -380))
+((-1899 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 (-546)))) (-5 *2 (-637 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-407 (-942 (-546))))) (-5 *4 (-637 (-1169))) (-5 *2 (-637 (-637 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-407 (-942 (-546))))) (-5 *2 (-637 (-293 (-942 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 (-546)))) (-5 *2 (-637 (-293 (-942 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-293 (-407 (-942 (-546)))))) (-5 *2 (-637 (-637 (-293 (-942 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 (-546))))) (-5 *2 (-637 (-637 (-293 (-942 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))))
+(-10 -7 (-15 -3987 ((-637 (-637 (-293 (-942 |#1|)))) (-637 (-407 (-942 (-546)))) |#1|)) (-15 -3987 ((-637 (-637 (-293 (-942 |#1|)))) (-637 (-293 (-407 (-942 (-546))))) |#1|)) (-15 -3987 ((-637 (-293 (-942 |#1|))) (-407 (-942 (-546))) |#1|)) (-15 -3987 ((-637 (-293 (-942 |#1|))) (-293 (-407 (-942 (-546)))) |#1|)) (-15 -1899 ((-637 (-637 |#1|)) (-637 (-407 (-942 (-546)))) (-637 (-1169)) |#1|)) (-15 -1899 ((-637 |#1|) (-407 (-942 (-546))) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3283 (($ |#1| |#2|) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2141 ((|#2| $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 29)) (-3047 (($) 12 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-381 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -381))
NIL
(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767) $) 57)) (-2569 (($) NIL T CONST)) (-3817 (((-3 $ "failed") $ $) 59)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1366 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 51)) (-3401 (((-112) $) 15)) (-1347 ((|#1| $ (-563)) NIL)) (-1357 (((-767) $ (-563)) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-1499 (($ (-1 |#1| |#1|) $) 38)) (-1510 (($ (-1 (-767) (-767)) $) 35)) (-3828 (((-3 $ "failed") $ $) 48)) (-3854 (((-1151) $) NIL)) (-1375 (($ $ $) 26)) (-1385 (($ $ $) 24)) (-1693 (((-1113) $) NIL)) (-1337 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $) 32)) (-3263 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 54)) (-1692 (((-858) $) 22) (($ |#1|) NIL)) (-2253 (($) 9 T CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) 61 (|has| |#1| (-846)))) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 40)) (* (($ $ $) 46) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1385 ($ $ $)) (-15 -1375 ($ $ $)) (-15 -3828 ((-3 $ "failed") $ $)) (-15 -3817 ((-3 $ "failed") $ $)) (-15 -3263 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1366 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3750 ((-767) $)) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $)) (-15 -1357 ((-767) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1510 ($ (-1 (-767) (-767)) $)) (-15 -1499 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -386))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-1385 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-1375 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3828 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3817 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3263 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-1366 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3)))))
-(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1385 ($ $ $)) (-15 -1375 ($ $ $)) (-15 -3828 ((-3 $ "failed") $ $)) (-15 -3817 ((-3 $ "failed") $ $)) (-15 -3263 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1366 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3750 ((-767) $)) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $)) (-15 -1357 ((-767) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1510 ($ (-1 (-767) (-767)) $)) (-15 -1499 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 48)) (-2057 (((-563) $) 49)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3088 (($ $ $) 55)) (-1776 (($ $ $) 54)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ $) 43)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 47)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 52)) (-1754 (((-112) $ $) 51)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 53)) (-1743 (((-112) $ $) 50)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| "failed") $) 26)) (-3564 ((|#2| $) 28)) (-4374 (($ $) NIL)) (-2560 (((-767) $) 10)) (-3210 (((-637 $) $) 20)) (-4352 (((-112) $) NIL)) (-4353 (($ |#2| |#1|) 18)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-1900 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3284 ((|#2| $) 15)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 44) (($ |#2|) 27)) (-4232 (((-637 |#1|) $) 17)) (-4092 ((|#1| $ |#2|) 46)) (-3047 (($) 29 T CONST)) (-3052 (((-637 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-382 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -382))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))))
+(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8) (($ (-684 (-694))) 14) (($ (-637 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 11)))
+(((-383) (-140)) (T -383))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-383)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-4 *1 (-383)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-684 (-694)))) (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-330))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))))))
+(((-610 (-859)) . T) ((-396) . T) ((-1207) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#2| "failed") $) 44)) (-3564 ((|#2| $) 45)) (-4374 (($ $) 30)) (-2560 (((-767) $) 34)) (-3210 (((-637 $) $) 35)) (-4352 (((-112) $) 38)) (-4353 (($ |#2| |#1|) 39)) (-4373 (($ (-1 |#1| |#1|) $) 40)) (-1900 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3284 ((|#2| $) 33)) (-3582 ((|#1| $) 32)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ |#2|) 43)) (-4232 (((-637 |#1|) $) 36)) (-4092 ((|#1| $ |#2|) 41)) (-3047 (($) 18 T CONST)) (-3052 (((-637 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-384 |#1| |#2|) (-140) (-1045) (-1094)) (T -384))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))) (-4092 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)))) (-4353 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-637 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-637 *3)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-637 *1)) (-4 *1 (-384 *3 *4)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-767)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))))
+(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4092 (|t#1| $ |t#2|)) (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (-15 -4353 ($ |t#2| |t#1|)) (-15 -4352 ((-112) $)) (-15 -3052 ((-637 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4232 ((-637 |t#1|) $)) (-15 -3210 ((-637 $) $)) (-15 -2560 ((-767) $)) (-15 -3284 (|t#2| $)) (-15 -3582 (|t#1| $)) (-15 -1900 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4374 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 |#2|) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-3565 (((-3 $ "failed") (-684 (-314 (-378)))) 21) (((-3 $ "failed") (-684 (-314 (-546)))) 19) (((-3 $ "failed") (-684 (-942 (-378)))) 17) (((-3 $ "failed") (-684 (-942 (-546)))) 15) (((-3 $ "failed") (-684 (-407 (-942 (-378))))) 13) (((-3 $ "failed") (-684 (-407 (-942 (-546))))) 11)) (-3564 (($ (-684 (-314 (-378)))) 22) (($ (-684 (-314 (-546)))) 20) (($ (-684 (-942 (-378)))) 18) (($ (-684 (-942 (-546)))) 16) (($ (-684 (-407 (-942 (-378))))) 14) (($ (-684 (-407 (-942 (-546))))) 12)) (-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8) (($ (-637 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 23)))
+(((-385) (-140)) (T -385))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-385)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-385)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-314 (-378)))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-314 (-378)))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-314 (-546)))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-314 (-546)))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-942 (-378)))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-942 (-378)))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-942 (-546)))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-942 (-546)))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-942 (-378))))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-942 (-378))))) (-4 *1 (-385)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-942 (-546))))) (-4 *1 (-385)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-942 (-546))))) (-4 *1 (-385)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-330))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))) (-15 -3564 ($ (-684 (-314 (-378))))) (-15 -3565 ((-3 $ "failed") (-684 (-314 (-378))))) (-15 -3564 ($ (-684 (-314 (-546))))) (-15 -3565 ((-3 $ "failed") (-684 (-314 (-546))))) (-15 -3564 ($ (-684 (-942 (-378))))) (-15 -3565 ((-3 $ "failed") (-684 (-942 (-378))))) (-15 -3564 ($ (-684 (-942 (-546))))) (-15 -3565 ((-3 $ "failed") (-684 (-942 (-546))))) (-15 -3564 ($ (-684 (-407 (-942 (-378)))))) (-15 -3565 ((-3 $ "failed") (-684 (-407 (-942 (-378)))))) (-15 -3564 ($ (-684 (-407 (-942 (-546)))))) (-15 -3565 ((-3 $ "failed") (-684 (-407 (-942 (-546))))))))
+(((-610 (-859)) . T) ((-396) . T) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767) $) 57)) (-4139 (($) NIL T CONST)) (-4354 (((-3 $ "failed") $ $) 59)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2821 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 51)) (-2552 (((-112) $) 15)) (-2819 ((|#1| $ (-546)) NIL)) (-2820 (((-767) $ (-546)) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2417 (($ (-1 |#1| |#1|) $) 38)) (-2418 (($ (-1 (-767) (-767)) $) 35)) (-4355 (((-3 $ "failed") $ $) 48)) (-3650 (((-1151) $) NIL)) (-2822 (($ $ $) 26)) (-2823 (($ $ $) 24)) (-3651 (((-1113) $) NIL)) (-2818 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $) 32)) (-3271 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 54)) (-4361 (((-859) $) 22) (($ |#1|) NIL)) (-3053 (($) 9 T CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) 61 (|has| |#1| (-846)))) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 40)) (* (($ $ $) 46) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2823 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4355 ((-3 $ "failed") $ $)) (-15 -4354 ((-3 $ "failed") $ $)) (-15 -3271 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2821 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3528 ((-767) $)) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $)) (-15 -2820 ((-767) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2418 ($ (-1 (-767) (-767)) $)) (-15 -2417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -386))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2823 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4355 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4354 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3271 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))))
+(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2823 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4355 ((-3 $ "failed") $ $)) (-15 -4354 ((-3 $ "failed") $ $)) (-15 -3271 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2821 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3528 ((-767) $)) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $)) (-15 -2820 ((-767) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2418 ($ (-1 (-767) (-767)) $)) (-15 -2417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) "failed") $) 48)) (-3564 (((-546) $) 49)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-2919 (($ $ $) 55)) (-3249 (($ $ $) 54)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ $) 43)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-546)) 47)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 52)) (-2952 (((-112) $ $) 51)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 53)) (-3074 (((-112) $ $) 50)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-387) (-140)) (T -387))
NIL
-(-13 (-555) (-846) (-1034 (-563)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-4256 (((-112) $) 20)) (-4269 (((-112) $) 19)) (-1565 (($ (-1151) (-1151) (-1151)) 21)) (-3352 (((-1151) $) 16)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2404 (($ (-1151) (-1151) (-1151)) 14)) (-4291 (((-1151) $) 17)) (-4280 (((-112) $) 18)) (-2091 (((-1151) $) 15)) (-1692 (((-858) $) 12) (($ (-1151)) 13) (((-1151) $) 9)) (-1718 (((-112) $ $) 7)))
+(-13 (-556) (-846) (-1034 (-546)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-546)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-1901 (((-112) $) 20)) (-1902 (((-112) $) 19)) (-4029 (($ (-1151) (-1151) (-1151)) 21)) (-3956 (((-1151) $) 16)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1906 (($ (-1151) (-1151) (-1151)) 14)) (-1904 (((-1151) $) 17)) (-1903 (((-112) $) 18)) (-1905 (((-1151) $) 15)) (-4361 (((-859) $) 12) (($ (-1151)) 13) (((-1151) $) 9)) (-3444 (((-112) $ $) 7)))
(((-388) (-389)) (T -388))
NIL
(-389)
-((-1677 (((-112) $ $) 7)) (-4256 (((-112) $) 16)) (-4269 (((-112) $) 17)) (-1565 (($ (-1151) (-1151) (-1151)) 15)) (-3352 (((-1151) $) 20)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2404 (($ (-1151) (-1151) (-1151)) 22)) (-4291 (((-1151) $) 19)) (-4280 (((-112) $) 18)) (-2091 (((-1151) $) 21)) (-1692 (((-858) $) 11) (($ (-1151)) 24) (((-1151) $) 23)) (-1718 (((-112) $ $) 6)))
+((-2953 (((-112) $ $) 7)) (-1901 (((-112) $) 16)) (-1902 (((-112) $) 17)) (-4029 (($ (-1151) (-1151) (-1151)) 15)) (-3956 (((-1151) $) 20)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-1906 (($ (-1151) (-1151) (-1151)) 22)) (-1904 (((-1151) $) 19)) (-1903 (((-112) $) 18)) (-1905 (((-1151) $) 21)) (-4361 (((-859) $) 11) (($ (-1151)) 24) (((-1151) $) 23)) (-3444 (((-112) $ $) 6)))
(((-389) (-140)) (T -389))
-((-2404 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1565 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))))
-(-13 (-1093) (-490 (-1151)) (-10 -8 (-15 -2404 ($ (-1151) (-1151) (-1151))) (-15 -2091 ((-1151) $)) (-15 -3352 ((-1151) $)) (-15 -4291 ((-1151) $)) (-15 -4280 ((-112) $)) (-15 -4269 ((-112) $)) (-15 -4256 ((-112) $)) (-15 -1565 ($ (-1151) (-1151) (-1151)))))
-(((-102) . T) ((-613 #0=(-1151)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4302 (((-858) $) 50)) (-2569 (($) NIL T CONST)) (-3376 (($ $ (-917)) NIL)) (-3617 (($ $ (-917)) NIL)) (-3364 (($ $ (-917)) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($ (-767)) 26)) (-3526 (((-767)) 17)) (-4312 (((-858) $) 52)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) NIL)) (-1756 (($ $ $ $) NIL)) (-1729 (($ $ $) NIL)) (-2239 (($) 20 T CONST)) (-1718 (((-112) $ $) 28)) (-1825 (($ $) 34) (($ $ $) 36)) (-1813 (($ $ $) 37)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -3526 ((-767))) (-15 -4312 ((-858) $)) (-15 -4302 ((-858) $)) (-15 -4334 ($ (-767))))) (-767) (-767) (-172)) (T -390))
-((-3526 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
-(-13 (-740 |#3|) (-10 -8 (-15 -3526 ((-767))) (-15 -4312 ((-858) $)) (-15 -4302 ((-858) $)) (-15 -4334 ($ (-767)))))
-((-4346 (((-1151)) 10)) (-4335 (((-1140 (-1151))) 28)) (-1309 (((-1262) (-1151)) 25) (((-1262) (-388)) 24)) (-1320 (((-1262)) 26)) (-4323 (((-1140 (-1151))) 27)))
-(((-391) (-10 -7 (-15 -4323 ((-1140 (-1151)))) (-15 -4335 ((-1140 (-1151)))) (-15 -1320 ((-1262))) (-15 -1309 ((-1262) (-388))) (-15 -1309 ((-1262) (-1151))) (-15 -4346 ((-1151))))) (T -391))
-((-4346 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1320 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))) (-4335 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))) (-4323 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
-(-10 -7 (-15 -4323 ((-1140 (-1151)))) (-15 -4335 ((-1140 (-1151)))) (-15 -1320 ((-1262))) (-15 -1309 ((-1262) (-388))) (-15 -1309 ((-1262) (-1151))) (-15 -4346 ((-1151))))
-((-1775 (((-767) (-336 |#1| |#2| |#3| |#4|)) 16)))
-(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1775 ((-767) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
-((-1775 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1775 ((-767) (-336 |#1| |#2| |#3| |#4|))))
-((-1692 (((-394) |#1|) 11)))
-(((-393 |#1|) (-10 -7 (-15 -1692 ((-394) |#1|))) (-1093)) (T -393))
-((-1692 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093)))))
-(-10 -7 (-15 -1692 ((-394) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-2700 (((-640 (-1151)) $ (-640 (-1151))) 38)) (-4357 (((-640 (-1151)) $ (-640 (-1151))) 39)) (-2720 (((-640 (-1151)) $ (-640 (-1151))) 40)) (-2731 (((-640 (-1151)) $) 35)) (-1565 (($) 23)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2337 (((-640 (-1151)) $) 36)) (-2743 (((-640 (-1151)) $) 37)) (-1463 (((-1262) $ (-563)) 33) (((-1262) $) 34)) (-2219 (($ (-858) (-563)) 30)) (-1692 (((-858) $) 42) (($ (-858)) 25)) (-1718 (((-112) $ $) NIL)))
-(((-394) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2219 ($ (-858) (-563))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -2743 ((-640 (-1151)) $)) (-15 -2337 ((-640 (-1151)) $)) (-15 -1565 ($)) (-15 -2731 ((-640 (-1151)) $)) (-15 -2720 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -4357 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2700 ((-640 (-1151)) $ (-640 (-1151))))))) (T -394))
-((-2219 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394)))) (-1463 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-1565 (*1 *1) (-5 *1 (-394))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2720 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-4357 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2700 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))))
-(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2219 ($ (-858) (-563))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -2743 ((-640 (-1151)) $)) (-15 -2337 ((-640 (-1151)) $)) (-15 -1565 ($)) (-15 -2731 ((-640 (-1151)) $)) (-15 -2720 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -4357 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2700 ((-640 (-1151)) $ (-640 (-1151))))))
-((-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8)))
-(((-395) (-140)) (T -395))
-((-2615 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262)))))
-(-13 (-1208) (-610 (-858)) (-10 -8 (-15 -2615 ((-1262) $))))
-(((-610 (-858)) . T) ((-1208) . T))
-((-2130 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-563))) 19) (((-3 $ "failed") (-948 (-379))) 17) (((-3 $ "failed") (-948 (-563))) 15) (((-3 $ "failed") (-407 (-948 (-379)))) 13) (((-3 $ "failed") (-407 (-948 (-563)))) 11)) (-2057 (($ (-316 (-379))) 22) (($ (-316 (-563))) 20) (($ (-948 (-379))) 18) (($ (-948 (-563))) 16) (($ (-407 (-948 (-379)))) 14) (($ (-407 (-948 (-563)))) 12)) (-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 23)))
+((-1906 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4029 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))))
+(-13 (-1094) (-490 (-1151)) (-10 -8 (-15 -1906 ($ (-1151) (-1151) (-1151))) (-15 -1905 ((-1151) $)) (-15 -3956 ((-1151) $)) (-15 -1904 ((-1151) $)) (-15 -1903 ((-112) $)) (-15 -1902 ((-112) $)) (-15 -1901 ((-112) $)) (-15 -4029 ($ (-1151) (-1151) (-1151)))))
+(((-102) . T) ((-613 #1=(-1151)) . T) ((-610 (-859)) . T) ((-610 #1#) . T) ((-490 #1#) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1907 (((-859) $) 50)) (-4139 (($) NIL T CONST)) (-2549 (($ $ (-915)) NIL)) (-2573 (($ $ (-915)) NIL)) (-2548 (($ $ (-915)) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($ (-767)) 26)) (-4326 (((-767)) 17)) (-1908 (((-859) $) 52)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) NIL)) (-2736 (($ $ $ $) NIL)) (-2734 (($ $ $) NIL)) (-3047 (($) 20 T CONST)) (-3444 (((-112) $ $) 28)) (-4252 (($ $) 34) (($ $ $) 36)) (-4254 (($ $ $) 37)) (** (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -4326 ((-767))) (-15 -1908 ((-859) $)) (-15 -1907 ((-859) $)) (-15 -2551 ($ (-767))))) (-767) (-767) (-172)) (T -390))
+((-4326 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
+(-13 (-740 |#3|) (-10 -8 (-15 -4326 ((-767))) (-15 -1908 ((-859) $)) (-15 -1907 ((-859) $)) (-15 -2551 ($ (-767)))))
+((-1913 (((-1151)) 10)) (-1910 (((-1140 (-1151))) 28)) (-1912 (((-1262) (-1151)) 25) (((-1262) (-388)) 24)) (-1911 (((-1262)) 26)) (-1909 (((-1140 (-1151))) 27)))
+(((-391) (-10 -7 (-15 -1909 ((-1140 (-1151)))) (-15 -1910 ((-1140 (-1151)))) (-15 -1911 ((-1262))) (-15 -1912 ((-1262) (-388))) (-15 -1912 ((-1262) (-1151))) (-15 -1913 ((-1151))))) (T -391))
+((-1913 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1911 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))) (-1910 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))) (-1909 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
+(-10 -7 (-15 -1909 ((-1140 (-1151)))) (-15 -1910 ((-1140 (-1151)))) (-15 -1911 ((-1262))) (-15 -1912 ((-1262) (-388))) (-15 -1912 ((-1262) (-1151))) (-15 -1913 ((-1151))))
+((-4186 (((-767) (-333 |#1| |#2| |#3| |#4|)) 16)))
+(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4186 ((-767) (-333 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
+((-4186 (*1 *2 *3) (-12 (-5 *3 (-333 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4186 ((-767) (-333 |#1| |#2| |#3| |#4|))))
+((-2953 (((-112) $ $) NIL)) (-4025 (((-637 (-1151)) $ (-637 (-1151))) 38)) (-1914 (((-637 (-1151)) $ (-637 (-1151))) 39)) (-4027 (((-637 (-1151)) $ (-637 (-1151))) 40)) (-4028 (((-637 (-1151)) $) 35)) (-4029 (($) 23)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1915 (((-637 (-1151)) $) 36)) (-4031 (((-637 (-1151)) $) 37)) (-4032 (((-1262) $ (-546)) 33) (((-1262) $) 34)) (-4385 (($ (-859) (-546)) 30)) (-4361 (((-859) $) 42) (($ (-859)) 25)) (-3444 (((-112) $ $) NIL)))
+(((-393) (-13 (-1094) (-613 (-859)) (-10 -8 (-15 -4385 ($ (-859) (-546))) (-15 -4032 ((-1262) $ (-546))) (-15 -4032 ((-1262) $)) (-15 -4031 ((-637 (-1151)) $)) (-15 -1915 ((-637 (-1151)) $)) (-15 -4029 ($)) (-15 -4028 ((-637 (-1151)) $)) (-15 -4027 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -1914 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4025 ((-637 (-1151)) $ (-637 (-1151))))))) (T -393))
+((-4385 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-393)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-393)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-393)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))) (-4029 (*1 *1) (-5 *1 (-393))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))) (-4027 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))) (-1914 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))) (-4025 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))))
+(-13 (-1094) (-613 (-859)) (-10 -8 (-15 -4385 ($ (-859) (-546))) (-15 -4032 ((-1262) $ (-546))) (-15 -4032 ((-1262) $)) (-15 -4031 ((-637 (-1151)) $)) (-15 -1915 ((-637 (-1151)) $)) (-15 -4029 ($)) (-15 -4028 ((-637 (-1151)) $)) (-15 -4027 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -1914 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4025 ((-637 (-1151)) $ (-637 (-1151))))))
+((-4361 (((-393) |#1|) 11)))
+(((-394 |#1|) (-10 -7 (-15 -4361 ((-393) |#1|))) (-1094)) (T -394))
+((-4361 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-394 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -4361 ((-393) |#1|)))
+((-1917 (((-637 (-1151)) (-637 (-1151))) 9)) (-3791 (((-1262) (-388)) 27)) (-1916 (((-1096) (-1169) (-637 (-1169)) (-1172) (-637 (-1169))) 60) (((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169)) (-1169)) 35) (((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169))) 34)))
+(((-395) (-10 -7 (-15 -1916 ((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169)))) (-15 -1916 ((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169)) (-1169))) (-15 -1916 ((-1096) (-1169) (-637 (-1169)) (-1172) (-637 (-1169)))) (-15 -3791 ((-1262) (-388))) (-15 -1917 ((-637 (-1151)) (-637 (-1151)))))) (T -395))
+((-1917 (*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-395)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-395)))) (-1916 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-637 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-395)))) (-1916 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-637 (-637 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-637 (-3 (|:| |array| (-637 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-395)))) (-1916 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-637 (-637 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-637 (-3 (|:| |array| (-637 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-395)))))
+(-10 -7 (-15 -1916 ((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169)))) (-15 -1916 ((-1096) (-1169) (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169)))) (-637 (-637 (-3 (|:| |array| (-637 (-1169))) (|:| |scalar| (-1169))))) (-637 (-1169)) (-1169))) (-15 -1916 ((-1096) (-1169) (-637 (-1169)) (-1172) (-637 (-1169)))) (-15 -3791 ((-1262) (-388))) (-15 -1917 ((-637 (-1151)) (-637 (-1151)))))
+((-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8)))
(((-396) (-140)) (T -396))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-330))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))) (-15 -2057 ($ (-316 (-379)))) (-15 -2130 ((-3 $ "failed") (-316 (-379)))) (-15 -2057 ($ (-316 (-563)))) (-15 -2130 ((-3 $ "failed") (-316 (-563)))) (-15 -2057 ($ (-948 (-379)))) (-15 -2130 ((-3 $ "failed") (-948 (-379)))) (-15 -2057 ($ (-948 (-563)))) (-15 -2130 ((-3 $ "failed") (-948 (-563)))) (-15 -2057 ($ (-407 (-948 (-379))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2057 ($ (-407 (-948 (-563))))) (-15 -2130 ((-3 $ "failed") (-407 (-948 (-563)))))))
-(((-610 (-858)) . T) ((-395) . T) ((-1208) . T))
-((-4377 (((-640 (-1151)) (-640 (-1151))) 9)) (-2615 (((-1262) (-388)) 27)) (-4365 (((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169))) 60) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169)) 35) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169))) 34)))
-(((-397) (-10 -7 (-15 -4365 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -4365 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -4365 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -2615 ((-1262) (-388))) (-15 -4377 ((-640 (-1151)) (-640 (-1151)))))) (T -397))
-((-4377 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397)))) (-4365 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-4365 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-4365 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))))
-(-10 -7 (-15 -4365 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -4365 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -4365 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -2615 ((-1262) (-388))) (-15 -4377 ((-640 (-1151)) (-640 (-1151)))))
-((-2615 (((-1262) $) 36)) (-1692 (((-858) $) 96) (($ (-330)) 98) (($ (-640 (-330))) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 95) (($ (-316 (-696))) 52) (($ (-316 (-694))) 71) (($ (-316 (-689))) 84) (($ (-294 (-316 (-696)))) 66) (($ (-294 (-316 (-694)))) 79) (($ (-294 (-316 (-689)))) 92) (($ (-316 (-563))) 103) (($ (-316 (-379))) 116) (($ (-316 (-169 (-379)))) 129) (($ (-294 (-316 (-563)))) 111) (($ (-294 (-316 (-379)))) 124) (($ (-294 (-316 (-169 (-379))))) 137)))
-(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -1692 ($ (-330))) (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))) (-15 -1692 ($ (-316 (-696)))) (-15 -1692 ($ (-316 (-694)))) (-15 -1692 ($ (-316 (-689)))) (-15 -1692 ($ (-294 (-316 (-696))))) (-15 -1692 ($ (-294 (-316 (-694))))) (-15 -1692 ($ (-294 (-316 (-689))))) (-15 -1692 ($ (-316 (-563)))) (-15 -1692 ($ (-316 (-379)))) (-15 -1692 ($ (-316 (-169 (-379))))) (-15 -1692 ($ (-294 (-316 (-563))))) (-15 -1692 ($ (-294 (-316 (-379))))) (-15 -1692 ($ (-294 (-316 (-169 (-379)))))))) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-1169)) (-1173)) (T -398))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-330))) (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))) (-15 -1692 ($ (-316 (-696)))) (-15 -1692 ($ (-316 (-694)))) (-15 -1692 ($ (-316 (-689)))) (-15 -1692 ($ (-294 (-316 (-696))))) (-15 -1692 ($ (-294 (-316 (-694))))) (-15 -1692 ($ (-294 (-316 (-689))))) (-15 -1692 ($ (-316 (-563)))) (-15 -1692 ($ (-316 (-379)))) (-15 -1692 ($ (-316 (-169 (-379))))) (-15 -1692 ($ (-294 (-316 (-563))))) (-15 -1692 ($ (-294 (-316 (-379))))) (-15 -1692 ($ (-294 (-316 (-169 (-379))))))))
-((-1677 (((-112) $ $) NIL)) (-3169 ((|#2| $) 36)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3179 (($ (-407 |#2|)) 85)) (-4388 (((-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|))) $) 37)) (-4203 (($ $) 32) (($ $ (-767)) 34)) (-2219 (((-407 |#2|) $) 46)) (-1706 (($ (-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|)))) 31)) (-1692 (((-858) $) 120)) (-3213 (($ $) 33) (($ $ (-767)) 35)) (-1718 (((-112) $ $) NIL)) (-1813 (($ |#2| $) 39)))
-(((-399 |#1| |#2|) (-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -1813 ($ |#2| $)) (-15 -3179 ($ (-407 |#2|))) (-15 -3169 (|#2| $)) (-15 -4388 ((-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|))) $)) (-15 -1706 ($ (-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|))))) (-15 -4203 ($ $)) (-15 -3213 ($ $)) (-15 -4203 ($ $ (-767))) (-15 -3213 ($ $ (-767))))) (-13 (-363) (-147)) (-1233 |#1|)) (T -399))
-((-1813 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1233 *3)))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3169 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-4388 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-640 (-2 (|:| -3311 (-767)) (|:| -3412 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3311 (-767)) (|:| -3412 *4) (|:| |num| *4)))) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4203 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-3213 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))))
-(-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -1813 ($ |#2| $)) (-15 -3179 ($ (-407 |#2|))) (-15 -3169 (|#2| $)) (-15 -4388 ((-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|))) $)) (-15 -1706 ($ (-640 (-2 (|:| -3311 (-767)) (|:| -3412 |#2|) (|:| |num| |#2|))))) (-15 -4203 ($ $)) (-15 -3213 ($ $)) (-15 -4203 ($ $ (-767))) (-15 -3213 ($ $ (-767)))))
-((-1677 (((-112) $ $) 9 (-4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 15 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 14 (|has| |#1| (-882 (-563))))) (-3854 (((-1151) $) 13 (-4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1693 (((-1113) $) 12 (-4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1692 (((-858) $) 11 (-4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1718 (((-112) $ $) 10 (-4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))))
-(((-400 |#1|) (-140) (-1208)) (T -400))
-NIL
-(-13 (-1208) (-10 -7 (IF (|has| |t#1| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|)))
-(((-102) -4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-610 (-858)) -4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-1093) -4034 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-1208) . T))
-((-3188 (($ $) 10) (($ $ (-767)) 11)))
-(((-401 |#1|) (-10 -8 (-15 -3188 (|#1| |#1| (-767))) (-15 -3188 (|#1| |#1|))) (-402)) (T -401))
-NIL
-(-10 -8 (-15 -3188 (|#1| |#1| (-767))) (-15 -3188 (|#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-3188 (($ $) 80) (($ $ (-767)) 79)) (-2560 (((-112) $) 72)) (-1775 (((-829 (-917)) $) 82)) (-3401 (((-112) $) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3196 (((-3 (-767) "failed") $ $) 81)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-2047 (((-3 $ "failed") $) 83)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
+((-3791 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-1262)))))
+(-13 (-1207) (-610 (-859)) (-10 -8 (-15 -3791 ((-1262) $))))
+(((-610 (-859)) . T) ((-1207) . T))
+((-3565 (((-3 $ "failed") (-314 (-378))) 21) (((-3 $ "failed") (-314 (-546))) 19) (((-3 $ "failed") (-942 (-378))) 17) (((-3 $ "failed") (-942 (-546))) 15) (((-3 $ "failed") (-407 (-942 (-378)))) 13) (((-3 $ "failed") (-407 (-942 (-546)))) 11)) (-3564 (($ (-314 (-378))) 22) (($ (-314 (-546))) 20) (($ (-942 (-378))) 18) (($ (-942 (-546))) 16) (($ (-407 (-942 (-378)))) 14) (($ (-407 (-942 (-546)))) 12)) (-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8) (($ (-637 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 23)))
+(((-397) (-140)) (T -397))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-397)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-397)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-378))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-546))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-942 (-546))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-546))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-378)))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-378)))) (-4 *1 (-397)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-546)))) (-4 *1 (-397)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-546)))) (-4 *1 (-397)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-330))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))) (-15 -3564 ($ (-314 (-378)))) (-15 -3565 ((-3 $ "failed") (-314 (-378)))) (-15 -3564 ($ (-314 (-546)))) (-15 -3565 ((-3 $ "failed") (-314 (-546)))) (-15 -3564 ($ (-942 (-378)))) (-15 -3565 ((-3 $ "failed") (-942 (-378)))) (-15 -3564 ($ (-942 (-546)))) (-15 -3565 ((-3 $ "failed") (-942 (-546)))) (-15 -3564 ($ (-407 (-942 (-378))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-378))))) (-15 -3564 ($ (-407 (-942 (-546))))) (-15 -3565 ((-3 $ "failed") (-407 (-942 (-546)))))))
+(((-610 (-859)) . T) ((-396) . T) ((-1207) . T))
+((-3791 (((-1262) $) 36)) (-4361 (((-859) $) 96) (($ (-330)) 98) (($ (-637 (-330))) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 95) (($ (-314 (-696))) 52) (($ (-314 (-694))) 71) (($ (-314 (-689))) 84) (($ (-293 (-314 (-696)))) 66) (($ (-293 (-314 (-694)))) 79) (($ (-293 (-314 (-689)))) 92) (($ (-314 (-546))) 103) (($ (-314 (-378))) 116) (($ (-314 (-168 (-378)))) 129) (($ (-293 (-314 (-546)))) 111) (($ (-293 (-314 (-378)))) 124) (($ (-293 (-314 (-168 (-378))))) 137)))
+(((-398 |#1| |#2| |#3| |#4|) (-13 (-396) (-10 -8 (-15 -4361 ($ (-330))) (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))) (-15 -4361 ($ (-314 (-696)))) (-15 -4361 ($ (-314 (-694)))) (-15 -4361 ($ (-314 (-689)))) (-15 -4361 ($ (-293 (-314 (-696))))) (-15 -4361 ($ (-293 (-314 (-694))))) (-15 -4361 ($ (-293 (-314 (-689))))) (-15 -4361 ($ (-314 (-546)))) (-15 -4361 ($ (-314 (-378)))) (-15 -4361 ($ (-314 (-168 (-378))))) (-15 -4361 ($ (-293 (-314 (-546))))) (-15 -4361 ($ (-293 (-314 (-378))))) (-15 -4361 ($ (-293 (-314 (-168 (-378)))))))) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 "void")) (-637 (-1169)) (-1173)) (T -398))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void"))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-314 (-168 (-378)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-546)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-378)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-293 (-314 (-168 (-378))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169))) (-14 *6 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-330))) (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))) (-15 -4361 ($ (-314 (-696)))) (-15 -4361 ($ (-314 (-694)))) (-15 -4361 ($ (-314 (-689)))) (-15 -4361 ($ (-293 (-314 (-696))))) (-15 -4361 ($ (-293 (-314 (-694))))) (-15 -4361 ($ (-293 (-314 (-689))))) (-15 -4361 ($ (-314 (-546)))) (-15 -4361 ($ (-314 (-378)))) (-15 -4361 ($ (-314 (-168 (-378))))) (-15 -4361 ($ (-293 (-314 (-546))))) (-15 -4361 ($ (-293 (-314 (-378))))) (-15 -4361 ($ (-293 (-314 (-168 (-378))))))))
+((-2953 (((-112) $ $) NIL)) (-1919 ((|#2| $) 36)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1920 (($ (-407 |#2|)) 85)) (-1918 (((-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|))) $) 37)) (-4225 (($ $) 32) (($ $ (-767)) 34)) (-4385 (((-407 |#2|) $) 46)) (-3936 (($ (-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|)))) 31)) (-4361 (((-859) $) 120)) (-3058 (($ $) 33) (($ $ (-767)) 35)) (-3444 (((-112) $ $) NIL)) (-4254 (($ |#2| $) 39)))
+(((-399 |#1| |#2|) (-13 (-1094) (-611 (-407 |#2|)) (-10 -8 (-15 -4254 ($ |#2| $)) (-15 -1920 ($ (-407 |#2|))) (-15 -1919 (|#2| $)) (-15 -1918 ((-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|))) $)) (-15 -3936 ($ (-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|))))) (-15 -4225 ($ $)) (-15 -3058 ($ $)) (-15 -4225 ($ $ (-767))) (-15 -3058 ($ $ (-767))))) (-13 (-363) (-147)) (-1232 |#1|)) (T -399))
+((-4254 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1232 *3)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-1919 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-637 (-2 (|:| -2543 (-767)) (|:| -4187 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1232 *3)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -2543 (-767)) (|:| -4187 *4) (|:| |num| *4)))) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4225 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1232 *2)))) (-3058 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1232 *2)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1232 *3)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1232 *3)))))
+(-13 (-1094) (-611 (-407 |#2|)) (-10 -8 (-15 -4254 ($ |#2| $)) (-15 -1920 ($ (-407 |#2|))) (-15 -1919 (|#2| $)) (-15 -1918 ((-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|))) $)) (-15 -3936 ($ (-637 (-2 (|:| -2543 (-767)) (|:| -4187 |#2|) (|:| |num| |#2|))))) (-15 -4225 ($ $)) (-15 -3058 ($ $)) (-15 -4225 ($ $ (-767))) (-15 -3058 ($ $ (-767)))))
+((-2953 (((-112) $ $) 9 (-3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 15 (|has| |#1| (-882 (-378)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 14 (|has| |#1| (-882 (-546))))) (-3650 (((-1151) $) 13 (-3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))))) (-3651 (((-1113) $) 12 (-3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))))) (-4361 (((-859) $) 11 (-3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))))) (-3444 (((-112) $ $) 10 (-3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))))))
+(((-400 |#1|) (-140) (-1207)) (T -400))
+NIL
+(-13 (-1207) (-10 -7 (IF (|has| |t#1| (-882 (-546))) (-6 (-882 (-546))) |%noBranch|) (IF (|has| |t#1| (-882 (-378))) (-6 (-882 (-378))) |%noBranch|)))
+(((-102) -3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))) ((-610 (-859)) -3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))) ((-882 (-378)) |has| |#1| (-882 (-378))) ((-882 (-546)) |has| |#1| (-882 (-546))) ((-1094) -3943 (|has| |#1| (-882 (-546))) (|has| |#1| (-882 (-378)))) ((-1207) . T))
+((-1921 (($ $) 10) (($ $ (-767)) 11)))
+(((-401 |#1|) (-10 -8 (-15 -1921 (|#1| |#1| (-767))) (-15 -1921 (|#1| |#1|))) (-402)) (T -401))
+NIL
+(-10 -8 (-15 -1921 (|#1| |#1| (-767))) (-15 -1921 (|#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-1921 (($ $) 80) (($ $ (-767)) 79)) (-4138 (((-112) $) 72)) (-4186 (((-828 (-915)) $) 82)) (-2552 (((-112) $) 31)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-1922 (((-3 (-767) "failed") $ $) 81)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67)) (-3091 (((-3 $ "failed") $) 83)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
(((-402) (-140)) (T -402))
-((-1775 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) (-3196 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-3188 (*1 *1 *1) (-4 *1 (-402))) (-3188 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))))
-(-13 (-363) (-145) (-10 -8 (-15 -1775 ((-829 (-917)) $)) (-15 -3196 ((-3 (-767) "failed") $ $)) (-15 -3188 ($ $)) (-15 -3188 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-4341 (($ (-563) (-563)) 11) (($ (-563) (-563) (-917)) NIL)) (-3605 (((-917)) 16) (((-917) (-917)) NIL)))
-(((-403 |#1|) (-10 -8 (-15 -3605 ((-917) (-917))) (-15 -3605 ((-917))) (-15 -4341 (|#1| (-563) (-563) (-917))) (-15 -4341 (|#1| (-563) (-563)))) (-404)) (T -403))
-((-3605 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
-(-10 -8 (-15 -3605 ((-917) (-917))) (-15 -3605 ((-917))) (-15 -4341 (|#1| (-563) (-563) (-917))) (-15 -4341 (|#1| (-563) (-563))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3944 (((-563) $) 90)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-1763 (($ $) 88)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2185 (($ $) 98)) (-2003 (((-112) $ $) 60)) (-2807 (((-563) $) 115)) (-2569 (($) 17 T CONST)) (-3925 (($ $) 87)) (-2130 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2057 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-3107 (((-917)) 131) (((-917) (-917)) 128 (|has| $ (-6 -4399)))) (-3414 (((-112) $) 113)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-1775 (((-563) $) 137)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 97)) (-3975 (($ $) 93)) (-3426 (((-112) $) 114)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3088 (($ $ $) 112) (($) 125 (-12 (-2174 (|has| $ (-6 -4399))) (-2174 (|has| $ (-6 -4391)))))) (-1776 (($ $ $) 111) (($) 124 (-12 (-2174 (|has| $ (-6 -4399))) (-2174 (|has| $ (-6 -4391)))))) (-4051 (((-563) $) 134)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-3217 (((-917) (-563)) 127 (|has| $ (-6 -4399)))) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3935 (($ $) 89)) (-3954 (($ $) 91)) (-4341 (($ (-563) (-563)) 139) (($ (-563) (-563) (-917)) 138)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-3311 (((-563) $) 135)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3605 (((-917)) 132) (((-917) (-917)) 129 (|has| $ (-6 -4399)))) (-3206 (((-917) (-563)) 126 (|has| $ (-6 -4399)))) (-2219 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-3914 (((-767)) 28)) (-3965 (($ $) 92)) (-3227 (((-917)) 133) (((-917) (-917)) 130 (|has| $ (-6 -4399)))) (-4212 (((-917)) 136)) (-3223 (((-112) $ $) 40)) (-1462 (($ $) 116)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 109)) (-1754 (((-112) $ $) 108)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 110)) (-1743 (((-112) $ $) 107)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
+((-4186 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-828 (-915))))) (-1922 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-1921 (*1 *1 *1) (-4 *1 (-402))) (-1921 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))))
+(-13 (-363) (-145) (-10 -8 (-15 -4186 ((-828 (-915)) $)) (-15 -1922 ((-3 (-767) "failed") $ $)) (-15 -1921 ($ $)) (-15 -1921 ($ $ (-767)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-3662 (($ (-546) (-546)) 11) (($ (-546) (-546) (-915)) NIL)) (-3000 (((-915)) 16) (((-915) (-915)) NIL)))
+(((-403 |#1|) (-10 -8 (-15 -3000 ((-915) (-915))) (-15 -3000 ((-915))) (-15 -3662 (|#1| (-546) (-546) (-915))) (-15 -3662 (|#1| (-546) (-546)))) (-404)) (T -403))
+((-3000 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
+(-10 -8 (-15 -3000 ((-915) (-915))) (-15 -3000 ((-915))) (-15 -3662 (|#1| (-546) (-546) (-915))) (-15 -3662 (|#1| (-546) (-546))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3521 (((-546) $) 90)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-4185 (($ $) 88)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-3427 (($ $) 98)) (-1740 (((-112) $ $) 60)) (-4038 (((-546) $) 115)) (-4139 (($) 17 T CONST)) (-3519 (($ $) 87)) (-3565 (((-3 (-546) #1="failed") $) 103) (((-3 (-407 (-546)) #1#) $) 100)) (-3564 (((-546) $) 104) (((-407 (-546)) $) 101)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-2516 (((-915)) 131) (((-915) (-915)) 128 (|has| $ (-6 -4399)))) (-3594 (((-112) $) 113)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 94)) (-4186 (((-546) $) 137)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 97)) (-3524 (($ $) 93)) (-3595 (((-112) $) 114)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 53)) (-2919 (($ $ $) 112) (($) 125 (-12 (-3733 (|has| $ (-6 -4399))) (-3733 (|has| $ (-6 -4391)))))) (-3249 (($ $ $) 111) (($) 124 (-12 (-3733 (|has| $ (-6 -4399))) (-3733 (|has| $ (-6 -4391)))))) (-2517 (((-546) $) 134)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-1924 (((-915) (-546)) 127 (|has| $ (-6 -4399)))) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3520 (($ $) 89)) (-3522 (($ $) 91)) (-3662 (($ (-546) (-546)) 139) (($ (-546) (-546) (-915)) 138)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-2543 (((-546) $) 135)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-3000 (((-915)) 132) (((-915) (-915)) 129 (|has| $ (-6 -4399)))) (-1923 (((-915) (-546)) 126 (|has| $ (-6 -4399)))) (-4385 (((-378) $) 106) (((-225) $) 105) (((-886 (-378)) $) 95)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ (-546)) 102) (($ (-407 (-546))) 99)) (-3518 (((-767)) 28)) (-3523 (($ $) 92)) (-1925 (((-915)) 133) (((-915) (-915)) 130 (|has| $ (-6 -4399)))) (-3083 (((-915)) 136)) (-2219 (((-112) $ $) 40)) (-3794 (($ $) 116)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 109)) (-2952 (((-112) $ $) 108)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 110)) (-3074 (((-112) $ $) 107)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70) (($ $ (-407 (-546))) 96)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
(((-404) (-140)) (T -404))
-((-4341 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404)))) (-4341 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-4212 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-3227 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3605 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3107 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-917)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-917)))) (-3088 (*1 *1) (-12 (-4 *1 (-404)) (-2174 (|has| *1 (-6 -4399))) (-2174 (|has| *1 (-6 -4391))))) (-1776 (*1 *1) (-12 (-4 *1 (-404)) (-2174 (|has| *1 (-6 -4399))) (-2174 (|has| *1 (-6 -4391))))))
-(-13 (-1054) (-10 -8 (-6 -1402) (-15 -4341 ($ (-563) (-563))) (-15 -4341 ($ (-563) (-563) (-917))) (-15 -1775 ((-563) $)) (-15 -4212 ((-917))) (-15 -3311 ((-563) $)) (-15 -4051 ((-563) $)) (-15 -3227 ((-917))) (-15 -3605 ((-917))) (-15 -3107 ((-917))) (IF (|has| $ (-6 -4399)) (PROGN (-15 -3227 ((-917) (-917))) (-15 -3605 ((-917) (-917))) (-15 -3107 ((-917) (-917))) (-15 -3217 ((-917) (-563))) (-15 -3206 ((-917) (-563)))) |%noBranch|) (IF (|has| $ (-6 -4391)) |%noBranch| (IF (|has| $ (-6 -4399)) |%noBranch| (PROGN (-15 -3088 ($)) (-15 -1776 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1054) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-2238 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -2238 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-555) (-555)) (T -405))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))))
-(-10 -7 (-15 -2238 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
-((-2238 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -2238 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-555) (-555)) (T -406))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))))
-(-10 -7 (-15 -2238 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 13)) (-3944 ((|#1| $) 21 (|has| |#1| (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| |#1| (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 17) (((-3 (-1169) "failed") $) NIL (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563))))) (-2057 ((|#1| $) 15) (((-1169) $) NIL (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 68 (|has| |#1| (-1034 (-563)))) (((-563) $) NIL (|has| |#1| (-1034 (-563))))) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) 50)) (-1690 (($) NIL (|has| |#1| (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-3401 (((-112) $) 56)) (-2043 (($ $) NIL)) (-2143 ((|#1| $) 72)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-3426 (((-112) $) NIL (|has| |#1| (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| |#1| (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 98)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| |#1| (-307)))) (-3954 ((|#1| $) 28 (|has| |#1| (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 136 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 132 (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-1993 (((-767) $) NIL)) (-2308 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2033 (($ $) NIL)) (-2153 ((|#1| $) 74)) (-2219 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#1| (-611 (-536)))) (((-379) $) NIL (|has| |#1| (-1018))) (((-225) $) NIL (|has| |#1| (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 116 (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 10) (($ (-1169)) NIL (|has| |#1| (-1034 (-1169))))) (-2047 (((-3 $ "failed") $) 100 (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 101)) (-3965 ((|#1| $) 26 (|has| |#1| (-545)))) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-816)))) (-2239 (($) 22 T CONST)) (-2253 (($) 8 T CONST)) (-2742 (((-1151) $) 43 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1151) $ (-112)) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $ (-112)) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-824))))) (-3213 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 65)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) 24 (|has| |#1| (-846)))) (-1836 (($ $ $) 127) (($ |#1| |#1|) 52)) (-1825 (($ $) 25) (($ $ $) 55)) (-1813 (($ $ $) 53)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 126)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 60) (($ $ $) 57) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 86)))
-(((-407 |#1|) (-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|))) (-555)) (T -407))
-NIL
-(-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3340 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 18)) (-3458 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 24)) (-3330 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 38)) (-4035 ((|#3| $) 60)) (-1623 ((|#2| (-1257 $)) NIL) ((|#2|) 20)) (-3759 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 22) (((-684 |#2|) (-1257 $)) 36)) (-2219 (((-1257 |#2|) $) 11) (($ (-1257 |#2|)) 13)) (-1892 ((|#3| $) 52)))
-(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -3330 ((-684 |#2|) |#1|)) (-15 -1623 (|#2|)) (-15 -3340 ((-684 |#2|))) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -4035 (|#3| |#1|)) (-15 -1892 (|#3| |#1|)) (-15 -3340 ((-684 |#2|) (-1257 |#1|))) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3330 ((-684 |#2|) |#1| (-1257 |#1|)))) (-409 |#2| |#3|) (-172) (-1233 |#2|)) (T -408))
-((-3340 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-1623 (*1 *2) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
-(-10 -8 (-15 -3330 ((-684 |#2|) |#1|)) (-15 -1623 (|#2|)) (-15 -3340 ((-684 |#2|))) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -4035 (|#3| |#1|)) (-15 -1892 (|#3| |#1|)) (-15 -3340 ((-684 |#2|) (-1257 |#1|))) (-15 -1623 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3330 ((-684 |#2|) |#1| (-1257 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3340 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1731 ((|#1| $) 53)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3458 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-3330 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-3951 (((-3 $ "failed") $) 33)) (-2521 (((-917)) 55)) (-3401 (((-112) $) 31)) (-3975 ((|#1| $) 52)) (-4035 ((|#2| $) 45 (|has| |#1| (-363)))) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1623 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-3759 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2219 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-2047 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1892 ((|#2| $) 46)) (-3914 (((-767)) 28)) (-4013 (((-1257 $)) 68)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-409 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -409))
-((-4013 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1)) (-4 *1 (-409 *3 *4)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-3340 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3)))) (-1623 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3)))))
-(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -4013 ((-1257 $))) (-15 -3759 ((-1257 |t#1|) $)) (-15 -3759 ((-684 |t#1|) (-1257 $))) (-15 -3458 ($ (-1257 |t#1|))) (-15 -2219 ((-1257 |t#1|) $)) (-15 -2219 ($ (-1257 |t#1|))) (-15 -3340 ((-684 |t#1|))) (-15 -1623 (|t#1|)) (-15 -3330 ((-684 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-370 |#1| |#2|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) 27) (((-3 (-563) "failed") $) 19)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) 24) (((-563) $) 14)) (-1692 (($ |#2|) NIL) (($ (-407 (-563))) 22) (($ (-563)) 11)))
-(((-410 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| (-563))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|))) (-411 |#2|) (-1208)) (T -410))
-NIL
-(-10 -8 (-15 -1692 (|#1| (-563))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)))
-((-2130 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-563)) "failed") $) 16 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 13 (|has| |#1| (-1034 (-563))))) (-2057 ((|#1| $) 8) (((-407 (-563)) $) 17 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 14 (|has| |#1| (-1034 (-563))))) (-1692 (($ |#1|) 6) (($ (-407 (-563))) 15 (|has| |#1| (-1034 (-407 (-563))))) (($ (-563)) 12 (|has| |#1| (-1034 (-563))))))
-(((-411 |#1|) (-140) (-1208)) (T -411))
-NIL
-(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-563))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-563)))) (-6 (-1034 (-407 (-563)))) |%noBranch|)))
-(((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 #1=(-563)) |has| |#1| (-1034 (-563))) ((-613 |#1|) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 #1#) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T))
-((-2238 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 33)))
-(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2238 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|)) (-307) (-988 |#5|) (-1233 |#6|) (-13 (-409 |#6| |#7|) (-1034 |#6|))) (T -412))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *7 (-1233 *6)) (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-988 *9)) (-4 *11 (-1233 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1034 *10))))))
-(-10 -7 (-15 -2238 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
-((-1677 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3350 ((|#4| (-767) (-1257 |#4|)) 56)) (-3401 (((-112) $) NIL)) (-2143 (((-1257 |#4|) $) 17)) (-3975 ((|#2| $) 54)) (-3361 (($ $) 140)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 100)) (-1716 (($ (-1257 |#4|)) 99)) (-1693 (((-1113) $) NIL)) (-2153 ((|#1| $) 18)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) 135)) (-4013 (((-1257 |#4|) $) 129)) (-2253 (($) 11 T CONST)) (-1718 (((-112) $ $) 40)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 122)) (* (($ $ $) 121)))
-(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -1716 ($ (-1257 |#4|))) (-15 -4013 ((-1257 |#4|) $)) (-15 -3975 (|#2| $)) (-15 -2143 ((-1257 |#4|) $)) (-15 -2153 (|#1| $)) (-15 -3361 ($ $)) (-15 -3350 (|#4| (-767) (-1257 |#4|))))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|))) (T -413))
-((-1716 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-4013 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-3975 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-3361 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6)))))
-(-13 (-473) (-10 -8 (-15 -1716 ($ (-1257 |#4|))) (-15 -4013 ((-1257 |#4|) $)) (-15 -3975 (|#2| $)) (-15 -2143 ((-1257 |#4|) $)) (-15 -2153 (|#1| $)) (-15 -3361 ($ $)) (-15 -3350 (|#4| (-767) (-1257 |#4|)))))
-((-1677 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3975 ((|#2| $) 61)) (-3374 (($ (-1257 |#4|)) 25) (($ (-413 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1034 |#2|)))) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 34)) (-4013 (((-1257 |#4|) $) 26)) (-2253 (($) 23 T CONST)) (-1718 (((-112) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 72)))
-(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -4013 ((-1257 |#4|) $)) (-15 -3975 (|#2| $)) (-15 -3374 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -3374 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-988 |#1|) (-1233 |#2|) (-409 |#2| |#3|) (-1257 |#4|)) (T -414))
-((-4013 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3975 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1257 *5)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
-(-13 (-722) (-10 -8 (-15 -4013 ((-1257 |#4|) $)) (-15 -3975 (|#2| $)) (-15 -3374 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -3374 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2238 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
-(-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3245 (((-3 $ "failed")) 86)) (-3749 (((-1257 (-684 |#2|)) (-1257 $)) NIL) (((-1257 (-684 |#2|))) 91)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 85)) (-1914 (((-3 $ "failed")) 84)) (-3410 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 102)) (-3386 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 110)) (-2214 (((-1165 (-948 |#2|))) 55)) (-3436 ((|#2| (-1257 $)) NIL) ((|#2|) 106)) (-3458 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 112)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 83)) (-1927 (((-3 $ "failed")) 75)) (-3422 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 100)) (-3398 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 108)) (-2267 (((-1165 (-948 |#2|))) 54)) (-3447 ((|#2| (-1257 $)) NIL) ((|#2|) 104)) (-3759 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 111) (((-684 |#2|) (-1257 $)) 118)) (-2219 (((-1257 |#2|) $) 96) (($ (-1257 |#2|)) 98)) (-2122 (((-640 (-948 |#2|)) (-1257 $)) NIL) (((-640 (-948 |#2|))) 94)) (-3727 (($ (-684 |#2|) $) 90)))
-(((-416 |#1| |#2|) (-10 -8 (-15 -3727 (|#1| (-684 |#2|) |#1|)) (-15 -2214 ((-1165 (-948 |#2|)))) (-15 -2267 ((-1165 (-948 |#2|)))) (-15 -3386 ((-684 |#2|) |#1|)) (-15 -3398 ((-684 |#2|) |#1|)) (-15 -3410 ((-684 |#2|))) (-15 -3422 ((-684 |#2|))) (-15 -3436 (|#2|)) (-15 -3447 (|#2|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -2122 ((-640 (-948 |#2|)))) (-15 -3749 ((-1257 (-684 |#2|)))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -3245 ((-3 |#1| "failed"))) (-15 -1914 ((-3 |#1| "failed"))) (-15 -1927 ((-3 |#1| "failed"))) (-15 -2288 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed"))) (-15 -2299 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed"))) (-15 -3410 ((-684 |#2|) (-1257 |#1|))) (-15 -3422 ((-684 |#2|) (-1257 |#1|))) (-15 -3436 (|#2| (-1257 |#1|))) (-15 -3447 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3386 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3398 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3749 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -2122 ((-640 (-948 |#2|)) (-1257 |#1|)))) (-417 |#2|) (-172)) (T -416))
-((-3749 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2122 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3447 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3436 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3422 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3410 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2267 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2214 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
-(-10 -8 (-15 -3727 (|#1| (-684 |#2|) |#1|)) (-15 -2214 ((-1165 (-948 |#2|)))) (-15 -2267 ((-1165 (-948 |#2|)))) (-15 -3386 ((-684 |#2|) |#1|)) (-15 -3398 ((-684 |#2|) |#1|)) (-15 -3410 ((-684 |#2|))) (-15 -3422 ((-684 |#2|))) (-15 -3436 (|#2|)) (-15 -3447 (|#2|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -3458 (|#1| (-1257 |#2|))) (-15 -2122 ((-640 (-948 |#2|)))) (-15 -3749 ((-1257 (-684 |#2|)))) (-15 -3759 ((-684 |#2|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1|)) (-15 -3245 ((-3 |#1| "failed"))) (-15 -1914 ((-3 |#1| "failed"))) (-15 -1927 ((-3 |#1| "failed"))) (-15 -2288 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed"))) (-15 -2299 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed"))) (-15 -3410 ((-684 |#2|) (-1257 |#1|))) (-15 -3422 ((-684 |#2|) (-1257 |#1|))) (-15 -3436 (|#2| (-1257 |#1|))) (-15 -3447 (|#2| (-1257 |#1|))) (-15 -3458 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -3759 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -3759 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3386 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3398 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3749 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -2122 ((-640 (-948 |#2|)) (-1257 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3245 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) 19)) (-3749 (((-1257 (-684 |#1|)) (-1257 $)) 78) (((-1257 (-684 |#1|))) 100)) (-4039 (((-1257 $)) 81)) (-2569 (($) 17 T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-1914 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-3410 (((-684 |#1|) (-1257 $)) 65) (((-684 |#1|)) 92)) (-4017 ((|#1| $) 74)) (-3386 (((-684 |#1|) $ (-1257 $)) 76) (((-684 |#1|) $) 90)) (-3342 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-2214 (((-1165 (-948 |#1|))) 88 (|has| |#1| (-363)))) (-3376 (($ $ (-917)) 28)) (-3995 ((|#1| $) 72)) (-1938 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-3436 ((|#1| (-1257 $)) 67) ((|#1|) 94)) (-3973 (((-1165 |#1|) $) 63)) (-3912 (((-112)) 57)) (-3458 (($ (-1257 |#1|) (-1257 $)) 69) (($ (-1257 |#1|)) 98)) (-3951 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-2521 (((-917)) 80)) (-3879 (((-112)) 54)) (-3617 (($ $ (-917)) 33)) (-3843 (((-112)) 50)) (-3825 (((-112)) 48)) (-3861 (((-112)) 52)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-1927 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-3422 (((-684 |#1|) (-1257 $)) 66) (((-684 |#1|)) 93)) (-4028 ((|#1| $) 75)) (-3398 (((-684 |#1|) $ (-1257 $)) 77) (((-684 |#1|) $) 91)) (-3353 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-2267 (((-1165 (-948 |#1|))) 89 (|has| |#1| (-363)))) (-3364 (($ $ (-917)) 29)) (-4007 ((|#1| $) 73)) (-3801 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-3447 ((|#1| (-1257 $)) 68) ((|#1|) 95)) (-3984 (((-1165 |#1|) $) 64)) (-3923 (((-112)) 58)) (-3854 (((-1151) $) 9)) (-3832 (((-112)) 49)) (-3852 (((-112)) 51)) (-3868 (((-112)) 53)) (-1693 (((-1113) $) 10)) (-3900 (((-112)) 56)) (-2308 ((|#1| $ (-563)) 101)) (-3759 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70) (((-1257 |#1|) $) 103) (((-684 |#1|) (-1257 $)) 102)) (-2219 (((-1257 |#1|) $) 97) (($ (-1257 |#1|)) 96)) (-2122 (((-640 (-948 |#1|)) (-1257 $)) 79) (((-640 (-948 |#1|))) 99)) (-1745 (($ $ $) 25)) (-3963 (((-112)) 62)) (-1692 (((-858) $) 11)) (-4013 (((-1257 $)) 104)) (-3813 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-1756 (($ $ $ $) 26)) (-3942 (((-112)) 60)) (-3727 (($ (-684 |#1|) $) 87)) (-1729 (($ $ $) 24)) (-3952 (((-112)) 61)) (-3933 (((-112)) 59)) (-3891 (((-112)) 55)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-417 |#1|) (-140) (-172)) (T -417))
-((-4013 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3749 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3))))) (-2122 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3))))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3447 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3436 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3422 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3410 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-2267 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-2214 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-3727 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))))
-(-13 (-367 |t#1|) (-10 -8 (-15 -4013 ((-1257 $))) (-15 -3759 ((-1257 |t#1|) $)) (-15 -3759 ((-684 |t#1|) (-1257 $))) (-15 -2308 (|t#1| $ (-563))) (-15 -3749 ((-1257 (-684 |t#1|)))) (-15 -2122 ((-640 (-948 |t#1|)))) (-15 -3458 ($ (-1257 |t#1|))) (-15 -2219 ((-1257 |t#1|) $)) (-15 -2219 ($ (-1257 |t#1|))) (-15 -3447 (|t#1|)) (-15 -3436 (|t#1|)) (-15 -3422 ((-684 |t#1|))) (-15 -3410 ((-684 |t#1|))) (-15 -3398 ((-684 |t#1|) $)) (-15 -3386 ((-684 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2267 ((-1165 (-948 |t#1|)))) (-15 -2214 ((-1165 (-948 |t#1|))))) |%noBranch|) (-15 -3727 ($ (-684 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-367 |#1|) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 45)) (-3236 (($ $) 60)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 148)) (-3231 (($ $) NIL)) (-3211 (((-112) $) 38)) (-3245 ((|#1| $) 13)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-1212)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-3264 (($ |#1| (-563)) 34)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 117)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 58)) (-3951 (((-3 $ "failed") $) 133)) (-2327 (((-3 (-407 (-563)) "failed") $) 66 (|has| |#1| (-545)))) (-2317 (((-112) $) 62 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 73 (|has| |#1| (-545)))) (-3274 (($ |#1| (-563)) 36)) (-2560 (((-112) $) 154 (|has| |#1| (-1212)))) (-3401 (((-112) $) 46)) (-2721 (((-767) $) 40)) (-3283 (((-3 "nil" "sqfr" "irred" "prime") $ (-563)) 139)) (-1347 ((|#1| $ (-563)) 138)) (-3294 (((-563) $ (-563)) 137)) (-3320 (($ |#1| (-563)) 33)) (-2238 (($ (-1 |#1| |#1|) $) 145)) (-2691 (($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563))))) 61)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3309 (($ |#1| (-563)) 35)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 149 (|has| |#1| (-452)))) (-3257 (($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-1337 (((-640 (-2 (|:| -2173 |#1|) (|:| -3311 (-563)))) $) 57)) (-1504 (((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $) 12)) (-2173 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-3012 (((-3 $ "failed") $ $) 140)) (-3311 (((-563) $) 134)) (-2212 ((|#1| $) 59)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 82 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 88 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) $) NIL (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-1169)) (-640 $)) 89 (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-294 $))) 85 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-640 $) (-640 $)) NIL (|has| |#1| (-309 $)))) (-2308 (($ $ |#1|) 74 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-286 $ $)))) (-4203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-2219 (((-536) $) 30 (|has| |#1| (-611 (-536)))) (((-379) $) 95 (|has| |#1| (-1018))) (((-225) $) 98 (|has| |#1| (-1018)))) (-1692 (((-858) $) 115) (($ (-563)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563)))))) (-3914 (((-767)) 51)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 42 T CONST)) (-2253 (($) 41 T CONST)) (-3213 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1718 (((-112) $ $) 128)) (-1825 (($ $) 130) (($ $ $) NIL)) (-1813 (($ $ $) 142)) (** (($ $ (-917)) NIL) (($ $ (-767)) 104)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-418 |#1|) (-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2212 (|#1| $)) (-15 -3311 ((-563) $)) (-15 -2691 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -1504 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -3320 ($ |#1| (-563))) (-15 -1337 ((-640 (-2 (|:| -2173 |#1|) (|:| -3311 (-563)))) $)) (-15 -3309 ($ |#1| (-563))) (-15 -3294 ((-563) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -3283 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2721 ((-767) $)) (-15 -3274 ($ |#1| (-563))) (-15 -3264 ($ |#1| (-563))) (-15 -3257 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3245 (|#1| $)) (-15 -3236 ($ $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) (-555)) (T -418))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3)))) (-2212 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-563))))) (-4 *2 (-555)) (-5 *1 (-418 *2)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-3320 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2173 *3) (|:| -3311 (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-3309 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3294 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3283 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-555)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-3274 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3264 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3257 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3245 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3236 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-2327 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))))
-(-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2212 (|#1| $)) (-15 -3311 ((-563) $)) (-15 -2691 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -1504 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -3320 ($ |#1| (-563))) (-15 -1337 ((-640 (-2 (|:| -2173 |#1|) (|:| -3311 (-563)))) $)) (-15 -3309 ($ |#1| (-563))) (-15 -3294 ((-563) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -3283 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2721 ((-767) $)) (-15 -3274 ($ |#1| (-563))) (-15 -3264 ($ |#1| (-563))) (-15 -3257 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3245 (|#1| $)) (-15 -3236 ($ $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|)))
-((-3998 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 21)) (-3469 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 16)))
-(((-419 |#1|) (-10 -7 (-15 -3998 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3469 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-555)) (T -419))
-((-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3)))) (-3998 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4)))))
-(-10 -7 (-15 -3998 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3469 ((-418 |#1|) (-418 |#1|) (-418 |#1|))))
-((-3522 ((|#2| |#2|) 165)) (-3489 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112)) 57)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3489 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -3522 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -420))
-((-3522 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3))) (-14 *4 (-1169)) (-14 *5 *2))) (-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-14 *6 (-1169)) (-14 *7 *3))))
-(-10 -7 (-15 -3489 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -3522 (|#2| |#2|)))
-((-2238 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1045) (-846)) (-430 |#1|) (-13 (-1045) (-846)) (-430 |#3|)) (T -421))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3522 ((|#2| |#2|) 89)) (-3500 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 48)) (-3511 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 153)))
-(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3500 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -3511 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -3522 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|) (-10 -8 (-15 -1692 ($ |#3|)))) (-844) (-13 (-1235 |#2| |#3|) (-363) (-1193) (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $)))) (-979 |#4|) (-1169)) (T -422))
-((-3522 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -1692 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1235 *2 *4) (-363) (-1193) (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1692 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))) (-3500 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1692 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))))
-(-10 -7 (-15 -3500 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -3511 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -3522 (|#2| |#2|)))
-((-4132 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2444 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2238 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4132 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1093) (-425 |#1|) (-1093) (-425 |#3|)) (T -423))
-((-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4132 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3533 (($) 44)) (-2582 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3816 (($ $ $) 39)) (-3804 (((-112) $ $) 28)) (-3750 (((-767)) 47)) (-1582 (($ (-640 |#2|)) 20) (($) NIL)) (-1690 (($) 53)) (-3845 (((-112) $ $) 13)) (-3088 ((|#2| $) 61)) (-1776 ((|#2| $) 59)) (-3990 (((-917) $) 55)) (-3834 (($ $ $) 35)) (-2552 (($ (-917)) 50)) (-3827 (($ $ |#2|) NIL) (($ $ $) 38)) (-1708 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 26)) (-1706 (($ (-640 |#2|)) 24)) (-3545 (($ $) 46)) (-1692 (((-858) $) 33)) (-3556 (((-767) $) 21)) (-2533 (($ (-640 |#2|)) 19) (($) NIL)) (-1718 (((-112) $ $) 16)))
-(((-424 |#1| |#2|) (-10 -8 (-15 -3750 ((-767))) (-15 -2552 (|#1| (-917))) (-15 -3990 ((-917) |#1|)) (-15 -1690 (|#1|)) (-15 -3088 (|#2| |#1|)) (-15 -1776 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -3545 (|#1| |#1|)) (-15 -3556 ((-767) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -3845 ((-112) |#1| |#1|)) (-15 -2533 (|#1|)) (-15 -2533 (|#1| (-640 |#2|))) (-15 -1582 (|#1|)) (-15 -1582 (|#1| (-640 |#2|))) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#2|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -3804 ((-112) |#1| |#1|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#2| |#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1093)) (T -424))
-((-3750 (*1 *2) (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
-(-10 -8 (-15 -3750 ((-767))) (-15 -2552 (|#1| (-917))) (-15 -3990 ((-917) |#1|)) (-15 -1690 (|#1|)) (-15 -3088 (|#2| |#1|)) (-15 -1776 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -3545 (|#1| |#1|)) (-15 -3556 ((-767) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -3845 ((-112) |#1| |#1|)) (-15 -2533 (|#1|)) (-15 -2533 (|#1| (-640 |#2|))) (-15 -1582 (|#1|)) (-15 -1582 (|#1| (-640 |#2|))) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#2|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -3804 ((-112) |#1| |#1|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#2| |#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -1708 ((-767) |#2| |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)))
-((-1677 (((-112) $ $) 19)) (-3533 (($) 67 (|has| |#1| (-368)))) (-2582 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3816 (($ $ $) 78)) (-3804 (((-112) $ $) 79)) (-3001 (((-112) $ (-767)) 8)) (-3750 (((-767)) 61 (|has| |#1| (-368)))) (-1582 (($ (-640 |#1|)) 74) (($) 73)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-1690 (($) 64 (|has| |#1| (-368)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) 70)) (-2514 (((-112) $ (-767)) 9)) (-3088 ((|#1| $) 65 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1776 ((|#1| $) 66 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-3990 (((-917) $) 63 (|has| |#1| (-368)))) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22)) (-3834 (($ $ $) 75)) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-2552 (($ (-917)) 62 (|has| |#1| (-368)))) (-1693 (((-1113) $) 21)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-3827 (($ $ |#1|) 77) (($ $ $) 76)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-3545 (($ $) 68 (|has| |#1| (-368)))) (-1692 (((-858) $) 18)) (-3556 (((-767) $) 69)) (-2533 (($ (-640 |#1|)) 72) (($) 71)) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20)) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-425 |#1|) (-140) (-1093)) (T -425))
-((-3556 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368)))) (-3533 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))))
-(-13 (-229 |t#1|) (-1091 |t#1|) (-10 -8 (-6 -4408) (-15 -3556 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3545 ($ $)) (-15 -3533 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -1776 (|t#1| $)) (-15 -3088 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T))
-((-3571 (((-584 |#2|) |#2| (-1169)) 35)) (-3679 (((-584 |#2|) |#2| (-1169)) 20)) (-2933 ((|#2| |#2| (-1169)) 25)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -3679 ((-584 |#2|) |#2| (-1169))) (-15 -3571 ((-584 |#2|) |#2| (-1169))) (-15 -2933 (|#2| |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -426))
-((-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))))
-(-10 -7 (-15 -3679 ((-584 |#2|) |#2| (-1169))) (-15 -3571 ((-584 |#2|) |#2| (-1169))) (-15 -2933 (|#2| |#2| (-1169))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3592 (($ |#2| |#1|) 35)) (-3582 (($ |#2| |#1|) 33)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3914 (((-767)) NIL)) (-2239 (($) 10 T CONST)) (-2253 (($) 16 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -1692 ($ |#1|)) (-15 -1692 ($ (-331 |#2|))) (-15 -3592 ($ |#2| |#1|)) (-15 -3582 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-563)))) (-13 (-846) (-21))) (T -427))
-((-1692 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563))))) (-4 *3 (-13 (-846) (-21))))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))))) (-3592 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21))))) (-3582 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -1692 ($ |#1|)) (-15 -1692 ($ (-331 |#2|))) (-15 -3592 ($ |#2| |#1|)) (-15 -3582 ($ |#2| |#1|))))
-((-2062 (((-3 |#2| (-640 |#2|)) |#2| (-1169)) 108)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -2062 ((-3 |#2| (-640 |#2|)) |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -428))
-((-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-955) (-29 *5))))))
-(-10 -7 (-15 -2062 ((-3 |#2| (-640 |#2|)) |#2| (-1169))))
-((-2605 (((-640 (-1169)) $) 72)) (-2138 (((-407 (-1165 $)) $ (-609 $)) 273)) (-4135 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) 237)) (-2130 (((-3 (-609 $) "failed") $) NIL) (((-3 (-1169) "failed") $) 75) (((-3 (-563) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-407 (-948 |#2|)) "failed") $) 323) (((-3 (-948 |#2|) "failed") $) 235) (((-3 (-407 (-563)) "failed") $) NIL)) (-2057 (((-609 $) $) NIL) (((-1169) $) 30) (((-563) $) NIL) ((|#2| $) 231) (((-407 (-948 |#2|)) $) 305) (((-948 |#2|) $) 232) (((-407 (-563)) $) NIL)) (-2559 (((-114) (-114)) 47)) (-2043 (($ $) 87)) (-2751 (((-3 (-609 $) "failed") $) 228)) (-2126 (((-640 (-609 $)) $) 229)) (-3939 (((-3 (-640 $) "failed") $) 247)) (-3959 (((-3 (-2 (|:| |val| $) (|:| -3311 (-563))) "failed") $) 254)) (-3930 (((-3 (-640 $) "failed") $) 245)) (-3479 (((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 $))) "failed") $) 264)) (-3949 (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $) 251) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-1169)) 219)) (-2695 (((-112) $) 19)) (-2705 ((|#2| $) 21)) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 236) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 96) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) 57) (($ $ (-640 (-1169))) 240) (($ $) 241) (($ $ (-114) $ (-1169)) 60) (($ $ (-640 (-114)) (-640 $) (-1169)) 67) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 107) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 242) (($ $ (-1169) (-767) (-1 $ (-640 $))) 94) (($ $ (-1169) (-767) (-1 $ $)) 93)) (-2308 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) 106)) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 238)) (-2033 (($ $) 284)) (-2219 (((-888 (-563)) $) 257) (((-888 (-379)) $) 261) (($ (-418 $)) 319) (((-536) $) NIL)) (-1692 (((-858) $) 239) (($ (-609 $)) 84) (($ (-1169)) 26) (($ |#2|) NIL) (($ (-1118 |#2| (-609 $))) NIL) (($ (-407 |#2|)) 289) (($ (-948 (-407 |#2|))) 328) (($ (-407 (-948 (-407 |#2|)))) 301) (($ (-407 (-948 |#2|))) 295) (($ $) NIL) (($ (-948 |#2|)) 185) (($ (-407 (-563))) 333) (($ (-563)) NIL)) (-3914 (((-767)) 79)) (-2512 (((-112) (-114)) 41)) (-1894 (($ (-1169) $) 33) (($ (-1169) $ $) 34) (($ (-1169) $ $ $) 35) (($ (-1169) $ $ $ $) 36) (($ (-1169) (-640 $)) 39)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1692 (|#1| (-563))) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -1692 (|#1| (-948 |#2|))) (-15 -2130 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2057 ((-948 |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1692 (|#1| (-407 (-948 |#2|)))) (-15 -2130 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2057 ((-407 (-948 |#2|)) |#1|)) (-15 -2138 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -1692 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -1692 (|#1| (-948 (-407 |#2|)))) (-15 -1692 (|#1| (-407 |#2|))) (-15 -2033 (|#1| |#1|)) (-15 -2219 (|#1| (-418 |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -3959 ((-3 (-2 (|:| |val| |#1|) (|:| -3311 (-563))) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1| (-1169))) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1| (-114))) (-15 -2043 (|#1| |#1|)) (-15 -1692 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -3479 ((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -3930 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1|)) (-15 -3939 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1542 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1542 (|#1| |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1169)))) (-15 -1542 (|#1| |#1| (-1169))) (-15 -1894 (|#1| (-1169) (-640 |#1|))) (-15 -1894 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1|)) (-15 -2605 ((-640 (-1169)) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2695 ((-112) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1692 (|#1| (-1169))) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2126 ((-640 (-609 |#1|)) |#1|)) (-15 -2751 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4135 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4135 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4135 (|#1| |#1| (-294 |#1|))) (-15 -2308 (|#1| (-114) (-640 |#1|))) (-15 -2308 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -1692 (|#1| (-609 |#1|))) (-15 -2130 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2057 ((-609 |#1|) |#1|)) (-15 -1692 ((-858) |#1|))) (-430 |#2|) (-846)) (T -429))
-((-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3914 (*1 *2) (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
-(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1692 (|#1| (-563))) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -1692 (|#1| (-948 |#2|))) (-15 -2130 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2057 ((-948 |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1692 (|#1| (-407 (-948 |#2|)))) (-15 -2130 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2057 ((-407 (-948 |#2|)) |#1|)) (-15 -2138 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -1692 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -1692 (|#1| (-948 (-407 |#2|)))) (-15 -1692 (|#1| (-407 |#2|))) (-15 -2033 (|#1| |#1|)) (-15 -2219 (|#1| (-418 |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -3959 ((-3 (-2 (|:| |val| |#1|) (|:| -3311 (-563))) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1| (-1169))) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1| (-114))) (-15 -2043 (|#1| |#1|)) (-15 -1692 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -3479 ((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -3930 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -3311 (-563))) "failed") |#1|)) (-15 -3939 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1542 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1542 (|#1| |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1169)))) (-15 -1542 (|#1| |#1| (-1169))) (-15 -1894 (|#1| (-1169) (-640 |#1|))) (-15 -1894 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1| |#1|)) (-15 -1894 (|#1| (-1169) |#1|)) (-15 -2605 ((-640 (-1169)) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2695 ((-112) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1692 (|#1| (-1169))) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1542 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1542 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2126 ((-640 (-609 |#1|)) |#1|)) (-15 -2751 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4135 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4135 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4135 (|#1| |#1| (-294 |#1|))) (-15 -2308 (|#1| (-114) (-640 |#1|))) (-15 -2308 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1| |#1|)) (-15 -2308 (|#1| (-114) |#1|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1542 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -1692 (|#1| (-609 |#1|))) (-15 -2130 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2057 ((-609 |#1|) |#1|)) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 114 (|has| |#1| (-25)))) (-2605 (((-640 (-1169)) $) 201)) (-2138 (((-407 (-1165 $)) $ (-609 $)) 169 (|has| |#1| (-555)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 141 (|has| |#1| (-555)))) (-3231 (($ $) 142 (|has| |#1| (-555)))) (-3211 (((-112) $) 144 (|has| |#1| (-555)))) (-2058 (((-640 (-609 $)) $) 44)) (-3905 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-4135 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-1798 (($ $) 161 (|has| |#1| (-555)))) (-2802 (((-418 $) $) 162 (|has| |#1| (-555)))) (-2003 (((-112) $ $) 152 (|has| |#1| (-555)))) (-2569 (($) 102 (-4034 (|has| |#1| (-1105)) (|has| |#1| (-25))) CONST)) (-2130 (((-3 (-609 $) "failed") $) 69) (((-3 (-1169) "failed") $) 214) (((-3 (-563) "failed") $) 208 (|has| |#1| (-1034 (-563)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-948 |#1|)) "failed") $) 167 (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) 121 (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 96 (-4034 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2057 (((-609 $) $) 70) (((-1169) $) 215) (((-563) $) 207 (|has| |#1| (-1034 (-563)))) ((|#1| $) 206) (((-407 (-948 |#1|)) $) 168 (|has| |#1| (-555))) (((-948 |#1|) $) 122 (|has| |#1| (-1045))) (((-407 (-563)) $) 97 (-4034 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3094 (($ $ $) 156 (|has| |#1| (-555)))) (-1476 (((-684 (-563)) (-684 $)) 135 (-2188 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 134 (-2188 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 133 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 132 (|has| |#1| (-1045)))) (-3951 (((-3 $ "failed") $) 104 (|has| |#1| (-1105)))) (-3054 (($ $ $) 155 (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 150 (|has| |#1| (-555)))) (-2560 (((-112) $) 163 (|has| |#1| (-555)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 210 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 209 (|has| |#1| (-882 (-379))))) (-3228 (($ $) 51) (($ (-640 $)) 50)) (-2739 (((-640 (-114)) $) 43)) (-2559 (((-114) (-114)) 42)) (-3401 (((-112) $) 103 (|has| |#1| (-1105)))) (-2959 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-2043 (($ $) 184 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 185 (|has| |#1| (-1045)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 159 (|has| |#1| (-555)))) (-2716 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-2238 (($ (-1 $ $) (-609 $)) 36)) (-2751 (((-3 (-609 $) "failed") $) 46)) (-3517 (($ (-640 $)) 148 (|has| |#1| (-555))) (($ $ $) 147 (|has| |#1| (-555)))) (-3854 (((-1151) $) 9)) (-2126 (((-640 (-609 $)) $) 45)) (-2227 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-3939 (((-3 (-640 $) "failed") $) 190 (|has| |#1| (-1105)))) (-3959 (((-3 (-2 (|:| |val| $) (|:| -3311 (-563))) "failed") $) 181 (|has| |#1| (-1045)))) (-3930 (((-3 (-640 $) "failed") $) 188 (|has| |#1| (-25)))) (-3479 (((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $) 189 (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-114)) 183 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-1169)) 182 (|has| |#1| (-1045)))) (-2602 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-2687 (($ $) 106 (-4034 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-4238 (((-767) $) 47)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 203)) (-2705 ((|#1| $) 202)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 149 (|has| |#1| (-555)))) (-3551 (($ (-640 $)) 146 (|has| |#1| (-555))) (($ $ $) 145 (|has| |#1| (-555)))) (-2726 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-2173 (((-418 $) $) 160 (|has| |#1| (-555)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 157 (|has| |#1| (-555)))) (-3012 (((-3 $ "failed") $ $) 140 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 151 (|has| |#1| (-555)))) (-2969 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1169)) 195 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 194 (|has| |#1| (-611 (-536)))) (($ $) 193 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 192 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 191 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 180 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 179 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 178 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) 177 (|has| |#1| (-1045)))) (-1993 (((-767) $) 153 (|has| |#1| (-555)))) (-2308 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 154 (|has| |#1| (-555)))) (-2761 (($ $) 49) (($ $ $) 48)) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 126 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 125 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 124 (|has| |#1| (-1045))) (($ $ (-1169)) 123 (|has| |#1| (-1045)))) (-2033 (($ $) 174 (|has| |#1| (-555)))) (-2153 (((-1118 |#1| (-609 $)) $) 175 (|has| |#1| (-555)))) (-3402 (($ $) 24 (|has| $ (-1045)))) (-2219 (((-888 (-563)) $) 212 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 211 (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-555))) (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-2150 (($ $ $) 109 (|has| |#1| (-473)))) (-1745 (($ $ $) 110 (|has| |#1| (-473)))) (-1692 (((-858) $) 11) (($ (-609 $)) 68) (($ (-1169)) 213) (($ |#1|) 204) (($ (-1118 |#1| (-609 $))) 186 (|has| |#1| (-1045))) (($ (-407 |#1|)) 172 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 171 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 170 (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) 166 (|has| |#1| (-555))) (($ $) 139 (|has| |#1| (-555))) (($ (-948 |#1|)) 120 (|has| |#1| (-1045))) (($ (-407 (-563))) 95 (-4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 94 (-4034 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563)))))) (-2047 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3914 (((-767)) 131 (|has| |#1| (-1045)))) (-3083 (($ $) 53) (($ (-640 $)) 52)) (-2512 (((-112) (-114)) 41)) (-3223 (((-112) $ $) 143 (|has| |#1| (-555)))) (-1894 (($ (-1169) $) 200) (($ (-1169) $ $) 199) (($ (-1169) $ $ $) 198) (($ (-1169) $ $ $ $) 197) (($ (-1169) (-640 $)) 196)) (-2239 (($) 113 (|has| |#1| (-25)) CONST)) (-2253 (($) 101 (|has| |#1| (-1105)) CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 130 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 129 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 128 (|has| |#1| (-1045))) (($ $ (-1169)) 127 (|has| |#1| (-1045)))) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1836 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 173 (|has| |#1| (-555))) (($ $ $) 107 (-4034 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1825 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1813 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-563)) 108 (-4034 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 105 (|has| |#1| (-1105))) (($ $ (-917)) 100 (|has| |#1| (-1105)))) (* (($ (-407 (-563)) $) 165 (|has| |#1| (-555))) (($ $ (-407 (-563))) 164 (|has| |#1| (-555))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-563) $) 119 (|has| |#1| (-21))) (($ (-767) $) 115 (|has| |#1| (-25))) (($ (-917) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1105)))))
-(((-430 |#1|) (-140) (-846)) (T -430))
-((-2695 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169))))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1894 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1894 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1894 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1542 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536))))) (-1542 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-611 (-536))))) (-1542 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536))))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-3949 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563)))) (-4 *1 (-430 *3)))) (-3930 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-3479 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2310 (-563)) (|:| |var| (-609 *1)))) (-4 *1 (-430 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-2043 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) (-3949 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563)))) (-4 *1 (-430 *4)))) (-3949 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563)))) (-4 *1 (-430 *4)))) (-3959 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |val| *1) (|:| -3311 (-563)))) (-4 *1 (-430 *3)))) (-1542 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1542 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1542 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1542 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555)))) (-1836 (*1 *1 *2 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2138 (*1 *2 *1 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105)))))
-(-13 (-302) (-1034 (-1169)) (-880 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -2695 ((-112) $)) (-15 -2705 (|t#1| $)) (-15 -2605 ((-640 (-1169)) $)) (-15 -1894 ($ (-1169) $)) (-15 -1894 ($ (-1169) $ $)) (-15 -1894 ($ (-1169) $ $ $)) (-15 -1894 ($ (-1169) $ $ $ $)) (-15 -1894 ($ (-1169) (-640 $))) (IF (|has| |t#1| (-611 (-536))) (PROGN (-6 (-611 (-536))) (-15 -1542 ($ $ (-1169))) (-15 -1542 ($ $ (-640 (-1169)))) (-15 -1542 ($ $)) (-15 -1542 ($ $ (-114) $ (-1169))) (-15 -1542 ($ $ (-640 (-114)) (-640 $) (-1169)))) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -3939 ((-3 (-640 $) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3930 ((-3 (-640 $) "failed") $)) (-15 -3479 ((-3 (-2 (|:| -2310 (-563)) (|:| |var| (-609 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-948 |t#1|))) (-6 (-896 (-1169))) (-6 (-377 |t#1|)) (-15 -1692 ($ (-1118 |t#1| (-609 $)))) (-15 -2143 ((-1118 |t#1| (-609 $)) $)) (-15 -2043 ($ $)) (-15 -3949 ((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-114))) (-15 -3949 ((-3 (-2 (|:| |var| (-609 $)) (|:| -3311 (-563))) "failed") $ (-1169))) (-15 -3959 ((-3 (-2 (|:| |val| $) (|:| -3311 (-563))) "failed") $)) (-15 -1542 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $)))) (-15 -1542 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $))))) (-15 -1542 ($ $ (-1169) (-767) (-1 $ (-640 $)))) (-15 -1542 ($ $ (-1169) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-948 |t#1|)))) (-15 -2219 ($ (-418 $))) (-15 -2153 ((-1118 |t#1| (-609 $)) $)) (-15 -2033 ($ $)) (-15 -1836 ($ (-1118 |t#1| (-609 $)) (-1118 |t#1| (-609 $)))) (-15 -1692 ($ (-407 |t#1|))) (-15 -1692 ($ (-948 (-407 |t#1|)))) (-15 -1692 ($ (-407 (-948 (-407 |t#1|))))) (-15 -2138 ((-407 (-1165 $)) $ (-609 $))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-407 (-563)))) |%noBranch|)) |%noBranch|)))
-(((-21) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-563))) |has| |#1| (-555)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-555)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-555)) ((-131) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-555))) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) -4034 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) |has| |#1| (-555)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) |has| |#1| (-555)) ((-290) |has| |#1| (-555)) ((-307) |has| |#1| (-555)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-555)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-555)) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-555)) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) |has| |#1| (-555)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) -4034 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) |has| |#1| (-555)) ((-1034 (-407 (-563))) -4034 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-555)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-555)) ((-1045) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -4034 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1105) -4034 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1093) . T) ((-1208) . T) ((-1212) |has| |#1| (-555)))
-((-1496 ((|#2| |#2| |#2|) 31)) (-2559 (((-114) (-114)) 43)) (-3615 ((|#2| |#2|) 63)) (-3604 ((|#2| |#2|) 66)) (-1485 ((|#2| |#2|) 30)) (-1534 ((|#2| |#2| |#2|) 33)) (-1558 ((|#2| |#2| |#2|) 35)) (-1521 ((|#2| |#2| |#2|) 32)) (-1545 ((|#2| |#2| |#2|) 34)) (-2512 (((-112) (-114)) 41)) (-1583 ((|#2| |#2|) 37)) (-1570 ((|#2| |#2|) 36)) (-1462 ((|#2| |#2|) 25)) (-1507 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1474 ((|#2| |#2| |#2|) 29)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -1462 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -1507 (|#2| |#2| |#2|)) (-15 -1474 (|#2| |#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1496 (|#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2|)) (-15 -1534 (|#2| |#2| |#2|)) (-15 -1545 (|#2| |#2| |#2|)) (-15 -1558 (|#2| |#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3615 (|#2| |#2|))) (-13 (-846) (-555)) (-430 |#1|)) (T -431))
-((-3615 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1558 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1545 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1534 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1521 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1496 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1474 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1507 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -1462 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -1507 (|#2| |#2| |#2|)) (-15 -1474 (|#2| |#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1496 (|#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2|)) (-15 -1534 (|#2| |#2| |#2|)) (-15 -1545 (|#2| |#2| |#2|)) (-15 -1558 (|#2| |#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)))
-((-4036 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|)) 61)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -4036 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -4036 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-555) (-846) (-147)) (-430 |#1|)) (T -432))
-((-4036 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3)) (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-432 *4 *5)))))
-(-10 -7 (-15 -4036 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -4036 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3639 (((-1262)) 19)) (-3627 (((-1165 (-407 (-563))) |#2| (-609 |#2|)) 41) (((-407 (-563)) |#2|) 25)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -3627 ((-407 (-563)) |#2|)) (-15 -3627 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -3639 ((-1262)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|)) (T -433))
-((-3639 (*1 *2) (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-3627 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3)))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))))
-(-10 -7 (-15 -3627 ((-407 (-563)) |#2|)) (-15 -3627 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -3639 ((-1262))))
-((-2927 (((-112) $) 28)) (-3649 (((-112) $) 30)) (-2736 (((-112) $) 31)) (-3671 (((-112) $) 34)) (-3696 (((-112) $) 29)) (-3683 (((-112) $) 33)) (-1692 (((-858) $) 18) (($ (-1151)) 27) (($ (-1169)) 23) (((-1169) $) 22) (((-1097) $) 21)) (-3660 (((-112) $) 32)) (-1718 (((-112) $ $) 15)))
-(((-434) (-13 (-610 (-858)) (-10 -8 (-15 -1692 ($ (-1151))) (-15 -1692 ($ (-1169))) (-15 -1692 ((-1169) $)) (-15 -1692 ((-1097) $)) (-15 -2927 ((-112) $)) (-15 -3696 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -3649 ((-112) $)) (-15 -1718 ((-112) $ $))))) (T -434))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1718 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -1692 ($ (-1151))) (-15 -1692 ($ (-1169))) (-15 -1692 ((-1169) $)) (-15 -1692 ((-1097) $)) (-15 -2927 ((-112) $)) (-15 -3696 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -3649 ((-112) $)) (-15 -1718 ((-112) $ $))))
-((-3723 (((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|) 70)) (-3709 (((-418 |#3|) |#3|) 34)) (-3746 (((-3 (-418 (-1165 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-3735 (((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4245 (-112))) |#3|) 37)))
-(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3709 ((-418 |#3|) |#3|)) (-15 -3723 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -3735 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4245 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3746 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|) (-1233 |#2|)) (T -435))
-((-3746 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4245 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3723 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))))
-(-10 -7 (-15 -3709 ((-418 |#3|) |#3|)) (-15 -3723 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -3735 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4245 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3746 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-1862 (((-1151) $ (-1151)) NIL)) (-1905 (($ $ (-1151)) NIL)) (-1872 (((-1151) $) NIL)) (-2683 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-3409 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3352 (((-388) $) NIL)) (-3854 (((-1151) $) NIL)) (-1883 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2675 (((-1262) (-1151)) 9)) (-2664 (((-1262) (-1151)) 10)) (-2656 (((-1262)) 11)) (-1692 (((-858) $) NIL)) (-1895 (($ $) 34)) (-1718 (((-112) $ $) NIL)))
-(((-436) (-13 (-364 (-388) (-1151)) (-10 -7 (-15 -2683 ((-388) (-388) (-388))) (-15 -2683 ((-388) (-388))) (-15 -2675 ((-1262) (-1151))) (-15 -2664 ((-1262) (-1151))) (-15 -2656 ((-1262)))))) (T -436))
-((-2683 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-2683 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-2656 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436)))))
-(-13 (-364 (-388) (-1151)) (-10 -7 (-15 -2683 ((-388) (-388) (-388))) (-15 -2683 ((-388) (-388))) (-15 -2675 ((-1262) (-1151))) (-15 -2664 ((-1262) (-1151))) (-15 -2656 ((-1262)))))
-((-1677 (((-112) $ $) NIL)) (-2647 (((-3 (|:| |fst| (-434)) (|:| -3785 "void")) $) 11)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2628 (($) 32)) (-2601 (($) 38)) (-2610 (($) 34)) (-3768 (($) 36)) (-2621 (($) 33)) (-3778 (($) 35)) (-3756 (($) 37)) (-2638 (((-112) $) 8)) (-1703 (((-640 (-948 (-563))) $) 19)) (-1706 (($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-1169)) (-112)) 27) (($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-948 (-563))) (-112)) 28)) (-1692 (((-858) $) 23) (($ (-434)) 29)) (-1718 (((-112) $ $) NIL)))
-(((-437) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-434))) (-15 -2647 ((-3 (|:| |fst| (-434)) (|:| -3785 "void")) $)) (-15 -1703 ((-640 (-948 (-563))) $)) (-15 -2638 ((-112) $)) (-15 -1706 ($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-1169)) (-112))) (-15 -1706 ($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-948 (-563))) (-112))) (-15 -2628 ($)) (-15 -2621 ($)) (-15 -2610 ($)) (-15 -2601 ($)) (-15 -3778 ($)) (-15 -3768 ($)) (-15 -3756 ($))))) (T -437))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *1 (-437)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437)))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2628 (*1 *1) (-5 *1 (-437))) (-2621 (*1 *1) (-5 *1 (-437))) (-2610 (*1 *1) (-5 *1 (-437))) (-2601 (*1 *1) (-5 *1 (-437))) (-3778 (*1 *1) (-5 *1 (-437))) (-3768 (*1 *1) (-5 *1 (-437))) (-3756 (*1 *1) (-5 *1 (-437))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-434))) (-15 -2647 ((-3 (|:| |fst| (-434)) (|:| -3785 "void")) $)) (-15 -1703 ((-640 (-948 (-563))) $)) (-15 -2638 ((-112) $)) (-15 -1706 ($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-1169)) (-112))) (-15 -1706 ($ (-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-640 (-948 (-563))) (-112))) (-15 -2628 ($)) (-15 -2621 ($)) (-15 -2610 ($)) (-15 -2601 ($)) (-15 -3778 ($)) (-15 -3768 ($)) (-15 -3756 ($))))
-((-1677 (((-112) $ $) NIL)) (-3352 (((-1169) $) 8)) (-3854 (((-1151) $) 16)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 13)))
-(((-438 |#1|) (-13 (-1093) (-10 -8 (-15 -3352 ((-1169) $)))) (-1169)) (T -438))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2))))
-(-13 (-1093) (-10 -8 (-15 -3352 ((-1169) $))))
-((-1677 (((-112) $ $) NIL)) (-2922 (((-1111) $) 7)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 13)) (-1718 (((-112) $ $) 9)))
-(((-439) (-13 (-1093) (-10 -8 (-15 -2922 ((-1111) $))))) (T -439))
-((-2922 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439)))))
-(-13 (-1093) (-10 -8 (-15 -2922 ((-1111) $))))
-((-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8) (($ (-1257 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 11)))
+((-3662 (*1 *1 *2 *2) (-12 (-5 *2 (-546)) (-4 *1 (-404)))) (-3662 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-915)) (-4 *1 (-404)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546)))) (-3083 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546)))) (-1925 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))) (-3000 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))) (-2516 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-546)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-915)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-546)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-915)))) (-2919 (*1 *1) (-12 (-4 *1 (-404)) (-3733 (|has| *1 (-6 -4399))) (-3733 (|has| *1 (-6 -4391))))) (-3249 (*1 *1) (-12 (-4 *1 (-404)) (-3733 (|has| *1 (-6 -4399))) (-3733 (|has| *1 (-6 -4391))))))
+(-13 (-1054) (-10 -8 (-6 -4184) (-15 -3662 ($ (-546) (-546))) (-15 -3662 ($ (-546) (-546) (-915))) (-15 -4186 ((-546) $)) (-15 -3083 ((-915))) (-15 -2543 ((-546) $)) (-15 -2517 ((-546) $)) (-15 -1925 ((-915))) (-15 -3000 ((-915))) (-15 -2516 ((-915))) (IF (|has| $ (-6 -4399)) (PROGN (-15 -1925 ((-915) (-915))) (-15 -3000 ((-915) (-915))) (-15 -2516 ((-915) (-915))) (-15 -1924 ((-915) (-546))) (-15 -1923 ((-915) (-546)))) |%noBranch|) (IF (|has| $ (-6 -4391)) |%noBranch| (IF (|has| $ (-6 -4399)) |%noBranch| (PROGN (-15 -2919 ($)) (-15 -3249 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-378)) . T) ((-611 (-886 (-378))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-844) . T) ((-846) . T) ((-882 (-378)) . T) ((-917) . T) ((-998) . T) ((-1016) . T) ((-1054) . T) ((-1034 (-407 (-546))) . T) ((-1034 (-546)) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 45)) (-1926 (($ $) 60)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 148)) (-2220 (($ $) NIL)) (-2218 (((-112) $) 38)) (-1927 ((|#1| $) 13)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-1212)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-1212)))) (-1929 (($ |#1| (-546)) 34)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 117)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 58)) (-3873 (((-3 $ "failed") $) 133)) (-3414 (((-3 (-407 (-546)) "failed") $) 66 (|has| |#1| (-545)))) (-3413 (((-112) $) 62 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 73 (|has| |#1| (-545)))) (-1930 (($ |#1| (-546)) 36)) (-4138 (((-112) $) 154 (|has| |#1| (-1212)))) (-2552 (((-112) $) 46)) (-1991 (((-767) $) 40)) (-1931 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-546)) 139)) (-2819 ((|#1| $ (-546)) 138)) (-1932 (((-546) $ (-546)) 137)) (-1934 (($ |#1| (-546)) 33)) (-4373 (($ (-1 |#1| |#1|) $) 145)) (-1988 (($ |#1| (-637 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-546))))) 61)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-1933 (($ |#1| (-546)) 35)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) 149 (|has| |#1| (-452)))) (-1928 (($ |#1| (-546) (-3 #2# #3# #4# #5#)) 32)) (-2818 (((-637 (-2 (|:| -4147 |#1|) (|:| -2543 (-546)))) $) 57)) (-2110 (((-637 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-546)))) $) 12)) (-4147 (((-405 $) $) NIL (|has| |#1| (-1212)))) (-3872 (((-3 $ "failed") $ $) 140)) (-2543 (((-546) $) 134)) (-4378 ((|#1| $) 59)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) 82 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 88 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) $) NIL (|has| |#1| (-514 (-1169) $))) (($ $ (-637 (-1169)) (-637 $)) 89 (|has| |#1| (-514 (-1169) $))) (($ $ (-637 (-293 $))) 85 (|has| |#1| (-309 $))) (($ $ (-293 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-637 $) (-637 $)) NIL (|has| |#1| (-309 $)))) (-4214 (($ $ |#1|) 74 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-286 $ $)))) (-4225 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-4385 (((-535) $) 30 (|has| |#1| (-611 (-535)))) (((-378) $) 95 (|has| |#1| (-1016))) (((-225) $) 98 (|has| |#1| (-1016)))) (-4361 (((-859) $) 115) (($ (-546)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546)))))) (-3518 (((-767)) 51)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 42 T CONST)) (-3053 (($) 41 T CONST)) (-3058 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3444 (((-112) $ $) 128)) (-4252 (($ $) 130) (($ $ $) NIL)) (-4254 (($ $ $) 142)) (** (($ $ (-915)) NIL) (($ $ (-767)) 104)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-405 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-412 |#1|) (-10 -8 (-15 -4378 (|#1| $)) (-15 -2543 ((-546) $)) (-15 -1988 ($ |#1| (-637 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-546)))))) (-15 -2110 ((-637 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-546)))) $)) (-15 -1934 ($ |#1| (-546))) (-15 -2818 ((-637 (-2 (|:| -4147 |#1|) (|:| -2543 (-546)))) $)) (-15 -1933 ($ |#1| (-546))) (-15 -1932 ((-546) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -1931 ((-3 #1# #2# #3# #4#) $ (-546))) (-15 -1991 ((-767) $)) (-15 -1930 ($ |#1| (-546))) (-15 -1929 ($ |#1| (-546))) (-15 -1928 ($ |#1| (-546) (-3 #1# #2# #3# #4#))) (-15 -1927 (|#1| $)) (-15 -1926 ($ $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) (-556)) (T -405))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-405 *3)))) (-4378 (*1 *2 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-405 *3)) (-4 *3 (-556)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-546))))) (-4 *2 (-556)) (-5 *1 (-405 *2)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-546))))) (-5 *1 (-405 *3)) (-4 *3 (-556)))) (-1934 (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| -4147 *3) (|:| -2543 (-546))))) (-5 *1 (-405 *3)) (-4 *3 (-556)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1932 (*1 *2 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-405 *3)) (-4 *3 (-556)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-405 *4)) (-4 *4 (-556)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-405 *3)) (-4 *3 (-556)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1928 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-546)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1927 (*1 *2 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-405 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-405 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3414 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-405 *3)) (-4 *3 (-545)) (-4 *3 (-556)))))
+(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-412 |#1|) (-10 -8 (-15 -4378 (|#1| $)) (-15 -2543 ((-546) $)) (-15 -1988 ($ |#1| (-637 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-546)))))) (-15 -2110 ((-637 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-546)))) $)) (-15 -1934 ($ |#1| (-546))) (-15 -2818 ((-637 (-2 (|:| -4147 |#1|) (|:| -2543 (-546)))) $)) (-15 -1933 ($ |#1| (-546))) (-15 -1932 ((-546) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -1931 ((-3 #1# #2# #3# #4#) $ (-546))) (-15 -1991 ((-767) $)) (-15 -1930 ($ |#1| (-546))) (-15 -1929 ($ |#1| (-546))) (-15 -1928 ($ |#1| (-546) (-3 #1# #2# #3# #4#))) (-15 -1927 (|#1| $)) (-15 -1926 ($ $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|)))
+((-4373 (((-405 |#2|) (-1 |#2| |#1|) (-405 |#1|)) 20)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -4373 ((-405 |#2|) (-1 |#2| |#1|) (-405 |#1|)))) (-556) (-556)) (T -406))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-405 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-405 *6)) (-5 *1 (-406 *5 *6)))))
+(-10 -7 (-15 -4373 ((-405 |#2|) (-1 |#2| |#1|) (-405 |#1|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 13)) (-3521 ((|#1| $) 21 (|has| |#1| (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| |#1| (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) 17) (((-3 (-1169) #2#) $) NIL (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) 71 (|has| |#1| (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546))))) (-3564 ((|#1| $) 15) (((-1169) $) NIL (|has| |#1| (-1034 (-1169)))) (((-407 (-546)) $) 68 (|has| |#1| (-1034 (-546)))) (((-546) $) NIL (|has| |#1| (-1034 (-546))))) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) 50)) (-3384 (($) NIL (|has| |#1| (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| |#1| (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-882 (-378))))) (-2552 (((-112) $) 56)) (-3386 (($ $) NIL)) (-3388 ((|#1| $) 72)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-3595 (((-112) $) NIL (|has| |#1| (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| |#1| (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 98)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| |#1| (-307)))) (-3522 ((|#1| $) 28 (|has| |#1| (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 136 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 132 (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-1739 (((-767) $) NIL)) (-4214 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3385 (($ $) NIL)) (-3387 ((|#1| $) 74)) (-4385 (((-886 (-546)) $) NIL (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| |#1| (-611 (-886 (-378))))) (((-535) $) NIL (|has| |#1| (-611 (-535)))) (((-378) $) NIL (|has| |#1| (-1016))) (((-225) $) NIL (|has| |#1| (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 116 (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 10) (($ (-1169)) NIL (|has| |#1| (-1034 (-1169))))) (-3091 (((-3 $ #1#) $) 100 (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 101)) (-3523 ((|#1| $) 26 (|has| |#1| (-545)))) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| |#1| (-816)))) (-3047 (($) 22 T CONST)) (-3053 (($) 8 T CONST)) (-2885 (((-1151) $) 43 (-12 (|has| |#1| (-545)) (|has| |#1| (-817)))) (((-1151) $ (-112)) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-817)))) (((-1262) (-819) $) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-817)))) (((-1262) (-819) $ (-112)) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-817))))) (-3058 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) 65)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) 24 (|has| |#1| (-846)))) (-4364 (($ $ $) 127) (($ |#1| |#1|) 52)) (-4252 (($ $) 25) (($ $ $) 55)) (-4254 (($ $ $) 53)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 126)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 60) (($ $ $) 57) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 86)))
+(((-407 |#1|) (-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407))
+NIL
+(-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-4373 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
+(((-408 |#1| |#2|) (-10 -7 (-15 -4373 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -408))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-408 *5 *6)))))
+(-10 -7 (-15 -4373 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
+((-1936 (((-684 |#2|) (-1256 $)) NIL) (((-684 |#2|)) 18)) (-1946 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 24)) (-1935 (((-684 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) $) 38)) (-2171 ((|#3| $) 60)) (-4172 ((|#2| (-1256 $)) NIL) ((|#2|) 20)) (-3632 (((-1256 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 22) (((-684 |#2|) (-1256 $)) 36)) (-4385 (((-1256 |#2|) $) 11) (($ (-1256 |#2|)) 13)) (-2749 ((|#3| $) 52)))
+(((-409 |#1| |#2| |#3|) (-10 -8 (-15 -1935 ((-684 |#2|) |#1|)) (-15 -4172 (|#2|)) (-15 -1936 ((-684 |#2|))) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -2171 (|#3| |#1|)) (-15 -2749 (|#3| |#1|)) (-15 -1936 ((-684 |#2|) (-1256 |#1|))) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1935 ((-684 |#2|) |#1| (-1256 |#1|)))) (-410 |#2| |#3|) (-172) (-1232 |#2|)) (T -409))
+((-1936 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4)) (-5 *1 (-409 *3 *4 *5)) (-4 *3 (-410 *4 *5)))) (-4172 (*1 *2) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-172)) (-5 *1 (-409 *3 *2 *4)) (-4 *3 (-410 *2 *4)))))
+(-10 -8 (-15 -1935 ((-684 |#2|) |#1|)) (-15 -4172 (|#2|)) (-15 -1936 ((-684 |#2|))) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -2171 (|#3| |#1|)) (-15 -2749 (|#3| |#1|)) (-15 -1936 ((-684 |#2|) (-1256 |#1|))) (-15 -4172 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1935 ((-684 |#2|) |#1| (-1256 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1936 (((-684 |#1|) (-1256 $)) 47) (((-684 |#1|)) 62)) (-3741 ((|#1| $) 53)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-1946 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-1935 (((-684 |#1|) $ (-1256 $)) 54) (((-684 |#1|) $) 60)) (-3873 (((-3 $ "failed") $) 33)) (-3501 (((-915)) 55)) (-2552 (((-112) $) 31)) (-3524 ((|#1| $) 52)) (-2171 ((|#2| $) 45 (|has| |#1| (-363)))) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4172 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3632 (((-1256 |#1|) $ (-1256 $)) 51) (((-684 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-684 |#1|) (-1256 $)) 66)) (-4385 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38)) (-3091 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2749 ((|#2| $) 46)) (-3518 (((-767)) 28)) (-2169 (((-1256 $)) 68)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-410 |#1| |#2|) (-140) (-172) (-1232 |t#1|)) (T -410))
+((-2169 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1)) (-4 *1 (-410 *3 *4)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-410 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-410 *3 *4)) (-4 *4 (-1232 *3)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-410 *3 *4)) (-4 *4 (-1232 *3)))) (-1936 (*1 *2) (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-684 *3)))) (-4172 (*1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-684 *3)))))
+(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -2169 ((-1256 $))) (-15 -3632 ((-1256 |t#1|) $)) (-15 -3632 ((-684 |t#1|) (-1256 $))) (-15 -1946 ($ (-1256 |t#1|))) (-15 -4385 ((-1256 |t#1|) $)) (-15 -4385 ($ (-1256 |t#1|))) (-15 -1936 ((-684 |t#1|))) (-15 -4172 (|t#1|)) (-15 -1935 ((-684 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-370 |#1| |#2|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-3565 (((-3 |#2| #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) 27) (((-3 (-546) #1#) $) 19)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) 24) (((-546) $) 14)) (-4361 (($ |#2|) NIL) (($ (-407 (-546))) 22) (($ (-546)) 11)))
+(((-411 |#1| |#2|) (-10 -8 (-15 -4361 (|#1| (-546))) (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|))) (-412 |#2|) (-1207)) (T -411))
+NIL
+(-10 -8 (-15 -4361 (|#1| (-546))) (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)))
+((-3565 (((-3 |#1| #1="failed") $) 9) (((-3 (-407 (-546)) #1#) $) 16 (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #1#) $) 13 (|has| |#1| (-1034 (-546))))) (-3564 ((|#1| $) 8) (((-407 (-546)) $) 17 (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) 14 (|has| |#1| (-1034 (-546))))) (-4361 (($ |#1|) 6) (($ (-407 (-546))) 15 (|has| |#1| (-1034 (-407 (-546))))) (($ (-546)) 12 (|has| |#1| (-1034 (-546))))))
+(((-412 |#1|) (-140) (-1207)) (T -412))
+NIL
+(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-546))) (-6 (-1034 (-546))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-546)))) (-6 (-1034 (-407 (-546)))) |%noBranch|)))
+(((-613 #1=(-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-613 #2=(-546)) |has| |#1| (-1034 (-546))) ((-613 |#1|) . T) ((-1034 #1#) |has| |#1| (-1034 (-407 (-546)))) ((-1034 #2#) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T))
+((-2953 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-1937 ((|#4| (-767) (-1256 |#4|)) 56)) (-2552 (((-112) $) NIL)) (-3388 (((-1256 |#4|) $) 17)) (-3524 ((|#2| $) 54)) (-1938 (($ $) 140)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 100)) (-2127 (($ (-1256 |#4|)) 99)) (-3651 (((-1113) $) NIL)) (-3387 ((|#1| $) 18)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) 135)) (-2169 (((-1256 |#4|) $) 129)) (-3053 (($) 11 T CONST)) (-3444 (((-112) $ $) 40)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 122)) (* (($ $ $) 121)))
+(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -2127 ($ (-1256 |#4|))) (-15 -2169 ((-1256 |#4|) $)) (-15 -3524 (|#2| $)) (-15 -3388 ((-1256 |#4|) $)) (-15 -3387 (|#1| $)) (-15 -1938 ($ $)) (-15 -1937 (|#4| (-767) (-1256 |#4|))))) (-307) (-987 |#1|) (-1232 |#2|) (-13 (-410 |#2| |#3|) (-1034 |#2|))) (T -413))
+((-2127 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4))) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-2169 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4))))) (-3524 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-410 *2 *4) (-1034 *2))))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4))))) (-3387 (*1 *2 *1) (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-410 *3 *4) (-1034 *3))))) (-1938 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-410 *3 *4) (-1034 *3))))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1256 *2)) (-4 *5 (-307)) (-4 *6 (-987 *5)) (-4 *2 (-13 (-410 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1232 *6)))))
+(-13 (-473) (-10 -8 (-15 -2127 ($ (-1256 |#4|))) (-15 -2169 ((-1256 |#4|) $)) (-15 -3524 (|#2| $)) (-15 -3388 ((-1256 |#4|) $)) (-15 -3387 (|#1| $)) (-15 -1938 ($ $)) (-15 -1937 (|#4| (-767) (-1256 |#4|)))))
+((-4373 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 33)))
+(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4373 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-987 |#1|) (-1232 |#2|) (-13 (-410 |#2| |#3|) (-1034 |#2|)) (-307) (-987 |#5|) (-1232 |#6|) (-13 (-410 |#6| |#7|) (-1034 |#6|))) (T -414))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) (-4 *8 (-13 (-410 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-987 *9)) (-4 *11 (-1232 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-410 *10 *11) (-1034 *10))))))
+(-10 -7 (-15 -4373 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
+((-2953 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-3524 ((|#2| $) 61)) (-1939 (($ (-1256 |#4|)) 25) (($ (-413 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1034 |#2|)))) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 34)) (-2169 (((-1256 |#4|) $) 26)) (-3053 (($) 23 T CONST)) (-3444 (((-112) $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 72)))
+(((-415 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -2169 ((-1256 |#4|) $)) (-15 -3524 (|#2| $)) (-15 -1939 ($ (-1256 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -1939 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-987 |#1|) (-1232 |#2|) (-410 |#2| |#3|) (-1256 |#4|)) (T -415))
+((-2169 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-415 *3 *4 *5 *6 *7)) (-4 *6 (-410 *4 *5)) (-14 *7 *2))) (-3524 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-415 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-410 *2 *4)) (-14 *6 (-1256 *5)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-410 *4 *5)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-307)) (-5 *1 (-415 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-410 *4 *5)) (-14 *7 (-1256 *6)) (-5 *1 (-415 *3 *4 *5 *6 *7)))))
+(-13 (-722) (-10 -8 (-15 -2169 ((-1256 |#4|) $)) (-15 -3524 (|#2| $)) (-15 -1939 ($ (-1256 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -1939 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4373 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|))) (-418 |#2|) (-172) (-418 |#4|) (-172)) (T -416))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-418 *6)) (-5 *1 (-416 *4 *5 *2 *6)) (-4 *4 (-418 *5)))))
+(-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1927 (((-3 $ #1="failed")) 86)) (-3631 (((-1256 (-684 |#2|)) (-1256 $)) NIL) (((-1256 (-684 |#2|))) 91)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) 85)) (-1854 (((-3 $ #1#)) 84)) (-1942 (((-684 |#2|) (-1256 $)) NIL) (((-684 |#2|)) 102)) (-1940 (((-684 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) $) 110)) (-2057 (((-1163 (-942 |#2|))) 55)) (-1944 ((|#2| (-1256 $)) NIL) ((|#2|) 106)) (-1946 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 112)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) 83)) (-1855 (((-3 $ #1#)) 75)) (-1943 (((-684 |#2|) (-1256 $)) NIL) (((-684 |#2|)) 100)) (-1941 (((-684 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) $) 108)) (-2061 (((-1163 (-942 |#2|))) 54)) (-1945 ((|#2| (-1256 $)) NIL) ((|#2|) 104)) (-3632 (((-1256 |#2|) $ (-1256 $)) NIL) (((-684 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 111) (((-684 |#2|) (-1256 $)) 118)) (-4385 (((-1256 |#2|) $) 96) (($ (-1256 |#2|)) 98)) (-2049 (((-637 (-942 |#2|)) (-1256 $)) NIL) (((-637 (-942 |#2|))) 94)) (-2933 (($ (-684 |#2|) $) 90)))
+(((-417 |#1| |#2|) (-10 -8 (-15 -2933 (|#1| (-684 |#2|) |#1|)) (-15 -2057 ((-1163 (-942 |#2|)))) (-15 -2061 ((-1163 (-942 |#2|)))) (-15 -1940 ((-684 |#2|) |#1|)) (-15 -1941 ((-684 |#2|) |#1|)) (-15 -1942 ((-684 |#2|))) (-15 -1943 ((-684 |#2|))) (-15 -1944 (|#2|)) (-15 -1945 (|#2|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -2049 ((-637 (-942 |#2|)))) (-15 -3631 ((-1256 (-684 |#2|)))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -1927 ((-3 |#1| #1="failed"))) (-15 -1854 ((-3 |#1| #1#))) (-15 -1855 ((-3 |#1| #1#))) (-15 -2063 ((-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) #1#))) (-15 -2064 ((-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) #1#))) (-15 -1942 ((-684 |#2|) (-1256 |#1|))) (-15 -1943 ((-684 |#2|) (-1256 |#1|))) (-15 -1944 (|#2| (-1256 |#1|))) (-15 -1945 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1940 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -1941 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -3631 ((-1256 (-684 |#2|)) (-1256 |#1|))) (-15 -2049 ((-637 (-942 |#2|)) (-1256 |#1|)))) (-418 |#2|) (-172)) (T -417))
+((-3631 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1256 (-684 *4))) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))) (-2049 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-637 (-942 *4))) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))) (-1945 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-417 *3 *2)) (-4 *3 (-418 *2)))) (-1944 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-417 *3 *2)) (-4 *3 (-418 *2)))) (-1943 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))) (-1942 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))) (-2061 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1163 (-942 *4))) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))) (-2057 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1163 (-942 *4))) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))))
+(-10 -8 (-15 -2933 (|#1| (-684 |#2|) |#1|)) (-15 -2057 ((-1163 (-942 |#2|)))) (-15 -2061 ((-1163 (-942 |#2|)))) (-15 -1940 ((-684 |#2|) |#1|)) (-15 -1941 ((-684 |#2|) |#1|)) (-15 -1942 ((-684 |#2|))) (-15 -1943 ((-684 |#2|))) (-15 -1944 (|#2|)) (-15 -1945 (|#2|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -1946 (|#1| (-1256 |#2|))) (-15 -2049 ((-637 (-942 |#2|)))) (-15 -3631 ((-1256 (-684 |#2|)))) (-15 -3632 ((-684 |#2|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1|)) (-15 -1927 ((-3 |#1| #1="failed"))) (-15 -1854 ((-3 |#1| #1#))) (-15 -1855 ((-3 |#1| #1#))) (-15 -2063 ((-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) #1#))) (-15 -2064 ((-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) #1#))) (-15 -1942 ((-684 |#2|) (-1256 |#1|))) (-15 -1943 ((-684 |#2|) (-1256 |#1|))) (-15 -1944 (|#2| (-1256 |#1|))) (-15 -1945 (|#2| (-1256 |#1|))) (-15 -1946 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3632 ((-684 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3632 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1940 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -1941 ((-684 |#2|) |#1| (-1256 |#1|))) (-15 -3631 ((-1256 (-684 |#2|)) (-1256 |#1|))) (-15 -2049 ((-637 (-942 |#2|)) (-1256 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1927 (((-3 $ #1="failed")) 37 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) 19)) (-3631 (((-1256 (-684 |#1|)) (-1256 $)) 78) (((-1256 (-684 |#1|))) 100)) (-1880 (((-1256 $)) 81)) (-4139 (($) 17 T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) 40 (|has| |#1| (-556)))) (-1854 (((-3 $ #1#)) 38 (|has| |#1| (-556)))) (-1942 (((-684 |#1|) (-1256 $)) 65) (((-684 |#1|)) 92)) (-1878 ((|#1| $) 74)) (-1940 (((-684 |#1|) $ (-1256 $)) 76) (((-684 |#1|) $) 90)) (-2546 (((-3 $ #1#) $) 45 (|has| |#1| (-556)))) (-2057 (((-1163 (-942 |#1|))) 88 (|has| |#1| (-363)))) (-2549 (($ $ (-915)) 28)) (-1876 ((|#1| $) 72)) (-1856 (((-1163 |#1|) $) 42 (|has| |#1| (-556)))) (-1944 ((|#1| (-1256 $)) 67) ((|#1|) 94)) (-1874 (((-1163 |#1|) $) 63)) (-1868 (((-112)) 57)) (-1946 (($ (-1256 |#1|) (-1256 $)) 69) (($ (-1256 |#1|)) 98)) (-3873 (((-3 $ #1#) $) 47 (|has| |#1| (-556)))) (-3501 (((-915)) 80)) (-1865 (((-112)) 54)) (-2573 (($ $ (-915)) 33)) (-1861 (((-112)) 50)) (-1859 (((-112)) 48)) (-1863 (((-112)) 52)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) 41 (|has| |#1| (-556)))) (-1855 (((-3 $ #1#)) 39 (|has| |#1| (-556)))) (-1943 (((-684 |#1|) (-1256 $)) 66) (((-684 |#1|)) 93)) (-1879 ((|#1| $) 75)) (-1941 (((-684 |#1|) $ (-1256 $)) 77) (((-684 |#1|) $) 91)) (-2547 (((-3 $ #1#) $) 46 (|has| |#1| (-556)))) (-2061 (((-1163 (-942 |#1|))) 89 (|has| |#1| (-363)))) (-2548 (($ $ (-915)) 29)) (-1877 ((|#1| $) 73)) (-1857 (((-1163 |#1|) $) 43 (|has| |#1| (-556)))) (-1945 ((|#1| (-1256 $)) 68) ((|#1|) 95)) (-1875 (((-1163 |#1|) $) 64)) (-1869 (((-112)) 58)) (-3650 (((-1151) $) 9)) (-1860 (((-112)) 49)) (-1862 (((-112)) 51)) (-1864 (((-112)) 53)) (-3651 (((-1113) $) 10)) (-1867 (((-112)) 56)) (-4214 ((|#1| $ (-546)) 101)) (-3632 (((-1256 |#1|) $ (-1256 $)) 71) (((-684 |#1|) (-1256 $) (-1256 $)) 70) (((-1256 |#1|) $) 103) (((-684 |#1|) (-1256 $)) 102)) (-4385 (((-1256 |#1|) $) 97) (($ (-1256 |#1|)) 96)) (-2049 (((-637 (-942 |#1|)) (-1256 $)) 79) (((-637 (-942 |#1|))) 99)) (-2735 (($ $ $) 25)) (-1873 (((-112)) 62)) (-4361 (((-859) $) 11)) (-2169 (((-1256 $)) 104)) (-1858 (((-637 (-1256 |#1|))) 44 (|has| |#1| (-556)))) (-2736 (($ $ $ $) 26)) (-1871 (((-112)) 60)) (-2933 (($ (-684 |#1|) $) 87)) (-2734 (($ $ $) 24)) (-1872 (((-112)) 61)) (-1870 (((-112)) 59)) (-1866 (((-112)) 55)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 30)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-418 |#1|) (-140) (-172)) (T -418))
+((-2169 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1256 *1)) (-4 *1 (-418 *3)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 *3)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-418 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-418 *2)) (-4 *2 (-172)))) (-3631 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 (-684 *3))))) (-2049 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-637 (-942 *3))))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-418 *3)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 *3)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-418 *3)))) (-1945 (*1 *2) (-12 (-4 *1 (-418 *2)) (-4 *2 (-172)))) (-1944 (*1 *2) (-12 (-4 *1 (-418 *2)) (-4 *2 (-172)))) (-1943 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1942 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-2061 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1163 (-942 *3))))) (-2057 (*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1163 (-942 *3))))) (-2933 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *1 (-418 *3)) (-4 *3 (-172)))))
+(-13 (-367 |t#1|) (-10 -8 (-15 -2169 ((-1256 $))) (-15 -3632 ((-1256 |t#1|) $)) (-15 -3632 ((-684 |t#1|) (-1256 $))) (-15 -4214 (|t#1| $ (-546))) (-15 -3631 ((-1256 (-684 |t#1|)))) (-15 -2049 ((-637 (-942 |t#1|)))) (-15 -1946 ($ (-1256 |t#1|))) (-15 -4385 ((-1256 |t#1|) $)) (-15 -4385 ($ (-1256 |t#1|))) (-15 -1945 (|t#1|)) (-15 -1944 (|t#1|)) (-15 -1943 ((-684 |t#1|))) (-15 -1942 ((-684 |t#1|))) (-15 -1941 ((-684 |t#1|) $)) (-15 -1940 ((-684 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2061 ((-1163 (-942 |t#1|)))) (-15 -2057 ((-1163 (-942 |t#1|))))) |%noBranch|) (-15 -2933 ($ (-684 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-367 |#1|) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-3526 (((-405 |#1|) (-405 |#1|) (-1 (-405 |#1|) |#1|)) 21)) (-1947 (((-405 |#1|) (-405 |#1|) (-405 |#1|)) 16)))
+(((-419 |#1|) (-10 -7 (-15 -3526 ((-405 |#1|) (-405 |#1|) (-1 (-405 |#1|) |#1|))) (-15 -1947 ((-405 |#1|) (-405 |#1|) (-405 |#1|)))) (-556)) (T -419))
+((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-405 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-405 *4) *4)) (-4 *4 (-556)) (-5 *2 (-405 *4)) (-5 *1 (-419 *4)))))
+(-10 -7 (-15 -3526 ((-405 |#1|) (-405 |#1|) (-1 (-405 |#1|) |#1|))) (-15 -1947 ((-405 |#1|) (-405 |#1|) (-405 |#1|))))
+((-3474 (((-637 (-1169)) $) 72)) (-3476 (((-407 (-1163 $)) $ (-608 $)) 273)) (-1699 (($ $ (-293 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-637 (-608 $)) (-637 $)) 237)) (-3565 (((-3 (-608 $) #1="failed") $) NIL) (((-3 (-1169) #1#) $) 75) (((-3 (-546) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-407 (-942 |#2|)) #1#) $) 323) (((-3 (-942 |#2|) #1#) $) 235) (((-3 (-407 (-546)) #1#) $) NIL)) (-3564 (((-608 $) $) NIL) (((-1169) $) 30) (((-546) $) NIL) ((|#2| $) 231) (((-407 (-942 |#2|)) $) 305) (((-942 |#2|) $) 232) (((-407 (-546)) $) NIL)) (-3437 (((-113) (-113)) 47)) (-3386 (($ $) 87)) (-1697 (((-3 (-608 $) "failed") $) 228)) (-1696 (((-637 (-608 $)) $) 229)) (-3212 (((-3 (-637 $) "failed") $) 247)) (-3214 (((-3 (-2 (|:| |val| $) (|:| -2543 (-546))) "failed") $) 254)) (-3211 (((-3 (-637 $) "failed") $) 245)) (-1948 (((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 $))) "failed") $) 264)) (-3213 (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $) 251) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-1169)) 219)) (-1951 (((-112) $) 19)) (-1950 ((|#2| $) 21)) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) 236) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) 96) (($ $ (-1169) (-1 $ (-637 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-637 (-113)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-113) (-1 $ (-637 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1169)) 57) (($ $ (-637 (-1169))) 240) (($ $) 241) (($ $ (-113) $ (-1169)) 60) (($ $ (-637 (-113)) (-637 $) (-1169)) 67) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ $))) 107) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ (-637 $)))) 242) (($ $ (-1169) (-767) (-1 $ (-637 $))) 94) (($ $ (-1169) (-767) (-1 $ $)) 93)) (-4214 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-637 $)) 106)) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) 238)) (-3385 (($ $) 284)) (-4385 (((-886 (-546)) $) 257) (((-886 (-378)) $) 261) (($ (-405 $)) 319) (((-535) $) NIL)) (-4361 (((-859) $) 239) (($ (-608 $)) 84) (($ (-1169)) 26) (($ |#2|) NIL) (($ (-1118 |#2| (-608 $))) NIL) (($ (-407 |#2|)) 289) (($ (-942 (-407 |#2|))) 328) (($ (-407 (-942 (-407 |#2|)))) 301) (($ (-407 (-942 |#2|))) 295) (($ $) NIL) (($ (-942 |#2|)) 185) (($ (-407 (-546))) 333) (($ (-546)) NIL)) (-3518 (((-767)) 79)) (-2384 (((-112) (-113)) 41)) (-1949 (($ (-1169) $) 33) (($ (-1169) $ $) 34) (($ (-1169) $ $ $) 35) (($ (-1169) $ $ $ $) 36) (($ (-1169) (-637 $)) 39)) (* (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL)))
+(((-420 |#1| |#2|) (-10 -8 (-15 * (|#1| (-915) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4361 (|#1| (-546))) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-407 (-546)) #1="failed") |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4361 (|#1| (-942 |#2|))) (-15 -3565 ((-3 (-942 |#2|) #1#) |#1|)) (-15 -3564 ((-942 |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4361 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4361 (|#1| (-407 (-942 |#2|)))) (-15 -3565 ((-3 (-407 (-942 |#2|)) #1#) |#1|)) (-15 -3564 ((-407 (-942 |#2|)) |#1|)) (-15 -3476 ((-407 (-1163 |#1|)) |#1| (-608 |#1|))) (-15 -4361 (|#1| (-407 (-942 (-407 |#2|))))) (-15 -4361 (|#1| (-942 (-407 |#2|)))) (-15 -4361 (|#1| (-407 |#2|))) (-15 -3385 (|#1| |#1|)) (-15 -4385 (|#1| (-405 |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-767) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-767)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-767)) (-637 (-1 |#1| |#1|)))) (-15 -3214 ((-3 (-2 (|:| |val| |#1|) (|:| -2543 (-546))) "failed") |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1| (-1169))) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1| (-113))) (-15 -3386 (|#1| |#1|)) (-15 -4361 (|#1| (-1118 |#2| (-608 |#1|)))) (-15 -1948 ((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -3211 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1|)) (-15 -3212 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 |#1|) (-1169))) (-15 -4182 (|#1| |#1| (-113) |#1| (-1169))) (-15 -4182 (|#1| |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1169)))) (-15 -4182 (|#1| |#1| (-1169))) (-15 -1949 (|#1| (-1169) (-637 |#1|))) (-15 -1949 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1|)) (-15 -3474 ((-637 (-1169)) |#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1951 ((-112) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4361 (|#1| (-1169))) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| |#1|)))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| |#1|)))) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1696 ((-637 (-608 |#1|)) |#1|)) (-15 -1697 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -1699 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -1699 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -1699 (|#1| |#1| (-293 |#1|))) (-15 -4214 (|#1| (-113) (-637 |#1|))) (-15 -4214 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4361 (|#1| (-608 |#1|))) (-15 -3565 ((-3 (-608 |#1|) #1#) |#1|)) (-15 -3564 ((-608 |#1|) |#1|)) (-15 -4361 ((-859) |#1|))) (-421 |#2|) (-846)) (T -420))
+((-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-846)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-420 *4 *5)) (-4 *4 (-421 *5)))) (-3518 (*1 *2) (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))))
+(-10 -8 (-15 * (|#1| (-915) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4361 (|#1| (-546))) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-407 (-546)) #1="failed") |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4361 (|#1| (-942 |#2|))) (-15 -3565 ((-3 (-942 |#2|) #1#) |#1|)) (-15 -3564 ((-942 |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4361 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4361 (|#1| (-407 (-942 |#2|)))) (-15 -3565 ((-3 (-407 (-942 |#2|)) #1#) |#1|)) (-15 -3564 ((-407 (-942 |#2|)) |#1|)) (-15 -3476 ((-407 (-1163 |#1|)) |#1| (-608 |#1|))) (-15 -4361 (|#1| (-407 (-942 (-407 |#2|))))) (-15 -4361 (|#1| (-942 (-407 |#2|)))) (-15 -4361 (|#1| (-407 |#2|))) (-15 -3385 (|#1| |#1|)) (-15 -4385 (|#1| (-405 |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-767) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-767)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-767)) (-637 (-1 |#1| |#1|)))) (-15 -3214 ((-3 (-2 (|:| |val| |#1|) (|:| -2543 (-546))) "failed") |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1| (-1169))) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1| (-113))) (-15 -3386 (|#1| |#1|)) (-15 -4361 (|#1| (-1118 |#2| (-608 |#1|)))) (-15 -1948 ((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -3211 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -2543 (-546))) "failed") |#1|)) (-15 -3212 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 |#1|) (-1169))) (-15 -4182 (|#1| |#1| (-113) |#1| (-1169))) (-15 -4182 (|#1| |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1169)))) (-15 -4182 (|#1| |#1| (-1169))) (-15 -1949 (|#1| (-1169) (-637 |#1|))) (-15 -1949 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1| |#1|)) (-15 -1949 (|#1| (-1169) |#1|)) (-15 -3474 ((-637 (-1169)) |#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1951 ((-112) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4361 (|#1| (-1169))) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-113) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-113)) (-637 (-1 |#1| |#1|)))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -4182 (|#1| |#1| (-1169) (-1 |#1| (-637 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| (-637 |#1|))))) (-15 -4182 (|#1| |#1| (-637 (-1169)) (-637 (-1 |#1| |#1|)))) (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -1696 ((-637 (-608 |#1|)) |#1|)) (-15 -1697 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -1699 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -1699 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -1699 (|#1| |#1| (-293 |#1|))) (-15 -4214 (|#1| (-113) (-637 |#1|))) (-15 -4214 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1| |#1|)) (-15 -4214 (|#1| (-113) |#1|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4182 (|#1| |#1| (-637 (-608 |#1|)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4361 (|#1| (-608 |#1|))) (-15 -3565 ((-3 (-608 |#1|) #1#) |#1|)) (-15 -3564 ((-608 |#1|) |#1|)) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 114 (|has| |#1| (-25)))) (-3474 (((-637 (-1169)) $) 201)) (-3476 (((-407 (-1163 $)) $ (-608 $)) 169 (|has| |#1| (-556)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-2220 (($ $) 142 (|has| |#1| (-556)))) (-2218 (((-112) $) 144 (|has| |#1| (-556)))) (-1695 (((-637 (-608 $)) $) 44)) (-1397 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-1699 (($ $ (-293 $)) 56) (($ $ (-637 (-293 $))) 55) (($ $ (-637 (-608 $)) (-637 $)) 54)) (-4189 (($ $) 161 (|has| |#1| (-556)))) (-4384 (((-405 $) $) 162 (|has| |#1| (-556)))) (-1740 (((-112) $ $) 152 (|has| |#1| (-556)))) (-4139 (($) 102 (-3943 (|has| |#1| (-1105)) (|has| |#1| (-25))) CONST)) (-3565 (((-3 (-608 $) #1="failed") $) 69) (((-3 (-1169) #1#) $) 214) (((-3 (-546) #1#) $) 208 (|has| |#1| (-1034 (-546)))) (((-3 |#1| #1#) $) 205) (((-3 (-407 (-942 |#1|)) #1#) $) 167 (|has| |#1| (-556))) (((-3 (-942 |#1|) #1#) $) 121 (|has| |#1| (-1045))) (((-3 (-407 (-546)) #1#) $) 96 (-3943 (-12 (|has| |#1| (-1034 (-546))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-546))))))) (-3564 (((-608 $) $) 70) (((-1169) $) 215) (((-546) $) 207 (|has| |#1| (-1034 (-546)))) ((|#1| $) 206) (((-407 (-942 |#1|)) $) 168 (|has| |#1| (-556))) (((-942 |#1|) $) 122 (|has| |#1| (-1045))) (((-407 (-546)) $) 97 (-3943 (-12 (|has| |#1| (-1034 (-546))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-546))))))) (-2949 (($ $ $) 156 (|has| |#1| (-556)))) (-2408 (((-684 (-546)) (-684 $)) 135 (-3247 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 134 (-3247 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 133 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 132 (|has| |#1| (-1045)))) (-3873 (((-3 $ "failed") $) 104 (|has| |#1| (-1105)))) (-2948 (($ $ $) 155 (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 150 (|has| |#1| (-556)))) (-4138 (((-112) $) 163 (|has| |#1| (-556)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 210 (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 209 (|has| |#1| (-882 (-378))))) (-2958 (($ $) 51) (($ (-637 $)) 50)) (-1694 (((-637 (-113)) $) 43)) (-3437 (((-113) (-113)) 42)) (-2552 (((-112) $) 103 (|has| |#1| (-1105)))) (-3062 (((-112) $) 22 (|has| $ (-1034 (-546))))) (-3386 (($ $) 184 (|has| |#1| (-1045)))) (-3388 (((-1118 |#1| (-608 $)) $) 185 (|has| |#1| (-1045)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 159 (|has| |#1| (-556)))) (-1692 (((-1163 $) (-608 $)) 25 (|has| $ (-1045)))) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-4373 (($ (-1 $ $) (-608 $)) 36)) (-1697 (((-3 (-608 $) "failed") $) 46)) (-2048 (($ (-637 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-3650 (((-1151) $) 9)) (-1696 (((-637 (-608 $)) $) 45)) (-2363 (($ (-113) $) 38) (($ (-113) (-637 $)) 37)) (-3212 (((-3 (-637 $) "failed") $) 190 (|has| |#1| (-1105)))) (-3214 (((-3 (-2 (|:| |val| $) (|:| -2543 (-546))) "failed") $) 181 (|has| |#1| (-1045)))) (-3211 (((-3 (-637 $) "failed") $) 188 (|has| |#1| (-25)))) (-1948 (((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3213 (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $) 189 (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-113)) 183 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-1169)) 182 (|has| |#1| (-1045)))) (-3020 (((-112) $ (-113)) 40) (((-112) $ (-1169)) 39)) (-2785 (($ $) 106 (-3943 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2988 (((-767) $) 47)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 203)) (-1950 ((|#1| $) 202)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 149 (|has| |#1| (-556)))) (-3552 (($ (-637 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-1693 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-4147 (((-405 $) $) 160 (|has| |#1| (-556)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 157 (|has| |#1| (-556)))) (-3872 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 151 (|has| |#1| (-556)))) (-3063 (((-112) $) 23 (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) 67) (($ $ (-637 (-608 $)) (-637 $)) 66) (($ $ (-637 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-637 $) (-637 $)) 62) (($ $ (-637 (-1169)) (-637 (-1 $ $))) 33) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) 32) (($ $ (-1169) (-1 $ (-637 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-637 (-113)) (-637 (-1 $ $))) 29) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) 28) (($ $ (-113) (-1 $ (-637 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1169)) 195 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-1169))) 194 (|has| |#1| (-611 (-535)))) (($ $) 193 (|has| |#1| (-611 (-535)))) (($ $ (-113) $ (-1169)) 192 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-113)) (-637 $) (-1169)) 191 (|has| |#1| (-611 (-535)))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ $))) 180 (|has| |#1| (-1045))) (($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ (-637 $)))) 179 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-637 $))) 178 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) 177 (|has| |#1| (-1045)))) (-1739 (((-767) $) 153 (|has| |#1| (-556)))) (-4214 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-637 $)) 57)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 154 (|has| |#1| (-556)))) (-1698 (($ $) 49) (($ $ $) 48)) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 126 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 125 (|has| |#1| (-1045))) (($ $ (-637 (-1169))) 124 (|has| |#1| (-1045))) (($ $ (-1169)) 123 (|has| |#1| (-1045)))) (-3385 (($ $) 174 (|has| |#1| (-556)))) (-3387 (((-1118 |#1| (-608 $)) $) 175 (|has| |#1| (-556)))) (-3593 (($ $) 24 (|has| $ (-1045)))) (-4385 (((-886 (-546)) $) 212 (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) 211 (|has| |#1| (-611 (-886 (-378))))) (($ (-405 $)) 176 (|has| |#1| (-556))) (((-535) $) 98 (|has| |#1| (-611 (-535))))) (-3399 (($ $ $) 109 (|has| |#1| (-473)))) (-2735 (($ $ $) 110 (|has| |#1| (-473)))) (-4361 (((-859) $) 11) (($ (-608 $)) 68) (($ (-1169)) 213) (($ |#1|) 204) (($ (-1118 |#1| (-608 $))) 186 (|has| |#1| (-1045))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-942 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-942 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-942 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-942 |#1|)) 120 (|has| |#1| (-1045))) (($ (-407 (-546))) 95 (-3943 (|has| |#1| (-556)) (-12 (|has| |#1| (-1034 (-546))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-546)))))) (($ (-546)) 94 (-3943 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-546)))))) (-3091 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3518 (((-767)) 131 (|has| |#1| (-1045)))) (-2975 (($ $) 53) (($ (-637 $)) 52)) (-2384 (((-112) (-113)) 41)) (-2219 (((-112) $ $) 143 (|has| |#1| (-556)))) (-1949 (($ (-1169) $) 200) (($ (-1169) $ $) 199) (($ (-1169) $ $ $) 198) (($ (-1169) $ $ $ $) 197) (($ (-1169) (-637 $)) 196)) (-3047 (($) 113 (|has| |#1| (-25)) CONST)) (-3053 (($) 101 (|has| |#1| (-1105)) CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 130 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 129 (|has| |#1| (-1045))) (($ $ (-637 (-1169))) 128 (|has| |#1| (-1045))) (($ $ (-1169)) 127 (|has| |#1| (-1045)))) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4364 (($ (-1118 |#1| (-608 $)) (-1118 |#1| (-608 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-3943 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-4252 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-4254 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-546)) 108 (-3943 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 105 (|has| |#1| (-1105))) (($ $ (-915)) 100 (|has| |#1| (-1105)))) (* (($ (-407 (-546)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-546))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-546) $) 119 (|has| |#1| (-21))) (($ (-767) $) 115 (|has| |#1| (-25))) (($ (-915) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1105)))))
+(((-421 |#1|) (-140) (-846)) (T -421))
+((-1951 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-846)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-846)) (-5 *2 (-637 (-1169))))) (-1949 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)))) (-1949 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)))) (-1949 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)))) (-1949 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 *1)) (-4 *1 (-421 *4)) (-4 *4 (-846)))) (-4182 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-535))))) (-4182 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-1169))) (-4 *1 (-421 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-535))))) (-4182 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-535))))) (-4182 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1169)) (-4 *1 (-421 *4)) (-4 *4 (-846)) (-4 *4 (-611 (-535))))) (-4182 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 *1)) (-5 *4 (-1169)) (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-535))))) (-3212 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-421 *3)))) (-3213 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *3)))) (-3211 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-421 *3)))) (-1948 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -4369 (-546)) (|:| |var| (-608 *1)))) (-4 *1 (-421 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 (-608 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-421 *3)))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-608 *1))) (-4 *1 (-421 *3)))) (-3386 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) (-3213 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *4)))) (-3213 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *4)))) (-3214 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |val| *1) (|:| -2543 (-546)))) (-4 *1 (-421 *3)))) (-4182 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-767))) (-5 *4 (-637 (-1 *1 *1))) (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-4182 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-767))) (-5 *4 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-4182 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-637 *1))) (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-4182 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-405 *1)) (-4 *1 (-421 *3)) (-4 *3 (-556)) (-4 *3 (-846)))) (-3387 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-608 *1))) (-4 *1 (-421 *3)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-556)))) (-4364 (*1 *1 *2 *2) (-12 (-5 *2 (-1118 *3 (-608 *1))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-421 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-421 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-942 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-421 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-421 *3)))) (-3476 (*1 *2 *1 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-421 *4)) (-4 *4 (-846)) (-4 *4 (-556)) (-5 *2 (-407 (-1163 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-421 *3)) (-4 *3 (-846)) (-4 *3 (-1105)))))
+(-13 (-298) (-1034 (-1169)) (-880 |t#1|) (-400 |t#1|) (-412 |t#1|) (-10 -8 (-15 -1951 ((-112) $)) (-15 -1950 (|t#1| $)) (-15 -3474 ((-637 (-1169)) $)) (-15 -1949 ($ (-1169) $)) (-15 -1949 ($ (-1169) $ $)) (-15 -1949 ($ (-1169) $ $ $)) (-15 -1949 ($ (-1169) $ $ $ $)) (-15 -1949 ($ (-1169) (-637 $))) (IF (|has| |t#1| (-611 (-535))) (PROGN (-6 (-611 (-535))) (-15 -4182 ($ $ (-1169))) (-15 -4182 ($ $ (-637 (-1169)))) (-15 -4182 ($ $)) (-15 -4182 ($ $ (-113) $ (-1169))) (-15 -4182 ($ $ (-637 (-113)) (-637 $) (-1169)))) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -3212 ((-3 (-637 $) "failed") $)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3211 ((-3 (-637 $) "failed") $)) (-15 -1948 ((-3 (-2 (|:| -4369 (-546)) (|:| |var| (-608 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-942 |t#1|))) (-6 (-896 (-1169))) (-6 (-377 |t#1|)) (-15 -4361 ($ (-1118 |t#1| (-608 $)))) (-15 -3388 ((-1118 |t#1| (-608 $)) $)) (-15 -3386 ($ $)) (-15 -3213 ((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-113))) (-15 -3213 ((-3 (-2 (|:| |var| (-608 $)) (|:| -2543 (-546))) "failed") $ (-1169))) (-15 -3214 ((-3 (-2 (|:| |val| $) (|:| -2543 (-546))) "failed") $)) (-15 -4182 ($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ $)))) (-15 -4182 ($ $ (-637 (-1169)) (-637 (-767)) (-637 (-1 $ (-637 $))))) (-15 -4182 ($ $ (-1169) (-767) (-1 $ (-637 $)))) (-15 -4182 ($ $ (-1169) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-942 |t#1|)))) (-15 -4385 ($ (-405 $))) (-15 -3387 ((-1118 |t#1| (-608 $)) $)) (-15 -3385 ($ $)) (-15 -4364 ($ (-1118 |t#1| (-608 $)) (-1118 |t#1| (-608 $)))) (-15 -4361 ($ (-407 |t#1|))) (-15 -4361 ($ (-942 (-407 |t#1|)))) (-15 -4361 ($ (-407 (-942 (-407 |t#1|))))) (-15 -3476 ((-407 (-1163 $)) $ (-608 $))) (IF (|has| |t#1| (-1034 (-546))) (-6 (-1034 (-407 (-546)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-407 (-546))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-556))) ((-613 #2=(-407 (-942 |#1|))) |has| |#1| (-556)) ((-613 (-546)) -3943 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-546))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-613 #3=(-608 $)) . T) ((-613 #4=(-942 |#1|)) |has| |#1| (-1045)) ((-613 #5=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) |has| |#1| (-556)) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-611 (-886 (-378))) |has| |#1| (-611 (-886 (-378)))) ((-611 (-886 (-546))) |has| |#1| (-611 (-886 (-546)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-298) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-412 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-608 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-643 #1#) |has| |#1| (-556)) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-636 (-546)) -12 (|has| |#1| (-636 (-546))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #1#) |has| |#1| (-556)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) -3943 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-378)) |has| |#1| (-882 (-378))) ((-882 (-546)) |has| |#1| (-882 (-546))) ((-880 |#1|) . T) ((-917) |has| |#1| (-556)) ((-1034 (-407 (-546))) -3943 (|has| |#1| (-1034 (-407 (-546)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-546))))) ((-1034 #2#) |has| |#1| (-556)) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 #3#) . T) ((-1034 #4#) |has| |#1| (-1045)) ((-1034 #5#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-556)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-556)) ((-1045) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -3943 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1105) -3943 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1207) . T) ((-1212) |has| |#1| (-556)))
+((-4373 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1045) (-846)) (-421 |#1|) (-13 (-1045) (-846)) (-421 |#3|)) (T -422))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-421 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-421 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1955 ((|#2| |#2|) 165)) (-1952 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112)) 57)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1952 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -1955 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|)) (-1169) |#2|) (T -423))
+((-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-421 *3))) (-14 *4 (-1169)) (-14 *5 *2))) (-1952 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-14 *6 (-1169)) (-14 *7 *3))))
+(-10 -7 (-15 -1952 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -1955 (|#2| |#2|)))
+((-1955 ((|#2| |#2|) 89)) (-1953 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 48)) (-1954 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 153)))
+(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1953 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1954 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1955 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|) (-10 -8 (-15 -4361 ($ |#3|)))) (-844) (-13 (-1235 |#2| |#3|) (-363) (-1193) (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $)))) (-979 |#4|) (-1169)) (T -424))
+((-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-4 *2 (-13 (-27) (-1193) (-421 *3) (-10 -8 (-15 -4361 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1235 *2 *4) (-363) (-1193) (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))) (-1954 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-4 *3 (-13 (-27) (-1193) (-421 *6) (-10 -8 (-15 -4361 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))) (-1953 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-4 *3 (-13 (-27) (-1193) (-421 *6) (-10 -8 (-15 -4361 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))))
+(-10 -7 (-15 -1953 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1954 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1955 (|#2| |#2|)))
+((-1956 (($) 44)) (-3642 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3644 (($ $ $) 39)) (-3643 (((-112) $ $) 28)) (-3528 (((-767)) 47)) (-3647 (($ (-637 |#2|)) 20) (($) NIL)) (-3384 (($) 53)) (-3649 (((-112) $ $) 13)) (-2919 ((|#2| $) 61)) (-3249 ((|#2| $) 59)) (-2167 (((-915) $) 55)) (-3646 (($ $ $) 35)) (-2542 (($ (-915)) 50)) (-3645 (($ $ |#2|) NIL) (($ $ $) 38)) (-2104 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 26)) (-3936 (($ (-637 |#2|)) 24)) (-1957 (($ $) 46)) (-4361 (((-859) $) 33)) (-1958 (((-767) $) 21)) (-3648 (($ (-637 |#2|)) 19) (($) NIL)) (-3444 (((-112) $ $) 16)))
+(((-425 |#1| |#2|) (-10 -8 (-15 -3528 ((-767))) (-15 -2542 (|#1| (-915))) (-15 -2167 ((-915) |#1|)) (-15 -3384 (|#1|)) (-15 -2919 (|#2| |#1|)) (-15 -3249 (|#2| |#1|)) (-15 -1956 (|#1|)) (-15 -1957 (|#1| |#1|)) (-15 -1958 ((-767) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3649 ((-112) |#1| |#1|)) (-15 -3648 (|#1|)) (-15 -3648 (|#1| (-637 |#2|))) (-15 -3647 (|#1|)) (-15 -3647 (|#1| (-637 |#2|))) (-15 -3646 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#2|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3643 ((-112) |#1| |#1|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3642 (|#1| |#1| |#2|)) (-15 -3642 (|#1| |#2| |#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|))) (-426 |#2|) (-1094)) (T -425))
+((-3528 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))))
+(-10 -8 (-15 -3528 ((-767))) (-15 -2542 (|#1| (-915))) (-15 -2167 ((-915) |#1|)) (-15 -3384 (|#1|)) (-15 -2919 (|#2| |#1|)) (-15 -3249 (|#2| |#1|)) (-15 -1956 (|#1|)) (-15 -1957 (|#1| |#1|)) (-15 -1958 ((-767) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3649 ((-112) |#1| |#1|)) (-15 -3648 (|#1|)) (-15 -3648 (|#1| (-637 |#2|))) (-15 -3647 (|#1|)) (-15 -3647 (|#1| (-637 |#2|))) (-15 -3646 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#2|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3643 ((-112) |#1| |#1|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3642 (|#1| |#1| |#2|)) (-15 -3642 (|#1| |#2| |#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)))
+((-2953 (((-112) $ $) 19)) (-1956 (($) 67 (|has| |#1| (-368)))) (-3642 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3644 (($ $ $) 78)) (-3643 (((-112) $ $) 79)) (-1296 (((-112) $ (-767)) 8)) (-3528 (((-767)) 61 (|has| |#1| (-368)))) (-3647 (($ (-637 |#1|)) 74) (($) 73)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-3384 (($) 64 (|has| |#1| (-368)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) 70)) (-4134 (((-112) $ (-767)) 9)) (-2919 ((|#1| $) 65 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3249 ((|#1| $) 66 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-2167 (((-915) $) 63 (|has| |#1| (-368)))) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22)) (-3646 (($ $ $) 75)) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-2542 (($ (-915)) 62 (|has| |#1| (-368)))) (-3651 (((-1113) $) 21)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-3645 (($ $ |#1|) 77) (($ $ $) 76)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-1957 (($ $) 68 (|has| |#1| (-368)))) (-4361 (((-859) $) 18)) (-1958 (((-767) $) 69)) (-3648 (($ (-637 |#1|)) 72) (($) 71)) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20)) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-426 |#1|) (-140) (-1094)) (T -426))
+((-1958 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-1957 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-1956 (*1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))))
+(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4408) (-15 -1958 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -1957 ($ $)) (-15 -1956 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -3249 (|t#1| $)) (-15 -2919 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1207) . T))
+((-4256 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4257 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4373 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4257 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-426 |#1|) (-1094) (-426 |#3|)) (T -427))
+((-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-426 *5)) (-5 *1 (-427 *6 *4 *5 *2)) (-4 *4 (-426 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-427 *5 *4 *2 *6)) (-4 *4 (-426 *5)) (-4 *6 (-426 *2)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-426 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-426 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4257 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1959 (((-582 |#2|) |#2| (-1169)) 35)) (-2262 (((-582 |#2|) |#2| (-1169)) 20)) (-2307 ((|#2| |#2| (-1169)) 25)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -2262 ((-582 |#2|) |#2| (-1169))) (-15 -1959 ((-582 |#2|) |#2| (-1169))) (-15 -2307 (|#2| |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-29 |#1|))) (T -428))
+((-2307 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))))
+(-10 -7 (-15 -2262 ((-582 |#2|) |#2| (-1169))) (-15 -1959 ((-582 |#2|) |#2| (-1169))) (-15 -2307 (|#2| |#2| (-1169))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-1961 (($ |#2| |#1|) 35)) (-1960 (($ |#2| |#1|) 33)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3518 (((-767)) NIL)) (-3047 (($) 10 T CONST)) (-3053 (($) 16 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 34)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-429 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -4361 ($ |#1|)) (-15 -4361 ($ (-331 |#2|))) (-15 -1961 ($ |#2| |#1|)) (-15 -1960 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-546)))) (-13 (-846) (-21))) (T -429))
+((-4361 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-546))))) (-4 *3 (-13 (-846) (-21))))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-546))))))) (-1961 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-546))))) (-4 *2 (-13 (-846) (-21))))) (-1960 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-546))))) (-4 *2 (-13 (-846) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -4361 ($ |#1|)) (-15 -4361 ($ (-331 |#2|))) (-15 -1961 ($ |#2| |#1|)) (-15 -1960 ($ |#2| |#1|))))
+((-4227 (((-3 |#2| (-637 |#2|)) |#2| (-1169)) 108)))
+(((-430 |#1| |#2|) (-10 -7 (-15 -4227 ((-3 |#2| (-637 |#2|)) |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-956) (-29 |#1|))) (T -430))
+((-4227 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 *3 (-637 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1193) (-956) (-29 *5))))))
+(-10 -7 (-15 -4227 ((-3 |#2| (-637 |#2|)) |#2| (-1169))))
+((-3797 ((|#2| |#2| |#2|) 31)) (-3437 (((-113) (-113)) 43)) (-1963 ((|#2| |#2|) 63)) (-1962 ((|#2| |#2|) 66)) (-3796 ((|#2| |#2|) 30)) (-3800 ((|#2| |#2| |#2|) 33)) (-3802 ((|#2| |#2| |#2|) 35)) (-3799 ((|#2| |#2| |#2|) 32)) (-3801 ((|#2| |#2| |#2|) 34)) (-2384 (((-112) (-113)) 41)) (-3804 ((|#2| |#2|) 37)) (-3803 ((|#2| |#2|) 36)) (-3794 ((|#2| |#2|) 25)) (-3798 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3795 ((|#2| |#2| |#2|) 29)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -3794 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3798 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2| |#2|)) (-15 -3799 (|#2| |#2| |#2|)) (-15 -3800 (|#2| |#2| |#2|)) (-15 -3801 (|#2| |#2| |#2|)) (-15 -3802 (|#2| |#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1963 (|#2| |#2|))) (-13 (-846) (-556)) (-421 |#1|)) (T -431))
+((-1963 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3802 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3801 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3800 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3799 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3797 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3795 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3798 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-421 *3)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-421 *4)))))
+(-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -3794 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3798 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2| |#2|)) (-15 -3799 (|#2| |#2| |#2|)) (-15 -3800 (|#2| |#2| |#2|)) (-15 -3801 (|#2| |#2| |#2|)) (-15 -3802 (|#2| |#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)))
+((-3222 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1163 |#2|)) (|:| |pol2| (-1163 |#2|)) (|:| |prim| (-1163 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-637 (-1163 |#2|))) (|:| |prim| (-1163 |#2|))) (-637 |#2|)) 61)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -3222 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-637 (-1163 |#2|))) (|:| |prim| (-1163 |#2|))) (-637 |#2|))) (IF (|has| |#2| (-27)) (-15 -3222 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1163 |#2|)) (|:| |pol2| (-1163 |#2|)) (|:| |prim| (-1163 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-846) (-147)) (-421 |#1|)) (T -432))
+((-3222 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1163 *3)) (|:| |pol2| (-1163 *3)) (|:| |prim| (-1163 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-556) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-637 (-1163 *5))) (|:| |prim| (-1163 *5)))) (-5 *1 (-432 *4 *5)))))
+(-10 -7 (-15 -3222 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-637 (-1163 |#2|))) (|:| |prim| (-1163 |#2|))) (-637 |#2|))) (IF (|has| |#2| (-27)) (-15 -3222 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1163 |#2|)) (|:| |pol2| (-1163 |#2|)) (|:| |prim| (-1163 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1965 (((-1262)) 19)) (-1964 (((-1163 (-407 (-546))) |#2| (-608 |#2|)) 41) (((-407 (-546)) |#2|) 25)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -1964 ((-407 (-546)) |#2|)) (-15 -1964 ((-1163 (-407 (-546))) |#2| (-608 |#2|))) (-15 -1965 ((-1262)))) (-13 (-846) (-556) (-1034 (-546))) (-421 |#1|)) (T -433))
+((-1965 (*1 *2) (-12 (-4 *3 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-1262)) (-5 *1 (-433 *3 *4)) (-4 *4 (-421 *3)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-421 *5)) (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-433 *5 *3)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-407 (-546))) (-5 *1 (-433 *4 *3)) (-4 *3 (-421 *4)))))
+(-10 -7 (-15 -1964 ((-407 (-546)) |#2|)) (-15 -1964 ((-1163 (-407 (-546))) |#2| (-608 |#2|))) (-15 -1965 ((-1262))))
+((-4060 (((-112) $) 28)) (-1966 (((-112) $) 30)) (-3667 (((-112) $) 31)) (-1968 (((-112) $) 34)) (-1970 (((-112) $) 29)) (-1969 (((-112) $) 33)) (-4361 (((-859) $) 18) (($ (-1151)) 27) (($ (-1169)) 23) (((-1169) $) 22) (((-1096) $) 21)) (-1967 (((-112) $) 32)) (-3444 (((-112) $ $) 15)))
+(((-434) (-13 (-610 (-859)) (-10 -8 (-15 -4361 ($ (-1151))) (-15 -4361 ($ (-1169))) (-15 -4361 ((-1169) $)) (-15 -4361 ((-1096) $)) (-15 -4060 ((-112) $)) (-15 -1970 ((-112) $)) (-15 -3667 ((-112) $)) (-15 -1969 ((-112) $)) (-15 -1968 ((-112) $)) (-15 -1967 ((-112) $)) (-15 -1966 ((-112) $)) (-15 -3444 ((-112) $ $))))) (T -434))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-434)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3444 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -4361 ($ (-1151))) (-15 -4361 ($ (-1169))) (-15 -4361 ((-1169) $)) (-15 -4361 ((-1096) $)) (-15 -4060 ((-112) $)) (-15 -1970 ((-112) $)) (-15 -3667 ((-112) $)) (-15 -1969 ((-112) $)) (-15 -1968 ((-112) $)) (-15 -1967 ((-112) $)) (-15 -1966 ((-112) $)) (-15 -3444 ((-112) $ $))))
+((-1972 (((-3 (-405 (-1163 (-407 (-546)))) "failed") |#3|) 70)) (-1971 (((-405 |#3|) |#3|) 34)) (-1974 (((-3 (-405 (-1163 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-1973 (((-3 (|:| |overq| (-1163 (-407 (-546)))) (|:| |overan| (-1163 (-48))) (|:| -3026 (-112))) |#3|) 37)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1971 ((-405 |#3|) |#3|)) (-15 -1972 ((-3 (-405 (-1163 (-407 (-546)))) "failed") |#3|)) (-15 -1973 ((-3 (|:| |overq| (-1163 (-407 (-546)))) (|:| |overan| (-1163 (-48))) (|:| -3026 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -1974 ((-3 (-405 (-1163 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-846) (-1034 (-546))) (-421 |#1|) (-1232 |#2|)) (T -435))
+((-1974 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4)) (-5 *2 (-405 (-1163 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-1973 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4)) (-5 *2 (-3 (|:| |overq| (-1163 (-407 (-546)))) (|:| |overan| (-1163 (-48))) (|:| -3026 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4)) (-5 *2 (-405 (-1163 (-407 (-546))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-1971 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4)) (-5 *2 (-405 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))))
+(-10 -7 (-15 -1971 ((-405 |#3|) |#3|)) (-15 -1972 ((-3 (-405 (-1163 (-407 (-546)))) "failed") |#3|)) (-15 -1973 ((-3 (|:| |overq| (-1163 (-407 (-546)))) (|:| |overan| (-1163 (-48))) (|:| -3026 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -1974 ((-3 (-405 (-1163 (-48))) "failed") |#3|)) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-1983 (((-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) $) 11)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1981 (($) 32)) (-1978 (($) 38)) (-1979 (($) 34)) (-1976 (($) 36)) (-1980 (($) 33)) (-1977 (($) 35)) (-1975 (($) 37)) (-1982 (((-112) $) 8)) (-2731 (((-637 (-942 (-546))) $) 19)) (-3936 (($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-1169)) (-112)) 27) (($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-942 (-546))) (-112)) 28)) (-4361 (((-859) $) 23) (($ (-434)) 29)) (-3444 (((-112) $ $) NIL)))
+(((-436) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-434))) (-15 -1983 ((-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) $)) (-15 -2731 ((-637 (-942 (-546))) $)) (-15 -1982 ((-112) $)) (-15 -3936 ($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-1169)) (-112))) (-15 -3936 ($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-942 (-546))) (-112))) (-15 -1981 ($)) (-15 -1980 ($)) (-15 -1979 ($)) (-15 -1978 ($)) (-15 -1977 ($)) (-15 -1976 ($)) (-15 -1975 ($))))) (T -436))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-436)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void"))) (-5 *1 (-436)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-637 (-942 (-546)))) (-5 *1 (-436)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3936 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *3 (-637 (-1169))) (-5 *4 (-112)) (-5 *1 (-436)))) (-3936 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-1981 (*1 *1) (-5 *1 (-436))) (-1980 (*1 *1) (-5 *1 (-436))) (-1979 (*1 *1) (-5 *1 (-436))) (-1978 (*1 *1) (-5 *1 (-436))) (-1977 (*1 *1) (-5 *1 (-436))) (-1976 (*1 *1) (-5 *1 (-436))) (-1975 (*1 *1) (-5 *1 (-436))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-434))) (-15 -1983 ((-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) $)) (-15 -2731 ((-637 (-942 (-546))) $)) (-15 -1982 ((-112) $)) (-15 -3936 ($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-1169)) (-112))) (-15 -3936 ($ (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-637 (-942 (-546))) (-112))) (-15 -1981 ($)) (-15 -1980 ($)) (-15 -1979 ($)) (-15 -1978 ($)) (-15 -1977 ($)) (-15 -1976 ($)) (-15 -1975 ($))))
+((-2953 (((-112) $ $) NIL)) (-1848 (((-1151) $ (-1151)) NIL)) (-1852 (($ $ (-1151)) NIL)) (-1849 (((-1151) $) NIL)) (-1987 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1853 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3956 (((-388) $) NIL)) (-3650 (((-1151) $) NIL)) (-1850 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1986 (((-1262) (-1151)) 9)) (-1985 (((-1262) (-1151)) 10)) (-1984 (((-1262)) 11)) (-4361 (((-859) $) NIL)) (-1851 (($ $) 34)) (-3444 (((-112) $ $) NIL)))
+(((-437) (-13 (-365 (-388) (-1151)) (-10 -7 (-15 -1987 ((-388) (-388) (-388))) (-15 -1987 ((-388) (-388))) (-15 -1986 ((-1262) (-1151))) (-15 -1985 ((-1262) (-1151))) (-15 -1984 ((-1262)))))) (T -437))
+((-1987 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-437)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-437)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-437)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-437)))) (-1984 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-437)))))
+(-13 (-365 (-388) (-1151)) (-10 -7 (-15 -1987 ((-388) (-388) (-388))) (-15 -1987 ((-388) (-388))) (-15 -1986 ((-1262) (-1151))) (-15 -1985 ((-1262) (-1151))) (-15 -1984 ((-1262)))))
+((-2953 (((-112) $ $) NIL)) (-3956 (((-1169) $) 8)) (-3650 (((-1151) $) 16)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 13)))
+(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -3956 ((-1169) $)))) (-1169)) (T -438))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2))))
+(-13 (-1094) (-10 -8 (-15 -3956 ((-1169) $))))
+((-2953 (((-112) $ $) NIL)) (-3727 (((-1108) $) 7)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 13)) (-3444 (((-112) $ $) 9)))
+(((-439) (-13 (-1094) (-10 -8 (-15 -3727 ((-1108) $))))) (T -439))
+((-3727 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-439)))))
+(-13 (-1094) (-10 -8 (-15 -3727 ((-1108) $))))
+((-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8) (($ (-1256 (-694))) 14) (($ (-637 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 11)))
(((-440) (-140)) (T -440))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-4 *1 (-440)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-1257 (-694)))) (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-330))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))))))
-(((-610 (-858)) . T) ((-395) . T) ((-1208) . T))
-((-2130 (((-3 $ "failed") (-1257 (-316 (-379)))) 21) (((-3 $ "failed") (-1257 (-316 (-563)))) 19) (((-3 $ "failed") (-1257 (-948 (-379)))) 17) (((-3 $ "failed") (-1257 (-948 (-563)))) 15) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 11)) (-2057 (($ (-1257 (-316 (-379)))) 22) (($ (-1257 (-316 (-563)))) 20) (($ (-1257 (-948 (-379)))) 18) (($ (-1257 (-948 (-563)))) 16) (($ (-1257 (-407 (-948 (-379))))) 14) (($ (-1257 (-407 (-948 (-563))))) 12)) (-2615 (((-1262) $) 7)) (-1692 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) 23)))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-694))) (-4 *1 (-440)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-440)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-4 *1 (-440)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-1256 (-694)))) (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-330))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))))))
+(((-610 (-859)) . T) ((-396) . T) ((-1207) . T))
+((-3565 (((-3 $ "failed") (-1256 (-314 (-378)))) 21) (((-3 $ "failed") (-1256 (-314 (-546)))) 19) (((-3 $ "failed") (-1256 (-942 (-378)))) 17) (((-3 $ "failed") (-1256 (-942 (-546)))) 15) (((-3 $ "failed") (-1256 (-407 (-942 (-378))))) 13) (((-3 $ "failed") (-1256 (-407 (-942 (-546))))) 11)) (-3564 (($ (-1256 (-314 (-378)))) 22) (($ (-1256 (-314 (-546)))) 20) (($ (-1256 (-942 (-378)))) 18) (($ (-1256 (-942 (-546)))) 16) (($ (-1256 (-407 (-942 (-378))))) 14) (($ (-1256 (-407 (-942 (-546))))) 12)) (-3791 (((-1262) $) 7)) (-4361 (((-859) $) 8) (($ (-637 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) 23)))
(((-441) (-140)) (T -441))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330))))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))))
-(-13 (-395) (-10 -8 (-15 -1692 ($ (-640 (-330)))) (-15 -1692 ($ (-330))) (-15 -1692 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))) (-15 -2057 ($ (-1257 (-316 (-379))))) (-15 -2130 ((-3 $ "failed") (-1257 (-316 (-379))))) (-15 -2057 ($ (-1257 (-316 (-563))))) (-15 -2130 ((-3 $ "failed") (-1257 (-316 (-563))))) (-15 -2057 ($ (-1257 (-948 (-379))))) (-15 -2130 ((-3 $ "failed") (-1257 (-948 (-379))))) (-15 -2057 ($ (-1257 (-948 (-563))))) (-15 -2130 ((-3 $ "failed") (-1257 (-948 (-563))))) (-15 -2057 ($ (-1257 (-407 (-948 (-379)))))) (-15 -2130 ((-3 $ "failed") (-1257 (-407 (-948 (-379)))))) (-15 -2057 ($ (-1257 (-407 (-948 (-563)))))) (-15 -2130 ((-3 $ "failed") (-1257 (-407 (-948 (-563))))))))
-(((-610 (-858)) . T) ((-395) . T) ((-1208) . T))
-((-2745 (((-112)) 17)) (-2756 (((-112) (-112)) 18)) (-2766 (((-112)) 13)) (-2777 (((-112) (-112)) 14)) (-2798 (((-112)) 15)) (-2809 (((-112) (-112)) 16)) (-2711 (((-917) (-917)) 21) (((-917)) 20)) (-2721 (((-767) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563))))) 41)) (-2701 (((-917) (-917)) 23) (((-917)) 22)) (-2732 (((-2 (|:| -3275 (-563)) (|:| -1337 (-640 |#1|))) |#1|) 61)) (-2691 (((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563))))))) 126)) (-2626 (((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112)) 152)) (-2619 (((-418 |#1|) |#1| (-767) (-767)) 165) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 162) (((-418 |#1|) |#1| (-640 (-767))) 164) (((-418 |#1|) |#1| (-767)) 163) (((-418 |#1|) |#1|) 161)) (-2918 (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112)) 167) (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767)) 168) (((-3 |#1| "failed") (-917) |#1| (-640 (-767))) 170) (((-3 |#1| "failed") (-917) |#1| (-767)) 169) (((-3 |#1| "failed") (-917) |#1|) 171)) (-2173 (((-418 |#1|) |#1| (-767) (-767)) 160) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 156) (((-418 |#1|) |#1| (-640 (-767))) 158) (((-418 |#1|) |#1| (-767)) 157) (((-418 |#1|) |#1|) 155)) (-2788 (((-112) |#1|) 36)) (-2908 (((-733 (-767)) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563))))) 66)) (-2821 (((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)) 154)))
-(((-442 |#1|) (-10 -7 (-15 -2691 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))))) (-15 -2908 ((-733 (-767)) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))))) (-15 -2701 ((-917))) (-15 -2701 ((-917) (-917))) (-15 -2711 ((-917))) (-15 -2711 ((-917) (-917))) (-15 -2721 ((-767) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))))) (-15 -2732 ((-2 (|:| -3275 (-563)) (|:| -1337 (-640 |#1|))) |#1|)) (-15 -2745 ((-112))) (-15 -2756 ((-112) (-112))) (-15 -2766 ((-112))) (-15 -2777 ((-112) (-112))) (-15 -2788 ((-112) |#1|)) (-15 -2798 ((-112))) (-15 -2809 ((-112) (-112))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2173 ((-418 |#1|) |#1| (-767))) (-15 -2173 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2173 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2173 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2619 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1| (-767))) (-15 -2619 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2619 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2619 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1|)) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -2626 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112))) (-15 -2821 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)))) (-1233 (-563))) (T -442))
-((-2821 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2918 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2918 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2918 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2918 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2918 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2619 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2619 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2809 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2798 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2788 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2766 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2745 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3275 (-563)) (|:| -1337 (-640 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2173 *4) (|:| -3871 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2711 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2701 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2173 *4) (|:| -3871 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| *4) (|:| -3259 (-563))))))) (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
-(-10 -7 (-15 -2691 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))))) (-15 -2908 ((-733 (-767)) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))))) (-15 -2701 ((-917))) (-15 -2701 ((-917) (-917))) (-15 -2711 ((-917))) (-15 -2711 ((-917) (-917))) (-15 -2721 ((-767) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))))) (-15 -2732 ((-2 (|:| -3275 (-563)) (|:| -1337 (-640 |#1|))) |#1|)) (-15 -2745 ((-112))) (-15 -2756 ((-112) (-112))) (-15 -2766 ((-112))) (-15 -2777 ((-112) (-112))) (-15 -2788 ((-112) |#1|)) (-15 -2798 ((-112))) (-15 -2809 ((-112) (-112))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2173 ((-418 |#1|) |#1| (-767))) (-15 -2173 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2173 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2173 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2619 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1| (-767))) (-15 -2619 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2619 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2619 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1|)) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -2918 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -2626 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112))) (-15 -2821 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112) (-1095 (-767)) (-767))))
-((-2863 (((-563) |#2|) 48) (((-563) |#2| (-767)) 47)) (-2853 (((-563) |#2|) 55)) (-2872 ((|#3| |#2|) 25)) (-3975 ((|#3| |#2| (-917)) 14)) (-3419 ((|#3| |#2|) 15)) (-2881 ((|#3| |#2|) 9)) (-4238 ((|#3| |#2|) 10)) (-2844 ((|#3| |#2| (-917)) 62) ((|#3| |#2|) 30)) (-2833 (((-563) |#2|) 57)))
-(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2833 ((-563) |#2|)) (-15 -2844 (|#3| |#2|)) (-15 -2844 (|#3| |#2| (-917))) (-15 -2853 ((-563) |#2|)) (-15 -2863 ((-563) |#2| (-767))) (-15 -2863 ((-563) |#2|)) (-15 -3975 (|#3| |#2| (-917))) (-15 -2872 (|#3| |#2|)) (-15 -2881 (|#3| |#2|)) (-15 -4238 (|#3| |#2|)) (-15 -3419 (|#3| |#2|))) (-1045) (-1233 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1193) (-284))) (T -443))
-((-3419 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-2844 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
-(-10 -7 (-15 -2833 ((-563) |#2|)) (-15 -2844 (|#3| |#2|)) (-15 -2844 (|#3| |#2| (-917))) (-15 -2853 ((-563) |#2|)) (-15 -2863 ((-563) |#2| (-767))) (-15 -2863 ((-563) |#2|)) (-15 -3975 (|#3| |#2| (-917))) (-15 -2872 (|#3| |#2|)) (-15 -2881 (|#3| |#2|)) (-15 -4238 (|#3| |#2|)) (-15 -3419 (|#3| |#2|)))
-((-2442 ((|#2| (-1257 |#1|)) 36)) (-2899 ((|#2| |#2| |#1|) 49)) (-2890 ((|#2| |#2| |#1|) 41)) (-4383 ((|#2| |#2|) 38)) (-3286 (((-112) |#2|) 29)) (-2928 (((-640 |#2|) (-917) (-418 |#2|)) 17)) (-2918 ((|#2| (-917) (-418 |#2|)) 21)) (-2908 (((-733 (-767)) (-418 |#2|)) 25)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -3286 ((-112) |#2|)) (-15 -2442 (|#2| (-1257 |#1|))) (-15 -4383 (|#2| |#2|)) (-15 -2890 (|#2| |#2| |#1|)) (-15 -2899 (|#2| |#2| |#1|)) (-15 -2908 ((-733 (-767)) (-418 |#2|))) (-15 -2918 (|#2| (-917) (-418 |#2|))) (-15 -2928 ((-640 |#2|) (-917) (-418 |#2|)))) (-1045) (-1233 |#1|)) (T -444))
-((-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))) (-2899 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-2890 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-4383 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4)) (-5 *1 (-444 *4 *2)))) (-3286 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -3286 ((-112) |#2|)) (-15 -2442 (|#2| (-1257 |#1|))) (-15 -4383 (|#2| |#2|)) (-15 -2890 (|#2| |#2| |#1|)) (-15 -2899 (|#2| |#2| |#1|)) (-15 -2908 ((-733 (-767)) (-418 |#2|))) (-15 -2918 (|#2| (-917) (-418 |#2|))) (-15 -2928 ((-640 |#2|) (-917) (-418 |#2|))))
-((-2958 (((-767)) 41)) (-2997 (((-767)) 23 (|has| |#1| (-404))) (((-767) (-767)) 22 (|has| |#1| (-404)))) (-2986 (((-563) |#1|) 18 (|has| |#1| (-404)))) (-2977 (((-563) |#1|) 20 (|has| |#1| (-404)))) (-2947 (((-767)) 40) (((-767) (-767)) 39)) (-2937 ((|#1| (-767) (-563)) 29)) (-2968 (((-1262)) 43)))
-(((-445 |#1|) (-10 -7 (-15 -2937 (|#1| (-767) (-563))) (-15 -2947 ((-767) (-767))) (-15 -2947 ((-767))) (-15 -2958 ((-767))) (-15 -2968 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -2977 ((-563) |#1|)) (-15 -2986 ((-563) |#1|)) (-15 -2997 ((-767) (-767))) (-15 -2997 ((-767)))) |%noBranch|)) (-1045)) (T -445))
-((-2997 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2986 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2977 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2968 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2958 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2947 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2937 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
-(-10 -7 (-15 -2937 (|#1| (-767) (-563))) (-15 -2947 ((-767) (-767))) (-15 -2947 ((-767))) (-15 -2958 ((-767))) (-15 -2968 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -2977 ((-563) |#1|)) (-15 -2986 ((-563) |#1|)) (-15 -2997 ((-767) (-767))) (-15 -2997 ((-767)))) |%noBranch|))
-((-3008 (((-640 (-563)) (-563)) 60)) (-2560 (((-112) (-169 (-563))) 64)) (-2173 (((-418 (-169 (-563))) (-169 (-563))) 59)))
-(((-446) (-10 -7 (-15 -2173 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -3008 ((-640 (-563)) (-563))) (-15 -2560 ((-112) (-169 (-563)))))) (T -446))
-((-2560 (*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446)))) (-3008 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563)))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446)) (-5 *3 (-169 (-563))))))
-(-10 -7 (-15 -2173 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -3008 ((-640 (-563)) (-563))) (-15 -2560 ((-112) (-169 (-563)))))
-((-3019 ((|#4| |#4| (-640 |#4|)) 60)) (-3028 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 17) (((-640 |#4|) (-640 |#4|) (-1151)) 16) (((-640 |#4|) (-640 |#4|)) 11)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3019 (|#4| |#4| (-640 |#4|))) (-15 -3028 ((-640 |#4|) (-640 |#4|))) (-15 -3028 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -3028 ((-640 |#4|) (-640 |#4|) (-1151) (-1151)))) (-307) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -447))
-((-3028 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3019 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3019 (|#4| |#4| (-640 |#4|))) (-15 -3028 ((-640 |#4|) (-640 |#4|))) (-15 -3028 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -3028 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))))
-((-3050 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 72) (((-640 (-640 |#4|)) (-640 |#4|)) 71) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112)) 65) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|)) 66)) (-3038 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 41) (((-640 (-640 |#4|)) (-640 |#4|)) 62)))
-(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3038 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -3038 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -448))
-((-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3050 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-3050 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(-10 -7 (-15 -3038 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -3038 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -3050 ((-640 (-640 |#4|)) (-640 |#4|) (-112))))
-((-2112 (((-767) |#4|) 12)) (-1998 (((-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|)))) 31)) (-2016 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2008 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3069 ((|#4| |#4| (-640 |#4|)) 39)) (-3153 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|)) 69)) (-2046 (((-1262) |#4|) 41)) (-2074 (((-1262) (-640 |#4|)) 50)) (-2053 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563)) 47)) (-2082 (((-1262) (-563)) 78)) (-2026 (((-640 |#4|) (-640 |#4|)) 76)) (-2102 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|)) |#4| (-767)) 25)) (-2037 (((-563) |#4|) 77)) (-1989 ((|#4| |#4|) 29)) (-3078 (((-640 |#4|) (-640 |#4|) (-563) (-563)) 55)) (-2065 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563)) 88)) (-2092 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3090 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3144 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3134 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3102 (((-112) |#2| |#2|) 56)) (-3124 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3112 (((-112) |#2| |#2| |#2| |#2|) 59)) (-3060 ((|#4| |#4| (-640 |#4|)) 70)))
-(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3060 (|#4| |#4| (-640 |#4|))) (-15 -3069 (|#4| |#4| (-640 |#4|))) (-15 -3078 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -3090 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3102 ((-112) |#2| |#2|)) (-15 -3112 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3124 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3134 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3144 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3153 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -1989 (|#4| |#4|)) (-15 -1998 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|))))) (-15 -2008 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2016 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-640 |#4|) (-640 |#4|))) (-15 -2037 ((-563) |#4|)) (-15 -2046 ((-1262) |#4|)) (-15 -2053 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -2065 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -2074 ((-1262) (-640 |#4|))) (-15 -2082 ((-1262) (-563))) (-15 -2092 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2102 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|)) |#4| (-767))) (-15 -2112 ((-767) |#4|))) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -449))
-((-2112 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2102 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3929 *4))) (-5 *5 (-767)) (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-2092 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2065 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2053 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2037 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2026 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2016 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-1998 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 *3)))) (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-3153 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-3144 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3124 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3)))) (-3112 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-3102 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3078 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3060 (|#4| |#4| (-640 |#4|))) (-15 -3069 (|#4| |#4| (-640 |#4|))) (-15 -3078 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -3090 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3102 ((-112) |#2| |#2|)) (-15 -3112 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3124 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3134 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3144 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3153 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -1989 (|#4| |#4|)) (-15 -1998 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|))))) (-15 -2008 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2016 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-640 |#4|) (-640 |#4|))) (-15 -2037 ((-563) |#4|)) (-15 -2046 ((-1262) |#4|)) (-15 -2053 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -2065 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -2074 ((-1262) (-640 |#4|))) (-15 -2082 ((-1262) (-563))) (-15 -2092 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2102 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3929 |#4|)) |#4| (-767))) (-15 -2112 ((-767) |#4|)))
-((-2718 ((|#4| |#4| (-640 |#4|)) 20 (|has| |#1| (-363)))) (-2478 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 41) (((-640 |#4|) (-640 |#4|) (-1151)) 40) (((-640 |#4|) (-640 |#4|)) 33)))
-(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 ((-640 |#4|) (-640 |#4|))) (-15 -2478 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -2478 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -2718 (|#4| |#4| (-640 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -450))
-((-2718 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2478 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2478 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2478 ((-640 |#4|) (-640 |#4|))) (-15 -2478 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -2478 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -2718 (|#4| |#4| (-640 |#4|))) |%noBranch|))
-((-3517 (($ $ $) 14) (($ (-640 $)) 21)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 41)) (-3551 (($ $ $) NIL) (($ (-640 $)) 22)))
-(((-451 |#1|) (-10 -8 (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3517 (|#1| (-640 |#1|))) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|))) (-452)) (T -451))
-NIL
-(-10 -8 (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3517 (|#1| (-640 |#1|))) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -3551 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3012 (((-3 $ "failed") $ $) 43)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-441)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330))))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-314 (-378)))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-314 (-378)))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-314 (-546)))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-314 (-546)))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-942 (-378)))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-942 (-378)))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-942 (-546)))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-942 (-546)))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-407 (-942 (-378))))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-407 (-942 (-378))))) (-4 *1 (-441)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1256 (-407 (-942 (-546))))) (-4 *1 (-441)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-407 (-942 (-546))))) (-4 *1 (-441)))))
+(-13 (-396) (-10 -8 (-15 -4361 ($ (-637 (-330)))) (-15 -4361 ($ (-330))) (-15 -4361 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))) (-15 -3564 ($ (-1256 (-314 (-378))))) (-15 -3565 ((-3 $ "failed") (-1256 (-314 (-378))))) (-15 -3564 ($ (-1256 (-314 (-546))))) (-15 -3565 ((-3 $ "failed") (-1256 (-314 (-546))))) (-15 -3564 ($ (-1256 (-942 (-378))))) (-15 -3565 ((-3 $ "failed") (-1256 (-942 (-378))))) (-15 -3564 ($ (-1256 (-942 (-546))))) (-15 -3565 ((-3 $ "failed") (-1256 (-942 (-546))))) (-15 -3564 ($ (-1256 (-407 (-942 (-378)))))) (-15 -3565 ((-3 $ "failed") (-1256 (-407 (-942 (-378)))))) (-15 -3564 ($ (-1256 (-407 (-942 (-546)))))) (-15 -3565 ((-3 $ "failed") (-1256 (-407 (-942 (-546))))))))
+(((-610 (-859)) . T) ((-396) . T) ((-1207) . T))
+((-1993 (((-112)) 17)) (-1994 (((-112) (-112)) 18)) (-1995 (((-112)) 13)) (-1996 (((-112) (-112)) 14)) (-1998 (((-112)) 15)) (-1999 (((-112) (-112)) 16)) (-1990 (((-915) (-915)) 21) (((-915)) 20)) (-1991 (((-767) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546))))) 41)) (-1989 (((-915) (-915)) 23) (((-915)) 22)) (-1992 (((-2 (|:| -2963 (-546)) (|:| -2818 (-637 |#1|))) |#1|) 61)) (-1988 (((-405 |#1|) (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546))))))) 126)) (-4149 (((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112)) 152)) (-4148 (((-405 |#1|) |#1| (-767) (-767)) 165) (((-405 |#1|) |#1| (-637 (-767)) (-767)) 162) (((-405 |#1|) |#1| (-637 (-767))) 164) (((-405 |#1|) |#1| (-767)) 163) (((-405 |#1|) |#1|) 161)) (-2010 (((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767) (-112)) 167) (((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767)) 168) (((-3 |#1| "failed") (-915) |#1| (-637 (-767))) 170) (((-3 |#1| "failed") (-915) |#1| (-767)) 169) (((-3 |#1| "failed") (-915) |#1|) 171)) (-4147 (((-405 |#1|) |#1| (-767) (-767)) 160) (((-405 |#1|) |#1| (-637 (-767)) (-767)) 156) (((-405 |#1|) |#1| (-637 (-767))) 158) (((-405 |#1|) |#1| (-767)) 157) (((-405 |#1|) |#1|) 155)) (-1997 (((-112) |#1|) 36)) (-2009 (((-732 (-767)) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546))))) 66)) (-2000 (((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112) (-1090 (-767)) (-767)) 154)))
+(((-442 |#1|) (-10 -7 (-15 -1988 ((-405 |#1|) (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))))) (-15 -2009 ((-732 (-767)) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))))) (-15 -1989 ((-915))) (-15 -1989 ((-915) (-915))) (-15 -1990 ((-915))) (-15 -1990 ((-915) (-915))) (-15 -1991 ((-767) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))))) (-15 -1992 ((-2 (|:| -2963 (-546)) (|:| -2818 (-637 |#1|))) |#1|)) (-15 -1993 ((-112))) (-15 -1994 ((-112) (-112))) (-15 -1995 ((-112))) (-15 -1996 ((-112) (-112))) (-15 -1997 ((-112) |#1|)) (-15 -1998 ((-112))) (-15 -1999 ((-112) (-112))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4147 ((-405 |#1|) |#1| (-767))) (-15 -4147 ((-405 |#1|) |#1| (-637 (-767)))) (-15 -4147 ((-405 |#1|) |#1| (-637 (-767)) (-767))) (-15 -4147 ((-405 |#1|) |#1| (-767) (-767))) (-15 -4148 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1| (-767))) (-15 -4148 ((-405 |#1|) |#1| (-637 (-767)))) (-15 -4148 ((-405 |#1|) |#1| (-637 (-767)) (-767))) (-15 -4148 ((-405 |#1|) |#1| (-767) (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1|)) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767) (-112))) (-15 -4149 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112))) (-15 -2000 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112) (-1090 (-767)) (-767)))) (-1232 (-546))) (T -442))
+((-2000 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1090 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546))))))) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546))))))) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-2010 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546))))) (-2010 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546))))) (-2010 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546))))) (-2010 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-915)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546))))) (-2010 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-915)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546))))) (-4148 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4148 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-767))) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4148 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4148 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-767))) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1999 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1998 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1997 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1995 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1993 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1992 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2963 (-546)) (|:| -2818 (-637 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -4147 *4) (|:| -4363 (-546))))) (-4 *4 (-1232 (-546))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1990 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-1989 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -4147 *4) (|:| -4363 (-546))))) (-4 *4 (-1232 (-546))) (-5 *2 (-732 (-767))) (-5 *1 (-442 *4)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| *4) (|:| -2537 (-546))))))) (-4 *4 (-1232 (-546))) (-5 *2 (-405 *4)) (-5 *1 (-442 *4)))))
+(-10 -7 (-15 -1988 ((-405 |#1|) (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))))) (-15 -2009 ((-732 (-767)) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))))) (-15 -1989 ((-915))) (-15 -1989 ((-915) (-915))) (-15 -1990 ((-915))) (-15 -1990 ((-915) (-915))) (-15 -1991 ((-767) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))))) (-15 -1992 ((-2 (|:| -2963 (-546)) (|:| -2818 (-637 |#1|))) |#1|)) (-15 -1993 ((-112))) (-15 -1994 ((-112) (-112))) (-15 -1995 ((-112))) (-15 -1996 ((-112) (-112))) (-15 -1997 ((-112) |#1|)) (-15 -1998 ((-112))) (-15 -1999 ((-112) (-112))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4147 ((-405 |#1|) |#1| (-767))) (-15 -4147 ((-405 |#1|) |#1| (-637 (-767)))) (-15 -4147 ((-405 |#1|) |#1| (-637 (-767)) (-767))) (-15 -4147 ((-405 |#1|) |#1| (-767) (-767))) (-15 -4148 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1| (-767))) (-15 -4148 ((-405 |#1|) |#1| (-637 (-767)))) (-15 -4148 ((-405 |#1|) |#1| (-637 (-767)) (-767))) (-15 -4148 ((-405 |#1|) |#1| (-767) (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1|)) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767))) (-15 -2010 ((-3 |#1| "failed") (-915) |#1| (-637 (-767)) (-767) (-112))) (-15 -4149 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112))) (-15 -2000 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112) (-1090 (-767)) (-767))))
+((-2004 (((-546) |#2|) 48) (((-546) |#2| (-767)) 47)) (-2003 (((-546) |#2|) 55)) (-2005 ((|#3| |#2|) 25)) (-3524 ((|#3| |#2| (-915)) 14)) (-4248 ((|#3| |#2|) 15)) (-2006 ((|#3| |#2|) 9)) (-2988 ((|#3| |#2|) 10)) (-2002 ((|#3| |#2| (-915)) 62) ((|#3| |#2|) 30)) (-2001 (((-546) |#2|) 57)))
+(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2001 ((-546) |#2|)) (-15 -2002 (|#3| |#2|)) (-15 -2002 (|#3| |#2| (-915))) (-15 -2003 ((-546) |#2|)) (-15 -2004 ((-546) |#2| (-767))) (-15 -2004 ((-546) |#2|)) (-15 -3524 (|#3| |#2| (-915))) (-15 -2005 (|#3| |#2|)) (-15 -2006 (|#3| |#2|)) (-15 -2988 (|#3| |#2|)) (-15 -4248 (|#3| |#2|))) (-1045) (-1232 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1193) (-284))) (T -443))
+((-4248 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2988 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1232 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) (-2003 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-2002 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-2002 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2001 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
+(-10 -7 (-15 -2001 ((-546) |#2|)) (-15 -2002 (|#3| |#2|)) (-15 -2002 (|#3| |#2| (-915))) (-15 -2003 ((-546) |#2|)) (-15 -2004 ((-546) |#2| (-767))) (-15 -2004 ((-546) |#2|)) (-15 -3524 (|#3| |#2| (-915))) (-15 -2005 (|#3| |#2|)) (-15 -2006 (|#3| |#2|)) (-15 -2988 (|#3| |#2|)) (-15 -4248 (|#3| |#2|)))
+((-3765 ((|#2| (-1256 |#1|)) 36)) (-2008 ((|#2| |#2| |#1|) 49)) (-2007 ((|#2| |#2| |#1|) 41)) (-2424 ((|#2| |#2|) 38)) (-3581 (((-112) |#2|) 29)) (-2011 (((-637 |#2|) (-915) (-405 |#2|)) 17)) (-2010 ((|#2| (-915) (-405 |#2|)) 21)) (-2009 (((-732 (-767)) (-405 |#2|)) 25)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -3581 ((-112) |#2|)) (-15 -3765 (|#2| (-1256 |#1|))) (-15 -2424 (|#2| |#2|)) (-15 -2007 (|#2| |#2| |#1|)) (-15 -2008 (|#2| |#2| |#1|)) (-15 -2009 ((-732 (-767)) (-405 |#2|))) (-15 -2010 (|#2| (-915) (-405 |#2|))) (-15 -2011 ((-637 |#2|) (-915) (-405 |#2|)))) (-1045) (-1232 |#1|)) (T -444))
+((-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-405 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-1045)) (-5 *2 (-637 *6)) (-5 *1 (-444 *5 *6)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-405 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-405 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1045)) (-5 *2 (-732 (-767))) (-5 *1 (-444 *4 *5)))) (-2008 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3)))) (-2007 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3)))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1045)) (-4 *2 (-1232 *4)) (-5 *1 (-444 *4 *2)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -3581 ((-112) |#2|)) (-15 -3765 (|#2| (-1256 |#1|))) (-15 -2424 (|#2| |#2|)) (-15 -2007 (|#2| |#2| |#1|)) (-15 -2008 (|#2| |#2| |#1|)) (-15 -2009 ((-732 (-767)) (-405 |#2|))) (-15 -2010 (|#2| (-915) (-405 |#2|))) (-15 -2011 ((-637 |#2|) (-915) (-405 |#2|))))
+((-2014 (((-767)) 41)) (-2018 (((-767)) 23 (|has| |#1| (-404))) (((-767) (-767)) 22 (|has| |#1| (-404)))) (-2017 (((-546) |#1|) 18 (|has| |#1| (-404)))) (-2016 (((-546) |#1|) 20 (|has| |#1| (-404)))) (-2013 (((-767)) 40) (((-767) (-767)) 39)) (-2012 ((|#1| (-767) (-546)) 29)) (-2015 (((-1262)) 43)))
+(((-445 |#1|) (-10 -7 (-15 -2012 (|#1| (-767) (-546))) (-15 -2013 ((-767) (-767))) (-15 -2013 ((-767))) (-15 -2014 ((-767))) (-15 -2015 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -2016 ((-546) |#1|)) (-15 -2017 ((-546) |#1|)) (-15 -2018 ((-767) (-767))) (-15 -2018 ((-767)))) |%noBranch|)) (-1045)) (T -445))
+((-2018 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2017 (*1 *2 *3) (-12 (-5 *2 (-546)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2016 (*1 *2 *3) (-12 (-5 *2 (-546)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2015 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2014 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2013 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-546)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
+(-10 -7 (-15 -2012 (|#1| (-767) (-546))) (-15 -2013 ((-767) (-767))) (-15 -2013 ((-767))) (-15 -2014 ((-767))) (-15 -2015 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -2016 ((-546) |#1|)) (-15 -2017 ((-546) |#1|)) (-15 -2018 ((-767) (-767))) (-15 -2018 ((-767)))) |%noBranch|))
+((-2019 (((-637 (-546)) (-546)) 60)) (-4138 (((-112) (-168 (-546))) 64)) (-4147 (((-405 (-168 (-546))) (-168 (-546))) 59)))
+(((-446) (-10 -7 (-15 -4147 ((-405 (-168 (-546))) (-168 (-546)))) (-15 -2019 ((-637 (-546)) (-546))) (-15 -4138 ((-112) (-168 (-546)))))) (T -446))
+((-4138 (*1 *2 *3) (-12 (-5 *3 (-168 (-546))) (-5 *2 (-112)) (-5 *1 (-446)))) (-2019 (*1 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-446)) (-5 *3 (-546)))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 (-168 (-546)))) (-5 *1 (-446)) (-5 *3 (-168 (-546))))))
+(-10 -7 (-15 -4147 ((-405 (-168 (-546))) (-168 (-546)))) (-15 -2019 ((-637 (-546)) (-546))) (-15 -4138 ((-112) (-168 (-546)))))
+((-3336 ((|#4| |#4| (-637 |#4|)) 20 (|has| |#1| (-363)))) (-2381 (((-637 |#4|) (-637 |#4|) (-1151) (-1151)) 41) (((-637 |#4|) (-637 |#4|) (-1151)) 40) (((-637 |#4|) (-637 |#4|)) 33)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-637 |#4|) (-637 |#4|))) (-15 -2381 ((-637 |#4|) (-637 |#4|) (-1151))) (-15 -2381 ((-637 |#4|) (-637 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -3336 (|#4| |#4| (-637 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -447))
+((-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2)))) (-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2381 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2381 ((-637 |#4|) (-637 |#4|))) (-15 -2381 ((-637 |#4|) (-637 |#4|) (-1151))) (-15 -2381 ((-637 |#4|) (-637 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -3336 (|#4| |#4| (-637 |#4|))) |%noBranch|))
+((-2020 ((|#4| |#4| (-637 |#4|)) 60)) (-2021 (((-637 |#4|) (-637 |#4|) (-1151) (-1151)) 17) (((-637 |#4|) (-637 |#4|) (-1151)) 16) (((-637 |#4|) (-637 |#4|)) 11)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2020 (|#4| |#4| (-637 |#4|))) (-15 -2021 ((-637 |#4|) (-637 |#4|))) (-15 -2021 ((-637 |#4|) (-637 |#4|) (-1151))) (-15 -2021 ((-637 |#4|) (-637 |#4|) (-1151) (-1151)))) (-307) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -448))
+((-2021 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2020 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2020 (|#4| |#4| (-637 |#4|))) (-15 -2021 ((-637 |#4|) (-637 |#4|))) (-15 -2021 ((-637 |#4|) (-637 |#4|) (-1151))) (-15 -2021 ((-637 |#4|) (-637 |#4|) (-1151) (-1151))))
+((-2023 (((-637 (-637 |#4|)) (-637 |#4|) (-112)) 72) (((-637 (-637 |#4|)) (-637 |#4|)) 71) (((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|) (-112)) 65) (((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|)) 66)) (-2022 (((-637 (-637 |#4|)) (-637 |#4|) (-112)) 41) (((-637 (-637 |#4|)) (-637 |#4|)) 62)))
+(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2022 ((-637 (-637 |#4|)) (-637 |#4|))) (-15 -2022 ((-637 (-637 |#4|)) (-637 |#4|) (-112))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|) (-112))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -449))
+((-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-637 *8)))) (-2023 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-2023 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-637 *8)))) (-2023 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-2022 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-637 *8)))) (-2022 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(-10 -7 (-15 -2022 ((-637 (-637 |#4|)) (-637 |#4|))) (-15 -2022 ((-637 (-637 |#4|)) (-637 |#4|) (-112))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-637 |#4|) (-112))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|))) (-15 -2023 ((-637 (-637 |#4|)) (-637 |#4|) (-112))))
+((-2047 (((-767) |#4|) 12)) (-2035 (((-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|))) |#4| (-767) (-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|)))) 31)) (-2037 (((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2036 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2025 ((|#4| |#4| (-637 |#4|)) 39)) (-2033 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-637 |#4|)) 69)) (-2040 (((-1262) |#4|) 41)) (-2043 (((-1262) (-637 |#4|)) 50)) (-2041 (((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546)) 47)) (-2044 (((-1262) (-546)) 78)) (-2038 (((-637 |#4|) (-637 |#4|)) 76)) (-2046 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|)) |#4| (-767)) 25)) (-2039 (((-546) |#4|) 77)) (-2034 ((|#4| |#4|) 29)) (-2026 (((-637 |#4|) (-637 |#4|) (-546) (-546)) 55)) (-2042 (((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546) (-546)) 88)) (-2045 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2027 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2032 (((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2031 (((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2028 (((-112) |#2| |#2|) 56)) (-2030 (((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2029 (((-112) |#2| |#2| |#2| |#2|) 59)) (-2024 ((|#4| |#4| (-637 |#4|)) 70)))
+(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2024 (|#4| |#4| (-637 |#4|))) (-15 -2025 (|#4| |#4| (-637 |#4|))) (-15 -2026 ((-637 |#4|) (-637 |#4|) (-546) (-546))) (-15 -2027 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2028 ((-112) |#2| |#2|)) (-15 -2029 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2030 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2032 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2033 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-637 |#4|))) (-15 -2034 (|#4| |#4|)) (-15 -2035 ((-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|))) |#4| (-767) (-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|))))) (-15 -2036 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2037 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2038 ((-637 |#4|) (-637 |#4|))) (-15 -2039 ((-546) |#4|)) (-15 -2040 ((-1262) |#4|)) (-15 -2041 ((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546))) (-15 -2042 ((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546) (-546))) (-15 -2043 ((-1262) (-637 |#4|))) (-15 -2044 ((-1262) (-546))) (-15 -2045 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2046 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|)) |#4| (-767))) (-15 -2047 ((-767) |#4|))) (-452) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -450))
+((-2047 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -2161 *4))) (-5 *5 (-767)) (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-450 *6 *7 *8 *4)))) (-2045 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-546)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-450 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2042 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-450 *5 *6 *7 *4)))) (-2041 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-450 *5 *6 *7 *4)))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-546)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-637 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-450 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-2035 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 *3)))) (-5 *4 (-767)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-450 *5 *6 *7 *3)))) (-2034 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-450 *5 *6 *7 *3)))) (-2032 (*1 *2 *3 *2) (-12 (-5 *2 (-637 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-450 *4 *3 *5 *6)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-637 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2030 (*1 *2 *3 *2) (-12 (-5 *2 (-637 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *3)))) (-2029 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2028 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2026 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-546)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2024 (|#4| |#4| (-637 |#4|))) (-15 -2025 (|#4| |#4| (-637 |#4|))) (-15 -2026 ((-637 |#4|) (-637 |#4|) (-546) (-546))) (-15 -2027 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2028 ((-112) |#2| |#2|)) (-15 -2029 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2030 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2032 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2033 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-637 |#4|))) (-15 -2034 (|#4| |#4|)) (-15 -2035 ((-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|))) |#4| (-767) (-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|))))) (-15 -2036 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2037 ((-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-637 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2038 ((-637 |#4|) (-637 |#4|))) (-15 -2039 ((-546) |#4|)) (-15 -2040 ((-1262) |#4|)) (-15 -2041 ((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546))) (-15 -2042 ((-546) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-546) (-546) (-546) (-546))) (-15 -2043 ((-1262) (-637 |#4|))) (-15 -2044 ((-1262) (-546))) (-15 -2045 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2046 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -2161 |#4|)) |#4| (-767))) (-15 -2047 ((-767) |#4|)))
+((-2048 (($ $ $) 14) (($ (-637 $)) 21)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 41)) (-3552 (($ $ $) NIL) (($ (-637 $)) 22)))
+(((-451 |#1|) (-10 -8 (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2048 (|#1| (-637 |#1|))) (-15 -2048 (|#1| |#1| |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|))) (-452)) (T -451))
+NIL
+(-10 -8 (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2048 (|#1| (-637 |#1|))) (-15 -2048 (|#1| |#1| |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -3552 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3872 (((-3 $ "failed") $ $) 43)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-452) (-140)) (T -452))
-((-3551 (*1 *1 *1 *1) (-4 *1 (-452))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-3517 (*1 *1 *1 *1) (-4 *1 (-452))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-2103 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452)))))
-(-13 (-555) (-10 -8 (-15 -3551 ($ $ $)) (-15 -3551 ($ (-640 $))) (-15 -3517 ($ $ $)) (-15 -3517 ($ (-640 $))) (-15 -2103 ((-1165 $) (-1165 $) (-1165 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3245 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3749 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-1257 (-684 (-407 (-948 |#1|))))) NIL)) (-4039 (((-1257 $)) NIL)) (-2569 (($) NIL T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL)) (-1914 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3410 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-4017 (((-407 (-948 |#1|)) $) NIL)) (-3386 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-3342 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2214 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 84 (|has| |#1| (-555)))) (-3376 (($ $ (-917)) NIL)) (-3995 (((-407 (-948 |#1|)) $) NIL)) (-1938 (((-1165 (-407 (-948 |#1|))) $) 82 (|has| (-407 (-948 |#1|)) (-555)))) (-3436 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-3973 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-3912 (((-112)) NIL)) (-3458 (($ (-1257 (-407 (-948 |#1|))) (-1257 $)) 103) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-3951 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2521 (((-917)) NIL)) (-3879 (((-112)) NIL)) (-3617 (($ $ (-917)) NIL)) (-3843 (((-112)) NIL)) (-3825 (((-112)) NIL)) (-3861 (((-112)) NIL)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL)) (-1927 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3422 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-4028 (((-407 (-948 |#1|)) $) NIL)) (-3398 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-3353 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2267 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 83 (|has| |#1| (-555)))) (-3364 (($ $ (-917)) NIL)) (-4007 (((-407 (-948 |#1|)) $) NIL)) (-3801 (((-1165 (-407 (-948 |#1|))) $) 77 (|has| (-407 (-948 |#1|)) (-555)))) (-3447 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-3984 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-3923 (((-112)) NIL)) (-3854 (((-1151) $) NIL)) (-3832 (((-112)) NIL)) (-3852 (((-112)) NIL)) (-3868 (((-112)) NIL)) (-1693 (((-1113) $) NIL)) (-2144 (((-407 (-948 |#1|)) $ $) 71 (|has| |#1| (-555)))) (-2192 (((-407 (-948 |#1|)) $) 93 (|has| |#1| (-555)))) (-2180 (((-407 (-948 |#1|)) $) 95 (|has| |#1| (-555)))) (-2203 (((-1165 (-407 (-948 |#1|))) $) 88 (|has| |#1| (-555)))) (-2133 (((-407 (-948 |#1|))) 72 (|has| |#1| (-555)))) (-2165 (((-407 (-948 |#1|)) $ $) 64 (|has| |#1| (-555)))) (-2244 (((-407 (-948 |#1|)) $) 92 (|has| |#1| (-555)))) (-2228 (((-407 (-948 |#1|)) $) 94 (|has| |#1| (-555)))) (-2257 (((-1165 (-407 (-948 |#1|))) $) 87 (|has| |#1| (-555)))) (-2154 (((-407 (-948 |#1|))) 68 (|has| |#1| (-555)))) (-2277 (($) 101) (($ (-1169)) 107) (($ (-1257 (-1169))) 106) (($ (-1257 $)) 96) (($ (-1169) (-1257 $)) 105) (($ (-1257 (-1169)) (-1257 $)) 104)) (-3900 (((-112)) NIL)) (-2308 (((-407 (-948 |#1|)) $ (-563)) NIL)) (-3759 (((-1257 (-407 (-948 |#1|))) $ (-1257 $)) 98) (((-684 (-407 (-948 |#1|))) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 (-948 |#1|))) $) 40) (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL)) (-2219 (((-1257 (-407 (-948 |#1|))) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) 37)) (-2122 (((-640 (-948 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-640 (-948 (-407 (-948 |#1|))))) NIL) (((-640 (-948 |#1|)) (-1257 $)) 99 (|has| |#1| (-555))) (((-640 (-948 |#1|))) 100 (|has| |#1| (-555)))) (-1745 (($ $ $) NIL)) (-3963 (((-112)) NIL)) (-1692 (((-858) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-4013 (((-1257 $)) 60)) (-3813 (((-640 (-1257 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1756 (($ $ $ $) NIL)) (-3942 (((-112)) NIL)) (-3727 (($ (-684 (-407 (-948 |#1|))) $) NIL)) (-1729 (($ $ $) NIL)) (-3952 (((-112)) NIL)) (-3933 (((-112)) NIL)) (-3891 (((-112)) NIL)) (-2239 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) 97)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 56) (($ $ (-407 (-948 |#1|))) NIL) (($ (-407 (-948 |#1|)) $) NIL) (($ (-1135 |#2| (-407 (-948 |#1|))) $) NIL)))
-(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -1692 ($ (-1257 (-407 (-948 |#1|))))) (-15 -2299 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -2288 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -2277 ($)) (-15 -2277 ($ (-1169))) (-15 -2277 ($ (-1257 (-1169)))) (-15 -2277 ($ (-1257 $))) (-15 -2277 ($ (-1169) (-1257 $))) (-15 -2277 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -2267 ((-1165 (-407 (-948 |#1|))))) (-15 -2257 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2244 ((-407 (-948 |#1|)) $)) (-15 -2228 ((-407 (-948 |#1|)) $)) (-15 -2214 ((-1165 (-407 (-948 |#1|))))) (-15 -2203 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2192 ((-407 (-948 |#1|)) $)) (-15 -2180 ((-407 (-948 |#1|)) $)) (-15 -2165 ((-407 (-948 |#1|)) $ $)) (-15 -2154 ((-407 (-948 |#1|)))) (-15 -2144 ((-407 (-948 |#1|)) $ $)) (-15 -2133 ((-407 (-948 |#1|)))) (-15 -2122 ((-640 (-948 |#1|)) (-1257 $))) (-15 -2122 ((-640 (-948 |#1|))))) |%noBranch|))) (-172) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -453))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) (-2299 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4013 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2288 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4013 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2277 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2))))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3))))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4))))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-2267 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2257 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2214 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2165 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2154 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2144 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2133 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-2122 (*1 *2) (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -1692 ($ (-1257 (-407 (-948 |#1|))))) (-15 -2299 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -2288 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed"))) (-15 -2277 ($)) (-15 -2277 ($ (-1169))) (-15 -2277 ($ (-1257 (-1169)))) (-15 -2277 ($ (-1257 $))) (-15 -2277 ($ (-1169) (-1257 $))) (-15 -2277 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -2267 ((-1165 (-407 (-948 |#1|))))) (-15 -2257 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2244 ((-407 (-948 |#1|)) $)) (-15 -2228 ((-407 (-948 |#1|)) $)) (-15 -2214 ((-1165 (-407 (-948 |#1|))))) (-15 -2203 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2192 ((-407 (-948 |#1|)) $)) (-15 -2180 ((-407 (-948 |#1|)) $)) (-15 -2165 ((-407 (-948 |#1|)) $ $)) (-15 -2154 ((-407 (-948 |#1|)))) (-15 -2144 ((-407 (-948 |#1|)) $ $)) (-15 -2133 ((-407 (-948 |#1|)))) (-15 -2122 ((-640 (-948 |#1|)) (-1257 $))) (-15 -2122 ((-640 (-948 |#1|))))) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 13)) (-2605 (((-640 (-860 |#1|)) $) 74)) (-2138 (((-1165 $) $ (-860 |#1|)) 46) (((-1165 |#2|) $) 117)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-3231 (($ $) NIL (|has| |#2| (-555)))) (-3211 (((-112) $) NIL (|has| |#2| (-555)))) (-3897 (((-767) $) 21) (((-767) $ (-640 (-860 |#1|))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL (|has| |#2| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) 44) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2057 ((|#2| $) 42) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-1612 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1373 (($ $ (-640 (-563))) 79)) (-2750 (($ $) 67)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#2| (-905)))) (-2159 (($ $ |#2| |#3| $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) 58)) (-2595 (($ (-1165 |#2|) (-860 |#1|)) 122) (($ (-1165 $) (-860 |#1|)) 52)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) 59)) (-2587 (($ |#2| |#3|) 28) (($ $ (-860 |#1|) (-767)) 30) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-860 |#1|)) NIL)) (-3908 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 50) (((-640 (-767)) $ (-640 (-860 |#1|))) 57)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2170 (($ (-1 |#3| |#3|) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-1698 (((-3 (-860 |#1|) "failed") $) 39)) (-2715 (($ $) NIL)) (-2725 ((|#2| $) 41)) (-3517 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3311 (-767))) "failed") $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) 40)) (-2705 ((|#2| $) 115)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) 127 (|has| |#2| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) 86) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) 89) (($ $ (-860 |#1|) $) 84) (($ $ (-640 (-860 |#1|)) (-640 $)) 105)) (-1623 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4203 (($ $ (-860 |#1|)) 53) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-3871 ((|#3| $) 66) (((-767) $ (-860 |#1|)) 37) (((-640 (-767)) $ (-640 (-860 |#1|))) 56)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#2| $) 124 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1692 (((-858) $) 144) (($ (-563)) NIL) (($ |#2|) 85) (($ (-860 |#1|)) 31) (($ (-407 (-563))) NIL (-4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2239 (($) 17 T CONST)) (-2253 (($) 25 T CONST)) (-3213 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ |#2|) 64 (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 110)) (** (($ $ (-917)) NIL) (($ $ (-767)) 108)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 29) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-454 |#1| |#2| |#3|) (-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045) (-238 (-3610 |#1|) (-767))) (T -454))
-((-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-3610 *3) (-767))))))
-(-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563))))))
-((-2341 (((-112) |#1| (-640 |#2|)) 68)) (-2321 (((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|)) 77)) (-2330 (((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|))) 79)) (-4219 ((|#2| |#2| |#1|) 28)) (-2311 (((-767) |#2| (-640 |#2|)) 20)))
-(((-455 |#1| |#2|) (-10 -7 (-15 -4219 (|#2| |#2| |#1|)) (-15 -2311 ((-767) |#2| (-640 |#2|))) (-15 -2321 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -2330 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -2341 ((-112) |#1| (-640 |#2|)))) (-307) (-1233 |#1|)) (T -455))
-((-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-2330 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307)) (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4)))) (-2321 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4)) (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-4219 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3)))))
-(-10 -7 (-15 -4219 (|#2| |#2| |#1|)) (-15 -2311 ((-767) |#2| (-640 |#2|))) (-15 -2321 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -2330 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -2341 ((-112) |#1| (-640 |#2|))))
-((-2173 (((-418 |#5|) |#5|) 24)))
-(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2173 ((-418 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169))))) (-789) (-555) (-555) (-945 |#4| |#2| |#1|)) (T -456))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555)) (-4 *3 (-945 *7 *5 *4)))))
-(-10 -7 (-15 -2173 ((-418 |#5|) |#5|)))
-((-2027 ((|#3|) 34)) (-2103 (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 30)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2103 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2027 (|#3|))) (-789) (-846) (-905) (-945 |#3| |#1| |#2|)) (T -457))
-((-2027 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2103 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2103 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2027 (|#3|)))
-((-2173 (((-418 (-1165 |#1|)) (-1165 |#1|)) 43)))
-(((-458 |#1|) (-10 -7 (-15 -2173 ((-418 (-1165 |#1|)) (-1165 |#1|)))) (-307)) (T -458))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1165 *4)))))
-(-10 -7 (-15 -2173 ((-418 (-1165 |#1|)) (-1165 |#1|))))
-((-2651 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767))) 42) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767))) 41) (((-52) |#2| (-1169) (-294 |#2|)) 35) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 28)) (-3049 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 80) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 79) (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 78) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 77) (((-52) |#2| (-1169) (-294 |#2|)) 72) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 71)) (-2669 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 66) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 64)) (-2659 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 48) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 47)))
-(((-459 |#1| |#2|) (-10 -7 (-15 -2651 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -2651 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -2651 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -2651 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -2659 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -2659 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -2669 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -2669 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3049 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3049 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3049 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -459))
-((-3049 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3049 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3049 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-2669 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2669 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2659 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2651 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))))
-(-10 -7 (-15 -2651 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -2651 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -2651 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -2651 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -2659 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -2659 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -2669 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -2669 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3049 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3049 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3049 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3049 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))))
-((-4219 ((|#2| |#2| |#1|) 15)) (-2361 (((-640 |#2|) |#2| (-640 |#2|) |#1| (-917)) 68)) (-2352 (((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917)) 59)))
-(((-460 |#1| |#2|) (-10 -7 (-15 -2352 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -2361 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -4219 (|#2| |#2| |#1|))) (-307) (-1233 |#1|)) (T -460))
-((-4219 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3)))) (-2361 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2352 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5)) (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3)))))
-(-10 -7 (-15 -2352 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -2361 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -4219 (|#2| |#2| |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 28)) (-2392 (($ |#3|) 25)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) 32)) (-2371 (($ |#2| |#4| $) 33)) (-2587 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-2715 (((-709 |#3| |#4| |#5|) $) 15)) (-2394 ((|#3| $) 19)) (-2405 ((|#4| $) 17)) (-2725 ((|#2| $) 29)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2383 (($ |#2| |#3| |#4|) 26)) (-2239 (($) 36 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2725 (|#2| $)) (-15 -2715 ((-709 |#3| |#4| |#5|) $)) (-15 -2405 (|#4| $)) (-15 -2394 (|#3| $)) (-15 -2750 ($ $)) (-15 -2587 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -2392 ($ |#3|)) (-15 -2383 ($ |#2| |#3| |#4|)) (-15 -2371 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-640 (-1169)) (-172) (-846) (-238 (-3610 |#1|) (-767)) (-1 (-112) (-2 (|:| -2552 |#3|) (|:| -3311 |#4|)) (-2 (|:| -2552 |#3|) (|:| -3311 |#4|))) (-945 |#2| |#4| (-860 |#1|))) (T -461))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-3610 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6)) (-2 (|:| -2552 *5) (|:| -3311 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-945 *4 *6 (-860 *3))))) (-2725 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-3610 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *4) (|:| -3311 *5)) (-2 (|:| -2552 *4) (|:| -3311 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *2 *5 (-860 *3))))) (-2715 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-3610 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6)) (-2 (|:| -2552 *5) (|:| -3311 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) (-2405 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *2)) (-2 (|:| -2552 *5) (|:| -3311 *2)))) (-4 *2 (-238 (-3610 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))) (-2394 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-3610 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *5)) (-2 (|:| -2552 *2) (|:| -3311 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-2750 (*1 *1 *1) (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172)) (-4 *5 (-238 (-3610 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *4) (|:| -3311 *5)) (-2 (|:| -2552 *4) (|:| -3311 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *3 *5 (-860 *2))))) (-2587 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-3610 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6)) (-2 (|:| -2552 *5) (|:| -3311 *6)))) (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) (-2392 (*1 *1 *2) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-3610 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *5)) (-2 (|:| -2552 *2) (|:| -3311 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-2383 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172)) (-4 *4 (-238 (-3610 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *3) (|:| -3311 *4)) (-2 (|:| -2552 *3) (|:| -3311 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-945 *2 *4 (-860 *5))))) (-2371 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-4 *3 (-238 (-3610 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *3)) (-2 (|:| -2552 *5) (|:| -3311 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *2 *3 (-860 *4))))))
-(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2725 (|#2| $)) (-15 -2715 ((-709 |#3| |#4| |#5|) $)) (-15 -2405 (|#4| $)) (-15 -2394 (|#3| $)) (-15 -2750 ($ $)) (-15 -2587 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -2392 ($ |#3|)) (-15 -2383 ($ |#2| |#3| |#4|)) (-15 -2371 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2416 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2416 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -1692 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2153 (|#4| $))))) (T -462))
-((-2416 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))))
-(-10 -7 (-15 -2416 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-2605 (((-640 |#3|) $) 41)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) NIL (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-3418 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 48)) (-2057 (($ (-640 |#4|)) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-2658 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-3354 ((|#3| $) 46)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#4|) $) 14 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4347 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 21)) (-3568 (((-640 |#3|) $) NIL)) (-3553 (((-112) |#3| $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1693 (((-1113) $) NIL)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 39)) (-3445 (($) 17)) (-1708 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) 16)) (-2219 (((-536) $) NIL (|has| |#4| (-611 (-536)))) (($ (-640 |#4|)) 50)) (-1706 (($ (-640 |#4|)) 13)) (-3519 (($ $ |#3|) NIL)) (-3542 (($ $ |#3|) NIL)) (-3529 (($ $ |#3|) NIL)) (-1692 (((-858) $) 38) (((-640 |#4|) $) 49)) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 30)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2219 ($ (-640 |#4|))) (-6 -4408) (-6 -4409))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463))
-((-2219 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))))
-(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2219 ($ (-640 |#4|))) (-6 -4408) (-6 -4409)))
-((-2239 (($) 11)) (-2253 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2253 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2239 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
-NIL
-(-10 -8 (-15 -2253 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2239 (|#1|)))
-((-1677 (((-112) $ $) 7)) (-2130 (((-3 |#1| "failed") $) 26)) (-2057 ((|#1| $) 27)) (-3846 (($ $ $) 23)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3871 ((|#2| $) 19)) (-1692 (((-858) $) 11) (($ |#1|) 25)) (-2239 (($) 18 T CONST)) (-2253 (($) 24 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 15) (($ $ $) 13)) (-1813 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3552 (*1 *1 *1 *1) (-4 *1 (-452))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-452)))) (-2048 (*1 *1 *1 *1) (-4 *1 (-452))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-452)))) (-3097 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-452)))))
+(-13 (-556) (-10 -8 (-15 -3552 ($ $ $)) (-15 -3552 ($ (-637 $))) (-15 -2048 ($ $ $)) (-15 -2048 ($ (-637 $))) (-15 -3097 ((-1163 $) (-1163 $) (-1163 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1927 (((-3 $ #1="failed")) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3631 (((-1256 (-684 (-407 (-942 |#1|)))) (-1256 $)) NIL) (((-1256 (-684 (-407 (-942 |#1|))))) NIL)) (-1880 (((-1256 $)) NIL)) (-4139 (($) NIL T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed")) NIL)) (-1854 (((-3 $ #1#)) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-1942 (((-684 (-407 (-942 |#1|))) (-1256 $)) NIL) (((-684 (-407 (-942 |#1|)))) NIL)) (-1878 (((-407 (-942 |#1|)) $) NIL)) (-1940 (((-684 (-407 (-942 |#1|))) $ (-1256 $)) NIL) (((-684 (-407 (-942 |#1|))) $) NIL)) (-2546 (((-3 $ #1#) $) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-2057 (((-1163 (-942 (-407 (-942 |#1|))))) NIL (|has| (-407 (-942 |#1|)) (-363))) (((-1163 (-407 (-942 |#1|)))) 84 (|has| |#1| (-556)))) (-2549 (($ $ (-915)) NIL)) (-1876 (((-407 (-942 |#1|)) $) NIL)) (-1856 (((-1163 (-407 (-942 |#1|))) $) 82 (|has| (-407 (-942 |#1|)) (-556)))) (-1944 (((-407 (-942 |#1|)) (-1256 $)) NIL) (((-407 (-942 |#1|))) NIL)) (-1874 (((-1163 (-407 (-942 |#1|))) $) NIL)) (-1868 (((-112)) NIL)) (-1946 (($ (-1256 (-407 (-942 |#1|))) (-1256 $)) 103) (($ (-1256 (-407 (-942 |#1|)))) NIL)) (-3873 (((-3 $ #1#) $) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-3501 (((-915)) NIL)) (-1865 (((-112)) NIL)) (-2573 (($ $ (-915)) NIL)) (-1861 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed")) NIL)) (-1855 (((-3 $ #1#)) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-1943 (((-684 (-407 (-942 |#1|))) (-1256 $)) NIL) (((-684 (-407 (-942 |#1|)))) NIL)) (-1879 (((-407 (-942 |#1|)) $) NIL)) (-1941 (((-684 (-407 (-942 |#1|))) $ (-1256 $)) NIL) (((-684 (-407 (-942 |#1|))) $) NIL)) (-2547 (((-3 $ #1#) $) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-2061 (((-1163 (-942 (-407 (-942 |#1|))))) NIL (|has| (-407 (-942 |#1|)) (-363))) (((-1163 (-407 (-942 |#1|)))) 83 (|has| |#1| (-556)))) (-2548 (($ $ (-915)) NIL)) (-1877 (((-407 (-942 |#1|)) $) NIL)) (-1857 (((-1163 (-407 (-942 |#1|))) $) 77 (|has| (-407 (-942 |#1|)) (-556)))) (-1945 (((-407 (-942 |#1|)) (-1256 $)) NIL) (((-407 (-942 |#1|))) NIL)) (-1875 (((-1163 (-407 (-942 |#1|))) $) NIL)) (-1869 (((-112)) NIL)) (-3650 (((-1151) $) NIL)) (-1860 (((-112)) NIL)) (-1862 (((-112)) NIL)) (-1864 (((-112)) NIL)) (-3651 (((-1113) $) NIL)) (-2051 (((-407 (-942 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-2055 (((-407 (-942 |#1|)) $) 93 (|has| |#1| (-556)))) (-2054 (((-407 (-942 |#1|)) $) 95 (|has| |#1| (-556)))) (-2056 (((-1163 (-407 (-942 |#1|))) $) 88 (|has| |#1| (-556)))) (-2050 (((-407 (-942 |#1|))) 72 (|has| |#1| (-556)))) (-2053 (((-407 (-942 |#1|)) $ $) 64 (|has| |#1| (-556)))) (-2059 (((-407 (-942 |#1|)) $) 92 (|has| |#1| (-556)))) (-2058 (((-407 (-942 |#1|)) $) 94 (|has| |#1| (-556)))) (-2060 (((-1163 (-407 (-942 |#1|))) $) 87 (|has| |#1| (-556)))) (-2052 (((-407 (-942 |#1|))) 68 (|has| |#1| (-556)))) (-2062 (($) 101) (($ (-1169)) 107) (($ (-1256 (-1169))) 106) (($ (-1256 $)) 96) (($ (-1169) (-1256 $)) 105) (($ (-1256 (-1169)) (-1256 $)) 104)) (-1867 (((-112)) NIL)) (-4214 (((-407 (-942 |#1|)) $ (-546)) NIL)) (-3632 (((-1256 (-407 (-942 |#1|))) $ (-1256 $)) 98) (((-684 (-407 (-942 |#1|))) (-1256 $) (-1256 $)) NIL) (((-1256 (-407 (-942 |#1|))) $) 40) (((-684 (-407 (-942 |#1|))) (-1256 $)) NIL)) (-4385 (((-1256 (-407 (-942 |#1|))) $) NIL) (($ (-1256 (-407 (-942 |#1|)))) 37)) (-2049 (((-637 (-942 (-407 (-942 |#1|)))) (-1256 $)) NIL) (((-637 (-942 (-407 (-942 |#1|))))) NIL) (((-637 (-942 |#1|)) (-1256 $)) 99 (|has| |#1| (-556))) (((-637 (-942 |#1|))) 100 (|has| |#1| (-556)))) (-2735 (($ $ $) NIL)) (-1873 (((-112)) NIL)) (-4361 (((-859) $) NIL) (($ (-1256 (-407 (-942 |#1|)))) NIL)) (-2169 (((-1256 $)) 60)) (-1858 (((-637 (-1256 (-407 (-942 |#1|))))) NIL (|has| (-407 (-942 |#1|)) (-556)))) (-2736 (($ $ $ $) NIL)) (-1871 (((-112)) NIL)) (-2933 (($ (-684 (-407 (-942 |#1|))) $) NIL)) (-2734 (($ $ $) NIL)) (-1872 (((-112)) NIL)) (-1870 (((-112)) NIL)) (-1866 (((-112)) NIL)) (-3047 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) 97)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 56) (($ $ (-407 (-942 |#1|))) NIL) (($ (-407 (-942 |#1|)) $) NIL) (($ (-1135 |#2| (-407 (-942 |#1|))) $) NIL)))
+(((-453 |#1| |#2| |#3| |#4|) (-13 (-418 (-407 (-942 |#1|))) (-643 (-1135 |#2| (-407 (-942 |#1|)))) (-10 -8 (-15 -4361 ($ (-1256 (-407 (-942 |#1|))))) (-15 -2064 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -2063 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -2062 ($)) (-15 -2062 ($ (-1169))) (-15 -2062 ($ (-1256 (-1169)))) (-15 -2062 ($ (-1256 $))) (-15 -2062 ($ (-1169) (-1256 $))) (-15 -2062 ($ (-1256 (-1169)) (-1256 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -2061 ((-1163 (-407 (-942 |#1|))))) (-15 -2060 ((-1163 (-407 (-942 |#1|))) $)) (-15 -2059 ((-407 (-942 |#1|)) $)) (-15 -2058 ((-407 (-942 |#1|)) $)) (-15 -2057 ((-1163 (-407 (-942 |#1|))))) (-15 -2056 ((-1163 (-407 (-942 |#1|))) $)) (-15 -2055 ((-407 (-942 |#1|)) $)) (-15 -2054 ((-407 (-942 |#1|)) $)) (-15 -2053 ((-407 (-942 |#1|)) $ $)) (-15 -2052 ((-407 (-942 |#1|)))) (-15 -2051 ((-407 (-942 |#1|)) $ $)) (-15 -2050 ((-407 (-942 |#1|)))) (-15 -2049 ((-637 (-942 |#1|)) (-1256 $))) (-15 -2049 ((-637 (-942 |#1|))))) |%noBranch|))) (-172) (-915) (-637 (-1169)) (-1256 (-684 |#1|))) (T -453))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1256 (-407 (-942 *3)))) (-4 *3 (-172)) (-14 *6 (-1256 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))))) (-2064 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2169 (-637 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2063 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2169 (-637 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2062 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-915)) (-14 *4 (-637 (-1169))) (-14 *5 (-1256 (-684 *2))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 *2)) (-14 *6 (-1256 (-684 *3))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1256 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1256 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2062 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-915)) (-14 *6 (-637 *2)) (-14 *7 (-1256 (-684 *4))))) (-2062 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 (-1169))) (-5 *3 (-1256 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-915)) (-14 *6 (-637 (-1169))) (-14 *7 (-1256 (-684 *4))))) (-2061 (*1 *2) (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2057 (*1 *2) (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2053 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2052 (*1 *2) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2051 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2050 (*1 *2) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1256 (-453 *4 *5 *6 *7))) (-5 *2 (-637 (-942 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-915)) (-14 *6 (-637 (-1169))) (-14 *7 (-1256 (-684 *4))))) (-2049 (*1 *2) (-12 (-5 *2 (-637 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))))
+(-13 (-418 (-407 (-942 |#1|))) (-643 (-1135 |#2| (-407 (-942 |#1|)))) (-10 -8 (-15 -4361 ($ (-1256 (-407 (-942 |#1|))))) (-15 -2064 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -2063 ((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) "failed"))) (-15 -2062 ($)) (-15 -2062 ($ (-1169))) (-15 -2062 ($ (-1256 (-1169)))) (-15 -2062 ($ (-1256 $))) (-15 -2062 ($ (-1169) (-1256 $))) (-15 -2062 ($ (-1256 (-1169)) (-1256 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -2061 ((-1163 (-407 (-942 |#1|))))) (-15 -2060 ((-1163 (-407 (-942 |#1|))) $)) (-15 -2059 ((-407 (-942 |#1|)) $)) (-15 -2058 ((-407 (-942 |#1|)) $)) (-15 -2057 ((-1163 (-407 (-942 |#1|))))) (-15 -2056 ((-1163 (-407 (-942 |#1|))) $)) (-15 -2055 ((-407 (-942 |#1|)) $)) (-15 -2054 ((-407 (-942 |#1|)) $)) (-15 -2053 ((-407 (-942 |#1|)) $ $)) (-15 -2052 ((-407 (-942 |#1|)))) (-15 -2051 ((-407 (-942 |#1|)) $ $)) (-15 -2050 ((-407 (-942 |#1|)))) (-15 -2049 ((-637 (-942 |#1|)) (-1256 $))) (-15 -2049 ((-637 (-942 |#1|))))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 13)) (-3474 (((-637 (-860 |#1|)) $) 74)) (-3476 (((-1163 $) $ (-860 |#1|)) 46) (((-1163 |#2|) $) 117)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-2220 (($ $) NIL (|has| |#2| (-556)))) (-2218 (((-112) $) NIL (|has| |#2| (-556)))) (-3208 (((-767) $) 21) (((-767) $ (-637 (-860 |#1|))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL (|has| |#2| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) 44) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-860 |#1|) #2#) $) NIL)) (-3564 ((|#2| $) 42) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-860 |#1|) $) NIL)) (-4171 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2094 (($ $ (-637 (-546))) 79)) (-4374 (($ $) 67)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#2| (-906)))) (-1756 (($ $ |#2| |#3| $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) 58)) (-3477 (($ (-1163 |#2|) (-860 |#1|)) 122) (($ (-1163 $) (-860 |#1|)) 52)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) 59)) (-3283 (($ |#2| |#3|) 28) (($ $ (-860 |#1|) (-767)) 30) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-860 |#1|)) NIL)) (-3209 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 50) (((-637 (-767)) $ (-637 (-860 |#1|))) 57)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-1757 (($ (-1 |#3| |#3|) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-3475 (((-3 (-860 |#1|) #3="failed") $) 39)) (-3284 (($ $) NIL)) (-3582 ((|#2| $) 41)) (-2048 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2543 (-767))) #3#) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) 40)) (-1950 ((|#2| $) 115)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) 127 (|has| |#2| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-906)))) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-860 |#1|) |#2|) 86) (($ $ (-637 (-860 |#1|)) (-637 |#2|)) 89) (($ $ (-860 |#1|) $) 84) (($ $ (-637 (-860 |#1|)) (-637 $)) 105)) (-4172 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4225 (($ $ (-860 |#1|)) 53) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4363 ((|#3| $) 66) (((-767) $ (-860 |#1|)) 37) (((-637 (-767)) $ (-637 (-860 |#1|))) 56)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-860 |#1|) (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#2| $) 124 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4361 (((-859) $) 144) (($ (-546)) NIL) (($ |#2|) 85) (($ (-860 |#1|)) 31) (($ (-407 (-546))) NIL (-3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#2| (-556)))) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#2| (-556)))) (-3047 (($) 17 T CONST)) (-3053 (($) 25 T CONST)) (-3058 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ |#2|) 64 (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 110)) (** (($ $ (-915)) NIL) (($ $ (-767)) 108)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 29) (($ $ (-407 (-546))) NIL (|has| |#2| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#2| (-38 (-407 (-546))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-454 |#1| |#2| |#3|) (-13 (-946 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546)))))) (-637 (-1169)) (-1045) (-238 (-4372 |#1|) (-767))) (T -454))
+((-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-14 *3 (-637 (-1169))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-4372 *3) (-767))))))
+(-13 (-946 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546))))))
+((-2068 (((-112) |#1| (-637 |#2|)) 68)) (-2066 (((-3 (-1256 (-637 |#2|)) "failed") (-767) |#1| (-637 |#2|)) 77)) (-2067 (((-3 (-637 |#2|) "failed") |#2| |#1| (-1256 (-637 |#2|))) 79)) (-2194 ((|#2| |#2| |#1|) 28)) (-2065 (((-767) |#2| (-637 |#2|)) 20)))
+(((-455 |#1| |#2|) (-10 -7 (-15 -2194 (|#2| |#2| |#1|)) (-15 -2065 ((-767) |#2| (-637 |#2|))) (-15 -2066 ((-3 (-1256 (-637 |#2|)) "failed") (-767) |#1| (-637 |#2|))) (-15 -2067 ((-3 (-637 |#2|) "failed") |#2| |#1| (-1256 (-637 |#2|)))) (-15 -2068 ((-112) |#1| (-637 |#2|)))) (-307) (-1232 |#1|)) (T -455))
+((-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1256 (-637 *3))) (-4 *4 (-307)) (-5 *2 (-637 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1232 *4)))) (-2066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1232 *4)) (-5 *2 (-1256 (-637 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-637 *6)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-2194 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1232 *3)))))
+(-10 -7 (-15 -2194 (|#2| |#2| |#1|)) (-15 -2065 ((-767) |#2| (-637 |#2|))) (-15 -2066 ((-3 (-1256 (-637 |#2|)) "failed") (-767) |#1| (-637 |#2|))) (-15 -2067 ((-3 (-637 |#2|) "failed") |#2| |#1| (-1256 (-637 |#2|)))) (-15 -2068 ((-112) |#1| (-637 |#2|))))
+((-4147 (((-405 |#5|) |#5|) 24)))
+(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4147 ((-405 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))) (-789) (-556) (-556) (-946 |#4| |#2| |#1|)) (T -456))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169)))))) (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-405 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4)))))
+(-10 -7 (-15 -4147 ((-405 |#5|) |#5|)))
+((-3089 ((|#3|) 34)) (-3097 (((-1163 |#4|) (-1163 |#4|) (-1163 |#4|)) 30)))
+(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3097 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3089 (|#3|))) (-789) (-846) (-906) (-946 |#3| |#1| |#2|)) (T -457))
+((-3089 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3097 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3097 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3089 (|#3|)))
+((-4147 (((-405 (-1163 |#1|)) (-1163 |#1|)) 43)))
+(((-458 |#1|) (-10 -7 (-15 -4147 ((-405 (-1163 |#1|)) (-1163 |#1|)))) (-307)) (T -458))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-405 (-1163 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1163 *4)))))
+(-10 -7 (-15 -4147 ((-405 (-1163 |#1|)) (-1163 |#1|))))
+((-4144 (((-51) |#2| (-1169) (-293 |#2|) (-1223 (-767))) 42) (((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-767))) 41) (((-51) |#2| (-1169) (-293 |#2|)) 35) (((-51) (-1 |#2| (-546)) (-293 |#2|)) 28)) (-4233 (((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546))) 80) (((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546))) 79) (((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546))) 78) (((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546))) 77) (((-51) |#2| (-1169) (-293 |#2|)) 72) (((-51) (-1 |#2| (-546)) (-293 |#2|)) 71)) (-4196 (((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546))) 66) (((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546))) 64)) (-4193 (((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546))) 48) (((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546))) 47)))
+(((-459 |#1| |#2|) (-10 -7 (-15 -4144 ((-51) (-1 |#2| (-546)) (-293 |#2|))) (-15 -4144 ((-51) |#2| (-1169) (-293 |#2|))) (-15 -4144 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-767)))) (-15 -4144 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-767)))) (-15 -4193 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546)))) (-15 -4193 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546)))) (-15 -4196 ((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4196 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4233 ((-51) (-1 |#2| (-546)) (-293 |#2|))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|))) (-15 -4233 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546)))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546)))) (-15 -4233 ((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546))))) (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -459))
+((-4233 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-407 (-546)))) (-5 *7 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *8))) (-4 *8 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *8 *3)))) (-4233 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-546)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-407 (-546)))) (-5 *6 (-407 (-546))) (-4 *8 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *7 *8)))) (-4233 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *7 *3)))) (-4233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-546))) (-4 *7 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *6 *7)))) (-4233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *6 *3)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-546))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *5 *6)))) (-4196 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-407 (-546)))) (-5 *7 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *8))) (-4 *8 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *8 *3)))) (-4196 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-546)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-407 (-546)))) (-5 *6 (-407 (-546))) (-4 *8 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *7 *8)))) (-4193 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *7 *3)))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-546))) (-4 *7 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *6 *7)))) (-4144 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-767))) (-4 *3 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *7 *3)))) (-4144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-767))) (-4 *7 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *6 *7)))) (-4144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *6 *3)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-546))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51)) (-5 *1 (-459 *5 *6)))))
+(-10 -7 (-15 -4144 ((-51) (-1 |#2| (-546)) (-293 |#2|))) (-15 -4144 ((-51) |#2| (-1169) (-293 |#2|))) (-15 -4144 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-767)))) (-15 -4144 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-767)))) (-15 -4193 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546)))) (-15 -4193 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546)))) (-15 -4196 ((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4196 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4233 ((-51) (-1 |#2| (-546)) (-293 |#2|))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|))) (-15 -4233 ((-51) (-1 |#2| (-546)) (-293 |#2|) (-1223 (-546)))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-546)))) (-15 -4233 ((-51) (-1 |#2| (-407 (-546))) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))) (-15 -4233 ((-51) |#2| (-1169) (-293 |#2|) (-1223 (-407 (-546))) (-407 (-546)))))
+((-2194 ((|#2| |#2| |#1|) 15)) (-2070 (((-637 |#2|) |#2| (-637 |#2|) |#1| (-915)) 68)) (-2069 (((-2 (|:| |plist| (-637 |#2|)) (|:| |modulo| |#1|)) |#2| (-637 |#2|) |#1| (-915)) 59)))
+(((-460 |#1| |#2|) (-10 -7 (-15 -2069 ((-2 (|:| |plist| (-637 |#2|)) (|:| |modulo| |#1|)) |#2| (-637 |#2|) |#1| (-915))) (-15 -2070 ((-637 |#2|) |#2| (-637 |#2|) |#1| (-915))) (-15 -2194 (|#2| |#2| |#1|))) (-307) (-1232 |#1|)) (T -460))
+((-2194 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1232 *3)))) (-2070 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-637 *3)) (-5 *5 (-915)) (-4 *3 (-1232 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2069 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-915)) (-4 *5 (-307)) (-4 *3 (-1232 *5)) (-5 *2 (-2 (|:| |plist| (-637 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-637 *3)))))
+(-10 -7 (-15 -2069 ((-2 (|:| |plist| (-637 |#2|)) (|:| |modulo| |#1|)) |#2| (-637 |#2|) |#1| (-915))) (-15 -2070 ((-637 |#2|) |#2| (-637 |#2|) |#1| (-915))) (-15 -2194 (|#2| |#2| |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 28)) (-4122 (($ |#3|) 25)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) 32)) (-2071 (($ |#2| |#4| $) 33)) (-3283 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-3284 (((-709 |#3| |#4| |#5|) $) 15)) (-2073 ((|#3| $) 19)) (-2074 ((|#4| $) 17)) (-3582 ((|#2| $) 29)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2072 (($ |#2| |#3| |#4|) 26)) (-3047 (($) 36 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 34)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3582 (|#2| $)) (-15 -3284 ((-709 |#3| |#4| |#5|) $)) (-15 -2074 (|#4| $)) (-15 -2073 (|#3| $)) (-15 -4374 ($ $)) (-15 -3283 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -4122 ($ |#3|)) (-15 -2072 ($ |#2| |#3| |#4|)) (-15 -2071 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-637 (-1169)) (-172) (-846) (-238 (-4372 |#1|) (-767)) (-1 (-112) (-2 (|:| -2542 |#3|) (|:| -2543 |#4|)) (-2 (|:| -2542 |#3|) (|:| -2543 |#4|))) (-946 |#2| |#4| (-860 |#1|))) (T -461))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-4372 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6)) (-2 (|:| -2542 *5) (|:| -2543 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-946 *4 *6 (-860 *3))))) (-3582 (*1 *2 *1) (-12 (-14 *3 (-637 (-1169))) (-4 *5 (-238 (-4372 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *4) (|:| -2543 *5)) (-2 (|:| -2542 *4) (|:| -2543 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-946 *2 *5 (-860 *3))))) (-3284 (*1 *2 *1) (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-4372 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6)) (-2 (|:| -2542 *5) (|:| -2543 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-946 *4 *6 (-860 *3))))) (-2074 (*1 *2 *1) (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *2)) (-2 (|:| -2542 *5) (|:| -2543 *2)))) (-4 *2 (-238 (-4372 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-946 *4 *2 (-860 *3))))) (-2073 (*1 *2 *1) (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-4372 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *5)) (-2 (|:| -2542 *2) (|:| -2543 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-946 *4 *5 (-860 *3))))) (-4374 (*1 *1 *1) (-12 (-14 *2 (-637 (-1169))) (-4 *3 (-172)) (-4 *5 (-238 (-4372 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *4) (|:| -2543 *5)) (-2 (|:| -2542 *4) (|:| -2543 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-946 *3 *5 (-860 *2))))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-4372 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6)) (-2 (|:| -2542 *5) (|:| -2543 *6)))) (-14 *4 (-637 (-1169))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-860 *4))))) (-4122 (*1 *1 *2) (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-4372 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *5)) (-2 (|:| -2542 *2) (|:| -2543 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-946 *4 *5 (-860 *3))))) (-2072 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-637 (-1169))) (-4 *2 (-172)) (-4 *4 (-238 (-4372 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *3) (|:| -2543 *4)) (-2 (|:| -2542 *3) (|:| -2543 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-946 *2 *4 (-860 *5))))) (-2071 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-637 (-1169))) (-4 *2 (-172)) (-4 *3 (-238 (-4372 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *3)) (-2 (|:| -2542 *5) (|:| -2543 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-946 *2 *3 (-860 *4))))))
+(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3582 (|#2| $)) (-15 -3284 ((-709 |#3| |#4| |#5|) $)) (-15 -2074 (|#4| $)) (-15 -2073 (|#3| $)) (-15 -4374 ($ $)) (-15 -3283 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -4122 ($ |#3|)) (-15 -2072 ($ |#2| |#3| |#4|)) (-15 -2071 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2075 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2075 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-556) (-946 |#3| |#1| |#2|) (-13 (-1034 (-407 (-546))) (-363) (-10 -8 (-15 -4361 ($ |#4|)) (-15 -3388 (|#4| $)) (-15 -3387 (|#4| $))))) (T -462))
+((-2075 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-546))) (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(-10 -7 (-15 -2075 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3474 (((-637 |#3|) $) 41)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) NIL (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-3290 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 48)) (-3564 (($ (-637 |#4|)) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3817 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-2103 (((-637 |#4|) $) 18 (|has| $ (-6 -4408)))) (-3588 ((|#3| $) 46)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#4|) $) 14 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2107 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 21)) (-3304 (((-637 |#3|) $) NIL)) (-3303 (((-112) |#3| $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3651 (((-1113) $) NIL)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 39)) (-3979 (($) 17)) (-2104 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) 16)) (-4385 (((-535) $) NIL (|has| |#4| (-611 (-535)))) (($ (-637 |#4|)) 50)) (-3936 (($ (-637 |#4|)) 13)) (-3300 (($ $ |#3|) NIL)) (-3302 (($ $ |#3|) NIL)) (-3301 (($ $ |#3|) NIL)) (-4361 (((-859) $) 38) (((-637 |#4|) $) 49)) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 30)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4385 ($ (-637 |#4|))) (-6 -4408) (-6 -4409))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463))
+((-4385 (*1 *1 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))))
+(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4385 ($ (-637 |#4|))) (-6 -4408) (-6 -4409)))
+((-3047 (($) 11)) (-3053 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -3053 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3047 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
+NIL
+(-10 -8 (-15 -3053 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3047 (|#1|)))
+((-2953 (((-112) $ $) 7)) (-3565 (((-3 |#1| "failed") $) 26)) (-3564 ((|#1| $) 27)) (-4359 (($ $ $) 23)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4363 ((|#2| $) 19)) (-4361 (((-859) $) 11) (($ |#1|) 25)) (-3047 (($) 18 T CONST)) (-3053 (($) 24 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 15) (($ $ $) 13)) (-4254 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465))
-((-2253 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3846 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-2253) ($) -2668) (-15 -3846 ($ $ $))))
-(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1093) . T))
-((-2427 (((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917)) 18)) (-2439 (((-1257 (-1257 (-563))) (-917)) 16)))
-(((-466) (-10 -7 (-15 -2427 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -2439 ((-1257 (-1257 (-563))) (-917))))) (T -466))
-((-2439 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466)))) (-2427 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466)))))
-(-10 -7 (-15 -2427 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -2439 ((-1257 (-1257 (-563))) (-917))))
-((-1532 (((-563) (-563)) 30) (((-563)) 22)) (-1581 (((-563) (-563)) 26) (((-563)) 18)) (-1556 (((-563) (-563)) 28) (((-563)) 20)) (-2460 (((-112) (-112)) 12) (((-112)) 10)) (-2450 (((-112) (-112)) 11) (((-112)) 9)) (-2472 (((-112) (-112)) 24) (((-112)) 15)))
-(((-467) (-10 -7 (-15 -2450 ((-112))) (-15 -2460 ((-112))) (-15 -2450 ((-112) (-112))) (-15 -2460 ((-112) (-112))) (-15 -2472 ((-112))) (-15 -1556 ((-563))) (-15 -1581 ((-563))) (-15 -1532 ((-563))) (-15 -2472 ((-112) (-112))) (-15 -1556 ((-563) (-563))) (-15 -1581 ((-563) (-563))) (-15 -1532 ((-563) (-563))))) (T -467))
-((-1532 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1532 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1581 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1556 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2472 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2460 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2450 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(-10 -7 (-15 -2450 ((-112))) (-15 -2460 ((-112))) (-15 -2450 ((-112) (-112))) (-15 -2460 ((-112) (-112))) (-15 -2472 ((-112))) (-15 -1556 ((-563))) (-15 -1581 ((-563))) (-15 -1532 ((-563))) (-15 -2472 ((-112) (-112))) (-15 -1556 ((-563) (-563))) (-15 -1581 ((-563) (-563))) (-15 -1532 ((-563) (-563))))
-((-1677 (((-112) $ $) NIL)) (-3532 (((-640 (-379)) $) 28) (((-640 (-379)) $ (-640 (-379))) 94)) (-2528 (((-640 (-1087 (-379))) $) 16) (((-640 (-1087 (-379))) $ (-640 (-1087 (-379)))) 91)) (-2494 (((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870))) 44)) (-2541 (((-640 (-640 (-939 (-225)))) $) 87)) (-3018 (((-1262) $ (-939 (-225)) (-870)) 106)) (-2551 (($ $) 86) (($ (-640 (-640 (-939 (-225))))) 97) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917))) 96) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263))) 98)) (-3854 (((-1151) $) NIL)) (-2387 (((-563) $) 68)) (-1693 (((-1113) $) NIL)) (-2562 (($) 95)) (-2484 (((-640 (-225)) (-640 (-640 (-939 (-225))))) 54)) (-2515 (((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917)) 100) (((-1262) $ (-939 (-225))) 102) (((-1262) $ (-939 (-225)) (-870) (-870) (-917)) 101)) (-1692 (((-858) $) 112) (($ (-640 (-640 (-939 (-225))))) 107)) (-2505 (((-1262) $ (-939 (-225))) 105)) (-1718 (((-112) $ $) NIL)))
-(((-468) (-13 (-1093) (-10 -8 (-15 -2562 ($)) (-15 -2551 ($ $)) (-15 -2551 ($ (-640 (-640 (-939 (-225)))))) (-15 -2551 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -2551 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -2541 ((-640 (-640 (-939 (-225)))) $)) (-15 -2387 ((-563) $)) (-15 -2528 ((-640 (-1087 (-379))) $)) (-15 -2528 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -3532 ((-640 (-379)) $)) (-15 -3532 ((-640 (-379)) $ (-640 (-379)))) (-15 -2515 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -2515 ((-1262) $ (-939 (-225)))) (-15 -2515 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -2505 ((-1262) $ (-939 (-225)))) (-15 -3018 ((-1262) $ (-939 (-225)) (-870))) (-15 -1692 ($ (-640 (-640 (-939 (-225)))))) (-15 -1692 ((-858) $)) (-15 -2494 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -2484 ((-640 (-225)) (-640 (-640 (-939 (-225))))))))) (T -468))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) (-2562 (*1 *1) (-5 *1 (-468))) (-2551 (*1 *1 *1) (-5 *1 (-468))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-2551 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *1 (-468)))) (-2551 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-2528 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-3532 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-2515 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2515 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2515 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3018 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-2494 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *1 (-468)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225))) (-5 *1 (-468)))))
-(-13 (-1093) (-10 -8 (-15 -2562 ($)) (-15 -2551 ($ $)) (-15 -2551 ($ (-640 (-640 (-939 (-225)))))) (-15 -2551 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -2551 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -2541 ((-640 (-640 (-939 (-225)))) $)) (-15 -2387 ((-563) $)) (-15 -2528 ((-640 (-1087 (-379))) $)) (-15 -2528 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -3532 ((-640 (-379)) $)) (-15 -3532 ((-640 (-379)) $ (-640 (-379)))) (-15 -2515 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -2515 ((-1262) $ (-939 (-225)))) (-15 -2515 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -2505 ((-1262) $ (-939 (-225)))) (-15 -3018 ((-1262) $ (-939 (-225)) (-870))) (-15 -1692 ($ (-640 (-640 (-939 (-225)))))) (-15 -1692 ((-858) $)) (-15 -2494 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -2484 ((-640 (-225)) (-640 (-640 (-939 (-225))))))))
-((-1825 (($ $) NIL) (($ $ $) 11)))
-(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
-NIL
-(-10 -8 (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3871 ((|#2| $) 19)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 15) (($ $ $) 13)) (-1813 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3053 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4359 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-3053) ($) -4367) (-15 -4359 ($ $ $))))
+(((-102) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1094) . T))
+((-2076 (((-1256 (-1256 (-546))) (-1256 (-1256 (-546))) (-915)) 18)) (-2077 (((-1256 (-1256 (-546))) (-915)) 16)))
+(((-466) (-10 -7 (-15 -2076 ((-1256 (-1256 (-546))) (-1256 (-1256 (-546))) (-915))) (-15 -2077 ((-1256 (-1256 (-546))) (-915))))) (T -466))
+((-2077 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1256 (-1256 (-546)))) (-5 *1 (-466)))) (-2076 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 (-1256 (-546)))) (-5 *3 (-915)) (-5 *1 (-466)))))
+(-10 -7 (-15 -2076 ((-1256 (-1256 (-546))) (-1256 (-1256 (-546))) (-915))) (-15 -2077 ((-1256 (-1256 (-546))) (-915))))
+((-3159 (((-546) (-546)) 30) (((-546)) 22)) (-3163 (((-546) (-546)) 26) (((-546)) 18)) (-3161 (((-546) (-546)) 28) (((-546)) 20)) (-2079 (((-112) (-112)) 12) (((-112)) 10)) (-2078 (((-112) (-112)) 11) (((-112)) 9)) (-2080 (((-112) (-112)) 24) (((-112)) 15)))
+(((-467) (-10 -7 (-15 -2078 ((-112))) (-15 -2079 ((-112))) (-15 -2078 ((-112) (-112))) (-15 -2079 ((-112) (-112))) (-15 -2080 ((-112))) (-15 -3161 ((-546))) (-15 -3163 ((-546))) (-15 -3159 ((-546))) (-15 -2080 ((-112) (-112))) (-15 -3161 ((-546) (-546))) (-15 -3163 ((-546) (-546))) (-15 -3159 ((-546) (-546))))) (T -467))
+((-3159 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3159 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-3163 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-3161 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467)))) (-2080 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2078 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(-10 -7 (-15 -2078 ((-112))) (-15 -2079 ((-112))) (-15 -2078 ((-112) (-112))) (-15 -2079 ((-112) (-112))) (-15 -2080 ((-112))) (-15 -3161 ((-546))) (-15 -3163 ((-546))) (-15 -3159 ((-546))) (-15 -2080 ((-112) (-112))) (-15 -3161 ((-546) (-546))) (-15 -3163 ((-546) (-546))) (-15 -3159 ((-546) (-546))))
+((-2953 (((-112) $ $) NIL)) (-4266 (((-637 (-378)) $) 28) (((-637 (-378)) $ (-637 (-378))) 94)) (-2085 (((-637 (-1082 (-378))) $) 16) (((-637 (-1082 (-378))) $ (-637 (-1082 (-378)))) 91)) (-2082 (((-637 (-637 (-939 (-225)))) (-637 (-637 (-939 (-225)))) (-637 (-870))) 44)) (-2086 (((-637 (-637 (-939 (-225)))) $) 87)) (-4121 (((-1262) $ (-939 (-225)) (-870)) 106)) (-2087 (($ $) 86) (($ (-637 (-637 (-939 (-225))))) 97) (($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915))) 96) (($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915)) (-637 (-261))) 98)) (-3650 (((-1151) $) NIL)) (-4275 (((-546) $) 68)) (-3651 (((-1113) $) NIL)) (-2088 (($) 95)) (-2081 (((-637 (-225)) (-637 (-637 (-939 (-225))))) 54)) (-2084 (((-1262) $ (-637 (-939 (-225))) (-870) (-870) (-915)) 100) (((-1262) $ (-939 (-225))) 102) (((-1262) $ (-939 (-225)) (-870) (-870) (-915)) 101)) (-4361 (((-859) $) 112) (($ (-637 (-637 (-939 (-225))))) 107)) (-2083 (((-1262) $ (-939 (-225))) 105)) (-3444 (((-112) $ $) NIL)))
+(((-468) (-13 (-1094) (-10 -8 (-15 -2088 ($)) (-15 -2087 ($ $)) (-15 -2087 ($ (-637 (-637 (-939 (-225)))))) (-15 -2087 ($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915)))) (-15 -2087 ($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915)) (-637 (-261)))) (-15 -2086 ((-637 (-637 (-939 (-225)))) $)) (-15 -4275 ((-546) $)) (-15 -2085 ((-637 (-1082 (-378))) $)) (-15 -2085 ((-637 (-1082 (-378))) $ (-637 (-1082 (-378))))) (-15 -4266 ((-637 (-378)) $)) (-15 -4266 ((-637 (-378)) $ (-637 (-378)))) (-15 -2084 ((-1262) $ (-637 (-939 (-225))) (-870) (-870) (-915))) (-15 -2084 ((-1262) $ (-939 (-225)))) (-15 -2084 ((-1262) $ (-939 (-225)) (-870) (-870) (-915))) (-15 -2083 ((-1262) $ (-939 (-225)))) (-15 -4121 ((-1262) $ (-939 (-225)) (-870))) (-15 -4361 ($ (-637 (-637 (-939 (-225)))))) (-15 -4361 ((-859) $)) (-15 -2082 ((-637 (-637 (-939 (-225)))) (-637 (-637 (-939 (-225)))) (-637 (-870)))) (-15 -2081 ((-637 (-225)) (-637 (-637 (-939 (-225))))))))) (T -468))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) (-2088 (*1 *1) (-5 *1 (-468))) (-2087 (*1 *1 *1) (-5 *1 (-468))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468)))) (-2087 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870))) (-5 *4 (-637 (-915))) (-5 *1 (-468)))) (-2087 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870))) (-5 *4 (-637 (-915))) (-5 *5 (-637 (-261))) (-5 *1 (-468)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-468)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-468)))) (-2085 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-468)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-468)))) (-4266 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-468)))) (-2084 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-915)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2084 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-915)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2083 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-4121 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468)))) (-2082 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870))) (-5 *1 (-468)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-637 (-225))) (-5 *1 (-468)))))
+(-13 (-1094) (-10 -8 (-15 -2088 ($)) (-15 -2087 ($ $)) (-15 -2087 ($ (-637 (-637 (-939 (-225)))))) (-15 -2087 ($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915)))) (-15 -2087 ($ (-637 (-637 (-939 (-225)))) (-637 (-870)) (-637 (-870)) (-637 (-915)) (-637 (-261)))) (-15 -2086 ((-637 (-637 (-939 (-225)))) $)) (-15 -4275 ((-546) $)) (-15 -2085 ((-637 (-1082 (-378))) $)) (-15 -2085 ((-637 (-1082 (-378))) $ (-637 (-1082 (-378))))) (-15 -4266 ((-637 (-378)) $)) (-15 -4266 ((-637 (-378)) $ (-637 (-378)))) (-15 -2084 ((-1262) $ (-637 (-939 (-225))) (-870) (-870) (-915))) (-15 -2084 ((-1262) $ (-939 (-225)))) (-15 -2084 ((-1262) $ (-939 (-225)) (-870) (-870) (-915))) (-15 -2083 ((-1262) $ (-939 (-225)))) (-15 -4121 ((-1262) $ (-939 (-225)) (-870))) (-15 -4361 ($ (-637 (-637 (-939 (-225)))))) (-15 -4361 ((-859) $)) (-15 -2082 ((-637 (-637 (-939 (-225)))) (-637 (-637 (-939 (-225)))) (-637 (-870)))) (-15 -2081 ((-637 (-225)) (-637 (-637 (-939 (-225))))))))
+((-4252 (($ $) NIL) (($ $ $) 11)))
+(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
+NIL
+(-10 -8 (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4363 ((|#2| $) 19)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 15) (($ $ $) 13)) (-4254 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2239 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1825 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-1093) (-10 -8 (-15 -3871 (|t#2| $)) (-15 (-2239) ($) -2668) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1825 ($ $)) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2581 (((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|))) 91)) (-2571 (((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 89)) (-1344 (((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 61)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2571 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -2581 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -1344 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))))) (-640 (-1169)) (-452) (-452)) (T -471))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-640 (-247 *5 *6))) (|:| |coords| (-640 (-563))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))) (-2581 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))))
-(-10 -7 (-15 -2571 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -2581 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -1344 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))))
-((-3951 (((-3 $ "failed") $) 11)) (-2150 (($ $ $) 18)) (-1745 (($ $ $) 19)) (-1836 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 17)))
-(((-472 |#1|) (-10 -8 (-15 -1745 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1836 (|#1| |#1| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-473)) (T -472))
-NIL
-(-10 -8 (-15 -1745 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1836 (|#1| |#1| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-2569 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3401 (((-112) $) 17)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 24)) (-1693 (((-1113) $) 10)) (-2150 (($ $ $) 21)) (-1745 (($ $ $) 20)) (-1692 (((-858) $) 11)) (-2253 (($) 19 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14)))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3047 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4252 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4254 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-1094) (-10 -8 (-15 -4363 (|t#2| $)) (-15 (-3047) ($) -4367) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4252 ($ $)) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2090 (((-3 (-637 (-481 |#1| |#2|)) "failed") (-637 (-481 |#1| |#2|)) (-637 (-860 |#1|))) 91)) (-2089 (((-637 (-637 (-247 |#1| |#2|))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|))) 89)) (-2091 (((-2 (|:| |dpolys| (-637 (-247 |#1| |#2|))) (|:| |coords| (-637 (-546)))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|))) 61)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-637 (-637 (-247 |#1| |#2|))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|)))) (-15 -2090 ((-3 (-637 (-481 |#1| |#2|)) "failed") (-637 (-481 |#1| |#2|)) (-637 (-860 |#1|)))) (-15 -2091 ((-2 (|:| |dpolys| (-637 (-247 |#1| |#2|))) (|:| |coords| (-637 (-546)))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|))))) (-637 (-1169)) (-452) (-452)) (T -471))
+((-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-860 *5))) (-14 *5 (-637 (-1169))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-637 (-247 *5 *6))) (|:| |coords| (-637 (-546))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-637 (-247 *5 *6))) (-4 *7 (-452)))) (-2090 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-481 *4 *5))) (-5 *3 (-637 (-860 *4))) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-860 *5))) (-14 *5 (-637 (-1169))) (-4 *6 (-452)) (-5 *2 (-637 (-637 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-637 (-247 *5 *6))) (-4 *7 (-452)))))
+(-10 -7 (-15 -2089 ((-637 (-637 (-247 |#1| |#2|))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|)))) (-15 -2090 ((-3 (-637 (-481 |#1| |#2|)) "failed") (-637 (-481 |#1| |#2|)) (-637 (-860 |#1|)))) (-15 -2091 ((-2 (|:| |dpolys| (-637 (-247 |#1| |#2|))) (|:| |coords| (-637 (-546)))) (-637 (-247 |#1| |#2|)) (-637 (-860 |#1|)))))
+((-3873 (((-3 $ "failed") $) 11)) (-3399 (($ $ $) 18)) (-2735 (($ $ $) 19)) (-4364 (($ $ $) 9)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 17)))
+(((-472 |#1|) (-10 -8 (-15 -2735 (|#1| |#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -4364 (|#1| |#1| |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915)))) (-473)) (T -472))
+NIL
+(-10 -8 (-15 -2735 (|#1| |#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -4364 (|#1| |#1| |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-4139 (($) 18 T CONST)) (-3873 (((-3 $ "failed") $) 15)) (-2552 (((-112) $) 17)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 24)) (-3651 (((-1113) $) 10)) (-3399 (($ $ $) 21)) (-2735 (($ $ $) 20)) (-4361 (((-859) $) 11)) (-3053 (($) 19 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 23)) (** (($ $ (-915)) 13) (($ $ (-767)) 16) (($ $ (-546)) 22)) (* (($ $ $) 14)))
(((-473) (-140)) (T -473))
-((-2687 (*1 *1 *1) (-4 *1 (-473))) (-1836 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563)))) (-2150 (*1 *1 *1 *1) (-4 *1 (-473))) (-1745 (*1 *1 *1 *1) (-4 *1 (-473))))
-(-13 (-722) (-10 -8 (-15 -2687 ($ $)) (-15 -1836 ($ $ $)) (-15 ** ($ $ (-563))) (-6 -4405) (-15 -2150 ($ $ $)) (-15 -1745 ($ $ $))))
-(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 17)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) 22)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) 26 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 33 (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 27 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 25 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 15)) (-3871 (((-407 (-563)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1253 |#2|)) NIL) (($ (-1242 |#1| |#2| |#3|)) 9) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 18)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) 24)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-474 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -1692 ($ (-1242 |#1| |#2| |#3|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -474))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1238 |#1|) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -1692 ($ (-1242 |#1| |#2| |#3|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 18)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) 19)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 16)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) NIL)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-475 |#1| |#2| |#3| |#4|) (-1184 |#1| |#2|) (-1093) (-1093) (-1184 |#1| |#2|) |#2|) (T -475))
+((-2785 (*1 *1 *1) (-4 *1 (-473))) (-4364 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-546)))) (-3399 (*1 *1 *1 *1) (-4 *1 (-473))) (-2735 (*1 *1 *1 *1) (-4 *1 (-473))))
+(-13 (-722) (-10 -8 (-15 -2785 ($ $)) (-15 -4364 ($ $ $)) (-15 ** ($ $ (-546))) (-6 -4405) (-15 -3399 ($ $ $)) (-15 -2735 ($ $ $))))
+(((-102) . T) ((-610 (-859)) . T) ((-722) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 17)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) NIL) (($ $ (-407 (-546)) (-407 (-546))) NIL)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) NIL) (((-407 (-546)) $ (-407 (-546))) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) NIL) (($ $ (-407 (-546))) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-407 (-546))) NIL) (($ $ (-1075) (-407 (-546))) NIL) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) 22)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) 26 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 33 (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 27 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) NIL) (($ $ $) NIL (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 25 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $ (-1253 |#2|)) 15)) (-4363 (((-407 (-546)) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1253 |#2|)) NIL) (($ (-1237 |#1| |#2| |#3|)) 9) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 18)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) 24)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-474 |#1| |#2| |#3|) (-13 (-1239 |#1|) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4361 ($ (-1237 |#1| |#2| |#3|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -474))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1237 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1239 |#1|) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4361 ($ (-1237 |#1| |#2| |#3|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) 18)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) 19)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) 16)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) NIL)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-475 |#1| |#2| |#3| |#4|) (-1184 |#1| |#2|) (-1094) (-1094) (-1184 |#1| |#2|) |#2|) (T -475))
NIL
(-1184 |#1| |#2|)
-((-1677 (((-112) $ $) NIL)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) NIL)) (-2119 (((-640 $) (-640 |#4|)) NIL)) (-2605 (((-640 |#3|) $) NIL)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2189 ((|#4| |#4| $) NIL)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) 27 (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3418 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2057 (($ (-640 |#4|)) NIL)) (-3793 (((-3 $ "failed") $) 40)) (-2151 ((|#4| |#4| $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2131 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) NIL)) (-2658 (((-640 |#4|) $) 17 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4347 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 22)) (-3568 (((-640 |#3|) $) NIL)) (-3553 (((-112) |#3| $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-1481 (((-3 |#4| "failed") $) 38)) (-2297 (((-640 |#4|) $) NIL)) (-2225 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-2319 (((-112) $ $) NIL)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2176 ((|#4| |#4| $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-3 |#4| "failed") $) 36)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2089 (((-3 $ "failed") $ |#4|) 47)) (-1751 (($ $ |#4|) NIL)) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 16)) (-3445 (($) 14)) (-3871 (((-767) $) NIL)) (-1708 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) 13)) (-2219 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 21)) (-3519 (($ $ |#3|) 43)) (-3542 (($ $ |#3|) 44)) (-2141 (($ $) NIL)) (-3529 (($ $ |#3|) NIL)) (-1692 (((-858) $) 32) (((-640 |#4|) $) 41)) (-3255 (((-767) $) NIL (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) NIL)) (-3772 (((-112) |#3| $) NIL)) (-1718 (((-112) $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-476 |#1| |#2| |#3| |#4|) (-1201 |#1| |#2| |#3| |#4|) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476))
-NIL
-(-1201 |#1| |#2| |#3| |#4|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-2179 (($) 15)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-2219 (((-379) $) 19) (((-225) $) 22) (((-407 (-1165 (-563))) $) 16) (((-536) $) 50)) (-1692 (((-858) $) 48) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (((-225) $) 21) (((-379) $) 18)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 34 T CONST)) (-2253 (($) 8 T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-477) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2179 ($))))) (T -477))
-((-2179 (*1 *1) (-5 *1 (-477))))
-(-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2179 ($))))
-((-1677 (((-112) $ $) NIL)) (-2350 (((-1128) $) 11)) (-2339 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-478) (-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))) (T -478))
-((-2339 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))))
-(-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 16)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) 20)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 18)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) 13)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 19)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 11 (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) 15 (|has| $ (-6 -4408)))))
-(((-479 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093) (-1151)) (T -479))
+((-2953 (((-112) $ $) NIL)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) NIL)) (-4097 (((-637 $) (-637 |#4|)) NIL)) (-3474 (((-637 |#3|) $) NIL)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4103 ((|#4| |#4| $) NIL)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) 27 (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3290 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) NIL)) (-3564 (($ (-637 |#4|)) NIL)) (-4213 (((-3 $ #1#) $) 40)) (-4100 ((|#4| |#4| $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3817 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4098 ((|#4| |#4| $) NIL)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) NIL)) (-2103 (((-637 |#4|) $) 17 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#4|) $) 18 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2107 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 22)) (-3304 (((-637 |#3|) $) NIL)) (-3303 (((-112) |#3| $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-4212 (((-3 |#4| #1#) $) 38)) (-4112 (((-637 |#4|) $) NIL)) (-4106 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4101 ((|#4| |#4| $) NIL)) (-4114 (((-112) $ $) NIL)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4102 ((|#4| |#4| $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-3 |#4| #1#) $) 36)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4094 (((-3 $ #1#) $ |#4|) 47)) (-4183 (($ $ |#4|) NIL)) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 16)) (-3979 (($) 14)) (-4363 (((-767) $) NIL)) (-2104 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) 13)) (-4385 (((-535) $) NIL (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 21)) (-3300 (($ $ |#3|) 43)) (-3302 (($ $ |#3|) 44)) (-4099 (($ $) NIL)) (-3301 (($ $ |#3|) NIL)) (-4361 (((-859) $) 32) (((-637 |#4|) $) 41)) (-4093 (((-767) $) NIL (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) NIL)) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) NIL)) (-4348 (((-112) |#3| $) NIL)) (-3444 (((-112) $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476))
+NIL
+(-1202 |#1| |#2| |#3| |#4|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-4042 (($) 15)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4385 (((-378) $) 19) (((-225) $) 22) (((-407 (-1163 (-546))) $) 16) (((-535) $) 50)) (-4361 (((-859) $) 48) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (((-225) $) 21) (((-378) $) 18)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 34 T CONST)) (-3053 (($) 8 T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-477) (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))) (-1016) (-610 (-225)) (-610 (-378)) (-611 (-407 (-1163 (-546)))) (-611 (-535)) (-10 -8 (-15 -4042 ($))))) (T -477))
+((-4042 (*1 *1) (-5 *1 (-477))))
+(-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))) (-1016) (-610 (-225)) (-610 (-378)) (-611 (-407 (-1163 (-546)))) (-611 (-535)) (-10 -8 (-15 -4042 ($))))
+((-2953 (((-112) $ $) NIL)) (-3934 (((-1128) $) 11)) (-3935 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-478) (-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))) (T -478))
+((-3935 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))))
+(-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) 16)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) 20)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) 18)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) 13)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 19)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 11 (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) 15 (|has| $ (-6 -4408)))))
+(((-479 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1094) (-1094) (-1151)) (T -479))
NIL
(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))
-((-1354 (((-563) (-563) (-563)) 7)) (-1364 (((-112) (-563) (-563) (-563) (-563)) 11)) (-2175 (((-1257 (-640 (-563))) (-767) (-767)) 22)))
-(((-480) (-10 -7 (-15 -1354 ((-563) (-563) (-563))) (-15 -1364 ((-112) (-563) (-563) (-563) (-563))) (-15 -2175 ((-1257 (-640 (-563))) (-767) (-767))))) (T -480))
-((-2175 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480)))) (-1364 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480)))) (-1354 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480)))))
-(-10 -7 (-15 -1354 ((-563) (-563) (-563))) (-15 -1364 ((-112) (-563) (-563) (-563) (-563))) (-15 -2175 ((-1257 (-640 (-563))) (-767) (-767))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-860 |#1|)) $) NIL)) (-2138 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-3231 (($ $) NIL (|has| |#2| (-555)))) (-3211 (((-112) $) NIL (|has| |#2| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL (|has| |#2| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-1612 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1373 (($ $ (-640 (-563))) NIL)) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#2| (-905)))) (-2159 (($ $ |#2| (-482 (-3610 |#1|) (-767)) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#2| (-482 (-3610 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-860 |#1|)) NIL)) (-3908 (((-482 (-3610 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2170 (($ (-1 (-482 (-3610 |#1|) (-767)) (-482 (-3610 |#1|) (-767))) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-1698 (((-3 (-860 |#1|) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#2| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3311 (-767))) "failed") $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#2| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-1623 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4203 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-3871 (((-482 (-3610 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-482 (-3610 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-481 |#1| |#2|) (-13 (-945 |#2| (-482 (-3610 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -481))
-((-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045)))))
-(-13 (-945 |#2| (-482 (-3610 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -1373 ($ $ (-640 (-563))))))
-((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3439 (((-112) $) NIL (|has| |#2| (-131)))) (-2392 (($ (-917)) NIL (|has| |#2| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) NIL (|has| |#2| (-789)))) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#2| (-368)))) (-2807 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2057 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-1476 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-1690 (($) NIL (|has| |#2| (-368)))) (-4356 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ (-563)) 11)) (-3414 (((-112) $) NIL (|has| |#2| (-844)))) (-2658 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (|has| |#2| (-722)))) (-3426 (((-112) $) NIL (|has| |#2| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3523 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4347 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#2| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#2| (-1093)))) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#2| (-368)))) (-1693 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3782 ((|#2| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-4121 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2509 (($ (-1257 |#2|)) NIL)) (-3526 (((-134)) NIL (|has| |#2| (-363)))) (-4203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1708 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-4034 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3914 (((-767)) NIL (|has| |#2| (-1045)))) (-1471 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#2| (-844)))) (-2239 (($) NIL (|has| |#2| (-131)) CONST)) (-2253 (($) NIL (|has| |#2| (-722)) CONST)) (-3213 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-1766 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1743 (((-112) $ $) 15 (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1813 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
+((-2092 (((-546) (-546) (-546)) 7)) (-2093 (((-112) (-546) (-546) (-546) (-546)) 11)) (-3863 (((-1256 (-637 (-546))) (-767) (-767)) 22)))
+(((-480) (-10 -7 (-15 -2092 ((-546) (-546) (-546))) (-15 -2093 ((-112) (-546) (-546) (-546) (-546))) (-15 -3863 ((-1256 (-637 (-546))) (-767) (-767))))) (T -480))
+((-3863 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1256 (-637 (-546)))) (-5 *1 (-480)))) (-2093 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-480)))) (-2092 (*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-480)))))
+(-10 -7 (-15 -2092 ((-546) (-546) (-546))) (-15 -2093 ((-112) (-546) (-546) (-546) (-546))) (-15 -3863 ((-1256 (-637 (-546))) (-767) (-767))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-860 |#1|)) $) NIL)) (-3476 (((-1163 $) $ (-860 |#1|)) NIL) (((-1163 |#2|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-2220 (($ $) NIL (|has| |#2| (-556)))) (-2218 (((-112) $) NIL (|has| |#2| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-860 |#1|))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL (|has| |#2| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-860 |#1|) #2#) $) NIL)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-860 |#1|) $) NIL)) (-4171 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2094 (($ $ (-637 (-546))) NIL)) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#2| (-906)))) (-1756 (($ $ |#2| (-482 (-4372 |#1|) (-767)) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#2|) (-860 |#1|)) NIL) (($ (-1163 $) (-860 |#1|)) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#2| (-482 (-4372 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-860 |#1|)) NIL)) (-3209 (((-482 (-4372 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-1757 (($ (-1 (-482 (-4372 |#1|) (-767)) (-482 (-4372 |#1|) (-767))) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-3475 (((-3 (-860 |#1|) #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#2| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2543 (-767))) #3#) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#2| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-906)))) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-637 (-860 |#1|)) (-637 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-637 (-860 |#1|)) (-637 $)) NIL)) (-4172 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4225 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4363 (((-482 (-4372 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-860 |#1|) (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#2| (-556)))) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-482 (-4372 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#2| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#2| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#2| (-38 (-407 (-546))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-481 |#1| |#2|) (-13 (-946 |#2| (-482 (-4372 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546)))))) (-637 (-1169)) (-1045)) (T -481))
+((-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-481 *3 *4)) (-14 *3 (-637 (-1169))) (-4 *4 (-1045)))))
+(-13 (-946 |#2| (-482 (-4372 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -2094 ($ $ (-637 (-546))))))
+((-2953 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3596 (((-112) $) NIL (|has| |#2| (-131)))) (-4122 (($ (-915)) NIL (|has| |#2| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) NIL (|has| |#2| (-789)))) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#2| (-368)))) (-4038 (((-546) $) NIL (|has| |#2| (-844)))) (-4202 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1094)))) (-3564 (((-546) $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2408 (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3873 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-3384 (($) NIL (|has| |#2| (-368)))) (-1672 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ (-546)) 11)) (-3594 (((-112) $) NIL (|has| |#2| (-844)))) (-2103 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (|has| |#2| (-722)))) (-3595 (((-112) $) NIL (|has| |#2| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2993 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2107 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#2| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#2| (-1094)))) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#2| (-368)))) (-3651 (((-1113) $) NIL (|has| |#2| (-1094)))) (-4215 ((|#2| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ (-546) |#2|) NIL) ((|#2| $ (-546)) NIL)) (-4251 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-1559 (($ (-1256 |#2|)) NIL)) (-4326 (((-134)) NIL (|has| |#2| (-363)))) (-4225 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2104 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#2|) $) NIL) (($ (-546)) NIL (-3943 (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-610 (-859))))) (-3518 (((-767)) NIL (|has| |#2| (-1045)))) (-2106 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#2| (-844)))) (-3047 (($) NIL (|has| |#2| (-131)) CONST)) (-3053 (($) NIL (|has| |#2| (-722)) CONST)) (-3058 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3444 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3073 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3074 (((-112) $ $) 15 (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-4254 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-915)) NIL (|has| |#2| (-722)))) (* (($ (-546) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-915) $) NIL (|has| |#2| (-25)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
(((-482 |#1| |#2|) (-238 |#1| |#2|) (-767) (-789)) (T -482))
NIL
(-238 |#1| |#2|)
-((-1677 (((-112) $ $) NIL)) (-3392 (((-640 (-506)) $) 11)) (-3352 (((-506) $) 10)) (-3854 (((-1151) $) NIL)) (-1383 (($ (-506) (-640 (-506))) 9)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-483) (-13 (-1076) (-10 -8 (-15 -1383 ($ (-506) (-640 (-506)))) (-15 -3352 ((-506) $)) (-15 -3392 ((-640 (-506)) $))))) (T -483))
-((-1383 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483)))))
-(-13 (-1076) (-10 -8 (-15 -1383 ($ (-506) (-640 (-506)))) (-15 -3352 ((-506) $)) (-15 -3392 ((-640 (-506)) $))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-4265 (($ $ $) 32)) (-4300 (($ $ $) 31)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1776 ((|#1| $) 26)) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) 27)) (-3867 (($ |#1| $) 10)) (-1393 (($ (-640 |#1|)) 12)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2808 ((|#1| $) 23)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 9)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 29)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) 21 (|has| $ (-6 -4408)))))
-(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -1393 ($ (-640 |#1|))))) (-846)) (T -484))
-((-1393 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
-(-13 (-964 |#1|) (-10 -8 (-15 -1393 ($ (-640 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2444 (($ $) 69)) (-2410 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-1716 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 44)) (-1693 (((-1113) $) NIL)) (-4334 (((-3 |#4| "failed") $) 106)) (-2421 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 116) (($ |#1| |#1| (-563)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 128)) (-1913 (((-2 (|:| -1526 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1692 (((-858) $) 101)) (-2239 (($) 33 T CONST)) (-1718 (((-112) $ $) 110)) (-1825 (($ $) 72) (($ $ $) NIL)) (-1813 (($ $ $) 70)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 73)))
-(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485))
-NIL
-(-335 |#1| |#2| |#3| |#4|)
-((-1438 (((-563) (-640 (-563))) 29)) (-1405 ((|#1| (-640 |#1|)) 55)) (-1427 (((-640 |#1|) (-640 |#1|)) 56)) (-1416 (((-640 |#1|) (-640 |#1|)) 58)) (-3551 ((|#1| (-640 |#1|)) 57)) (-3885 (((-640 (-563)) (-640 |#1|)) 32)))
-(((-486 |#1|) (-10 -7 (-15 -3551 (|#1| (-640 |#1|))) (-15 -1405 (|#1| (-640 |#1|))) (-15 -1416 ((-640 |#1|) (-640 |#1|))) (-15 -1427 ((-640 |#1|) (-640 |#1|))) (-15 -3885 ((-640 (-563)) (-640 |#1|))) (-15 -1438 ((-563) (-640 (-563))))) (-1233 (-563))) (T -486))
-((-1438 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4)) (-4 *4 (-1233 *2)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563))) (-5 *1 (-486 *4)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))))
-(-10 -7 (-15 -3551 (|#1| (-640 |#1|))) (-15 -1405 (|#1| (-640 |#1|))) (-15 -1416 ((-640 |#1|) (-640 |#1|))) (-15 -1427 ((-640 |#1|) (-640 |#1|))) (-15 -3885 ((-640 (-563)) (-640 |#1|))) (-15 -1438 ((-563) (-640 (-563)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-563) $) NIL (|has| (-563) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-563) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2057 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-563) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-563) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-3426 (((-112) $) NIL (|has| (-563) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-563) (-846)))) (-2238 (($ (-1 (-563) (-563)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-563) (-1144)) CONST)) (-1448 (($ (-407 (-563))) 9)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3954 (((-563) $) NIL (|has| (-563) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-563) $) NIL)) (-2219 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 16) $) 10)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-563) $) NIL (|has| (-563) (-545)))) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| (-563) (-816)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1836 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL)))
-(((-487) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -1448 ($ (-407 (-563))))))) (T -487))
-((-3935 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))))
-(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -1448 ($ (-407 (-563))))))
-((-3523 (((-640 |#2|) $) 23)) (-2667 (((-112) |#2| $) 28)) (-1458 (((-112) (-1 (-112) |#2|) $) 21)) (-1542 (($ $ (-640 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-1708 (((-767) (-1 (-112) |#2|) $) 22) (((-767) |#2| $) 26)) (-1692 (((-858) $) 37)) (-1471 (((-112) (-1 (-112) |#2|) $) 20)) (-1718 (((-112) $ $) 31)) (-3610 (((-767) $) 17)))
-(((-488 |#1| |#2|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -2667 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -3523 ((-640 |#2|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|))) (-489 |#2|) (-1208)) (T -488))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#2| |#2|)) (-15 -1542 (|#1| |#1| (-294 |#2|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -2667 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#2| |#1|)) (-15 -3523 ((-640 |#2|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-489 |#1|) (-140) (-1208)) (T -489))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-4347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-1471 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-1458 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-1708 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-767)))) (-2658 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-3523 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-1708 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-2667 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-1093)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4409)) (-15 -4347 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -1471 ((-112) (-1 (-112) |t#1|) $)) (-15 -1458 ((-112) (-1 (-112) |t#1|) $)) (-15 -1708 ((-767) (-1 (-112) |t#1|) $)) (-15 -2658 ((-640 |t#1|) $)) (-15 -3523 ((-640 |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -1708 ((-767) |t#1| $)) (-15 -2667 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1692 ((|#1| $) 6) (($ |#1|) 9)))
-(((-490 |#1|) (-140) (-1208)) (T -490))
+((-2953 (((-112) $ $) NIL)) (-2095 (((-637 (-506)) $) 11)) (-3956 (((-506) $) 10)) (-3650 (((-1151) $) NIL)) (-2096 (($ (-506) (-637 (-506))) 9)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-483) (-13 (-1076) (-10 -8 (-15 -2096 ($ (-506) (-637 (-506)))) (-15 -3956 ((-506) $)) (-15 -2095 ((-637 (-506)) $))))) (T -483))
+((-2096 (*1 *1 *2 *3) (-12 (-5 *3 (-637 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-637 (-506))) (-5 *1 (-483)))))
+(-13 (-1076) (-10 -8 (-15 -2096 ($ (-506) (-637 (-506)))) (-15 -3956 ((-506) $)) (-15 -2095 ((-637 (-506)) $))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-3248 (($ $ $) 32)) (-3924 (($ $ $) 31)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3249 ((|#1| $) 26)) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) 27)) (-4022 (($ |#1| $) 10)) (-2097 (($ (-637 |#1|)) 12)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-1360 ((|#1| $) 23)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 9)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 29)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) 21 (|has| $ (-6 -4408)))))
+(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -2097 ($ (-637 |#1|))))) (-846)) (T -484))
+((-2097 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
+(-13 (-964 |#1|) (-10 -8 (-15 -2097 ($ (-637 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4257 (($ $) 69)) (-1787 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-2127 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 44)) (-3651 (((-1113) $) NIL)) (-2551 (((-3 |#4| "failed") $) 106)) (-1788 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 116) (($ |#1| |#1| (-546)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 128)) (-3846 (((-2 (|:| -2466 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4361 (((-859) $) 101)) (-3047 (($) 33 T CONST)) (-3444 (((-112) $ $) 110)) (-4252 (($ $) 72) (($ $ $) NIL)) (-4254 (($ $ $) 70)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 73)))
+(((-485 |#1| |#2| |#3| |#4|) (-336 |#1| |#2| |#3| |#4|) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485))
+NIL
+(-336 |#1| |#2| |#3| |#4|)
+((-2101 (((-546) (-637 (-546))) 29)) (-2098 ((|#1| (-637 |#1|)) 55)) (-2100 (((-637 |#1|) (-637 |#1|)) 56)) (-2099 (((-637 |#1|) (-637 |#1|)) 58)) (-3552 ((|#1| (-637 |#1|)) 57)) (-3206 (((-637 (-546)) (-637 |#1|)) 32)))
+(((-486 |#1|) (-10 -7 (-15 -3552 (|#1| (-637 |#1|))) (-15 -2098 (|#1| (-637 |#1|))) (-15 -2099 ((-637 |#1|) (-637 |#1|))) (-15 -2100 ((-637 |#1|) (-637 |#1|))) (-15 -3206 ((-637 (-546)) (-637 |#1|))) (-15 -2101 ((-546) (-637 (-546))))) (-1232 (-546))) (T -486))
+((-2101 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-546)) (-5 *1 (-486 *4)) (-4 *4 (-1232 *2)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-1232 (-546))) (-5 *2 (-637 (-546))) (-5 *1 (-486 *4)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1232 (-546))) (-5 *1 (-486 *3)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1232 (-546))) (-5 *1 (-486 *3)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1232 (-546))))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1232 (-546))))))
+(-10 -7 (-15 -3552 (|#1| (-637 |#1|))) (-15 -2098 (|#1| (-637 |#1|))) (-15 -2099 ((-637 |#1|) (-637 |#1|))) (-15 -2100 ((-637 |#1|) (-637 |#1|))) (-15 -3206 ((-637 (-546)) (-637 |#1|))) (-15 -2101 ((-546) (-637 (-546)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-546) $) NIL (|has| (-546) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-546) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-546) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-546) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-546) (-1034 (-546))))) (-3564 (((-546) $) NIL) (((-1169) $) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-546) (-1034 (-546)))) (((-546) $) NIL (|has| (-546) (-1034 (-546))))) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-546) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-546) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-546) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-546) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-546) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-546) (-1144)))) (-3595 (((-112) $) NIL (|has| (-546) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-546) (-846)))) (-4373 (($ (-1 (-546) (-546)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-546) (-1144)) CONST)) (-2102 (($ (-407 (-546))) 9)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-546) (-307))) (((-407 (-546)) $) NIL)) (-3522 (((-546) $) NIL (|has| (-546) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-546)) (-637 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-546) (-546)) NIL (|has| (-546) (-309 (-546)))) (($ $ (-293 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-293 (-546)))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-1169)) (-637 (-546))) NIL (|has| (-546) (-514 (-1169) (-546)))) (($ $ (-1169) (-546)) NIL (|has| (-546) (-514 (-1169) (-546))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-546)) NIL (|has| (-546) (-286 (-546) (-546))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-546) $) NIL)) (-4385 (((-886 (-546)) $) NIL (|has| (-546) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-546) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-546) (-611 (-535)))) (((-378) $) NIL (|has| (-546) (-1016))) (((-225) $) NIL (|has| (-546) (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-546) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) 8) (($ (-546)) NIL) (($ (-1169)) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL) (((-1000 16) $) 10)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-546) (-906))) (|has| (-546) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-546) $) NIL (|has| (-546) (-545)))) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| (-546) (-816)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-546) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-546) (-846)))) (-4364 (($ $ $) NIL) (($ (-546) (-546)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-546) $) NIL) (($ $ (-546)) NIL)))
+(((-487) (-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 16)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -2102 ($ (-407 (-546))))))) (T -487))
+((-3520 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-487)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-487)))))
+(-13 (-987 (-546)) (-610 (-407 (-546))) (-610 (-1000 16)) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -2102 ($ (-407 (-546))))))
+((-2993 (((-637 |#2|) $) 23)) (-3653 (((-112) |#2| $) 28)) (-2105 (((-112) (-1 (-112) |#2|) $) 21)) (-4182 (($ $ (-637 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-637 |#2|) (-637 |#2|)) NIL)) (-2104 (((-767) (-1 (-112) |#2|) $) 22) (((-767) |#2| $) 26)) (-4361 (((-859) $) 37)) (-2106 (((-112) (-1 (-112) |#2|) $) 20)) (-3444 (((-112) $ $) 31)) (-4372 (((-767) $) 17)))
+(((-488 |#1| |#2|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -3653 ((-112) |#2| |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2993 ((-637 |#2|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|))) (-489 |#2|) (-1207)) (T -488))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#2| |#2|)) (-15 -4182 (|#1| |#1| (-293 |#2|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#2|)))) (-15 -3653 ((-112) |#2| |#1|)) (-15 -2104 ((-767) |#2| |#1|)) (-15 -2993 ((-637 |#2|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-489 |#1|) (-140) (-1207)) (T -489))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1207)))) (-2107 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3)) (-4 *3 (-1207)))) (-2106 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-2105 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-2104 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1207)) (-5 *2 (-767)))) (-2103 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-5 *2 (-637 *3)))) (-2993 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-5 *2 (-637 *3)))) (-2104 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-3653 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-610 (-859))) (-6 (-610 (-859))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4409)) (-15 -2107 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2106 ((-112) (-1 (-112) |t#1|) $)) (-15 -2105 ((-112) (-1 (-112) |t#1|) $)) (-15 -2104 ((-767) (-1 (-112) |t#1|) $)) (-15 -2103 ((-637 |t#1|) $)) (-15 -2993 ((-637 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -2104 ((-767) |t#1| $)) (-15 -3653 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-4361 ((|#1| $) 6) (($ |#1|) 9)))
+(((-490 |#1|) (-140) (-1207)) (T -490))
NIL
(-13 (-610 |t#1|) (-613 |t#1|))
(((-613 |#1|) . T) ((-610 |#1|) . T))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1482 (($ (-1151)) 8)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 14) (((-1151) $) 11)) (-1718 (((-112) $ $) 10)))
-(((-491) (-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -1482 ($ (-1151)))))) (T -491))
-((-1482 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491)))))
-(-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -1482 ($ (-1151)))))
-((-1770 (($ $) 15)) (-1747 (($ $) 24)) (-1793 (($ $) 12)) (-1805 (($ $) 10)) (-1783 (($ $) 17)) (-1758 (($ $) 22)))
-(((-492 |#1|) (-10 -8 (-15 -1758 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|))) (-493)) (T -492))
-NIL
-(-10 -8 (-15 -1758 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)))
-((-1770 (($ $) 11)) (-1747 (($ $) 10)) (-1793 (($ $) 9)) (-1805 (($ $) 8)) (-1783 (($ $) 7)) (-1758 (($ $) 6)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2108 (($ (-1151)) 8)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 14) (((-1151) $) 11)) (-3444 (((-112) $ $) 10)))
+(((-491) (-13 (-1094) (-610 (-1151)) (-10 -8 (-15 -2108 ($ (-1151)))))) (T -491))
+((-2108 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491)))))
+(-13 (-1094) (-610 (-1151)) (-10 -8 (-15 -2108 ($ (-1151)))))
+((-3898 (($ $) 15)) (-3896 (($ $) 24)) (-3900 (($ $) 12)) (-3901 (($ $) 10)) (-3899 (($ $) 17)) (-3897 (($ $) 22)))
+(((-492 |#1|) (-10 -8 (-15 -3897 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|))) (-493)) (T -492))
+NIL
+(-10 -8 (-15 -3897 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)))
+((-3898 (($ $) 11)) (-3896 (($ $) 10)) (-3900 (($ $) 9)) (-3901 (($ $) 8)) (-3899 (($ $) 7)) (-3897 (($ $) 6)))
(((-493) (-140)) (T -493))
-((-1770 (*1 *1 *1) (-4 *1 (-493))) (-1747 (*1 *1 *1) (-4 *1 (-493))) (-1793 (*1 *1 *1) (-4 *1 (-493))) (-1805 (*1 *1 *1) (-4 *1 (-493))) (-1783 (*1 *1 *1) (-4 *1 (-493))) (-1758 (*1 *1 *1) (-4 *1 (-493))))
-(-13 (-10 -8 (-15 -1758 ($ $)) (-15 -1783 ($ $)) (-15 -1805 ($ $)) (-15 -1793 ($ $)) (-15 -1747 ($ $)) (-15 -1770 ($ $))))
-((-2173 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 42)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1233 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1233 |#3|)) (T -494))
-((-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|))))
-((-1677 (((-112) $ $) NIL)) (-2793 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-1559 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-3439 (((-112) $) 38)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-1493 (((-112) $ $) 62)) (-2058 (((-640 (-609 $)) $) 46)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4135 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-4249 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3377 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2130 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2057 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) 48)) (-3094 (($ $ $) NIL)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2444 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3228 (($ $) NIL) (($ (-640 $)) NIL)) (-2739 (((-640 (-114)) $) NIL)) (-2559 (((-114) (-114)) NIL)) (-3401 (((-112) $) 40)) (-2959 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2143 (((-1118 (-563) (-609 $)) $) 36)) (-2172 (($ $ (-563)) NIL)) (-3975 (((-1165 $) (-1165 $) (-609 $)) 76) (((-1165 $) (-1165 $) (-640 (-609 $))) 53) (($ $ (-609 $)) 65) (($ $ (-640 (-609 $))) 66)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2716 (((-1165 $) (-609 $)) 63 (|has| $ (-1045)))) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 $ $) (-609 $)) NIL)) (-2751 (((-3 (-609 $) "failed") $) NIL)) (-3517 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2126 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-2602 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-2687 (($ $) NIL)) (-4238 (((-767) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2726 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1542 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1993 (((-767) $) NIL)) (-2308 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-2761 (($ $) NIL) (($ $ $) NIL)) (-4203 (($ $ (-767)) NIL) (($ $) 35)) (-2153 (((-1118 (-563) (-609 $)) $) 19)) (-3402 (($ $) NIL (|has| $ (-1045)))) (-2219 (((-379) $) 90) (((-225) $) 98) (((-169 (-379)) $) 106)) (-1692 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) 20)) (-3914 (((-767)) NIL)) (-3083 (($ $) NIL) (($ (-640 $)) NIL)) (-2512 (((-112) (-114)) 82)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 10 T CONST)) (-2253 (($) 21 T CONST)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 23)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1836 (($ $ $) 42)) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) 44) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) 26) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-495) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1692 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2153 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -1493 ((-112) $ $)) (-15 -3975 ((-1165 $) (-1165 $) (-609 $))) (-15 -3975 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3975 ($ $ (-609 $))) (-15 -3975 ($ $ (-640 (-609 $))))))) (T -495))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2444 (*1 *1 *1) (-5 *1 (-495))) (-1493 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3975 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495)))) (-3975 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495)))) (-5 *1 (-495)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495)))))
-(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1692 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2153 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -1493 ((-112) $ $)) (-15 -3975 ((-1165 $) (-1165 $) (-609 $))) (-15 -3975 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3975 ($ $ (-609 $))) (-15 -3975 ($ $ (-640 (-609 $))))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 25 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 22 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 21)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 14)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 12 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) 23 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) 10 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 13)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 24) (($ $ (-1224 (-563))) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) 9 (|has| $ (-6 -4408)))))
-(((-496 |#1| |#2|) (-19 |#1|) (-1208) (-563)) (T -496))
+((-3898 (*1 *1 *1) (-4 *1 (-493))) (-3896 (*1 *1 *1) (-4 *1 (-493))) (-3900 (*1 *1 *1) (-4 *1 (-493))) (-3901 (*1 *1 *1) (-4 *1 (-493))) (-3899 (*1 *1 *1) (-4 *1 (-493))) (-3897 (*1 *1 *1) (-4 *1 (-493))))
+(-13 (-10 -8 (-15 -3897 ($ $)) (-15 -3899 ($ $)) (-15 -3901 ($ $)) (-15 -3900 ($ $)) (-15 -3896 ($ $)) (-15 -3898 ($ $))))
+((-4147 (((-405 |#4|) |#4| (-1 (-405 |#2|) |#2|)) 42)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4| (-1 (-405 |#2|) |#2|)))) (-363) (-1232 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1232 |#3|)) (T -494))
+((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-405 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1232 *7)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4| (-1 (-405 |#2|) |#2|))))
+((-2953 (((-112) $ $) NIL)) (-1702 (((-637 $) (-1163 $) (-1169)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-942 $)) NIL)) (-1290 (($ (-1163 $) (-1169)) NIL) (($ (-1163 $)) NIL) (($ (-942 $)) NIL)) (-3596 (((-112) $) 38)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-2109 (((-112) $ $) 62)) (-1695 (((-637 (-608 $)) $) 46)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1699 (($ $ (-293 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-1291 (((-637 $) (-1163 $) (-1169)) NIL) (((-637 $) (-1163 $)) NIL) (((-637 $) (-942 $)) NIL)) (-3591 (($ (-1163 $) (-1169)) NIL) (($ (-1163 $)) NIL) (($ (-942 $)) NIL)) (-3565 (((-3 (-608 $) #1="failed") $) NIL) (((-3 (-546) #1#) $) NIL) (((-3 (-407 (-546)) #1#) $) NIL)) (-3564 (((-608 $) $) NIL) (((-546) $) NIL) (((-407 (-546)) $) 48)) (-2949 (($ $ $) NIL)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-407 (-546)))) (|:| |vec| (-1256 (-407 (-546))))) (-684 $) (-1256 $)) NIL) (((-684 (-407 (-546))) (-684 $)) NIL)) (-4257 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2958 (($ $) NIL) (($ (-637 $)) NIL)) (-1694 (((-637 (-113)) $) NIL)) (-3437 (((-113) (-113)) NIL)) (-2552 (((-112) $) 40)) (-3062 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-3388 (((-1118 (-546) (-608 $)) $) 36)) (-3401 (($ $ (-546)) NIL)) (-3524 (((-1163 $) (-1163 $) (-608 $)) 76) (((-1163 $) (-1163 $) (-637 (-608 $))) 53) (($ $ (-608 $)) 65) (($ $ (-637 (-608 $))) 66)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-1692 (((-1163 $) (-608 $)) 63 (|has| $ (-1045)))) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 $ $) (-608 $)) NIL)) (-1697 (((-3 (-608 $) "failed") $) NIL)) (-2048 (($ (-637 $)) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-1696 (((-637 (-608 $)) $) NIL)) (-2363 (($ (-113) $) NIL) (($ (-113) (-637 $)) NIL)) (-3020 (((-112) $ (-113)) NIL) (((-112) $ (-1169)) NIL)) (-2785 (($ $) NIL)) (-2988 (((-767) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ (-637 $)) NIL) (($ $ $) NIL)) (-1693 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL (|has| $ (-1034 (-546))))) (-4182 (($ $ (-608 $) $) NIL) (($ $ (-637 (-608 $)) (-637 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-1169)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-1169) (-1 $ (-637 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-637 (-113)) (-637 (-1 $ $))) NIL) (($ $ (-637 (-113)) (-637 (-1 $ (-637 $)))) NIL) (($ $ (-113) (-1 $ (-637 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1739 (((-767) $) NIL)) (-4214 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-637 $)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1698 (($ $) NIL) (($ $ $) NIL)) (-4225 (($ $ (-767)) NIL) (($ $) 35)) (-3387 (((-1118 (-546) (-608 $)) $) 19)) (-3593 (($ $) NIL (|has| $ (-1045)))) (-4385 (((-378) $) 90) (((-225) $) 98) (((-168 (-378)) $) 106)) (-4361 (((-859) $) NIL) (($ (-608 $)) NIL) (($ (-407 (-546))) NIL) (($ $) NIL) (($ (-546)) NIL) (($ (-1118 (-546) (-608 $))) 20)) (-3518 (((-767)) NIL)) (-2975 (($ $) NIL) (($ (-637 $)) NIL)) (-2384 (((-112) (-113)) 82)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 10 T CONST)) (-3053 (($) 21 T CONST)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 23)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4364 (($ $ $) 42)) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-407 (-546))) NIL) (($ $ (-546)) 44) (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL) (($ $ $) 26) (($ (-546) $) NIL) (($ (-767) $) NIL) (($ (-915) $) NIL)))
+(((-495) (-13 (-298) (-27) (-1034 (-546)) (-1034 (-407 (-546))) (-636 (-546)) (-1016) (-636 (-407 (-546))) (-147) (-611 (-168 (-378))) (-233) (-10 -8 (-15 -4361 ($ (-1118 (-546) (-608 $)))) (-15 -3388 ((-1118 (-546) (-608 $)) $)) (-15 -3387 ((-1118 (-546) (-608 $)) $)) (-15 -4257 ($ $)) (-15 -2109 ((-112) $ $)) (-15 -3524 ((-1163 $) (-1163 $) (-608 $))) (-15 -3524 ((-1163 $) (-1163 $) (-637 (-608 $)))) (-15 -3524 ($ $ (-608 $))) (-15 -3524 ($ $ (-637 (-608 $))))))) (T -495))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495)))) (-4257 (*1 *1 *1) (-5 *1 (-495))) (-2109 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-495))) (-5 *3 (-608 (-495))) (-5 *1 (-495)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-495))) (-5 *3 (-637 (-608 (-495)))) (-5 *1 (-495)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-495))) (-5 *1 (-495)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-608 (-495)))) (-5 *1 (-495)))))
+(-13 (-298) (-27) (-1034 (-546)) (-1034 (-407 (-546))) (-636 (-546)) (-1016) (-636 (-407 (-546))) (-147) (-611 (-168 (-378))) (-233) (-10 -8 (-15 -4361 ($ (-1118 (-546) (-608 $)))) (-15 -3388 ((-1118 (-546) (-608 $)) $)) (-15 -3387 ((-1118 (-546) (-608 $)) $)) (-15 -4257 ($ $)) (-15 -2109 ((-112) $ $)) (-15 -3524 ((-1163 $) (-1163 $) (-608 $))) (-15 -3524 ((-1163 $) (-1163 $) (-637 (-608 $)))) (-15 -3524 ($ $ (-608 $))) (-15 -3524 ($ $ (-637 (-608 $))))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) 25 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 22 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 21)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 14)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 12 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) 23 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) 10 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 13)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) 24) (($ $ (-1223 (-546))) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) 9 (|has| $ (-6 -4408)))))
+(((-496 |#1| |#2|) (-19 |#1|) (-1207) (-546)) (T -496))
NIL
(-19 |#1|)
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL)) (-1589 (($ $ (-563) (-496 |#1| |#3|)) NIL)) (-1572 (($ $ (-563) (-496 |#1| |#2|)) NIL)) (-2569 (($) NIL T CONST)) (-1960 (((-496 |#1| |#3|) $ (-563)) NIL)) (-4356 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2658 (((-640 |#1|) $) NIL)) (-2380 (((-767) $) NIL)) (-1565 (($ (-767) (-767) |#1|) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1950 (((-496 |#1| |#2|) $ (-563)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1208) (-563) (-563)) (T -497))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) NIL)) (-1335 (($ $ (-546) (-496 |#1| |#3|)) NIL)) (-1334 (($ $ (-546) (-496 |#1| |#2|)) NIL)) (-4139 (($) NIL T CONST)) (-3504 (((-496 |#1| |#3|) $ (-546)) NIL)) (-1672 ((|#1| $ (-546) (-546) |#1|) NIL)) (-3505 ((|#1| $ (-546) (-546)) NIL)) (-2103 (((-637 |#1|) $) NIL)) (-3507 (((-767) $) NIL)) (-4029 (($ (-767) (-767) |#1|) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) (-546)) NIL) ((|#1| $ (-546) (-546) |#1|) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3503 (((-496 |#1| |#2|) $ (-546)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1207) (-546) (-546)) (T -497))
NIL
(-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|))
-((-1515 (((-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767)) 27)) (-1504 (((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767)) 34)) (-3417 (((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)) 84)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -1504 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -1515 ((-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -3417 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -498))
-((-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-2 (|:| -4013 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7))))) (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -4013 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-1515 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -4013 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -4013 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6)))) (-4 *7 (-1233 *6)))) (-1504 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3)) (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1233 *5)))))
-(-10 -7 (-15 -1504 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -1515 ((-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -3417 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767))))
-((-1592 (((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 62)) (-1529 ((|#1| (-684 |#1|) |#1| (-767)) 24)) (-1553 (((-767) (-767) (-767)) 30)) (-1579 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 42)) (-1567 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 50) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 47)) (-1541 ((|#1| (-684 |#1|) (-684 |#1|) |#1| (-563)) 28)) (-2183 ((|#1| (-684 |#1|)) 18)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2183 (|#1| (-684 |#1|))) (-15 -1529 (|#1| (-684 |#1|) |#1| (-767))) (-15 -1541 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -1553 ((-767) (-767) (-767))) (-15 -1567 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1567 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -1579 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1592 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -499))
-((-1592 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1579 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1567 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1567 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1553 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1541 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-563)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1529 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
-(-10 -7 (-15 -2183 (|#1| (-684 |#1|))) (-15 -1529 (|#1| (-684 |#1|) |#1| (-767))) (-15 -1541 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -1553 ((-767) (-767) (-767))) (-15 -1567 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1567 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -1579 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1592 ((-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4013 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))))
-((-1677 (((-112) $ $) NIL)) (-3384 (($ $) NIL)) (-2210 (($ $ $) 35)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4052 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-1640 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) 36 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-1459 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-4356 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-4293 (((-112) $ (-563)) NIL)) (-4369 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-2658 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-2200 (($ $ $) 33)) (-2174 (($ $) NIL)) (-2292 (($ $ $) NIL)) (-1565 (($ (-767) (-112)) 23)) (-2303 (($ $ $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 8 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL)) (-4300 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3523 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL)) (-4347 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-112) $) NIL (|has| (-563) (-846)))) (-1971 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2221 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2295 (((-640 (-112)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 24)) (-2308 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) 18) (((-112) $ (-563) (-112)) NIL)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1708 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) 25)) (-2219 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-1706 (($ (-640 (-112))) NIL)) (-2857 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1692 (((-858) $) 22)) (-1471 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2188 (($ $ $) 31)) (-1531 (($ $ $) NIL)) (-3246 (($ $ $) 39)) (-3256 (($ $) 37)) (-3235 (($ $ $) 38)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 26)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 27)) (-1517 (($ $ $) NIL)) (-3610 (((-767) $) 10 (|has| $ (-6 -4408)))))
-(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -3256 ($ $)) (-15 -3246 ($ $ $)) (-15 -3235 ($ $ $)))) (-563)) (T -500))
-((-3256 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-3246 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-3235 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))))
-(-13 (-123) (-10 -8 (-15 -3256 ($ $)) (-15 -3246 ($ $ $)) (-15 -3235 ($ $ $))))
-((-1614 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|)) 34)) (-1603 (((-1165 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1165 |#4|)) 21)) (-1625 (((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|))) 45)) (-1637 (((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1603 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -1603 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -1625 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -1637 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|) (-1045)) (T -501))
-((-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1233 *6)))) (-1614 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1233 *4)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2)))))
-(-10 -7 (-15 -1603 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -1603 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1614 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -1625 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -1637 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1651 (((-1262) $) 19)) (-2308 (((-1151) $ (-1169)) 23)) (-1463 (((-1262) $) 15)) (-1692 (((-858) $) 21) (($ (-1151)) 20)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 9)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 8)))
-(((-502) (-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $)) (-15 -1692 ($ (-1151)))))) (T -502))
-((-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502)))))
-(-13 (-846) (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -1651 ((-1262) $)) (-15 -1692 ($ (-1151)))))
-((-2674 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2655 ((|#1| |#4|) 10)) (-2663 ((|#3| |#4|) 17)))
-(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2655 (|#1| |#4|)) (-15 -2663 (|#3| |#4|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-555) (-988 |#1|) (-373 |#1|) (-373 |#2|)) (T -503))
-((-2674 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-2663 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -2655 (|#1| |#4|)) (-15 -2663 (|#3| |#4|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1677 (((-112) $ $) NIL)) (-1778 (((-112) $ (-640 |#3|)) 103) (((-112) $) 104)) (-3439 (((-112) $) 147)) (-1673 (($ $ |#4|) 95) (($ $ |#4| (-640 |#3|)) 99)) (-1662 (((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|)) 140 (|has| |#3| (-611 (-1169))))) (-1765 (($ $ $) 89) (($ $ |#4|) 87)) (-3401 (((-112) $) 146)) (-1728 (($ $) 107)) (-3854 (((-1151) $) NIL)) (-3834 (($ $ $) 81) (($ (-640 $)) 83)) (-1789 (((-112) |#4| $) 106)) (-1801 (((-112) $ $) 70)) (-1716 (($ (-640 |#4|)) 88)) (-1693 (((-1113) $) NIL)) (-1702 (($ (-640 |#4|)) 144)) (-1687 (((-112) $) 145)) (-2478 (($ $) 72)) (-3154 (((-640 |#4|) $) 56)) (-1753 (((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|)) NIL)) (-1811 (((-112) |#4| $) 75)) (-3526 (((-563) $ (-640 |#3|)) 108) (((-563) $) 109)) (-1692 (((-858) $) 143) (($ (-640 |#4|)) 84)) (-1742 (($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $))) NIL)) (-1718 (((-112) $ $) 71)) (-1813 (($ $ $) 91)) (** (($ $ (-767)) 94)) (* (($ $ $) 93)))
-(((-504 |#1| |#2| |#3| |#4|) (-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -1813 ($ $ $)) (-15 -3401 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -1811 ((-112) |#4| $)) (-15 -1801 ((-112) $ $)) (-15 -1789 ((-112) |#4| $)) (-15 -1778 ((-112) $ (-640 |#3|))) (-15 -1778 ((-112) $)) (-15 -3834 ($ $ $)) (-15 -3834 ($ (-640 $))) (-15 -1765 ($ $ $)) (-15 -1765 ($ $ |#4|)) (-15 -2478 ($ $)) (-15 -1753 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -1742 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -3526 ((-563) $ (-640 |#3|))) (-15 -3526 ((-563) $)) (-15 -1728 ($ $)) (-15 -1716 ($ (-640 |#4|))) (-15 -1702 ($ (-640 |#4|))) (-15 -1687 ((-112) $)) (-15 -3154 ((-640 |#4|) $)) (-15 -1692 ($ (-640 |#4|))) (-15 -1673 ($ $ |#4|)) (-15 -1673 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -1662 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -504))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3439 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1811 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1801 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1789 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1778 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1765 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1765 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-2478 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1753 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3526 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-3526 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1728 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1687 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1673 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-1673 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
-(-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -1813 ($ $ $)) (-15 -3401 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -1811 ((-112) |#4| $)) (-15 -1801 ((-112) $ $)) (-15 -1789 ((-112) |#4| $)) (-15 -1778 ((-112) $ (-640 |#3|))) (-15 -1778 ((-112) $)) (-15 -3834 ($ $ $)) (-15 -3834 ($ (-640 $))) (-15 -1765 ($ $ $)) (-15 -1765 ($ $ |#4|)) (-15 -2478 ($ $)) (-15 -1753 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -1742 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -3526 ((-563) $ (-640 |#3|))) (-15 -3526 ((-563) $)) (-15 -1728 ($ $)) (-15 -1716 ($ (-640 |#4|))) (-15 -1702 ($ (-640 |#4|))) (-15 -1687 ((-112) $)) (-15 -3154 ((-640 |#4|) $)) (-15 -1692 ($ (-640 |#4|))) (-15 -1673 ($ $ |#4|)) (-15 -1673 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -1662 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|)))
-((-1823 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 148)) (-1834 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 149)) (-3820 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 107)) (-2560 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) NIL)) (-1845 (((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 151)) (-1857 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))) 163)))
-(((-505 |#1| |#2|) (-10 -7 (-15 -1823 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1834 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2560 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3820 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1845 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1857 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))))) (-640 (-1169)) (-767)) (T -505))
-((-1857 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-1845 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-640 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
-(-10 -7 (-15 -1823 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1834 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2560 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3820 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1845 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -1857 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 11) (((-1169) $) 9)) (-1718 (((-112) $ $) 7)))
-(((-506) (-13 (-1093) (-610 (-1169)))) (T -506))
-NIL
-(-13 (-1093) (-610 (-1169)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-2587 (($ |#1| |#2|) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1867 ((|#2| $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2239 (($) 12 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) 11) (($ $ $) 23)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 18)))
+((-2111 (((-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767)) 27)) (-2110 (((-637 (-1163 |#1|)) |#1| (-767) (-767) (-767)) 34)) (-2239 (((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-637 |#3|) (-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)) 84)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2110 ((-637 (-1163 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2111 ((-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -2239 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-637 |#3|) (-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) (-350) (-1232 |#1|) (-1232 |#2|)) (T -498))
+((-2239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 (-2 (|:| -2169 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7))))) (-5 *5 (-767)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-350)) (-5 *2 (-2 (|:| -2169 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2111 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-350)) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-2 (|:| -2169 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -2169 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6)))) (-4 *7 (-1232 *6)))) (-2110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-350)) (-4 *5 (-1232 *3)) (-5 *2 (-637 (-1163 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1232 *5)))))
+(-10 -7 (-15 -2110 ((-637 (-1163 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2111 ((-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -2239 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-637 |#3|) (-637 (-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767))))
+((-2117 (((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 62)) (-2112 ((|#1| (-684 |#1|) |#1| (-767)) 24)) (-2114 (((-767) (-767) (-767)) 30)) (-2116 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 42)) (-2115 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 50) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 47)) (-2113 ((|#1| (-684 |#1|) (-684 |#1|) |#1| (-546)) 28)) (-3740 ((|#1| (-684 |#1|)) 18)))
+(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| (-684 |#1|))) (-15 -2112 (|#1| (-684 |#1|) |#1| (-767))) (-15 -2113 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-546))) (-15 -2114 ((-767) (-767) (-767))) (-15 -2115 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2115 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2116 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2117 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))) (-1232 |#1|) (-410 |#1| |#2|)) (T -499))
+((-2117 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-2115 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-2114 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))) (-2113 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-546)) (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-410 *2 *5)))) (-2112 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-410 *2 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-684 *2)) (-4 *4 (-1232 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-410 *2 *4)))))
+(-10 -7 (-15 -3740 (|#1| (-684 |#1|))) (-15 -2112 (|#1| (-684 |#1|) |#1| (-767))) (-15 -2113 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-546))) (-15 -2114 ((-767) (-767) (-767))) (-15 -2115 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2115 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2116 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2117 ((-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -2169 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))))
+((-2953 (((-112) $ $) NIL)) (-2437 (($ $) NIL)) (-3732 (($ $ $) 35)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1881 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-3299 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-112) $ (-1223 (-546)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-546) (-112)) 36 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-3817 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-4257 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-1672 (((-112) $ (-546) (-112)) NIL (|has| $ (-6 -4409)))) (-3505 (((-112) $ (-546)) NIL)) (-3830 (((-546) (-112) $ (-546)) NIL (|has| (-112) (-1094))) (((-546) (-112) $) NIL (|has| (-112) (-1094))) (((-546) (-1 (-112) (-112)) $) NIL)) (-2103 (((-637 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3246 (($ $ $) 33)) (-3733 (($ $) NIL)) (-1385 (($ $ $) NIL)) (-4029 (($ (-767) (-112)) 23)) (-1386 (($ $ $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 8 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL)) (-3924 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2993 (((-637 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL)) (-2107 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ (-112) $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-112) $) NIL (|has| (-546) (-846)))) (-1431 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2352 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-112)) (-637 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-637 (-293 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094))))) (-2358 (((-637 (-112)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 24)) (-4214 (($ $ (-1223 (-546))) NIL) (((-112) $ (-546)) 18) (((-112) $ (-546) (-112)) NIL)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2104 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) 25)) (-4385 (((-535) $) NIL (|has| (-112) (-611 (-535))))) (-3936 (($ (-637 (-112))) NIL)) (-4216 (($ (-637 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4361 (((-859) $) 22)) (-2106 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3247 (($ $ $) 31)) (-2435 (($ $ $) NIL)) (-3729 (($ $ $) 39)) (-3731 (($ $) 37)) (-3730 (($ $ $) 38)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 26)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 27)) (-2436 (($ $ $) NIL)) (-4372 (((-767) $) 10 (|has| $ (-6 -4408)))))
+(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -3731 ($ $)) (-15 -3729 ($ $ $)) (-15 -3730 ($ $ $)))) (-546)) (T -500))
+((-3731 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546)))) (-3729 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546)))) (-3730 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546)))))
+(-13 (-123) (-10 -8 (-15 -3731 ($ $)) (-15 -3729 ($ $ $)) (-15 -3730 ($ $ $))))
+((-2119 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1163 |#4|)) 34)) (-2118 (((-1163 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1163 |#4|)) 21)) (-2120 (((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1163 |#4|))) 45)) (-2121 (((-1163 (-1163 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2118 (|#2| (-1 |#1| |#4|) (-1163 |#4|))) (-15 -2118 ((-1163 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2119 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1163 |#4|))) (-15 -2120 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1163 |#4|)))) (-15 -2121 ((-1163 (-1163 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1232 |#1|) (-1232 |#2|) (-1045)) (T -501))
+((-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1232 *5)) (-5 *2 (-1163 (-1163 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1232 *6)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-684 (-1163 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1232 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1232 *6)))) (-2119 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1163 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1232 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1232 *2)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1232 *5)) (-5 *2 (-1163 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1232 *4)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1163 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1232 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1232 *2)))))
+(-10 -7 (-15 -2118 (|#2| (-1 |#1| |#4|) (-1163 |#4|))) (-15 -2118 ((-1163 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2119 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1163 |#4|))) (-15 -2120 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1163 |#4|)))) (-15 -2121 ((-1163 (-1163 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2122 (((-1262) $) 19)) (-4214 (((-1151) $ (-1169)) 23)) (-4032 (((-1262) $) 15)) (-4361 (((-859) $) 21) (($ (-1151)) 20)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 9)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 8)))
+(((-502) (-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $)) (-15 -4361 ($ (-1151)))))) (T -502))
+((-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502)))))
+(-13 (-846) (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $)) (-15 -2122 ((-1262) $)) (-15 -4361 ($ (-1151)))))
+((-4156 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4154 ((|#1| |#4|) 10)) (-4155 ((|#3| |#4|) 17)))
+(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4154 (|#1| |#4|)) (-15 -4155 (|#3| |#4|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-987 |#1|) (-372 |#1|) (-372 |#2|)) (T -503))
+((-4156 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -4154 (|#1| |#4|)) (-15 -4155 (|#3| |#4|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2953 (((-112) $ $) NIL)) (-2132 (((-112) $ (-637 |#3|)) 103) (((-112) $) 104)) (-3596 (((-112) $) 147)) (-2124 (($ $ |#4|) 95) (($ $ |#4| (-637 |#3|)) 99)) (-2123 (((-1158 (-637 (-942 |#1|)) (-637 (-293 (-942 |#1|)))) (-637 |#4|)) 140 (|has| |#3| (-611 (-1169))))) (-2131 (($ $ $) 89) (($ $ |#4|) 87)) (-2552 (((-112) $) 146)) (-2128 (($ $) 107)) (-3650 (((-1151) $) NIL)) (-3646 (($ $ $) 81) (($ (-637 $)) 83)) (-2133 (((-112) |#4| $) 106)) (-2134 (((-112) $ $) 70)) (-2127 (($ (-637 |#4|)) 88)) (-3651 (((-1113) $) NIL)) (-2126 (($ (-637 |#4|)) 144)) (-2125 (((-112) $) 145)) (-2381 (($ $) 72)) (-3084 (((-637 |#4|) $) 56)) (-2130 (((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-637 |#3|)) NIL)) (-2135 (((-112) |#4| $) 75)) (-4326 (((-546) $ (-637 |#3|)) 108) (((-546) $) 109)) (-4361 (((-859) $) 143) (($ (-637 |#4|)) 84)) (-2129 (($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $))) NIL)) (-3444 (((-112) $ $) 71)) (-4254 (($ $ $) 91)) (** (($ $ (-767)) 94)) (* (($ $ $) 93)))
+(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -4254 ($ $ $)) (-15 -2552 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -2135 ((-112) |#4| $)) (-15 -2134 ((-112) $ $)) (-15 -2133 ((-112) |#4| $)) (-15 -2132 ((-112) $ (-637 |#3|))) (-15 -2132 ((-112) $)) (-15 -3646 ($ $ $)) (-15 -3646 ($ (-637 $))) (-15 -2131 ($ $ $)) (-15 -2131 ($ $ |#4|)) (-15 -2381 ($ $)) (-15 -2130 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-637 |#3|))) (-15 -2129 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -4326 ((-546) $ (-637 |#3|))) (-15 -4326 ((-546) $)) (-15 -2128 ($ $)) (-15 -2127 ($ (-637 |#4|))) (-15 -2126 ($ (-637 |#4|))) (-15 -2125 ((-112) $)) (-15 -3084 ((-637 |#4|) $)) (-15 -4361 ($ (-637 |#4|))) (-15 -2124 ($ $ |#4|)) (-15 -2124 ($ $ |#4| (-637 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -2123 ((-1158 (-637 (-942 |#1|)) (-637 (-293 (-942 |#1|)))) (-637 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -504))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4254 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2552 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3596 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2135 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2134 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2133 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3646 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-637 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2131 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2131 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-2381 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4326 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-546)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-546)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2128 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2125 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3084 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2124 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-2124 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-611 (-1169))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1158 (-637 (-942 *4)) (-637 (-293 (-942 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
+(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -4254 ($ $ $)) (-15 -2552 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -2135 ((-112) |#4| $)) (-15 -2134 ((-112) $ $)) (-15 -2133 ((-112) |#4| $)) (-15 -2132 ((-112) $ (-637 |#3|))) (-15 -2132 ((-112) $)) (-15 -3646 ($ $ $)) (-15 -3646 ($ (-637 $))) (-15 -2131 ($ $ $)) (-15 -2131 ($ $ |#4|)) (-15 -2381 ($ $)) (-15 -2130 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-637 |#3|))) (-15 -2129 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -4326 ((-546) $ (-637 |#3|))) (-15 -4326 ((-546) $)) (-15 -2128 ($ $)) (-15 -2127 ($ (-637 |#4|))) (-15 -2126 ($ (-637 |#4|))) (-15 -2125 ((-112) $)) (-15 -3084 ((-637 |#4|) $)) (-15 -4361 ($ (-637 |#4|))) (-15 -2124 ($ $ |#4|)) (-15 -2124 ($ $ |#4| (-637 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -2123 ((-1158 (-637 (-942 |#1|)) (-637 (-293 (-942 |#1|)))) (-637 |#4|))) |%noBranch|)))
+((-2136 (((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) 148)) (-2137 (((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) 149)) (-2138 (((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) 107)) (-4138 (((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) NIL)) (-2139 (((-637 (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) 151)) (-2140 (((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-637 (-860 |#1|))) 163)))
+(((-505 |#1| |#2|) (-10 -7 (-15 -2136 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2137 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -4138 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2138 ((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2139 ((-637 (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2140 ((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-637 (-860 |#1|))))) (-637 (-1169)) (-767)) (T -505))
+((-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))) (-5 *3 (-637 (-860 *4))) (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-2139 (*1 *2 *3) (-12 (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-637 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-546)) (-239 *4 (-767)) (-860 *3) (-247 *3 (-407 (-546))))) (-14 *3 (-637 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))) (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))) (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))) (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
+(-10 -7 (-15 -2136 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2137 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -4138 ((-112) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2138 ((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2139 ((-637 (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546))))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))))) (-15 -2140 ((-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-504 (-407 (-546)) (-239 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-546)))) (-637 (-860 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 11) (((-1169) $) 9)) (-3444 (((-112) $ $) 7)))
+(((-506) (-13 (-1094) (-610 (-1169)))) (T -506))
+NIL
+(-13 (-1094) (-610 (-1169)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3283 (($ |#1| |#2|) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2141 ((|#2| $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3047 (($) 12 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) 11) (($ $ $) 23)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 18)))
(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-846)) (T -507))
NIL
(-13 (-21) (-509 |#1| |#2|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 12)) (-2569 (($) NIL T CONST)) (-2750 (($ $) 27)) (-2587 (($ |#1| |#2|) 24)) (-2238 (($ (-1 |#1| |#1|) $) 26)) (-1867 ((|#2| $) NIL)) (-2725 ((|#1| $) 28)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2239 (($) 10 T CONST)) (-1718 (((-112) $ $) NIL)) (-1813 (($ $ $) 17)) (* (($ (-917) $) NIL) (($ (-767) $) 22)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 12)) (-4139 (($) NIL T CONST)) (-4374 (($ $) 27)) (-3283 (($ |#1| |#2|) 24)) (-4373 (($ (-1 |#1| |#1|) $) 26)) (-2141 ((|#2| $) NIL)) (-3582 ((|#1| $) 28)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3047 (($) 10 T CONST)) (-3444 (((-112) $ $) NIL)) (-4254 (($ $ $) 17)) (* (($ (-915) $) NIL) (($ (-767) $) 22)))
(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-846)) (T -508))
NIL
(-13 (-23) (-509 |#1| |#2|))
-((-1677 (((-112) $ $) 7)) (-2750 (($ $) 13)) (-2587 (($ |#1| |#2|) 16)) (-2238 (($ (-1 |#1| |#1|) $) 17)) (-1867 ((|#2| $) 14)) (-2725 ((|#1| $) 15)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
-(((-509 |#1| |#2|) (-140) (-1093) (-846)) (T -509))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-846)))) (-2587 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))))
-(-13 (-1093) (-10 -8 (-15 -2238 ($ (-1 |t#1| |t#1|) $)) (-15 -2587 ($ |t#1| |t#2|)) (-15 -2725 (|t#1| $)) (-15 -1867 (|t#2| $)) (-15 -2750 ($ $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-2587 (($ |#1| |#2|) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1867 ((|#2| $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2239 (($) NIL T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 13)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
-(((-510 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -510))
+((-2953 (((-112) $ $) 7)) (-4374 (($ $) 13)) (-3283 (($ |#1| |#2|) 16)) (-4373 (($ (-1 |#1| |#1|) $) 17)) (-2141 ((|#2| $) 14)) (-3582 ((|#1| $) 15)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
+(((-509 |#1| |#2|) (-140) (-1094) (-846)) (T -509))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-846)))) (-3283 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))))
+(-13 (-1094) (-10 -8 (-15 -4373 ($ (-1 |t#1| |t#1|) $)) (-15 -3283 ($ |t#1| |t#2|)) (-15 -3582 (|t#1| $)) (-15 -2141 (|t#2| $)) (-15 -4374 ($ $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-4374 (($ $) 24)) (-3283 (($ |#1| |#2|) 21)) (-4373 (($ (-1 |#1| |#1|) $) 23)) (-2141 ((|#2| $) 26)) (-3582 ((|#1| $) 25)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20)) (-3444 (((-112) $ $) 13)))
+(((-510 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-846)) (T -510))
+NIL
+(-509 |#1| |#2|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3283 (($ |#1| |#2|) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2141 ((|#2| $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3047 (($) NIL T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 13)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL)))
+(((-511 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -511))
NIL
(-13 (-788) (-509 |#1| |#2|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-4092 (($ $ $) 16)) (-3905 (((-3 $ "failed") $ $) 13)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-2587 (($ |#1| |#2|) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1867 ((|#2| $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-2239 (($) NIL T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
-(((-511 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -511))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2784 (($ $ $) 16)) (-1397 (((-3 $ "failed") $ $) 13)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3283 (($ |#1| |#2|) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2141 ((|#2| $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-3047 (($) NIL T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL)))
+(((-512 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -512))
NIL
(-13 (-789) (-509 |#1| |#2|))
-((-1677 (((-112) $ $) NIL)) (-2750 (($ $) 24)) (-2587 (($ |#1| |#2|) 21)) (-2238 (($ (-1 |#1| |#1|) $) 23)) (-1867 ((|#2| $) 26)) (-2725 ((|#1| $) 25)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20)) (-1718 (((-112) $ $) 13)))
-(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1093) (-846)) (T -512))
+((-4182 (($ $ (-637 |#2|) (-637 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -4182 (|#1| |#1| |#2| |#3|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#3|)))) (-514 |#2| |#3|) (-1094) (-1207)) (T -513))
NIL
-(-509 |#1| |#2|)
-((-1542 (($ $ (-640 |#2|) (-640 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -1542 (|#1| |#1| |#2| |#3|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#3|)))) (-514 |#2| |#3|) (-1093) (-1208)) (T -513))
-NIL
-(-10 -8 (-15 -1542 (|#1| |#1| |#2| |#3|)) (-15 -1542 (|#1| |#1| (-640 |#2|) (-640 |#3|))))
-((-1542 (($ $ (-640 |#1|) (-640 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-514 |#1| |#2|) (-140) (-1093) (-1208)) (T -514))
-((-1542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1208)))) (-1542 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208)))))
-(-13 (-10 -8 (-15 -1542 ($ $ |t#1| |t#2|)) (-15 -1542 ($ $ (-640 |t#1|) (-640 |t#2|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 16)) (-1787 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))) $) 18)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767) $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-1347 ((|#1| $ (-563)) 23)) (-2137 ((|#2| $ (-563)) 21)) (-1499 (($ (-1 |#1| |#1|) $) 46)) (-2127 (($ (-1 |#2| |#2|) $) 43)) (-3854 (((-1151) $) NIL)) (-2116 (($ $ $) 53 (|has| |#2| (-788)))) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 42) (($ |#1|) NIL)) (-3244 ((|#2| |#1| $) 49)) (-2239 (($) 11 T CONST)) (-1718 (((-112) $ $) 29)) (-1813 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) 36) (($ |#2| |#1|) 31)))
-(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1093) (-131) |#2|) (T -515))
+(-10 -8 (-15 -4182 (|#1| |#1| |#2| |#3|)) (-15 -4182 (|#1| |#1| (-637 |#2|) (-637 |#3|))))
+((-4182 (($ $ (-637 |#1|) (-637 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-514 |#1| |#2|) (-140) (-1094) (-1207)) (T -514))
+((-4182 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1207)))) (-4182 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1207)))))
+(-13 (-10 -8 (-15 -4182 ($ $ |t#1| |t#2|)) (-15 -4182 ($ $ (-637 |t#1|) (-637 |t#2|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 16)) (-4188 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))) $) 18)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767) $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-2819 ((|#1| $ (-546)) 23)) (-1754 ((|#2| $ (-546)) 21)) (-2417 (($ (-1 |#1| |#1|) $) 46)) (-1753 (($ (-1 |#2| |#2|) $) 43)) (-3650 (((-1151) $) NIL)) (-1752 (($ $ $) 53 (|has| |#2| (-788)))) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 42) (($ |#1|) NIL)) (-4092 ((|#2| |#1| $) 49)) (-3047 (($) 11 T CONST)) (-3444 (((-112) $ $) 29)) (-4254 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-915) $) NIL) (($ (-767) $) 36) (($ |#2| |#1|) 31)))
+(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1094) (-131) |#2|) (T -515))
NIL
(-323 |#1| |#2|)
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1878 (((-112) (-112)) 25)) (-1849 ((|#1| $ (-563) |#1|) 28 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) 52)) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-4194 (($ $) 56 (|has| |#1| (-1093)))) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 44)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-1889 (($ $ (-563)) 13)) (-1900 (((-767) $) 11)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 23)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 21 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4265 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) 20 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3867 (($ $ $ (-563)) 51) (($ |#1| $ (-563)) 37)) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1910 (($ (-640 |#1|)) 29)) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) 19 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 40)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 16)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 33) (($ $ (-1224 (-563))) NIL)) (-3690 (($ $ (-1224 (-563))) 50) (($ $ (-563)) 45)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) 41 (|has| $ (-6 -4409)))) (-1870 (($ $) 32)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-1941 (($ $ $) 42) (($ $ |#1|) 39)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) 17 (|has| $ (-6 -4408)))))
-(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1910 ($ (-640 |#1|))) (-15 -1900 ((-767) $)) (-15 -1889 ($ $ (-563))) (-15 -1878 ((-112) (-112))))) (-1208) (-563)) (T -516))
-((-1910 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4)) (-14 *4 (-563)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563)))) (-1889 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1910 ($ (-640 |#1|))) (-15 -1900 ((-767) $)) (-15 -1889 ($ $ (-563))) (-15 -1878 ((-112) (-112)))))
-((-1677 (((-112) $ $) NIL)) (-1933 (((-1128) $) 11)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1922 (((-1128) $) 13)) (-1394 (((-1128) $) 9)) (-1692 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-517) (-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $)) (-15 -1933 ((-1128) $)) (-15 -1922 ((-1128) $))))) (T -517))
-((-1394 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
-(-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $)) (-15 -1933 ((-1128) $)) (-15 -1922 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-580 |#1|) (-368)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL (|has| (-580 |#1|) (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-580 |#1|) "failed") $) NIL)) (-2057 (((-580 |#1|) $) NIL)) (-3458 (($ (-1257 (-580 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-580 |#1|) (-368)))) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-580 |#1|) (-368)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL (|has| (-580 |#1|) (-368)))) (-1656 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-3188 (($ $ (-767)) NIL (-4034 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368)))) (($ $) NIL (-4034 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-2560 (((-112) $) NIL)) (-1775 (((-917) $) NIL (|has| (-580 |#1|) (-368))) (((-829 (-917)) $) NIL (-4034 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| (-580 |#1|) (-368)))) (-4002 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-3975 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-580 |#1|) (-368)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 (-580 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-3990 (((-917) $) NIL (|has| (-580 |#1|) (-368)))) (-2196 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368)))) (-2184 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-1165 (-580 |#1|)) "failed") $ $) NIL (|has| (-580 |#1|) (-368)))) (-2207 (($ $ (-1165 (-580 |#1|))) NIL (|has| (-580 |#1|) (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-580 |#1|) (-368)) CONST)) (-2552 (($ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL (|has| (-580 |#1|) (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-580 |#1|) (-368)))) (-2173 (((-418 $) $) NIL)) (-3740 (((-829 (-917))) NIL) (((-917)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-767) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4034 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3526 (((-134)) NIL)) (-4203 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-3871 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3402 (((-1165 (-580 |#1|))) NIL)) (-1586 (($) NIL (|has| (-580 |#1|) (-368)))) (-2220 (($) NIL (|has| (-580 |#1|) (-368)))) (-3759 (((-1257 (-580 |#1|)) $) NIL) (((-684 (-580 |#1|)) (-1257 $)) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-580 |#1|) (-368)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-580 |#1|)) NIL)) (-2047 (($ $) NIL (|has| (-580 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4034 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-3213 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ $ (-580 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-580 |#1|)) NIL) (($ (-580 |#1|) $) NIL)))
-(((-518 |#1| |#2|) (-329 (-580 |#1|)) (-917) (-917)) (T -518))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-2142 (((-112) (-112)) 25)) (-4202 ((|#1| $ (-546) |#1|) 28 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) 52)) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-2505 (($ $) 56 (|has| |#1| (-1094)))) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 44)) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2143 (($ $ (-546)) 13)) (-2144 (((-767) $) 11)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 23)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 21 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3248 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) 20 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4022 (($ $ $ (-546)) 51) (($ |#1| $ (-546)) 37)) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2145 (($ (-637 |#1|)) 29)) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) 19 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 40)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 16)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) 33) (($ $ (-1223 (-546))) NIL)) (-1667 (($ $ (-1223 (-546))) 50) (($ $ (-546)) 45)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) 41 (|has| $ (-6 -4409)))) (-3811 (($ $) 32)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4205 (($ $ $) 42) (($ $ |#1|) 39)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) 17 (|has| $ (-6 -4408)))))
+(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2145 ($ (-637 |#1|))) (-15 -2144 ((-767) $)) (-15 -2143 ($ $ (-546))) (-15 -2142 ((-112) (-112))))) (-1207) (-546)) (T -516))
+((-2145 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-516 *3 *4)) (-14 *4 (-546)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-546)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-546)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2145 ($ (-637 |#1|))) (-15 -2144 ((-767) $)) (-15 -2143 ($ $ (-546))) (-15 -2142 ((-112) (-112)))))
+((-2953 (((-112) $ $) NIL)) (-2147 (((-1128) $) 11)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2146 (((-1128) $) 13)) (-4337 (((-1128) $) 9)) (-4361 (((-859) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-517) (-13 (-1076) (-10 -8 (-15 -4337 ((-1128) $)) (-15 -2147 ((-1128) $)) (-15 -2146 ((-1128) $))))) (T -517))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
+(-13 (-1076) (-10 -8 (-15 -4337 ((-1128) $)) (-15 -2147 ((-1128) $)) (-15 -2146 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (((-580 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-580 |#1|) (-368)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-580 |#1|) (-368)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL (|has| (-580 |#1|) (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-580 |#1|) "failed") $) NIL)) (-3564 (((-580 |#1|) $) NIL)) (-1946 (($ (-1256 (-580 |#1|))) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-580 |#1|) (-368)))) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-580 |#1|) (-368)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL (|has| (-580 |#1|) (-368)))) (-1831 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-1921 (($ $ (-767)) NIL (-3943 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368)))) (($ $) NIL (-3943 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-4138 (((-112) $) NIL)) (-4186 (((-915) $) NIL (|has| (-580 |#1|) (-368))) (((-828 (-915)) $) NIL (-3943 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| (-580 |#1|) (-368)))) (-2168 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-3524 (((-580 |#1|) $) NIL) (($ $ (-915)) NIL (|has| (-580 |#1|) (-368)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-580 |#1|) (-368)))) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 (-580 |#1|)) $) NIL) (((-1163 $) $ (-915)) NIL (|has| (-580 |#1|) (-368)))) (-2167 (((-915) $) NIL (|has| (-580 |#1|) (-368)))) (-1759 (((-1163 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368)))) (-1758 (((-1163 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-1163 (-580 |#1|)) "failed") $ $) NIL (|has| (-580 |#1|) (-368)))) (-1760 (($ $ (-1163 (-580 |#1|))) NIL (|has| (-580 |#1|) (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-580 |#1|) (-368)) CONST)) (-2542 (($ (-915)) NIL (|has| (-580 |#1|) (-368)))) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL (|has| (-580 |#1|) (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-580 |#1|) (-368)))) (-4147 (((-405 $) $) NIL)) (-4345 (((-828 (-915))) NIL) (((-915)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-767) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-3943 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-4326 (((-134)) NIL)) (-4225 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-4363 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-3593 (((-1163 (-580 |#1|))) NIL)) (-1825 (($) NIL (|has| (-580 |#1|) (-368)))) (-1761 (($) NIL (|has| (-580 |#1|) (-368)))) (-3632 (((-1256 (-580 |#1|)) $) NIL) (((-684 (-580 |#1|)) (-1256 $)) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-580 |#1|) (-368)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-580 |#1|)) NIL)) (-3091 (($ $) NIL (|has| (-580 |#1|) (-368))) (((-3 $ "failed") $) NIL (-3943 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL) (((-1256 $) (-915)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-3058 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL) (($ $ (-580 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-580 |#1|)) NIL) (($ (-580 |#1|) $) NIL)))
+(((-518 |#1| |#2|) (-329 (-580 |#1|)) (-915) (-915)) (T -518))
NIL
(-329 (-580 |#1|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) 35)) (-1589 (($ $ (-563) |#4|) NIL)) (-1572 (($ $ (-563) |#5|) NIL)) (-2569 (($) NIL T CONST)) (-1960 ((|#4| $ (-563)) NIL)) (-4356 ((|#1| $ (-563) (-563) |#1|) 34)) (-4293 ((|#1| $ (-563) (-563)) 32)) (-2658 (((-640 |#1|) $) NIL)) (-2380 (((-767) $) 28)) (-1565 (($ (-767) (-767) |#1|) 25)) (-2391 (((-767) $) 30)) (-2514 (((-112) $ (-767)) NIL)) (-1995 (((-563) $) 26)) (-1979 (((-563) $) 27)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) 29)) (-1969 (((-563) $) 31)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) 38 (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 14)) (-3445 (($) 16)) (-2308 ((|#1| $ (-563) (-563)) 33) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1950 ((|#5| $ (-563)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1208) (-563) (-563) (-373 |#1|) (-373 |#1|)) (T -519))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) 35)) (-1335 (($ $ (-546) |#4|) NIL)) (-1334 (($ $ (-546) |#5|) NIL)) (-4139 (($) NIL T CONST)) (-3504 ((|#4| $ (-546)) NIL)) (-1672 ((|#1| $ (-546) (-546) |#1|) 34)) (-3505 ((|#1| $ (-546) (-546)) 32)) (-2103 (((-637 |#1|) $) NIL)) (-3507 (((-767) $) 28)) (-4029 (($ (-767) (-767) |#1|) 25)) (-3506 (((-767) $) 30)) (-4134 (((-112) $ (-767)) NIL)) (-3511 (((-546) $) 26)) (-3509 (((-546) $) 27)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) 29)) (-3508 (((-546) $) 31)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) 38 (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 14)) (-3979 (($) 16)) (-4214 ((|#1| $ (-546) (-546)) 33) ((|#1| $ (-546) (-546) |#1|) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3503 ((|#5| $ (-546)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1207) (-546) (-546) (-372 |#1|) (-372 |#1|)) (T -519))
NIL
(-57 |#1| |#4| |#5|)
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) NIL)) (-3446 ((|#1| $) NIL)) (-4303 (($ $) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 58 (|has| $ (-6 -4409)))) (-4073 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4052 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4409)))) (-1640 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1909 (($ $ $) 23 (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 21 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4409))) (($ $ "rest" $) 24 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) NIL)) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3435 ((|#1| $) NIL)) (-2569 (($) NIL T CONST)) (-1574 (($ $) 28 (|has| $ (-6 -4409)))) (-4383 (($ $) 29)) (-3793 (($ $) 18) (($ $ (-767)) 32)) (-4194 (($ $) 54 (|has| |#1| (-1093)))) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-1966 (((-112) $) NIL)) (-4369 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2658 (((-640 |#1|) $) 27 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 31 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4265 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-4300 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3652 (($ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) 50 (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3867 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) 13) (($ $ (-767)) NIL)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1976 (((-112) $) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 12)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) 17)) (-3445 (($) 16)) (-2308 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL)) (-2379 (((-563) $ $) NIL)) (-3690 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2889 (((-112) $) 33)) (-1951 (($ $) NIL)) (-1930 (($ $) NIL (|has| $ (-6 -4409)))) (-1961 (((-767) $) NIL)) (-1970 (($ $) 35)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) 34)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 26)) (-1941 (($ $ $) 53) (($ $ |#1|) NIL)) (-2857 (($ $ $) NIL) (($ |#1| $) 10) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1692 (((-858) $) 45 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 47 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) 9 (|has| $ (-6 -4408)))))
-(((-520 |#1| |#2|) (-661 |#1|) (-1208) (-563)) (T -520))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) NIL)) (-4209 ((|#1| $) NIL)) (-4211 (($ $) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 58 (|has| $ (-6 -4409)))) (-1883 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1881 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4409)))) (-3299 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4201 (($ $ $) 23 (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 21 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4409))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) NIL)) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4210 ((|#1| $) NIL)) (-4139 (($) NIL T CONST)) (-2423 (($ $) 28 (|has| $ (-6 -4409)))) (-2424 (($ $) 29)) (-4213 (($ $) 18) (($ $ (-767)) 32)) (-2505 (($ $) 54 (|has| |#1| (-1094)))) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3817 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3853 (((-112) $) NIL)) (-3830 (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094))) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) (-1 (-112) |#1|) $) NIL)) (-2103 (((-637 |#1|) $) 27 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 31 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3248 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3924 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3948 (($ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) 50 (|has| |#1| (-1094)))) (-4212 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4022 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) 13) (($ $ (-767)) NIL)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3854 (((-112) $) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 12)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) 17)) (-3979 (($) 16)) (-4214 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1223 (-546))) NIL) ((|#1| $ (-546)) NIL) ((|#1| $ (-546) |#1|) NIL)) (-3419 (((-546) $ $) NIL)) (-1667 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-4048 (((-112) $) 33)) (-4206 (($ $) NIL)) (-4204 (($ $) NIL (|has| $ (-6 -4409)))) (-4207 (((-767) $) NIL)) (-4208 (($ $) 35)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) 34)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 26)) (-4205 (($ $ $) 53) (($ $ |#1|) NIL)) (-4216 (($ $ $) NIL) (($ |#1| $) 10) (($ (-637 $)) NIL) (($ $ |#1|) NIL)) (-4361 (((-859) $) 45 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) 47 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) 9 (|has| $ (-6 -4408)))))
+(((-520 |#1| |#2|) (-661 |#1|) (-1207) (-546)) (T -520))
NIL
(-661 |#1|)
-((-1940 ((|#4| |#4|) 27)) (-2521 (((-767) |#4|) 32)) (-1929 (((-767) |#4|) 33)) (-1917 (((-640 |#3|) |#4|) 39 (|has| |#3| (-6 -4409)))) (-3694 (((-3 |#4| "failed") |#4|) 50)) (-1944 ((|#4| |#4|) 43)) (-2168 ((|#1| |#4|) 42)))
-(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1940 (|#4| |#4|)) (-15 -2521 ((-767) |#4|)) (-15 -1929 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -1917 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -2168 (|#1| |#4|)) (-15 -1944 (|#4| |#4|)) (-15 -3694 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -521))
-((-3694 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-1944 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-1917 (*1 *2 *3) (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(-10 -7 (-15 -1940 (|#4| |#4|)) (-15 -2521 ((-767) |#4|)) (-15 -1929 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -1917 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -2168 (|#1| |#4|)) (-15 -1944 (|#4| |#4|)) (-15 -3694 ((-3 |#4| "failed") |#4|)))
-((-1940 ((|#8| |#4|) 20)) (-1917 (((-640 |#3|) |#4|) 29 (|has| |#7| (-6 -4409)))) (-3694 (((-3 |#8| "failed") |#4|) 23)))
-(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1940 (|#8| |#4|)) (-15 -3694 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -1917 ((-640 |#3|) |#4|)) |%noBranch|)) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-988 |#1|) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -522))
-((-1917 (*1 *2 *3) (-12 (|has| *9 (-6 -4409)) (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-640 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6)) (-4 *10 (-682 *7 *8 *9)))) (-3694 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))))
-(-10 -7 (-15 -1940 (|#8| |#4|)) (-15 -3694 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -1917 ((-640 |#3|) |#4|)) |%noBranch|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767) (-767)) NIL)) (-3934 (($ $ $) NIL)) (-1769 (($ (-599 |#1| |#3|)) NIL) (($ $) NIL)) (-3870 (((-112) $) NIL)) (-3924 (($ $ (-563) (-563)) 12)) (-3913 (($ $ (-563) (-563)) NIL)) (-3901 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3953 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3892 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-1589 (($ $ (-563) (-599 |#1| |#3|)) NIL)) (-1572 (($ $ (-563) (-599 |#1| |#2|)) NIL)) (-2217 (($ (-767) |#1|) NIL)) (-2569 (($) NIL T CONST)) (-1940 (($ $) 21 (|has| |#1| (-307)))) (-1960 (((-599 |#1| |#3|) $ (-563)) NIL)) (-2521 (((-767) $) 24 (|has| |#1| (-555)))) (-4356 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2658 (((-640 |#1|) $) NIL)) (-1929 (((-767) $) 26 (|has| |#1| (-555)))) (-1917 (((-640 (-599 |#1| |#2|)) $) 29 (|has| |#1| (-555)))) (-2380 (((-767) $) NIL)) (-1565 (($ (-767) (-767) |#1|) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2157 ((|#1| $) 19 (|has| |#1| (-6 (-4410 "*"))))) (-1995 (((-563) $) 10)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) 11)) (-1969 (((-563) $) NIL)) (-4040 (($ (-640 (-640 |#1|))) NIL)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3734 (((-640 (-640 |#1|)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3694 (((-3 $ "failed") $) 33 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2206 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-3881 (((-112) $) NIL)) (-2168 ((|#1| $) 17 (|has| |#1| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1950 (((-599 |#1| |#2|) $ (-563)) NIL)) (-1692 (($ (-599 |#1| |#2|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-599 |#1| |#2|) $ (-599 |#1| |#2|)) NIL) (((-599 |#1| |#3|) (-599 |#1| |#3|) $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-523 |#1| |#2| |#3|) (-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) (-1045) (-563) (-563)) (T -523))
-NIL
-(-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1953 (((-640 (-1207)) $) 13)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL) (($ (-640 (-1207))) 11)) (-1718 (((-112) $ $) NIL)))
-(((-524) (-13 (-1076) (-10 -8 (-15 -1692 ($ (-640 (-1207)))) (-15 -1953 ((-640 (-1207)) $))))) (T -524))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))))
-(-13 (-1076) (-10 -8 (-15 -1692 ($ (-640 (-1207)))) (-15 -1953 ((-640 (-1207)) $))))
-((-1677 (((-112) $ $) NIL)) (-1963 (((-1128) $) 14)) (-3854 (((-1151) $) NIL)) (-1973 (((-1169) $) 11)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-525) (-13 (-1076) (-10 -8 (-15 -1973 ((-1169) $)) (-15 -1963 ((-1128) $))))) (T -525))
-((-1973 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525)))))
-(-13 (-1076) (-10 -8 (-15 -1973 ((-1169) $)) (-15 -1963 ((-1128) $))))
-((-3884 (((-686 (-1215)) $) 15)) (-3848 (((-686 (-1214)) $) 35)) (-3864 (((-686 (-1213)) $) 26)) (-3896 (((-686 (-548)) $) 12)) (-3857 (((-686 (-547)) $) 39)) (-3874 (((-686 (-546)) $) 30)) (-3839 (((-767) $ (-128)) 49)))
-(((-526 |#1|) (-10 -8 (-15 -3839 ((-767) |#1| (-128))) (-15 -3848 ((-686 (-1214)) |#1|)) (-15 -3857 ((-686 (-547)) |#1|)) (-15 -3864 ((-686 (-1213)) |#1|)) (-15 -3874 ((-686 (-546)) |#1|)) (-15 -3884 ((-686 (-1215)) |#1|)) (-15 -3896 ((-686 (-548)) |#1|))) (-527)) (T -526))
-NIL
-(-10 -8 (-15 -3839 ((-767) |#1| (-128))) (-15 -3848 ((-686 (-1214)) |#1|)) (-15 -3857 ((-686 (-547)) |#1|)) (-15 -3864 ((-686 (-1213)) |#1|)) (-15 -3874 ((-686 (-546)) |#1|)) (-15 -3884 ((-686 (-1215)) |#1|)) (-15 -3896 ((-686 (-548)) |#1|)))
-((-3884 (((-686 (-1215)) $) 12)) (-3848 (((-686 (-1214)) $) 8)) (-3864 (((-686 (-1213)) $) 10)) (-3896 (((-686 (-548)) $) 13)) (-3857 (((-686 (-547)) $) 9)) (-3874 (((-686 (-546)) $) 11)) (-3839 (((-767) $ (-128)) 7)) (-3907 (((-686 (-129)) $) 14)) (-1895 (($ $) 6)))
+((-3502 ((|#4| |#4|) 27)) (-3501 (((-767) |#4|) 32)) (-3500 (((-767) |#4|) 33)) (-3499 (((-637 |#3|) |#4|) 39 (|has| |#3| (-6 -4409)))) (-4004 (((-3 |#4| "failed") |#4|) 50)) (-2148 ((|#4| |#4|) 43)) (-3739 ((|#1| |#4|) 42)))
+(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3502 (|#4| |#4|)) (-15 -3501 ((-767) |#4|)) (-15 -3500 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -3499 ((-637 |#3|) |#4|)) |%noBranch|) (-15 -3739 (|#1| |#4|)) (-15 -2148 (|#4| |#4|)) (-15 -4004 ((-3 |#4| "failed") |#4|))) (-363) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -521))
+((-4004 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2148 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-3499 (*1 *2 *3) (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-637 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3500 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(-10 -7 (-15 -3502 (|#4| |#4|)) (-15 -3501 ((-767) |#4|)) (-15 -3500 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -3499 ((-637 |#3|) |#4|)) |%noBranch|) (-15 -3739 (|#1| |#4|)) (-15 -2148 (|#4| |#4|)) (-15 -4004 ((-3 |#4| "failed") |#4|)))
+((-3502 ((|#8| |#4|) 20)) (-3499 (((-637 |#3|) |#4|) 29 (|has| |#7| (-6 -4409)))) (-4004 (((-3 |#8| "failed") |#4|) 23)))
+(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3502 (|#8| |#4|)) (-15 -4004 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -3499 ((-637 |#3|) |#4|)) |%noBranch|)) (-556) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-987 |#1|) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -522))
+((-3499 (*1 *2 *3) (-12 (|has| *9 (-6 -4409)) (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-637 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6)) (-4 *10 (-681 *7 *8 *9)))) (-4004 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-3502 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))))
+(-10 -7 (-15 -3502 (|#8| |#4|)) (-15 -4004 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -3499 ((-637 |#3|) |#4|)) |%noBranch|))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767) (-767)) NIL)) (-2480 (($ $ $) NIL)) (-3825 (($ (-599 |#1| |#3|)) NIL) (($ $) NIL)) (-3513 (((-112) $) NIL)) (-2479 (($ $ (-546) (-546)) 12)) (-2478 (($ $ (-546) (-546)) NIL)) (-2477 (($ $ (-546) (-546) (-546) (-546)) NIL)) (-2482 (($ $) NIL)) (-3515 (((-112) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-2476 (($ $ (-546) (-546) $) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546)) $) NIL)) (-1335 (($ $ (-546) (-599 |#1| |#3|)) NIL)) (-1334 (($ $ (-546) (-599 |#1| |#2|)) NIL)) (-3744 (($ (-767) |#1|) NIL)) (-4139 (($) NIL T CONST)) (-3502 (($ $) 21 (|has| |#1| (-307)))) (-3504 (((-599 |#1| |#3|) $ (-546)) NIL)) (-3501 (((-767) $) 24 (|has| |#1| (-556)))) (-1672 ((|#1| $ (-546) (-546) |#1|) NIL)) (-3505 ((|#1| $ (-546) (-546)) NIL)) (-2103 (((-637 |#1|) $) NIL)) (-3500 (((-767) $) 26 (|has| |#1| (-556)))) (-3499 (((-637 (-599 |#1| |#2|)) $) 29 (|has| |#1| (-556)))) (-3507 (((-767) $) NIL)) (-4029 (($ (-767) (-767) |#1|) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3738 ((|#1| $) 19 (|has| |#1| (-6 (-4410 #1="*"))))) (-3511 (((-546) $) 10)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) 11)) (-3508 (((-546) $) NIL)) (-3516 (($ (-637 (-637 |#1|))) NIL)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4008 (((-637 (-637 |#1|)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4004 (((-3 $ #2="failed") $) 33 (|has| |#1| (-363)))) (-2481 (($ $ $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-3872 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-556)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) (-546)) NIL) ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546))) NIL)) (-3743 (($ (-637 |#1|)) NIL) (($ (-637 $)) NIL)) (-3514 (((-112) $) NIL)) (-3739 ((|#1| $) 17 (|has| |#1| (-6 (-4410 #1#))))) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3503 (((-599 |#1| |#2|) $ (-546)) NIL)) (-4361 (($ (-599 |#1| |#2|)) NIL) (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-546) $) NIL) (((-599 |#1| |#2|) $ (-599 |#1| |#2|)) NIL) (((-599 |#1| |#3|) (-599 |#1| |#3|) $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-523 |#1| |#2| |#3|) (-681 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) (-1045) (-546) (-546)) (T -523))
+NIL
+(-681 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2149 (((-637 (-1208)) $) 13)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL) (($ (-637 (-1208))) 11)) (-3444 (((-112) $ $) NIL)))
+(((-524) (-13 (-1076) (-10 -8 (-15 -4361 ($ (-637 (-1208)))) (-15 -2149 ((-637 (-1208)) $))))) (T -524))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-524)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-524)))))
+(-13 (-1076) (-10 -8 (-15 -4361 ($ (-637 (-1208)))) (-15 -2149 ((-637 (-1208)) $))))
+((-2953 (((-112) $ $) NIL)) (-2150 (((-1128) $) 14)) (-3650 (((-1151) $) NIL)) (-2151 (((-1169) $) 11)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-525) (-13 (-1076) (-10 -8 (-15 -2151 ((-1169) $)) (-15 -2150 ((-1128) $))))) (T -525))
+((-2151 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525)))))
+(-13 (-1076) (-10 -8 (-15 -2151 ((-1169) $)) (-15 -2150 ((-1128) $))))
+((-2157 (((-686 (-1215)) $) 15)) (-2153 (((-686 (-1214)) $) 35)) (-2155 (((-686 (-1213)) $) 26)) (-2158 (((-686 (-549)) $) 12)) (-2154 (((-686 (-548)) $) 39)) (-2156 (((-686 (-547)) $) 30)) (-2152 (((-767) $ (-129)) 49)))
+(((-526 |#1|) (-10 -8 (-15 -2152 ((-767) |#1| (-129))) (-15 -2153 ((-686 (-1214)) |#1|)) (-15 -2154 ((-686 (-548)) |#1|)) (-15 -2155 ((-686 (-1213)) |#1|)) (-15 -2156 ((-686 (-547)) |#1|)) (-15 -2157 ((-686 (-1215)) |#1|)) (-15 -2158 ((-686 (-549)) |#1|))) (-527)) (T -526))
+NIL
+(-10 -8 (-15 -2152 ((-767) |#1| (-129))) (-15 -2153 ((-686 (-1214)) |#1|)) (-15 -2154 ((-686 (-548)) |#1|)) (-15 -2155 ((-686 (-1213)) |#1|)) (-15 -2156 ((-686 (-547)) |#1|)) (-15 -2157 ((-686 (-1215)) |#1|)) (-15 -2158 ((-686 (-549)) |#1|)))
+((-2157 (((-686 (-1215)) $) 12)) (-2153 (((-686 (-1214)) $) 8)) (-2155 (((-686 (-1213)) $) 10)) (-2158 (((-686 (-549)) $) 13)) (-2154 (((-686 (-548)) $) 9)) (-2156 (((-686 (-547)) $) 11)) (-2152 (((-767) $ (-129)) 7)) (-2159 (((-686 (-128)) $) 14)) (-1851 (($ $) 6)))
(((-527) (-140)) (T -527))
-((-3907 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129))))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546))))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))) (-3839 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(-13 (-173) (-10 -8 (-15 -3907 ((-686 (-129)) $)) (-15 -3896 ((-686 (-548)) $)) (-15 -3884 ((-686 (-1215)) $)) (-15 -3874 ((-686 (-546)) $)) (-15 -3864 ((-686 (-1213)) $)) (-15 -3857 ((-686 (-547)) $)) (-15 -3848 ((-686 (-1214)) $)) (-15 -3839 ((-767) $ (-128)))))
+((-2159 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-128))))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-549))))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))) (-2152 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-129)) (-5 *2 (-767)))))
+(-13 (-173) (-10 -8 (-15 -2159 ((-686 (-128)) $)) (-15 -2158 ((-686 (-549)) $)) (-15 -2157 ((-686 (-1215)) $)) (-15 -2156 ((-686 (-547)) $)) (-15 -2155 ((-686 (-1213)) $)) (-15 -2154 ((-686 (-548)) $)) (-15 -2153 ((-686 (-1214)) $)) (-15 -2152 ((-767) $ (-129)))))
(((-173) . T))
-((-3938 (((-1165 |#1|) (-767)) 75)) (-1731 (((-1257 |#1|) (-1257 |#1|) (-917)) 68)) (-3918 (((-1262) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) |#1|) 83)) (-3958 (((-1257 |#1|) (-1257 |#1|) (-767)) 36)) (-1690 (((-1257 |#1|) (-917)) 70)) (-3979 (((-1257 |#1|) (-1257 |#1|) (-563)) 24)) (-3929 (((-1165 |#1|) (-1257 |#1|)) 76)) (-4024 (((-1257 |#1|) (-917)) 94)) (-4002 (((-112) (-1257 |#1|)) 79)) (-3975 (((-1257 |#1|) (-1257 |#1|) (-917)) 61)) (-4035 (((-1165 |#1|) (-1257 |#1|)) 88)) (-3990 (((-917) (-1257 |#1|)) 58)) (-2687 (((-1257 |#1|) (-1257 |#1|)) 30)) (-2552 (((-1257 |#1|) (-917) (-917)) 96)) (-3969 (((-1257 |#1|) (-1257 |#1|) (-1113) (-1113)) 23)) (-3948 (((-1257 |#1|) (-1257 |#1|) (-767) (-1113)) 37)) (-4013 (((-1257 (-1257 |#1|)) (-917)) 93)) (-1836 (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 80)) (** (((-1257 |#1|) (-1257 |#1|) (-563)) 43)) (* (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 25)))
-(((-528 |#1|) (-10 -7 (-15 -3918 ((-1262) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) |#1|)) (-15 -1690 ((-1257 |#1|) (-917))) (-15 -2552 ((-1257 |#1|) (-917) (-917))) (-15 -3929 ((-1165 |#1|) (-1257 |#1|))) (-15 -3938 ((-1165 |#1|) (-767))) (-15 -3948 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3958 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3969 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3979 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -1836 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3975 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -1731 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -2687 ((-1257 |#1|) (-1257 |#1|))) (-15 -3990 ((-917) (-1257 |#1|))) (-15 -4002 ((-112) (-1257 |#1|))) (-15 -4013 ((-1257 (-1257 |#1|)) (-917))) (-15 -4024 ((-1257 |#1|) (-917))) (-15 -4035 ((-1165 |#1|) (-1257 |#1|)))) (-349)) (T -528))
-((-4035 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917)) (-5 *1 (-528 *4)))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-1731 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3975 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1836 (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3979 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3969 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3958 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3948 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-2552 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4)))))
-(-10 -7 (-15 -3918 ((-1262) (-1257 (-640 (-2 (|:| -2618 |#1|) (|:| -2552 (-1113))))) |#1|)) (-15 -1690 ((-1257 |#1|) (-917))) (-15 -2552 ((-1257 |#1|) (-917) (-917))) (-15 -3929 ((-1165 |#1|) (-1257 |#1|))) (-15 -3938 ((-1165 |#1|) (-767))) (-15 -3948 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3958 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3969 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3979 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -1836 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3975 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -1731 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -2687 ((-1257 |#1|) (-1257 |#1|))) (-15 -3990 ((-917) (-1257 |#1|))) (-15 -4002 ((-112) (-1257 |#1|))) (-15 -4013 ((-1257 (-1257 |#1|)) (-917))) (-15 -4024 ((-1257 |#1|) (-917))) (-15 -4035 ((-1165 |#1|) (-1257 |#1|))))
-((-3884 (((-686 (-1215)) $) NIL)) (-3848 (((-686 (-1214)) $) NIL)) (-3864 (((-686 (-1213)) $) NIL)) (-3896 (((-686 (-548)) $) NIL)) (-3857 (((-686 (-547)) $) NIL)) (-3874 (((-686 (-546)) $) NIL)) (-3839 (((-767) $ (-128)) NIL)) (-3907 (((-686 (-129)) $) 23)) (-4047 (((-1113) $ (-1113)) 28)) (-4369 (((-1113) $) 27)) (-3170 (((-112) $) 18)) (-4069 (($ (-388)) 12) (($ (-1151)) 14)) (-4058 (((-112) $) 24)) (-1692 (((-858) $) 31)) (-1895 (($ $) 25)))
-(((-529) (-13 (-527) (-610 (-858)) (-10 -8 (-15 -4069 ($ (-388))) (-15 -4069 ($ (-1151))) (-15 -4058 ((-112) $)) (-15 -3170 ((-112) $)) (-15 -4369 ((-1113) $)) (-15 -4047 ((-1113) $ (-1113)))))) (T -529))
-((-4069 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-4069 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) (-4047 (*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))))
-(-13 (-527) (-610 (-858)) (-10 -8 (-15 -4069 ($ (-388))) (-15 -4069 ($ (-1151))) (-15 -4058 ((-112) $)) (-15 -3170 ((-112) $)) (-15 -4369 ((-1113) $)) (-15 -4047 ((-1113) $ (-1113)))))
-((-2197 (((-1 |#1| |#1|) |#1|) 11)) (-4080 (((-1 |#1| |#1|)) 10)))
-(((-530 |#1|) (-10 -7 (-15 -4080 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530))
-((-2197 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-4080 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(-10 -7 (-15 -4080 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-4092 (($ $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-2587 (($ (-767) |#1|) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 (-767) (-767)) $) NIL)) (-1867 ((|#1| $) NIL)) (-2725 (((-767) $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20)) (-2239 (($) NIL T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
+((-2162 (((-1163 |#1|) (-767)) 75)) (-3741 (((-1256 |#1|) (-1256 |#1|) (-915)) 68)) (-2160 (((-1262) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) |#1|) 83)) (-2164 (((-1256 |#1|) (-1256 |#1|) (-767)) 36)) (-3384 (((-1256 |#1|) (-915)) 70)) (-2166 (((-1256 |#1|) (-1256 |#1|) (-546)) 24)) (-2161 (((-1163 |#1|) (-1256 |#1|)) 76)) (-2170 (((-1256 |#1|) (-915)) 94)) (-2168 (((-112) (-1256 |#1|)) 79)) (-3524 (((-1256 |#1|) (-1256 |#1|) (-915)) 61)) (-2171 (((-1163 |#1|) (-1256 |#1|)) 88)) (-2167 (((-915) (-1256 |#1|)) 58)) (-2785 (((-1256 |#1|) (-1256 |#1|)) 30)) (-2542 (((-1256 |#1|) (-915) (-915)) 96)) (-2165 (((-1256 |#1|) (-1256 |#1|) (-1113) (-1113)) 23)) (-2163 (((-1256 |#1|) (-1256 |#1|) (-767) (-1113)) 37)) (-2169 (((-1256 (-1256 |#1|)) (-915)) 93)) (-4364 (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 80)) (** (((-1256 |#1|) (-1256 |#1|) (-546)) 43)) (* (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 25)))
+(((-528 |#1|) (-10 -7 (-15 -2160 ((-1262) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) |#1|)) (-15 -3384 ((-1256 |#1|) (-915))) (-15 -2542 ((-1256 |#1|) (-915) (-915))) (-15 -2161 ((-1163 |#1|) (-1256 |#1|))) (-15 -2162 ((-1163 |#1|) (-767))) (-15 -2163 ((-1256 |#1|) (-1256 |#1|) (-767) (-1113))) (-15 -2164 ((-1256 |#1|) (-1256 |#1|) (-767))) (-15 -2165 ((-1256 |#1|) (-1256 |#1|) (-1113) (-1113))) (-15 -2166 ((-1256 |#1|) (-1256 |#1|) (-546))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-546))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -4364 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -3524 ((-1256 |#1|) (-1256 |#1|) (-915))) (-15 -3741 ((-1256 |#1|) (-1256 |#1|) (-915))) (-15 -2785 ((-1256 |#1|) (-1256 |#1|))) (-15 -2167 ((-915) (-1256 |#1|))) (-15 -2168 ((-112) (-1256 |#1|))) (-15 -2169 ((-1256 (-1256 |#1|)) (-915))) (-15 -2170 ((-1256 |#1|) (-915))) (-15 -2171 ((-1163 |#1|) (-1256 |#1|)))) (-350)) (T -528))
+((-2171 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-528 *4)) (-4 *4 (-350)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-915)) (-5 *1 (-528 *4)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3)))) (-3741 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-915)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-915)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-4364 (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-546)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-2166 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-546)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-2165 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1113)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-2164 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-528 *4)))) (-2163 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1256 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-350)) (-5 *1 (-528 *5)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)))) (-2542 (*1 *2 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))) (-4 *4 (-350)) (-5 *2 (-1262)) (-5 *1 (-528 *4)))))
+(-10 -7 (-15 -2160 ((-1262) (-1256 (-637 (-2 (|:| -3813 |#1|) (|:| -2542 (-1113))))) |#1|)) (-15 -3384 ((-1256 |#1|) (-915))) (-15 -2542 ((-1256 |#1|) (-915) (-915))) (-15 -2161 ((-1163 |#1|) (-1256 |#1|))) (-15 -2162 ((-1163 |#1|) (-767))) (-15 -2163 ((-1256 |#1|) (-1256 |#1|) (-767) (-1113))) (-15 -2164 ((-1256 |#1|) (-1256 |#1|) (-767))) (-15 -2165 ((-1256 |#1|) (-1256 |#1|) (-1113) (-1113))) (-15 -2166 ((-1256 |#1|) (-1256 |#1|) (-546))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-546))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -4364 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -3524 ((-1256 |#1|) (-1256 |#1|) (-915))) (-15 -3741 ((-1256 |#1|) (-1256 |#1|) (-915))) (-15 -2785 ((-1256 |#1|) (-1256 |#1|))) (-15 -2167 ((-915) (-1256 |#1|))) (-15 -2168 ((-112) (-1256 |#1|))) (-15 -2169 ((-1256 (-1256 |#1|)) (-915))) (-15 -2170 ((-1256 |#1|) (-915))) (-15 -2171 ((-1163 |#1|) (-1256 |#1|))))
+((-2157 (((-686 (-1215)) $) NIL)) (-2153 (((-686 (-1214)) $) NIL)) (-2155 (((-686 (-1213)) $) NIL)) (-2158 (((-686 (-549)) $) NIL)) (-2154 (((-686 (-548)) $) NIL)) (-2156 (((-686 (-547)) $) NIL)) (-2152 (((-767) $ (-129)) NIL)) (-2159 (((-686 (-128)) $) 23)) (-2172 (((-1113) $ (-1113)) 28)) (-3830 (((-1113) $) 27)) (-2946 (((-112) $) 18)) (-2174 (($ (-388)) 12) (($ (-1151)) 14)) (-2173 (((-112) $) 24)) (-4361 (((-859) $) 31)) (-1851 (($ $) 25)))
+(((-529) (-13 (-527) (-610 (-859)) (-10 -8 (-15 -2174 ($ (-388))) (-15 -2174 ($ (-1151))) (-15 -2173 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -3830 ((-1113) $)) (-15 -2172 ((-1113) $ (-1113)))))) (T -529))
+((-2174 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) (-2172 (*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))))
+(-13 (-527) (-610 (-859)) (-10 -8 (-15 -2174 ($ (-388))) (-15 -2174 ($ (-1151))) (-15 -2173 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -3830 ((-1113) $)) (-15 -2172 ((-1113) $ (-1113)))))
+((-2176 (((-1 |#1| |#1|) |#1|) 11)) (-2175 (((-1 |#1| |#1|)) 10)))
+(((-530 |#1|) (-10 -7 (-15 -2175 ((-1 |#1| |#1|))) (-15 -2176 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530))
+((-2176 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-2175 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
+(-10 -7 (-15 -2175 ((-1 |#1| |#1|))) (-15 -2176 ((-1 |#1| |#1|) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2784 (($ $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3283 (($ (-767) |#1|) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 (-767) (-767)) $) NIL)) (-2141 ((|#1| $) NIL)) (-3582 (((-767) $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20)) (-3047 (($) NIL T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL)))
(((-531 |#1|) (-13 (-789) (-509 (-767) |#1|)) (-846)) (T -531))
NIL
(-13 (-789) (-509 (-767) |#1|))
-((-4101 (((-640 |#2|) (-1165 |#1|) |#3|) 83)) (-4114 (((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))) 100)) (-4090 (((-1165 |#1|) (-684 |#1|)) 95)))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -4090 ((-1165 |#1|) (-684 |#1|))) (-15 -4101 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -4114 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532))
-((-4114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6))) (-4 *6 (-363)) (-5 *2 (-640 (-2 (|:| |outval| *7) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
-(-10 -7 (-15 -4090 ((-1165 |#1|) (-684 |#1|))) (-15 -4101 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -4114 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|)))))
-((-3233 (((-686 (-1215)) $ (-1215)) NIL)) (-3243 (((-686 (-548)) $ (-548)) NIL)) (-3225 (((-767) $ (-128)) 41)) (-3254 (((-686 (-129)) $ (-129)) 42)) (-3884 (((-686 (-1215)) $) NIL)) (-3848 (((-686 (-1214)) $) NIL)) (-3864 (((-686 (-1213)) $) NIL)) (-3896 (((-686 (-548)) $) NIL)) (-3857 (((-686 (-547)) $) NIL)) (-3874 (((-686 (-546)) $) NIL)) (-3839 (((-767) $ (-128)) 37)) (-3907 (((-686 (-129)) $) 39)) (-1791 (((-112) $) 29)) (-1803 (((-686 $) (-578) (-950)) 19) (((-686 $) (-491) (-950)) 26)) (-1692 (((-858) $) 51)) (-1895 (($ $) 43)))
-(((-533) (-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -1803 ((-686 $) (-491) (-950)))))) (T -533))
-((-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) (-5 *1 (-533)))))
-(-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -1803 ((-686 $) (-491) (-950)))))
-((-3626 (((-839 (-563))) 12)) (-3638 (((-839 (-563))) 14)) (-2191 (((-829 (-563))) 9)))
-(((-534) (-10 -7 (-15 -2191 ((-829 (-563)))) (-15 -3626 ((-839 (-563)))) (-15 -3638 ((-839 (-563)))))) (T -534))
-((-3638 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-3626 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-2191 (*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534)))))
-(-10 -7 (-15 -2191 ((-829 (-563)))) (-15 -3626 ((-839 (-563)))) (-15 -3638 ((-839 (-563)))))
-((-4158 (((-536) (-1169)) 15)) (-2028 ((|#1| (-536)) 20)))
-(((-535 |#1|) (-10 -7 (-15 -4158 ((-536) (-1169))) (-15 -2028 (|#1| (-536)))) (-1208)) (T -535))
-((-2028 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1208)))))
-(-10 -7 (-15 -4158 ((-536) (-1169))) (-15 -2028 (|#1| (-536))))
-((-1677 (((-112) $ $) NIL)) (-4136 (((-1151) $) 47)) (-2748 (((-112) $) 43)) (-3675 (((-1169) $) 44)) (-2759 (((-112) $) 41)) (-3737 (((-1151) $) 42)) (-4124 (($ (-1151)) 48)) (-2781 (((-112) $) NIL)) (-2801 (((-112) $) NIL)) (-2769 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-1739 (($ $ (-640 (-1169))) 20)) (-2028 (((-52) $) 22)) (-2736 (((-112) $) NIL)) (-3702 (((-563) $) NIL)) (-1693 (((-1113) $) NIL)) (-1518 (($ $ (-640 (-1169)) (-1169)) 60)) (-2724 (((-112) $) NIL)) (-4341 (((-225) $) NIL)) (-3887 (($ $) 38)) (-2473 (((-858) $) NIL)) (-1420 (((-112) $ $) NIL)) (-2308 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2545 (((-640 $) $) 28)) (-4279 (((-1169) (-640 $)) 49)) (-2219 (($ (-1151)) NIL) (($ (-1169)) 18) (($ (-563)) 8) (($ (-225)) 25) (($ (-858)) NIL) (($ (-640 $)) 56) (((-1097) $) 11) (($ (-1097)) 12)) (-1555 (((-1169) (-1169) (-640 $)) 52)) (-1692 (((-858) $) 46)) (-3674 (($ $) 51)) (-3663 (($ $) 50)) (-4148 (($ $ (-640 $)) 57)) (-2791 (((-112) $) 27)) (-2239 (($) 9 T CONST)) (-2253 (($) 10 T CONST)) (-1718 (((-112) $ $) 61)) (-1836 (($ $ $) 66)) (-1813 (($ $ $) 62)) (** (($ $ (-767)) 65) (($ $ (-563)) 64)) (* (($ $ $) 63)) (-3610 (((-563) $) NIL)))
-(((-536) (-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -2028 ((-52) $)) (-15 -2219 ($ (-1097))) (-15 -4148 ($ $ (-640 $))) (-15 -1518 ($ $ (-640 (-1169)) (-1169))) (-15 -1739 ($ $ (-640 (-1169)))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 -1836 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 0 ($) -2668) (-15 1 ($) -2668) (-15 -3887 ($ $)) (-15 -4136 ((-1151) $)) (-15 -4124 ($ (-1151))) (-15 -4279 ((-1169) (-640 $))) (-15 -1555 ((-1169) (-1169) (-640 $)))))) (T -536))
-((-2028 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536)))) (-4148 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536)))) (-1813 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1836 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536)))) (-2239 (*1 *1) (-5 *1 (-536))) (-2253 (*1 *1) (-5 *1 (-536))) (-3887 (*1 *1 *1) (-5 *1 (-536))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536)))))
-(-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -2028 ((-52) $)) (-15 -2219 ($ (-1097))) (-15 -4148 ($ $ (-640 $))) (-15 -1518 ($ $ (-640 (-1169)) (-1169))) (-15 -1739 ($ $ (-640 (-1169)))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 -1836 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 (-2239) ($) -2668) (-15 (-2253) ($) -2668) (-15 -3887 ($ $)) (-15 -4136 ((-1151) $)) (-15 -4124 ($ (-1151))) (-15 -4279 ((-1169) (-640 $))) (-15 -1555 ((-1169) (-1169) (-640 $)))))
-((-2011 ((|#2| |#2|) 17)) (-1992 ((|#2| |#2|) 13)) (-2019 ((|#2| |#2| (-563) (-563)) 20)) (-2002 ((|#2| |#2|) 15)))
-(((-537 |#1| |#2|) (-10 -7 (-15 -1992 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -2019 (|#2| |#2| (-563) (-563)))) (-13 (-555) (-147)) (-1248 |#1|)) (T -537))
-((-2019 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1248 *4)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -1992 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -2019 (|#2| |#2| (-563) (-563))))
-((-4189 (((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))) 32)) (-4167 (((-640 |#2|) (-948 |#1|) |#3|) 53) (((-640 |#2|) (-1165 |#1|) |#3|) 52)) (-4176 (((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|) 88)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -4167 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -4167 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -4176 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -4189 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))))) (-452) (-363) (-13 (-363) (-844))) (T -538))
-((-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363)) (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-4176 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -4167 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -4167 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -4176 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -4189 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169)))))
-((-4219 ((|#2| |#2| |#1|) 17)) (-4198 ((|#2| (-640 |#2|)) 26)) (-4209 ((|#2| (-640 |#2|)) 45)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4198 (|#2| (-640 |#2|))) (-15 -4209 (|#2| (-640 |#2|))) (-15 -4219 (|#2| |#2| |#1|))) (-307) (-1233 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539))
-((-4219 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(-10 -7 (-15 -4198 (|#2| (-640 |#2|))) (-15 -4209 (|#2| (-640 |#2|))) (-15 -4219 (|#2| |#2| |#1|)))
-((-2173 (((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 79) (((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 167)))
-(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -540))
-((-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-945 *7 *6 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))))
-((-2011 ((|#4| |#4|) 73)) (-1992 ((|#4| |#4|) 69)) (-2019 ((|#4| |#4| (-563) (-563)) 75)) (-2002 ((|#4| |#4|) 71)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1992 (|#4| |#4|)) (-15 -2002 (|#4| |#4|)) (-15 -2011 (|#4| |#4|)) (-15 -2019 (|#4| |#4| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1233 |#1|) (-720 |#1| |#2|) (-1248 |#3|)) (T -541))
-((-2019 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1248 *6)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))))
-(-10 -7 (-15 -1992 (|#4| |#4|)) (-15 -2002 (|#4| |#4|)) (-15 -2011 (|#4| |#4|)) (-15 -2019 (|#4| |#4| (-563) (-563))))
-((-2011 ((|#2| |#2|) 27)) (-1992 ((|#2| |#2|) 23)) (-2019 ((|#2| |#2| (-563) (-563)) 29)) (-2002 ((|#2| |#2|) 25)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -1992 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -2019 (|#2| |#2| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1248 |#1|)) (T -542))
-((-2019 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))))
-(-10 -7 (-15 -1992 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -2019 (|#2| |#2| (-563) (-563))))
-((-4229 (((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)) 14) (((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|)) 13) (((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|)) 26)))
-(((-543 |#1| |#2|) (-10 -7 (-15 -4229 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -4229 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -4229 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)))) (-1045) (-1233 |#1|)) (T -543))
-((-4229 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-4229 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-4229 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5)))))
-(-10 -7 (-15 -4229 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -4229 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -4229 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|))))
-((-4297 (($ $ $) 78)) (-2802 (((-418 $) $) 46)) (-2130 (((-3 (-563) "failed") $) 58)) (-2057 (((-563) $) 36)) (-2327 (((-3 (-407 (-563)) "failed") $) 73)) (-2317 (((-112) $) 23)) (-2306 (((-407 (-563)) $) 71)) (-2560 (((-112) $) 49)) (-4251 (($ $ $ $) 86)) (-3414 (((-112) $) 15)) (-2101 (($ $ $) 56)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 68)) (-1983 (((-3 $ "failed") $) 63)) (-2645 (($ $) 22)) (-4239 (($ $ $) 84)) (-2522 (($) 59)) (-2081 (($ $) 52)) (-2173 (((-418 $) $) 44)) (-2969 (((-112) $) 13)) (-1993 (((-767) $) 27)) (-4203 (($ $ (-767)) NIL) (($ $) 10)) (-1870 (($ $) 16)) (-2219 (((-563) $) NIL) (((-536) $) 35) (((-888 (-563)) $) 39) (((-379) $) 30) (((-225) $) 32)) (-3914 (((-767)) 8)) (-4319 (((-112) $ $) 19)) (-1864 (($ $ $) 54)))
-(((-544 |#1|) (-10 -8 (-15 -4239 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -4319 ((-112) |#1| |#1|)) (-15 -2969 ((-112) |#1|)) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -1864 (|#1| |#1| |#1|)) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2219 ((-563) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -3414 ((-112) |#1|)) (-15 -1993 ((-767) |#1|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -2560 ((-112) |#1|)) (-15 -3914 ((-767)))) (-545)) (T -544))
-((-3914 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
-(-10 -8 (-15 -4239 (|#1| |#1| |#1|)) (-15 -4251 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -4297 (|#1| |#1| |#1|)) (-15 -4319 ((-112) |#1| |#1|)) (-15 -2969 ((-112) |#1|)) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -1864 (|#1| |#1| |#1|)) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2219 ((-563) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -3414 ((-112) |#1|)) (-15 -1993 ((-767) |#1|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -2560 ((-112) |#1|)) (-15 -3914 ((-767))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-4297 (($ $ $) 85)) (-3905 (((-3 $ "failed") $ $) 19)) (-4275 (($ $ $ $) 74)) (-1798 (($ $) 52)) (-2802 (((-418 $) $) 53)) (-2003 (((-112) $ $) 125)) (-2807 (((-563) $) 114)) (-3462 (($ $ $) 88)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 106)) (-2057 (((-563) $) 107)) (-3094 (($ $ $) 129)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 104) (((-684 (-563)) (-684 $)) 103)) (-3951 (((-3 $ "failed") $) 33)) (-2327 (((-3 (-407 (-563)) "failed") $) 82)) (-2317 (((-112) $) 84)) (-2306 (((-407 (-563)) $) 83)) (-1690 (($) 81) (($ $) 80)) (-3054 (($ $ $) 128)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 123)) (-2560 (((-112) $) 54)) (-4251 (($ $ $ $) 72)) (-4308 (($ $ $) 86)) (-3414 (((-112) $) 116)) (-2101 (($ $ $) 97)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 100)) (-3401 (((-112) $) 31)) (-2959 (((-112) $) 92)) (-1983 (((-3 $ "failed") $) 94)) (-3426 (((-112) $) 115)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 132)) (-4264 (($ $ $ $) 73)) (-3088 (($ $ $) 117)) (-1776 (($ $ $) 118)) (-2645 (($ $) 76)) (-3419 (($ $) 89)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-4239 (($ $ $) 71)) (-2522 (($) 93 T CONST)) (-2827 (($ $) 78)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2081 (($ $) 98)) (-2173 (((-418 $) $) 51)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 130)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 124)) (-2969 (((-112) $) 91)) (-1993 (((-767) $) 126)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 127)) (-4203 (($ $ (-767)) 111) (($ $) 109)) (-3873 (($ $) 77)) (-1870 (($ $) 79)) (-2219 (((-563) $) 108) (((-536) $) 102) (((-888 (-563)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 105)) (-3914 (((-767)) 28)) (-4319 (((-112) $ $) 87)) (-1864 (($ $ $) 99)) (-4212 (($) 90)) (-3223 (((-112) $ $) 40)) (-4287 (($ $ $ $) 75)) (-1462 (($ $) 113)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-767)) 112) (($ $) 110)) (-1779 (((-112) $ $) 120)) (-1754 (((-112) $ $) 121)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 119)) (-1743 (((-112) $ $) 122)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-2178 (((-637 |#2|) (-1163 |#1|) |#3|) 83)) (-2179 (((-637 (-2 (|:| |outval| |#2|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-405 (-1163 |#1|)) (-1163 |#1|))) 100)) (-2177 (((-1163 |#1|) (-684 |#1|)) 95)))
+(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2177 ((-1163 |#1|) (-684 |#1|))) (-15 -2178 ((-637 |#2|) (-1163 |#1|) |#3|)) (-15 -2179 ((-637 (-2 (|:| |outval| |#2|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-405 (-1163 |#1|)) (-1163 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532))
+((-2179 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-405 (-1163 *6)) (-1163 *6))) (-4 *6 (-363)) (-5 *2 (-637 (-2 (|:| |outval| *7) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-363)) (-5 *2 (-637 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1163 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
+(-10 -7 (-15 -2177 ((-1163 |#1|) (-684 |#1|))) (-15 -2178 ((-637 |#2|) (-1163 |#1|) |#3|)) (-15 -2179 ((-637 (-2 (|:| |outval| |#2|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-405 (-1163 |#1|)) (-1163 |#1|)))))
+((-2943 (((-686 (-1215)) $ (-1215)) NIL)) (-2944 (((-686 (-549)) $ (-549)) NIL)) (-2942 (((-767) $ (-129)) 41)) (-2945 (((-686 (-128)) $ (-128)) 42)) (-2157 (((-686 (-1215)) $) NIL)) (-2153 (((-686 (-1214)) $) NIL)) (-2155 (((-686 (-1213)) $) NIL)) (-2158 (((-686 (-549)) $) NIL)) (-2154 (((-686 (-548)) $) NIL)) (-2156 (((-686 (-547)) $) NIL)) (-2152 (((-767) $ (-129)) 37)) (-2159 (((-686 (-128)) $) 39)) (-2739 (((-112) $) 29)) (-2740 (((-686 $) (-578) (-950)) 19) (((-686 $) (-491) (-950)) 26)) (-4361 (((-859) $) 51)) (-1851 (($ $) 43)))
+(((-533) (-13 (-763 (-578)) (-610 (-859)) (-10 -8 (-15 -2740 ((-686 $) (-491) (-950)))))) (T -533))
+((-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) (-5 *1 (-533)))))
+(-13 (-763 (-578)) (-610 (-859)) (-10 -8 (-15 -2740 ((-686 $) (-491) (-950)))))
+((-2915 (((-838 (-546))) 12)) (-2914 (((-838 (-546))) 14)) (-2899 (((-828 (-546))) 9)))
+(((-534) (-10 -7 (-15 -2899 ((-828 (-546)))) (-15 -2915 ((-838 (-546)))) (-15 -2914 ((-838 (-546)))))) (T -534))
+((-2914 (*1 *2) (-12 (-5 *2 (-838 (-546))) (-5 *1 (-534)))) (-2915 (*1 *2) (-12 (-5 *2 (-838 (-546))) (-5 *1 (-534)))) (-2899 (*1 *2) (-12 (-5 *2 (-828 (-546))) (-5 *1 (-534)))))
+(-10 -7 (-15 -2899 ((-828 (-546)))) (-15 -2915 ((-838 (-546)))) (-15 -2914 ((-838 (-546)))))
+((-2953 (((-112) $ $) NIL)) (-2183 (((-1151) $) 47)) (-3668 (((-112) $) 43)) (-3664 (((-1169) $) 44)) (-3669 (((-112) $) 41)) (-3949 (((-1151) $) 42)) (-2182 (($ (-1151)) 48)) (-3671 (((-112) $) NIL)) (-3673 (((-112) $) NIL)) (-3670 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-2185 (($ $ (-637 (-1169))) 20)) (-2188 (((-51) $) 22)) (-3667 (((-112) $) NIL)) (-3663 (((-546) $) NIL)) (-3651 (((-1113) $) NIL)) (-2525 (($ $ (-637 (-1169)) (-1169)) 60)) (-3666 (((-112) $) NIL)) (-3662 (((-225) $) NIL)) (-2184 (($ $) 38)) (-3661 (((-859) $) NIL)) (-3674 (((-112) $ $) NIL)) (-4214 (($ $ (-546)) NIL) (($ $ (-637 (-546))) NIL)) (-3665 (((-637 $) $) 28)) (-2181 (((-1169) (-637 $)) 49)) (-4385 (($ (-1151)) NIL) (($ (-1169)) 18) (($ (-546)) 8) (($ (-225)) 25) (($ (-859)) NIL) (($ (-637 $)) 56) (((-1096) $) 11) (($ (-1096)) 12)) (-2180 (((-1169) (-1169) (-637 $)) 52)) (-4361 (((-859) $) 46)) (-3659 (($ $) 51)) (-3660 (($ $) 50)) (-2186 (($ $ (-637 $)) 57)) (-3672 (((-112) $) 27)) (-3047 (($) 9 T CONST)) (-3053 (($) 10 T CONST)) (-3444 (((-112) $ $) 61)) (-4364 (($ $ $) 66)) (-4254 (($ $ $) 62)) (** (($ $ (-767)) 65) (($ $ (-546)) 64)) (* (($ $ $) 63)) (-4372 (((-546) $) NIL)))
+(((-535) (-13 (-1097 (-1151) (-1169) (-546) (-225) (-859)) (-611 (-1096)) (-10 -8 (-15 -2188 ((-51) $)) (-15 -4385 ($ (-1096))) (-15 -2186 ($ $ (-637 $))) (-15 -2525 ($ $ (-637 (-1169)) (-1169))) (-15 -2185 ($ $ (-637 (-1169)))) (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 -4364 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-546))) (-15 0 ($) -4367) (-15 1 ($) -4367) (-15 -2184 ($ $)) (-15 -2183 ((-1151) $)) (-15 -2182 ($ (-1151))) (-15 -2181 ((-1169) (-637 $))) (-15 -2180 ((-1169) (-1169) (-637 $)))))) (T -535))
+((-2188 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-535)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535)))) (-2186 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-535))) (-5 *1 (-535)))) (-2525 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-1169)) (-5 *1 (-535)))) (-2185 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-535)))) (-4254 (*1 *1 *1 *1) (-5 *1 (-535))) (* (*1 *1 *1 *1) (-5 *1 (-535))) (-4364 (*1 *1 *1 *1) (-5 *1 (-535))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-535)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-535)))) (-3047 (*1 *1) (-5 *1 (-535))) (-3053 (*1 *1) (-5 *1 (-535))) (-2184 (*1 *1 *1) (-5 *1 (-535))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))) (-2181 (*1 *2 *3) (-12 (-5 *3 (-637 (-535))) (-5 *2 (-1169)) (-5 *1 (-535)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-535))) (-5 *1 (-535)))))
+(-13 (-1097 (-1151) (-1169) (-546) (-225) (-859)) (-611 (-1096)) (-10 -8 (-15 -2188 ((-51) $)) (-15 -4385 ($ (-1096))) (-15 -2186 ($ $ (-637 $))) (-15 -2525 ($ $ (-637 (-1169)) (-1169))) (-15 -2185 ($ $ (-637 (-1169)))) (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 -4364 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-546))) (-15 (-3047) ($) -4367) (-15 (-3053) ($) -4367) (-15 -2184 ($ $)) (-15 -2183 ((-1151) $)) (-15 -2182 ($ (-1151))) (-15 -2181 ((-1169) (-637 $))) (-15 -2180 ((-1169) (-1169) (-637 $)))))
+((-2187 (((-535) (-1169)) 15)) (-2188 ((|#1| (-535)) 20)))
+(((-536 |#1|) (-10 -7 (-15 -2187 ((-535) (-1169))) (-15 -2188 (|#1| (-535)))) (-1207)) (T -536))
+((-2188 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-536 *2)) (-4 *2 (-1207)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-535)) (-5 *1 (-536 *4)) (-4 *4 (-1207)))))
+(-10 -7 (-15 -2187 ((-535) (-1169))) (-15 -2188 (|#1| (-535))))
+((-3859 ((|#2| |#2|) 17)) (-3857 ((|#2| |#2|) 13)) (-3860 ((|#2| |#2| (-546) (-546)) 20)) (-3858 ((|#2| |#2|) 15)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3860 (|#2| |#2| (-546) (-546)))) (-13 (-556) (-147)) (-1249 |#1|)) (T -537))
+((-3860 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-546)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1249 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3)))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3860 (|#2| |#2| (-546) (-546))))
+((-2191 (((-637 (-293 (-942 |#2|))) (-637 |#2|) (-637 (-1169))) 32)) (-2189 (((-637 |#2|) (-942 |#1|) |#3|) 53) (((-637 |#2|) (-1163 |#1|) |#3|) 52)) (-2190 (((-637 (-637 |#2|)) (-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)) |#3|) 88)))
+(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2189 ((-637 |#2|) (-1163 |#1|) |#3|)) (-15 -2189 ((-637 |#2|) (-942 |#1|) |#3|)) (-15 -2190 ((-637 (-637 |#2|)) (-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)) |#3|)) (-15 -2191 ((-637 (-293 (-942 |#2|))) (-637 |#2|) (-637 (-1169))))) (-452) (-363) (-13 (-363) (-844))) (T -538))
+((-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-1169))) (-4 *6 (-363)) (-5 *2 (-637 (-293 (-942 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-2190 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169))) (-4 *6 (-452)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-4 *5 (-452)) (-5 *2 (-637 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-452)) (-5 *2 (-637 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
+(-10 -7 (-15 -2189 ((-637 |#2|) (-1163 |#1|) |#3|)) (-15 -2189 ((-637 |#2|) (-942 |#1|) |#3|)) (-15 -2190 ((-637 (-637 |#2|)) (-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)) |#3|)) (-15 -2191 ((-637 (-293 (-942 |#2|))) (-637 |#2|) (-637 (-1169)))))
+((-2194 ((|#2| |#2| |#1|) 17)) (-2192 ((|#2| (-637 |#2|)) 26)) (-2193 ((|#2| (-637 |#2|)) 45)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2192 (|#2| (-637 |#2|))) (-15 -2193 (|#2| (-637 |#2|))) (-15 -2194 (|#2| |#2| |#1|))) (-307) (-1232 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539))
+((-2194 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1232 *3)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
+(-10 -7 (-15 -2192 (|#2| (-637 |#2|))) (-15 -2193 (|#2| (-637 |#2|))) (-15 -2194 (|#2| |#2| |#1|)))
+((-4147 (((-405 (-1163 |#4|)) (-1163 |#4|) (-1 (-405 (-1163 |#3|)) (-1163 |#3|))) 79) (((-405 |#4|) |#4| (-1 (-405 (-1163 |#3|)) (-1163 |#3|))) 167)))
+(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4| (-1 (-405 (-1163 |#3|)) (-1163 |#3|)))) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|) (-1 (-405 (-1163 |#3|)) (-1163 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -540))
+((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-405 (-1163 *7)) (-1163 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-405 (-1163 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1163 *8)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-405 (-1163 *7)) (-1163 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-405 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-946 *7 *6 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4| (-1 (-405 (-1163 |#3|)) (-1163 |#3|)))) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|) (-1 (-405 (-1163 |#3|)) (-1163 |#3|)))))
+((-3859 ((|#4| |#4|) 73)) (-3857 ((|#4| |#4|) 69)) (-3860 ((|#4| |#4| (-546) (-546)) 75)) (-3858 ((|#4| |#4|) 71)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3857 (|#4| |#4|)) (-15 -3858 (|#4| |#4|)) (-15 -3859 (|#4| |#4|)) (-15 -3860 (|#4| |#4| (-546) (-546)))) (-13 (-363) (-368) (-611 (-546))) (-1232 |#1|) (-720 |#1| |#2|) (-1249 |#3|)) (T -541))
+((-3860 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-546)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-4 *5 (-1232 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1249 *6)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5)))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5)))))
+(-10 -7 (-15 -3857 (|#4| |#4|)) (-15 -3858 (|#4| |#4|)) (-15 -3859 (|#4| |#4|)) (-15 -3860 (|#4| |#4| (-546) (-546))))
+((-3859 ((|#2| |#2|) 27)) (-3857 ((|#2| |#2|) 23)) (-3860 ((|#2| |#2| (-546) (-546)) 29)) (-3858 ((|#2| |#2|) 25)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3860 (|#2| |#2| (-546) (-546)))) (-13 (-363) (-368) (-611 (-546))) (-1249 |#1|)) (T -542))
+((-3860 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-546)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1249 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1249 *3)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1249 *3)))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1249 *3)))))
+(-10 -7 (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3860 (|#2| |#2| (-546) (-546))))
+((-2195 (((-3 (-546) #1="failed") |#2| |#1| (-1 (-3 (-546) #1#) |#1|)) 14) (((-3 (-546) #1#) |#2| |#1| (-546) (-1 (-3 (-546) #1#) |#1|)) 13) (((-3 (-546) #1#) |#2| (-546) (-1 (-3 (-546) #1#) |#1|)) 26)))
+(((-543 |#1| |#2|) (-10 -7 (-15 -2195 ((-3 (-546) #1="failed") |#2| (-546) (-1 (-3 (-546) #1#) |#1|))) (-15 -2195 ((-3 (-546) #1#) |#2| |#1| (-546) (-1 (-3 (-546) #1#) |#1|))) (-15 -2195 ((-3 (-546) #1#) |#2| |#1| (-1 (-3 (-546) #1#) |#1|)))) (-1045) (-1232 |#1|)) (T -543))
+((-2195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-546) #1="failed") *4)) (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1232 *4)))) (-2195 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-546) #1#) *4)) (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1232 *4)))) (-2195 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-546) #1#) *5)) (-4 *5 (-1045)) (-5 *2 (-546)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1232 *5)))))
+(-10 -7 (-15 -2195 ((-3 (-546) #1="failed") |#2| (-546) (-1 (-3 (-546) #1#) |#1|))) (-15 -2195 ((-3 (-546) #1#) |#2| |#1| (-546) (-1 (-3 (-546) #1#) |#1|))) (-15 -2195 ((-3 (-546) #1#) |#2| |#1| (-1 (-3 (-546) #1#) |#1|))))
+((-2204 (($ $ $) 78)) (-4384 (((-405 $) $) 46)) (-3565 (((-3 (-546) "failed") $) 58)) (-3564 (((-546) $) 36)) (-3414 (((-3 (-407 (-546)) "failed") $) 73)) (-3413 (((-112) $) 23)) (-3412 (((-407 (-546)) $) 71)) (-4138 (((-112) $) 49)) (-2197 (($ $ $ $) 86)) (-3594 (((-112) $) 15)) (-1446 (($ $ $) 56)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 68)) (-3855 (((-3 $ "failed") $) 63)) (-2201 (($ $) 22)) (-2196 (($ $ $) 84)) (-3856 (($) 59)) (-1444 (($ $) 52)) (-4147 (((-405 $) $) 44)) (-3063 (((-112) $) 13)) (-1739 (((-767) $) 27)) (-4225 (($ $ (-767)) NIL) (($ $) 10)) (-3811 (($ $) 16)) (-4385 (((-546) $) NIL) (((-535) $) 35) (((-886 (-546)) $) 39) (((-378) $) 30) (((-225) $) 32)) (-3518 (((-767)) 8)) (-2206 (((-112) $ $) 19)) (-3494 (($ $ $) 54)))
+(((-544 |#1|) (-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2206 ((-112) |#1| |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -3565 ((-3 (-546) "failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -4385 ((-546) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3594 ((-112) |#1|)) (-15 -1739 ((-767) |#1|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4138 ((-112) |#1|)) (-15 -3518 ((-767)))) (-545)) (T -544))
+((-3518 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
+(-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2206 ((-112) |#1| |#1|)) (-15 -3063 ((-112) |#1|)) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -3565 ((-3 (-546) "failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -4385 ((-546) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -3594 ((-112) |#1|)) (-15 -1739 ((-767) |#1|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4138 ((-112) |#1|)) (-15 -3518 ((-767))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-2204 (($ $ $) 85)) (-1397 (((-3 $ "failed") $ $) 19)) (-2199 (($ $ $ $) 74)) (-4189 (($ $) 52)) (-4384 (((-405 $) $) 53)) (-1740 (((-112) $ $) 125)) (-4038 (((-546) $) 114)) (-2741 (($ $ $) 88)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) "failed") $) 106)) (-3564 (((-546) $) 107)) (-2949 (($ $ $) 129)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 104) (((-684 (-546)) (-684 $)) 103)) (-3873 (((-3 $ "failed") $) 33)) (-3414 (((-3 (-407 (-546)) "failed") $) 82)) (-3413 (((-112) $) 84)) (-3412 (((-407 (-546)) $) 83)) (-3384 (($) 81) (($ $) 80)) (-2948 (($ $ $) 128)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 123)) (-4138 (((-112) $) 54)) (-2197 (($ $ $ $) 72)) (-2205 (($ $ $) 86)) (-3594 (((-112) $) 116)) (-1446 (($ $ $) 97)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 100)) (-2552 (((-112) $) 31)) (-3062 (((-112) $) 92)) (-3855 (((-3 $ "failed") $) 94)) (-3595 (((-112) $) 115)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 132)) (-2198 (($ $ $ $) 73)) (-2919 (($ $ $) 117)) (-3249 (($ $ $) 118)) (-2201 (($ $) 76)) (-4248 (($ $) 89)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2196 (($ $ $) 71)) (-3856 (($) 93 T CONST)) (-2203 (($ $) 78)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1444 (($ $) 98)) (-4147 (((-405 $) $) 51)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 130)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 124)) (-3063 (((-112) $) 91)) (-1739 (((-767) $) 126)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 127)) (-4225 (($ $ (-767)) 111) (($ $) 109)) (-2202 (($ $) 77)) (-3811 (($ $) 79)) (-4385 (((-546) $) 108) (((-535) $) 102) (((-886 (-546)) $) 101) (((-378) $) 96) (((-225) $) 95)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-546)) 105)) (-3518 (((-767)) 28)) (-2206 (((-112) $ $) 87)) (-3494 (($ $ $) 99)) (-3083 (($) 90)) (-2219 (((-112) $ $) 40)) (-2200 (($ $ $ $) 75)) (-3794 (($ $) 113)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-767)) 112) (($ $) 110)) (-2951 (((-112) $ $) 120)) (-2952 (((-112) $ $) 121)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 119)) (-3074 (((-112) $ $) 122)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-545) (-140)) (T -545))
-((-2959 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4212 (*1 *1) (-4 *1 (-545))) (-3419 (*1 *1 *1) (-4 *1 (-545))) (-3462 (*1 *1 *1 *1) (-4 *1 (-545))) (-4319 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4308 (*1 *1 *1 *1) (-4 *1 (-545))) (-4297 (*1 *1 *1 *1) (-4 *1 (-545))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-1690 (*1 *1) (-4 *1 (-545))) (-1690 (*1 *1 *1) (-4 *1 (-545))) (-1870 (*1 *1 *1) (-4 *1 (-545))) (-2827 (*1 *1 *1) (-4 *1 (-545))) (-3873 (*1 *1 *1) (-4 *1 (-545))) (-2645 (*1 *1 *1) (-4 *1 (-545))) (-4287 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4275 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4264 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4251 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4239 (*1 *1 *1 *1) (-4 *1 (-545))))
-(-13 (-1212) (-307) (-816) (-233) (-611 (-563)) (-1034 (-563)) (-636 (-563)) (-611 (-536)) (-611 (-888 (-563))) (-882 (-563)) (-143) (-1018) (-147) (-1144) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2969 ((-112) $)) (-6 -4407) (-15 -4212 ($)) (-15 -3419 ($ $)) (-15 -3462 ($ $ $)) (-15 -4319 ((-112) $ $)) (-15 -4308 ($ $ $)) (-15 -4297 ($ $ $)) (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $)) (-15 -1690 ($)) (-15 -1690 ($ $)) (-15 -1870 ($ $)) (-15 -2827 ($ $)) (-15 -3873 ($ $)) (-15 -2645 ($ $)) (-15 -4287 ($ $ $ $)) (-15 -4275 ($ $ $ $)) (-15 -4264 ($ $ $ $)) (-15 -4251 ($ $ $ $)) (-15 -4239 ($ $ $)) (-6 -4406)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-143) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-536)) . T) ((-611 (-563)) . T) ((-611 (-888 (-563))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-636 (-563)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-563)) . T) ((-916) . T) ((-1018) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-546) (-840)) (T -546))
-NIL
-(-840)
-((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
+((-3062 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3083 (*1 *1) (-4 *1 (-545))) (-4248 (*1 *1 *1) (-4 *1 (-545))) (-2741 (*1 *1 *1 *1) (-4 *1 (-545))) (-2206 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2205 (*1 *1 *1 *1) (-4 *1 (-545))) (-2204 (*1 *1 *1 *1) (-4 *1 (-545))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-546))))) (-3414 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-546))))) (-3384 (*1 *1) (-4 *1 (-545))) (-3384 (*1 *1 *1) (-4 *1 (-545))) (-3811 (*1 *1 *1) (-4 *1 (-545))) (-2203 (*1 *1 *1) (-4 *1 (-545))) (-2202 (*1 *1 *1) (-4 *1 (-545))) (-2201 (*1 *1 *1) (-4 *1 (-545))) (-2200 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2199 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2198 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2197 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2196 (*1 *1 *1 *1) (-4 *1 (-545))))
+(-13 (-1212) (-307) (-816) (-233) (-611 (-546)) (-1034 (-546)) (-636 (-546)) (-611 (-535)) (-611 (-886 (-546))) (-882 (-546)) (-143) (-1016) (-147) (-1144) (-10 -8 (-15 -3062 ((-112) $)) (-15 -3063 ((-112) $)) (-6 -4407) (-15 -3083 ($)) (-15 -4248 ($ $)) (-15 -2741 ($ $ $)) (-15 -2206 ((-112) $ $)) (-15 -2205 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $)) (-15 -3384 ($)) (-15 -3384 ($ $)) (-15 -3811 ($ $)) (-15 -2203 ($ $)) (-15 -2202 ($ $)) (-15 -2201 ($ $)) (-15 -2200 ($ $ $ $)) (-15 -2199 ($ $ $ $)) (-15 -2198 ($ $ $ $)) (-15 -2197 ($ $ $ $)) (-15 -2196 ($ $ $)) (-6 -4406)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-143) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-378)) . T) ((-611 (-535)) . T) ((-611 (-546)) . T) ((-611 (-886 (-546))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-636 (-546)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-546)) . T) ((-917) . T) ((-1016) . T) ((-1034 (-546)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) . T) ((-1212) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 25)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 87)) (-2220 (($ $) 88)) (-2218 (((-112) $) NIL)) (-2204 (($ $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2199 (($ $ $ $) 43)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL)) (-2741 (($ $ $) 82)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) "failed") $) NIL)) (-3564 (((-546) $) NIL)) (-2949 (($ $ $) 81)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 62) (((-684 (-546)) (-684 $)) 58)) (-3873 (((-3 $ "failed") $) 84)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3412 (((-407 (-546)) $) NIL)) (-3384 (($) 64) (($ $) 65)) (-2948 (($ $ $) 80)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2197 (($ $ $ $) NIL)) (-2205 (($ $ $) 55)) (-3594 (((-112) $) NIL)) (-1446 (($ $ $) NIL)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL)) (-2552 (((-112) $) 26)) (-3062 (((-112) $) 75)) (-3855 (((-3 $ "failed") $) NIL)) (-3595 (((-112) $) 35)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2198 (($ $ $ $) 44)) (-2919 (($ $ $) 77)) (-3249 (($ $ $) 76)) (-2201 (($ $) NIL)) (-4248 (($ $) 41)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) 54)) (-2196 (($ $ $) NIL)) (-3856 (($) NIL T CONST)) (-2203 (($ $) 31)) (-3651 (((-1113) $) 34)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 119)) (-3552 (($ $ $) 85) (($ (-637 $)) NIL)) (-1444 (($ $) NIL)) (-4147 (((-405 $) $) 105)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) 103)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 79)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-2202 (($ $) 32)) (-3811 (($ $) 30)) (-4385 (((-546) $) 40) (((-535) $) 52) (((-886 (-546)) $) NIL) (((-378) $) 47) (((-225) $) 49) (((-1151) $) 53)) (-4361 (((-859) $) 38) (($ (-546)) 39) (($ $) NIL) (($ (-546)) 39)) (-3518 (((-767)) NIL)) (-2206 (((-112) $ $) NIL)) (-3494 (($ $ $) NIL)) (-3083 (($) 29)) (-2219 (((-112) $ $) NIL)) (-2200 (($ $ $ $) 42)) (-3794 (($ $) 63)) (-3047 (($) 27 T CONST)) (-3053 (($) 28 T CONST)) (-2885 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-819) $) 23) (((-1262) (-819) $ (-112)) 24)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 66)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 67)) (-4252 (($ $) 68) (($ $ $) 70)) (-4254 (($ $ $) 69)) (** (($ $ (-915)) NIL) (($ $ (-767)) 74)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 72) (($ $ $) 71)))
+(((-546) (-13 (-545) (-611 (-1151)) (-817) (-10 -8 (-15 -3384 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390)))) (T -546))
+((-3384 (*1 *1 *1) (-5 *1 (-546))))
+(-13 (-545) (-611 (-1151)) (-817) (-10 -8 (-15 -3384 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
(((-547) (-840)) (T -547))
NIL
(-840)
-((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
+((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
(((-548) (-840)) (T -548))
NIL
(-840)
-((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) NIL)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-549 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))) (T -549))
+((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-549) (-840)) (T -549))
+NIL
+(-840)
+((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) NIL)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) NIL)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-550 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1094) (-1094) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))) (T -550))
NIL
(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))
-((-4330 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))) 51)))
-(((-550 |#1| |#2|) (-10 -7 (-15 -4330 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))))) (-13 (-846) (-555)) (-13 (-27) (-430 |#1|))) (T -550))
-((-4330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555))) (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3)))))
-(-10 -7 (-15 -4330 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|)))))
-((-4352 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-4361 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-4342 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-551 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4342 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4352 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4361 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-846) (-555) (-1034 (-563))) (-13 (-27) (-430 |#1|)) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -551))
-((-4361 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-4352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
-(-10 -7 (-15 -4342 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4352 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4361 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1295 (((-112) (-563) (-563)) 10)) (-4373 (((-563) (-563)) 7)) (-4384 (((-563) (-563) (-563)) 8)))
-(((-552) (-10 -7 (-15 -4373 ((-563) (-563))) (-15 -4384 ((-563) (-563) (-563))) (-15 -1295 ((-112) (-563) (-563))))) (T -552))
-((-1295 (*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552)))) (-4384 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))))
-(-10 -7 (-15 -4373 ((-563) (-563))) (-15 -4384 ((-563) (-563) (-563))) (-15 -1295 ((-112) (-563) (-563))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3835 ((|#1| $) 62)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-1770 (($ $) 92)) (-1618 (($ $) 75)) (-4092 ((|#1| $) 63)) (-3905 (((-3 $ "failed") $ $) 19)) (-2185 (($ $) 74)) (-1747 (($ $) 91)) (-1596 (($ $) 76)) (-1793 (($ $) 90)) (-1642 (($ $) 77)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 70)) (-2057 (((-563) $) 71)) (-3951 (((-3 $ "failed") $) 33)) (-1326 (($ |#1| |#1|) 67)) (-3414 (((-112) $) 61)) (-2179 (($) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 73)) (-3426 (((-112) $) 60)) (-3088 (($ $ $) 108)) (-1776 (($ $ $) 107)) (-4372 (($ $) 99)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-3201 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-563))) 65)) (-1315 ((|#1| $) 64)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3012 (((-3 $ "failed") $ $) 43)) (-3372 (($ $) 100)) (-1805 (($ $) 89)) (-1655 (($ $) 78)) (-1783 (($ $) 88)) (-1629 (($ $) 79)) (-1758 (($ $) 87)) (-1607 (($ $) 80)) (-1303 (((-112) $ |#1|) 59)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 69)) (-3914 (((-767)) 28)) (-1839 (($ $) 98)) (-1694 (($ $) 86)) (-3223 (((-112) $ $) 40)) (-1816 (($ $) 97)) (-1666 (($ $) 85)) (-1861 (($ $) 96)) (-1721 (($ $) 84)) (-1311 (($ $) 95)) (-1734 (($ $) 83)) (-1850 (($ $) 94)) (-1709 (($ $) 82)) (-1828 (($ $) 93)) (-1679 (($ $) 81)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 105)) (-1754 (((-112) $ $) 104)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 106)) (-1743 (((-112) $ $) 103)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 101) (($ $ (-407 (-563))) 72)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-553 |#1|) (-140) (-13 (-404) (-1193))) (T -553))
-((-3201 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-1326 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3201 (*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3201 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-1303 (*1 *2 *1 *3) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))))
-(-13 (-452) (-846) (-1193) (-998) (-1034 (-563)) (-10 -8 (-6 -1402) (-15 -3201 ($ |t#1| |t#1|)) (-15 -1326 ($ |t#1| |t#1|)) (-15 -3201 ($ |t#1|)) (-15 -3201 ($ (-407 (-563)))) (-15 -1315 (|t#1| $)) (-15 -4092 (|t#1| $)) (-15 -3835 (|t#1| $)) (-15 -3414 ((-112) $)) (-15 -3426 ((-112) $)) (-15 -1303 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) . T) ((-1196) . T))
-((-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 9)) (-3231 (($ $) 11)) (-3211 (((-112) $) 18)) (-3951 (((-3 $ "failed") $) 16)) (-3223 (((-112) $ $) 20)))
-(((-554 |#1|) (-10 -8 (-15 -3211 ((-112) |#1|)) (-15 -3223 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) (-555)) (T -554))
-NIL
-(-10 -8 (-15 -3211 ((-112) |#1|)) (-15 -3223 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3241 ((-2 (|:| -3245 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ $) 43)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-555) (-140)) (T -555))
-((-3012 (*1 *1 *1 *1) (|partial| -4 *1 (-555))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3245 *1) (|:| -4395 *1) (|:| |associate| *1))) (-4 *1 (-555)))) (-3231 (*1 *1 *1) (-4 *1 (-555))) (-3223 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))))
-(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -3012 ((-3 $ "failed") $ $)) (-15 -3241 ((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $)) (-15 -3231 ($ $)) (-15 -3223 ((-112) $ $)) (-15 -3211 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-3262 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|)) 37)) (-3279 (((-584 |#2|) |#2| (-1169)) 62)) (-3269 (((-3 |#2| "failed") |#2| (-1169)) 151)) (-3290 (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))) 154)) (-3252 (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|) 40)))
-(((-556 |#1| |#2|) (-10 -7 (-15 -3252 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -3262 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -3269 ((-3 |#2| "failed") |#2| (-1169))) (-15 -3279 ((-584 |#2|) |#2| (-1169))) (-15 -3290 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -556))
-((-3290 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3))) (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-556 *7 *3)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3269 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-3262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6 *3)))) (-3252 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(-10 -7 (-15 -3252 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -3262 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -3269 ((-3 |#2| "failed") |#2| (-1169))) (-15 -3279 ((-584 |#2|) |#2| (-1169))) (-15 -3290 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|)))))
-((-2802 (((-418 |#1|) |#1|) 18)) (-2173 (((-418 |#1|) |#1|) 33)) (-3315 (((-3 |#1| "failed") |#1|) 45)) (-3300 (((-418 |#1|) |#1|) 52)))
-(((-557 |#1|) (-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -3300 ((-418 |#1|) |#1|)) (-15 -3315 ((-3 |#1| "failed") |#1|))) (-545)) (T -557))
-((-3315 (*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545)))) (-3300 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -3300 ((-418 |#1|) |#1|)) (-15 -3315 ((-3 |#1| "failed") |#1|)))
-((-3326 (($) 9)) (-1818 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1304 (((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3867 (($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3346 (($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2556 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2295 (((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3336 (((-1262)) 12)))
-(((-558) (-10 -8 (-15 -3326 ($)) (-15 -3336 ((-1262))) (-15 -1304 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3346 ($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3867 ($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1818 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2295 ((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2556 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -558))
-((-2556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-1818 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-558)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-558)))) (-3336 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558)))) (-3326 (*1 *1) (-5 *1 (-558))))
-(-10 -8 (-15 -3326 ($)) (-15 -3336 ((-1262))) (-15 -1304 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3346 ($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3867 ($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1818 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2295 ((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2556 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4166 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2138 (((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|)) 32)) (-3380 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|)) 110)) (-3357 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 80) (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 52)) (-3368 (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|))) 87) (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|)) 109)) (-3393 (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|)) 111)) (-3405 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 128 (|has| |#3| (-651 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 127 (|has| |#3| (-651 |#2|)))) (-2595 ((|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|) 50)) (-2433 (((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|)) 31)))
-(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -3357 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -3357 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3368 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -3368 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3380 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -3380 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3393 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -3393 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2138 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2595 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2433 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -3405 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -3405 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -559))
-((-3405 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-3405 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7)) (-5 *3 (-1165 *6)) (-4 *7 (-1093)))) (-2595 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093)))) (-2138 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7)) (-5 *5 (-1165 *3)) (-4 *7 (-1093)))) (-3393 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-3393 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-3380 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-3380 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-3368 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-3368 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-3357 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-3357 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))))
-(-10 -7 (-15 -3357 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -3357 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3368 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -3368 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3380 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -3380 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3393 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -3393 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2138 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2595 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2433 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -3405 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -3405 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|))
-((-3518 (((-563) (-563) (-767)) 66)) (-3507 (((-563) (-563)) 65)) (-3495 (((-563) (-563)) 64)) (-3485 (((-563) (-563)) 69)) (-1911 (((-563) (-563) (-563)) 49)) (-3475 (((-563) (-563) (-563)) 46)) (-3465 (((-407 (-563)) (-563)) 20)) (-3453 (((-563) (-563)) 21)) (-3442 (((-563) (-563)) 58)) (-1879 (((-563) (-563)) 32)) (-3429 (((-640 (-563)) (-563)) 63)) (-3417 (((-563) (-563) (-563) (-563) (-563)) 44)) (-1835 (((-407 (-563)) (-563)) 41)))
-(((-560) (-10 -7 (-15 -1835 ((-407 (-563)) (-563))) (-15 -3417 ((-563) (-563) (-563) (-563) (-563))) (-15 -3429 ((-640 (-563)) (-563))) (-15 -1879 ((-563) (-563))) (-15 -3442 ((-563) (-563))) (-15 -3453 ((-563) (-563))) (-15 -3465 ((-407 (-563)) (-563))) (-15 -3475 ((-563) (-563) (-563))) (-15 -1911 ((-563) (-563) (-563))) (-15 -3485 ((-563) (-563))) (-15 -3495 ((-563) (-563))) (-15 -3507 ((-563) (-563))) (-15 -3518 ((-563) (-563) (-767))))) (T -560))
-((-3518 (*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560)))) (-3507 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1911 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3465 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3442 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3429 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-3417 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1835 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))))
-(-10 -7 (-15 -1835 ((-407 (-563)) (-563))) (-15 -3417 ((-563) (-563) (-563) (-563) (-563))) (-15 -3429 ((-640 (-563)) (-563))) (-15 -1879 ((-563) (-563))) (-15 -3442 ((-563) (-563))) (-15 -3453 ((-563) (-563))) (-15 -3465 ((-407 (-563)) (-563))) (-15 -3475 ((-563) (-563) (-563))) (-15 -1911 ((-563) (-563) (-563))) (-15 -3485 ((-563) (-563))) (-15 -3495 ((-563) (-563))) (-15 -3507 ((-563) (-563))) (-15 -3518 ((-563) (-563) (-767))))
-((-3528 (((-2 (|:| |answer| |#4|) (|:| -2829 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3528 ((-2 (|:| |answer| |#4|) (|:| -2829 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -561))
-((-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2829 *3))) (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
-(-10 -7 (-15 -3528 ((-2 (|:| |answer| |#4|) (|:| -2829 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3528 (((-2 (|:| |answer| (-407 |#2|)) (|:| -2829 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -3528 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2829 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -562))
-((-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -2829 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -3528 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2829 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 25)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 87)) (-3231 (($ $) 88)) (-3211 (((-112) $) NIL)) (-4297 (($ $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4275 (($ $ $ $) 43)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL)) (-3462 (($ $ $) 82)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL)) (-2057 (((-563) $) NIL)) (-3094 (($ $ $) 81)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 62) (((-684 (-563)) (-684 $)) 58)) (-3951 (((-3 $ "failed") $) 84)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL)) (-2317 (((-112) $) NIL)) (-2306 (((-407 (-563)) $) NIL)) (-1690 (($) 64) (($ $) 65)) (-3054 (($ $ $) 80)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-4251 (($ $ $ $) NIL)) (-4308 (($ $ $) 55)) (-3414 (((-112) $) NIL)) (-2101 (($ $ $) NIL)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3401 (((-112) $) 26)) (-2959 (((-112) $) 75)) (-1983 (((-3 $ "failed") $) NIL)) (-3426 (((-112) $) 35)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4264 (($ $ $ $) 44)) (-3088 (($ $ $) 77)) (-1776 (($ $ $) 76)) (-2645 (($ $) NIL)) (-3419 (($ $) 41)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) 54)) (-4239 (($ $ $) NIL)) (-2522 (($) NIL T CONST)) (-2827 (($ $) 31)) (-1693 (((-1113) $) 34)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 119)) (-3551 (($ $ $) 85) (($ (-640 $)) NIL)) (-2081 (($ $) NIL)) (-2173 (((-418 $) $) 105)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) 103)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 79)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-3873 (($ $) 32)) (-1870 (($ $) 30)) (-2219 (((-563) $) 40) (((-536) $) 52) (((-888 (-563)) $) NIL) (((-379) $) 47) (((-225) $) 49) (((-1151) $) 53)) (-1692 (((-858) $) 38) (($ (-563)) 39) (($ $) NIL) (($ (-563)) 39)) (-3914 (((-767)) NIL)) (-4319 (((-112) $ $) NIL)) (-1864 (($ $ $) NIL)) (-4212 (($) 29)) (-3223 (((-112) $ $) NIL)) (-4287 (($ $ $ $) 42)) (-1462 (($ $) 63)) (-2239 (($) 27 T CONST)) (-2253 (($) 28 T CONST)) (-2742 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-818) $) 23) (((-1262) (-818) $ (-112)) 24)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 66)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 67)) (-1825 (($ $) 68) (($ $ $) 70)) (-1813 (($ $ $) 69)) (** (($ $ (-917)) NIL) (($ $ (-767)) 74)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 72) (($ $ $) 71)))
-(((-563) (-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -1690 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390)))) (T -563))
-((-1690 (*1 *1 *1) (-5 *1 (-563))))
-(-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -1690 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390)))
-((-2929 (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057)) 108) (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765)) 110)) (-2062 (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169)) 172) (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151)) 171) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057)) 176) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379)) 177) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379)) 178) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379))))) 179) (((-1031) (-316 (-379)) (-1087 (-839 (-379)))) 167) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379)) 166) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379)) 162) (((-1031) (-765)) 155) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057)) 161)))
-(((-564) (-10 -7 (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -2062 ((-1031) (-765))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -2062 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -2062 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169))))) (T -564))
-((-2062 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-2062 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))))
-(-10 -7 (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -2062 ((-1031) (-765))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -2062 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -2062 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -2062 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169))))
-((-3567 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|)) 183)) (-3541 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|)) 98)) (-3552 (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|) 179)) (-3578 (((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169))) 188)) (-3588 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169)) 196 (|has| |#3| (-651 |#2|)))))
-(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -3541 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -3552 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -3567 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -3578 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -3588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -565))
-((-3588 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-3578 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093)))) (-3567 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093)))) (-3552 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))) (-3541 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))))
-(-10 -7 (-15 -3541 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -3552 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -3567 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -3578 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -3588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|))
-((-3600 (((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1169)) 63)) (-3622 (((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|)) 163 (-12 (|has| |#2| (-1132)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 146 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563)))))) (-3611 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 147 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563)))))))
-(((-566 |#1| |#2|) (-10 -7 (-15 -3600 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -3611 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -3622 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -3622 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -566))
-((-3622 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *1 (-566 *5 *2)))) (-3622 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(-10 -7 (-15 -3600 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -3611 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -3622 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -3622 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3656 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))) 41)) (-2062 (((-584 (-407 |#2|)) (-407 |#2|)) 28)) (-3634 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-3645 (((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2062 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -3634 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -3645 ((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3656 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -567))
-((-3656 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *5 *6)))) (-3645 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -2840 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) (-3634 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -2062 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -3634 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -3645 ((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3656 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|)))))
-((-3667 (((-3 (-563) "failed") |#1|) 14)) (-2736 (((-112) |#1|) 13)) (-3702 (((-563) |#1|) 9)))
-(((-568 |#1|) (-10 -7 (-15 -3702 ((-563) |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -3667 ((-3 (-563) "failed") |#1|))) (-1034 (-563))) (T -568))
-((-3667 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) (-2736 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563))))) (-3702 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))))
-(-10 -7 (-15 -3702 ((-563) |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -3667 ((-3 (-563) "failed") |#1|)))
-((-3705 (((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|)))) 48)) (-3679 (((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169)) 28)) (-3691 (((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169)) 23)) (-3718 (((-3 (-2 (|:| -2840 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 35)))
-(((-569 |#1|) (-10 -7 (-15 -3679 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -3691 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -3705 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -3718 ((-3 (-2 (|:| -2840 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))))) (-13 (-555) (-1034 (-563)) (-147))) (T -569))
-((-3718 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| -2840 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5))))) (-3705 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6)))) (-3691 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5))))))
-(-10 -7 (-15 -3679 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -3691 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -3705 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -3718 ((-3 (-2 (|:| -2840 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))))
-((-1677 (((-112) $ $) 58)) (-3439 (((-112) $) 36)) (-3835 ((|#1| $) 30)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) 62)) (-1770 (($ $) 122)) (-1618 (($ $) 102)) (-4092 ((|#1| $) 28)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $) NIL)) (-1747 (($ $) 124)) (-1596 (($ $) 98)) (-1793 (($ $) 126)) (-1642 (($ $) 106)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) 77)) (-2057 (((-563) $) 79)) (-3951 (((-3 $ "failed") $) 61)) (-1326 (($ |#1| |#1|) 26)) (-3414 (((-112) $) 33)) (-2179 (($) 88)) (-3401 (((-112) $) 43)) (-2172 (($ $ (-563)) NIL)) (-3426 (((-112) $) 34)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-4372 (($ $) 90)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-3201 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-407 (-563))) 76)) (-1315 ((|#1| $) 27)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) 64) (($ (-640 $)) NIL)) (-3012 (((-3 $ "failed") $ $) 63)) (-3372 (($ $) 92)) (-1805 (($ $) 130)) (-1655 (($ $) 104)) (-1783 (($ $) 132)) (-1629 (($ $) 108)) (-1758 (($ $) 128)) (-1607 (($ $) 100)) (-1303 (((-112) $ |#1|) 31)) (-1692 (((-858) $) 84) (($ (-563)) 66) (($ $) NIL) (($ (-563)) 66)) (-3914 (((-767)) 86)) (-1839 (($ $) 144)) (-1694 (($ $) 114)) (-3223 (((-112) $ $) NIL)) (-1816 (($ $) 142)) (-1666 (($ $) 110)) (-1861 (($ $) 140)) (-1721 (($ $) 120)) (-1311 (($ $) 138)) (-1734 (($ $) 118)) (-1850 (($ $) 136)) (-1709 (($ $) 116)) (-1828 (($ $) 134)) (-1679 (($ $) 112)) (-2239 (($) 21 T CONST)) (-2253 (($) 10 T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 37)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 35)) (-1825 (($ $) 41) (($ $ $) 42)) (-1813 (($ $ $) 40)) (** (($ $ (-917)) 54) (($ $ (-767)) NIL) (($ $ $) 94) (($ $ (-407 (-563))) 146)) (* (($ (-917) $) 51) (($ (-767) $) NIL) (($ (-563) $) 50) (($ $ $) 48)))
-(((-570 |#1|) (-553 |#1|) (-13 (-404) (-1193))) (T -570))
-NIL
-(-553 |#1|)
-((-2066 (((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563))) 24)))
-(((-571) (-10 -7 (-15 -2066 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563)))))) (T -571))
-((-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563))) (-5 *1 (-571)))))
-(-10 -7 (-15 -2066 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563)))))
-((-3731 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169)) 19)) (-3764 (((-640 (-609 |#2|)) (-640 |#2|) (-1169)) 23)) (-2582 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|))) 11)) (-3774 ((|#2| |#2| (-1169)) 53 (|has| |#1| (-555)))) (-3787 ((|#2| |#2| (-1169)) 76 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-3752 (((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169)) 25)) (-3742 (((-609 |#2|) (-640 (-609 |#2|))) 24)) (-3796 (((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) 101 (-12 (|has| |#2| (-284)) (|has| |#2| (-626)) (|has| |#2| (-1034 (-1169))) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-563)))))))
-(((-572 |#1| |#2|) (-10 -7 (-15 -3731 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -3742 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -3752 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -2582 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -3764 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -3774 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3787 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -3796 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-846) (-430 |#1|)) (T -572))
-((-3796 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-584 *3) *3 (-1169))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1169))) (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452)) (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3)) (-5 *1 (-572 *7 *3)))) (-3787 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6)))) (-2582 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) (-5 *1 (-572 *3 *4)))) (-3752 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5)) (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4)))) (-3731 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4)) (-4 *4 (-846)) (-5 *1 (-572 *4 *5)))))
-(-10 -7 (-15 -3731 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -3742 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -3752 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -2582 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -3764 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -3774 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3787 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -3796 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2633 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|)) 172)) (-2661 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|))) 148)) (-2689 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|))) 145)) (-2697 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3809 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2680 (((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 175)) (-2643 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 178)) (-2717 (((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 84)) (-2728 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2672 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|))) 152)) (-2707 (((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 137)) (-3821 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 162)) (-2653 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|)) 183)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -3809 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3821 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2633 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -2643 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2653 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -2661 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -2672 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -2680 ((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2689 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -2697 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2707 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2717 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2728 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -573))
-((-2728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-573 *5 *3)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-2707 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1700 *4) (|:| |sol?| (-112))) (-563) *4)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5)))) (-2697 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4)))) (-2689 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7))) (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6 *7)))) (-2680 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2840 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-2672 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1700 *7) (|:| |sol?| (-112))) (-563) *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2661 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2840 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2653 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1700 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2840 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2643 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2840 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2840 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-3821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1700 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-3809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2840 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
-(-10 -7 (-15 -3809 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3821 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2633 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -2643 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2653 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -2661 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -2672 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -2680 ((-3 (-2 (|:| -2840 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2689 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -2697 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2707 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1700 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2717 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2728 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2740 (((-3 |#2| "failed") |#2| (-1169) (-1169)) 10)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -2740 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-1132) (-29 |#1|))) (T -574))
-((-2740 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4))))))
-(-10 -7 (-15 -2740 ((-3 |#2| "failed") |#2| (-1169) (-1169))))
-((-3233 (((-686 (-1215)) $ (-1215)) 26)) (-3243 (((-686 (-548)) $ (-548)) 25)) (-3225 (((-767) $ (-128)) 27)) (-3254 (((-686 (-129)) $ (-129)) 24)) (-3884 (((-686 (-1215)) $) 12)) (-3848 (((-686 (-1214)) $) 8)) (-3864 (((-686 (-1213)) $) 10)) (-3896 (((-686 (-548)) $) 13)) (-3857 (((-686 (-547)) $) 9)) (-3874 (((-686 (-546)) $) 11)) (-3839 (((-767) $ (-128)) 7)) (-3907 (((-686 (-129)) $) 14)) (-1895 (($ $) 6)))
+((-2207 (((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1163 |#2|) (-1163 |#2|))) 51)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -2207 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1163 |#2|) (-1163 |#2|))))) (-13 (-846) (-556)) (-13 (-27) (-421 |#1|))) (T -551))
+((-2207 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1163 *3) (-1163 *3))) (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-846) (-556))) (-5 *2 (-582 *3)) (-5 *1 (-551 *6 *3)))))
+(-10 -7 (-15 -2207 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1163 |#2|) (-1163 |#2|)))))
+((-2209 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2210 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2208 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2208 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2209 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-846) (-556) (-1034 (-546))) (-13 (-27) (-421 |#1|)) (-1232 |#2|) (-1232 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552))
+((-2210 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-27) (-421 *4))) (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-4 *7 (-1232 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-4 *8 (-1232 (-407 *7))) (-5 *2 (-582 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-4 *8 (-1232 (-407 *7))) (-5 *2 (-582 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(-10 -7 (-15 -2208 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2209 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2213 (((-112) (-546) (-546)) 10)) (-2211 (((-546) (-546)) 7)) (-2212 (((-546) (-546) (-546)) 8)))
+(((-553) (-10 -7 (-15 -2211 ((-546) (-546))) (-15 -2212 ((-546) (-546) (-546))) (-15 -2213 ((-112) (-546) (-546))))) (T -553))
+((-2213 (*1 *2 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-553)))) (-2212 (*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-553)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-553)))))
+(-10 -7 (-15 -2211 ((-546) (-546))) (-15 -2212 ((-546) (-546) (-546))) (-15 -2213 ((-112) (-546) (-546))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2989 ((|#1| $) 62)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-3898 (($ $) 92)) (-4054 (($ $) 75)) (-2784 ((|#1| $) 63)) (-1397 (((-3 $ "failed") $ $) 19)) (-3427 (($ $) 74)) (-3896 (($ $) 91)) (-4053 (($ $) 76)) (-3900 (($ $) 90)) (-4052 (($ $) 77)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) "failed") $) 70)) (-3564 (((-546) $) 71)) (-3873 (((-3 $ "failed") $) 33)) (-2216 (($ |#1| |#1|) 67)) (-3594 (((-112) $) 61)) (-4042 (($) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 73)) (-3595 (((-112) $) 60)) (-2919 (($ $ $) 108)) (-3249 (($ $ $) 107)) (-4357 (($ $) 99)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2217 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-546))) 65)) (-2215 ((|#1| $) 64)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3872 (((-3 $ "failed") $ $) 43)) (-4358 (($ $) 100)) (-3901 (($ $) 89)) (-4051 (($ $) 78)) (-3899 (($ $) 88)) (-4050 (($ $) 79)) (-3897 (($ $) 87)) (-4049 (($ $) 80)) (-2214 (((-112) $ |#1|) 59)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-546)) 69)) (-3518 (((-767)) 28)) (-3904 (($ $) 98)) (-3892 (($ $) 86)) (-2219 (((-112) $ $) 40)) (-3902 (($ $) 97)) (-3890 (($ $) 85)) (-3906 (($ $) 96)) (-3894 (($ $) 84)) (-3907 (($ $) 95)) (-3895 (($ $) 83)) (-3905 (($ $) 94)) (-3893 (($ $) 82)) (-3903 (($ $) 93)) (-3891 (($ $) 81)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 105)) (-2952 (((-112) $ $) 104)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 106)) (-3074 (((-112) $ $) 103)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ $) 101) (($ $ (-407 (-546))) 72)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-554 |#1|) (-140) (-13 (-404) (-1193))) (T -554))
+((-2217 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2216 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))))) (-2215 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-2214 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))))
+(-13 (-452) (-846) (-1193) (-998) (-1034 (-546)) (-10 -8 (-6 -4184) (-15 -2217 ($ |t#1| |t#1|)) (-15 -2216 ($ |t#1| |t#1|)) (-15 -2217 ($ |t#1|)) (-15 -2217 ($ (-407 (-546)))) (-15 -2215 (|t#1| $)) (-15 -2784 (|t#1| $)) (-15 -2989 (|t#1| $)) (-15 -3594 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -2214 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-546)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) . T) ((-1196) . T))
+((-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 9)) (-2220 (($ $) 11)) (-2218 (((-112) $) 18)) (-3873 (((-3 $ "failed") $) 16)) (-2219 (((-112) $ $) 20)))
+(((-555 |#1|) (-10 -8 (-15 -2218 ((-112) |#1|)) (-15 -2219 ((-112) |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|))) (-556)) (T -555))
+NIL
+(-10 -8 (-15 -2218 ((-112) |#1|)) (-15 -2219 ((-112) |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2221 ((-2 (|:| -1927 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ $) 43)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-556) (-140)) (T -556))
+((-3872 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1927 *1) (|:| -4395 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-2220 (*1 *1 *1) (-4 *1 (-556))) (-2219 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -3872 ((-3 $ "failed") $ $)) (-15 -2221 ((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $)) (-15 -2220 ($ $)) (-15 -2219 ((-112) $ $)) (-15 -2218 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2223 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-637 |#2|)) 37)) (-2225 (((-582 |#2|) |#2| (-1169)) 62)) (-2224 (((-3 |#2| "failed") |#2| (-1169)) 151)) (-2226 (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1169) (-608 |#2|) (-637 (-608 |#2|))) 154)) (-2222 (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1169) |#2|) 40)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -2222 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1169) |#2|)) (-15 -2223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-637 |#2|))) (-15 -2224 ((-3 |#2| "failed") |#2| (-1169))) (-15 -2225 ((-582 |#2|) |#2| (-1169))) (-15 -2226 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1169) (-608 |#2|) (-637 (-608 |#2|))))) (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -557))
+((-2226 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-637 (-608 *3))) (-5 *5 (-608 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *7))) (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-2224 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-2223 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-2222 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
+(-10 -7 (-15 -2222 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1169) |#2|)) (-15 -2223 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-637 |#2|))) (-15 -2224 ((-3 |#2| "failed") |#2| (-1169))) (-15 -2225 ((-582 |#2|) |#2| (-1169))) (-15 -2226 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1169) (-608 |#2|) (-637 (-608 |#2|)))))
+((-4384 (((-405 |#1|) |#1|) 18)) (-4147 (((-405 |#1|) |#1|) 33)) (-2228 (((-3 |#1| "failed") |#1|) 45)) (-2227 (((-405 |#1|) |#1|) 52)))
+(((-558 |#1|) (-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -2227 ((-405 |#1|) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|))) (-545)) (T -558))
+((-2228 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-2227 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-4384 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -2227 ((-405 |#1|) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|)))
+((-2229 (($) 9)) (-2232 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-2795 (((-637 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-4022 (($ (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2231 (($ (-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2233 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2358 (((-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2230 (((-1262)) 12)))
+(((-559) (-10 -8 (-15 -2229 ($)) (-15 -2230 ((-1262))) (-15 -2795 ((-637 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2231 ($ (-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4022 ($ (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2232 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2358 ((-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2233 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559))
+((-2233 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-559)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-559)))) (-2232 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-559)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-559)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-559)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-2230 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-559)))) (-2229 (*1 *1) (-5 *1 (-559))))
+(-10 -8 (-15 -2229 ($)) (-15 -2230 ((-1262))) (-15 -2795 ((-637 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2231 ($ (-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1596 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4022 ($ (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2232 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2358 ((-637 (-2 (|:| -4275 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2233 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-225))) (|:| |notEvaluated| #6#))) (|:| -1596 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3476 (((-1163 (-407 (-1163 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1163 |#2|)) 32)) (-2236 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) |#2| (-1163 |#2|)) 110)) (-2234 (((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|))) 80) (((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|)) 52)) (-2235 (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-407 (-1163 |#2|))) 87) (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1163 |#2|)) 109)) (-2237 (((-3 |#2| #3="failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) (-608 |#2|) |#2| (-407 (-1163 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) |#2| (-1163 |#2|)) 111)) (-2238 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|))) 128 (|has| |#3| (-653 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|)) 127 (|has| |#3| (-653 |#2|)))) (-3477 ((|#2| (-1163 (-407 (-1163 |#2|))) (-608 |#2|) |#2|) 50)) (-3470 (((-1163 (-407 (-1163 |#2|))) (-1163 |#2|) (-608 |#2|)) 31)))
+(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -2234 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|))) (-15 -2234 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2235 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1163 |#2|))) (-15 -2235 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2236 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) |#2| (-1163 |#2|))) (-15 -2236 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2237 ((-3 |#2| #3="failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) |#2| (-1163 |#2|))) (-15 -2237 ((-3 |#2| #3#) |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -3476 ((-1163 (-407 (-1163 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1163 |#2|))) (-15 -3477 (|#2| (-1163 (-407 (-1163 |#2|))) (-608 |#2|) |#2|)) (-15 -3470 ((-1163 (-407 (-1163 |#2|))) (-1163 |#2|) (-608 |#2|))) (IF (|has| |#3| (-653 |#2|)) (PROGN (-15 -2238 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|))) (-15 -2238 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))) (-13 (-421 |#1|) (-27) (-1193)) (-1094)) (T -560))
+((-2238 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-407 (-1163 *4))) (-4 *4 (-13 (-421 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094)))) (-2238 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1163 *4)) (-4 *4 (-13 (-421 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2169 (-637 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-1163 (-407 (-1163 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1163 *6)) (-4 *7 (-1094)))) (-3477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1163 (-407 (-1163 *2)))) (-5 *4 (-608 *2)) (-4 *2 (-13 (-421 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-3476 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-1163 (-407 (-1163 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1163 *3)) (-4 *7 (-1094)))) (-2237 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1169))) (-5 *5 (-407 (-1163 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2237 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1169))) (-5 *5 (-1163 *2)) (-4 *2 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2236 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3)) (-5 *6 (-407 (-1163 *3))) (-4 *3 (-13 (-421 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2236 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3)) (-5 *6 (-1163 *3)) (-4 *3 (-13 (-421 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2235 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-407 (-1163 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2235 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1163 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2234 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-407 (-1163 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2234 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1163 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+(-10 -7 (-15 -2234 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|))) (-15 -2234 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2235 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1163 |#2|))) (-15 -2235 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2236 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) |#2| (-1163 |#2|))) (-15 -2236 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -2237 ((-3 |#2| #3="failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) |#2| (-1163 |#2|))) (-15 -2237 ((-3 |#2| #3#) |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1169)) (-608 |#2|) |#2| (-407 (-1163 |#2|)))) (-15 -3476 ((-1163 (-407 (-1163 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1163 |#2|))) (-15 -3477 (|#2| (-1163 (-407 (-1163 |#2|))) (-608 |#2|) |#2|)) (-15 -3470 ((-1163 (-407 (-1163 |#2|))) (-1163 |#2|) (-608 |#2|))) (IF (|has| |#3| (-653 |#2|)) (PROGN (-15 -2238 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1163 |#2|))) (-15 -2238 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-407 (-1163 |#2|))))) |%noBranch|))
+((-2248 (((-546) (-546) (-767)) 66)) (-2247 (((-546) (-546)) 65)) (-2246 (((-546) (-546)) 64)) (-2245 (((-546) (-546)) 69)) (-3194 (((-546) (-546) (-546)) 49)) (-2244 (((-546) (-546) (-546)) 46)) (-2243 (((-407 (-546)) (-546)) 20)) (-2242 (((-546) (-546)) 21)) (-2241 (((-546) (-546)) 58)) (-3191 (((-546) (-546)) 32)) (-2240 (((-637 (-546)) (-546)) 63)) (-2239 (((-546) (-546) (-546) (-546) (-546)) 44)) (-3187 (((-407 (-546)) (-546)) 41)))
+(((-561) (-10 -7 (-15 -3187 ((-407 (-546)) (-546))) (-15 -2239 ((-546) (-546) (-546) (-546) (-546))) (-15 -2240 ((-637 (-546)) (-546))) (-15 -3191 ((-546) (-546))) (-15 -2241 ((-546) (-546))) (-15 -2242 ((-546) (-546))) (-15 -2243 ((-407 (-546)) (-546))) (-15 -2244 ((-546) (-546) (-546))) (-15 -3194 ((-546) (-546) (-546))) (-15 -2245 ((-546) (-546))) (-15 -2246 ((-546) (-546))) (-15 -2247 ((-546) (-546))) (-15 -2248 ((-546) (-546) (-767))))) (T -561))
+((-2248 (*1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-767)) (-5 *1 (-561)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-3194 (*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2244 (*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2243 (*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-561)) (-5 *3 (-546)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-2240 (*1 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-561)) (-5 *3 (-546)))) (-2239 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))) (-3187 (*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-561)) (-5 *3 (-546)))))
+(-10 -7 (-15 -3187 ((-407 (-546)) (-546))) (-15 -2239 ((-546) (-546) (-546) (-546) (-546))) (-15 -2240 ((-637 (-546)) (-546))) (-15 -3191 ((-546) (-546))) (-15 -2241 ((-546) (-546))) (-15 -2242 ((-546) (-546))) (-15 -2243 ((-407 (-546)) (-546))) (-15 -2244 ((-546) (-546) (-546))) (-15 -3194 ((-546) (-546) (-546))) (-15 -2245 ((-546) (-546))) (-15 -2246 ((-546) (-546))) (-15 -2247 ((-546) (-546))) (-15 -2248 ((-546) (-546) (-767))))
+((-2249 (((-2 (|:| |answer| |#4|) (|:| -2296 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2249 ((-2 (|:| |answer| |#4|) (|:| -2296 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562))
+((-2249 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-4 *7 (-1232 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2296 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
+(-10 -7 (-15 -2249 ((-2 (|:| |answer| |#4|) (|:| -2296 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2249 (((-2 (|:| |answer| (-407 |#2|)) (|:| -2296 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -2249 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2296 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1232 |#1|)) (T -563))
+((-2249 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -2296 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -2249 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2296 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
+((-3057 (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765) (-1057)) 108) (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765)) 110)) (-4227 (((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1169)) 172) (((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1151)) 171) (((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378) (-1057)) 176) (((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378)) 177) (((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378)) 178) (((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378))))) 179) (((-1031) (-314 (-378)) (-1082 (-838 (-378)))) 167) (((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378)) 166) (((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378)) 162) (((-1031) (-765)) 155) (((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378) (-1057)) 161)))
+(((-564) (-10 -7 (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378) (-1057))) (-15 -4227 ((-1031) (-765))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378) (-1057))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -4227 ((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1151))) (-15 -4227 ((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1169))))) (T -564))
+((-4227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-314 (-378))) (-5 *4 (-1085 (-838 (-378)))) (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-314 (-378))) (-5 *4 (-1085 (-838 (-378)))) (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378))))) (-5 *5 (-378)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378))))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4227 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))))
+(-10 -7 (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378) (-1057))) (-15 -4227 ((-1031) (-765))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-1082 (-838 (-378))))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378))) (-15 -4227 ((-1031) (-314 (-378)) (-637 (-1082 (-838 (-378)))) (-378) (-378) (-1057))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -4227 ((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1151))) (-15 -4227 ((-3 (-1031) "failed") (-314 (-378)) (-1085 (-838 (-378))) (-1169))))
+((-2252 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|)) 183)) (-2250 (((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|)) 98)) (-2251 (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|) 179)) (-2253 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1169))) 188)) (-2254 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1169)) 196 (|has| |#3| (-653 |#2|)))))
+(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -2250 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -2251 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|))) (-15 -2253 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1169)))) (IF (|has| |#3| (-653 |#2|)) (-15 -2254 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1169))) |%noBranch|)) (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))) (-13 (-421 |#1|) (-27) (-1193)) (-1094)) (T -565))
+((-2254 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1169)) (-4 *4 (-13 (-421 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094)))) (-2253 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1169))) (-4 *2 (-13 (-421 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1094)))) (-2252 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1094)))) (-2251 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1094)))) (-2250 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546)))) (-5 *2 (-582 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1094)))))
+(-10 -7 (-15 -2250 ((-582 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -2251 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -2252 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-637 |#2|))) (-15 -2253 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1169)))) (IF (|has| |#3| (-653 |#2|)) (-15 -2254 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2169 (-637 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1169))) |%noBranch|))
+((-2255 (((-2 (|:| -2468 |#2|) (|:| |nconst| |#2|)) |#2| (-1169)) 63)) (-2257 (((-3 |#2| "failed") |#2| (-1169) (-838 |#2|) (-838 |#2|)) 163 (-12 (|has| |#2| (-1132)) (|has| |#1| (-611 (-886 (-546)))) (|has| |#1| (-882 (-546))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 146 (-12 (|has| |#2| (-627)) (|has| |#1| (-611 (-886 (-546)))) (|has| |#1| (-882 (-546)))))) (-2256 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 147 (-12 (|has| |#2| (-627)) (|has| |#1| (-611 (-886 (-546)))) (|has| |#1| (-882 (-546)))))))
+(((-566 |#1| |#2|) (-10 -7 (-15 -2255 ((-2 (|:| -2468 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-886 (-546)))) (IF (|has| |#1| (-882 (-546))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2256 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -2257 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -2257 ((-3 |#2| "failed") |#2| (-1169) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-846) (-1034 (-546)) (-452) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -566))
+((-2257 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-838 *2)) (-4 *2 (-1132)) (-4 *2 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-611 (-886 (-546)))) (-4 *5 (-882 (-546))) (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546)))) (-5 *1 (-566 *5 *2)))) (-2257 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-886 (-546)))) (-4 *5 (-882 (-546))) (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-2256 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-886 (-546)))) (-4 *5 (-882 (-546))) (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546)))) (-5 *2 (-2 (|:| -2468 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
+(-10 -7 (-15 -2255 ((-2 (|:| -2468 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-886 (-546)))) (IF (|has| |#1| (-882 (-546))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2256 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -2257 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -2257 ((-3 |#2| "failed") |#2| (-1169) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2260 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-637 (-407 |#2|))) 41)) (-4227 (((-582 (-407 |#2|)) (-407 |#2|)) 28)) (-2258 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2259 (((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
+(((-567 |#1| |#2|) (-10 -7 (-15 -4227 ((-582 (-407 |#2|)) (-407 |#2|))) (-15 -2258 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2259 ((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2260 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-637 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-546))) (-1232 |#1|)) (T -567))
+((-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-637 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *5 *6)))) (-2259 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -2297 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) (-2258 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-546)))) (-5 *1 (-567 *3 *4)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4)) (-5 *2 (-582 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -4227 ((-582 (-407 |#2|)) (-407 |#2|))) (-15 -2258 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2259 ((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2260 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-637 (-407 |#2|)))))
+((-2261 (((-3 (-546) "failed") |#1|) 14)) (-3667 (((-112) |#1|) 13)) (-3663 (((-546) |#1|) 9)))
+(((-568 |#1|) (-10 -7 (-15 -3663 ((-546) |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -2261 ((-3 (-546) "failed") |#1|))) (-1034 (-546))) (T -568))
+((-2261 (*1 *2 *3) (|partial| -12 (-5 *2 (-546)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) (-3667 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-546))))) (-3663 (*1 *2 *3) (-12 (-5 *2 (-546)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))))
+(-10 -7 (-15 -3663 ((-546) |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -2261 ((-3 (-546) "failed") |#1|)))
+((-2264 (((-3 (-2 (|:| |mainpart| (-407 (-942 |#1|))) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 (-942 |#1|))) (|:| |logand| (-407 (-942 |#1|))))))) "failed") (-407 (-942 |#1|)) (-1169) (-637 (-407 (-942 |#1|)))) 48)) (-2262 (((-582 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-1169)) 28)) (-2263 (((-3 (-407 (-942 |#1|)) "failed") (-407 (-942 |#1|)) (-1169)) 23)) (-2265 (((-3 (-2 (|:| -2297 (-407 (-942 |#1|))) (|:| |coeff| (-407 (-942 |#1|)))) "failed") (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|))) 35)))
+(((-569 |#1|) (-10 -7 (-15 -2262 ((-582 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -2263 ((-3 (-407 (-942 |#1|)) "failed") (-407 (-942 |#1|)) (-1169))) (-15 -2264 ((-3 (-2 (|:| |mainpart| (-407 (-942 |#1|))) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 (-942 |#1|))) (|:| |logand| (-407 (-942 |#1|))))))) "failed") (-407 (-942 |#1|)) (-1169) (-637 (-407 (-942 |#1|))))) (-15 -2265 ((-3 (-2 (|:| -2297 (-407 (-942 |#1|))) (|:| |coeff| (-407 (-942 |#1|)))) "failed") (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|))))) (-13 (-556) (-1034 (-546)) (-147))) (T -569))
+((-2265 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-1034 (-546)) (-147))) (-5 *2 (-2 (|:| -2297 (-407 (-942 *5))) (|:| |coeff| (-407 (-942 *5))))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-942 *5))))) (-2264 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 (-407 (-942 *6)))) (-5 *3 (-407 (-942 *6))) (-4 *6 (-13 (-556) (-1034 (-546)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6)))) (-2263 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-942 *4))) (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-1034 (-546)) (-147))) (-5 *1 (-569 *4)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-1034 (-546)) (-147))) (-5 *2 (-582 (-407 (-942 *5)))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-942 *5))))))
+(-10 -7 (-15 -2262 ((-582 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -2263 ((-3 (-407 (-942 |#1|)) "failed") (-407 (-942 |#1|)) (-1169))) (-15 -2264 ((-3 (-2 (|:| |mainpart| (-407 (-942 |#1|))) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 (-942 |#1|))) (|:| |logand| (-407 (-942 |#1|))))))) "failed") (-407 (-942 |#1|)) (-1169) (-637 (-407 (-942 |#1|))))) (-15 -2265 ((-3 (-2 (|:| -2297 (-407 (-942 |#1|))) (|:| |coeff| (-407 (-942 |#1|)))) "failed") (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)))))
+((-2953 (((-112) $ $) 58)) (-3596 (((-112) $) 36)) (-2989 ((|#1| $) 30)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) 62)) (-3898 (($ $) 122)) (-4054 (($ $) 102)) (-2784 ((|#1| $) 28)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $) NIL)) (-3896 (($ $) 124)) (-4053 (($ $) 98)) (-3900 (($ $) 126)) (-4052 (($ $) 106)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) "failed") $) 77)) (-3564 (((-546) $) 79)) (-3873 (((-3 $ "failed") $) 61)) (-2216 (($ |#1| |#1|) 26)) (-3594 (((-112) $) 33)) (-4042 (($) 88)) (-2552 (((-112) $) 43)) (-3401 (($ $ (-546)) NIL)) (-3595 (((-112) $) 34)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4357 (($ $) 90)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2217 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-407 (-546))) 76)) (-2215 ((|#1| $) 27)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) 64) (($ (-637 $)) NIL)) (-3872 (((-3 $ "failed") $ $) 63)) (-4358 (($ $) 92)) (-3901 (($ $) 130)) (-4051 (($ $) 104)) (-3899 (($ $) 132)) (-4050 (($ $) 108)) (-3897 (($ $) 128)) (-4049 (($ $) 100)) (-2214 (((-112) $ |#1|) 31)) (-4361 (((-859) $) 84) (($ (-546)) 66) (($ $) NIL) (($ (-546)) 66)) (-3518 (((-767)) 86)) (-3904 (($ $) 144)) (-3892 (($ $) 114)) (-2219 (((-112) $ $) NIL)) (-3902 (($ $) 142)) (-3890 (($ $) 110)) (-3906 (($ $) 140)) (-3894 (($ $) 120)) (-3907 (($ $) 138)) (-3895 (($ $) 118)) (-3905 (($ $) 136)) (-3893 (($ $) 116)) (-3903 (($ $) 134)) (-3891 (($ $) 112)) (-3047 (($) 21 T CONST)) (-3053 (($) 10 T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 37)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 35)) (-4252 (($ $) 41) (($ $ $) 42)) (-4254 (($ $ $) 40)) (** (($ $ (-915)) 54) (($ $ (-767)) NIL) (($ $ $) 94) (($ $ (-407 (-546))) 146)) (* (($ (-915) $) 51) (($ (-767) $) NIL) (($ (-546) $) 50) (($ $ $) 48)))
+(((-570 |#1|) (-554 |#1|) (-13 (-404) (-1193))) (T -570))
+NIL
+(-554 |#1|)
+((-3093 (((-3 (-637 (-1163 (-546))) "failed") (-637 (-1163 (-546))) (-1163 (-546))) 24)))
+(((-571) (-10 -7 (-15 -3093 ((-3 (-637 (-1163 (-546))) "failed") (-637 (-1163 (-546))) (-1163 (-546)))))) (T -571))
+((-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 (-546)))) (-5 *3 (-1163 (-546))) (-5 *1 (-571)))))
+(-10 -7 (-15 -3093 ((-3 (-637 (-1163 (-546))) "failed") (-637 (-1163 (-546))) (-1163 (-546)))))
+((-2266 (((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-1169)) 19)) (-2269 (((-637 (-608 |#2|)) (-637 |#2|) (-1169)) 23)) (-3642 (((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-637 (-608 |#2|))) 11)) (-2270 ((|#2| |#2| (-1169)) 53 (|has| |#1| (-556)))) (-2271 ((|#2| |#2| (-1169)) 76 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-2268 (((-608 |#2|) (-608 |#2|) (-637 (-608 |#2|)) (-1169)) 25)) (-2267 (((-608 |#2|) (-637 (-608 |#2|))) 24)) (-2272 (((-582 |#2|) |#2| (-1169) (-1 (-582 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) 101 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1034 (-1169))) (|has| |#1| (-611 (-886 (-546)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-546)))))))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2266 ((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-1169))) (-15 -2267 ((-608 |#2|) (-637 (-608 |#2|)))) (-15 -2268 ((-608 |#2|) (-608 |#2|) (-637 (-608 |#2|)) (-1169))) (-15 -3642 ((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-637 (-608 |#2|)))) (-15 -2269 ((-637 (-608 |#2|)) (-637 |#2|) (-1169))) (IF (|has| |#1| (-556)) (-15 -2270 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2271 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-886 (-546)))) (IF (|has| |#1| (-882 (-546))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1169))) (-15 -2272 ((-582 |#2|) |#2| (-1169) (-1 (-582 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-846) (-421 |#1|)) (T -572))
+((-2272 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-582 *3) *3 (-1169))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1169))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-421 *7)) (-5 *4 (-1169)) (-4 *7 (-611 (-886 (-546)))) (-4 *7 (-452)) (-4 *7 (-882 (-546))) (-4 *7 (-846)) (-5 *2 (-582 *3)) (-5 *1 (-572 *7 *3)))) (-2271 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-421 *4)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-556)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-421 *4)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-1169)) (-4 *6 (-421 *5)) (-4 *5 (-846)) (-5 *2 (-637 (-608 *6))) (-5 *1 (-572 *5 *6)))) (-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-637 (-608 *4))) (-4 *4 (-421 *3)) (-4 *3 (-846)) (-5 *1 (-572 *3 *4)))) (-2268 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-637 (-608 *6))) (-5 *4 (-1169)) (-5 *2 (-608 *6)) (-4 *6 (-421 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-637 (-608 *5))) (-4 *4 (-846)) (-5 *2 (-608 *5)) (-5 *1 (-572 *4 *5)) (-4 *5 (-421 *4)))) (-2266 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-608 *5))) (-5 *3 (-1169)) (-4 *5 (-421 *4)) (-4 *4 (-846)) (-5 *1 (-572 *4 *5)))))
+(-10 -7 (-15 -2266 ((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-1169))) (-15 -2267 ((-608 |#2|) (-637 (-608 |#2|)))) (-15 -2268 ((-608 |#2|) (-608 |#2|) (-637 (-608 |#2|)) (-1169))) (-15 -3642 ((-637 (-608 |#2|)) (-637 (-608 |#2|)) (-637 (-608 |#2|)))) (-15 -2269 ((-637 (-608 |#2|)) (-637 |#2|) (-1169))) (IF (|has| |#1| (-556)) (-15 -2270 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2271 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-886 (-546)))) (IF (|has| |#1| (-882 (-546))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1169))) (-15 -2272 ((-582 |#2|) |#2| (-1169) (-1 (-582 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2275 (((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-637 |#1|) "failed") (-546) |#1| |#1|)) 172)) (-2278 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-637 (-407 |#2|))) 148)) (-2281 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-637 (-407 |#2|))) 145)) (-2282 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2273 (((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2280 (((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 175)) (-2276 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-407 |#2|)) 178)) (-2284 (((-2 (|:| |ir| (-582 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 84)) (-2285 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2279 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-637 (-407 |#2|))) 152)) (-2283 (((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|)) 137)) (-2274 (((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|)) 162)) (-2277 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-407 |#2|)) 183)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -2273 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2274 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|))) (-15 -2275 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-637 |#1|) "failed") (-546) |#1| |#1|))) (-15 -2276 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-407 |#2|))) (-15 -2277 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-407 |#2|))) (-15 -2278 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-637 (-407 |#2|)))) (-15 -2279 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-637 (-407 |#2|)))) (-15 -2280 ((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-637 (-407 |#2|)))) (-15 -2282 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2283 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|))) (-15 -2284 ((-2 (|:| |ir| (-582 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2285 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1232 |#1|)) (T -573))
+((-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-573 *5 *3)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-582 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-2283 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3529 *4) (|:| |sol?| (-112))) (-546) *4)) (-4 *4 (-363)) (-4 *5 (-1232 *4)) (-5 *1 (-573 *4 *5)))) (-2282 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1232 *4)))) (-2281 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-637 (-407 *7))) (-4 *7 (-1232 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6 *7)))) (-2280 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2297 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-2279 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3529 *7) (|:| |sol?| (-112))) (-546) *7)) (-5 *6 (-637 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1232 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2278 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2297 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-637 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1232 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2277 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3529 *6) (|:| |sol?| (-112))) (-546) *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2297 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2276 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2297 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2297 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2275 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-637 *6) "failed") (-546) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2274 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3529 *6) (|:| |sol?| (-112))) (-546) *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2297 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(-10 -7 (-15 -2273 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2274 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|))) (-15 -2275 ((-2 (|:| |answer| (-582 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-637 |#1|) "failed") (-546) |#1| |#1|))) (-15 -2276 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-407 |#2|))) (-15 -2277 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-407 |#2|))) (-15 -2278 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-637 (-407 |#2|)))) (-15 -2279 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|) (-637 (-407 |#2|)))) (-15 -2280 ((-3 (-2 (|:| -2297 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-637 (-407 |#2|)))) (-15 -2282 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2283 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3529 |#1|) (|:| |sol?| (-112))) (-546) |#1|))) (-15 -2284 ((-2 (|:| |ir| (-582 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2285 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2286 (((-3 |#2| "failed") |#2| (-1169) (-1169)) 10)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -2286 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-956) (-1132) (-29 |#1|))) (T -574))
+((-2286 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-1193) (-956) (-1132) (-29 *4))))))
+(-10 -7 (-15 -2286 ((-3 |#2| "failed") |#2| (-1169) (-1169))))
+((-2943 (((-686 (-1215)) $ (-1215)) 26)) (-2944 (((-686 (-549)) $ (-549)) 25)) (-2942 (((-767) $ (-129)) 27)) (-2945 (((-686 (-128)) $ (-128)) 24)) (-2157 (((-686 (-1215)) $) 12)) (-2153 (((-686 (-1214)) $) 8)) (-2155 (((-686 (-1213)) $) 10)) (-2158 (((-686 (-549)) $) 13)) (-2154 (((-686 (-548)) $) 9)) (-2156 (((-686 (-547)) $) 11)) (-2152 (((-767) $ (-129)) 7)) (-2159 (((-686 (-128)) $) 14)) (-1851 (($ $) 6)))
(((-575) (-140)) (T -575))
NIL
-(-13 (-527) (-856))
-(((-173) . T) ((-527) . T) ((-856) . T))
-((-3233 (((-686 (-1215)) $ (-1215)) NIL)) (-3243 (((-686 (-548)) $ (-548)) NIL)) (-3225 (((-767) $ (-128)) NIL)) (-3254 (((-686 (-129)) $ (-129)) NIL)) (-3884 (((-686 (-1215)) $) NIL)) (-3848 (((-686 (-1214)) $) NIL)) (-3864 (((-686 (-1213)) $) NIL)) (-3896 (((-686 (-548)) $) NIL)) (-3857 (((-686 (-547)) $) NIL)) (-3874 (((-686 (-546)) $) NIL)) (-3839 (((-767) $ (-128)) NIL)) (-3907 (((-686 (-129)) $) NIL)) (-3170 (((-112) $) NIL)) (-2752 (($ (-388)) 14) (($ (-1151)) 16)) (-1692 (((-858) $) NIL)) (-1895 (($ $) NIL)))
-(((-576) (-13 (-575) (-610 (-858)) (-10 -8 (-15 -2752 ($ (-388))) (-15 -2752 ($ (-1151))) (-15 -3170 ((-112) $))))) (T -576))
-((-2752 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576)))))
-(-13 (-575) (-610 (-858)) (-10 -8 (-15 -2752 ($ (-388))) (-15 -2752 ($ (-1151))) (-15 -3170 ((-112) $))))
-((-1677 (((-112) $ $) NIL)) (-1554 (($) 7 T CONST)) (-3854 (((-1151) $) NIL)) (-1516 (($) 6 T CONST)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 14)) (-2762 (($) 8 T CONST)) (-1718 (((-112) $ $) 10)))
-(((-577) (-13 (-1093) (-10 -8 (-15 -1516 ($) -2668) (-15 -1554 ($) -2668) (-15 -2762 ($) -2668)))) (T -577))
-((-1516 (*1 *1) (-5 *1 (-577))) (-1554 (*1 *1) (-5 *1 (-577))) (-2762 (*1 *1) (-5 *1 (-577))))
-(-13 (-1093) (-10 -8 (-15 -1516 ($) -2668) (-15 -1554 ($) -2668) (-15 -2762 ($) -2668)))
-((-1677 (((-112) $ $) NIL)) (-3316 (((-686 $) (-491)) 16)) (-3854 (((-1151) $) NIL)) (-2784 (($ (-1151)) 9)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 31)) (-2773 (((-213 4 (-129)) $) 19)) (-1718 (((-112) $ $) 22)))
-(((-578) (-13 (-1093) (-10 -8 (-15 -2784 ($ (-1151))) (-15 -2773 ((-213 4 (-129)) $)) (-15 -3316 ((-686 $) (-491)))))) (T -578))
-((-2784 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578)))))
-(-13 (-1093) (-10 -8 (-15 -2784 ($ (-1151))) (-15 -2773 ((-213 4 (-129)) $)) (-15 -3316 ((-686 $) (-491)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $ (-563)) 66)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3558 (($ (-1165 (-563)) (-563)) 72)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 58)) (-3572 (($ $) 34)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-1775 (((-767) $) 15)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3593 (((-563)) 29)) (-3583 (((-563) $) 32)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1751 (($ $ (-563)) 21)) (-3012 (((-3 $ "failed") $ $) 59)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) 16)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 61)) (-3605 (((-1149 (-563)) $) 18)) (-3369 (($ $) 23)) (-1692 (((-858) $) 86) (($ (-563)) 52) (($ $) NIL)) (-3914 (((-767)) 14)) (-3223 (((-112) $ $) NIL)) (-1402 (((-563) $ (-563)) 36)) (-2239 (($) 35 T CONST)) (-2253 (($) 19 T CONST)) (-1718 (((-112) $ $) 39)) (-1825 (($ $) 51) (($ $ $) 37)) (-1813 (($ $ $) 50)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 54) (($ $ $) 55)))
-(((-579 |#1| |#2|) (-865 |#1|) (-563) (-112)) (T -579))
-NIL
-(-865 |#1|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 21)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1597 (((-1181 (-917) (-767)) (-563)) 47)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 $ "failed") $) 75)) (-2057 (($ $) 74)) (-3458 (($ (-1257 $)) 73)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 32)) (-1690 (($) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) 49)) (-1656 (((-112) $) NIL)) (-3188 (($ $) NIL) (($ $ (-767)) NIL)) (-2560 (((-112) $) NIL)) (-1775 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3401 (((-112) $) NIL)) (-4024 (($) 37 (|has| $ (-368)))) (-4002 (((-112) $) NIL (|has| $ (-368)))) (-3975 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1983 (((-3 $ "failed") $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) 83)) (-3990 (((-917) $) 55)) (-2196 (((-1165 $) $) NIL (|has| $ (-368)))) (-2184 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-2207 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL T CONST)) (-2552 (($ (-917)) 48)) (-3751 (((-112) $) 67)) (-1693 (((-1113) $) NIL)) (-4334 (($) 19 (|has| $ (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 42)) (-2173 (((-418 $) $) NIL)) (-3740 (((-917)) 66) (((-829 (-917))) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3526 (((-134)) NIL)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-3871 (((-917) $) 65) (((-829 (-917)) $) NIL)) (-3402 (((-1165 $)) 82)) (-1586 (($) 54)) (-2220 (($) 38 (|has| $ (-368)))) (-3759 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) 71)) (-2219 (((-563) $) 28)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) 30) (($ $) NIL) (($ (-407 (-563))) NIL)) (-2047 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3914 (((-767)) 39)) (-4013 (((-1257 $) (-917)) 77) (((-1257 $)) 76)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) 22 T CONST)) (-2253 (($) 18 T CONST)) (-3715 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 26)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 61) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-580 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -580))
-NIL
-(-13 (-349) (-329 $) (-611 (-563)))
-((-2794 (((-1262) (-1151)) 10)))
-(((-581) (-10 -7 (-15 -2794 ((-1262) (-1151))))) (T -581))
-((-2794 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581)))))
-(-10 -7 (-15 -2794 ((-1262) (-1151))))
-((-1792 (((-584 |#2|) (-584 |#2|)) 37)) (-2212 (((-640 |#2|) (-584 |#2|)) 39)) (-2924 ((|#2| (-584 |#2|)) 45)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -1792 ((-584 |#2|) (-584 |#2|))) (-15 -2212 ((-640 |#2|) (-584 |#2|))) (-15 -2924 (|#2| (-584 |#2|)))) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))) (-13 (-29 |#1|) (-1193))) (T -582))
-((-2924 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193))) (-5 *1 (-582 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-582 *3 *4)))))
-(-10 -7 (-15 -1792 ((-584 |#2|) (-584 |#2|))) (-15 -2212 ((-640 |#2|) (-584 |#2|))) (-15 -2924 (|#2| (-584 |#2|))))
-((-2238 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 30)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -2238 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2238 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2238 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2238 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -583))
-((-2238 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-583 *5 *6)))) (-2238 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) (-2238 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2840 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2840 *6) (|:| |coeff| *6))) (-5 *1 (-583 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6)))))
-(-10 -7 (-15 -2238 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2238 ((-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2840 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2238 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2238 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 67)) (-2057 ((|#1| $) NIL)) (-2840 ((|#1| $) 26)) (-2815 (((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2849 (($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2829 (((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $) 27)) (-3854 (((-1151) $) NIL)) (-4025 (($ |#1| |#1|) 33) (($ |#1| (-1169)) 44 (|has| |#1| (-1034 (-1169))))) (-1693 (((-1113) $) NIL)) (-2804 (((-112) $) 30)) (-4203 ((|#1| $ (-1 |#1| |#1|)) 79) ((|#1| $ (-1169)) 80 (|has| |#1| (-896 (-1169))))) (-1692 (((-858) $) 95) (($ |#1|) 25)) (-2239 (($) 16 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) 15) (($ $ $) NIL)) (-1813 (($ $ $) 76)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 14) (($ (-407 (-563)) $) 36) (($ $ (-407 (-563))) NIL)))
-(((-584 |#1|) (-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -2849 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2840 (|#1| $)) (-15 -2829 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -2815 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2804 ((-112) $)) (-15 -4025 ($ |#1| |#1|)) (-15 -4203 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4203 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -4025 ($ |#1| (-1169))) |%noBranch|))) (-363)) (T -584))
-((-2849 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2)) (|:| |logand| (-1165 *2))))) (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-584 *2)))) (-2840 (*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3)) (|:| |logand| (-1165 *3))))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-4025 (*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2)) (-5 *3 (-1169)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363)))))
-(-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -2849 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2840 (|#1| $)) (-15 -2829 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -2815 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2804 ((-112) $)) (-15 -4025 ($ |#1| |#1|)) (-15 -4203 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4203 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -4025 ($ |#1| (-1169))) |%noBranch|)))
-((-2886 (((-112) |#1|) 16)) (-2895 (((-3 |#1| "failed") |#1|) 14)) (-2868 (((-2 (|:| -4212 |#1|) (|:| -3311 (-767))) |#1|) 31) (((-3 |#1| "failed") |#1| (-767)) 18)) (-2859 (((-112) |#1| (-767)) 19)) (-2904 ((|#1| |#1|) 32)) (-2877 ((|#1| |#1| (-767)) 34)))
-(((-585 |#1|) (-10 -7 (-15 -2859 ((-112) |#1| (-767))) (-15 -2868 ((-3 |#1| "failed") |#1| (-767))) (-15 -2868 ((-2 (|:| -4212 |#1|) (|:| -3311 (-767))) |#1|)) (-15 -2877 (|#1| |#1| (-767))) (-15 -2886 ((-112) |#1|)) (-15 -2895 ((-3 |#1| "failed") |#1|)) (-15 -2904 (|#1| |#1|))) (-545)) (T -585))
-((-2904 (*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2895 (*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2886 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-2877 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2868 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4212 *3) (|:| -3311 (-767)))) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-2868 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -2859 ((-112) |#1| (-767))) (-15 -2868 ((-3 |#1| "failed") |#1| (-767))) (-15 -2868 ((-2 (|:| -4212 |#1|) (|:| -3311 (-767))) |#1|)) (-15 -2877 (|#1| |#1| (-767))) (-15 -2886 ((-112) |#1|)) (-15 -2895 ((-3 |#1| "failed") |#1|)) (-15 -2904 (|#1| |#1|)))
-((-2914 (((-1165 |#1|) (-917)) 26)))
-(((-586 |#1|) (-10 -7 (-15 -2914 ((-1165 |#1|) (-917)))) (-349)) (T -586))
-((-2914 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4)) (-4 *4 (-349)))))
-(-10 -7 (-15 -2914 ((-1165 |#1|) (-917))))
-((-1792 (((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|)))) 27)) (-2062 (((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 34 (|has| |#1| (-147)))) (-2212 (((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|)))) 19)) (-2933 (((-316 |#1|) (-407 (-948 |#1|)) (-1169)) 32 (|has| |#1| (-147)))) (-2924 (((-316 |#1|) (-584 (-407 (-948 |#1|)))) 21)))
-(((-587 |#1|) (-10 -7 (-15 -1792 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -2212 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -2924 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2062 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2933 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (T -587))
-((-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *5)) (-5 *1 (-587 *5)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-587 *4)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-584 (-407 (-948 *3)))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-587 *3)))))
-(-10 -7 (-15 -1792 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -2212 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -2924 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2062 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2933 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|))
-((-2953 (((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563)))) 45) (((-640 (-684 (-563))) (-640 (-563))) 46) (((-684 (-563)) (-640 (-563)) (-901 (-563))) 41)) (-2943 (((-767) (-640 (-563))) 39)))
-(((-588) (-10 -7 (-15 -2943 ((-767) (-640 (-563)))) (-15 -2953 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -2953 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -2953 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563))))))) (T -588))
-((-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-588)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588)))))
-(-10 -7 (-15 -2943 ((-767) (-640 (-563)))) (-15 -2953 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -2953 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -2953 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563))))))
-((-3653 (((-640 |#5|) |#5| (-112)) 70)) (-2963 (((-112) |#5| (-640 |#5|)) 30)))
-(((-589 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3653 ((-640 |#5|) |#5| (-112))) (-15 -2963 ((-112) |#5| (-640 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -589))
-((-2963 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-589 *5 *6 *7 *8 *3)))) (-3653 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3)) (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3653 ((-640 |#5|) |#5| (-112))) (-15 -2963 ((-112) |#5| (-640 |#5|))))
-((-1677 (((-112) $ $) NIL)) (-2350 (((-1128) $) 11)) (-2339 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-590) (-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))) (T -590))
-((-2339 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))))
-(-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))
-((-1677 (((-112) $ $) NIL (|has| (-144) (-1093)))) (-1815 (($ $) 34)) (-1827 (($ $) NIL)) (-1782 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2558 (((-112) $ $) 51)) (-2537 (((-112) $ $ (-563)) 46)) (-1792 (((-640 $) $ (-144)) 59) (((-640 $) $ (-141)) 60)) (-4073 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-4052 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-1640 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-144) $ (-563) (-144)) 45 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-2023 (($ $ (-144)) 63) (($ $ (-141)) 64)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-1804 (($ $ (-1224 (-563)) $) 44)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1459 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4356 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409)))) (-4293 (((-144) $ (-563)) NIL)) (-2578 (((-112) $ $) 71)) (-4369 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 48 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 47) (((-563) (-141) $ (-563)) 50)) (-2658 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) (-144)) 9)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 28 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| (-144) (-846)))) (-4300 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-3523 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2251 (((-563) $) 42 (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-144) (-846)))) (-4368 (((-112) $ $ (-144)) 72)) (-1915 (((-767) $ $ (-144)) 69)) (-4347 (($ (-1 (-144) (-144)) $) 33 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1838 (($ $) 37)) (-1848 (($ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2034 (($ $ (-144)) 61) (($ $ (-141)) 62)) (-3854 (((-1151) $) 38 (|has| (-144) (-1093)))) (-3399 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) 23)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-563) $) 68) (((-1113) $) NIL (|has| (-144) (-1093)))) (-3782 (((-144) $) NIL (|has| (-563) (-846)))) (-1971 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2221 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2295 (((-640 (-144)) $) NIL)) (-1665 (((-112) $) 12)) (-3445 (($) 10)) (-2308 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) 52) (($ $ (-1224 (-563))) 21) (($ $ $) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-4062 (($ $ $ (-563)) 65 (|has| $ (-6 -4409)))) (-1870 (($ $) 17)) (-2219 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-1706 (($ (-640 (-144))) NIL)) (-2857 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 16) (($ (-640 $)) 66)) (-1692 (($ (-144)) NIL) (((-858) $) 27 (|has| (-144) (-610 (-858))))) (-1471 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1718 (((-112) $ $) 14 (|has| (-144) (-1093)))) (-1766 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1743 (((-112) $ $) 15 (|has| (-144) (-846)))) (-3610 (((-767) $) 13 (|has| $ (-6 -4408)))))
-(((-591 |#1|) (-13 (-1137) (-10 -8 (-15 -1693 ((-563) $)))) (-563)) (T -591))
-((-1693 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2))))
-(-13 (-1137) (-10 -8 (-15 -1693 ((-563) $))))
-((-2235 (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|)) 32)))
-(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2235 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -2235 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|)) (T -592))
-((-2235 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-2235 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *6 *4 *7 *3)))))
-(-10 -7 (-15 -2235 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -2235 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 63)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-563)) 54) (($ $ (-563) (-563)) 55)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 60)) (-2098 (($ $) 99)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2079 (((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563))) 224)) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 34)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3381 (((-112) $) NIL)) (-1775 (((-563) $) 58) (((-563) $ (-563)) 59)) (-3401 (((-112) $) NIL)) (-1821 (($ $ (-917)) 76)) (-2072 (($ (-1 |#1| (-563)) $) 73)) (-3805 (((-112) $) 25)) (-2587 (($ |#1| (-563)) 22) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) 67)) (-2139 (($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 13)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-2062 (($ $) 149 (|has| |#1| (-38 (-407 (-563)))))) (-2108 (((-3 $ "failed") $ $ (-112)) 98)) (-2087 (($ $ $) 107)) (-1693 (((-1113) $) NIL)) (-2117 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 15)) (-2128 (((-1022 (-839 (-563))) $) 14)) (-1751 (($ $ (-563)) 45)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-2308 ((|#1| $ (-563)) 57) (($ $ $) NIL (|has| (-563) (-1105)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-3871 (((-563) $) NIL)) (-3369 (($ $) 46)) (-1692 (((-858) $) NIL) (($ (-563)) 28) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 27 (|has| |#1| (-172)))) (-3244 ((|#1| $ (-563)) 56)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) 37)) (-3412 ((|#1| $) NIL)) (-3065 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-3184 (($ $) 157 (|has| |#1| (-38 (-407 (-563)))))) (-3084 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-2032 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ $) 189 (|has| |#1| (-38 (-407 (-563)))))) (-3165 (($ $) 161 (|has| |#1| (-38 (-407 (-563)))))) (-2060 (($ $ (-407 (-563))) 165 (|has| |#1| (-38 (-407 (-563)))))) (-2070 (($ $ |#1|) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2042 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-2049 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3034 (($ $) 191 (|has| |#1| (-38 (-407 (-563)))))) (-3158 (($ $) 163 (|has| |#1| (-38 (-407 (-563)))))) (-3056 (($ $) 187 (|has| |#1| (-38 (-407 (-563)))))) (-3175 (($ $) 159 (|has| |#1| (-38 (-407 (-563)))))) (-3074 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-2021 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-3003 (($ $) 197 (|has| |#1| (-38 (-407 (-563)))))) (-3130 (($ $) 173 (|has| |#1| (-38 (-407 (-563)))))) (-3024 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-3149 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-2982 (($ $) 201 (|has| |#1| (-38 (-407 (-563)))))) (-3108 (($ $) 177 (|has| |#1| (-38 (-407 (-563)))))) (-2973 (($ $) 203 (|has| |#1| (-38 (-407 (-563)))))) (-3096 (($ $) 179 (|has| |#1| (-38 (-407 (-563)))))) (-2992 (($ $) 199 (|has| |#1| (-38 (-407 (-563)))))) (-3119 (($ $) 175 (|has| |#1| (-38 (-407 (-563)))))) (-3014 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-3140 (($ $) 171 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1402 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-2239 (($) 29 T CONST)) (-2253 (($) 38 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1718 (((-112) $ $) 65)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) 84) (($ $ $) 64)) (-1813 (($ $ $) 81)) (** (($ $ (-917)) NIL) (($ $ (-767)) 102)) (* (($ (-917) $) 89) (($ (-767) $) 87) (($ (-563) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-593 |#1|) (-13 (-1235 |#1| (-563)) (-10 -8 (-15 -2139 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -2128 ((-1022 (-839 (-563))) $)) (-15 -2117 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3049 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -3805 ((-112) $)) (-15 -2072 ($ (-1 |#1| (-563)) $)) (-15 -2108 ((-3 $ "failed") $ $ (-112))) (-15 -2098 ($ $)) (-15 -2087 ($ $ $)) (-15 -2079 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $)) (-15 -2070 ($ $ |#1|)) (-15 -2060 ($ $ (-407 (-563)))) (-15 -2049 ($ $)) (-15 -2042 ($ $)) (-15 -2032 ($ $)) (-15 -2021 ($ $)) (-15 -3184 ($ $)) (-15 -3175 ($ $)) (-15 -3165 ($ $)) (-15 -3158 ($ $)) (-15 -3149 ($ $)) (-15 -3140 ($ $)) (-15 -3130 ($ $)) (-15 -3119 ($ $)) (-15 -3108 ($ $)) (-15 -3096 ($ $)) (-15 -3084 ($ $)) (-15 -3074 ($ $)) (-15 -3065 ($ $)) (-15 -3056 ($ $)) (-15 -3045 ($ $)) (-15 -3034 ($ $)) (-15 -3024 ($ $)) (-15 -3014 ($ $)) (-15 -3003 ($ $)) (-15 -2992 ($ $)) (-15 -2982 ($ $)) (-15 -2973 ($ $))) |%noBranch|))) (-1045)) (T -593))
-((-3805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-593 *4)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-3049 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-2108 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2098 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-2087 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-2079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6)))) (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563))) (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-2049 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2042 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2032 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2021 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3184 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3175 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3165 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3158 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3130 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3108 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3096 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3084 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3074 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3065 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3056 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3045 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3034 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3024 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2992 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(-13 (-1235 |#1| (-563)) (-10 -8 (-15 -2139 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -2128 ((-1022 (-839 (-563))) $)) (-15 -2117 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3049 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -3805 ((-112) $)) (-15 -2072 ($ (-1 |#1| (-563)) $)) (-15 -2108 ((-3 $ "failed") $ $ (-112))) (-15 -2098 ($ $)) (-15 -2087 ($ $ $)) (-15 -2079 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $)) (-15 -2070 ($ $ |#1|)) (-15 -2060 ($ $ (-407 (-563)))) (-15 -2049 ($ $)) (-15 -2042 ($ $)) (-15 -2032 ($ $)) (-15 -2021 ($ $)) (-15 -3184 ($ $)) (-15 -3175 ($ $)) (-15 -3165 ($ $)) (-15 -3158 ($ $)) (-15 -3149 ($ $)) (-15 -3140 ($ $)) (-15 -3130 ($ $)) (-15 -3119 ($ $)) (-15 -3108 ($ $)) (-15 -3096 ($ $)) (-15 -3084 ($ $)) (-15 -3074 ($ $)) (-15 -3065 ($ $)) (-15 -3056 ($ $)) (-15 -3045 ($ $)) (-15 -3034 ($ $)) (-15 -3024 ($ $)) (-15 -3014 ($ $)) (-15 -3003 ($ $)) (-15 -2992 ($ $)) (-15 -2982 ($ $)) (-15 -2973 ($ $))) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3049 (($ (-1149 |#1|)) 9)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 42)) (-3381 (((-112) $) 52)) (-1775 (((-767) $) 55) (((-767) $ (-767)) 54)) (-3401 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ $) 44 (|has| |#1| (-555)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-1149 |#1|) $) 23)) (-3914 (((-767)) 51)) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 10 T CONST)) (-2253 (($) 14 T CONST)) (-1718 (((-112) $ $) 22)) (-1825 (($ $) 30) (($ $ $) 16)) (-1813 (($ $ $) 25)) (** (($ $ (-917)) NIL) (($ $ (-767)) 49)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-563)) 36)))
-(((-594 |#1|) (-13 (-1045) (-10 -8 (-15 -3955 ((-1149 |#1|) $)) (-15 -3049 ($ (-1149 |#1|))) (-15 -3381 ((-112) $)) (-15 -1775 ((-767) $)) (-15 -1775 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|))) (-1045)) (T -594))
-((-3955 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3049 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-1775 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))))
-(-13 (-1045) (-10 -8 (-15 -3955 ((-1149 |#1|) $)) (-15 -3049 ($ (-1149 |#1|))) (-15 -3381 ((-112) $)) (-15 -1775 ((-767) $)) (-15 -1775 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|)))
-((-2238 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 15)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -2238 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1208) (-1208)) (T -595))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6)))))
-(-10 -7 (-15 -2238 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))))
-((-2238 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)) 20) (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|)) 19) (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 18)))
-(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -2238 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -596))
-((-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8)))))
-(-10 -7 (-15 -2238 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|))))
-((-2198 ((|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))) 55)) (-2186 (((-169 |#2|) |#3|) 117)) (-2149 ((|#3| (-169 |#2|)) 44)) (-2160 ((|#2| |#3|) 19)) (-2171 ((|#3| |#2|) 33)))
-(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2149 (|#3| (-169 |#2|))) (-15 -2160 (|#2| |#3|)) (-15 -2171 (|#3| |#2|)) (-15 -2186 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))))) (-13 (-555) (-846)) (-13 (-430 |#1|) (-998) (-1193)) (-13 (-430 (-169 |#1|)) (-998) (-1193))) (T -597))
-((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169))) (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193))) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1193))))) (-2186 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-2171 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193))))) (-2160 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *5 *2)))))
-(-10 -7 (-15 -2149 (|#3| (-169 |#2|))) (-15 -2160 (|#2| |#3|)) (-15 -2171 (|#3| |#2|)) (-15 -2186 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169)))))
-((-2255 (($ (-1 (-112) |#1|) $) 17)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2175 (($ (-1 |#1| |#1|) |#1|) 9)) (-2223 (($ (-1 (-112) |#1|) $) 13)) (-2240 (($ (-1 (-112) |#1|) $) 15)) (-1706 (((-1149 |#1|) $) 18)) (-1692 (((-858) $) NIL)))
-(((-598 |#1|) (-13 (-610 (-858)) (-10 -8 (-15 -2238 ($ (-1 |#1| |#1|) $)) (-15 -2223 ($ (-1 (-112) |#1|) $)) (-15 -2240 ($ (-1 (-112) |#1|) $)) (-15 -2255 ($ (-1 (-112) |#1|) $)) (-15 -2175 ($ (-1 |#1| |#1|) |#1|)) (-15 -1706 ((-1149 |#1|) $)))) (-1208)) (T -598))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2223 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2255 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -2238 ($ (-1 |#1| |#1|) $)) (-15 -2223 ($ (-1 (-112) |#1|) $)) (-15 -2240 ($ (-1 (-112) |#1|) $)) (-15 -2255 ($ (-1 (-112) |#1|) $)) (-15 -2175 ($ (-1 |#1| |#1|) |#1|)) (-15 -1706 ((-1149 |#1|) $))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767)) NIL (|has| |#1| (-23)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3983 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4098 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2481 (((-112) $ (-767)) NIL)) (-3419 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4121 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-1045)))) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1825 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-599 |#1| |#2|) (-1255 |#1|) (-1208) (-563)) (T -599))
+(-13 (-527) (-857))
+(((-173) . T) ((-527) . T) ((-857) . T))
+((-2943 (((-686 (-1215)) $ (-1215)) NIL)) (-2944 (((-686 (-549)) $ (-549)) NIL)) (-2942 (((-767) $ (-129)) NIL)) (-2945 (((-686 (-128)) $ (-128)) NIL)) (-2157 (((-686 (-1215)) $) NIL)) (-2153 (((-686 (-1214)) $) NIL)) (-2155 (((-686 (-1213)) $) NIL)) (-2158 (((-686 (-549)) $) NIL)) (-2154 (((-686 (-548)) $) NIL)) (-2156 (((-686 (-547)) $) NIL)) (-2152 (((-767) $ (-129)) NIL)) (-2159 (((-686 (-128)) $) NIL)) (-2946 (((-112) $) NIL)) (-2287 (($ (-388)) 14) (($ (-1151)) 16)) (-4361 (((-859) $) NIL)) (-1851 (($ $) NIL)))
+(((-576) (-13 (-575) (-610 (-859)) (-10 -8 (-15 -2287 ($ (-388))) (-15 -2287 ($ (-1151))) (-15 -2946 ((-112) $))))) (T -576))
+((-2287 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))) (-2287 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576)))))
+(-13 (-575) (-610 (-859)) (-10 -8 (-15 -2287 ($ (-388))) (-15 -2287 ($ (-1151))) (-15 -2946 ((-112) $))))
+((-2953 (((-112) $ $) NIL)) (-3866 (($) 7 T CONST)) (-3650 (((-1151) $) NIL)) (-2289 (($) 6 T CONST)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 14)) (-2288 (($) 8 T CONST)) (-3444 (((-112) $ $) 10)))
+(((-577) (-13 (-1094) (-10 -8 (-15 -2289 ($) -4367) (-15 -3866 ($) -4367) (-15 -2288 ($) -4367)))) (T -577))
+((-2289 (*1 *1) (-5 *1 (-577))) (-3866 (*1 *1) (-5 *1 (-577))) (-2288 (*1 *1) (-5 *1 (-577))))
+(-13 (-1094) (-10 -8 (-15 -2289 ($) -4367) (-15 -3866 ($) -4367) (-15 -2288 ($) -4367)))
+((-2953 (((-112) $ $) NIL)) (-2290 (((-686 $) (-491)) 16)) (-3650 (((-1151) $) NIL)) (-2292 (($ (-1151)) 9)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 31)) (-2291 (((-213 4 (-128)) $) 19)) (-3444 (((-112) $ $) 22)))
+(((-578) (-13 (-1094) (-10 -8 (-15 -2292 ($ (-1151))) (-15 -2291 ((-213 4 (-128)) $)) (-15 -2290 ((-686 $) (-491)))))) (T -578))
+((-2292 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-578)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578)))))
+(-13 (-1094) (-10 -8 (-15 -2292 ($ (-1151))) (-15 -2291 ((-213 4 (-128)) $)) (-15 -2290 ((-686 $) (-491)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-546)) 66)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2996 (($ (-1163 (-546)) (-546)) 72)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) 58)) (-2997 (($ $) 34)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4186 (((-767) $) 15)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2999 (((-546)) 29)) (-2998 (((-546) $) 32)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4183 (($ $ (-546)) 21)) (-3872 (((-3 $ "failed") $ $) 59)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) 16)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 61)) (-3000 (((-1146 (-546)) $) 18)) (-3281 (($ $) 23)) (-4361 (((-859) $) 86) (($ (-546)) 52) (($ $) NIL)) (-3518 (((-767)) 14)) (-2219 (((-112) $ $) NIL)) (-4184 (((-546) $ (-546)) 36)) (-3047 (($) 35 T CONST)) (-3053 (($) 19 T CONST)) (-3444 (((-112) $ $) 39)) (-4252 (($ $) 51) (($ $ $) 37)) (-4254 (($ $ $) 50)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 54) (($ $ $) 55)))
+(((-579 |#1| |#2|) (-866 |#1|) (-546) (-112)) (T -579))
+NIL
+(-866 |#1|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 21)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (($ $ (-915)) NIL (|has| $ (-368))) (($ $) NIL)) (-1826 (((-1180 (-915) (-767)) (-546)) 47)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 $ "failed") $) 75)) (-3564 (($ $) 74)) (-1946 (($ (-1256 $)) 73)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) 32)) (-3384 (($) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) 49)) (-1831 (((-112) $) NIL)) (-1921 (($ $) NIL) (($ $ (-767)) NIL)) (-4138 (((-112) $) NIL)) (-4186 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-2552 (((-112) $) NIL)) (-2170 (($) 37 (|has| $ (-368)))) (-2168 (((-112) $) NIL (|has| $ (-368)))) (-3524 (($ $ (-915)) NIL (|has| $ (-368))) (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 $) $ (-915)) NIL (|has| $ (-368))) (((-1163 $) $) 83)) (-2167 (((-915) $) 55)) (-1759 (((-1163 $) $) NIL (|has| $ (-368)))) (-1758 (((-3 (-1163 $) "failed") $ $) NIL (|has| $ (-368))) (((-1163 $) $) NIL (|has| $ (-368)))) (-1760 (($ $ (-1163 $)) NIL (|has| $ (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL T CONST)) (-2542 (($ (-915)) 48)) (-4346 (((-112) $) 67)) (-3651 (((-1113) $) NIL)) (-2551 (($) 19 (|has| $ (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 42)) (-4147 (((-405 $) $) NIL)) (-4345 (((-915)) 66) (((-828 (-915))) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-4326 (((-134)) NIL)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-4363 (((-915) $) 65) (((-828 (-915)) $) NIL)) (-3593 (((-1163 $)) 82)) (-1825 (($) 54)) (-1761 (($) 38 (|has| $ (-368)))) (-3632 (((-684 $) (-1256 $)) NIL) (((-1256 $) $) 71)) (-4385 (((-546) $) 28)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) 30) (($ $) NIL) (($ (-407 (-546))) NIL)) (-3091 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3518 (((-767)) 39)) (-2169 (((-1256 $) (-915)) 77) (((-1256 $)) 76)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) 22 T CONST)) (-3053 (($) 18 T CONST)) (-4343 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 26)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 61) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-580 |#1|) (-13 (-350) (-329 $) (-611 (-546))) (-915)) (T -580))
+NIL
+(-13 (-350) (-329 $) (-611 (-546)))
+((-2293 (((-1262) (-1151)) 10)))
+(((-581) (-10 -7 (-15 -2293 ((-1262) (-1151))))) (T -581))
+((-2293 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581)))))
+(-10 -7 (-15 -2293 ((-1262) (-1151))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| "failed") $) 67)) (-3564 ((|#1| $) NIL)) (-2297 ((|#1| $) 26)) (-2295 (((-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2298 (($ |#1| (-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) (-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2296 (((-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) $) 27)) (-3650 (((-1151) $) NIL)) (-3221 (($ |#1| |#1|) 33) (($ |#1| (-1169)) 44 (|has| |#1| (-1034 (-1169))))) (-3651 (((-1113) $) NIL)) (-2294 (((-112) $) 30)) (-4225 ((|#1| $ (-1 |#1| |#1|)) 79) ((|#1| $ (-1169)) 80 (|has| |#1| (-896 (-1169))))) (-4361 (((-859) $) 95) (($ |#1|) 25)) (-3047 (($) 16 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) 15) (($ $ $) NIL)) (-4254 (($ $ $) 76)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 14) (($ (-407 (-546)) $) 36) (($ $ (-407 (-546))) NIL)))
+(((-582 |#1|) (-13 (-713 (-407 (-546))) (-1034 |#1|) (-10 -8 (-15 -2298 ($ |#1| (-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) (-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2297 (|#1| $)) (-15 -2296 ((-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) $)) (-15 -2295 ((-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2294 ((-112) $)) (-15 -3221 ($ |#1| |#1|)) (-15 -4225 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4225 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -3221 ($ |#1| (-1169))) |%noBranch|))) (-363)) (T -582))
+((-2298 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 *2)) (|:| |logand| (-1163 *2))))) (-5 *4 (-637 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-582 *2)))) (-2297 (*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-363)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 *3)) (|:| |logand| (-1163 *3))))) (-5 *1 (-582 *3)) (-4 *3 (-363)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-363)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-363)))) (-3221 (*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-363)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-363)))) (-4225 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-582 *2)) (-5 *3 (-1169)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *1 (-582 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363)))))
+(-13 (-713 (-407 (-546))) (-1034 |#1|) (-10 -8 (-15 -2298 ($ |#1| (-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) (-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2297 (|#1| $)) (-15 -2296 ((-637 (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 |#1|)) (|:| |logand| (-1163 |#1|)))) $)) (-15 -2295 ((-637 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2294 ((-112) $)) (-15 -3221 ($ |#1| |#1|)) (-15 -4225 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4225 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -3221 ($ |#1| (-1169))) |%noBranch|)))
+((-4373 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|)) 30)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -4373 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4373 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4373 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4373 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -583))
+((-4373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-583 *5 *6)))) (-4373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) (-4373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2297 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2297 *6) (|:| |coeff| *6))) (-5 *1 (-583 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-582 *6)) (-5 *1 (-583 *5 *6)))))
+(-10 -7 (-15 -4373 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4373 ((-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2297 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4373 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4373 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3829 (((-582 |#2|) (-582 |#2|)) 37)) (-4378 (((-637 |#2|) (-582 |#2|)) 39)) (-2306 ((|#2| (-582 |#2|)) 45)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -3829 ((-582 |#2|) (-582 |#2|))) (-15 -4378 ((-637 |#2|) (-582 |#2|))) (-15 -2306 (|#2| (-582 |#2|)))) (-13 (-452) (-1034 (-546)) (-846) (-636 (-546))) (-13 (-29 |#1|) (-1193))) (T -584))
+((-2306 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1193))) (-5 *1 (-584 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1193))) (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-637 *5)) (-5 *1 (-584 *4 *5)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1193))) (-4 *3 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *1 (-584 *3 *4)))))
+(-10 -7 (-15 -3829 ((-582 |#2|) (-582 |#2|))) (-15 -4378 ((-637 |#2|) (-582 |#2|))) (-15 -2306 (|#2| (-582 |#2|))))
+((-2302 (((-112) |#1|) 16)) (-2303 (((-3 |#1| "failed") |#1|) 14)) (-2300 (((-2 (|:| -3083 |#1|) (|:| -2543 (-767))) |#1|) 31) (((-3 |#1| "failed") |#1| (-767)) 18)) (-2299 (((-112) |#1| (-767)) 19)) (-2304 ((|#1| |#1|) 32)) (-2301 ((|#1| |#1| (-767)) 34)))
+(((-585 |#1|) (-10 -7 (-15 -2299 ((-112) |#1| (-767))) (-15 -2300 ((-3 |#1| "failed") |#1| (-767))) (-15 -2300 ((-2 (|:| -3083 |#1|) (|:| -2543 (-767))) |#1|)) (-15 -2301 (|#1| |#1| (-767))) (-15 -2302 ((-112) |#1|)) (-15 -2303 ((-3 |#1| "failed") |#1|)) (-15 -2304 (|#1| |#1|))) (-545)) (T -585))
+((-2304 (*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2303 (*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2300 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3083 *3) (|:| -2543 (-767)))) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-2300 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2299 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -2299 ((-112) |#1| (-767))) (-15 -2300 ((-3 |#1| "failed") |#1| (-767))) (-15 -2300 ((-2 (|:| -3083 |#1|) (|:| -2543 (-767))) |#1|)) (-15 -2301 (|#1| |#1| (-767))) (-15 -2302 ((-112) |#1|)) (-15 -2303 ((-3 |#1| "failed") |#1|)) (-15 -2304 (|#1| |#1|)))
+((-2305 (((-1163 |#1|) (-915)) 26)))
+(((-586 |#1|) (-10 -7 (-15 -2305 ((-1163 |#1|) (-915)))) (-350)) (T -586))
+((-2305 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-586 *4)) (-4 *4 (-350)))))
+(-10 -7 (-15 -2305 ((-1163 |#1|) (-915))))
+((-3829 (((-582 (-407 (-942 |#1|))) (-582 (-407 (-942 |#1|)))) 27)) (-4227 (((-3 (-314 |#1|) (-637 (-314 |#1|))) (-407 (-942 |#1|)) (-1169)) 34 (|has| |#1| (-147)))) (-4378 (((-637 (-314 |#1|)) (-582 (-407 (-942 |#1|)))) 19)) (-2307 (((-314 |#1|) (-407 (-942 |#1|)) (-1169)) 32 (|has| |#1| (-147)))) (-2306 (((-314 |#1|) (-582 (-407 (-942 |#1|)))) 21)))
+(((-587 |#1|) (-10 -7 (-15 -3829 ((-582 (-407 (-942 |#1|))) (-582 (-407 (-942 |#1|))))) (-15 -4378 ((-637 (-314 |#1|)) (-582 (-407 (-942 |#1|))))) (-15 -2306 ((-314 |#1|) (-582 (-407 (-942 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4227 ((-3 (-314 |#1|) (-637 (-314 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -2307 ((-314 |#1|) (-407 (-942 |#1|)) (-1169)))) |%noBranch|)) (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (T -587))
+((-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-314 *5)) (-5 *1 (-587 *5)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-3 (-314 *5) (-637 (-314 *5)))) (-5 *1 (-587 *5)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-582 (-407 (-942 *4)))) (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-314 *4)) (-5 *1 (-587 *4)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-582 (-407 (-942 *4)))) (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-637 (-314 *4))) (-5 *1 (-587 *4)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-582 (-407 (-942 *3)))) (-4 *3 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *1 (-587 *3)))))
+(-10 -7 (-15 -3829 ((-582 (-407 (-942 |#1|))) (-582 (-407 (-942 |#1|))))) (-15 -4378 ((-637 (-314 |#1|)) (-582 (-407 (-942 |#1|))))) (-15 -2306 ((-314 |#1|) (-582 (-407 (-942 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4227 ((-3 (-314 |#1|) (-637 (-314 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -2307 ((-314 |#1|) (-407 (-942 |#1|)) (-1169)))) |%noBranch|))
+((-2309 (((-637 (-684 (-546))) (-637 (-546)) (-637 (-898 (-546)))) 45) (((-637 (-684 (-546))) (-637 (-546))) 46) (((-684 (-546)) (-637 (-546)) (-898 (-546))) 41)) (-2308 (((-767) (-637 (-546))) 39)))
+(((-588) (-10 -7 (-15 -2308 ((-767) (-637 (-546)))) (-15 -2309 ((-684 (-546)) (-637 (-546)) (-898 (-546)))) (-15 -2309 ((-637 (-684 (-546))) (-637 (-546)))) (-15 -2309 ((-637 (-684 (-546))) (-637 (-546)) (-637 (-898 (-546))))))) (T -588))
+((-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-546))) (-5 *4 (-637 (-898 (-546)))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-588)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-588)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-546))) (-5 *4 (-898 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-588)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-767)) (-5 *1 (-588)))))
+(-10 -7 (-15 -2308 ((-767) (-637 (-546)))) (-15 -2309 ((-684 (-546)) (-637 (-546)) (-898 (-546)))) (-15 -2309 ((-637 (-684 (-546))) (-637 (-546)))) (-15 -2309 ((-637 (-684 (-546))) (-637 (-546)) (-637 (-898 (-546))))))
+((-3621 (((-637 |#5|) |#5| (-112)) 70)) (-2310 (((-112) |#5| (-637 |#5|)) 30)))
+(((-589 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3621 ((-637 |#5|) |#5| (-112))) (-15 -2310 ((-112) |#5| (-637 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -589))
+((-2310 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-589 *5 *6 *7 *8 *3)))) (-3621 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-637 *3)) (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3621 ((-637 |#5|) |#5| (-112))) (-15 -2310 ((-112) |#5| (-637 |#5|))))
+((-2953 (((-112) $ $) NIL)) (-3934 (((-1128) $) 11)) (-3935 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-590) (-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))) (T -590))
+((-3935 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))))
+(-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))
+((-2953 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-3837 (($ $) 34)) (-3838 (($ $) NIL)) (-3828 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-3835 (((-112) $ $) 51)) (-3834 (((-112) $ $ (-546)) 46)) (-3829 (((-637 $) $ (-144)) 59) (((-637 $) $ (-141)) 60)) (-1883 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-1881 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-3299 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-144) $ (-546) (-144)) 45 (|has| $ (-6 -4409))) (((-144) $ (-1223 (-546)) (-144)) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-3826 (($ $ (-144)) 63) (($ $ (-141)) 64)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-3831 (($ $ (-1223 (-546)) $) 44)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-3817 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1672 (((-144) $ (-546) (-144)) NIL (|has| $ (-6 -4409)))) (-3505 (((-144) $ (-546)) NIL)) (-3836 (((-112) $ $) 71)) (-3830 (((-546) (-1 (-112) (-144)) $) NIL) (((-546) (-144) $) NIL (|has| (-144) (-1094))) (((-546) (-144) $ (-546)) 48 (|has| (-144) (-1094))) (((-546) $ $ (-546)) 47) (((-546) (-141) $ (-546)) 50)) (-2103 (((-637 (-144)) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) (-144)) 9)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 28 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| (-144) (-846)))) (-3924 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-2993 (((-637 (-144)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2354 (((-546) $) 42 (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-144) (-846)))) (-3832 (((-112) $ $ (-144)) 72)) (-3833 (((-767) $ $ (-144)) 69)) (-2107 (($ (-1 (-144) (-144)) $) 33 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3839 (($ $) 37)) (-3840 (($ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3827 (($ $ (-144)) 61) (($ $ (-141)) 62)) (-3650 (((-1151) $) 38 (|has| (-144) (-1094)))) (-2428 (($ (-144) $ (-546)) NIL) (($ $ $ (-546)) 23)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-546) $) 68) (((-1113) $) NIL (|has| (-144) (-1094)))) (-4215 (((-144) $) NIL (|has| (-546) (-846)))) (-1431 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2352 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-293 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-637 (-144)) (-637 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2358 (((-637 (-144)) $) NIL)) (-3814 (((-112) $) 12)) (-3979 (($) 10)) (-4214 (((-144) $ (-546) (-144)) NIL) (((-144) $ (-546)) 52) (($ $ (-1223 (-546))) 21) (($ $ $) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-1882 (($ $ $ (-546)) 65 (|has| $ (-6 -4409)))) (-3811 (($ $) 17)) (-4385 (((-535) $) NIL (|has| (-144) (-611 (-535))))) (-3936 (($ (-637 (-144))) NIL)) (-4216 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 16) (($ (-637 $)) 66)) (-4361 (($ (-144)) NIL) (((-859) $) 27 (|has| (-144) (-610 (-859))))) (-2106 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3444 (((-112) $ $) 14 (|has| (-144) (-1094)))) (-3073 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3074 (((-112) $ $) 15 (|has| (-144) (-846)))) (-4372 (((-767) $) 13 (|has| $ (-6 -4408)))))
+(((-591 |#1|) (-13 (-1137) (-10 -8 (-15 -3651 ((-546) $)))) (-546)) (T -591))
+((-3651 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-591 *3)) (-14 *3 *2))))
+(-13 (-1137) (-10 -8 (-15 -3651 ((-546) $))))
+((-3938 (((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2| (-1082 |#4|)) 32)))
+(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3938 ((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2| (-1082 |#4|))) (-15 -3938 ((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2|))) (-789) (-846) (-556) (-946 |#3| |#1| |#2|)) (T -592))
+((-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-546)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1082 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-546)))) (-5 *1 (-592 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3938 ((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2| (-1082 |#4|))) (-15 -3938 ((-2 (|:| |num| |#4|) (|:| |den| (-546))) |#4| |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 63)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-546)) 54) (($ $ (-546) (-546)) 55)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) 60)) (-2341 (($ $) 99)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2339 (((-859) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) (-1022 (-838 (-546))) (-1169) |#1| (-407 (-546))) 224)) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) 34)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3282 (((-112) $) NIL)) (-4186 (((-546) $) 58) (((-546) $ (-546)) 59)) (-2552 (((-112) $) NIL)) (-4191 (($ $ (-915)) 76)) (-4230 (($ (-1 |#1| (-546)) $) 73)) (-4352 (((-112) $) 25)) (-3283 (($ |#1| (-546)) 22) (($ $ (-1075) (-546)) NIL) (($ $ (-637 (-1075)) (-637 (-546))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) 67)) (-2345 (($ (-1022 (-838 (-546))) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) 13)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-4227 (($ $) 149 (|has| |#1| (-38 (-407 (-546)))))) (-2342 (((-3 $ "failed") $ $ (-112)) 98)) (-2340 (($ $ $) 107)) (-3651 (((-1113) $) NIL)) (-2343 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) 15)) (-2344 (((-1022 (-838 (-546))) $) 14)) (-4183 (($ $ (-546)) 45)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-546)))))) (-4214 ((|#1| $ (-546)) 57) (($ $ $) NIL (|has| (-546) (-1105)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (-4363 (((-546) $) NIL)) (-3281 (($ $) 46)) (-4361 (((-859) $) NIL) (($ (-546)) 28) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 27 (|has| |#1| (-172)))) (-4092 ((|#1| $ (-546)) 56)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) 37)) (-4187 ((|#1| $) NIL)) (-2320 (($ $) 186 (|has| |#1| (-38 (-407 (-546)))))) (-2332 (($ $) 157 (|has| |#1| (-38 (-407 (-546)))))) (-2322 (($ $) 190 (|has| |#1| (-38 (-407 (-546)))))) (-2334 (($ $) 162 (|has| |#1| (-38 (-407 (-546)))))) (-2318 (($ $) 189 (|has| |#1| (-38 (-407 (-546)))))) (-2330 (($ $) 161 (|has| |#1| (-38 (-407 (-546)))))) (-2337 (($ $ (-407 (-546))) 165 (|has| |#1| (-38 (-407 (-546)))))) (-2338 (($ $ |#1|) 145 (|has| |#1| (-38 (-407 (-546)))))) (-2335 (($ $) 192 (|has| |#1| (-38 (-407 (-546)))))) (-2336 (($ $) 148 (|has| |#1| (-38 (-407 (-546)))))) (-2317 (($ $) 191 (|has| |#1| (-38 (-407 (-546)))))) (-2329 (($ $) 163 (|has| |#1| (-38 (-407 (-546)))))) (-2319 (($ $) 187 (|has| |#1| (-38 (-407 (-546)))))) (-2331 (($ $) 159 (|has| |#1| (-38 (-407 (-546)))))) (-2321 (($ $) 188 (|has| |#1| (-38 (-407 (-546)))))) (-2333 (($ $) 160 (|has| |#1| (-38 (-407 (-546)))))) (-2314 (($ $) 197 (|has| |#1| (-38 (-407 (-546)))))) (-2326 (($ $) 173 (|has| |#1| (-38 (-407 (-546)))))) (-2316 (($ $) 194 (|has| |#1| (-38 (-407 (-546)))))) (-2328 (($ $) 168 (|has| |#1| (-38 (-407 (-546)))))) (-2312 (($ $) 201 (|has| |#1| (-38 (-407 (-546)))))) (-2324 (($ $) 177 (|has| |#1| (-38 (-407 (-546)))))) (-2311 (($ $) 203 (|has| |#1| (-38 (-407 (-546)))))) (-2323 (($ $) 179 (|has| |#1| (-38 (-407 (-546)))))) (-2313 (($ $) 199 (|has| |#1| (-38 (-407 (-546)))))) (-2325 (($ $) 175 (|has| |#1| (-38 (-407 (-546)))))) (-2315 (($ $) 196 (|has| |#1| (-38 (-407 (-546)))))) (-2327 (($ $) 171 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4184 ((|#1| $ (-546)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3047 (($) 29 T CONST)) (-3053 (($) 38 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (-3444 (((-112) $ $) 65)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) 84) (($ $ $) 64)) (-4254 (($ $ $) 81)) (** (($ $ (-915)) NIL) (($ $ (-767)) 102)) (* (($ (-915) $) 89) (($ (-767) $) 87) (($ (-546) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-593 |#1|) (-13 (-1235 |#1| (-546)) (-10 -8 (-15 -2345 ($ (-1022 (-838 (-546))) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))))) (-15 -2344 ((-1022 (-838 (-546))) $)) (-15 -2343 ((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $)) (-15 -4233 ($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))))) (-15 -4352 ((-112) $)) (-15 -4230 ($ (-1 |#1| (-546)) $)) (-15 -2342 ((-3 $ "failed") $ $ (-112))) (-15 -2341 ($ $)) (-15 -2340 ($ $ $)) (-15 -2339 ((-859) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) (-1022 (-838 (-546))) (-1169) |#1| (-407 (-546)))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $)) (-15 -2338 ($ $ |#1|)) (-15 -2337 ($ $ (-407 (-546)))) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $)) (-15 -2331 ($ $)) (-15 -2330 ($ $)) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $))) |%noBranch|))) (-1045)) (T -593))
+((-4352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2345 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-838 (-546)))) (-5 *3 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-593 *4)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-1022 (-838 (-546)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-4230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-546))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-2342 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2341 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-2340 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-2339 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *6)))) (-5 *4 (-1022 (-838 (-546)))) (-5 *5 (-1169)) (-5 *7 (-407 (-546))) (-4 *6 (-1045)) (-5 *2 (-859)) (-5 *1 (-593 *6)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-2336 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2333 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2331 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2330 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2328 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2327 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2326 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2321 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2317 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(-13 (-1235 |#1| (-546)) (-10 -8 (-15 -2345 ($ (-1022 (-838 (-546))) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))))) (-15 -2344 ((-1022 (-838 (-546))) $)) (-15 -2343 ((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $)) (-15 -4233 ($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))))) (-15 -4352 ((-112) $)) (-15 -4230 ($ (-1 |#1| (-546)) $)) (-15 -2342 ((-3 $ "failed") $ $ (-112))) (-15 -2341 ($ $)) (-15 -2340 ($ $ $)) (-15 -2339 ((-859) (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) (-1022 (-838 (-546))) (-1169) |#1| (-407 (-546)))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $)) (-15 -2338 ($ $ |#1|)) (-15 -2337 ($ $ (-407 (-546)))) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $)) (-15 -2331 ($ $)) (-15 -2330 ($ $)) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4233 (($ (-1146 |#1|)) 9)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) 42)) (-3282 (((-112) $) 52)) (-4186 (((-767) $) 55) (((-767) $ (-767)) 54)) (-2552 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ "failed") $ $) 44 (|has| |#1| (-556)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-1146 |#1|) $) 23)) (-3518 (((-767)) 51)) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 10 T CONST)) (-3053 (($) 14 T CONST)) (-3444 (((-112) $ $) 22)) (-4252 (($ $) 30) (($ $ $) 16)) (-4254 (($ $ $) 25)) (** (($ $ (-915)) NIL) (($ $ (-767)) 49)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-546)) 36)))
+(((-594 |#1|) (-13 (-1045) (-10 -8 (-15 -4232 ((-1146 |#1|) $)) (-15 -4233 ($ (-1146 |#1|))) (-15 -3282 ((-112) $)) (-15 -4186 ((-767) $)) (-15 -4186 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-546))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1045)) (T -594))
+((-4232 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-4186 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))))
+(-13 (-1045) (-10 -8 (-15 -4232 ((-1146 |#1|) $)) (-15 -4233 ($ (-1146 |#1|))) (-15 -3282 ((-112) $)) (-15 -4186 ((-767) $)) (-15 -4186 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-546))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|)))
+((-4373 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 15)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -4373 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1207) (-1207)) (T -595))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6)))))
+(-10 -7 (-15 -4373 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))))
+((-4373 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1146 |#2|)) 20) (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-598 |#2|)) 19) (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 18)))
+(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -4373 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-598 |#2|))) (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1146 |#2|)))) (-1207) (-1207) (-1207)) (T -596))
+((-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8)) (-5 *1 (-596 *6 *7 *8)))) (-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8)) (-5 *1 (-596 *6 *7 *8)))) (-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8)))))
+(-10 -7 (-15 -4373 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-598 |#2|))) (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1146 |#2|))))
+((-2350 ((|#3| |#3| (-637 (-608 |#3|)) (-637 (-1169))) 55)) (-2349 (((-168 |#2|) |#3|) 117)) (-2346 ((|#3| (-168 |#2|)) 44)) (-2347 ((|#2| |#3|) 19)) (-2348 ((|#3| |#2|) 33)))
+(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2346 (|#3| (-168 |#2|))) (-15 -2347 (|#2| |#3|)) (-15 -2348 (|#3| |#2|)) (-15 -2349 ((-168 |#2|) |#3|)) (-15 -2350 (|#3| |#3| (-637 (-608 |#3|)) (-637 (-1169))))) (-13 (-556) (-846)) (-13 (-421 |#1|) (-998) (-1193)) (-13 (-421 (-168 |#1|)) (-998) (-1193))) (T -597))
+((-2350 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-637 (-608 *2))) (-5 *4 (-637 (-1169))) (-4 *2 (-13 (-421 (-168 *5)) (-998) (-1193))) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-421 *5) (-998) (-1193))))) (-2349 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-5 *2 (-168 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-421 *4) (-998) (-1193))) (-4 *3 (-13 (-421 (-168 *4)) (-998) (-1193))))) (-2348 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-421 (-168 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-421 *4) (-998) (-1193))))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-421 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-421 (-168 *4)) (-998) (-1193))))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-421 *4) (-998) (-1193))) (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-421 (-168 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *5 *2)))))
+(-10 -7 (-15 -2346 (|#3| (-168 |#2|))) (-15 -2347 (|#2| |#3|)) (-15 -2348 (|#3| |#2|)) (-15 -2349 ((-168 |#2|) |#3|)) (-15 -2350 (|#3| |#3| (-637 (-608 |#3|)) (-637 (-1169)))))
+((-4125 (($ (-1 (-112) |#1|) $) 17)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3863 (($ (-1 |#1| |#1|) |#1|) 9)) (-3862 (($ (-1 (-112) |#1|) $) 13)) (-3861 (($ (-1 (-112) |#1|) $) 15)) (-3936 (((-1146 |#1|) $) 18)) (-4361 (((-859) $) NIL)))
+(((-598 |#1|) (-13 (-610 (-859)) (-10 -8 (-15 -4373 ($ (-1 |#1| |#1|) $)) (-15 -3862 ($ (-1 (-112) |#1|) $)) (-15 -3861 ($ (-1 (-112) |#1|) $)) (-15 -4125 ($ (-1 (-112) |#1|) $)) (-15 -3863 ($ (-1 |#1| |#1|) |#1|)) (-15 -3936 ((-1146 |#1|) $)))) (-1207)) (T -598))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3)))) (-3862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3)))) (-3861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3)))) (-4125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3)))) (-3863 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1207)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -4373 ($ (-1 |#1| |#1|) $)) (-15 -3862 ($ (-1 (-112) |#1|) $)) (-15 -3861 ($ (-1 (-112) |#1|) $)) (-15 -4125 ($ (-1 (-112) |#1|) $)) (-15 -3863 ($ (-1 |#1| |#1|) |#1|)) (-15 -3936 ((-1146 |#1|) $))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767)) NIL (|has| |#1| (-23)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4250 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4247 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-4131 (((-112) $ (-767)) NIL)) (-4248 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4251 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4249 (($ $ $) NIL (|has| |#1| (-1045)))) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4252 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4254 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-546) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-599 |#1| |#2|) (-1255 |#1|) (-1207) (-546)) (T -599))
NIL
(-1255 |#1|)
-((-2208 (((-1262) $ |#2| |#2|) 36)) (-2236 ((|#2| $) 23)) (-2251 ((|#2| $) 21)) (-4347 (($ (-1 |#3| |#3|) $) 32)) (-2238 (($ (-1 |#3| |#3|) $) 30)) (-3782 ((|#3| $) 26)) (-2221 (($ $ |#3|) 33)) (-2262 (((-112) |#3| $) 17)) (-2295 (((-640 |#3|) $) 15)) (-2308 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-600 |#1| |#2| |#3|) (-10 -8 (-15 -2208 ((-1262) |#1| |#2| |#2|)) (-15 -2221 (|#1| |#1| |#3|)) (-15 -3782 (|#3| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -2251 (|#2| |#1|)) (-15 -2262 ((-112) |#3| |#1|)) (-15 -2295 ((-640 |#3|) |#1|)) (-15 -2308 (|#3| |#1| |#2|)) (-15 -2308 (|#3| |#1| |#2| |#3|)) (-15 -4347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2238 (|#1| (-1 |#3| |#3|) |#1|))) (-601 |#2| |#3|) (-1093) (-1208)) (T -600))
-NIL
-(-10 -8 (-15 -2208 ((-1262) |#1| |#2| |#2|)) (-15 -2221 (|#1| |#1| |#3|)) (-15 -3782 (|#3| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -2251 (|#2| |#1|)) (-15 -2262 ((-112) |#3| |#1|)) (-15 -2295 ((-640 |#3|) |#1|)) (-15 -2308 (|#3| |#1| |#2|)) (-15 -2308 (|#3| |#1| |#2| |#3|)) (-15 -4347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2238 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-2208 (((-1262) $ |#1| |#1|) 40 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-4356 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) 51)) (-2658 (((-640 |#2|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-2236 ((|#1| $) 43 (|has| |#1| (-846)))) (-3523 (((-640 |#2|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2251 ((|#1| $) 44 (|has| |#1| (-846)))) (-4347 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#2| (-1093)))) (-2272 (((-640 |#1|) $) 46)) (-2282 (((-112) |#1| $) 47)) (-1693 (((-1113) $) 21 (|has| |#2| (-1093)))) (-3782 ((|#2| $) 42 (|has| |#1| (-846)))) (-2221 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1708 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-601 |#1| |#2|) (-140) (-1093) (-1208)) (T -601))
-((-2295 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *3)))) (-2262 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846)) (-4 *2 (-1208)))) (-2221 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-2208 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-1262)))))
-(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2295 ((-640 |t#2|) $)) (-15 -2282 ((-112) |t#1| $)) (-15 -2272 ((-640 |t#1|) $)) (IF (|has| |t#2| (-1093)) (IF (|has| $ (-6 -4408)) (-15 -2262 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -2251 (|t#1| $)) (-15 -2236 (|t#1| $)) (-15 -3782 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2221 ($ $ |t#2|)) (-15 -2208 ((-1262) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1093)) ((-610 (-858)) -4034 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-1093) |has| |#2| (-1093)) ((-1208) . T))
-((-1692 (((-858) $) 17) (($ (-129)) 13) (((-129) $) 14)))
-(((-602) (-13 (-610 (-858)) (-490 (-129)))) (T -602))
-NIL
-(-13 (-610 (-858)) (-490 (-129)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 14) (($ (-640 (-1207))) 13)) (-2121 (((-640 (-1207)) $) 10)) (-1718 (((-112) $ $) NIL)))
-(((-603) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1692 ($ (-640 (-1207)))) (-15 -2121 ((-640 (-1207)) $))))) (T -603))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))))
-(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1692 ($ (-640 (-1207)))) (-15 -2121 ((-640 (-1207)) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3245 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3749 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4039 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2569 (($) NIL T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1914 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3410 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4017 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3386 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3342 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2214 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3376 (($ $ (-917)) NIL)) (-3995 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1938 (((-1165 |#1|) $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3436 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3973 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3912 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3458 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2521 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3879 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3617 (($ $ (-917)) NIL)) (-3843 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3825 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3861 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1927 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3422 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4028 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3398 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3353 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2267 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3364 (($ $ (-917)) NIL)) (-4007 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3801 (((-1165 |#1|) $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3447 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3984 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3923 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3854 (((-1151) $) NIL)) (-3832 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3852 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3868 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-1113) $) NIL)) (-3900 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2308 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-3759 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2219 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2122 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-1745 (($ $ $) NIL)) (-3963 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1692 (((-858) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4013 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-3813 (((-640 (-1257 |#1|))) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1756 (($ $ $ $) NIL)) (-3942 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3727 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1729 (($ $ $) NIL)) (-3952 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3933 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3891 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2239 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-604 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1692 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -604))
-((-1692 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3)))))
-(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1692 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-1862 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) 33)) (-1551 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL) (($) NIL)) (-2208 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-1151) |#1|) 43)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#1| "failed") (-1151) $) 46)) (-2569 (($) NIL T CONST)) (-1905 (($ $ (-1151)) 24)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-1691 (((-3 |#1| "failed") (-1151) $) 47) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (|has| $ (-6 -4408)))) (-1459 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-1872 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) 32)) (-4356 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-1151)) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1410 (($ $) 48)) (-3409 (($ (-388)) 22) (($ (-388) (-1151)) 21)) (-3352 (((-388) $) 34)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-1151) $) NIL (|has| (-1151) (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-2251 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-1304 (((-640 (-1151)) $) 39)) (-2305 (((-112) (-1151) $) NIL)) (-1883 (((-1151) $) 35)) (-2627 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-2272 (((-640 (-1151)) $) NIL)) (-2282 (((-112) (-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1971 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 37)) (-2308 ((|#1| $ (-1151) |#1|) NIL) ((|#1| $ (-1151)) 42)) (-3863 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL) (($) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-1692 (((-858) $) 20)) (-1895 (($ $) 25)) (-2820 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 19)) (-3610 (((-767) $) 41 (|has| $ (-6 -4408)))))
-(((-605 |#1|) (-13 (-364 (-388) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -1410 ($ $)))) (-1093)) (T -605))
-((-1410 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093)))))
-(-13 (-364 (-388) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -1410 ($ $))))
-((-2667 (((-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) 15)) (-1304 (((-640 |#2|) $) 19)) (-2305 (((-112) |#2| $) 12)))
-(((-606 |#1| |#2| |#3|) (-10 -8 (-15 -1304 ((-640 |#2|) |#1|)) (-15 -2305 ((-112) |#2| |#1|)) (-15 -2667 ((-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|))) (-607 |#2| |#3|) (-1093) (-1093)) (T -606))
-NIL
-(-10 -8 (-15 -1304 ((-640 |#2|) |#1|)) (-15 -2305 ((-112) |#2| |#1|)) (-15 -2667 ((-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) 61)) (-2569 (($) 7 T CONST)) (-3814 (($ $) 58 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1304 (((-640 |#1|) $) 63)) (-2305 (((-112) |#1| $) 64)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 39)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 40)) (-1693 (((-1113) $) 21 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 51)) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 41)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-3863 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 48)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 50)) (-1692 (((-858) $) 18 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 42)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-607 |#1| |#2|) (-140) (-1093) (-1093)) (T -607))
-((-2305 (*1 *2 *3 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-1691 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1576 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
-(-13 (-229 (-2 (|:| -2387 |t#1|) (|:| -2556 |t#2|))) (-10 -8 (-15 -2305 ((-112) |t#1| $)) (-15 -1304 ((-640 |t#1|) $)) (-15 -1691 ((-3 |t#2| "failed") |t#1| $)) (-15 -1576 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((-102) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) ((-610 (-858)) -4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-1093) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) ((-1208) . T))
-((-2335 (((-609 |#2|) |#1|) 15)) (-2347 (((-3 |#1| "failed") (-609 |#2|)) 19)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -2335 ((-609 |#2|) |#1|)) (-15 -2347 ((-3 |#1| "failed") (-609 |#2|)))) (-846) (-846)) (T -608))
-((-2347 (*1 *2 *3) (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846)) (-5 *1 (-608 *2 *4)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846)))))
-(-10 -7 (-15 -2335 ((-609 |#2|) |#1|)) (-15 -2347 ((-3 |#1| "failed") (-609 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-2316 (((-3 (-1169) "failed") $) 37)) (-3916 (((-1262) $ (-767)) 26)) (-4369 (((-767) $) 25)) (-2559 (((-114) $) 12)) (-3352 (((-1169) $) 20)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2227 (($ (-114) (-640 |#1|) (-767)) 30) (($ (-1169)) 31)) (-2602 (((-112) $ (-114)) 18) (((-112) $ (-1169)) 16)) (-4238 (((-767) $) 22)) (-1693 (((-1113) $) NIL)) (-2219 (((-888 (-563)) $) 77 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 84 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 69 (|has| |#1| (-611 (-536))))) (-1692 (((-858) $) 55)) (-2326 (((-640 |#1|) $) 24)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 41)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 42)))
-(((-609 |#1|) (-13 (-132) (-880 |#1|) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -2559 ((-114) $)) (-15 -2326 ((-640 |#1|) $)) (-15 -4238 ((-767) $)) (-15 -2227 ($ (-114) (-640 |#1|) (-767))) (-15 -2227 ($ (-1169))) (-15 -2316 ((-3 (-1169) "failed") $)) (-15 -2602 ((-112) $ (-114))) (-15 -2602 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-846)) (T -609))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846)) (-5 *1 (-609 *5)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2316 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2602 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) (-2602 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))))
-(-13 (-132) (-880 |#1|) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -2559 ((-114) $)) (-15 -2326 ((-640 |#1|) $)) (-15 -4238 ((-767) $)) (-15 -2227 ($ (-114) (-640 |#1|) (-767))) (-15 -2227 ($ (-1169))) (-15 -2316 ((-3 (-1169) "failed") $)) (-15 -2602 ((-112) $ (-114))) (-15 -2602 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|)))
-((-1692 ((|#1| $) 6)))
-(((-610 |#1|) (-140) (-1208)) (T -610))
-((-1692 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -8 (-15 -1692 (|t#1| $))))
-((-2219 ((|#1| $) 6)))
-(((-611 |#1|) (-140) (-1208)) (T -611))
-((-2219 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -8 (-15 -2219 (|t#1| $))))
-((-2357 (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
-(((-612 |#1| |#2|) (-10 -7 (-15 -2357 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2357 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -612))
-((-2357 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))) (-2357 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -2357 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2357 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|))))
-((-1692 (($ |#1|) 6)))
-(((-613 |#1|) (-140) (-1208)) (T -613))
-((-1692 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -8 (-15 -1692 ($ |t#1|))))
-((-1677 (((-112) $ $) NIL)) (-2483 (($) 8 T CONST)) (-1674 (($) 9 T CONST)) (-2200 (($ $ $) 21)) (-2174 (($ $) 19)) (-3854 (((-1151) $) NIL)) (-4252 (($ $ $) 22)) (-1693 (((-1113) $) NIL)) (-3566 (($) 7 T CONST)) (-4240 (($ $ $) 23)) (-1692 (((-858) $) 27)) (-2224 (((-112) $ (|[\|\|]| -3566)) 16) (((-112) $ (|[\|\|]| -2483)) 18) (((-112) $ (|[\|\|]| -1674)) 14)) (-2188 (($ $ $) 20)) (-1718 (((-112) $ $) 12)))
-(((-614) (-13 (-963) (-10 -8 (-15 -3566 ($) -2668) (-15 -2483 ($) -2668) (-15 -1674 ($) -2668) (-15 -2224 ((-112) $ (|[\|\|]| -3566))) (-15 -2224 ((-112) $ (|[\|\|]| -2483))) (-15 -2224 ((-112) $ (|[\|\|]| -1674)))))) (T -614))
-((-3566 (*1 *1) (-5 *1 (-614))) (-2483 (*1 *1) (-5 *1 (-614))) (-1674 (*1 *1) (-5 *1 (-614))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3566)) (-5 *2 (-112)) (-5 *1 (-614)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2483)) (-5 *2 (-112)) (-5 *1 (-614)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1674)) (-5 *2 (-112)) (-5 *1 (-614)))))
-(-13 (-963) (-10 -8 (-15 -3566 ($) -2668) (-15 -2483 ($) -2668) (-15 -1674 ($) -2668) (-15 -2224 ((-112) $ (|[\|\|]| -3566))) (-15 -2224 ((-112) $ (|[\|\|]| -2483))) (-15 -2224 ((-112) $ (|[\|\|]| -1674)))))
-((-2219 (($ |#1|) 6)))
-(((-615 |#1|) (-140) (-1208)) (T -615))
-((-2219 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -8 (-15 -2219 ($ |t#1|))))
-((-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10)))
-(((-616 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-617 |#2|) (-1045)) (T -616))
-NIL
-(-10 -8 (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 36)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-617 |#1|) (-140) (-1045)) (T -617))
-((-1692 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-643 |t#1|) (-10 -8 (-15 -1692 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2807 (((-563) $) NIL (|has| |#1| (-844)))) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-844)))) (-3401 (((-112) $) NIL)) (-2143 ((|#1| $) 13)) (-3426 (((-112) $) NIL (|has| |#1| (-844)))) (-3088 (($ $ $) NIL (|has| |#1| (-844)))) (-1776 (($ $ $) NIL (|has| |#1| (-844)))) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2153 ((|#3| $) 15)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL)) (-3914 (((-767)) 20)) (-1462 (($ $) NIL (|has| |#1| (-844)))) (-2239 (($) NIL T CONST)) (-2253 (($) 12 T CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1836 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-618 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -1836 ($ $ |#3|)) (-15 -1836 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2153 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -618))
-((-1836 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-1836 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2153 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -1836 ($ $ |#3|)) (-15 -1836 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2153 (|#3| $))))
-((-2366 ((|#2| |#2| (-1169) (-1169)) 16)))
-(((-619 |#1| |#2|) (-10 -7 (-15 -2366 (|#2| |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -619))
-((-2366 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4))))))
-(-10 -7 (-15 -2366 (|#2| |#2| (-1169) (-1169))))
-((-1677 (((-112) $ $) 56)) (-3439 (((-112) $) 52)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-2378 ((|#1| $) 49)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1550 (((-2 (|:| -3169 $) (|:| -4388 (-407 |#2|))) (-407 |#2|)) 98 (|has| |#1| (-363)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 86) (((-3 |#2| "failed") $) 82)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) 24)) (-3951 (((-3 $ "failed") $) 76)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-1775 (((-563) $) 19)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) 36)) (-2587 (($ |#1| (-563)) 21)) (-2725 ((|#1| $) 51)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) 88 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 102 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ $) 80)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1993 (((-767) $) 101 (|has| |#1| (-363)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 100 (|has| |#1| (-363)))) (-4203 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3871 (((-563) $) 34)) (-2219 (((-407 |#2|) $) 42)) (-1692 (((-858) $) 62) (($ (-563)) 32) (($ $) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 31) (($ |#2|) 22)) (-3244 ((|#1| $ (-563)) 63)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) 29)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 9 T CONST)) (-2253 (($) 12 T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) 17)) (-1825 (($ $) 46) (($ $ $) NIL)) (-1813 (($ $ $) 77)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 26) (($ $ $) 44)))
-(((-620 |#1| |#2|) (-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -3805 ((-112) $)) (-15 -3871 ((-563) $)) (-15 -1775 ((-563) $)) (-15 -2750 ($ $)) (-15 -2725 (|#1| $)) (-15 -2378 (|#1| $)) (-15 -3244 (|#1| $ (-563))) (-15 -2587 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -1550 ((-2 (|:| -3169 $) (|:| -4388 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-555) (-1233 |#1|)) (T -620))
-((-3805 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-3871 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-1775 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-2750 (*1 *1 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-2725 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-2378 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-2587 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3169 (-620 *4 *5)) (|:| -4388 (-407 *5)))) (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5)))))
-(-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -3805 ((-112) $)) (-15 -3871 ((-563) $)) (-15 -1775 ((-563) $)) (-15 -2750 ($ $)) (-15 -2725 (|#1| $)) (-15 -2378 (|#1| $)) (-15 -3244 (|#1| $ (-563))) (-15 -2587 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -1550 ((-2 (|:| -3169 $) (|:| -4388 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
-((-2119 (((-640 |#6|) (-640 |#4|) (-112)) 46)) (-2389 ((|#6| |#6|) 39)))
-(((-621 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2389 (|#6| |#6|)) (-15 -2119 ((-640 |#6|) (-640 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|)) (T -621))
-((-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10)) (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1102 *5 *6 *7 *8)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2389 (|#6| |#6|)) (-15 -2119 ((-640 |#6|) (-640 |#4|) (-112))))
-((-2399 (((-112) |#3| (-767) (-640 |#3|)) 23)) (-2411 (((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1337 (-640 (-2 (|:| |irr| |#4|) (|:| -3259 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)) 55)))
-(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2399 ((-112) |#3| (-767) (-640 |#3|))) (-15 -2411 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1337 (-640 (-2 (|:| |irr| |#4|) (|:| -3259 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)))) (-846) (-789) (-307) (-945 |#3| |#2| |#1|)) (T -622))
-((-2411 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1337 (-640 (-2 (|:| |irr| *10) (|:| -3259 (-563))))))) (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3) (|:| |corrfact| (-640 (-1165 *3))))) (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3))))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) (-4 *8 (-945 *3 *7 *6)))))
-(-10 -7 (-15 -2399 ((-112) |#3| (-767) (-640 |#3|))) (-15 -2411 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1337 (-640 (-2 (|:| |irr| |#4|) (|:| -3259 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|))))
-((-1677 (((-112) $ $) NIL)) (-2350 (((-1128) $) 11)) (-2339 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-623) (-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))) (T -623))
-((-2339 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))))
-(-13 (-1076) (-10 -8 (-15 -2339 ((-1128) $)) (-15 -2350 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3994 (((-640 |#1|) $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3794 (($ $) 67)) (-4372 (((-659 |#1| |#2|) $) 52)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 70)) (-2422 (((-640 (-294 |#2|)) $ $) 33)) (-1693 (((-1113) $) NIL)) (-3372 (($ (-659 |#1| |#2|)) 48)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) 58) (((-1272 |#1| |#2|) $) NIL) (((-1277 |#1| |#2|) $) 66)) (-2253 (($) 53 T CONST)) (-2434 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) 31)) (-2445 (((-640 (-659 |#1| |#2|)) (-640 |#1|)) 65)) (-2891 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 37)) (-1718 (((-112) $ $) 54)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 44)))
-(((-624 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -3372 ($ (-659 |#1| |#2|))) (-15 -4372 ((-659 |#1| |#2|) $)) (-15 -2891 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -1692 ((-1272 |#1| |#2|) $)) (-15 -1692 ((-1277 |#1| |#2|) $)) (-15 -3794 ($ $)) (-15 -3994 ((-640 |#1|) $)) (-15 -2445 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -2434 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -2422 ((-640 (-294 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-563)))) (-917)) (T -624))
-((-3372 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5)) (-14 *5 (-917)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5))) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563))))) (-14 *6 (-917)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-2422 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))))
-(-13 (-473) (-10 -8 (-15 -3372 ($ (-659 |#1| |#2|))) (-15 -4372 ((-659 |#1| |#2|) $)) (-15 -2891 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -1692 ((-1272 |#1| |#2|) $)) (-15 -1692 ((-1277 |#1| |#2|) $)) (-15 -3794 ($ $)) (-15 -3994 ((-640 |#1|) $)) (-15 -2445 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -2434 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -2422 ((-640 (-294 |#2|)) $ $))))
-((-2119 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 71) (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 57)) (-2455 (((-112) (-640 (-776 |#1| (-860 |#2|)))) 23)) (-2500 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 70)) (-2490 (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 56)) (-2478 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) 27)) (-2466 (((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|)))) 26)))
-(((-625 |#1| |#2|) (-10 -7 (-15 -2455 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -2466 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -2478 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -2490 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2500 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2119 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2119 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-640 (-1169))) (T -625))
-((-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-2466 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)))))
-(-10 -7 (-15 -2455 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -2466 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -2478 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -2490 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2500 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2119 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2119 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))))
-((-1770 (($ $) 38)) (-1618 (($ $) 21)) (-1747 (($ $) 37)) (-1596 (($ $) 22)) (-1793 (($ $) 36)) (-1642 (($ $) 23)) (-2179 (($) 48)) (-4372 (($ $) 45)) (-3114 (($ $) 17)) (-4025 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)) (-3372 (($ $) 46)) (-2772 (($ $) 15)) (-1585 (($ $) 16)) (-1805 (($ $) 35)) (-1655 (($ $) 24)) (-1783 (($ $) 34)) (-1629 (($ $) 25)) (-1758 (($ $) 33)) (-1607 (($ $) 26)) (-1839 (($ $) 44)) (-1694 (($ $) 32)) (-1816 (($ $) 43)) (-1666 (($ $) 31)) (-1861 (($ $) 42)) (-1721 (($ $) 30)) (-1311 (($ $) 41)) (-1734 (($ $) 29)) (-1850 (($ $) 40)) (-1709 (($ $) 28)) (-1828 (($ $) 39)) (-1679 (($ $) 27)) (-2536 (($ $) 19)) (-2547 (($ $) 20)) (-2525 (($ $) 18)) (** (($ $ $) 47)))
-(((-626) (-140)) (T -626))
-((-2547 (*1 *1 *1) (-4 *1 (-626))) (-2536 (*1 *1 *1) (-4 *1 (-626))) (-2525 (*1 *1 *1) (-4 *1 (-626))) (-3114 (*1 *1 *1) (-4 *1 (-626))) (-1585 (*1 *1 *1) (-4 *1 (-626))) (-2772 (*1 *1 *1) (-4 *1 (-626))))
-(-13 (-955) (-1193) (-10 -8 (-15 -2547 ($ $)) (-15 -2536 ($ $)) (-15 -2525 ($ $)) (-15 -3114 ($ $)) (-15 -1585 ($ $)) (-15 -2772 ($ $))))
-(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-955) . T) ((-1193) . T) ((-1196) . T))
-((-2559 (((-114) (-114)) 84)) (-3114 ((|#2| |#2|) 28)) (-4025 ((|#2| |#2| (-1085 |#2|)) 80) ((|#2| |#2| (-1169)) 49)) (-2772 ((|#2| |#2|) 27)) (-1585 ((|#2| |#2|) 29)) (-2512 (((-112) (-114)) 33)) (-2536 ((|#2| |#2|) 24)) (-2547 ((|#2| |#2|) 26)) (-2525 ((|#2| |#2|) 25)))
-(((-627 |#1| |#2|) (-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2547 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2525 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -4025 (|#2| |#2| (-1169))) (-15 -4025 (|#2| |#2| (-1085 |#2|)))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998) (-1193))) (T -627))
-((-4025 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)))) (-4025 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2525 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2547 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4)) (-4 *4 (-13 (-430 *3) (-998) (-1193))))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))))))
-(-10 -7 (-15 -2512 ((-112) (-114))) (-15 -2559 ((-114) (-114))) (-15 -2547 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2525 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -4025 (|#2| |#2| (-1169))) (-15 -4025 (|#2| |#2| (-1085 |#2|))))
-((-1399 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 53)) (-2577 (((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 68)) (-2589 (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 70) (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 69)) (-2557 (((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|))) 108)) (-1378 (((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 83)) (-2567 (((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|))) 118)) (-2607 (((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|))) 58)) (-2597 (((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 41)) (-1388 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 50)) (-2616 (((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 91)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -2557 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -2567 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -2577 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2589 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2589 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2597 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2607 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -2616 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1378 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -1388 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1399 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-640 (-1169)) (-452)) (T -628))
-((-1399 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))) (-1388 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-1378 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-2616 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6)) (-5 *1 (-628 *5 *6)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-628 *3 *4)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-2589 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))) (-2567 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563))))) (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5))))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-640 (-247 *4 *5))) (|:| |gvlist| (-640 (-563))))) (-5 *1 (-628 *4 *5)))))
-(-10 -7 (-15 -2557 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -2567 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -2577 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2589 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2589 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2597 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2607 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -2616 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1378 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -1388 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1399 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL)) (-2208 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-52) $ (-1151) (-52)) 16) (((-52) $ (-1169) (-52)) 17)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 (-52) "failed") (-1151) $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093))))) (-1691 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1151) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (((-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-4356 (((-52) $ (-1151) (-52)) NIL (|has| $ (-6 -4409)))) (-4293 (((-52) $ (-1151)) NIL)) (-2658 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-1410 (($ $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-1151) $) NIL (|has| (-1151) (-846)))) (-3523 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2251 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1530 (($ (-388)) 9)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093))))) (-1304 (((-640 (-1151)) $) NIL)) (-2305 (((-112) (-1151) $) NIL)) (-2627 (((-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL)) (-3867 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL)) (-2272 (((-640 (-1151)) $) NIL)) (-2282 (((-112) (-1151) $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093))))) (-3782 (((-52) $) NIL (|has| (-1151) (-846)))) (-1971 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL)) (-2221 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2295 (((-640 (-52)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 (((-52) $ (-1151)) 14) (((-52) $ (-1151) (-52)) NIL) (((-52) $ (-1169)) 15)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-629) (-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -1530 ($ (-388))) (-15 -1410 ($ $)) (-15 -2308 ((-52) $ (-1169))) (-15 -1849 ((-52) $ (-1169) (-52)))))) (T -629))
-((-1530 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))) (-1410 (*1 *1 *1) (-5 *1 (-629))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629)))))
-(-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -1530 ($ (-388))) (-15 -1410 ($ $)) (-15 -2308 ((-52) $ (-1169))) (-15 -1849 ((-52) $ (-1169) (-52)))))
-((-1836 (($ $ |#2|) 10)))
-(((-630 |#1| |#2|) (-10 -8 (-15 -1836 (|#1| |#1| |#2|))) (-631 |#2|) (-172)) (T -630))
-NIL
-(-10 -8 (-15 -1836 (|#1| |#1| |#2|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1706 (($ $ $) 29)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-631 |#1|) (-140) (-172)) (T -631))
-((-1706 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1706 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1836 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3245 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-3749 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4039 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2569 (($) NIL T CONST)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1914 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3410 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4017 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3386 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3342 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2214 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3376 (($ $ (-917)) NIL)) (-3995 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1938 (((-1165 |#1|) $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3436 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3973 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3912 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3458 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2521 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3879 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3617 (($ $ (-917)) NIL)) (-3843 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3825 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3861 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1927 (((-3 $ "failed")) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3422 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4028 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3398 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3353 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2267 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3364 (($ $ (-917)) NIL)) (-4007 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3801 (((-1165 |#1|) $) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3447 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3984 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3923 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3854 (((-1151) $) NIL)) (-3832 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3852 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3868 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-1113) $) NIL)) (-3900 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2308 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-3759 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2219 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2122 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-1745 (($ $ $) NIL)) (-3963 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1692 (((-858) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4013 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-3813 (((-640 (-1257 |#1|))) NIL (-4034 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1756 (($ $ $ $) NIL)) (-3942 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3727 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1729 (($ $ $) NIL)) (-3952 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3933 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3891 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2239 (($) 15 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) 17)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-632 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1692 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -632))
-((-1692 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3)))))
-(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1692 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-1433 (((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)) 81) (((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|))) 103)) (-1422 (((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|))) 108)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -1433 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -1422 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -1433 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -633))
-((-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3)))) (-1422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-829 *3))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-633 *5 *3)))))
-(-10 -7 (-15 -1433 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -1422 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -1433 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151))))
-((-1433 (((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)) 80) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 20) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|)))) 35)) (-1422 (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 23) (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|)))) 43)))
-(((-634 |#1|) (-10 -7 (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1422 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -1422 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)))) (-452)) (T -634))
-((-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) (-5 *1 (-634 *6)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-634 *5)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-839 (-407 (-948 *5))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) "failed")) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))))
-(-10 -7 (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1422 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -1422 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1433 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151))))
-((-1466 (((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|) 57 (-2174 (|has| |#1| (-363)))) (((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|) 42 (|has| |#1| (-363)))) (-1444 (((-112) (-1257 |#2|)) 28)) (-1453 (((-3 (-1257 |#1|) "failed") (-1257 |#2|)) 33)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -1444 ((-112) (-1257 |#2|))) (-15 -1453 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -1466 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -1466 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|)))) (-555) (-636 |#1|)) (T -635))
-((-1466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-2174 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5))) (-5 *1 (-635 *5 *4)))) (-1466 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4)))) (-1453 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)))))
-(-10 -7 (-15 -1444 ((-112) (-1257 |#2|))) (-15 -1453 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -1466 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -1466 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-1476 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-2351 (((-1262) $ |#2| |#2|) 36)) (-2353 ((|#2| $) 23)) (-2354 ((|#2| $) 21)) (-2107 (($ (-1 |#3| |#3|) $) 32)) (-4373 (($ (-1 |#3| |#3|) $) 30)) (-4215 ((|#3| $) 26)) (-2352 (($ $ |#3|) 33)) (-2355 (((-112) |#3| $) 17)) (-2358 (((-637 |#3|) $) 15)) (-4214 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-600 |#1| |#2| |#3|) (-10 -8 (-15 -2351 ((-1262) |#1| |#2| |#2|)) (-15 -2352 (|#1| |#1| |#3|)) (-15 -4215 (|#3| |#1|)) (-15 -2353 (|#2| |#1|)) (-15 -2354 (|#2| |#1|)) (-15 -2355 ((-112) |#3| |#1|)) (-15 -2358 ((-637 |#3|) |#1|)) (-15 -4214 (|#3| |#1| |#2|)) (-15 -4214 (|#3| |#1| |#2| |#3|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|))) (-601 |#2| |#3|) (-1094) (-1207)) (T -600))
+NIL
+(-10 -8 (-15 -2351 ((-1262) |#1| |#2| |#2|)) (-15 -2352 (|#1| |#1| |#3|)) (-15 -4215 (|#3| |#1|)) (-15 -2353 (|#2| |#1|)) (-15 -2354 (|#2| |#1|)) (-15 -2355 ((-112) |#3| |#1|)) (-15 -2358 ((-637 |#3|) |#1|)) (-15 -4214 (|#3| |#1| |#2|)) (-15 -4214 (|#3| |#1| |#2| |#3|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-2351 (((-1262) $ |#1| |#1|) 40 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-1672 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) 51)) (-2103 (((-637 |#2|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2353 ((|#1| $) 43 (|has| |#1| (-846)))) (-2993 (((-637 |#2|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-2354 ((|#1| $) 44 (|has| |#1| (-846)))) (-2107 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#2| (-1094)))) (-2356 (((-637 |#1|) $) 46)) (-2357 (((-112) |#1| $) 47)) (-3651 (((-1113) $) 21 (|has| |#2| (-1094)))) (-4215 ((|#2| $) 42 (|has| |#1| (-846)))) (-2352 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2104 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#2| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-601 |#1| |#2|) (-140) (-1094) (-1207)) (T -601))
+((-2358 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-637 *4)))) (-2357 (*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-637 *3)))) (-2355 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846)) (-4 *2 (-1207)))) (-2352 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207)))) (-2351 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-1262)))))
+(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2358 ((-637 |t#2|) $)) (-15 -2357 ((-112) |t#1| $)) (-15 -2356 ((-637 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4408)) (-15 -2355 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -2354 (|t#1| $)) (-15 -2353 (|t#1| $)) (-15 -4215 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2352 ($ $ |t#2|)) (-15 -2351 ((-1262) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1094)) ((-610 (-859)) -3943 (|has| |#2| (-1094)) (|has| |#2| (-610 (-859)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1207) . T))
+((-4361 (((-859) $) 17) (($ (-128)) 13) (((-128) $) 14)))
+(((-602) (-13 (-610 (-859)) (-490 (-128)))) (T -602))
+NIL
+(-13 (-610 (-859)) (-490 (-128)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1208) $) 14) (($ (-637 (-1208))) 13)) (-2359 (((-637 (-1208)) $) 10)) (-3444 (((-112) $ $) NIL)))
+(((-603) (-13 (-1076) (-610 (-1208)) (-10 -8 (-15 -4361 ($ (-637 (-1208)))) (-15 -2359 ((-637 (-1208)) $))))) (T -603))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-603)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-603)))))
+(-13 (-1076) (-610 (-1208)) (-10 -8 (-15 -4361 ($ (-637 (-1208)))) (-15 -2359 ((-637 (-1208)) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1927 (((-3 $ #1="failed")) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3631 (((-1256 (-684 |#1|))) NIL (|has| |#2| (-418 |#1|))) (((-1256 (-684 |#1|)) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1880 (((-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-4139 (($) NIL T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1854 (((-3 $ #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1942 (((-684 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1878 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1940 (((-684 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2546 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2057 (((-1163 (-942 |#1|))) NIL (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-363))))) (-2549 (($ $ (-915)) NIL)) (-1876 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1856 (((-1163 |#1|) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1944 ((|#1|) NIL (|has| |#2| (-418 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1874 (((-1163 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1868 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1946 (($ (-1256 |#1|)) NIL (|has| |#2| (-418 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-3873 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-3501 (((-915)) NIL (|has| |#2| (-367 |#1|)))) (-1865 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2573 (($ $ (-915)) NIL)) (-1861 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1855 (((-3 $ #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1943 (((-684 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1879 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1941 (((-684 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2547 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2061 (((-1163 (-942 |#1|))) NIL (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-363))))) (-2548 (($ $ (-915)) NIL)) (-1877 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1857 (((-1163 |#1|) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1945 ((|#1|) NIL (|has| |#2| (-418 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1875 (((-1163 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1869 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3650 (((-1151) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1864 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3651 (((-1113) $) NIL)) (-1867 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4214 ((|#1| $ (-546)) NIL (|has| |#2| (-418 |#1|)))) (-3632 (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-418 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-367 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-4385 (($ (-1256 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-418 |#1|)))) (-2049 (((-637 (-942 |#1|))) NIL (|has| |#2| (-418 |#1|))) (((-637 (-942 |#1|)) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2735 (($ $ $) NIL)) (-1873 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4361 (((-859) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2169 (((-1256 $)) NIL (|has| |#2| (-418 |#1|)))) (-1858 (((-637 (-1256 |#1|))) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2736 (($ $ $ $) NIL)) (-1871 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2933 (($ (-684 |#1|) $) NIL (|has| |#2| (-418 |#1|)))) (-2734 (($ $ $) NIL)) (-1872 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1870 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1866 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3047 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) 24)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-604 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -4361 ($ |#2|)) (IF (|has| |#2| (-418 |#1|)) (-6 (-418 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -604))
+((-4361 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3)))))
+(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -4361 ($ |#2|)) (IF (|has| |#2| (-418 |#1|)) (-6 (-418 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-1848 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) 33)) (-4012 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL) (($) NIL)) (-2351 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-1151) |#1|) 43)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#1| #1="failed") (-1151) $) 46)) (-4139 (($) NIL T CONST)) (-1852 (($ $ (-1151)) 24)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-3816 (((-3 |#1| #1#) (-1151) $) 47) (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (|has| $ (-6 -4408)))) (-3817 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-4257 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-1849 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) 32)) (-1672 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-1151)) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2401 (($ $) 48)) (-1853 (($ (-388)) 22) (($ (-388) (-1151)) 21)) (-3956 (((-388) $) 34)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408))) (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-2354 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-2795 (((-637 (-1151)) $) 39)) (-2361 (((-112) (-1151) $) NIL)) (-1850 (((-1151) $) 35)) (-1359 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-2356 (((-637 (-1151)) $) NIL)) (-2357 (((-112) (-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1431 (((-3 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) "failed") (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-637 (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 37)) (-4214 ((|#1| $ (-1151) |#1|) NIL) ((|#1| $ (-1151)) 42)) (-1557 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL) (($) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (((-767) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-4361 (((-859) $) 20)) (-1851 (($ $) 25)) (-1361 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 19)) (-4372 (((-767) $) 41 (|has| $ (-6 -4408)))))
+(((-605 |#1|) (-13 (-365 (-388) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -2401 ($ $)))) (-1094)) (T -605))
+((-2401 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1094)))))
+(-13 (-365 (-388) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -2401 ($ $))))
+((-3653 (((-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) 15)) (-2795 (((-637 |#2|) $) 19)) (-2361 (((-112) |#2| $) 12)))
+(((-606 |#1| |#2| |#3|) (-10 -8 (-15 -2795 ((-637 |#2|) |#1|)) (-15 -2361 ((-112) |#2| |#1|)) (-15 -3653 ((-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|))) (-607 |#2| |#3|) (-1094) (-1094)) (T -606))
+NIL
+(-10 -8 (-15 -2795 ((-637 |#2|) |#1|)) (-15 -2361 ((-112) |#2| |#1|)) (-15 -3653 ((-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| "failed") |#1| $) 61)) (-4139 (($) 7 T CONST)) (-1430 (($ $) 58 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 56 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-2795 (((-637 |#1|) $) 63)) (-2361 (((-112) |#1| $) 64)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 39)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 40)) (-3651 (((-1113) $) 21 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 51)) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 41)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) 26 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 25 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 24 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 23 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-1557 (($) 49) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 48)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 50)) (-4361 (((-859) $) 18 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 42)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-607 |#1| |#2|) (-140) (-1094) (-1094)) (T -607))
+((-2361 (*1 *2 *3 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-637 *3)))) (-3816 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2360 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(-13 (-229 (-2 (|:| -4275 |t#1|) (|:| -2233 |t#2|))) (-10 -8 (-15 -2361 ((-112) |t#1| $)) (-15 -2795 ((-637 |t#1|) $)) (-15 -3816 ((-3 |t#2| "failed") |t#1| $)) (-15 -2360 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((-102) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) ((-610 (-859)) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859)))) ((-151 #1#) . T) ((-611 (-535)) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))) ((-229 #1#) . T) ((-235 #1#) . T) ((-309 #1#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-489 #1#) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-2362 (((-3 (-1169) "failed") $) 37)) (-1398 (((-1262) $ (-767)) 26)) (-3830 (((-767) $) 25)) (-3437 (((-113) $) 12)) (-3956 (((-1169) $) 20)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2363 (($ (-113) (-637 |#1|) (-767)) 30) (($ (-1169)) 31)) (-3020 (((-112) $ (-113)) 18) (((-112) $ (-1169)) 16)) (-2988 (((-767) $) 22)) (-3651 (((-1113) $) NIL)) (-4385 (((-886 (-546)) $) 77 (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) 84 (|has| |#1| (-611 (-886 (-378))))) (((-535) $) 69 (|has| |#1| (-611 (-535))))) (-4361 (((-859) $) 55)) (-2364 (((-637 |#1|) $) 24)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 41)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 42)))
+(((-608 |#1|) (-13 (-132) (-880 |#1|) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -3437 ((-113) $)) (-15 -2364 ((-637 |#1|) $)) (-15 -2988 ((-767) $)) (-15 -2363 ($ (-113) (-637 |#1|) (-767))) (-15 -2363 ($ (-1169))) (-15 -2362 ((-3 (-1169) "failed") $)) (-15 -3020 ((-112) $ (-113))) (-15 -3020 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|))) (-846)) (T -608))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-2363 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-637 *5)) (-5 *4 (-767)) (-4 *5 (-846)) (-5 *1 (-608 *5)))) (-2363 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-2362 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846)))) (-3020 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-846)))) (-3020 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-846)))))
+(-13 (-132) (-880 |#1|) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -3437 ((-113) $)) (-15 -2364 ((-637 |#1|) $)) (-15 -2988 ((-767) $)) (-15 -2363 ($ (-113) (-637 |#1|) (-767))) (-15 -2363 ($ (-1169))) (-15 -2362 ((-3 (-1169) "failed") $)) (-15 -3020 ((-112) $ (-113))) (-15 -3020 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|)))
+((-2365 (((-608 |#2|) |#1|) 15)) (-2366 (((-3 |#1| "failed") (-608 |#2|)) 19)))
+(((-609 |#1| |#2|) (-10 -7 (-15 -2365 ((-608 |#2|) |#1|)) (-15 -2366 ((-3 |#1| "failed") (-608 |#2|)))) (-846) (-846)) (T -609))
+((-2366 (*1 *2 *3) (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-846)) (-4 *2 (-846)) (-5 *1 (-609 *2 *4)))) (-2365 (*1 *2 *3) (-12 (-5 *2 (-608 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846)))))
+(-10 -7 (-15 -2365 ((-608 |#2|) |#1|)) (-15 -2366 ((-3 |#1| "failed") (-608 |#2|))))
+((-4361 ((|#1| $) 6)))
+(((-610 |#1|) (-140) (-1207)) (T -610))
+((-4361 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4361 (|t#1| $))))
+((-4385 ((|#1| $) 6)))
+(((-611 |#1|) (-140) (-1207)) (T -611))
+((-4385 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4385 (|t#1| $))))
+((-2367 (((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-405 |#2|) |#2|)) 15) (((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -2367 ((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2367 ((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-405 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-546)) (-1034 (-407 (-546)))) (-1232 |#1|)) (T -612))
+((-2367 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-1163 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))) (-2367 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-1163 (-407 *5))) (-5 *1 (-612 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -2367 ((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2367 ((-3 (-1163 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-405 |#2|) |#2|))))
+((-4361 (($ |#1|) 6)))
+(((-613 |#1|) (-140) (-1207)) (T -613))
+((-4361 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4361 ($ |t#1|))))
+((-2953 (((-112) $ $) NIL)) (-2369 (($) 8 T CONST)) (-2368 (($) 9 T CONST)) (-3246 (($ $ $) 21)) (-3733 (($ $) 19)) (-3650 (((-1151) $) NIL)) (-3245 (($ $ $) 22)) (-3651 (((-1113) $) NIL)) (-2370 (($) 7 T CONST)) (-3244 (($ $ $) 23)) (-4361 (((-859) $) 27)) (-3980 (((-112) $ (|[\|\|]| -2370)) 16) (((-112) $ (|[\|\|]| -2369)) 18) (((-112) $ (|[\|\|]| -2368)) 14)) (-3247 (($ $ $) 20)) (-3444 (((-112) $ $) 12)))
+(((-614) (-13 (-963) (-10 -8 (-15 -2370 ($) -4367) (-15 -2369 ($) -4367) (-15 -2368 ($) -4367) (-15 -3980 ((-112) $ (|[\|\|]| -2370))) (-15 -3980 ((-112) $ (|[\|\|]| -2369))) (-15 -3980 ((-112) $ (|[\|\|]| -2368)))))) (T -614))
+((-2370 (*1 *1) (-5 *1 (-614))) (-2369 (*1 *1) (-5 *1 (-614))) (-2368 (*1 *1) (-5 *1 (-614))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2370)) (-5 *2 (-112)) (-5 *1 (-614)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2369)) (-5 *2 (-112)) (-5 *1 (-614)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2368)) (-5 *2 (-112)) (-5 *1 (-614)))))
+(-13 (-963) (-10 -8 (-15 -2370 ($) -4367) (-15 -2369 ($) -4367) (-15 -2368 ($) -4367) (-15 -3980 ((-112) $ (|[\|\|]| -2370))) (-15 -3980 ((-112) $ (|[\|\|]| -2369))) (-15 -3980 ((-112) $ (|[\|\|]| -2368)))))
+((-4385 (($ |#1|) 6)))
+(((-615 |#1|) (-140) (-1207)) (T -615))
+((-4385 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4385 ($ |t#1|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4038 (((-546) $) NIL (|has| |#1| (-844)))) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-3594 (((-112) $) NIL (|has| |#1| (-844)))) (-2552 (((-112) $) NIL)) (-3388 ((|#1| $) 13)) (-3595 (((-112) $) NIL (|has| |#1| (-844)))) (-2919 (($ $ $) NIL (|has| |#1| (-844)))) (-3249 (($ $ $) NIL (|has| |#1| (-844)))) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3387 ((|#3| $) 15)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL)) (-3518 (((-767)) 20)) (-3794 (($ $) NIL (|has| |#1| (-844)))) (-3047 (($) NIL T CONST)) (-3053 (($) 12 T CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-616 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -4364 ($ $ |#3|)) (-15 -4364 ($ |#1| |#3|)) (-15 -3388 (|#1| $)) (-15 -3387 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -616))
+((-4364 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-4364 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-3387 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -4364 ($ $ |#3|)) (-15 -4364 ($ |#1| |#3|)) (-15 -3388 (|#1| $)) (-15 -3387 (|#3| $))))
+((-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) 10)))
+(((-617 |#1| |#2|) (-10 -8 (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-618 |#2|) (-1045)) (T -617))
+NIL
+(-10 -8 (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 36)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-618 |#1|) (-140) (-1045)) (T -618))
+((-4361 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045)))))
+(-13 (-1045) (-643 |t#1|) (-10 -8 (-15 -4361 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2371 ((|#2| |#2| (-1169) (-1169)) 16)))
+(((-619 |#1| |#2|) (-10 -7 (-15 -2371 (|#2| |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-956) (-29 |#1|))) (T -619))
+((-2371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-956) (-29 *4))))))
+(-10 -7 (-15 -2371 (|#2| |#2| (-1169) (-1169))))
+((-2953 (((-112) $ $) 56)) (-3596 (((-112) $) 52)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-2372 ((|#1| $) 49)) (-1397 (((-3 $ "failed") $ $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4166 (((-2 (|:| -1919 $) (|:| -1918 (-407 |#2|))) (-407 |#2|)) 98 (|has| |#1| (-363)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 86) (((-3 |#2| #1#) $) 82)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) 24)) (-3873 (((-3 $ "failed") $) 76)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4186 (((-546) $) 19)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) 36)) (-3283 (($ |#1| (-546)) 21)) (-3582 ((|#1| $) 51)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) 88 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 102 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ $) 80)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-1739 (((-767) $) 101 (|has| |#1| (-363)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 100 (|has| |#1| (-363)))) (-4225 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4363 (((-546) $) 34)) (-4385 (((-407 |#2|) $) 42)) (-4361 (((-859) $) 62) (($ (-546)) 32) (($ $) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) 31) (($ |#2|) 22)) (-4092 ((|#1| $ (-546)) 63)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) 29)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 9 T CONST)) (-3053 (($) 12 T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3444 (((-112) $ $) 17)) (-4252 (($ $) 46) (($ $ $) NIL)) (-4254 (($ $ $) 77)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 26) (($ $ $) 44)))
+(((-620 |#1| |#2|) (-13 (-231 |#2|) (-556) (-611 (-407 |#2|)) (-412 |#1|) (-1034 |#2|) (-10 -8 (-15 -4352 ((-112) $)) (-15 -4363 ((-546) $)) (-15 -4186 ((-546) $)) (-15 -4374 ($ $)) (-15 -3582 (|#1| $)) (-15 -2372 (|#1| $)) (-15 -4092 (|#1| $ (-546))) (-15 -3283 ($ |#1| (-546))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -4166 ((-2 (|:| -1919 $) (|:| -1918 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1232 |#1|)) (T -620))
+((-4352 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3)))) (-4363 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-546)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3)))) (-4186 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-546)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3)))) (-4374 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2)))) (-3582 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2)))) (-2372 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2)))) (-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *2 (-556)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1232 *2)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-4 *2 (-556)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1232 *2)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -1919 (-620 *4 *5)) (|:| -1918 (-407 *5)))) (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5)))))
+(-13 (-231 |#2|) (-556) (-611 (-407 |#2|)) (-412 |#1|) (-1034 |#2|) (-10 -8 (-15 -4352 ((-112) $)) (-15 -4363 ((-546) $)) (-15 -4186 ((-546) $)) (-15 -4374 ($ $)) (-15 -3582 (|#1| $)) (-15 -2372 (|#1| $)) (-15 -4092 (|#1| $ (-546))) (-15 -3283 ($ |#1| (-546))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -4166 ((-2 (|:| -1919 $) (|:| -1918 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
+((-4097 (((-637 |#6|) (-637 |#4|) (-112)) 46)) (-2373 ((|#6| |#6|) 39)))
+(((-621 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2373 (|#6| |#6|)) (-15 -4097 ((-637 |#6|) (-637 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|)) (T -621))
+((-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 *10)) (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1102 *5 *6 *7 *8)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2373 (|#6| |#6|)) (-15 -4097 ((-637 |#6|) (-637 |#4|) (-112))))
+((-2374 (((-112) |#3| (-767) (-637 |#3|)) 23)) (-2375 (((-3 (-2 (|:| |polfac| (-637 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-637 (-1163 |#3|)))) "failed") |#3| (-637 (-1163 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2818 (-637 (-2 (|:| |irr| |#4|) (|:| -2537 (-546)))))) (-637 |#3|) (-637 |#1|) (-637 |#3|)) 55)))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2374 ((-112) |#3| (-767) (-637 |#3|))) (-15 -2375 ((-3 (-2 (|:| |polfac| (-637 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-637 (-1163 |#3|)))) "failed") |#3| (-637 (-1163 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2818 (-637 (-2 (|:| |irr| |#4|) (|:| -2537 (-546)))))) (-637 |#3|) (-637 |#1|) (-637 |#3|)))) (-846) (-789) (-307) (-946 |#3| |#2| |#1|)) (T -622))
+((-2375 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2818 (-637 (-2 (|:| |irr| *10) (|:| -2537 (-546))))))) (-5 *6 (-637 *3)) (-5 *7 (-637 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-637 *10)) (|:| |correct| *3) (|:| |corrfact| (-637 (-1163 *3))))) (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-637 (-1163 *3))))) (-2374 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-637 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) (-4 *8 (-946 *3 *7 *6)))))
+(-10 -7 (-15 -2374 ((-112) |#3| (-767) (-637 |#3|))) (-15 -2375 ((-3 (-2 (|:| |polfac| (-637 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-637 (-1163 |#3|)))) "failed") |#3| (-637 (-1163 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2818 (-637 (-2 (|:| |irr| |#4|) (|:| -2537 (-546)))))) (-637 |#3|) (-637 |#1|) (-637 |#3|))))
+((-2953 (((-112) $ $) NIL)) (-3934 (((-1128) $) 11)) (-3935 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-623) (-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))) (T -623))
+((-3935 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))))
+(-13 (-1076) (-10 -8 (-15 -3935 ((-1128) $)) (-15 -3934 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-4349 (((-637 |#1|) $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-4351 (($ $) 67)) (-4357 (((-659 |#1| |#2|) $) 52)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 70)) (-2376 (((-637 (-293 |#2|)) $ $) 33)) (-3651 (((-1113) $) NIL)) (-4358 (($ (-659 |#1| |#2|)) 48)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) 58) (((-1272 |#1| |#2|) $) NIL) (((-1277 |#1| |#2|) $) 66)) (-3053 (($) 53 T CONST)) (-2377 (((-637 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) 31)) (-2378 (((-637 (-659 |#1| |#2|)) (-637 |#1|)) 65)) (-3052 (((-637 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 37)) (-3444 (((-112) $ $) 54)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ $ $) 44)))
+(((-624 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -4358 ($ (-659 |#1| |#2|))) (-15 -4357 ((-659 |#1| |#2|) $)) (-15 -3052 ((-637 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -4361 ((-1272 |#1| |#2|) $)) (-15 -4361 ((-1277 |#1| |#2|) $)) (-15 -4351 ($ $)) (-15 -4349 ((-637 |#1|) $)) (-15 -2378 ((-637 (-659 |#1| |#2|)) (-637 |#1|))) (-15 -2377 ((-637 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -2376 ((-637 (-293 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-546)))) (-915)) (T -624))
+((-4358 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-5 *1 (-624 *3 *4 *5)) (-14 *5 (-915)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-546))))) (-14 *4 (-915)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-846)) (-5 *2 (-637 (-659 *4 *5))) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-546))))) (-14 *6 (-915)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))) (-2376 (*1 *2 *1 *1) (-12 (-5 *2 (-637 (-293 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))))
+(-13 (-473) (-10 -8 (-15 -4358 ($ (-659 |#1| |#2|))) (-15 -4357 ((-659 |#1| |#2|) $)) (-15 -3052 ((-637 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -4361 ((-1272 |#1| |#2|) $)) (-15 -4361 ((-1277 |#1| |#2|) $)) (-15 -4351 ($ $)) (-15 -4349 ((-637 |#1|) $)) (-15 -2378 ((-637 (-659 |#1| |#2|)) (-637 |#1|))) (-15 -2377 ((-637 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -2376 ((-637 (-293 |#2|)) $ $))))
+((-4097 (((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112)) 71) (((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112)) 57)) (-2379 (((-112) (-637 (-776 |#1| (-860 |#2|)))) 23)) (-2383 (((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112)) 70)) (-2382 (((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112)) 56)) (-2381 (((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|)))) 27)) (-2380 (((-3 (-637 (-776 |#1| (-860 |#2|))) "failed") (-637 (-776 |#1| (-860 |#2|)))) 26)))
+(((-625 |#1| |#2|) (-10 -7 (-15 -2379 ((-112) (-637 (-776 |#1| (-860 |#2|))))) (-15 -2380 ((-3 (-637 (-776 |#1| (-860 |#2|))) "failed") (-637 (-776 |#1| (-860 |#2|))))) (-15 -2381 ((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|))))) (-15 -2382 ((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2383 ((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -4097 ((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -4097 ((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-637 (-1169))) (T -625))
+((-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-637 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-637 (-1169))) (-5 *1 (-625 *3 *4)))) (-2380 (*1 *2 *2) (|partial| -12 (-5 *2 (-637 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-637 (-1169))) (-5 *1 (-625 *3 *4)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-637 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-637 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)))))
+(-10 -7 (-15 -2379 ((-112) (-637 (-776 |#1| (-860 |#2|))))) (-15 -2380 ((-3 (-637 (-776 |#1| (-860 |#2|))) "failed") (-637 (-776 |#1| (-860 |#2|))))) (-15 -2381 ((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|))))) (-15 -2382 ((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2383 ((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -4097 ((-637 (-1042 |#1| |#2|)) (-637 (-776 |#1| (-860 |#2|))) (-112))) (-15 -4097 ((-637 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-637 (-776 |#1| (-860 |#2|))) (-112))))
+((-3437 (((-113) (-113)) 84)) (-2387 ((|#2| |#2|) 28)) (-3221 ((|#2| |#2| (-1085 |#2|)) 80) ((|#2| |#2| (-1169)) 49)) (-2385 ((|#2| |#2|) 27)) (-2386 ((|#2| |#2|) 29)) (-2384 (((-112) (-113)) 33)) (-2389 ((|#2| |#2|) 24)) (-2390 ((|#2| |#2|) 26)) (-2388 ((|#2| |#2|) 25)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -2390 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -3221 (|#2| |#2| (-1169))) (-15 -3221 (|#2| |#2| (-1085 |#2|)))) (-13 (-846) (-556)) (-13 (-421 |#1|) (-998) (-1193))) (T -626))
+((-3221 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-421 *4) (-998) (-1193))) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-626 *4 *2)))) (-3221 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-626 *4 *2)) (-4 *2 (-13 (-421 *4) (-998) (-1193))))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-421 *3) (-998) (-1193))))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *4)) (-4 *4 (-13 (-421 *3) (-998) (-1193))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-421 *4) (-998) (-1193))))))
+(-10 -7 (-15 -2384 ((-112) (-113))) (-15 -3437 ((-113) (-113))) (-15 -2390 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -3221 (|#2| |#2| (-1169))) (-15 -3221 (|#2| |#2| (-1085 |#2|))))
+((-3898 (($ $) 38)) (-4054 (($ $) 21)) (-3896 (($ $) 37)) (-4053 (($ $) 22)) (-3900 (($ $) 36)) (-4052 (($ $) 23)) (-4042 (($) 48)) (-4357 (($ $) 45)) (-2387 (($ $) 17)) (-3221 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)) (-4358 (($ $) 46)) (-2385 (($ $) 15)) (-2386 (($ $) 16)) (-3901 (($ $) 35)) (-4051 (($ $) 24)) (-3899 (($ $) 34)) (-4050 (($ $) 25)) (-3897 (($ $) 33)) (-4049 (($ $) 26)) (-3904 (($ $) 44)) (-3892 (($ $) 32)) (-3902 (($ $) 43)) (-3890 (($ $) 31)) (-3906 (($ $) 42)) (-3894 (($ $) 30)) (-3907 (($ $) 41)) (-3895 (($ $) 29)) (-3905 (($ $) 40)) (-3893 (($ $) 28)) (-3903 (($ $) 39)) (-3891 (($ $) 27)) (-2389 (($ $) 19)) (-2390 (($ $) 20)) (-2388 (($ $) 18)) (** (($ $ $) 47)))
+(((-627) (-140)) (T -627))
+((-2390 (*1 *1 *1) (-4 *1 (-627))) (-2389 (*1 *1 *1) (-4 *1 (-627))) (-2388 (*1 *1 *1) (-4 *1 (-627))) (-2387 (*1 *1 *1) (-4 *1 (-627))) (-2386 (*1 *1 *1) (-4 *1 (-627))) (-2385 (*1 *1 *1) (-4 *1 (-627))))
+(-13 (-956) (-1193) (-10 -8 (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $))))
+(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-956) . T) ((-1193) . T) ((-1196) . T))
+((-2400 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 53)) (-2393 (((-637 (-247 |#1| |#2|)) (-637 (-481 |#1| |#2|))) 68)) (-2394 (((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-860 |#1|)) 70) (((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)) (-860 |#1|)) 69)) (-2391 (((-2 (|:| |gblist| (-637 (-247 |#1| |#2|))) (|:| |gvlist| (-637 (-546)))) (-637 (-481 |#1| |#2|))) 108)) (-2398 (((-637 (-481 |#1| |#2|)) (-860 |#1|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|))) 83)) (-2392 (((-2 (|:| |glbase| (-637 (-247 |#1| |#2|))) (|:| |glval| (-637 (-546)))) (-637 (-247 |#1| |#2|))) 118)) (-2396 (((-1256 |#2|) (-481 |#1| |#2|) (-637 (-481 |#1| |#2|))) 58)) (-2395 (((-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|))) 41)) (-2399 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|))) 50)) (-2397 (((-247 |#1| |#2|) (-637 |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|))) 91)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -2391 ((-2 (|:| |gblist| (-637 (-247 |#1| |#2|))) (|:| |gvlist| (-637 (-546)))) (-637 (-481 |#1| |#2|)))) (-15 -2392 ((-2 (|:| |glbase| (-637 (-247 |#1| |#2|))) (|:| |glval| (-637 (-546)))) (-637 (-247 |#1| |#2|)))) (-15 -2393 ((-637 (-247 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2394 ((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2394 ((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2395 ((-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2396 ((-1256 |#2|) (-481 |#1| |#2|) (-637 (-481 |#1| |#2|)))) (-15 -2397 ((-247 |#1| |#2|) (-637 |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|)))) (-15 -2398 ((-637 (-481 |#1| |#2|)) (-860 |#1|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2399 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|)))) (-15 -2400 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-637 (-1169)) (-452)) (T -628))
+((-2400 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))) (-2399 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-2398 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-637 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-2397 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-637 (-1169))) (-5 *1 (-628 *5 *6)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-637 (-1169))) (-4 *6 (-452)) (-5 *2 (-1256 *6)) (-5 *1 (-628 *5 *6)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-637 (-481 *3 *4))) (-14 *3 (-637 (-1169))) (-4 *4 (-452)) (-5 *1 (-628 *3 *4)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-637 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-2394 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-637 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-637 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-637 (-481 *4 *5))) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *2 (-637 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))) (-2392 (*1 *2 *3) (-12 (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-637 (-247 *4 *5))) (|:| |glval| (-637 (-546))))) (-5 *1 (-628 *4 *5)) (-5 *3 (-637 (-247 *4 *5))))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-637 (-481 *4 *5))) (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-637 (-247 *4 *5))) (|:| |gvlist| (-637 (-546))))) (-5 *1 (-628 *4 *5)))))
+(-10 -7 (-15 -2391 ((-2 (|:| |gblist| (-637 (-247 |#1| |#2|))) (|:| |gvlist| (-637 (-546)))) (-637 (-481 |#1| |#2|)))) (-15 -2392 ((-2 (|:| |glbase| (-637 (-247 |#1| |#2|))) (|:| |glval| (-637 (-546)))) (-637 (-247 |#1| |#2|)))) (-15 -2393 ((-637 (-247 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2394 ((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2394 ((-481 |#1| |#2|) (-637 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2395 ((-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2396 ((-1256 |#2|) (-481 |#1| |#2|) (-637 (-481 |#1| |#2|)))) (-15 -2397 ((-247 |#1| |#2|) (-637 |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|)))) (-15 -2398 ((-637 (-481 |#1| |#2|)) (-860 |#1|) (-637 (-481 |#1| |#2|)) (-637 (-481 |#1| |#2|)))) (-15 -2399 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-637 (-247 |#1| |#2|)))) (-15 -2400 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL)) (-2351 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-51) $ (-1151) (-51)) 16) (((-51) $ (-1169) (-51)) 17)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 (-51) #1="failed") (-1151) $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094))))) (-3816 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-51) #1#) (-1151) $) NIL)) (-3817 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (((-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-1672 (((-51) $ (-1151) (-51)) NIL (|has| $ (-6 -4409)))) (-3505 (((-51) $ (-1151)) NIL)) (-2103 (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-2401 (($ $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2993 (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2354 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2402 (($ (-388)) 9)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094))))) (-2795 (((-637 (-1151)) $) NIL)) (-2361 (((-112) (-1151) $) NIL)) (-1359 (((-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL)) (-4022 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL)) (-2356 (((-637 (-1151)) $) NIL)) (-2357 (((-112) (-1151) $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094))))) (-4215 (((-51) $) NIL (|has| (-1151) (-846)))) (-1431 (((-3 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) "failed") (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL)) (-2352 (($ $ (-51)) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (($ $ (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (($ $ (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-51)) (-637 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-293 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-637 (-293 (-51)))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2358 (((-637 (-51)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 (((-51) $ (-1151)) 14) (((-51) $ (-1151) (-51)) NIL) (((-51) $ (-1169)) 15)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094)))) (((-767) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094)))) (((-767) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-610 (-859))) (|has| (-51) (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 (-51))) (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-629) (-13 (-1184 (-1151) (-51)) (-10 -8 (-15 -2402 ($ (-388))) (-15 -2401 ($ $)) (-15 -4214 ((-51) $ (-1169))) (-15 -4202 ((-51) $ (-1169) (-51)))))) (T -629))
+((-2402 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))) (-2401 (*1 *1 *1) (-5 *1 (-629))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-51)) (-5 *1 (-629)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1169)) (-5 *1 (-629)))))
+(-13 (-1184 (-1151) (-51)) (-10 -8 (-15 -2402 ($ (-388))) (-15 -2401 ($ $)) (-15 -4214 ((-51) $ (-1169))) (-15 -4202 ((-51) $ (-1169) (-51)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1927 (((-3 $ #1="failed")) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3631 (((-1256 (-684 |#1|))) NIL (|has| |#2| (-418 |#1|))) (((-1256 (-684 |#1|)) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1880 (((-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-4139 (($) NIL T CONST)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1854 (((-3 $ #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1942 (((-684 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1878 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1940 (((-684 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2546 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2057 (((-1163 (-942 |#1|))) NIL (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-363))))) (-2549 (($ $ (-915)) NIL)) (-1876 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1856 (((-1163 |#1|) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1944 ((|#1|) NIL (|has| |#2| (-418 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1874 (((-1163 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1868 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1946 (($ (-1256 |#1|)) NIL (|has| |#2| (-418 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-3873 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-3501 (((-915)) NIL (|has| |#2| (-367 |#1|)))) (-1865 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2573 (($ $ (-915)) NIL)) (-1861 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1855 (((-3 $ #1#)) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1943 (((-684 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1879 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1941 (((-684 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2547 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2061 (((-1163 (-942 |#1|))) NIL (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-363))))) (-2548 (($ $ (-915)) NIL)) (-1877 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1857 (((-1163 |#1|) $) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-1945 ((|#1|) NIL (|has| |#2| (-418 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-1875 (((-1163 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1869 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3650 (((-1151) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1864 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3651 (((-1113) $) NIL)) (-1867 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4214 ((|#1| $ (-546)) NIL (|has| |#2| (-418 |#1|)))) (-3632 (((-684 |#1|) (-1256 $)) NIL (|has| |#2| (-418 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-418 |#1|))) (((-684 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-367 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-4385 (($ (-1256 |#1|)) NIL (|has| |#2| (-418 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-418 |#1|)))) (-2049 (((-637 (-942 |#1|))) NIL (|has| |#2| (-418 |#1|))) (((-637 (-942 |#1|)) (-1256 $)) NIL (|has| |#2| (-367 |#1|)))) (-2735 (($ $ $) NIL)) (-1873 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4361 (((-859) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2169 (((-1256 $)) NIL (|has| |#2| (-418 |#1|)))) (-1858 (((-637 (-1256 |#1|))) NIL (-3943 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-418 |#1|)) (|has| |#1| (-556)))))) (-2736 (($ $ $ $) NIL)) (-1871 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2933 (($ (-684 |#1|) $) NIL (|has| |#2| (-418 |#1|)))) (-2734 (($ $ $) NIL)) (-1872 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1870 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1866 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3047 (($) 15 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) 17)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-630 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -4361 ($ |#2|)) (IF (|has| |#2| (-418 |#1|)) (-6 (-418 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -630))
+((-4361 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-630 *3 *2)) (-4 *2 (-740 *3)))))
+(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -4361 ($ |#2|)) (IF (|has| |#2| (-418 |#1|)) (-6 (-418 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-4364 (($ $ |#2|) 10)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -4364 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631))
+NIL
+(-10 -8 (-15 -4364 (|#1| |#1| |#2|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3936 (($ $ $) 29)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-632 |#1|) (-140) (-172)) (T -632))
+((-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-4364 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3936 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -4364 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-2404 (((-3 (-838 |#2|) #1="failed") |#2| (-293 |#2|) (-1151)) 81) (((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-838 |#2|) #1#))) "failed") |#2| (-293 (-838 |#2|))) 103)) (-2403 (((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|))) 108)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2404 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) #1#))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -2403 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -2404 ((-3 (-838 |#2|) #1#) |#2| (-293 |#2|) (-1151)))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -633))
+((-2404 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1151)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-838 *3)) (-5 *1 (-633 *6 *3)))) (-2403 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-828 *3))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-828 *3)) (-5 *1 (-633 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))) (-2404 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-838 *3) #1#))) "failed")) (-5 *1 (-633 *5 *3)))))
+(-10 -7 (-15 -2404 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) #1#))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -2403 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -2404 ((-3 (-838 |#2|) #1#) |#2| (-293 |#2|) (-1151))))
+((-2404 (((-3 (-838 (-407 (-942 |#1|))) #1="failed") (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))) (-1151)) 80) (((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2="failed") (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|)))) 20) (((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2#) (-407 (-942 |#1|)) (-293 (-838 (-942 |#1|)))) 35)) (-2403 (((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|)))) 23) (((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-828 (-942 |#1|)))) 43)))
+(((-634 |#1|) (-10 -7 (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2="failed") (-407 (-942 |#1|)) (-293 (-838 (-942 |#1|))))) (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2#) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -2403 ((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-828 (-942 |#1|))))) (-15 -2403 ((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) #1#) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))) (-1151)))) (-452)) (T -634))
+((-2404 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-407 (-942 *6)))) (-5 *5 (-1151)) (-5 *3 (-407 (-942 *6))) (-4 *6 (-452)) (-5 *2 (-838 *3)) (-5 *1 (-634 *6)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-452)) (-5 *2 (-828 *3)) (-5 *1 (-634 *5)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-828 (-942 *5)))) (-4 *5 (-452)) (-5 *2 (-828 (-407 (-942 *5)))) (-5 *1 (-634 *5)) (-5 *3 (-407 (-942 *5))))) (-2404 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-838 *3) #1#))) #2="failed")) (-5 *1 (-634 *5)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 (-942 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-838 (-407 (-942 *5))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 *5))) #1#)) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 *5))) #1#))) #2#)) (-5 *1 (-634 *5)) (-5 *3 (-407 (-942 *5))))))
+(-10 -7 (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2="failed") (-407 (-942 |#1|)) (-293 (-838 (-942 |#1|))))) (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-838 (-407 (-942 |#1|))) #1#))) #2#) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -2403 ((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-828 (-942 |#1|))))) (-15 -2403 ((-828 (-407 (-942 |#1|))) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -2404 ((-3 (-838 (-407 (-942 |#1|))) #1#) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))) (-1151))))
+((-2407 (((-3 (-1256 (-407 |#1|)) "failed") (-1256 |#2|) |#2|) 57 (-3733 (|has| |#1| (-363)))) (((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|) 42 (|has| |#1| (-363)))) (-2405 (((-112) (-1256 |#2|)) 28)) (-2406 (((-3 (-1256 |#1|) "failed") (-1256 |#2|)) 33)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -2405 ((-112) (-1256 |#2|))) (-15 -2406 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-363)) (-15 -2407 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -2407 ((-3 (-1256 (-407 |#1|)) "failed") (-1256 |#2|) |#2|)))) (-556) (-636 |#1|)) (T -635))
+((-2407 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 *5)) (-3733 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1256 (-407 *5))) (-5 *1 (-635 *5 *4)))) (-2407 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1256 *5)) (-5 *1 (-635 *5 *4)))) (-2406 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-636 *4)) (-4 *4 (-556)) (-5 *2 (-1256 *4)) (-5 *1 (-635 *4 *5)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-636 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)))))
+(-10 -7 (-15 -2405 ((-112) (-1256 |#2|))) (-15 -2406 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-363)) (-15 -2407 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -2407 ((-3 (-1256 (-407 |#1|)) "failed") (-1256 |#2|) |#2|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2408 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 35)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-636 |#1|) (-140) (-1045)) (T -636))
-((-1476 (*1 *2 *3) (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) (-5 *2 (-684 *4)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1957 (-684 *5)) (|:| |vec| (-1257 *5)))))))
-(-13 (-1045) (-10 -8 (-15 -1476 ((-684 |t#1|) (-684 $))) (-15 -1476 ((-2 (|:| -1957 (-684 |t#1|)) (|:| |vec| (-1257 |t#1|))) (-684 $) (-1257 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1915 ((|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|) 17) ((|#2| (-640 |#1|) (-640 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|)) 12)))
-(((-637 |#1| |#2|) (-10 -7 (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)))) (-1093) (-1208)) (T -637))
-((-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1915 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6)))) (-1915 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093)) (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6)))))
-(-10 -7 (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -1915 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -1915 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|))))
-((-4132 (((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 18)) (-2238 (((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)) 13)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -4132 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2238 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)))) (-1208) (-1208)) (T -638))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-638 *5 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5)))))
-(-10 -7 (-15 -4132 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2238 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|))))
-((-2238 (((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)) 13)))
-(((-639 |#1| |#2| |#3|) (-10 -7 (-15 -2238 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)))) (-1208) (-1208) (-1208)) (T -639))
-((-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8)) (-5 *1 (-639 *6 *7 *8)))))
-(-10 -7 (-15 -2238 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) NIL)) (-3446 ((|#1| $) NIL)) (-4303 (($ $) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4052 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-1640 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1909 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3711 (($ $ $) 31 (|has| |#1| (-1093)))) (-3697 (($ $ $) 33 (|has| |#1| (-1093)))) (-3684 (($ $ $) 36 (|has| |#1| (-1093)))) (-3678 (($ (-1 (-112) |#1|) $) NIL)) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3435 ((|#1| $) NIL)) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3793 (($ $) NIL) (($ $ (-767)) NIL)) (-4194 (($ $) NIL (|has| |#1| (-1093)))) (-3814 (($ $) 30 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-1966 (((-112) $) NIL)) (-4369 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2162 (((-112) $) 9)) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1370 (($) 7)) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4265 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4300 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3652 (($ |#1|) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3867 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1976 (((-112) $) NIL)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 35) ((|#1| $ (-563) |#1|) NIL)) (-2379 (((-563) $ $) NIL)) (-3690 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2889 (((-112) $) NIL)) (-1951 (($ $) NIL)) (-1930 (($ $) NIL (|has| $ (-6 -4409)))) (-1961 (((-767) $) NIL)) (-1970 (($ $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) 43 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-4065 (($ |#1| $) 10)) (-1941 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2857 (($ $ $) 29) (($ |#1| $) NIL) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3540 (($ $ $) 11)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2742 (((-1151) $) 25 (|has| |#1| (-824))) (((-1151) $ (-112)) 26 (|has| |#1| (-824))) (((-1262) (-818) $) 27 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 28 (|has| |#1| (-824)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-640 |#1|) (-13 (-661 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2162 ((-112) $)) (-15 -4065 ($ |#1| $)) (-15 -3540 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -3711 ($ $ $)) (-15 -3697 ($ $ $)) (-15 -3684 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1208)) (T -640))
-((-1370 (*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208)))) (-4065 (*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-3540 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-3711 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-3697 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-3684 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))))
-(-13 (-661 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2162 ((-112) $)) (-15 -4065 ($ |#1| $)) (-15 -3540 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -3711 ($ $ $)) (-15 -3697 ($ $ $)) (-15 -3684 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 11) (($ (-1174)) NIL) (((-1174) $) NIL) ((|#1| $) 8)) (-1718 (((-112) $ $) NIL)))
-(((-641 |#1|) (-13 (-1076) (-610 |#1|)) (-1093)) (T -641))
+((-2408 (*1 *2 *3) (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) (-5 *2 (-684 *4)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-636 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1735 (-684 *5)) (|:| |vec| (-1256 *5)))))))
+(-13 (-1045) (-10 -8 (-15 -2408 ((-684 |t#1|) (-684 $))) (-15 -2408 ((-2 (|:| -1735 (-684 |t#1|)) (|:| |vec| (-1256 |t#1|))) (-684 $) (-1256 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) NIL)) (-4209 ((|#1| $) NIL)) (-4211 (($ $) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1881 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-3299 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4201 (($ $ $) NIL (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-2411 (($ $ $) 31 (|has| |#1| (-1094)))) (-2410 (($ $ $) 33 (|has| |#1| (-1094)))) (-2409 (($ $ $) 36 (|has| |#1| (-1094)))) (-1666 (($ (-1 (-112) |#1|) $) NIL)) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4210 ((|#1| $) NIL)) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-4213 (($ $) NIL) (($ $ (-767)) NIL)) (-2505 (($ $) NIL (|has| |#1| (-1094)))) (-1430 (($ $) 30 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-3817 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3853 (((-112) $) NIL)) (-3830 (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094))) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) (-1 (-112) |#1|) $) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2413 (((-112) $) 9)) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2414 (($) 7)) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3248 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3924 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3948 (($ |#1|) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4212 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4022 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3854 (((-112) $) NIL)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1223 (-546))) NIL) ((|#1| $ (-546)) 35) ((|#1| $ (-546) |#1|) NIL)) (-3419 (((-546) $ $) NIL)) (-1667 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-4048 (((-112) $) NIL)) (-4206 (($ $) NIL)) (-4204 (($ $) NIL (|has| $ (-6 -4409)))) (-4207 (((-767) $) NIL)) (-4208 (($ $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) 43 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-3867 (($ |#1| $) 10)) (-4205 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4216 (($ $ $) 29) (($ |#1| $) NIL) (($ (-637 $)) NIL) (($ $ |#1|) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2412 (($ $ $) 11)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2885 (((-1151) $) 25 (|has| |#1| (-817))) (((-1151) $ (-112)) 26 (|has| |#1| (-817))) (((-1262) (-819) $) 27 (|has| |#1| (-817))) (((-1262) (-819) $ (-112)) 28 (|has| |#1| (-817)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-637 |#1|) (-13 (-661 |#1|) (-10 -8 (-15 -2414 ($)) (-15 -2413 ((-112) $)) (-15 -3867 ($ |#1| $)) (-15 -2412 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2411 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2409 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|))) (-1207)) (T -637))
+((-2414 (*1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1207)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207)))) (-2412 (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207)))) (-2411 (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))) (-2410 (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))) (-2409 (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))))
+(-13 (-661 |#1|) (-10 -8 (-15 -2414 ($)) (-15 -2413 ((-112) $)) (-15 -3867 ($ |#1| $)) (-15 -2412 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2411 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2409 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-817)) (-6 (-817)) |%noBranch|)))
+((-4256 (((-637 |#2|) (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|) 16)) (-4257 ((|#2| (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|) 18)) (-4373 (((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)) 13)))
+(((-638 |#1| |#2|) (-10 -7 (-15 -4256 ((-637 |#2|) (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|)) (-15 -4373 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)))) (-1207) (-1207)) (T -638))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-637 *6)) (-5 *1 (-638 *5 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-637 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-638 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-637 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-637 *5)) (-5 *1 (-638 *6 *5)))))
+(-10 -7 (-15 -4256 ((-637 |#2|) (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-637 |#1|) |#2|)) (-15 -4373 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|))))
+((-3833 ((|#2| (-637 |#1|) (-637 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-637 |#1|) (-637 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) |#2|) 17) ((|#2| (-637 |#1|) (-637 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|)) 12)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|))) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1|)) (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) |#2|)) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1| |#2|)) (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) (-1 |#2| |#1|))) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1207)) (T -639))
+((-3833 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1207)) (-5 *1 (-639 *5 *2)))) (-3833 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-637 *5)) (-5 *4 (-637 *6)) (-4 *5 (-1094)) (-4 *6 (-1207)) (-5 *1 (-639 *5 *6)))) (-3833 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-4 *5 (-1094)) (-4 *2 (-1207)) (-5 *1 (-639 *5 *2)))) (-3833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 *5)) (-4 *6 (-1094)) (-4 *5 (-1207)) (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5)))) (-3833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-4 *5 (-1094)) (-4 *2 (-1207)) (-5 *1 (-639 *5 *2)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *6)) (-4 *5 (-1094)) (-4 *6 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6)))))
+(-10 -7 (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|))) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1|)) (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) |#2|)) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1| |#2|)) (-15 -3833 ((-1 |#2| |#1|) (-637 |#1|) (-637 |#2|) (-1 |#2| |#1|))) (-15 -3833 (|#2| (-637 |#1|) (-637 |#2|) |#1| (-1 |#2| |#1|))))
+((-4373 (((-637 |#3|) (-1 |#3| |#1| |#2|) (-637 |#1|) (-637 |#2|)) 13)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -4373 ((-637 |#3|) (-1 |#3| |#1| |#2|) (-637 |#1|) (-637 |#2|)))) (-1207) (-1207) (-1207)) (T -640))
+((-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-637 *6)) (-5 *5 (-637 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-637 *8)) (-5 *1 (-640 *6 *7 *8)))))
+(-10 -7 (-15 -4373 ((-637 |#3|) (-1 |#3| |#1| |#2|) (-637 |#1|) (-637 |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 11) (($ (-1174)) NIL) (((-1174) $) NIL) ((|#1| $) 8)) (-3444 (((-112) $ $) NIL)))
+(((-641 |#1|) (-13 (-1076) (-610 |#1|)) (-1094)) (T -641))
NIL
(-13 (-1076) (-610 |#1|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3802 (($ |#1| |#1| $) 41)) (-3001 (((-112) $ (-767)) NIL)) (-3678 (($ (-1 (-112) |#1|) $) 52 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-4194 (($ $) 43)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) 49 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 51 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 9 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) 37 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) 44)) (-3867 (($ |#1| $) 26) (($ |#1| $ (-767)) 40)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2808 ((|#1| $) 46)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 21)) (-3445 (($) 25)) (-1487 (((-112) $) 47)) (-4182 (((-640 (-2 (|:| -2556 |#1|) (|:| -1708 (-767)))) $) 56)) (-3863 (($) 23) (($ (-640 |#1|)) 18)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 53 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 19)) (-2219 (((-536) $) 32 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-1692 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 22)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 58 (|has| |#1| (-1093)))) (-3610 (((-767) $) 16 (|has| $ (-6 -4408)))))
-(((-642 |#1|) (-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -1487 ((-112) $)) (-15 -3802 ($ |#1| |#1| $)))) (-1093)) (T -642))
-((-1487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093)))) (-3802 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093)))))
-(-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -1487 ((-112) $)) (-15 -3802 ($ |#1| |#1| $))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23)))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2415 (($ |#1| |#1| $) 41)) (-1296 (((-112) $ (-767)) NIL)) (-1666 (($ (-1 (-112) |#1|) $) 52 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2505 (($ $) 43)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) 49 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 51 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 9 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) 37 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) 44)) (-4022 (($ |#1| $) 26) (($ |#1| $ (-767)) 40)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1360 ((|#1| $) 46)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 21)) (-3979 (($) 25)) (-2416 (((-112) $) 47)) (-2504 (((-637 (-2 (|:| -2233 |#1|) (|:| -2104 (-767)))) $) 56)) (-1557 (($) 23) (($ (-637 |#1|)) 18)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 53 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 19)) (-4385 (((-535) $) 32 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4361 (((-859) $) 14 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 22)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-4372 (((-767) $) 16 (|has| $ (-6 -4408)))))
+(((-642 |#1|) (-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -2416 ((-112) $)) (-15 -2415 ($ |#1| |#1| $)))) (-1094)) (T -642))
+((-2416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1094)))) (-2415 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1094)))))
+(-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -2416 ((-112) $)) (-15 -2415 ($ |#1| |#1| $))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23)))
(((-643 |#1|) (-140) (-1052)) (T -643))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767) $) 15)) (-1548 (($ $ |#1|) 56)) (-1574 (($ $) 32)) (-4383 (($ $) 31)) (-2130 (((-3 |#1| "failed") $) 48)) (-2057 ((|#1| $) NIL)) (-4140 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-1307 (((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563)) 46)) (-1347 ((|#1| $ (-563)) 30)) (-1357 ((|#2| $ (-563)) 29)) (-1499 (($ (-1 |#1| |#1|) $) 34)) (-1510 (($ (-1 |#2| |#2|) $) 38)) (-1562 (($) 10)) (-1598 (($ |#1| |#2|) 22)) (-1587 (($ (-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|)))) 23)) (-1609 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))) $) 13)) (-1536 (($ |#1| $) 57)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1524 (((-112) $ $) 60)) (-1692 (((-858) $) 19) (($ |#1|) 16)) (-1718 (((-112) $ $) 25)))
-(((-644 |#1| |#2| |#3|) (-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -1609 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))) $)) (-15 -1598 ($ |#1| |#2|)) (-15 -1587 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))))) (-15 -1357 (|#2| $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -4383 ($ $)) (-15 -1574 ($ $)) (-15 -3750 ((-767) $)) (-15 -1562 ($)) (-15 -1548 ($ $ |#1|)) (-15 -1536 ($ |#1| $)) (-15 -4140 ($ |#1| |#2| $)) (-15 -4140 ($ $ $)) (-15 -1524 ((-112) $ $)) (-15 -1510 ($ (-1 |#2| |#2|) $)) (-15 -1499 ($ (-1 |#1| |#1|) $)))) (-1093) (-23) |#2|) (T -644))
-((-1307 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858)) (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-1598 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1587 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4)))) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) (-4 *4 (-1093)) (-14 *5 *2))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4383 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-1562 (*1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1548 (*1 *1 *1 *2) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1536 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-4140 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-4140 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1524 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -1609 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))) $)) (-15 -1598 ($ |#1| |#2|)) (-15 -1587 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3372 |#2|))))) (-15 -1357 (|#2| $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -4383 ($ $)) (-15 -1574 ($ $)) (-15 -3750 ((-767) $)) (-15 -1562 ($)) (-15 -1548 ($ $ |#1|)) (-15 -1536 ($ |#1| $)) (-15 -4140 ($ |#1| |#2| $)) (-15 -4140 ($ $ $)) (-15 -1524 ((-112) $ $)) (-15 -1510 ($ (-1 |#2| |#2|) $)) (-15 -1499 ($ (-1 |#1| |#1|) $))))
-((-2251 (((-563) $) 23)) (-3399 (($ |#2| $ (-563)) 21) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) 12)) (-2282 (((-112) (-563) $) 14)) (-2857 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-640 $)) NIL)))
-(((-645 |#1| |#2|) (-10 -8 (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -2251 ((-563) |#1|)) (-15 -2272 ((-640 (-563)) |#1|)) (-15 -2282 ((-112) (-563) |#1|))) (-646 |#2|) (-1208)) (T -645))
-NIL
-(-10 -8 (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -2251 ((-563) |#1|)) (-15 -2272 ((-640 (-563)) |#1|)) (-15 -2282 ((-112) (-563) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 70)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-646 |#1|) (-140) (-1208)) (T -646))
-((-1565 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2857 (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2238 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-3399 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-3399 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2)) (-4 *2 (-1208)))))
-(-13 (-601 (-563) |t#1|) (-151 |t#1|) (-10 -8 (-15 -1565 ($ (-767) |t#1|)) (-15 -2857 ($ $ |t#1|)) (-15 -2857 ($ |t#1| $)) (-15 -2857 ($ $ $)) (-15 -2857 ($ (-640 $))) (-15 -2238 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2308 ($ $ (-1224 (-563)))) (-15 -2967 ($ $ (-563))) (-15 -2967 ($ $ (-1224 (-563)))) (-15 -3399 ($ |t#1| $ (-563))) (-15 -3399 ($ $ $ (-563))) (IF (|has| $ (-6 -4409)) (-15 -1849 (|t#1| $ (-1224 (-563)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-3510 (((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) "failed") |#3| |#2| (-1169)) 44)))
-(((-647 |#1| |#2| |#3|) (-10 -7 (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -3510 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -647))
-((-3510 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-640 *4)))) (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4)))))
-(-10 -7 (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -3510 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1620 (($ $) NIL (|has| |#1| (-363)))) (-1645 (($ $ $) NIL (|has| |#1| (-363)))) (-1657 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3076 (($ $ $) NIL (|has| |#1| (-363)))) (-3086 (($ $ $) NIL (|has| |#1| (-363)))) (-3098 (($ $ $) NIL (|has| |#1| (-363)))) (-3058 (($ $ $) NIL (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-3401 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) NIL)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3908 (((-767) $) NIL)) (-3142 (($ $ $) NIL (|has| |#1| (-363)))) (-3151 (($ $ $) NIL (|has| |#1| (-363)))) (-3036 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (($ $ $) NIL (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2308 ((|#1| $ |#1|) NIL)) (-1668 (($ $ $) NIL (|has| |#1| (-363)))) (-3871 (((-767) $) NIL)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-3727 ((|#1| $ |#1| |#1|) NIL)) (-2926 (($ $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-648 |#1|) (-651 |#1|) (-233)) (T -648))
-NIL
-(-651 |#1|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1620 (($ $) NIL (|has| |#1| (-363)))) (-1645 (($ $ $) NIL (|has| |#1| (-363)))) (-1657 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3076 (($ $ $) NIL (|has| |#1| (-363)))) (-3086 (($ $ $) NIL (|has| |#1| (-363)))) (-3098 (($ $ $) NIL (|has| |#1| (-363)))) (-3058 (($ $ $) NIL (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-3401 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) NIL)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3908 (((-767) $) NIL)) (-3142 (($ $ $) NIL (|has| |#1| (-363)))) (-3151 (($ $ $) NIL (|has| |#1| (-363)))) (-3036 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (($ $ $) NIL (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2308 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1668 (($ $ $) NIL (|has| |#1| (-363)))) (-3871 (((-767) $) NIL)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-3727 ((|#1| $ |#1| |#1|) NIL)) (-2926 (($ $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-649 |#1| |#2|) (-13 (-651 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-643 |#1|) (-10 -8 (-15 -4203 ($ $))))) (T -649))
-NIL
-(-13 (-651 |#1|) (-286 |#2| |#2|))
-((-1620 (($ $) 26)) (-2926 (($ $) 24)) (-3213 (($) 12)))
-(((-650 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -3213 (|#1|))) (-651 |#2|) (-1045)) (T -650))
-NIL
-(-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -3213 (|#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-1620 (($ $) 81 (|has| |#1| (-363)))) (-1645 (($ $ $) 83 (|has| |#1| (-363)))) (-1657 (($ $ (-767)) 82 (|has| |#1| (-363)))) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3076 (($ $ $) 44 (|has| |#1| (-363)))) (-3086 (($ $ $) 45 (|has| |#1| (-363)))) (-3098 (($ $ $) 47 (|has| |#1| (-363)))) (-3058 (($ $ $) 42 (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 41 (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 46 (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2057 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-4151 (($ $) 54 (|has| |#1| (-452)))) (-3401 (((-112) $) 31)) (-2587 (($ |#1| (-767)) 61)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 56 (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 57 (|has| |#1| (-555)))) (-3908 (((-767) $) 65)) (-3142 (($ $ $) 51 (|has| |#1| (-363)))) (-3151 (($ $ $) 52 (|has| |#1| (-363)))) (-3036 (($ $ $) 40 (|has| |#1| (-363)))) (-3121 (($ $ $) 49 (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 48 (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 53 (|has| |#1| (-363)))) (-2725 ((|#1| $) 64)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-2308 ((|#1| $ |#1|) 86)) (-1668 (($ $ $) 80 (|has| |#1| (-363)))) (-3871 (((-767) $) 66)) (-3885 ((|#1| $) 55 (|has| |#1| (-452)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-3955 (((-640 |#1|) $) 60)) (-3244 ((|#1| $ (-767)) 62)) (-3914 (((-767)) 28)) (-3727 ((|#1| $ |#1| |#1|) 59)) (-2926 (($ $) 84)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($) 85)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-651 |#1|) (-140) (-1045)) (T -651))
-((-3213 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-2926 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1657 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1668 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3213 ($)) (-15 -2926 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1645 ($ $ $)) (-15 -1657 ($ $ (-767))) (-15 -1620 ($ $)) (-15 -1668 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-848 |#1|) . T))
-((-1631 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 73 (|has| |#1| (-27)))) (-2173 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 72 (|has| |#1| (-27))) (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 17)))
-(((-652 |#1| |#2|) (-10 -7 (-15 -2173 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2173 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -1631 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -652))
-((-1631 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6)))) (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6))))))
-(-10 -7 (-15 -2173 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2173 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -1631 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1620 (($ $) NIL (|has| |#1| (-363)))) (-1645 (($ $ $) 28 (|has| |#1| (-363)))) (-1657 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3076 (($ $ $) NIL (|has| |#1| (-363)))) (-3086 (($ $ $) NIL (|has| |#1| (-363)))) (-3098 (($ $ $) NIL (|has| |#1| (-363)))) (-3058 (($ $ $) NIL (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-3401 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) NIL)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-3908 (((-767) $) NIL)) (-3142 (($ $ $) NIL (|has| |#1| (-363)))) (-3151 (($ $ $) NIL (|has| |#1| (-363)))) (-3036 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (($ $ $) NIL (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2308 ((|#1| $ |#1|) 24)) (-1668 (($ $ $) 33 (|has| |#1| (-363)))) (-3871 (((-767) $) NIL)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) 20) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-3727 ((|#1| $ |#1| |#1|) 23)) (-2926 (($ $) NIL)) (-2239 (($) 21 T CONST)) (-2253 (($) 8 T CONST)) (-3213 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-653 |#1| |#2|) (-651 |#1|) (-1045) (-1 |#1| |#1|)) (T -653))
-NIL
-(-651 |#1|)
-((-1645 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1657 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 40)) (-1668 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-654 |#1| |#2|) (-10 -7 (-15 -1645 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1657 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -1668 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -654))
-((-1668 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4)))) (-1657 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5)))) (-1645 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4)))))
-(-10 -7 (-15 -1645 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1657 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -1668 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-1531 (($ $ $) 9)))
-(((-655 |#1|) (-10 -8 (-15 -1531 (|#1| |#1| |#1|))) (-656)) (T -655))
-NIL
-(-10 -8 (-15 -1531 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3384 (($ $) 10)) (-1531 (($ $ $) 8)) (-1718 (((-112) $ $) 6)) (-1517 (($ $ $) 9)))
-(((-656) (-140)) (T -656))
-((-3384 (*1 *1 *1) (-4 *1 (-656))) (-1517 (*1 *1 *1 *1) (-4 *1 (-656))) (-1531 (*1 *1 *1 *1) (-4 *1 (-656))))
-(-13 (-102) (-10 -8 (-15 -3384 ($ $)) (-15 -1517 ($ $ $)) (-15 -1531 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767) $) 15)) (-2421 (($ $ |#1|) 56)) (-2423 (($ $) 32)) (-2424 (($ $) 31)) (-3565 (((-3 |#1| "failed") $) 48)) (-3564 ((|#1| $) NIL)) (-2456 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-3939 (((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-546)) 46)) (-2819 ((|#1| $ (-546)) 30)) (-2820 ((|#2| $ (-546)) 29)) (-2417 (($ (-1 |#1| |#1|) $) 34)) (-2418 (($ (-1 |#2| |#2|) $) 38)) (-2422 (($) 10)) (-2426 (($ |#1| |#2|) 22)) (-2425 (($ (-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|)))) 23)) (-2427 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))) $) 13)) (-2420 (($ |#1| $) 57)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2419 (((-112) $ $) 60)) (-4361 (((-859) $) 19) (($ |#1|) 16)) (-3444 (((-112) $ $) 25)))
+(((-644 |#1| |#2| |#3|) (-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-546))) (-15 -2427 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))) $)) (-15 -2426 ($ |#1| |#2|)) (-15 -2425 ($ (-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))))) (-15 -2820 (|#2| $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2424 ($ $)) (-15 -2423 ($ $)) (-15 -3528 ((-767) $)) (-15 -2422 ($)) (-15 -2421 ($ $ |#1|)) (-15 -2420 ($ |#1| $)) (-15 -2456 ($ |#1| |#2| $)) (-15 -2456 ($ $ $)) (-15 -2419 ((-112) $ $)) (-15 -2418 ($ (-1 |#2| |#2|) $)) (-15 -2417 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -644))
+((-3939 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-546)) (-5 *2 (-859)) (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2426 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2425 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *2 (-1094)) (-5 *1 (-644 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2424 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2423 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2422 (*1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2421 (*1 *1 *1 *2) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2420 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2456 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2419 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)))) (-2417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-644 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-546))) (-15 -2427 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))) $)) (-15 -2426 ($ |#1| |#2|)) (-15 -2425 ($ (-637 (-2 (|:| |gen| |#1|) (|:| -4358 |#2|))))) (-15 -2820 (|#2| $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2424 ($ $)) (-15 -2423 ($ $)) (-15 -3528 ((-767) $)) (-15 -2422 ($)) (-15 -2421 ($ $ |#1|)) (-15 -2420 ($ |#1| $)) (-15 -2456 ($ |#1| |#2| $)) (-15 -2456 ($ $ $)) (-15 -2419 ((-112) $ $)) (-15 -2418 ($ (-1 |#2| |#2|) $)) (-15 -2417 ($ (-1 |#1| |#1|) $))))
+((-2354 (((-546) $) 23)) (-2428 (($ |#2| $ (-546)) 21) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) 12)) (-2357 (((-112) (-546) $) 14)) (-4216 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-637 $)) NIL)))
+(((-645 |#1| |#2|) (-10 -8 (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -2354 ((-546) |#1|)) (-15 -2356 ((-637 (-546)) |#1|)) (-15 -2357 ((-112) (-546) |#1|))) (-646 |#2|) (-1207)) (T -645))
+NIL
+(-10 -8 (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -2354 ((-546) |#1|)) (-15 -2356 ((-637 (-546)) |#1|)) (-15 -2357 ((-112) (-546) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 70)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-646 |#1|) (-140) (-1207)) (T -646))
+((-4029 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-4216 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207)))) (-4216 (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207)))) (-4216 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-4373 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-2428 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-646 *2)) (-4 *2 (-1207)))) (-2428 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1223 (-546))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2)) (-4 *2 (-1207)))))
+(-13 (-601 (-546) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4029 ($ (-767) |t#1|)) (-15 -4216 ($ $ |t#1|)) (-15 -4216 ($ |t#1| $)) (-15 -4216 ($ $ $)) (-15 -4216 ($ (-637 $))) (-15 -4373 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4214 ($ $ (-1223 (-546)))) (-15 -2429 ($ $ (-546))) (-15 -2429 ($ $ (-1223 (-546)))) (-15 -2428 ($ |t#1| $ (-546))) (-15 -2428 ($ $ $ (-546))) (IF (|has| $ (-6 -4409)) (-15 -4202 (|t#1| $ (-1223 (-546)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 15)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3388 ((|#1| $) 21)) (-2919 (($ $ $) NIL (|has| |#1| (-787)))) (-3249 (($ $ $) NIL (|has| |#1| (-787)))) (-3650 (((-1151) $) 45)) (-3651 (((-1113) $) NIL)) (-3387 ((|#3| $) 22)) (-4361 (((-859) $) 41)) (-3047 (($) 10 T CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-787)))) (-3444 (((-112) $ $) 20)) (-3073 (((-112) $ $) NIL (|has| |#1| (-787)))) (-3074 (((-112) $ $) 24 (|has| |#1| (-787)))) (-4364 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4252 (($ $) 17) (($ $ $) NIL)) (-4254 (($ $ $) 27)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-647 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4364 ($ $ |#3|)) (-15 -4364 ($ |#1| |#3|)) (-15 -3388 (|#1| $)) (-15 -3387 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -647))
+((-4364 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-4364 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-647 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-647 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-3387 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-713 *4)))))
+(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4364 ($ $ |#3|)) (-15 -4364 ($ |#1| |#3|)) (-15 -3388 (|#1| $)) (-15 -3387 (|#3| $))))
+((-3987 (((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-637 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) "failed") |#3| |#2| (-1169)) 44)))
+(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -3987 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-637 |#2|)))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)) (-13 (-29 |#1|) (-1193) (-956)) (-653 |#2|)) (T -648))
+((-3987 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-653 *2)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2169 (-637 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-653 *4)))))
+(-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -3987 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-637 |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-363)))) (-2432 (($ $ $) 28 (|has| |#1| (-363)))) (-2433 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-2924 (($ $ $) NIL (|has| |#1| (-363)))) (-2925 (($ $ $) NIL (|has| |#1| (-363)))) (-2926 (($ $ $) NIL (|has| |#1| (-363)))) (-2922 (($ $ $) NIL (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2923 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-2552 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) NIL)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-3209 (((-767) $) NIL)) (-2930 (($ $ $) NIL (|has| |#1| (-363)))) (-2931 (($ $ $) NIL (|has| |#1| (-363)))) (-2920 (($ $ $) NIL (|has| |#1| (-363)))) (-2928 (($ $ $) NIL (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2929 (((-3 $ #1#) $ $) NIL (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-556)))) (-4214 ((|#1| $ |#1|) 24)) (-2434 (($ $ $) 33 (|has| |#1| (-363)))) (-4363 (((-767) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) 20) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) NIL)) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-2933 ((|#1| $ |#1| |#1|) 23)) (-2905 (($ $) NIL)) (-3047 (($) 21 T CONST)) (-3053 (($) 8 T CONST)) (-3058 (($) NIL)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-649 |#1| |#2|) (-653 |#1|) (-1045) (-1 |#1| |#1|)) (T -649))
+NIL
+(-653 |#1|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-363)))) (-2432 (($ $ $) NIL (|has| |#1| (-363)))) (-2433 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-2924 (($ $ $) NIL (|has| |#1| (-363)))) (-2925 (($ $ $) NIL (|has| |#1| (-363)))) (-2926 (($ $ $) NIL (|has| |#1| (-363)))) (-2922 (($ $ $) NIL (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2923 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-2552 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) NIL)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-3209 (((-767) $) NIL)) (-2930 (($ $ $) NIL (|has| |#1| (-363)))) (-2931 (($ $ $) NIL (|has| |#1| (-363)))) (-2920 (($ $ $) NIL (|has| |#1| (-363)))) (-2928 (($ $ $) NIL (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2929 (((-3 $ #1#) $ $) NIL (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-556)))) (-4214 ((|#1| $ |#1|) NIL)) (-2434 (($ $ $) NIL (|has| |#1| (-363)))) (-4363 (((-767) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) NIL)) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-2933 ((|#1| $ |#1| |#1|) NIL)) (-2905 (($ $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($) NIL)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-650 |#1|) (-653 |#1|) (-233)) (T -650))
+NIL
+(-653 |#1|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-363)))) (-2432 (($ $ $) NIL (|has| |#1| (-363)))) (-2433 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-2924 (($ $ $) NIL (|has| |#1| (-363)))) (-2925 (($ $ $) NIL (|has| |#1| (-363)))) (-2926 (($ $ $) NIL (|has| |#1| (-363)))) (-2922 (($ $ $) NIL (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2923 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-2552 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) NIL)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-3209 (((-767) $) NIL)) (-2930 (($ $ $) NIL (|has| |#1| (-363)))) (-2931 (($ $ $) NIL (|has| |#1| (-363)))) (-2920 (($ $ $) NIL (|has| |#1| (-363)))) (-2928 (($ $ $) NIL (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2929 (((-3 $ #1#) $ $) NIL (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-556)))) (-4214 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2434 (($ $ $) NIL (|has| |#1| (-363)))) (-4363 (((-767) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) NIL)) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-2933 ((|#1| $ |#1| |#1|) NIL)) (-2905 (($ $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($) NIL)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-651 |#1| |#2|) (-13 (-653 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-643 |#1|) (-10 -8 (-15 -4225 ($ $))))) (T -651))
+NIL
+(-13 (-653 |#1|) (-286 |#2| |#2|))
+((-2430 (($ $) 26)) (-2905 (($ $) 24)) (-3058 (($) 12)))
+(((-652 |#1| |#2|) (-10 -8 (-15 -2430 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3058 (|#1|))) (-653 |#2|) (-1045)) (T -652))
+NIL
+(-10 -8 (-15 -2430 (|#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3058 (|#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2430 (($ $) 81 (|has| |#1| (-363)))) (-2432 (($ $ $) 83 (|has| |#1| (-363)))) (-2433 (($ $ (-767)) 82 (|has| |#1| (-363)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2924 (($ $ $) 44 (|has| |#1| (-363)))) (-2925 (($ $ $) 45 (|has| |#1| (-363)))) (-2926 (($ $ $) 47 (|has| |#1| (-363)))) (-2922 (($ $ $) 42 (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 41 (|has| |#1| (-363)))) (-2923 (((-3 $ #1="failed") $ $) 43 (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 46 (|has| |#1| (-363)))) (-3565 (((-3 (-546) #2="failed") $) 74 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) 71 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) 68)) (-3564 (((-546) $) 73 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 70 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 69)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-3909 (($ $) 54 (|has| |#1| (-452)))) (-2552 (((-112) $) 31)) (-3283 (($ |#1| (-767)) 61)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 56 (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-556)))) (-3209 (((-767) $) 65)) (-2930 (($ $ $) 51 (|has| |#1| (-363)))) (-2931 (($ $ $) 52 (|has| |#1| (-363)))) (-2920 (($ $ $) 40 (|has| |#1| (-363)))) (-2928 (($ $ $) 49 (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 48 (|has| |#1| (-363)))) (-2929 (((-3 $ #1#) $ $) 50 (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 53 (|has| |#1| (-363)))) (-3582 ((|#1| $) 64)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ #1#) $ |#1|) 58 (|has| |#1| (-556)))) (-4214 ((|#1| $ |#1|) 86)) (-2434 (($ $ $) 80 (|has| |#1| (-363)))) (-4363 (((-767) $) 66)) (-3206 ((|#1| $) 55 (|has| |#1| (-452)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 72 (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) 67)) (-4232 (((-637 |#1|) $) 60)) (-4092 ((|#1| $ (-767)) 62)) (-3518 (((-767)) 28)) (-2933 ((|#1| $ |#1| |#1|) 59)) (-2905 (($ $) 84)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($) 85)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-653 |#1|) (-140) (-1045)) (T -653))
+((-3058 (*1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)))) (-2432 (*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-653 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-2430 (*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2434 (*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3058 ($)) (-15 -2905 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2432 ($ $ $)) (-15 -2433 ($ $ (-767))) (-15 -2430 ($ $)) (-15 -2434 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #1=(-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-286 |#1| |#1|) . T) ((-412 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #1#) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-848 |#1|) . T))
+((-2431 (((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|))) 73 (|has| |#1| (-27)))) (-4147 (((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|))) 72 (|has| |#1| (-27))) (((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|)) 17)))
+(((-654 |#1| |#2|) (-10 -7 (-15 -4147 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4147 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|)))) (-15 -2431 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))) (-1232 |#1|)) (T -654))
+((-2431 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-650 (-407 *5)))) (-5 *1 (-654 *4 *5)) (-5 *3 (-650 (-407 *5))))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-650 (-407 *5)))) (-5 *1 (-654 *4 *5)) (-5 *3 (-650 (-407 *5))))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-650 (-407 *6)))) (-5 *1 (-654 *5 *6)) (-5 *3 (-650 (-407 *6))))))
+(-10 -7 (-15 -4147 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4147 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|)))) (-15 -2431 ((-637 (-650 (-407 |#2|))) (-650 (-407 |#2|))))) |%noBranch|))
+((-2432 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2433 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 40)) (-2434 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -2432 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2433 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2434 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-653 |#1|)) (T -655))
+((-2434 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-653 *4)))) (-2433 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-653 *5)))) (-2432 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-653 *4)))))
+(-10 -7 (-15 -2432 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2433 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2434 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2435 (($ $ $) 9)))
+(((-656 |#1|) (-10 -8 (-15 -2435 (|#1| |#1| |#1|))) (-657)) (T -656))
+NIL
+(-10 -8 (-15 -2435 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-2437 (($ $) 10)) (-2435 (($ $ $) 8)) (-3444 (((-112) $ $) 6)) (-2436 (($ $ $) 9)))
+(((-657) (-140)) (T -657))
+((-2437 (*1 *1 *1) (-4 *1 (-657))) (-2436 (*1 *1 *1 *1) (-4 *1 (-657))) (-2435 (*1 *1 *1 *1) (-4 *1 (-657))))
+(-13 (-102) (-10 -8 (-15 -2437 ($ $)) (-15 -2436 ($ $ $)) (-15 -2435 ($ $ $))))
(((-102) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 15)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2143 ((|#1| $) 21)) (-3088 (($ $ $) NIL (|has| |#1| (-787)))) (-1776 (($ $ $) NIL (|has| |#1| (-787)))) (-3854 (((-1151) $) 45)) (-1693 (((-1113) $) NIL)) (-2153 ((|#3| $) 22)) (-1692 (((-858) $) 41)) (-2239 (($) 10 T CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1718 (((-112) $ $) 20)) (-1766 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1743 (((-112) $ $) 24 (|has| |#1| (-787)))) (-1836 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1825 (($ $) 17) (($ $ $) NIL)) (-1813 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-657 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -1836 ($ $ |#3|)) (-15 -1836 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2153 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -657))
-((-1836 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-1836 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2153 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)))))
-(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -1836 ($ $ |#3|)) (-15 -1836 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2153 (|#3| $))))
-((-1682 (((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)) 33)))
-(((-658 |#1|) (-10 -7 (-15 -1682 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)))) (-905)) (T -658))
-((-1682 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4)) (-4 *4 (-905)) (-5 *1 (-658 *4)))))
-(-10 -7 (-15 -1682 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3994 (((-640 |#1|) $) 82)) (-3862 (($ $ (-767)) 90)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3817 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 48)) (-2130 (((-3 (-667 |#1|) "failed") $) NIL)) (-2057 (((-667 |#1|) $) NIL)) (-2750 (($ $) 89)) (-3481 (((-767) $) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ (-667 |#1|) |#2|) 68)) (-3794 (($ $) 86)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3828 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 47)) (-4243 (((-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2715 (((-667 |#1|) $) NIL)) (-2725 ((|#2| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1542 (($ $ |#1| $) 30) (($ $ (-640 |#1|) (-640 $)) 32)) (-3871 (((-767) $) 88)) (-1706 (($ $ $) 20) (($ (-667 |#1|) (-667 |#1|)) 77) (($ (-667 |#1|) $) 75) (($ $ (-667 |#1|)) 76)) (-1692 (((-858) $) NIL) (($ |#1|) 74) (((-1272 |#1| |#2|) $) 58) (((-1281 |#1| |#2|) $) 41) (($ (-667 |#1|)) 25)) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-667 |#1|)) NIL)) (-2310 ((|#2| (-1281 |#1| |#2|) $) 43)) (-2239 (($) 23 T CONST)) (-2891 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3855 (((-3 $ "failed") (-1272 |#1| |#2|)) 60)) (-4084 (($ (-667 |#1|)) 14)) (-1718 (((-112) $ $) 44)) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) 66) (($ $ $) NIL)) (-1813 (($ $ $) 29)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-667 |#1|)) NIL)))
-(((-659 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -3855 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -1706 ($ (-667 |#1|) (-667 |#1|))) (-15 -1706 ($ (-667 |#1|) $)) (-15 -1706 ($ $ (-667 |#1|))))) (-846) (-172)) (T -659))
-((-3855 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-659 *3 *4)))) (-1706 (*1 *1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-1706 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))))
-(-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -3855 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -1706 ($ (-667 |#1|) (-667 |#1|))) (-15 -1706 ($ (-667 |#1|) $)) (-15 -1706 ($ $ (-667 |#1|)))))
-((-4073 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-4052 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3678 (($ (-1 (-112) |#2|) $) 27)) (-1574 (($ $) 55)) (-4194 (($ $) 63)) (-1691 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4369 (((-563) |#2| $ (-563)) 60) (((-563) |#2| $) NIL) (((-563) (-1 (-112) |#2|) $) 46)) (-1565 (($ (-767) |#2|) 53)) (-4265 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-4300 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2238 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3652 (($ |#2|) 15)) (-3867 (($ $ $ (-563)) 35) (($ |#2| $ (-563)) 33)) (-1971 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-3690 (($ $ (-1224 (-563))) 43) (($ $ (-563)) 37)) (-4062 (($ $ $ (-563)) 59)) (-1870 (($ $) 57)) (-1743 (((-112) $ $) 65)))
-(((-660 |#1| |#2|) (-10 -8 (-15 -3652 (|#1| |#2|)) (-15 -3690 (|#1| |#1| (-563))) (-15 -3690 (|#1| |#1| (-1224 (-563)))) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3867 (|#1| |#2| |#1| (-563))) (-15 -3867 (|#1| |#1| |#1| (-563))) (-15 -4265 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -4062 (|#1| |#1| |#1| (-563))) (-15 -1574 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1565 (|#1| (-767) |#2|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-661 |#2|) (-1208)) (T -660))
-NIL
-(-10 -8 (-15 -3652 (|#1| |#2|)) (-15 -3690 (|#1| |#1| (-563))) (-15 -3690 (|#1| |#1| (-1224 (-563)))) (-15 -1691 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3867 (|#1| |#2| |#1| (-563))) (-15 -3867 (|#1| |#1| |#1| (-563))) (-15 -4265 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1691 (|#1| |#2| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4300 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4073 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4369 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4369 ((-563) |#2| |#1|)) (-15 -4369 ((-563) |#2| |#1| (-563))) (-15 -4300 (|#1| |#1| |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -4062 (|#1| |#1| |#1| (-563))) (-15 -1574 (|#1| |#1|)) (-15 -4052 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1971 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1565 (|#1| (-767) |#2|)) (-15 -2238 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3446 ((|#1| $) 65)) (-4303 (($ $) 67)) (-2208 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-4073 (((-112) $) 142 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-4052 (($ $) 146 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4409)))) (-1640 (($ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1909 (($ $ $) 56 (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3678 (($ (-1 (-112) |#1|) $) 129)) (-2255 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-3435 ((|#1| $) 66)) (-2569 (($) 7 T CONST)) (-1574 (($ $) 144 (|has| $ (-6 -4409)))) (-4383 (($ $) 134)) (-3793 (($ $) 73) (($ $ (-767)) 71)) (-4194 (($ $) 131 (|has| |#1| (-1093)))) (-3814 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 130 (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 125)) (-1459 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4356 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 87)) (-1966 (((-112) $) 83)) (-4369 (((-563) |#1| $ (-563)) 139 (|has| |#1| (-1093))) (((-563) |#1| $) 138 (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) 137)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) 108)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 95 (|has| (-563) (-846)))) (-3088 (($ $ $) 147 (|has| |#1| (-846)))) (-4265 (($ $ $) 132 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-4300 (($ $ $) 140 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 94 (|has| (-563) (-846)))) (-1776 (($ $ $) 148 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3652 (($ |#1|) 122)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-3867 (($ $ $ (-563)) 127) (($ |#1| $ (-563)) 126)) (-3399 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-2272 (((-640 (-563)) $) 92)) (-2282 (((-112) (-563) $) 91)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 76) (($ $ (-767)) 74)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2221 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-1976 (((-112) $) 84)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 90)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-2379 (((-563) $ $) 44)) (-3690 (($ $ (-1224 (-563))) 124) (($ $ (-563)) 123)) (-2967 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2889 (((-112) $) 46)) (-1951 (($ $) 62)) (-1930 (($ $) 59 (|has| $ (-6 -4409)))) (-1961 (((-767) $) 63)) (-1970 (($ $) 64)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 143 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 107)) (-1941 (($ $ $) 61) (($ $ |#1|) 60)) (-2857 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 150 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 151 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) 149 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 152 (|has| |#1| (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-661 |#1|) (-140) (-1208)) (T -661))
-((-3652 (*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208)))))
-(-13 (-1142 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -3652 ($ |t#1|))))
-(((-34) . T) ((-102) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1093) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T))
-((-3510 (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|))) 22) (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 14)) (-2521 (((-767) (-684 |#1|) (-1257 |#1|)) 30)) (-2302 (((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|)) 24)) (-1697 (((-112) (-684 |#1|) (-1257 |#1|)) 27)))
-(((-662 |#1|) (-10 -7 (-15 -3510 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -3510 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -2302 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -1697 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -2521 ((-767) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -662))
-((-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-662 *5)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-662 *5)))) (-2302 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *1 (-662 *4)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4013 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4013 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4013 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4013 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))))
-(-10 -7 (-15 -3510 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -3510 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -2302 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -1697 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -2521 ((-767) (-684 |#1|) (-1257 |#1|))))
-((-3510 (((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|)))) |#4| (-640 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|) 45)) (-2521 (((-767) |#4| |#3|) 17)) (-2302 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1697 (((-112) |#4| |#3|) 13)))
-(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3510 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|)) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -2302 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1697 ((-112) |#4| |#3|)) (-15 -2521 ((-767) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4409))) (-13 (-373 |#1|) (-10 -7 (-6 -4409))) (-682 |#1| |#2| |#3|)) (T -663))
-((-2521 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-1697 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-2302 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4409)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))) (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2)))) (-3510 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-640 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4013 (-640 *7))))) (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7)) (-4 *3 (-682 *5 *6 *7)))) (-3510 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))))
-(-10 -7 (-15 -3510 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|)) (-15 -3510 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -2302 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1697 ((-112) |#4| |#3|)) (-15 -2521 ((-767) |#4| |#3|)))
-((-1711 (((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4013 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)) 45)))
-(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1711 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4013 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)))) (-555) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -664))
-((-1711 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed")) (|:| -4013 (-640 (-1257 (-407 *8)))))) (-5 *1 (-664 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1711 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4013 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3245 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-1731 ((|#2| $) NIL)) (-3870 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3749 (((-1257 (-684 |#2|))) NIL) (((-1257 (-684 |#2|)) (-1257 $)) NIL)) (-3893 (((-112) $) NIL)) (-4039 (((-1257 $)) 37)) (-3001 (((-112) $ (-767)) NIL)) (-2217 (($ |#2|) NIL)) (-2569 (($) NIL T CONST)) (-1940 (($ $) NIL (|has| |#2| (-307)))) (-1960 (((-240 |#1| |#2|) $ (-563)) NIL)) (-2288 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-1914 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-3410 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-4017 ((|#2| $) NIL)) (-3386 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-3342 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-2214 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-3376 (($ $ (-917)) NIL)) (-3995 ((|#2| $) NIL)) (-1938 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-3436 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-3973 (((-1165 |#2|) $) NIL)) (-3912 (((-112)) NIL)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-3458 (($ (-1257 |#2|)) NIL) (($ (-1257 |#2|) (-1257 $)) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2521 (((-767) $) NIL (|has| |#2| (-555))) (((-917)) 38)) (-4293 ((|#2| $ (-563) (-563)) NIL)) (-3879 (((-112)) NIL)) (-3617 (($ $ (-917)) NIL)) (-2658 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL)) (-1929 (((-767) $) NIL (|has| |#2| (-555)))) (-1917 (((-640 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-555)))) (-2380 (((-767) $) NIL)) (-3843 (((-112)) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2157 ((|#2| $) NIL (|has| |#2| (-6 (-4410 "*"))))) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4040 (($ (-640 (-640 |#2|))) NIL)) (-4347 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3734 (((-640 (-640 |#2|)) $) NIL)) (-3825 (((-112)) NIL)) (-3861 (((-112)) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2299 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-1927 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-3422 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-4028 ((|#2| $) NIL)) (-3398 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-3353 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-2267 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-3364 (($ $ (-917)) NIL)) (-4007 ((|#2| $) NIL)) (-3801 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-3447 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-3984 (((-1165 |#2|) $) NIL)) (-3923 (((-112)) NIL)) (-3854 (((-1151) $) NIL)) (-3832 (((-112)) NIL)) (-3852 (((-112)) NIL)) (-3868 (((-112)) NIL)) (-3694 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-1693 (((-1113) $) NIL)) (-3900 (((-112)) NIL)) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-1458 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) 22) ((|#2| $ (-563)) NIL)) (-4203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2183 ((|#2| $) NIL)) (-2206 (($ (-640 |#2|)) NIL)) (-3881 (((-112) $) NIL)) (-2195 (((-240 |#1| |#2|) $) NIL)) (-2168 ((|#2| $) NIL (|has| |#2| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1870 (($ $) NIL)) (-3759 (((-684 |#2|) (-1257 $)) NIL) (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $ (-1257 $)) 25)) (-2219 (($ (-1257 |#2|)) NIL) (((-1257 |#2|) $) NIL)) (-2122 (((-640 (-948 |#2|))) NIL) (((-640 (-948 |#2|)) (-1257 $)) NIL)) (-1745 (($ $ $) NIL)) (-3963 (((-112)) NIL)) (-1950 (((-240 |#1| |#2|) $ (-563)) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) NIL)) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) 36)) (-3813 (((-640 (-1257 |#2|))) NIL (|has| |#2| (-555)))) (-1756 (($ $ $ $) NIL)) (-3942 (((-112)) NIL)) (-3727 (($ (-684 |#2|) $) NIL)) (-1471 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-1729 (($ $ $) NIL)) (-3952 (((-112)) NIL)) (-3933 (((-112)) NIL)) (-3891 (((-112)) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-665 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|)) (-917) (-172)) (T -665))
-NIL
-(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2694 (((-640 (-1128)) $) 10)) (-1692 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-666) (-13 (-1076) (-10 -8 (-15 -2694 ((-640 (-1128)) $))))) (T -666))
-((-2694 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666)))))
-(-13 (-1076) (-10 -8 (-15 -2694 ((-640 (-1128)) $))))
-((-1677 (((-112) $ $) NIL)) (-3994 (((-640 |#1|) $) NIL)) (-1700 (($ $) 51)) (-2882 (((-112) $) NIL)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-1749 (((-3 $ "failed") (-815 |#1|)) 23)) (-1772 (((-112) (-815 |#1|)) 15)) (-1760 (($ (-815 |#1|)) 24)) (-1396 (((-112) $ $) 29)) (-3419 (((-917) $) 36)) (-1685 (($ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2173 (((-640 $) (-815 |#1|)) 17)) (-1692 (((-858) $) 42) (($ |#1|) 33) (((-815 |#1|) $) 38) (((-672 |#1|) $) 43)) (-1737 (((-59 (-640 $)) (-640 |#1|) (-917)) 56)) (-1723 (((-640 $) (-640 |#1|) (-917)) 59)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 52)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 37)))
-(((-667 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -2882 ((-112) $)) (-15 -1685 ($ $)) (-15 -1700 ($ $)) (-15 -3419 ((-917) $)) (-15 -1396 ((-112) $ $)) (-15 -1692 ((-815 |#1|) $)) (-15 -1692 ((-672 |#1|) $)) (-15 -2173 ((-640 $) (-815 |#1|))) (-15 -1772 ((-112) (-815 |#1|))) (-15 -1760 ($ (-815 |#1|))) (-15 -1749 ((-3 $ "failed") (-815 |#1|))) (-15 -3994 ((-640 |#1|) $)) (-15 -1737 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -1723 ((-640 $) (-640 |#1|) (-917))))) (-846)) (T -667))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1396 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4))) (-5 *1 (-667 *4)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-1749 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5)))))
-(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -2882 ((-112) $)) (-15 -1685 ($ $)) (-15 -1700 ($ $)) (-15 -3419 ((-917) $)) (-15 -1396 ((-112) $ $)) (-15 -1692 ((-815 |#1|) $)) (-15 -1692 ((-672 |#1|) $)) (-15 -2173 ((-640 $) (-815 |#1|))) (-15 -1772 ((-112) (-815 |#1|))) (-15 -1760 ($ (-815 |#1|))) (-15 -1749 ((-3 $ "failed") (-815 |#1|))) (-15 -3994 ((-640 |#1|) $)) (-15 -1737 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -1723 ((-640 $) (-640 |#1|) (-917)))))
-((-2618 ((|#2| $) 76)) (-4303 (($ $) 96)) (-3001 (((-112) $ (-767)) 26)) (-3793 (($ $) 85) (($ $ (-767)) 88)) (-1966 (((-112) $) 97)) (-2390 (((-640 $) $) 72)) (-2358 (((-112) $ $) 71)) (-2514 (((-112) $ (-767)) 24)) (-2236 (((-563) $) 46)) (-2251 (((-563) $) 45)) (-2481 (((-112) $ (-767)) 22)) (-1298 (((-112) $) 74)) (-1481 ((|#2| $) 89) (($ $ (-767)) 92)) (-3399 (($ $ $ (-563)) 62) (($ |#2| $ (-563)) 61)) (-2272 (((-640 (-563)) $) 44)) (-2282 (((-112) (-563) $) 42)) (-3782 ((|#2| $) NIL) (($ $ (-767)) 84)) (-1751 (($ $ (-563)) 99)) (-1976 (((-112) $) 98)) (-1458 (((-112) (-1 (-112) |#2|) $) 32)) (-2295 (((-640 |#2|) $) 33)) (-2308 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1224 (-563))) 58) ((|#2| $ (-563)) 40) ((|#2| $ (-563) |#2|) 41)) (-2379 (((-563) $ $) 70)) (-2967 (($ $ (-1224 (-563))) 57) (($ $ (-563)) 51)) (-2889 (((-112) $) 66)) (-1951 (($ $) 81)) (-1961 (((-767) $) 80)) (-1970 (($ $) 79)) (-1706 (($ (-640 |#2|)) 37)) (-3369 (($ $) 100)) (-4345 (((-640 $) $) 69)) (-2367 (((-112) $ $) 68)) (-1471 (((-112) (-1 (-112) |#2|) $) 31)) (-1718 (((-112) $ $) 18)) (-3610 (((-767) $) 29)))
-(((-668 |#1| |#2|) (-10 -8 (-15 -3369 (|#1| |#1|)) (-15 -1751 (|#1| |#1| (-563))) (-15 -1966 ((-112) |#1|)) (-15 -1976 ((-112) |#1|)) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2295 ((-640 |#2|) |#1|)) (-15 -2282 ((-112) (-563) |#1|)) (-15 -2272 ((-640 (-563)) |#1|)) (-15 -2251 ((-563) |#1|)) (-15 -2236 ((-563) |#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -1951 (|#1| |#1|)) (-15 -1961 ((-767) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -3782 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "first")) (-15 -3782 (|#2| |#1|)) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2367 ((-112) |#1| |#1|)) (-15 -2379 ((-563) |#1| |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -2618 (|#2| |#1|)) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767)))) (-669 |#2|) (-1208)) (T -668))
-NIL
-(-10 -8 (-15 -3369 (|#1| |#1|)) (-15 -1751 (|#1| |#1| (-563))) (-15 -1966 ((-112) |#1|)) (-15 -1976 ((-112) |#1|)) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2295 ((-640 |#2|) |#1|)) (-15 -2282 ((-112) (-563) |#1|)) (-15 -2272 ((-640 (-563)) |#1|)) (-15 -2251 ((-563) |#1|)) (-15 -2236 ((-563) |#1|)) (-15 -1706 (|#1| (-640 |#2|))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2967 (|#1| |#1| (-563))) (-15 -2967 (|#1| |#1| (-1224 (-563)))) (-15 -3399 (|#1| |#2| |#1| (-563))) (-15 -3399 (|#1| |#1| |#1| (-563))) (-15 -1951 (|#1| |#1|)) (-15 -1961 ((-767) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -3782 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "first")) (-15 -3782 (|#2| |#1|)) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2367 ((-112) |#1| |#1|)) (-15 -2379 ((-563) |#1| |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -2618 (|#2| |#1|)) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1458 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3446 ((|#1| $) 65)) (-4303 (($ $) 67)) (-2208 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1909 (($ $ $) 56 (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 102)) (-3435 ((|#1| $) 66)) (-2569 (($) 7 T CONST)) (-1796 (($ $) 124)) (-3793 (($ $) 73) (($ $ (-767)) 71)) (-3814 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 103)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4356 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 87)) (-1966 (((-112) $) 83)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1785 (((-767) $) 123)) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) 108)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 95 (|has| (-563) (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 94 (|has| (-563) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-1819 (($ $) 126)) (-1830 (((-112) $) 127)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-3399 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-2272 (((-640 (-563)) $) 92)) (-2282 (((-112) (-563) $) 91)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1807 ((|#1| $) 125)) (-3782 ((|#1| $) 76) (($ $ (-767)) 74)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2221 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-1751 (($ $ (-563)) 122)) (-1976 (((-112) $) 84)) (-1841 (((-112) $) 128)) (-1852 (((-112) $) 129)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 90)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-2379 (((-563) $ $) 44)) (-2967 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2889 (((-112) $) 46)) (-1951 (($ $) 62)) (-1930 (($ $) 59 (|has| $ (-6 -4409)))) (-1961 (((-767) $) 63)) (-1970 (($ $) 64)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 107)) (-1941 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-2857 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-3369 (($ $) 121)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-669 |#1|) (-140) (-1208)) (T -669))
-((-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-2255 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))))
-(-13 (-1142 |t#1|) (-10 -8 (-15 -1459 ($ (-1 (-112) |t#1|) $)) (-15 -2255 ($ (-1 (-112) |t#1|) $)) (-15 -1852 ((-112) $)) (-15 -1841 ((-112) $)) (-15 -1830 ((-112) $)) (-15 -1819 ($ $)) (-15 -1807 (|t#1| $)) (-15 -1796 ($ $)) (-15 -1785 ((-767) $)) (-15 -1751 ($ $ (-563))) (-15 -3369 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1907 (($ (-767) (-767) (-767)) 33 (|has| |#1| (-1045)))) (-3001 (((-112) $ (-767)) NIL)) (-1885 ((|#1| $ (-767) (-767) (-767) |#1|) 27)) (-2569 (($) NIL T CONST)) (-4140 (($ $ $) 37 (|has| |#1| (-1045)))) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1863 (((-1257 (-767)) $) 9)) (-1874 (($ (-1169) $ $) 22)) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1896 (($ (-767)) 35 (|has| |#1| (-1045)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-767) (-767) (-767)) 25)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1706 (($ (-640 (-640 (-640 |#1|)))) 44)) (-1692 (($ (-954 (-954 (-954 |#1|)))) 15) (((-954 (-954 (-954 |#1|))) $) 12) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-670 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -1907 ($ (-767) (-767) (-767))) (-15 -1896 ($ (-767))) (-15 -4140 ($ $ $))) |%noBranch|) (-15 -1706 ($ (-640 (-640 (-640 |#1|))))) (-15 -2308 (|#1| $ (-767) (-767) (-767))) (-15 -1885 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -1692 ($ (-954 (-954 (-954 |#1|))))) (-15 -1692 ((-954 (-954 (-954 |#1|))) $)) (-15 -1874 ($ (-1169) $ $)) (-15 -1863 ((-1257 (-767)) $)))) (-1093)) (T -670))
-((-1907 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-4140 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-2308 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-1885 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-1874 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093)))))
-(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -1907 ($ (-767) (-767) (-767))) (-15 -1896 ($ (-767))) (-15 -4140 ($ $ $))) |%noBranch|) (-15 -1706 ($ (-640 (-640 (-640 |#1|))))) (-15 -2308 (|#1| $ (-767) (-767) (-767))) (-15 -1885 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -1692 ($ (-954 (-954 (-954 |#1|))))) (-15 -1692 ((-954 (-954 (-954 |#1|))) $)) (-15 -1874 ($ (-1169) $ $)) (-15 -1863 ((-1257 (-767)) $))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-3333 (((-483) $) 10)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 12)) (-1718 (((-112) $ $) NIL)))
-(((-671) (-13 (-1076) (-10 -8 (-15 -3333 ((-483) $)) (-15 -3363 ((-1128) $))))) (T -671))
-((-3333 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671)))))
-(-13 (-1076) (-10 -8 (-15 -3333 ((-483) $)) (-15 -3363 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3994 (((-640 |#1|) $) 14)) (-1700 (($ $) 18)) (-2882 (((-112) $) 19)) (-2130 (((-3 |#1| "failed") $) 22)) (-2057 ((|#1| $) 20)) (-3793 (($ $) 36)) (-3794 (($ $) 24)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-1396 (((-112) $ $) 41)) (-3419 (((-917) $) 38)) (-1685 (($ $) 17)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 ((|#1| $) 35)) (-1692 (((-858) $) 31) (($ |#1|) 23) (((-815 |#1|) $) 27)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 12)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-672 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1692 ((-815 |#1|) $)) (-15 -3782 (|#1| $)) (-15 -1685 ($ $)) (-15 -3419 ((-917) $)) (-15 -1396 ((-112) $ $)) (-15 -3794 ($ $)) (-15 -3793 ($ $)) (-15 -2882 ((-112) $)) (-15 -1700 ($ $)) (-15 -3994 ((-640 |#1|) $)))) (-846)) (T -672))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-3782 (*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1396 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1692 ((-815 |#1|) $)) (-15 -3782 (|#1| $)) (-15 -1685 ($ $)) (-15 -3419 ((-917) $)) (-15 -1396 ((-112) $ $)) (-15 -3794 ($ $)) (-15 -3793 ($ $)) (-15 -2882 ((-112) $)) (-15 -1700 ($ $)) (-15 -3994 ((-640 |#1|) $))))
-((-1949 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 11)) (-1431 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 9)))
-(((-673 |#1|) (-10 -7 (-15 -1431 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -1949 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1093)) (T -673))
-((-1949 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2)))) (-1431 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2)))))
-(-10 -7 (-15 -1431 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -1949 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|)))
-((-1884 ((|#2| |#1| |#2|) 9)) (-1873 ((|#1| |#1| |#2|) 8)))
-(((-674 |#1| |#2|) (-10 -7 (-15 -1873 (|#1| |#1| |#2|)) (-15 -1884 (|#2| |#1| |#2|))) (-1093) (-1093)) (T -674))
-((-1884 (*1 *2 *3 *2) (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1873 (*1 *2 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(-10 -7 (-15 -1873 (|#1| |#1| |#2|)) (-15 -1884 (|#2| |#1| |#2|)))
-((-3557 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -3557 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1093) (-1093) (-1093)) (T -675))
-((-3557 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2)))))
-(-10 -7 (-15 -3557 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-4184 (((-1207) $) 20)) (-4131 (((-640 (-1207)) $) 18)) (-1916 (($ (-640 (-1207)) (-1207)) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 29) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 21) (($ (-1111)) 10)) (-1718 (((-112) $ $) NIL)))
-(((-676) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1692 ($ (-1111))) (-15 -1916 ($ (-640 (-1207)) (-1207))) (-15 -4131 ((-640 (-1207)) $)) (-15 -4184 ((-1207) $))))) (T -676))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676)))) (-1916 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676)))))
-(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1692 ($ (-1111))) (-15 -1916 ($ (-640 (-1207)) (-1207))) (-15 -4131 ((-640 (-1207)) $)) (-15 -4184 ((-1207) $))))
-((-1949 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 23)) (-1928 (((-1 |#1|) |#1|) 8)) (-1526 ((|#1| |#1|) 16)) (-1939 (((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1692 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 20)))
-(((-677 |#1|) (-10 -7 (-15 -1928 ((-1 |#1|) |#1|)) (-15 -1692 ((-1 |#1|) |#1|)) (-15 -1939 (|#1| (-1 |#1| |#1|))) (-15 -1939 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -1526 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -1949 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1093)) (T -677))
-((-1949 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093)) (-5 *1 (-677 *4)))) (-1526 (*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563)) (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-1692 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))))
-(-10 -7 (-15 -1928 ((-1 |#1|) |#1|)) (-15 -1692 ((-1 |#1|) |#1|)) (-15 -1939 (|#1| (-1 |#1| |#1|))) (-15 -1939 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -1526 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -1949 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|))))
-((-1978 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1968 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2668 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1959 (((-1 |#2| |#1|) |#2|) 11)))
-(((-678 |#1| |#2|) (-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -1968 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2668 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1978 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1093) (-1093)) (T -678))
-((-1978 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)) (-4 *4 (-1093)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1093)))))
-(-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -1968 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2668 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1978 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3880 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1985 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1994 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2004 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3869 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-679 |#1| |#2| |#3|) (-10 -7 (-15 -1985 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1994 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2004 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3869 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3880 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1093) (-1093) (-1093)) (T -679))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5)) (-5 *1 (-679 *5 *6 *7)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6)))))
-(-10 -7 (-15 -1985 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1994 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2004 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3869 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3880 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2444 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2238 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2238 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2238 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2444 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-1045) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -680))
-((-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9)))) (-2238 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))))
-(-10 -7 (-15 -2238 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2238 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2444 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3216 (($ (-767) (-767)) 33)) (-3934 (($ $ $) 56)) (-1769 (($ |#3|) 52) (($ $) 53)) (-3870 (((-112) $) 28)) (-3924 (($ $ (-563) (-563)) 58)) (-3913 (($ $ (-563) (-563)) 59)) (-3901 (($ $ (-563) (-563) (-563) (-563)) 63)) (-3953 (($ $) 54)) (-3893 (((-112) $) 14)) (-3892 (($ $ (-563) (-563) $) 64)) (-1849 ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) 62)) (-2217 (($ (-767) |#2|) 39)) (-4040 (($ (-640 (-640 |#2|))) 37)) (-3734 (((-640 (-640 |#2|)) $) 57)) (-3943 (($ $ $) 55)) (-3012 (((-3 $ "failed") $ |#2|) 91)) (-2308 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563))) 61)) (-2206 (($ (-640 |#2|)) 40) (($ (-640 $)) 42)) (-3881 (((-112) $) 24)) (-1692 (($ |#4|) 47) (((-858) $) NIL)) (-2005 (((-112) $) 30)) (-1836 (($ $ |#2|) 93)) (-1825 (($ $ $) 68) (($ $) 71)) (-1813 (($ $ $) 66)) (** (($ $ (-767)) 80) (($ $ (-563)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-563) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1836 (|#1| |#1| |#2|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -3892 (|#1| |#1| (-563) (-563) |#1|)) (-15 -3901 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -3913 (|#1| |#1| (-563) (-563))) (-15 -3924 (|#1| |#1| (-563) (-563))) (-15 -1849 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -2308 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -3734 ((-640 (-640 |#2|)) |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1769 (|#1| |#3|)) (-15 -1692 (|#1| |#4|)) (-15 -2206 (|#1| (-640 |#1|))) (-15 -2206 (|#1| (-640 |#2|))) (-15 -2217 (|#1| (-767) |#2|)) (-15 -4040 (|#1| (-640 (-640 |#2|)))) (-15 -3216 (|#1| (-767) (-767))) (-15 -2005 ((-112) |#1|)) (-15 -3870 ((-112) |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563)))) (-682 |#2| |#3| |#4|) (-1045) (-373 |#2|) (-373 |#2|)) (T -681))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1836 (|#1| |#1| |#2|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -3892 (|#1| |#1| (-563) (-563) |#1|)) (-15 -3901 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -3913 (|#1| |#1| (-563) (-563))) (-15 -3924 (|#1| |#1| (-563) (-563))) (-15 -1849 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -2308 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -3734 ((-640 (-640 |#2|)) |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1769 (|#1| |#3|)) (-15 -1692 (|#1| |#4|)) (-15 -2206 (|#1| (-640 |#1|))) (-15 -2206 (|#1| (-640 |#2|))) (-15 -2217 (|#1| (-767) |#2|)) (-15 -4040 (|#1| (-640 (-640 |#2|)))) (-15 -3216 (|#1| (-767) (-767))) (-15 -2005 ((-112) |#1|)) (-15 -3870 ((-112) |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) (-563))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3216 (($ (-767) (-767)) 97)) (-3934 (($ $ $) 87)) (-1769 (($ |#2|) 91) (($ $) 90)) (-3870 (((-112) $) 99)) (-3924 (($ $ (-563) (-563)) 83)) (-3913 (($ $ (-563) (-563)) 82)) (-3901 (($ $ (-563) (-563) (-563) (-563)) 81)) (-3953 (($ $) 89)) (-3893 (((-112) $) 101)) (-3001 (((-112) $ (-767)) 8)) (-3892 (($ $ (-563) (-563) $) 80)) (-1849 ((|#1| $ (-563) (-563) |#1|) 44) (($ $ (-640 (-563)) (-640 (-563)) $) 84)) (-1589 (($ $ (-563) |#2|) 42)) (-1572 (($ $ (-563) |#3|) 41)) (-2217 (($ (-767) |#1|) 95)) (-2569 (($) 7 T CONST)) (-1940 (($ $) 67 (|has| |#1| (-307)))) (-1960 ((|#2| $ (-563)) 46)) (-2521 (((-767) $) 66 (|has| |#1| (-555)))) (-4356 ((|#1| $ (-563) (-563) |#1|) 43)) (-4293 ((|#1| $ (-563) (-563)) 48)) (-2658 (((-640 |#1|) $) 30)) (-1929 (((-767) $) 65 (|has| |#1| (-555)))) (-1917 (((-640 |#3|) $) 64 (|has| |#1| (-555)))) (-2380 (((-767) $) 51)) (-1565 (($ (-767) (-767) |#1|) 57)) (-2391 (((-767) $) 50)) (-2514 (((-112) $ (-767)) 9)) (-2157 ((|#1| $) 62 (|has| |#1| (-6 (-4410 "*"))))) (-1995 (((-563) $) 55)) (-1979 (((-563) $) 53)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1986 (((-563) $) 54)) (-1969 (((-563) $) 52)) (-4040 (($ (-640 (-640 |#1|))) 96)) (-4347 (($ (-1 |#1| |#1|) $) 34)) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3734 (((-640 (-640 |#1|)) $) 86)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3694 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-3943 (($ $ $) 88)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) 56)) (-3012 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-555)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47) (($ $ (-640 (-563)) (-640 (-563))) 85)) (-2206 (($ (-640 |#1|)) 94) (($ (-640 $)) 93)) (-3881 (((-112) $) 100)) (-2168 ((|#1| $) 63 (|has| |#1| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1950 ((|#3| $ (-563)) 45)) (-1692 (($ |#3|) 92) (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2005 (((-112) $) 98)) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1836 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1825 (($ $ $) 78) (($ $) 77)) (-1813 (($ $ $) 79)) (** (($ $ (-767)) 70) (($ $ (-563)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-563) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-682 |#1| |#2| |#3|) (-140) (-1045) (-373 |t#1|) (-373 |t#1|)) (T -682))
-((-3893 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3216 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2217 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1692 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-1769 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-1769 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3))))) (-2308 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1849 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3924 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3913 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3901 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3892 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1825 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3012 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555)))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-1940 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-3694 (*1 *1 *1) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -3893 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -3870 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -3216 ($ (-767) (-767))) (-15 -4040 ($ (-640 (-640 |t#1|)))) (-15 -2217 ($ (-767) |t#1|)) (-15 -2206 ($ (-640 |t#1|))) (-15 -2206 ($ (-640 $))) (-15 -1692 ($ |t#3|)) (-15 -1769 ($ |t#2|)) (-15 -1769 ($ $)) (-15 -3953 ($ $)) (-15 -3943 ($ $ $)) (-15 -3934 ($ $ $)) (-15 -3734 ((-640 (-640 |t#1|)) $)) (-15 -2308 ($ $ (-640 (-563)) (-640 (-563)))) (-15 -1849 ($ $ (-640 (-563)) (-640 (-563)) $)) (-15 -3924 ($ $ (-563) (-563))) (-15 -3913 ($ $ (-563) (-563))) (-15 -3901 ($ $ (-563) (-563) (-563) (-563))) (-15 -3892 ($ $ (-563) (-563) $)) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -1825 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-563) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-555)) (-15 -3012 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1836 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -1940 ($ $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2521 ((-767) $)) (-15 -1929 ((-767) $)) (-15 -1917 ((-640 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4410 "*"))) (PROGN (-15 -2168 (|t#1| $)) (-15 -2157 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -3694 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-57 |#1| |#2| |#3|) . T) ((-1208) . T))
-((-1940 ((|#4| |#4|) 71 (|has| |#1| (-307)))) (-2521 (((-767) |#4|) 98 (|has| |#1| (-555)))) (-1929 (((-767) |#4|) 75 (|has| |#1| (-555)))) (-1917 (((-640 |#3|) |#4|) 82 (|has| |#1| (-555)))) (-4348 (((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|) 110 (|has| |#1| (-307)))) (-2157 ((|#1| |#4|) 34)) (-4008 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-555)))) (-3694 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-363)))) (-3997 ((|#4| |#4|) 67 (|has| |#1| (-555)))) (-3974 ((|#4| |#4| |#1| (-563) (-563)) 42)) (-3964 ((|#4| |#4| (-563) (-563)) 37)) (-3985 ((|#4| |#4| |#1| (-563) (-563)) 47)) (-2168 ((|#1| |#4|) 77)) (-2926 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-555)))))
-(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2168 (|#1| |#4|)) (-15 -2157 (|#1| |#4|)) (-15 -3964 (|#4| |#4| (-563) (-563))) (-15 -3974 (|#4| |#4| |#1| (-563) (-563))) (-15 -3985 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -2521 ((-767) |#4|)) (-15 -1929 ((-767) |#4|)) (-15 -1917 ((-640 |#3|) |#4|)) (-15 -3997 (|#4| |#4|)) (-15 -4008 ((-3 |#4| "failed") |#4|)) (-15 -2926 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1940 (|#4| |#4|)) (-15 -4348 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3694 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -683))
-((-3694 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-4348 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-4008 (*1 *2 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3985 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-3974 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-3964 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2)) (-4 *2 (-682 *4 *5 *6)))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))))
-(-10 -7 (-15 -2168 (|#1| |#4|)) (-15 -2157 (|#1| |#4|)) (-15 -3964 (|#4| |#4| (-563) (-563))) (-15 -3974 (|#4| |#4| |#1| (-563) (-563))) (-15 -3985 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -2521 ((-767) |#4|)) (-15 -1929 ((-767) |#4|)) (-15 -1917 ((-640 |#3|) |#4|)) (-15 -3997 (|#4| |#4|)) (-15 -4008 ((-3 |#4| "failed") |#4|)) (-15 -2926 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1940 (|#4| |#4|)) (-15 -4348 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3694 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767) (-767)) 47)) (-3934 (($ $ $) NIL)) (-1769 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-3870 (((-112) $) NIL)) (-3924 (($ $ (-563) (-563)) 12)) (-3913 (($ $ (-563) (-563)) NIL)) (-3901 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3953 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-3892 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-1589 (($ $ (-563) (-1257 |#1|)) NIL)) (-1572 (($ $ (-563) (-1257 |#1|)) NIL)) (-2217 (($ (-767) |#1|) 22)) (-2569 (($) NIL T CONST)) (-1940 (($ $) 31 (|has| |#1| (-307)))) (-1960 (((-1257 |#1|) $ (-563)) NIL)) (-2521 (((-767) $) 33 (|has| |#1| (-555)))) (-4356 ((|#1| $ (-563) (-563) |#1|) 51)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2658 (((-640 |#1|) $) NIL)) (-1929 (((-767) $) 35 (|has| |#1| (-555)))) (-1917 (((-640 (-1257 |#1|)) $) 38 (|has| |#1| (-555)))) (-2380 (((-767) $) 20)) (-1565 (($ (-767) (-767) |#1|) 16)) (-2391 (((-767) $) 21)) (-2514 (((-112) $ (-767)) NIL)) (-2157 ((|#1| $) 29 (|has| |#1| (-6 (-4410 "*"))))) (-1995 (((-563) $) 9)) (-1979 (((-563) $) 10)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1986 (((-563) $) 11)) (-1969 (((-563) $) 48)) (-4040 (($ (-640 (-640 |#1|))) NIL)) (-4347 (($ (-1 |#1| |#1|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3734 (((-640 (-640 |#1|)) $) 58)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3694 (((-3 $ "failed") $) 45 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2221 (($ $ |#1|) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2206 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL) (($ (-1257 |#1|)) 52)) (-3881 (((-112) $) NIL)) (-2168 ((|#1| $) 27 (|has| |#1| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-2219 (((-536) $) 62 (|has| |#1| (-611 (-536))))) (-1950 (((-1257 |#1|) $ (-563)) NIL)) (-1692 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) 23) (($ $ (-563)) 46 (|has| |#1| (-363)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) NIL) (((-1257 |#1|) (-1257 |#1|) $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-684 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -2206 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3694 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -684))
-((-3694 (*1 *1 *1) (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3)))))
-(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -2206 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3694 ((-3 $ "failed") $)) |%noBranch|)))
-((-4074 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 25)) (-4063 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 21)) (-4085 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767)) 26)) (-4029 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 14)) (-4041 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 18) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 16)) (-4053 (((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|)) 20)) (-4018 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 12)) (** (((-684 |#1|) (-684 |#1|) (-767)) 30)))
-(((-685 |#1|) (-10 -7 (-15 -4018 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4029 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4041 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4041 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4053 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -4063 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -4074 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4085 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) (-1045)) (T -685))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-4085 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-4074 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4063 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4053 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4041 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4041 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4029 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(-10 -7 (-15 -4018 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4029 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4041 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4041 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4053 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -4063 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -4074 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -4085 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767))))
-((-2130 (((-3 |#1| "failed") $) 17)) (-2057 ((|#1| $) NIL)) (-2598 (($) 7 T CONST)) (-4096 (($ |#1|) 8)) (-1692 (($ |#1|) 15) (((-858) $) 22)) (-2224 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2598)) 11)) (-1904 ((|#1| $) 14)))
-(((-686 |#1|) (-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -4096 ($ |#1|)) (-15 -2224 ((-112) $ (|[\|\|]| |#1|))) (-15 -2224 ((-112) $ (|[\|\|]| -2598))) (-15 -1904 (|#1| $)) (-15 -2598 ($) -2668))) (-610 (-858))) (T -686))
-((-4096 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112)) (-5 *1 (-686 *4)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-112)) (-5 *1 (-686 *4)) (-4 *4 (-610 (-858))))) (-1904 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-2598 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))))
-(-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -4096 ($ |#1|)) (-15 -2224 ((-112) $ (|[\|\|]| |#1|))) (-15 -2224 ((-112) $ (|[\|\|]| -2598))) (-15 -1904 (|#1| $)) (-15 -2598 ($) -2668)))
-((-4129 ((|#2| |#2| |#4|) 25)) (-4163 (((-684 |#2|) |#3| |#4|) 31)) (-4142 (((-684 |#2|) |#2| |#4|) 30)) (-4108 (((-1257 |#2|) |#2| |#4|) 16)) (-4119 ((|#2| |#3| |#4|) 24)) (-4172 (((-684 |#2|) |#3| |#4| (-767) (-767)) 38)) (-4153 (((-684 |#2|) |#2| |#4| (-767)) 37)))
-(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4108 ((-1257 |#2|) |#2| |#4|)) (-15 -4119 (|#2| |#3| |#4|)) (-15 -4129 (|#2| |#2| |#4|)) (-15 -4142 ((-684 |#2|) |#2| |#4|)) (-15 -4153 ((-684 |#2|) |#2| |#4| (-767))) (-15 -4163 ((-684 |#2|) |#3| |#4|)) (-15 -4172 ((-684 |#2|) |#3| |#4| (-767) (-767)))) (-1093) (-896 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4408)))) (T -687))
-((-4172 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6)) (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))) (-4163 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-4153 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6)) (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))) (-4142 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-4129 (*1 *2 *2 *3) (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-4119 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-4108 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))))
-(-10 -7 (-15 -4108 ((-1257 |#2|) |#2| |#4|)) (-15 -4119 (|#2| |#3| |#4|)) (-15 -4129 (|#2| |#2| |#4|)) (-15 -4142 ((-684 |#2|) |#2| |#4|)) (-15 -4153 ((-684 |#2|) |#2| |#4| (-767))) (-15 -4163 ((-684 |#2|) |#3| |#4|)) (-15 -4172 ((-684 |#2|) |#3| |#4| (-767) (-767))))
-((-2674 (((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)) 20)) (-2655 ((|#1| (-684 |#2|)) 9)) (-2663 (((-684 |#1|) (-684 |#2|)) 18)))
-(((-688 |#1| |#2|) (-10 -7 (-15 -2655 (|#1| (-684 |#2|))) (-15 -2663 ((-684 |#1|) (-684 |#2|))) (-15 -2674 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) (-555) (-988 |#1|)) (T -688))
-((-2674 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) (-5 *1 (-688 *4 *5)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-688 *2 *4)))))
-(-10 -7 (-15 -2655 (|#1| (-684 |#2|))) (-15 -2663 ((-684 |#1|) (-684 |#2|))) (-15 -2674 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3340 (((-684 (-694))) NIL) (((-684 (-694)) (-1257 $)) NIL)) (-1731 (((-694) $) NIL)) (-1770 (($ $) NIL (|has| (-694) (-1193)))) (-1618 (($ $) NIL (|has| (-694) (-1193)))) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-694) (-349)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-1798 (($ $) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2802 (((-418 $) $) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2185 (($ $) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2003 (((-112) $ $) NIL (|has| (-694) (-307)))) (-3750 (((-767)) NIL (|has| (-694) (-368)))) (-1747 (($ $) NIL (|has| (-694) (-1193)))) (-1596 (($ $) NIL (|has| (-694) (-1193)))) (-1793 (($ $) NIL (|has| (-694) (-1193)))) (-1642 (($ $) NIL (|has| (-694) (-1193)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-694) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-2057 (((-563) $) NIL) (((-694) $) NIL) (((-407 (-563)) $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-3458 (($ (-1257 (-694))) NIL) (($ (-1257 (-694)) (-1257 $)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-694) (-349)))) (-3094 (($ $ $) NIL (|has| (-694) (-307)))) (-3330 (((-684 (-694)) $) NIL) (((-684 (-694)) $ (-1257 $)) NIL)) (-1476 (((-684 (-694)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-694))) (|:| |vec| (-1257 (-694)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-694) (-636 (-563)))) (((-684 (-563)) (-684 $)) NIL (|has| (-694) (-636 (-563))))) (-2444 (((-3 $ "failed") (-407 (-1165 (-694)))) NIL (|has| (-694) (-363))) (($ (-1165 (-694))) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2488 (((-694) $) 29)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-545)))) (-2317 (((-112) $) NIL (|has| (-694) (-545)))) (-2306 (((-407 (-563)) $) NIL (|has| (-694) (-545)))) (-2521 (((-917)) NIL)) (-1690 (($) NIL (|has| (-694) (-368)))) (-3054 (($ $ $) NIL (|has| (-694) (-307)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| (-694) (-307)))) (-4036 (($) NIL (|has| (-694) (-349)))) (-1656 (((-112) $) NIL (|has| (-694) (-349)))) (-3188 (($ $) NIL (|has| (-694) (-349))) (($ $ (-767)) NIL (|has| (-694) (-349)))) (-2560 (((-112) $) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2164 (((-2 (|:| |r| (-694)) (|:| |phi| (-694))) $) NIL (-12 (|has| (-694) (-1054)) (|has| (-694) (-1193))))) (-2179 (($) NIL (|has| (-694) (-1193)))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-694) (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-694) (-882 (-563))))) (-1775 (((-829 (-917)) $) NIL (|has| (-694) (-349))) (((-917) $) NIL (|has| (-694) (-349)))) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-3975 (((-694) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-694) (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-4035 (((-1165 (-694)) $) NIL (|has| (-694) (-363)))) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2238 (($ (-1 (-694) (-694)) $) NIL)) (-3990 (((-917) $) NIL (|has| (-694) (-368)))) (-4372 (($ $) NIL (|has| (-694) (-1193)))) (-2433 (((-1165 (-694)) $) NIL)) (-3517 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| (-694) (-363)))) (-2522 (($) NIL (|has| (-694) (-349)) CONST)) (-2552 (($ (-917)) NIL (|has| (-694) (-368)))) (-2178 (($) NIL)) (-2498 (((-694) $) 31)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-694) (-307)))) (-3551 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-694) (-349)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2173 (((-418 $) $) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-694) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| (-694) (-307)))) (-3012 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-694)) NIL (|has| (-694) (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-3372 (($ $) NIL (|has| (-694) (-1193)))) (-1542 (($ $ (-1169) (-694)) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-1169)) (-640 (-694))) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-294 (-694)))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-294 (-694))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-694) (-694)) NIL (|has| (-694) (-309 (-694)))) (($ $ (-640 (-694)) (-640 (-694))) NIL (|has| (-694) (-309 (-694))))) (-1993 (((-767) $) NIL (|has| (-694) (-307)))) (-2308 (($ $ (-694)) NIL (|has| (-694) (-286 (-694) (-694))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| (-694) (-307)))) (-1623 (((-694)) NIL) (((-694) (-1257 $)) NIL)) (-3196 (((-3 (-767) "failed") $ $) NIL (|has| (-694) (-349))) (((-767) $) NIL (|has| (-694) (-349)))) (-4203 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-3388 (((-684 (-694)) (-1257 $) (-1 (-694) (-694))) NIL (|has| (-694) (-363)))) (-3402 (((-1165 (-694))) NIL)) (-1805 (($ $) NIL (|has| (-694) (-1193)))) (-1655 (($ $) NIL (|has| (-694) (-1193)))) (-1586 (($) NIL (|has| (-694) (-349)))) (-1783 (($ $) NIL (|has| (-694) (-1193)))) (-1629 (($ $) NIL (|has| (-694) (-1193)))) (-1758 (($ $) NIL (|has| (-694) (-1193)))) (-1607 (($ $) NIL (|has| (-694) (-1193)))) (-3759 (((-684 (-694)) (-1257 $)) NIL) (((-1257 (-694)) $) NIL) (((-684 (-694)) (-1257 $) (-1257 $)) NIL) (((-1257 (-694)) $ (-1257 $)) NIL)) (-2219 (((-536) $) NIL (|has| (-694) (-611 (-536)))) (((-169 (-225)) $) NIL (|has| (-694) (-1018))) (((-169 (-379)) $) NIL (|has| (-694) (-1018))) (((-888 (-379)) $) NIL (|has| (-694) (-611 (-888 (-379))))) (((-888 (-563)) $) NIL (|has| (-694) (-611 (-888 (-563))))) (($ (-1165 (-694))) NIL) (((-1165 (-694)) $) NIL) (($ (-1257 (-694))) NIL) (((-1257 (-694)) $) NIL)) (-2150 (($ $) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-349))))) (-1413 (($ (-694) (-694)) 12)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-694)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-563))) 19) (($ (-169 (-694))) 28) (($ (-169 (-696))) 25) (((-169 (-379)) $) 33) (($ (-407 (-563))) NIL (-4034 (|has| (-694) (-1034 (-407 (-563)))) (|has| (-694) (-363))))) (-2047 (($ $) NIL (|has| (-694) (-349))) (((-3 $ "failed") $) NIL (-4034 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-145))))) (-1892 (((-1165 (-694)) $) NIL)) (-3914 (((-767)) NIL)) (-4013 (((-1257 $)) NIL)) (-1839 (($ $) NIL (|has| (-694) (-1193)))) (-1694 (($ $) NIL (|has| (-694) (-1193)))) (-3223 (((-112) $ $) NIL)) (-1816 (($ $) NIL (|has| (-694) (-1193)))) (-1666 (($ $) NIL (|has| (-694) (-1193)))) (-1861 (($ $) NIL (|has| (-694) (-1193)))) (-1721 (($ $) NIL (|has| (-694) (-1193)))) (-2326 (((-694) $) NIL (|has| (-694) (-1193)))) (-1311 (($ $) NIL (|has| (-694) (-1193)))) (-1734 (($ $) NIL (|has| (-694) (-1193)))) (-1850 (($ $) NIL (|has| (-694) (-1193)))) (-1709 (($ $) NIL (|has| (-694) (-1193)))) (-1828 (($ $) NIL (|has| (-694) (-1193)))) (-1679 (($ $) NIL (|has| (-694) (-1193)))) (-1462 (($ $) NIL (|has| (-694) (-1054)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL (|has| (-694) (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-694) (-1193))) (($ $ (-407 (-563))) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193)))) (($ $ (-563)) NIL (|has| (-694) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-694) $) NIL) (($ $ (-694)) NIL) (($ (-407 (-563)) $) NIL (|has| (-694) (-363))) (($ $ (-407 (-563))) NIL (|has| (-694) (-363)))))
-(((-689) (-13 (-387) (-166 (-694)) (-10 -8 (-15 -1692 ($ (-169 (-379)))) (-15 -1692 ($ (-169 (-563)))) (-15 -1692 ($ (-169 (-694)))) (-15 -1692 ($ (-169 (-696)))) (-15 -1692 ((-169 (-379)) $))))) (T -689))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))))
-(-13 (-387) (-166 (-694)) (-10 -8 (-15 -1692 ($ (-169 (-379)))) (-15 -1692 ($ (-169 (-563)))) (-15 -1692 ($ (-169 (-694)))) (-15 -1692 ($ (-169 (-696)))) (-15 -1692 ((-169 (-379)) $))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-4194 (($ $) 62)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-4182 (((-640 (-2 (|:| -2556 |#1|) (|:| -1708 (-767)))) $) 61)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-690 |#1|) (-140) (-1093)) (T -690))
-((-3867 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-4194 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093)) (-5 *2 (-640 (-2 (|:| -2556 *3) (|:| -1708 (-767))))))))
-(-13 (-235 |t#1|) (-10 -8 (-15 -3867 ($ |t#1| $ (-767))) (-15 -4194 ($ $)) (-15 -4182 ((-640 (-2 (|:| -2556 |t#1|) (|:| -1708 (-767)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-4225 (((-640 |#1|) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) (-563)) 47)) (-4205 ((|#1| |#1| (-563)) 46)) (-3551 ((|#1| |#1| |#1| (-563)) 36)) (-2173 (((-640 |#1|) |#1| (-563)) 39)) (-4234 ((|#1| |#1| (-563) |#1| (-563)) 32)) (-4215 (((-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) |#1| (-563)) 45)))
-(((-691 |#1|) (-10 -7 (-15 -3551 (|#1| |#1| |#1| (-563))) (-15 -4205 (|#1| |#1| (-563))) (-15 -2173 ((-640 |#1|) |#1| (-563))) (-15 -4215 ((-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) |#1| (-563))) (-15 -4225 ((-640 |#1|) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) (-563))) (-15 -4234 (|#1| |#1| (-563) |#1| (-563)))) (-1233 (-563))) (T -691))
-((-4234 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| -2173 *5) (|:| -3871 (-563))))) (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5)) (-5 *1 (-691 *5)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2173 *3) (|:| -3871 *4)))) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-4205 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-3551 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))))
-(-10 -7 (-15 -3551 (|#1| |#1| |#1| (-563))) (-15 -4205 (|#1| |#1| (-563))) (-15 -2173 ((-640 |#1|) |#1| (-563))) (-15 -4215 ((-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) |#1| (-563))) (-15 -4225 ((-640 |#1|) (-640 (-2 (|:| -2173 |#1|) (|:| -3871 (-563)))) (-563))) (-15 -4234 (|#1| |#1| (-563) |#1| (-563))))
-((-4281 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-4244 (((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 40) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 42) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 44)) (-4270 (((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263))) NIL)) (-4257 (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 45)))
-(((-692) (-10 -7 (-15 -4244 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4244 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4244 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4257 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4270 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4281 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -692))
-((-4281 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))) (-4270 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-4257 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-4244 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692)))) (-4244 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-4244 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))))
-(-10 -7 (-15 -4244 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4244 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4244 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4257 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4270 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -4281 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-2173 (((-418 (-1165 |#4|)) (-1165 |#4|)) 73) (((-418 |#4|) |#4|) 220)))
-(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4|)) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-349) (-945 |#3| |#2| |#1|)) (T -693))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4|)) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 84)) (-3944 (((-563) $) 30)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-1763 (($ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) NIL)) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL)) (-2569 (($) NIL T CONST)) (-3925 (($ $) NIL)) (-2130 (((-3 (-563) "failed") $) 73) (((-3 (-407 (-563)) "failed") $) 26) (((-3 (-379) "failed") $) 70)) (-2057 (((-563) $) 75) (((-407 (-563)) $) 67) (((-379) $) 68)) (-3094 (($ $ $) 96)) (-3951 (((-3 $ "failed") $) 87)) (-3054 (($ $ $) 95)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3107 (((-917)) 77) (((-917) (-917)) 76)) (-3414 (((-112) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-1775 (((-563) $) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL)) (-3975 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4292 (((-563) (-563)) 81) (((-563)) 82)) (-3088 (($ $ $) NIL) (($) NIL (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-4304 (((-563) (-563)) 79) (((-563)) 80)) (-1776 (($ $ $) NIL) (($) NIL (-12 (-2174 (|has| $ (-6 -4391))) (-2174 (|has| $ (-6 -4399)))))) (-4051 (((-563) $) 16)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 91)) (-3217 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL)) (-3954 (($ $) NIL)) (-4341 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) 92)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3311 (((-563) $) 22)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 94)) (-3605 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-3206 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-2219 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) NIL)) (-1692 (((-858) $) 52) (($ (-563)) 63) (($ $) NIL) (($ (-407 (-563))) 66) (($ (-563)) 63) (($ (-407 (-563))) 66) (($ (-379)) 60) (((-379) $) 50) (($ (-696)) 55)) (-3914 (((-767)) 103)) (-2729 (($ (-563) (-563) (-917)) 44)) (-3965 (($ $) NIL)) (-3227 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-4212 (((-917)) 35) (((-917) (-917)) 78)) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL)) (-2239 (($) 32 T CONST)) (-2253 (($) 17 T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 83)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 101)) (-1836 (($ $ $) 65)) (-1825 (($ $) 99) (($ $ $) 100)) (-1813 (($ $ $) 98)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 90)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 97) (($ $ $) 88) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-694) (-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -3107 ((-917) (-917))) (-15 -3107 ((-917))) (-15 -4212 ((-917) (-917))) (-15 -4304 ((-563) (-563))) (-15 -4304 ((-563))) (-15 -4292 ((-563) (-563))) (-15 -4292 ((-563))) (-15 -1692 ((-379) $)) (-15 -1692 ($ (-696))) (-15 -4051 ((-563) $)) (-15 -3311 ((-563) $)) (-15 -2729 ($ (-563) (-563) (-917)))))) (T -694))
-((-3311 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-3107 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-4304 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4304 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4292 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) (-2729 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694)))))
-(-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -3107 ((-917) (-917))) (-15 -3107 ((-917))) (-15 -4212 ((-917) (-917))) (-15 -4304 ((-563) (-563))) (-15 -4304 ((-563))) (-15 -4292 ((-563) (-563))) (-15 -4292 ((-563))) (-15 -1692 ((-379) $)) (-15 -1692 ($ (-696))) (-15 -4051 ((-563) $)) (-15 -3311 ((-563) $)) (-15 -2729 ($ (-563) (-563) (-917)))))
-((-4336 (((-684 |#1|) (-684 |#1|) |#1| |#1|) 65)) (-1940 (((-684 |#1|) (-684 |#1|) |#1|) 48)) (-4324 (((-684 |#1|) (-684 |#1|) |#1|) 66)) (-4313 (((-684 |#1|) (-684 |#1|)) 49)) (-4348 (((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|) 64)))
-(((-695 |#1|) (-10 -7 (-15 -4313 ((-684 |#1|) (-684 |#1|))) (-15 -1940 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -4324 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -4336 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -4348 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|))) (-307)) (T -695))
-((-4348 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-695 *3)) (-4 *3 (-307)))) (-4336 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-4324 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-1940 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
-(-10 -7 (-15 -4313 ((-684 |#1|) (-684 |#1|))) (-15 -1940 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -4324 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -4336 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -4348 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-4297 (($ $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4275 (($ $ $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL)) (-3462 (($ $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) 27)) (-2057 (((-563) $) 25)) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL)) (-2317 (((-112) $) NIL)) (-2306 (((-407 (-563)) $) NIL)) (-1690 (($ $) NIL) (($) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-4251 (($ $ $ $) NIL)) (-4308 (($ $ $) NIL)) (-3414 (((-112) $) NIL)) (-2101 (($ $ $) NIL)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3401 (((-112) $) NIL)) (-2959 (((-112) $) NIL)) (-1983 (((-3 $ "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4264 (($ $ $ $) NIL)) (-3088 (($ $ $) NIL)) (-4358 (((-917) (-917)) 10) (((-917)) 9)) (-1776 (($ $ $) NIL)) (-2645 (($ $) NIL)) (-3419 (($ $) NIL)) (-3517 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-4239 (($ $ $) NIL)) (-2522 (($) NIL T CONST)) (-2827 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2081 (($ $) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL) (($ $ (-767)) NIL)) (-3873 (($ $) NIL)) (-1870 (($ $) NIL)) (-2219 (((-225) $) NIL) (((-379) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (((-563) $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) 24) (($ $) NIL) (($ (-563)) 24) (((-316 $) (-316 (-563))) 18)) (-3914 (((-767)) NIL)) (-4319 (((-112) $ $) NIL)) (-1864 (($ $ $) NIL)) (-4212 (($) NIL)) (-3223 (((-112) $ $) NIL)) (-4287 (($ $ $ $) NIL)) (-1462 (($ $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL) (($ $ (-767)) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL)))
-(((-696) (-13 (-387) (-545) (-10 -8 (-15 -4358 ((-917) (-917))) (-15 -4358 ((-917))) (-15 -1692 ((-316 $) (-316 (-563))))))) (T -696))
-((-4358 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-4358 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696)))))
-(-13 (-387) (-545) (-10 -8 (-15 -4358 ((-917) (-917))) (-15 -4358 ((-917))) (-15 -1692 ((-316 $) (-316 (-563))))))
-((-1299 (((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)) 19)) (-4366 (((-1 |#4| |#2| |#3|) (-1169)) 12)))
-(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4366 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -1299 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) (-611 (-536)) (-1208) (-1208) (-1208)) (T -697))
-((-1299 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208)))))
-(-10 -7 (-15 -4366 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -1299 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169))))
-((-1677 (((-112) $ $) NIL)) (-3916 (((-1262) $ (-767)) 14)) (-4369 (((-767) $) 12)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 25)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 24)))
-(((-698 |#1|) (-13 (-132) (-490 |#1|)) (-1093)) (T -698))
+((-2438 (((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|)) 33)))
+(((-658 |#1|) (-10 -7 (-15 -2438 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|)))) (-906)) (T -658))
+((-2438 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 *4))) (-5 *3 (-1163 *4)) (-4 *4 (-906)) (-5 *1 (-658 *4)))))
+(-10 -7 (-15 -2438 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4349 (((-637 |#1|) $) 82)) (-4362 (($ $ (-767)) 90)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4354 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 48)) (-3565 (((-3 (-667 |#1|) "failed") $) NIL)) (-3564 (((-667 |#1|) $) NIL)) (-4374 (($ $) 89)) (-2560 (((-767) $) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ (-667 |#1|) |#2|) 68)) (-4351 (($ $) 86)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-4355 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 47)) (-1900 (((-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3284 (((-667 |#1|) $) NIL)) (-3582 ((|#2| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4182 (($ $ |#1| $) 30) (($ $ (-637 |#1|) (-637 $)) 32)) (-4363 (((-767) $) 88)) (-3936 (($ $ $) 20) (($ (-667 |#1|) (-667 |#1|)) 77) (($ (-667 |#1|) $) 75) (($ $ (-667 |#1|)) 76)) (-4361 (((-859) $) NIL) (($ |#1|) 74) (((-1272 |#1| |#2|) $) 58) (((-1281 |#1| |#2|) $) 41) (($ (-667 |#1|)) 25)) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-667 |#1|)) NIL)) (-4369 ((|#2| (-1281 |#1| |#2|) $) 43)) (-3047 (($) 23 T CONST)) (-3052 (((-637 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4360 (((-3 $ "failed") (-1272 |#1| |#2|)) 60)) (-1884 (($ (-667 |#1|)) 14)) (-3444 (((-112) $ $) 44)) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) 66) (($ $ $) NIL)) (-4254 (($ $ $) 29)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-667 |#1|)) NIL)))
+(((-659 |#1| |#2|) (-13 (-374 |#1| |#2|) (-384 |#2| (-667 |#1|)) (-10 -8 (-15 -4360 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -3936 ($ (-667 |#1|) (-667 |#1|))) (-15 -3936 ($ (-667 |#1|) $)) (-15 -3936 ($ $ (-667 |#1|))))) (-846) (-172)) (T -659))
+((-4360 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-659 *3 *4)))) (-3936 (*1 *1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-3936 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))))
+(-13 (-374 |#1| |#2|) (-384 |#2| (-667 |#1|)) (-10 -8 (-15 -4360 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -3936 ($ (-667 |#1|) (-667 |#1|))) (-15 -3936 ($ (-667 |#1|) $)) (-15 -3936 ($ $ (-667 |#1|)))))
+((-1883 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-1881 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1666 (($ (-1 (-112) |#2|) $) 27)) (-2423 (($ $) 55)) (-2505 (($ $) 63)) (-3816 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-4257 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-3830 (((-546) |#2| $ (-546)) 60) (((-546) |#2| $) NIL) (((-546) (-1 (-112) |#2|) $) 46)) (-4029 (($ (-767) |#2|) 53)) (-3248 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3924 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4373 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3948 (($ |#2|) 15)) (-4022 (($ $ $ (-546)) 35) (($ |#2| $ (-546)) 33)) (-1431 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-1667 (($ $ (-1223 (-546))) 43) (($ $ (-546)) 37)) (-1882 (($ $ $ (-546)) 59)) (-3811 (($ $) 57)) (-3074 (((-112) $ $) 65)))
+(((-660 |#1| |#2|) (-10 -8 (-15 -3948 (|#1| |#2|)) (-15 -1667 (|#1| |#1| (-546))) (-15 -1667 (|#1| |#1| (-1223 (-546)))) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4022 (|#1| |#2| |#1| (-546))) (-15 -4022 (|#1| |#1| |#1| (-546))) (-15 -3248 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1666 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -2505 (|#1| |#1|)) (-15 -3248 (|#1| |#1| |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1883 ((-112) |#1|)) (-15 -1882 (|#1| |#1| |#1| (-546))) (-15 -2423 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4029 (|#1| (-767) |#2|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1|))) (-661 |#2|) (-1207)) (T -660))
+NIL
+(-10 -8 (-15 -3948 (|#1| |#2|)) (-15 -1667 (|#1| |#1| (-546))) (-15 -1667 (|#1| |#1| (-1223 (-546)))) (-15 -3816 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4022 (|#1| |#2| |#1| (-546))) (-15 -4022 (|#1| |#1| |#1| (-546))) (-15 -3248 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1666 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3816 (|#1| |#2| |#1|)) (-15 -2505 (|#1| |#1|)) (-15 -3248 (|#1| |#1| |#1|)) (-15 -3924 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1883 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3830 ((-546) (-1 (-112) |#2|) |#1|)) (-15 -3830 ((-546) |#2| |#1|)) (-15 -3830 ((-546) |#2| |#1| (-546))) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1883 ((-112) |#1|)) (-15 -1882 (|#1| |#1| |#1| (-546))) (-15 -2423 (|#1| |#1|)) (-15 -1881 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1431 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4029 (|#1| (-767) |#2|)) (-15 -4373 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-4209 ((|#1| $) 65)) (-4211 (($ $) 67)) (-2351 (((-1262) $ (-546) (-546)) 97 (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 52 (|has| $ (-6 -4409)))) (-1883 (((-112) $) 142 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1881 (($ $) 146 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4409)))) (-3299 (($ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-4201 (($ $ $) 56 (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) 86 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-1666 (($ (-1 (-112) |#1|) $) 129)) (-4125 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-4210 ((|#1| $) 66)) (-4139 (($) 7 T CONST)) (-2423 (($ $) 144 (|has| $ (-6 -4409)))) (-2424 (($ $) 134)) (-4213 (($ $) 73) (($ $ (-767)) 71)) (-2505 (($ $) 131 (|has| |#1| (-1094)))) (-1430 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-3817 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1672 ((|#1| $ (-546) |#1|) 85 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 87)) (-3853 (((-112) $) 83)) (-3830 (((-546) |#1| $ (-546)) 139 (|has| |#1| (-1094))) (((-546) |#1| $) 138 (|has| |#1| (-1094))) (((-546) (-1 (-112) |#1|) $) 137)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) 108)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 95 (|has| (-546) (-846)))) (-2919 (($ $ $) 147 (|has| |#1| (-846)))) (-3248 (($ $ $) 132 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3924 (($ $ $) 140 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 94 (|has| (-546) (-846)))) (-3249 (($ $ $) 148 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3948 (($ |#1|) 122)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4212 ((|#1| $) 70) (($ $ (-767)) 68)) (-4022 (($ $ $ (-546)) 127) (($ |#1| $ (-546)) 126)) (-2428 (($ $ $ (-546)) 116) (($ |#1| $ (-546)) 115)) (-2356 (((-637 (-546)) $) 92)) (-2357 (((-112) (-546) $) 91)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 76) (($ $ (-767)) 74)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2352 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-3854 (((-112) $) 84)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 90)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1223 (-546))) 112) ((|#1| $ (-546)) 89) ((|#1| $ (-546) |#1|) 88)) (-3419 (((-546) $ $) 44)) (-1667 (($ $ (-1223 (-546))) 124) (($ $ (-546)) 123)) (-2429 (($ $ (-1223 (-546))) 114) (($ $ (-546)) 113)) (-4048 (((-112) $) 46)) (-4206 (($ $) 62)) (-4204 (($ $) 59 (|has| $ (-6 -4409)))) (-4207 (((-767) $) 63)) (-4208 (($ $) 64)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 143 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 98 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 107)) (-4205 (($ $ $) 61) (($ $ |#1|) 60)) (-4216 (($ $ $) 78) (($ |#1| $) 77) (($ (-637 $)) 110) (($ $ |#1|) 109)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 150 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 151 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) 149 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 152 (|has| |#1| (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-661 |#1|) (-140) (-1207)) (T -661))
+((-3948 (*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1207)))))
+(-13 (-1142 |t#1|) (-372 |t#1|) (-282 |t#1|) (-10 -8 (-15 -3948 ($ |t#1|))))
+(((-34) . T) ((-102) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-372 |#1|) . T) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1094) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1142 |#1|) . T) ((-1207) . T) ((-1245 |#1|) . T))
+((-3987 (((-637 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2169 (-637 |#3|)))) |#4| (-637 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2169 (-637 |#3|))) |#4| |#3|) 45)) (-3501 (((-767) |#4| |#3|) 17)) (-3751 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2439 (((-112) |#4| |#3|) 13)))
+(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2169 (-637 |#3|))) |#4| |#3|)) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2169 (-637 |#3|)))) |#4| (-637 |#3|))) (-15 -3751 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2439 ((-112) |#4| |#3|)) (-15 -3501 ((-767) |#4| |#3|))) (-363) (-13 (-372 |#1|) (-10 -7 (-6 -4409))) (-13 (-372 |#1|) (-10 -7 (-6 -4409))) (-681 |#1| |#2| |#3|)) (T -662))
+((-3501 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-3751 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4409)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))) (-5 *1 (-662 *4 *5 *2 *3)) (-4 *3 (-681 *4 *5 *2)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-637 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2169 (-637 *7))))) (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-637 *7)) (-4 *3 (-681 *5 *6 *7)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2169 (-637 *4)))) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))))
+(-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2169 (-637 |#3|))) |#4| |#3|)) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2169 (-637 |#3|)))) |#4| (-637 |#3|))) (-15 -3751 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2439 ((-112) |#4| |#3|)) (-15 -3501 ((-767) |#4| |#3|)))
+((-3987 (((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1="failed")) (|:| -2169 (-637 (-1256 |#1|))))) (-637 (-637 |#1|)) (-637 (-1256 |#1|))) 22) (((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|))))) (-684 |#1|) (-637 (-1256 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|)))) (-637 (-637 |#1|)) (-1256 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|)) 14)) (-3501 (((-767) (-684 |#1|) (-1256 |#1|)) 30)) (-3751 (((-3 (-1256 |#1|) #1#) (-684 |#1|) (-1256 |#1|)) 24)) (-2439 (((-112) (-684 |#1|) (-1256 |#1|)) 27)))
+(((-663 |#1|) (-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 (-1256 |#1|) #1="failed")) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|))) (-15 -3987 ((-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|)))) (-637 (-637 |#1|)) (-1256 |#1|))) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|))))) (-684 |#1|) (-637 (-1256 |#1|)))) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|))))) (-637 (-637 |#1|)) (-637 (-1256 |#1|)))) (-15 -3751 ((-3 (-1256 |#1|) #1#) (-684 |#1|) (-1256 |#1|))) (-15 -2439 ((-112) (-684 |#1|) (-1256 |#1|))) (-15 -3501 ((-767) (-684 |#1|) (-1256 |#1|)))) (-363)) (T -663))
+((-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-663 *5)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-3751 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-637 *5))) (-4 *5 (-363)) (-5 *2 (-637 (-2 (|:| |particular| (-3 (-1256 *5) #1="failed")) (|:| -2169 (-637 (-1256 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-637 (-1256 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-637 (-2 (|:| |particular| (-3 (-1256 *5) #1#)) (|:| -2169 (-637 (-1256 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-637 (-1256 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-637 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) #1#)) (|:| -2169 (-637 (-1256 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1256 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) #1#)) (|:| -2169 (-637 (-1256 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1256 *5)))))
+(-10 -7 (-15 -3987 ((-2 (|:| |particular| (-3 (-1256 |#1|) #1="failed")) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|))) (-15 -3987 ((-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|)))) (-637 (-637 |#1|)) (-1256 |#1|))) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|))))) (-684 |#1|) (-637 (-1256 |#1|)))) (-15 -3987 ((-637 (-2 (|:| |particular| (-3 (-1256 |#1|) #1#)) (|:| -2169 (-637 (-1256 |#1|))))) (-637 (-637 |#1|)) (-637 (-1256 |#1|)))) (-15 -3751 ((-3 (-1256 |#1|) #1#) (-684 |#1|) (-1256 |#1|))) (-15 -2439 ((-112) (-684 |#1|) (-1256 |#1|))) (-15 -3501 ((-767) (-684 |#1|) (-1256 |#1|))))
+((-2440 (((-2 (|:| |particular| (-3 (-1256 (-407 |#4|)) "failed")) (|:| -2169 (-637 (-1256 (-407 |#4|))))) (-637 |#4|) (-637 |#3|)) 45)))
+(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2440 ((-2 (|:| |particular| (-3 (-1256 (-407 |#4|)) "failed")) (|:| -2169 (-637 (-1256 (-407 |#4|))))) (-637 |#4|) (-637 |#3|)))) (-556) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -664))
+((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *7)) (-4 *7 (-846)) (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 (-407 *8)) "failed")) (|:| -2169 (-637 (-1256 (-407 *8)))))) (-5 *1 (-664 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2440 ((-2 (|:| |particular| (-3 (-1256 (-407 |#4|)) "failed")) (|:| -2169 (-637 (-1256 (-407 |#4|))))) (-637 |#4|) (-637 |#3|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1927 (((-3 $ #1="failed")) NIL (|has| |#2| (-556)))) (-3741 ((|#2| $) NIL)) (-3513 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3631 (((-1256 (-684 |#2|))) NIL) (((-1256 (-684 |#2|)) (-1256 $)) NIL)) (-3515 (((-112) $) NIL)) (-1880 (((-1256 $)) 37)) (-1296 (((-112) $ (-767)) NIL)) (-3744 (($ |#2|) NIL)) (-4139 (($) NIL T CONST)) (-3502 (($ $) NIL (|has| |#2| (-307)))) (-3504 (((-239 |#1| |#2|) $ (-546)) NIL)) (-2063 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (|has| |#2| (-556)))) (-1854 (((-3 $ #1#)) NIL (|has| |#2| (-556)))) (-1942 (((-684 |#2|)) NIL) (((-684 |#2|) (-1256 $)) NIL)) (-1878 ((|#2| $) NIL)) (-1940 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1256 $)) NIL)) (-2546 (((-3 $ #1#) $) NIL (|has| |#2| (-556)))) (-2057 (((-1163 (-942 |#2|))) NIL (|has| |#2| (-363)))) (-2549 (($ $ (-915)) NIL)) (-1876 ((|#2| $) NIL)) (-1856 (((-1163 |#2|) $) NIL (|has| |#2| (-556)))) (-1944 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-1874 (((-1163 |#2|) $) NIL)) (-1868 (((-112)) NIL)) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 |#2| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) ((|#2| $) NIL)) (-1946 (($ (-1256 |#2|)) NIL) (($ (-1256 |#2|) (-1256 $)) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3501 (((-767) $) NIL (|has| |#2| (-556))) (((-915)) 38)) (-3505 ((|#2| $ (-546) (-546)) NIL)) (-1865 (((-112)) NIL)) (-2573 (($ $ (-915)) NIL)) (-2103 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL)) (-3500 (((-767) $) NIL (|has| |#2| (-556)))) (-3499 (((-637 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-3507 (((-767) $) NIL)) (-1861 (((-112)) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3738 ((|#2| $) NIL (|has| |#2| (-6 (-4410 #3="*"))))) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-3516 (($ (-637 (-637 |#2|))) NIL)) (-2107 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4008 (((-637 (-637 |#2|)) $) NIL)) (-1859 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-2064 (((-3 (-2 (|:| |particular| $) (|:| -2169 (-637 $))) #1#)) NIL (|has| |#2| (-556)))) (-1855 (((-3 $ #1#)) NIL (|has| |#2| (-556)))) (-1943 (((-684 |#2|)) NIL) (((-684 |#2|) (-1256 $)) NIL)) (-1879 ((|#2| $) NIL)) (-1941 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1256 $)) NIL)) (-2547 (((-3 $ #1#) $) NIL (|has| |#2| (-556)))) (-2061 (((-1163 (-942 |#2|))) NIL (|has| |#2| (-363)))) (-2548 (($ $ (-915)) NIL)) (-1877 ((|#2| $) NIL)) (-1857 (((-1163 |#2|) $) NIL (|has| |#2| (-556)))) (-1945 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-1875 (((-1163 |#2|) $) NIL)) (-1869 (((-112)) NIL)) (-3650 (((-1151) $) NIL)) (-1860 (((-112)) NIL)) (-1862 (((-112)) NIL)) (-1864 (((-112)) NIL)) (-4004 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3651 (((-1113) $) NIL)) (-1867 (((-112)) NIL)) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2105 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ (-546) (-546) |#2|) NIL) ((|#2| $ (-546) (-546)) 22) ((|#2| $ (-546)) NIL)) (-4225 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3740 ((|#2| $) NIL)) (-3743 (($ (-637 |#2|)) NIL)) (-3514 (((-112) $) NIL)) (-3742 (((-239 |#1| |#2|) $) NIL)) (-3739 ((|#2| $) NIL (|has| |#2| (-6 (-4410 #3#))))) (-2104 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3811 (($ $) NIL)) (-3632 (((-684 |#2|) (-1256 $)) NIL) (((-1256 |#2|) $) NIL) (((-684 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $ (-1256 $)) 25)) (-4385 (($ (-1256 |#2|)) NIL) (((-1256 |#2|) $) NIL)) (-2049 (((-637 (-942 |#2|))) NIL) (((-637 (-942 |#2|)) (-1256 $)) NIL)) (-2735 (($ $ $) NIL)) (-1873 (((-112)) NIL)) (-3503 (((-239 |#1| |#2|) $ (-546)) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#2| (-1034 (-407 (-546))))) (($ |#2|) NIL) (((-684 |#2|) $) NIL)) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) 36)) (-1858 (((-637 (-1256 |#2|))) NIL (|has| |#2| (-556)))) (-2736 (($ $ $ $) NIL)) (-1871 (((-112)) NIL)) (-2933 (($ (-684 |#2|) $) NIL)) (-2106 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-2734 (($ $ $) NIL)) (-1872 (((-112)) NIL)) (-1870 (((-112)) NIL)) (-1866 (((-112)) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#2| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-665 |#1| |#2|) (-13 (-1116 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-610 (-684 |#2|)) (-418 |#2|)) (-915) (-172)) (T -665))
+NIL
+(-13 (-1116 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-610 (-684 |#2|)) (-418 |#2|))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3656 (((-637 (-1128)) $) 10)) (-4361 (((-859) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-666) (-13 (-1076) (-10 -8 (-15 -3656 ((-637 (-1128)) $))))) (T -666))
+((-3656 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-666)))))
+(-13 (-1076) (-10 -8 (-15 -3656 ((-637 (-1128)) $))))
+((-2953 (((-112) $ $) NIL)) (-4349 (((-637 |#1|) $) NIL)) (-3529 (($ $) 51)) (-3051 (((-112) $) NIL)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-2443 (((-3 $ "failed") (-815 |#1|)) 23)) (-2445 (((-112) (-815 |#1|)) 15)) (-2444 (($ (-815 |#1|)) 24)) (-2824 (((-112) $ $) 29)) (-4248 (((-915) $) 36)) (-3530 (($ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4147 (((-637 $) (-815 |#1|)) 17)) (-4361 (((-859) $) 42) (($ |#1|) 33) (((-815 |#1|) $) 38) (((-672 |#1|) $) 43)) (-2442 (((-58 (-637 $)) (-637 |#1|) (-915)) 56)) (-2441 (((-637 $) (-637 |#1|) (-915)) 59)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 52)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 37)))
+(((-667 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3530 ($ $)) (-15 -3529 ($ $)) (-15 -4248 ((-915) $)) (-15 -2824 ((-112) $ $)) (-15 -4361 ((-815 |#1|) $)) (-15 -4361 ((-672 |#1|) $)) (-15 -4147 ((-637 $) (-815 |#1|))) (-15 -2445 ((-112) (-815 |#1|))) (-15 -2444 ($ (-815 |#1|))) (-15 -2443 ((-3 $ "failed") (-815 |#1|))) (-15 -4349 ((-637 |#1|) $)) (-15 -2442 ((-58 (-637 $)) (-637 |#1|) (-915))) (-15 -2441 ((-637 $) (-637 |#1|) (-915))))) (-846)) (T -667))
+((-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-3530 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-3529 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2824 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-637 (-667 *4))) (-5 *1 (-667 *4)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-915)) (-4 *5 (-846)) (-5 *2 (-58 (-637 (-667 *5)))) (-5 *1 (-667 *5)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-915)) (-4 *5 (-846)) (-5 *2 (-637 (-667 *5))) (-5 *1 (-667 *5)))))
+(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3530 ($ $)) (-15 -3529 ($ $)) (-15 -4248 ((-915) $)) (-15 -2824 ((-112) $ $)) (-15 -4361 ((-815 |#1|) $)) (-15 -4361 ((-672 |#1|) $)) (-15 -4147 ((-637 $) (-815 |#1|))) (-15 -2445 ((-112) (-815 |#1|))) (-15 -2444 ($ (-815 |#1|))) (-15 -2443 ((-3 $ "failed") (-815 |#1|))) (-15 -4349 ((-637 |#1|) $)) (-15 -2442 ((-58 (-637 $)) (-637 |#1|) (-915))) (-15 -2441 ((-637 $) (-637 |#1|) (-915)))))
+((-3813 ((|#2| $) 76)) (-4211 (($ $) 96)) (-1296 (((-112) $ (-767)) 26)) (-4213 (($ $) 85) (($ $ (-767)) 88)) (-3853 (((-112) $) 97)) (-3421 (((-637 $) $) 72)) (-3417 (((-112) $ $) 71)) (-4134 (((-112) $ (-767)) 24)) (-2353 (((-546) $) 46)) (-2354 (((-546) $) 45)) (-4131 (((-112) $ (-767)) 22)) (-3933 (((-112) $) 74)) (-4212 ((|#2| $) 89) (($ $ (-767)) 92)) (-2428 (($ $ $ (-546)) 62) (($ |#2| $ (-546)) 61)) (-2356 (((-637 (-546)) $) 44)) (-2357 (((-112) (-546) $) 42)) (-4215 ((|#2| $) NIL) (($ $ (-767)) 84)) (-4183 (($ $ (-546)) 99)) (-3854 (((-112) $) 98)) (-2105 (((-112) (-1 (-112) |#2|) $) 32)) (-2358 (((-637 |#2|) $) 33)) (-4214 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1223 (-546))) 58) ((|#2| $ (-546)) 40) ((|#2| $ (-546) |#2|) 41)) (-3419 (((-546) $ $) 70)) (-2429 (($ $ (-1223 (-546))) 57) (($ $ (-546)) 51)) (-4048 (((-112) $) 66)) (-4206 (($ $) 81)) (-4207 (((-767) $) 80)) (-4208 (($ $) 79)) (-3936 (($ (-637 |#2|)) 37)) (-3281 (($ $) 100)) (-3928 (((-637 $) $) 69)) (-3418 (((-112) $ $) 68)) (-2106 (((-112) (-1 (-112) |#2|) $) 31)) (-3444 (((-112) $ $) 18)) (-4372 (((-767) $) 29)))
+(((-668 |#1| |#2|) (-10 -8 (-15 -3281 (|#1| |#1|)) (-15 -4183 (|#1| |#1| (-546))) (-15 -3853 ((-112) |#1|)) (-15 -3854 ((-112) |#1|)) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -2358 ((-637 |#2|) |#1|)) (-15 -2357 ((-112) (-546) |#1|)) (-15 -2356 ((-637 (-546)) |#1|)) (-15 -2354 ((-546) |#1|)) (-15 -2353 ((-546) |#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -4206 (|#1| |#1|)) (-15 -4207 ((-767) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -4212 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "last")) (-15 -4212 (|#2| |#1|)) (-15 -4213 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| "rest")) (-15 -4213 (|#1| |#1|)) (-15 -4215 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "first")) (-15 -4215 (|#2| |#1|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -3418 ((-112) |#1| |#1|)) (-15 -3419 ((-546) |#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| "value")) (-15 -3813 (|#2| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767)))) (-669 |#2|) (-1207)) (T -668))
+NIL
+(-10 -8 (-15 -3281 (|#1| |#1|)) (-15 -4183 (|#1| |#1| (-546))) (-15 -3853 ((-112) |#1|)) (-15 -3854 ((-112) |#1|)) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -2358 ((-637 |#2|) |#1|)) (-15 -2357 ((-112) (-546) |#1|)) (-15 -2356 ((-637 (-546)) |#1|)) (-15 -2354 ((-546) |#1|)) (-15 -2353 ((-546) |#1|)) (-15 -3936 (|#1| (-637 |#2|))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -2429 (|#1| |#1| (-546))) (-15 -2429 (|#1| |#1| (-1223 (-546)))) (-15 -2428 (|#1| |#2| |#1| (-546))) (-15 -2428 (|#1| |#1| |#1| (-546))) (-15 -4206 (|#1| |#1|)) (-15 -4207 ((-767) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -4212 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "last")) (-15 -4212 (|#2| |#1|)) (-15 -4213 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| "rest")) (-15 -4213 (|#1| |#1|)) (-15 -4215 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "first")) (-15 -4215 (|#2| |#1|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -3418 ((-112) |#1| |#1|)) (-15 -3419 ((-546) |#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| "value")) (-15 -3813 (|#2| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -2105 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-4209 ((|#1| $) 65)) (-4211 (($ $) 67)) (-2351 (((-1262) $ (-546) (-546)) 97 (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 52 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-4201 (($ $ $) 56 (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) 86 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 102)) (-4210 ((|#1| $) 66)) (-4139 (($) 7 T CONST)) (-2447 (($ $) 124)) (-4213 (($ $) 73) (($ $ (-767)) 71)) (-1430 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 103)) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1672 ((|#1| $ (-546) |#1|) 85 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 87)) (-3853 (((-112) $) 83)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2446 (((-767) $) 123)) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) 108)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 95 (|has| (-546) (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 94 (|has| (-546) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-2449 (($ $) 126)) (-2450 (((-112) $) 127)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4212 ((|#1| $) 70) (($ $ (-767)) 68)) (-2428 (($ $ $ (-546)) 116) (($ |#1| $ (-546)) 115)) (-2356 (((-637 (-546)) $) 92)) (-2357 (((-112) (-546) $) 91)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2448 ((|#1| $) 125)) (-4215 ((|#1| $) 76) (($ $ (-767)) 74)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2352 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-4183 (($ $ (-546)) 122)) (-3854 (((-112) $) 84)) (-2451 (((-112) $) 128)) (-2452 (((-112) $) 129)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 90)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1223 (-546))) 112) ((|#1| $ (-546)) 89) ((|#1| $ (-546) |#1|) 88)) (-3419 (((-546) $ $) 44)) (-2429 (($ $ (-1223 (-546))) 114) (($ $ (-546)) 113)) (-4048 (((-112) $) 46)) (-4206 (($ $) 62)) (-4204 (($ $) 59 (|has| $ (-6 -4409)))) (-4207 (((-767) $) 63)) (-4208 (($ $) 64)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 98 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 107)) (-4205 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-4216 (($ $ $) 78) (($ |#1| $) 77) (($ (-637 $)) 110) (($ $ |#1|) 109)) (-3281 (($ $) 121)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-669 |#1|) (-140) (-1207)) (T -669))
+((-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1207)))) (-4125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1207)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-669 *3)) (-4 *3 (-1207)))) (-3281 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))))
+(-13 (-1142 |t#1|) (-10 -8 (-15 -3817 ($ (-1 (-112) |t#1|) $)) (-15 -4125 ($ (-1 (-112) |t#1|) $)) (-15 -2452 ((-112) $)) (-15 -2451 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -2449 ($ $)) (-15 -2448 (|t#1| $)) (-15 -2447 ($ $)) (-15 -2446 ((-767) $)) (-15 -4183 ($ $ (-546))) (-15 -3281 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1142 |#1|) . T) ((-1207) . T) ((-1245 |#1|) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2458 (($ (-767) (-767) (-767)) 33 (|has| |#1| (-1045)))) (-1296 (((-112) $ (-767)) NIL)) (-2455 ((|#1| $ (-767) (-767) (-767) |#1|) 27)) (-4139 (($) NIL T CONST)) (-2456 (($ $ $) 37 (|has| |#1| (-1045)))) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2453 (((-1256 (-767)) $) 9)) (-2454 (($ (-1169) $ $) 22)) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2457 (($ (-767)) 35 (|has| |#1| (-1045)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-767) (-767) (-767)) 25)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-3936 (($ (-637 (-637 (-637 |#1|)))) 44)) (-4361 (($ (-954 (-954 (-954 |#1|)))) 15) (((-954 (-954 (-954 |#1|))) $) 12) (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-670 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -2458 ($ (-767) (-767) (-767))) (-15 -2457 ($ (-767))) (-15 -2456 ($ $ $))) |%noBranch|) (-15 -3936 ($ (-637 (-637 (-637 |#1|))))) (-15 -4214 (|#1| $ (-767) (-767) (-767))) (-15 -2455 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -4361 ($ (-954 (-954 (-954 |#1|))))) (-15 -4361 ((-954 (-954 (-954 |#1|))) $)) (-15 -2454 ($ (-1169) $ $)) (-15 -2453 ((-1256 (-767)) $)))) (-1094)) (T -670))
+((-2458 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1094)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-637 *3)))) (-4 *3 (-1094)) (-5 *1 (-670 *3)))) (-4214 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1094)))) (-2455 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1094)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094)) (-5 *1 (-670 *3)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) (-4 *3 (-1094)))) (-2454 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1094)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-1256 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1094)))))
+(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -2458 ($ (-767) (-767) (-767))) (-15 -2457 ($ (-767))) (-15 -2456 ($ $ $))) |%noBranch|) (-15 -3936 ($ (-637 (-637 (-637 |#1|))))) (-15 -4214 (|#1| $ (-767) (-767) (-767))) (-15 -2455 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -4361 ($ (-954 (-954 (-954 |#1|))))) (-15 -4361 ((-954 (-954 (-954 |#1|))) $)) (-15 -2454 ($ (-1169) $ $)) (-15 -2453 ((-1256 (-767)) $))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3586 (((-483) $) 10)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 12)) (-3444 (((-112) $ $) NIL)))
+(((-671) (-13 (-1076) (-10 -8 (-15 -3586 ((-483) $)) (-15 -3641 ((-1128) $))))) (T -671))
+((-3586 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671)))))
+(-13 (-1076) (-10 -8 (-15 -3586 ((-483) $)) (-15 -3641 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-4349 (((-637 |#1|) $) 14)) (-3529 (($ $) 18)) (-3051 (((-112) $) 19)) (-3565 (((-3 |#1| "failed") $) 22)) (-3564 ((|#1| $) 20)) (-4213 (($ $) 36)) (-4351 (($ $) 24)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-2824 (((-112) $ $) 41)) (-4248 (((-915) $) 38)) (-3530 (($ $) 17)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 ((|#1| $) 35)) (-4361 (((-859) $) 31) (($ |#1|) 23) (((-815 |#1|) $) 27)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 12)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-672 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4361 ((-815 |#1|) $)) (-15 -4215 (|#1| $)) (-15 -3530 ($ $)) (-15 -4248 ((-915) $)) (-15 -2824 ((-112) $ $)) (-15 -4351 ($ $)) (-15 -4213 ($ $)) (-15 -3051 ((-112) $)) (-15 -3529 ($ $)) (-15 -4349 ((-637 |#1|) $)))) (-846)) (T -672))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-4215 (*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3530 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-2824 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-3529 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))))
+(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4361 ((-815 |#1|) $)) (-15 -4215 (|#1| $)) (-15 -3530 ($ $)) (-15 -4248 ((-915) $)) (-15 -2824 ((-112) $ $)) (-15 -4351 ($ $)) (-15 -4213 ($ $)) (-15 -3051 ((-112) $)) (-15 -3529 ($ $)) (-15 -4349 ((-637 |#1|) $))))
+((-2467 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 11)) (-2459 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 9)))
+(((-673 |#1|) (-10 -7 (-15 -2459 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -2467 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1094)) (T -673))
+((-2467 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-673 *2)))) (-2459 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-673 *2)))))
+(-10 -7 (-15 -2459 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -2467 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|)))
+((-2461 ((|#2| |#1| |#2|) 9)) (-2460 ((|#1| |#1| |#2|) 8)))
+(((-674 |#1| |#2|) (-10 -7 (-15 -2460 (|#1| |#1| |#2|)) (-15 -2461 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -674))
+((-2461 (*1 *2 *3 *2) (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -2460 (|#1| |#1| |#2|)) (-15 -2461 (|#2| |#1| |#2|)))
+((-2462 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -2462 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -675))
+((-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-675 *5 *6 *2)))))
+(-10 -7 (-15 -2462 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3726 (((-1208) $) 20)) (-3725 (((-637 (-1208)) $) 18)) (-2463 (($ (-637 (-1208)) (-1208)) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 29) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1208) $) 21) (($ (-1108)) 10)) (-3444 (((-112) $ $) NIL)))
+(((-676) (-13 (-1076) (-610 (-1208)) (-10 -8 (-15 -4361 ($ (-1108))) (-15 -2463 ($ (-637 (-1208)) (-1208))) (-15 -3725 ((-637 (-1208)) $)) (-15 -3726 ((-1208) $))))) (T -676))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-676)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-637 (-1208))) (-5 *3 (-1208)) (-5 *1 (-676)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-676)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-676)))))
+(-13 (-1076) (-610 (-1208)) (-10 -8 (-15 -4361 ($ (-1108))) (-15 -2463 ($ (-637 (-1208)) (-1208))) (-15 -3725 ((-637 (-1208)) $)) (-15 -3726 ((-1208) $))))
+((-2467 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 23)) (-2464 (((-1 |#1|) |#1|) 8)) (-2466 ((|#1| |#1|) 16)) (-2465 (((-637 |#1|) (-1 (-637 |#1|) (-637 |#1|)) (-546)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4361 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 20)))
+(((-677 |#1|) (-10 -7 (-15 -2464 ((-1 |#1|) |#1|)) (-15 -4361 ((-1 |#1|) |#1|)) (-15 -2465 (|#1| (-1 |#1| |#1|))) (-15 -2465 ((-637 |#1|) (-1 (-637 |#1|) (-637 |#1|)) (-546))) (-15 -2466 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -2467 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1094)) (T -677))
+((-2467 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-677 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094)) (-5 *1 (-677 *4)))) (-2466 (*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1094)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-637 *5) (-637 *5))) (-5 *4 (-546)) (-5 *2 (-637 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1094)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1094)))) (-4361 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1094)))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -2464 ((-1 |#1|) |#1|)) (-15 -4361 ((-1 |#1|) |#1|)) (-15 -2465 (|#1| (-1 |#1| |#1|))) (-15 -2465 ((-637 |#1|) (-1 (-637 |#1|) (-637 |#1|)) (-546))) (-15 -2466 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -2467 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|))))
+((-2470 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2469 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4367 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2468 (((-1 |#2| |#1|) |#2|) 11)))
+(((-678 |#1| |#2|) (-10 -7 (-15 -2468 ((-1 |#2| |#1|) |#2|)) (-15 -2469 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4367 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2470 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -678))
+((-2470 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)) (-4 *4 (-1094)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5)))) (-2468 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -2468 ((-1 |#2| |#1|) |#2|)) (-15 -2469 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4367 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2470 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2475 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2471 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2472 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2473 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2474 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-679 |#1| |#2| |#3|) (-10 -7 (-15 -2471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2472 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2473 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2474 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2475 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -679))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-679 *5 *6 *7)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1094)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1094)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6)))))
+(-10 -7 (-15 -2471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2472 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2473 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2474 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2475 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-4253 (($ (-767) (-767)) 33)) (-2480 (($ $ $) 56)) (-3825 (($ |#3|) 52) (($ $) 53)) (-3513 (((-112) $) 28)) (-2479 (($ $ (-546) (-546)) 58)) (-2478 (($ $ (-546) (-546)) 59)) (-2477 (($ $ (-546) (-546) (-546) (-546)) 63)) (-2482 (($ $) 54)) (-3515 (((-112) $) 14)) (-2476 (($ $ (-546) (-546) $) 64)) (-4202 ((|#2| $ (-546) (-546) |#2|) NIL) (($ $ (-637 (-546)) (-637 (-546)) $) 62)) (-3744 (($ (-767) |#2|) 39)) (-3516 (($ (-637 (-637 |#2|))) 37)) (-4008 (((-637 (-637 |#2|)) $) 57)) (-2481 (($ $ $) 55)) (-3872 (((-3 $ "failed") $ |#2|) 91)) (-4214 ((|#2| $ (-546) (-546)) NIL) ((|#2| $ (-546) (-546) |#2|) NIL) (($ $ (-637 (-546)) (-637 (-546))) 61)) (-3743 (($ (-637 |#2|)) 40) (($ (-637 $)) 42)) (-3514 (((-112) $) 24)) (-4361 (($ |#4|) 47) (((-859) $) NIL)) (-3512 (((-112) $) 30)) (-4364 (($ $ |#2|) 93)) (-4252 (($ $ $) 68) (($ $) 71)) (-4254 (($ $ $) 66)) (** (($ $ (-767)) 80) (($ $ (-546)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-546) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-680 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -4364 (|#1| |#1| |#2|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -2476 (|#1| |#1| (-546) (-546) |#1|)) (-15 -2477 (|#1| |#1| (-546) (-546) (-546) (-546))) (-15 -2478 (|#1| |#1| (-546) (-546))) (-15 -2479 (|#1| |#1| (-546) (-546))) (-15 -4202 (|#1| |#1| (-637 (-546)) (-637 (-546)) |#1|)) (-15 -4214 (|#1| |#1| (-637 (-546)) (-637 (-546)))) (-15 -4008 ((-637 (-637 |#2|)) |#1|)) (-15 -2480 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -2482 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3825 (|#1| |#3|)) (-15 -4361 (|#1| |#4|)) (-15 -3743 (|#1| (-637 |#1|))) (-15 -3743 (|#1| (-637 |#2|))) (-15 -3744 (|#1| (-767) |#2|)) (-15 -3516 (|#1| (-637 (-637 |#2|)))) (-15 -4253 (|#1| (-767) (-767))) (-15 -3512 ((-112) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -3515 ((-112) |#1|)) (-15 -4202 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546)))) (-681 |#2| |#3| |#4|) (-1045) (-372 |#2|) (-372 |#2|)) (T -680))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -4364 (|#1| |#1| |#2|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -2476 (|#1| |#1| (-546) (-546) |#1|)) (-15 -2477 (|#1| |#1| (-546) (-546) (-546) (-546))) (-15 -2478 (|#1| |#1| (-546) (-546))) (-15 -2479 (|#1| |#1| (-546) (-546))) (-15 -4202 (|#1| |#1| (-637 (-546)) (-637 (-546)) |#1|)) (-15 -4214 (|#1| |#1| (-637 (-546)) (-637 (-546)))) (-15 -4008 ((-637 (-637 |#2|)) |#1|)) (-15 -2480 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -2482 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3825 (|#1| |#3|)) (-15 -4361 (|#1| |#4|)) (-15 -3743 (|#1| (-637 |#1|))) (-15 -3743 (|#1| (-637 |#2|))) (-15 -3744 (|#1| (-767) |#2|)) (-15 -3516 (|#1| (-637 (-637 |#2|)))) (-15 -4253 (|#1| (-767) (-767))) (-15 -3512 ((-112) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -3515 ((-112) |#1|)) (-15 -4202 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) (-546))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4253 (($ (-767) (-767)) 97)) (-2480 (($ $ $) 87)) (-3825 (($ |#2|) 91) (($ $) 90)) (-3513 (((-112) $) 99)) (-2479 (($ $ (-546) (-546)) 83)) (-2478 (($ $ (-546) (-546)) 82)) (-2477 (($ $ (-546) (-546) (-546) (-546)) 81)) (-2482 (($ $) 89)) (-3515 (((-112) $) 101)) (-1296 (((-112) $ (-767)) 8)) (-2476 (($ $ (-546) (-546) $) 80)) (-4202 ((|#1| $ (-546) (-546) |#1|) 44) (($ $ (-637 (-546)) (-637 (-546)) $) 84)) (-1335 (($ $ (-546) |#2|) 42)) (-1334 (($ $ (-546) |#3|) 41)) (-3744 (($ (-767) |#1|) 95)) (-4139 (($) 7 T CONST)) (-3502 (($ $) 67 (|has| |#1| (-307)))) (-3504 ((|#2| $ (-546)) 46)) (-3501 (((-767) $) 66 (|has| |#1| (-556)))) (-1672 ((|#1| $ (-546) (-546) |#1|) 43)) (-3505 ((|#1| $ (-546) (-546)) 48)) (-2103 (((-637 |#1|) $) 30)) (-3500 (((-767) $) 65 (|has| |#1| (-556)))) (-3499 (((-637 |#3|) $) 64 (|has| |#1| (-556)))) (-3507 (((-767) $) 51)) (-4029 (($ (-767) (-767) |#1|) 57)) (-3506 (((-767) $) 50)) (-4134 (((-112) $ (-767)) 9)) (-3738 ((|#1| $) 62 (|has| |#1| (-6 (-4410 #1="*"))))) (-3511 (((-546) $) 55)) (-3509 (((-546) $) 53)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3510 (((-546) $) 54)) (-3508 (((-546) $) 52)) (-3516 (($ (-637 (-637 |#1|))) 96)) (-2107 (($ (-1 |#1| |#1|) $) 34)) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4008 (((-637 (-637 |#1|)) $) 86)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4004 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-2481 (($ $ $) 88)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) 56)) (-3872 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) (-546)) 49) ((|#1| $ (-546) (-546) |#1|) 47) (($ $ (-637 (-546)) (-637 (-546))) 85)) (-3743 (($ (-637 |#1|)) 94) (($ (-637 $)) 93)) (-3514 (((-112) $) 100)) (-3739 ((|#1| $) 63 (|has| |#1| (-6 (-4410 #1#))))) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-3503 ((|#3| $ (-546)) 45)) (-4361 (($ |#3|) 92) (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3512 (((-112) $) 98)) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4364 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-4252 (($ $ $) 78) (($ $) 77)) (-4254 (($ $ $) 79)) (** (($ $ (-767)) 70) (($ $ (-546)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-546) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-681 |#1| |#2| |#3|) (-140) (-1045) (-372 |t#1|) (-372 |t#1|)) (T -681))
+((-3515 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-4253 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3744 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4361 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-3825 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-3825 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2482 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2480 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-637 (-637 *3))))) (-4214 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-637 (-546))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4202 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-637 (-546))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2479 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2478 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2477 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2476 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4254 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-4252 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3872 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-556)))) (-4364 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-363)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-307)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-637 *5)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4410 #1="*"))) (-4 *2 (-1045)))) (-3738 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4410 #1#))) (-4 *2 (-1045)))) (-4004 (*1 *1 *1) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-363)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -3515 ((-112) $)) (-15 -3514 ((-112) $)) (-15 -3513 ((-112) $)) (-15 -3512 ((-112) $)) (-15 -4253 ($ (-767) (-767))) (-15 -3516 ($ (-637 (-637 |t#1|)))) (-15 -3744 ($ (-767) |t#1|)) (-15 -3743 ($ (-637 |t#1|))) (-15 -3743 ($ (-637 $))) (-15 -4361 ($ |t#3|)) (-15 -3825 ($ |t#2|)) (-15 -3825 ($ $)) (-15 -2482 ($ $)) (-15 -2481 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -4008 ((-637 (-637 |t#1|)) $)) (-15 -4214 ($ $ (-637 (-546)) (-637 (-546)))) (-15 -4202 ($ $ (-637 (-546)) (-637 (-546)) $)) (-15 -2479 ($ $ (-546) (-546))) (-15 -2478 ($ $ (-546) (-546))) (-15 -2477 ($ $ (-546) (-546) (-546) (-546))) (-15 -2476 ($ $ (-546) (-546) $)) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4252 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-546) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-556)) (-15 -3872 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -4364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -3502 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3501 ((-767) $)) (-15 -3500 ((-767) $)) (-15 -3499 ((-637 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4410 "*"))) (PROGN (-15 -3739 (|t#1| $)) (-15 -3738 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4004 ((-3 $ "failed") $)) (-15 ** ($ $ (-546)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1207) . T))
+((-4257 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4373 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-682 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4373 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4373 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4257 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-1045) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -682))
+((-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-682 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-681 *5 *6 *7)) (-4 *10 (-681 *2 *8 *9)))) (-4373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-682 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-682 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))))
+(-10 -7 (-15 -4373 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4373 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4257 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3502 ((|#4| |#4|) 71 (|has| |#1| (-307)))) (-3501 (((-767) |#4|) 98 (|has| |#1| (-556)))) (-3500 (((-767) |#4|) 75 (|has| |#1| (-556)))) (-3499 (((-637 |#3|) |#4|) 82 (|has| |#1| (-556)))) (-2521 (((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 110 (|has| |#1| (-307)))) (-3738 ((|#1| |#4|) 34)) (-2487 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-556)))) (-4004 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-363)))) (-2486 ((|#4| |#4|) 67 (|has| |#1| (-556)))) (-2484 ((|#4| |#4| |#1| (-546) (-546)) 42)) (-2483 ((|#4| |#4| (-546) (-546)) 37)) (-2485 ((|#4| |#4| |#1| (-546) (-546)) 47)) (-3739 ((|#1| |#4|) 77)) (-2905 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-556)))))
+(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 (|#1| |#4|)) (-15 -3738 (|#1| |#4|)) (-15 -2483 (|#4| |#4| (-546) (-546))) (-15 -2484 (|#4| |#4| |#1| (-546) (-546))) (-15 -2485 (|#4| |#4| |#1| (-546) (-546))) (IF (|has| |#1| (-556)) (PROGN (-15 -3501 ((-767) |#4|)) (-15 -3500 ((-767) |#4|)) (-15 -3499 ((-637 |#3|) |#4|)) (-15 -2486 (|#4| |#4|)) (-15 -2487 ((-3 |#4| "failed") |#4|)) (-15 -2905 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3502 (|#4| |#4|)) (-15 -2521 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4004 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -683))
+((-4004 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2521 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-681 *3 *4 *5)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2487 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3499 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-637 *6)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3500 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2485 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-546)) (-4 *3 (-172)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-2484 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-546)) (-4 *3 (-172)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-2483 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-546)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-683 *4 *5 *6 *2)) (-4 *2 (-681 *4 *5 *6)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))))
+(-10 -7 (-15 -3739 (|#1| |#4|)) (-15 -3738 (|#1| |#4|)) (-15 -2483 (|#4| |#4| (-546) (-546))) (-15 -2484 (|#4| |#4| |#1| (-546) (-546))) (-15 -2485 (|#4| |#4| |#1| (-546) (-546))) (IF (|has| |#1| (-556)) (PROGN (-15 -3501 ((-767) |#4|)) (-15 -3500 ((-767) |#4|)) (-15 -3499 ((-637 |#3|) |#4|)) (-15 -2486 (|#4| |#4|)) (-15 -2487 ((-3 |#4| "failed") |#4|)) (-15 -2905 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3502 (|#4| |#4|)) (-15 -2521 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4004 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767) (-767)) 47)) (-2480 (($ $ $) NIL)) (-3825 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-3513 (((-112) $) NIL)) (-2479 (($ $ (-546) (-546)) 12)) (-2478 (($ $ (-546) (-546)) NIL)) (-2477 (($ $ (-546) (-546) (-546) (-546)) NIL)) (-2482 (($ $) NIL)) (-3515 (((-112) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-2476 (($ $ (-546) (-546) $) NIL)) (-4202 ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546)) $) NIL)) (-1335 (($ $ (-546) (-1256 |#1|)) NIL)) (-1334 (($ $ (-546) (-1256 |#1|)) NIL)) (-3744 (($ (-767) |#1|) 22)) (-4139 (($) NIL T CONST)) (-3502 (($ $) 31 (|has| |#1| (-307)))) (-3504 (((-1256 |#1|) $ (-546)) NIL)) (-3501 (((-767) $) 33 (|has| |#1| (-556)))) (-1672 ((|#1| $ (-546) (-546) |#1|) 51)) (-3505 ((|#1| $ (-546) (-546)) NIL)) (-2103 (((-637 |#1|) $) NIL)) (-3500 (((-767) $) 35 (|has| |#1| (-556)))) (-3499 (((-637 (-1256 |#1|)) $) 38 (|has| |#1| (-556)))) (-3507 (((-767) $) 20)) (-4029 (($ (-767) (-767) |#1|) 16)) (-3506 (((-767) $) 21)) (-4134 (((-112) $ (-767)) NIL)) (-3738 ((|#1| $) 29 (|has| |#1| (-6 (-4410 #1="*"))))) (-3511 (((-546) $) 9)) (-3509 (((-546) $) 10)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3510 (((-546) $) 11)) (-3508 (((-546) $) 48)) (-3516 (($ (-637 (-637 |#1|))) NIL)) (-2107 (($ (-1 |#1| |#1|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4008 (((-637 (-637 |#1|)) $) 58)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4004 (((-3 $ #2="failed") $) 45 (|has| |#1| (-363)))) (-2481 (($ $ $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2352 (($ $ |#1|) NIL)) (-3872 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-556)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) (-546)) NIL) ((|#1| $ (-546) (-546) |#1|) NIL) (($ $ (-637 (-546)) (-637 (-546))) NIL)) (-3743 (($ (-637 |#1|)) NIL) (($ (-637 $)) NIL) (($ (-1256 |#1|)) 52)) (-3514 (((-112) $) NIL)) (-3739 ((|#1| $) 27 (|has| |#1| (-6 (-4410 #1#))))) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4385 (((-535) $) 62 (|has| |#1| (-611 (-535))))) (-3503 (((-1256 |#1|) $ (-546)) NIL)) (-4361 (($ (-1256 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $ $) NIL) (($ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) 23) (($ $ (-546)) 46 (|has| |#1| (-363)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-546) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) NIL) (((-1256 |#1|) (-1256 |#1|) $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-684 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3743 ($ (-1256 |#1|))) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4004 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -684))
+((-4004 (*1 *1 *1) (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3)))))
+(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3743 ($ (-1256 |#1|))) (IF (|has| |#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4004 ((-3 $ "failed") $)) |%noBranch|)))
+((-2493 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 25)) (-2492 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 21)) (-2494 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767)) 26)) (-2489 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 14)) (-2490 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 18) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 16)) (-2491 (((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|)) 20)) (-2488 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 12)) (** (((-684 |#1|) (-684 |#1|) (-767)) 30)))
+(((-685 |#1|) (-10 -7 (-15 -2488 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2489 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2490 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2490 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2491 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -2492 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2493 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2494 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) (-1045)) (T -685))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-2494 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-2493 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2492 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2491 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2490 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2490 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2489 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2488 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(-10 -7 (-15 -2488 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2489 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2490 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2490 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2491 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -2492 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2493 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2494 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767))))
+((-3565 (((-3 |#1| "failed") $) 17)) (-3564 ((|#1| $) NIL)) (-2495 (($) 7 T CONST)) (-2496 (($ |#1|) 8)) (-4361 (($ |#1|) 15) (((-859) $) 22)) (-3980 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2495)) 11)) (-3986 ((|#1| $) 14)))
+(((-686 |#1|) (-13 (-1252) (-1034 |#1|) (-610 (-859)) (-10 -8 (-15 -2496 ($ |#1|)) (-15 -3980 ((-112) $ (|[\|\|]| |#1|))) (-15 -3980 ((-112) $ (|[\|\|]| -2495))) (-15 -3986 (|#1| $)) (-15 -2495 ($) -4367))) (-610 (-859))) (T -686))
+((-2496 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859))))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-859))) (-5 *2 (-112)) (-5 *1 (-686 *4)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2495)) (-5 *2 (-112)) (-5 *1 (-686 *4)) (-4 *4 (-610 (-859))))) (-3986 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859))))) (-2495 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859))))))
+(-13 (-1252) (-1034 |#1|) (-610 (-859)) (-10 -8 (-15 -2496 ($ |#1|)) (-15 -3980 ((-112) $ (|[\|\|]| |#1|))) (-15 -3980 ((-112) $ (|[\|\|]| -2495))) (-15 -3986 (|#1| $)) (-15 -2495 ($) -4367)))
+((-2499 ((|#2| |#2| |#4|) 25)) (-2502 (((-684 |#2|) |#3| |#4|) 31)) (-2500 (((-684 |#2|) |#2| |#4|) 30)) (-2497 (((-1256 |#2|) |#2| |#4|) 16)) (-2498 ((|#2| |#3| |#4|) 24)) (-2503 (((-684 |#2|) |#3| |#4| (-767) (-767)) 38)) (-2501 (((-684 |#2|) |#2| |#4| (-767)) 37)))
+(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-1256 |#2|) |#2| |#4|)) (-15 -2498 (|#2| |#3| |#4|)) (-15 -2499 (|#2| |#2| |#4|)) (-15 -2500 ((-684 |#2|) |#2| |#4|)) (-15 -2501 ((-684 |#2|) |#2| |#4| (-767))) (-15 -2502 ((-684 |#2|) |#3| |#4|)) (-15 -2503 ((-684 |#2|) |#3| |#4| (-767) (-767)))) (-1094) (-896 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4408)))) (T -687))
+((-2503 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6)) (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4408)))))) (-2502 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6)) (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4408)))))) (-2500 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))) (-2499 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4408)))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1256 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))))
+(-10 -7 (-15 -2497 ((-1256 |#2|) |#2| |#4|)) (-15 -2498 (|#2| |#3| |#4|)) (-15 -2499 (|#2| |#2| |#4|)) (-15 -2500 ((-684 |#2|) |#2| |#4|)) (-15 -2501 ((-684 |#2|) |#2| |#4| (-767))) (-15 -2502 ((-684 |#2|) |#3| |#4|)) (-15 -2503 ((-684 |#2|) |#3| |#4| (-767) (-767))))
+((-4156 (((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)) 20)) (-4154 ((|#1| (-684 |#2|)) 9)) (-4155 (((-684 |#1|) (-684 |#2|)) 18)))
+(((-688 |#1| |#2|) (-10 -7 (-15 -4154 (|#1| (-684 |#2|))) (-15 -4155 ((-684 |#1|) (-684 |#2|))) (-15 -4156 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) (-556) (-987 |#1|)) (T -688))
+((-4156 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-987 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) (-5 *1 (-688 *4 *5)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-987 *4)) (-4 *4 (-556)) (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-688 *2 *4)))))
+(-10 -7 (-15 -4154 (|#1| (-684 |#2|))) (-15 -4155 ((-684 |#1|) (-684 |#2|))) (-15 -4156 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1936 (((-684 (-694))) NIL) (((-684 (-694)) (-1256 $)) NIL)) (-3741 (((-694) $) NIL)) (-3898 (($ $) NIL (|has| (-694) (-1193)))) (-4054 (($ $) NIL (|has| (-694) (-1193)))) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-694) (-350)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-906))))) (-4189 (($ $) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| (-694) (-906))) (|has| (-694) (-363))))) (-4384 (((-405 $) $) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| (-694) (-906))) (|has| (-694) (-363))))) (-3427 (($ $) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-906))))) (-1740 (((-112) $ $) NIL (|has| (-694) (-307)))) (-3528 (((-767)) NIL (|has| (-694) (-368)))) (-3896 (($ $) NIL (|has| (-694) (-1193)))) (-4053 (($ $) NIL (|has| (-694) (-1193)))) (-3900 (($ $) NIL (|has| (-694) (-1193)))) (-4052 (($ $) NIL (|has| (-694) (-1193)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) NIL) (((-3 (-694) #2#) $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-694) (-1034 (-407 (-546)))))) (-3564 (((-546) $) NIL) (((-694) $) NIL) (((-407 (-546)) $) NIL (|has| (-694) (-1034 (-407 (-546)))))) (-1946 (($ (-1256 (-694))) NIL) (($ (-1256 (-694)) (-1256 $)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-694) (-350)))) (-2949 (($ $ $) NIL (|has| (-694) (-307)))) (-1935 (((-684 (-694)) $) NIL) (((-684 (-694)) $ (-1256 $)) NIL)) (-2408 (((-684 (-694)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-694))) (|:| |vec| (-1256 (-694)))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-694) (-636 (-546)))) (((-684 (-546)) (-684 $)) NIL (|has| (-694) (-636 (-546))))) (-4257 (((-3 $ "failed") (-407 (-1163 (-694)))) NIL (|has| (-694) (-363))) (($ (-1163 (-694))) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4058 (((-694) $) 29)) (-3414 (((-3 (-407 (-546)) #3="failed") $) NIL (|has| (-694) (-545)))) (-3413 (((-112) $) NIL (|has| (-694) (-545)))) (-3412 (((-407 (-546)) $) NIL (|has| (-694) (-545)))) (-3501 (((-915)) NIL)) (-3384 (($) NIL (|has| (-694) (-368)))) (-2948 (($ $ $) NIL (|has| (-694) (-307)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| (-694) (-307)))) (-3222 (($) NIL (|has| (-694) (-350)))) (-1831 (((-112) $) NIL (|has| (-694) (-350)))) (-1921 (($ $) NIL (|has| (-694) (-350))) (($ $ (-767)) NIL (|has| (-694) (-350)))) (-4138 (((-112) $) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| (-694) (-906))) (|has| (-694) (-363))))) (-1452 (((-2 (|:| |r| (-694)) (|:| |phi| (-694))) $) NIL (-12 (|has| (-694) (-1054)) (|has| (-694) (-1193))))) (-4042 (($) NIL (|has| (-694) (-1193)))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-694) (-882 (-378)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-694) (-882 (-546))))) (-4186 (((-828 (-915)) $) NIL (|has| (-694) (-350))) (((-915) $) NIL (|has| (-694) (-350)))) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-3524 (((-694) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-694) (-350)))) (-1737 (((-3 (-637 $) #4="failed") (-637 $) $) NIL (|has| (-694) (-307)))) (-2171 (((-1163 (-694)) $) NIL (|has| (-694) (-363)))) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4373 (($ (-1 (-694) (-694)) $) NIL)) (-2167 (((-915) $) NIL (|has| (-694) (-368)))) (-4357 (($ $) NIL (|has| (-694) (-1193)))) (-3470 (((-1163 (-694)) $) NIL)) (-2048 (($ (-637 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| (-694) (-363)))) (-3856 (($) NIL (|has| (-694) (-350)) CONST)) (-2542 (($ (-915)) NIL (|has| (-694) (-368)))) (-1454 (($) NIL)) (-4059 (((-694) $) 31)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| (-694) (-307)))) (-3552 (($ (-637 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-694) (-350)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-906))))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-906))))) (-4147 (((-405 $) $) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| (-694) (-906))) (|has| (-694) (-363))))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-694) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| (-694) (-307)))) (-3872 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-694)) NIL (|has| (-694) (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| (-694) (-307)))) (-4358 (($ $) NIL (|has| (-694) (-1193)))) (-4182 (($ $ (-1169) (-694)) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-637 (-1169)) (-637 (-694))) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-637 (-293 (-694)))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-293 (-694))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-694) (-694)) NIL (|has| (-694) (-309 (-694)))) (($ $ (-637 (-694)) (-637 (-694))) NIL (|has| (-694) (-309 (-694))))) (-1739 (((-767) $) NIL (|has| (-694) (-307)))) (-4214 (($ $ (-694)) NIL (|has| (-694) (-286 (-694) (-694))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| (-694) (-307)))) (-4172 (((-694)) NIL) (((-694) (-1256 $)) NIL)) (-1922 (((-3 (-767) "failed") $ $) NIL (|has| (-694) (-350))) (((-767) $) NIL (|has| (-694) (-350)))) (-4225 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-2550 (((-684 (-694)) (-1256 $) (-1 (-694) (-694))) NIL (|has| (-694) (-363)))) (-3593 (((-1163 (-694))) NIL)) (-3901 (($ $) NIL (|has| (-694) (-1193)))) (-4051 (($ $) NIL (|has| (-694) (-1193)))) (-1825 (($) NIL (|has| (-694) (-350)))) (-3899 (($ $) NIL (|has| (-694) (-1193)))) (-4050 (($ $) NIL (|has| (-694) (-1193)))) (-3897 (($ $) NIL (|has| (-694) (-1193)))) (-4049 (($ $) NIL (|has| (-694) (-1193)))) (-3632 (((-684 (-694)) (-1256 $)) NIL) (((-1256 (-694)) $) NIL) (((-684 (-694)) (-1256 $) (-1256 $)) NIL) (((-1256 (-694)) $ (-1256 $)) NIL)) (-4385 (((-535) $) NIL (|has| (-694) (-611 (-535)))) (((-168 (-225)) $) NIL (|has| (-694) (-1016))) (((-168 (-378)) $) NIL (|has| (-694) (-1016))) (((-886 (-378)) $) NIL (|has| (-694) (-611 (-886 (-378))))) (((-886 (-546)) $) NIL (|has| (-694) (-611 (-886 (-546))))) (($ (-1163 (-694))) NIL) (((-1163 (-694)) $) NIL) (($ (-1256 (-694))) NIL) (((-1256 (-694)) $) NIL)) (-3399 (($ $) NIL)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-906))) (|has| (-694) (-350))))) (-1453 (($ (-694) (-694)) 12)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-546)) NIL) (($ (-694)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-546))) 19) (($ (-168 (-694))) 28) (($ (-168 (-696))) 25) (((-168 (-378)) $) 33) (($ (-407 (-546))) NIL (-3943 (|has| (-694) (-363)) (|has| (-694) (-1034 (-407 (-546))))))) (-3091 (($ $) NIL (|has| (-694) (-350))) (((-3 $ #1#) $) NIL (-3943 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-906))) (|has| (-694) (-145))))) (-2749 (((-1163 (-694)) $) NIL)) (-3518 (((-767)) NIL)) (-2169 (((-1256 $)) NIL)) (-3904 (($ $) NIL (|has| (-694) (-1193)))) (-3892 (($ $) NIL (|has| (-694) (-1193)))) (-2219 (((-112) $ $) NIL)) (-3902 (($ $) NIL (|has| (-694) (-1193)))) (-3890 (($ $) NIL (|has| (-694) (-1193)))) (-3906 (($ $) NIL (|has| (-694) (-1193)))) (-3894 (($ $) NIL (|has| (-694) (-1193)))) (-2364 (((-694) $) NIL (|has| (-694) (-1193)))) (-3907 (($ $) NIL (|has| (-694) (-1193)))) (-3895 (($ $) NIL (|has| (-694) (-1193)))) (-3905 (($ $) NIL (|has| (-694) (-1193)))) (-3893 (($ $) NIL (|has| (-694) (-1193)))) (-3903 (($ $) NIL (|has| (-694) (-1193)))) (-3891 (($ $) NIL (|has| (-694) (-1193)))) (-3794 (($ $) NIL (|has| (-694) (-1054)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL (|has| (-694) (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-694) (-1193))) (($ $ (-407 (-546))) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193)))) (($ $ (-546)) NIL (|has| (-694) (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ (-694) $) NIL) (($ $ (-694)) NIL) (($ (-407 (-546)) $) NIL (|has| (-694) (-363))) (($ $ (-407 (-546))) NIL (|has| (-694) (-363)))))
+(((-689) (-13 (-387) (-166 (-694)) (-10 -8 (-15 -4361 ($ (-168 (-378)))) (-15 -4361 ($ (-168 (-546)))) (-15 -4361 ($ (-168 (-694)))) (-15 -4361 ($ (-168 (-696)))) (-15 -4361 ((-168 (-378)) $))))) (T -689))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-689)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-168 (-546))) (-5 *1 (-689)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-689)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-168 (-696))) (-5 *1 (-689)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-689)))))
+(-13 (-387) (-166 (-694)) (-10 -8 (-15 -4361 ($ (-168 (-378)))) (-15 -4361 ($ (-168 (-546)))) (-15 -4361 ($ (-168 (-694)))) (-15 -4361 ($ (-168 (-696)))) (-15 -4361 ((-168 (-378)) $))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2505 (($ $) 62)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2504 (((-637 (-2 (|:| -2233 |#1|) (|:| -2104 (-767)))) $) 61)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-690 |#1|) (-140) (-1094)) (T -690))
+((-4022 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1094)))) (-2505 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1094)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1094)) (-5 *2 (-637 (-2 (|:| -2233 *3) (|:| -2104 (-767))))))))
+(-13 (-235 |t#1|) (-10 -8 (-15 -4022 ($ |t#1| $ (-767))) (-15 -2505 ($ $)) (-15 -2504 ((-637 (-2 (|:| -2233 |t#1|) (|:| -2104 (-767)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2508 (((-637 |#1|) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) (-546)) 47)) (-2506 ((|#1| |#1| (-546)) 46)) (-3552 ((|#1| |#1| |#1| (-546)) 36)) (-4147 (((-637 |#1|) |#1| (-546)) 39)) (-2509 ((|#1| |#1| (-546) |#1| (-546)) 32)) (-2507 (((-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) |#1| (-546)) 45)))
+(((-691 |#1|) (-10 -7 (-15 -3552 (|#1| |#1| |#1| (-546))) (-15 -2506 (|#1| |#1| (-546))) (-15 -4147 ((-637 |#1|) |#1| (-546))) (-15 -2507 ((-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) |#1| (-546))) (-15 -2508 ((-637 |#1|) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) (-546))) (-15 -2509 (|#1| |#1| (-546) |#1| (-546)))) (-1232 (-546))) (T -691))
+((-2509 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-2 (|:| -4147 *5) (|:| -4363 (-546))))) (-5 *4 (-546)) (-4 *5 (-1232 *4)) (-5 *2 (-637 *5)) (-5 *1 (-691 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-5 *2 (-637 (-2 (|:| -4147 *3) (|:| -4363 *4)))) (-5 *1 (-691 *3)) (-4 *3 (-1232 *4)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-5 *2 (-637 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1232 *4)))) (-2506 (*1 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3)))) (-3552 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3)))))
+(-10 -7 (-15 -3552 (|#1| |#1| |#1| (-546))) (-15 -2506 (|#1| |#1| (-546))) (-15 -4147 ((-637 |#1|) |#1| (-546))) (-15 -2507 ((-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) |#1| (-546))) (-15 -2508 ((-637 |#1|) (-637 (-2 (|:| -4147 |#1|) (|:| -4363 (-546)))) (-546))) (-15 -2509 (|#1| |#1| (-546) |#1| (-546))))
+((-2513 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2510 (((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261))) 40) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261))) 42) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1082 (-225)) (-1082 (-225)) (-637 (-261))) 44)) (-2512 (((-1126 (-225)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-637 (-261))) NIL)) (-2511 (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1082 (-225)) (-1082 (-225)) (-637 (-261))) 45)))
+(((-692) (-10 -7 (-15 -2510 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2510 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2510 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2511 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2512 ((-1126 (-225)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2513 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -692))
+((-2513 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))) (-2512 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225))) (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2511 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined")) (-5 *5 (-1082 (-225))) (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2510 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-225))) (-5 *5 (-637 (-261))) (-5 *1 (-692)))) (-2510 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-225))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2510 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1#)) (-5 *5 (-1082 (-225))) (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))))
+(-10 -7 (-15 -2510 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2510 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2510 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2511 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1082 (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2512 ((-1126 (-225)) (-314 (-546)) (-314 (-546)) (-314 (-546)) (-1 (-225) (-225)) (-1082 (-225)) (-637 (-261)))) (-15 -2513 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-4147 (((-405 (-1163 |#4|)) (-1163 |#4|)) 73) (((-405 |#4|) |#4|) 220)))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4|)) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|)))) (-846) (-789) (-350) (-946 |#3| |#2| |#1|)) (T -693))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-350)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-350)) (-5 *2 (-405 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4|)) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 84)) (-3521 (((-546) $) 30)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4185 (($ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) NIL)) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL)) (-4139 (($) NIL T CONST)) (-3519 (($ $) NIL)) (-3565 (((-3 (-546) #1="failed") $) 73) (((-3 (-407 (-546)) #1#) $) 26) (((-3 (-378) #1#) $) 70)) (-3564 (((-546) $) 75) (((-407 (-546)) $) 67) (((-378) $) 68)) (-2949 (($ $ $) 96)) (-3873 (((-3 $ "failed") $) 87)) (-2948 (($ $ $) 95)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2516 (((-915)) 77) (((-915) (-915)) 76)) (-3594 (((-112) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL)) (-4186 (((-546) $) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL)) (-3524 (($ $) NIL)) (-3595 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL)) (-2514 (((-546) (-546)) 81) (((-546)) 82)) (-2919 (($ $ $) NIL) (($) NIL (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-2515 (((-546) (-546)) 79) (((-546)) 80)) (-3249 (($ $ $) NIL) (($) NIL (-12 (-3733 (|has| $ (-6 -4391))) (-3733 (|has| $ (-6 -4399)))))) (-2517 (((-546) $) 16)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 91)) (-1924 (((-915) (-546)) NIL (|has| $ (-6 -4399)))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL)) (-3522 (($ $) NIL)) (-3662 (($ (-546) (-546)) NIL) (($ (-546) (-546) (-915)) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) 92)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-2543 (((-546) $) 22)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 94)) (-3000 (((-915)) NIL) (((-915) (-915)) NIL (|has| $ (-6 -4399)))) (-1923 (((-915) (-546)) NIL (|has| $ (-6 -4399)))) (-4385 (((-378) $) NIL) (((-225) $) NIL) (((-886 (-378)) $) NIL)) (-4361 (((-859) $) 52) (($ (-546)) 63) (($ $) NIL) (($ (-407 (-546))) 66) (($ (-546)) 63) (($ (-407 (-546))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-696)) 55)) (-3518 (((-767)) 103)) (-3337 (($ (-546) (-546) (-915)) 44)) (-3523 (($ $) NIL)) (-1925 (((-915)) NIL) (((-915) (-915)) NIL (|has| $ (-6 -4399)))) (-3083 (((-915)) 35) (((-915) (-915)) 78)) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL)) (-3047 (($) 32 T CONST)) (-3053 (($) 17 T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 83)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 101)) (-4364 (($ $ $) 65)) (-4252 (($ $) 99) (($ $ $) 100)) (-4254 (($ $ $) 98)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL) (($ $ (-407 (-546))) 90)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 97) (($ $ $) 88) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-694) (-13 (-404) (-387) (-363) (-1034 (-378)) (-1034 (-407 (-546))) (-147) (-10 -8 (-15 -2516 ((-915) (-915))) (-15 -2516 ((-915))) (-15 -3083 ((-915) (-915))) (-15 -2515 ((-546) (-546))) (-15 -2515 ((-546))) (-15 -2514 ((-546) (-546))) (-15 -2514 ((-546))) (-15 -4361 ((-378) $)) (-15 -4361 ($ (-696))) (-15 -2517 ((-546) $)) (-15 -2543 ((-546) $)) (-15 -3337 ($ (-546) (-546) (-915)))))) (T -694))
+((-2543 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-2516 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-2515 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-2514 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-694)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) (-3337 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-915)) (-5 *1 (-694)))))
+(-13 (-404) (-387) (-363) (-1034 (-378)) (-1034 (-407 (-546))) (-147) (-10 -8 (-15 -2516 ((-915) (-915))) (-15 -2516 ((-915))) (-15 -3083 ((-915) (-915))) (-15 -2515 ((-546) (-546))) (-15 -2515 ((-546))) (-15 -2514 ((-546) (-546))) (-15 -2514 ((-546))) (-15 -4361 ((-378) $)) (-15 -4361 ($ (-696))) (-15 -2517 ((-546) $)) (-15 -2543 ((-546) $)) (-15 -3337 ($ (-546) (-546) (-915)))))
+((-2520 (((-684 |#1|) (-684 |#1|) |#1| |#1|) 65)) (-3502 (((-684 |#1|) (-684 |#1|) |#1|) 48)) (-2519 (((-684 |#1|) (-684 |#1|) |#1|) 66)) (-2518 (((-684 |#1|) (-684 |#1|)) 49)) (-2521 (((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 64)))
+(((-695 |#1|) (-10 -7 (-15 -2518 ((-684 |#1|) (-684 |#1|))) (-15 -3502 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2519 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2520 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -2521 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) (-307)) (T -695))
+((-2521 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-695 *3)) (-4 *3 (-307)))) (-2520 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-3502 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
+(-10 -7 (-15 -2518 ((-684 |#1|) (-684 |#1|))) (-15 -3502 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2519 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2520 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -2521 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-2204 (($ $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2199 (($ $ $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL)) (-2741 (($ $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) "failed") $) 27)) (-3564 (((-546) $) 25)) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3412 (((-407 (-546)) $) NIL)) (-3384 (($ $) NIL) (($) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2197 (($ $ $ $) NIL)) (-2205 (($ $ $) NIL)) (-3594 (((-112) $) NIL)) (-1446 (($ $ $) NIL)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL)) (-2552 (((-112) $) NIL)) (-3062 (((-112) $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3595 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2198 (($ $ $ $) NIL)) (-2919 (($ $ $) NIL)) (-2522 (((-915) (-915)) 10) (((-915)) 9)) (-3249 (($ $ $) NIL)) (-2201 (($ $) NIL)) (-4248 (($ $) NIL)) (-2048 (($ (-637 $)) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2196 (($ $ $) NIL)) (-3856 (($) NIL T CONST)) (-2203 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ (-637 $)) NIL) (($ $ $) NIL)) (-1444 (($ $) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL) (($ $ (-767)) NIL)) (-2202 (($ $) NIL)) (-3811 (($ $) NIL)) (-4385 (((-225) $) NIL) (((-378) $) NIL) (((-886 (-546)) $) NIL) (((-535) $) NIL) (((-546) $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) 24) (($ $) NIL) (($ (-546)) 24) (((-314 $) (-314 (-546))) 18)) (-3518 (((-767)) NIL)) (-2206 (((-112) $ $) NIL)) (-3494 (($ $ $) NIL)) (-3083 (($) NIL)) (-2219 (((-112) $ $) NIL)) (-2200 (($ $ $ $) NIL)) (-3794 (($ $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL) (($ $ (-767)) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL)))
+(((-696) (-13 (-387) (-545) (-10 -8 (-15 -2522 ((-915) (-915))) (-15 -2522 ((-915))) (-15 -4361 ((-314 $) (-314 (-546))))))) (T -696))
+((-2522 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-696)))) (-2522 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-696)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-314 (-546))) (-5 *2 (-314 (-696))) (-5 *1 (-696)))))
+(-13 (-387) (-545) (-10 -8 (-15 -2522 ((-915) (-915))) (-15 -2522 ((-915))) (-15 -4361 ((-314 $) (-314 (-546))))))
+((-2528 (((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)) 19)) (-2523 (((-1 |#4| |#2| |#3|) (-1169)) 12)))
+(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2523 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2528 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) (-611 (-535)) (-1207) (-1207) (-1207)) (T -697))
+((-2528 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) (-4 *3 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) (-4 *4 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207)))))
+(-10 -7 (-15 -2523 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2528 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169))))
+((-2953 (((-112) $ $) NIL)) (-1398 (((-1262) $ (-767)) 14)) (-3830 (((-767) $) 12)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 25)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 24)))
+(((-698 |#1|) (-13 (-132) (-490 |#1|)) (-1094)) (T -698))
NIL
(-13 (-132) (-490 |#1|))
-((-4378 (((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)) 34) (((-1 (-225) (-225)) |#1| (-1169)) 39)))
-(((-699 |#1|) (-10 -7 (-15 -4378 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -4378 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) (-611 (-536))) (T -699))
-((-4378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536))))) (-4378 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536))))))
-(-10 -7 (-15 -4378 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -4378 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169))))
-((-1518 (((-1169) |#1| (-1169) (-640 (-1169))) 9) (((-1169) |#1| (-1169) (-1169) (-1169)) 12) (((-1169) |#1| (-1169) (-1169)) 11) (((-1169) |#1| (-1169)) 10)))
-(((-700 |#1|) (-10 -7 (-15 -1518 ((-1169) |#1| (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-640 (-1169))))) (-611 (-536))) (T -700))
-((-1518 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1518 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1518 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))))
-(-10 -7 (-15 -1518 ((-1169) |#1| (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -1518 ((-1169) |#1| (-1169) (-640 (-1169)))))
-((-2318 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-701 |#1| |#2|) (-10 -7 (-15 -2318 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1208) (-1208)) (T -701))
-((-2318 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208)))))
-(-10 -7 (-15 -2318 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1290 (((-1 |#3| |#2|) (-1169)) 11)) (-1299 (((-1 |#3| |#2|) |#1| (-1169)) 21)))
-(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -1290 ((-1 |#3| |#2|) (-1169))) (-15 -1299 ((-1 |#3| |#2|) |#1| (-1169)))) (-611 (-536)) (-1208) (-1208)) (T -702))
-((-1299 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))) (-1290 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))))
-(-10 -7 (-15 -1290 ((-1 |#3| |#2|) (-1169))) (-15 -1299 ((-1 |#3| |#2|) |#1| (-1169))))
-((-1331 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|) 61)) (-1321 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|) 74)) (-1310 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|) 34)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1310 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -1321 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -1331 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -703))
-((-1331 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13)) (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13)) (-5 *7 (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-1321 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9))) (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12)))) (-1310 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11)) (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767))) (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1310 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -1321 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -1331 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2750 (($ $) 42)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-2587 (($ |#1| (-767)) 40)) (-3908 (((-767) $) 44)) (-2725 ((|#1| $) 43)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3871 (((-767) $) 45)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-3244 ((|#1| $ (-767)) 41)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
+((-2524 (((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)) 34) (((-1 (-225) (-225)) |#1| (-1169)) 39)))
+(((-699 |#1|) (-10 -7 (-15 -2524 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -2524 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) (-611 (-535))) (T -699))
+((-2524 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-535))))) (-2524 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-535))))))
+(-10 -7 (-15 -2524 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -2524 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169))))
+((-2525 (((-1169) |#1| (-1169) (-637 (-1169))) 9) (((-1169) |#1| (-1169) (-1169) (-1169)) 12) (((-1169) |#1| (-1169) (-1169)) 11) (((-1169) |#1| (-1169)) 10)))
+(((-700 |#1|) (-10 -7 (-15 -2525 ((-1169) |#1| (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-637 (-1169))))) (-611 (-535))) (T -700))
+((-2525 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-637 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535))))) (-2525 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535))))) (-2525 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535))))) (-2525 (*1 *2 *3 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535))))))
+(-10 -7 (-15 -2525 ((-1169) |#1| (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -2525 ((-1169) |#1| (-1169) (-637 (-1169)))))
+((-2526 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-701 |#1| |#2|) (-10 -7 (-15 -2526 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1207) (-1207)) (T -701))
+((-2526 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1207)) (-4 *4 (-1207)))))
+(-10 -7 (-15 -2526 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2527 (((-1 |#3| |#2|) (-1169)) 11)) (-2528 (((-1 |#3| |#2|) |#1| (-1169)) 21)))
+(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2527 ((-1 |#3| |#2|) (-1169))) (-15 -2528 ((-1 |#3| |#2|) |#1| (-1169)))) (-611 (-535)) (-1207) (-1207)) (T -702))
+((-2528 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))))
+(-10 -7 (-15 -2527 ((-1 |#3| |#2|) (-1169))) (-15 -2528 ((-1 |#3| |#2|) |#1| (-1169))))
+((-2531 (((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#4|)) (-637 |#3|) (-637 |#4|) (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#4|)))) (-637 (-767)) (-1256 (-637 (-1163 |#3|))) |#3|) 61)) (-2530 (((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#3|)) (-637 |#3|) (-637 |#4|) (-637 (-767)) |#3|) 74)) (-2529 (((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 |#3|) (-637 (-767)) (-637 (-1163 |#4|)) (-1256 (-637 (-1163 |#3|))) |#3|) 34)))
+(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2529 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 |#3|) (-637 (-767)) (-637 (-1163 |#4|)) (-1256 (-637 (-1163 |#3|))) |#3|)) (-15 -2530 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#3|)) (-637 |#3|) (-637 |#4|) (-637 (-767)) |#3|)) (-15 -2531 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#4|)) (-637 |#3|) (-637 |#4|) (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#4|)))) (-637 (-767)) (-1256 (-637 (-1163 |#3|))) |#3|))) (-789) (-846) (-307) (-946 |#3| |#1| |#2|)) (T -703))
+((-2531 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-637 (-1163 *13))) (-5 *3 (-1163 *13)) (-5 *4 (-637 *12)) (-5 *5 (-637 *10)) (-5 *6 (-637 *13)) (-5 *7 (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-637 (-767))) (-5 *9 (-1256 (-637 (-1163 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-2530 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-637 *11)) (-5 *5 (-637 (-1163 *9))) (-5 *6 (-637 *9)) (-5 *7 (-637 *12)) (-5 *8 (-637 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-637 (-1163 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1163 *12)))) (-2529 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-637 (-1163 *11))) (-5 *3 (-1163 *11)) (-5 *4 (-637 *10)) (-5 *5 (-637 *8)) (-5 *6 (-637 (-767))) (-5 *7 (-1256 (-637 (-1163 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2529 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 |#3|) (-637 (-767)) (-637 (-1163 |#4|)) (-1256 (-637 (-1163 |#3|))) |#3|)) (-15 -2530 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#3|)) (-637 |#3|) (-637 |#4|) (-637 (-767)) |#3|)) (-15 -2531 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-637 |#2|) (-637 (-1163 |#4|)) (-637 |#3|) (-637 |#4|) (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#4|)))) (-637 (-767)) (-1256 (-637 (-1163 |#3|))) |#3|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4374 (($ $) 42)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3283 (($ |#1| (-767)) 40)) (-3209 (((-767) $) 44)) (-3582 ((|#1| $) 43)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4363 (((-767) $) 45)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-4092 ((|#1| $ (-767)) 41)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
(((-704 |#1|) (-140) (-1045)) (T -704))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2587 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3871 ((-767) $)) (-15 -3908 ((-767) $)) (-15 -2725 (|t#1| $)) (-15 -2750 ($ $)) (-15 -3244 (|t#1| $ (-767))) (-15 -2587 ($ |t#1| (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-2238 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2238 (|#6| (-1 |#4| |#1|) |#3|))) (-555) (-1233 |#1|) (-1233 (-407 |#2|)) (-555) (-1233 |#4|) (-1233 (-407 |#5|))) (T -705))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555)) (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6))) (-4 *8 (-1233 *7)))))
-(-10 -7 (-15 -2238 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1340 (((-1151) (-858)) 31)) (-1463 (((-1262) (-1151)) 28)) (-1360 (((-1151) (-858)) 24)) (-1350 (((-1151) (-858)) 25)) (-1692 (((-858) $) NIL) (((-1151) (-858)) 23)) (-1718 (((-112) $ $) NIL)))
-(((-706) (-13 (-1093) (-10 -7 (-15 -1692 ((-1151) (-858))) (-15 -1360 ((-1151) (-858))) (-15 -1350 ((-1151) (-858))) (-15 -1340 ((-1151) (-858))) (-15 -1463 ((-1262) (-1151)))))) (T -706))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706)))))
-(-13 (-1093) (-10 -7 (-15 -1692 ((-1151) (-858))) (-15 -1360 ((-1151) (-858))) (-15 -1350 ((-1151) (-858))) (-15 -1340 ((-1151) (-858))) (-15 -1463 ((-1262) (-1151)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL)) (-2444 (($ |#1| |#2|) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3593 ((|#2| $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3322 (((-3 $ "failed") $ $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) ((|#1| $) NIL)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -3593 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -3322 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707))
-((-3593 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1692 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2444 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3322 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-363) (-10 -8 (-15 -3593 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -3322 ((-3 $ "failed") $ $))))
-((-1677 (((-112) $ $) 77)) (-3439 (((-112) $) 30)) (-1740 (((-1257 |#1|) $ (-767)) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-1714 (($ (-1165 |#1|)) NIL)) (-2138 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1601 (($ $ $) NIL (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3750 (((-767)) 46 (|has| |#1| (-368)))) (-1660 (($ $ (-767)) NIL)) (-1647 (($ $ (-767)) NIL)) (-3296 ((|#2| |#2|) 43)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-1612 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) 33)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2444 (($ |#2|) 41)) (-3951 (((-3 $ "failed") $) 85)) (-1690 (($) 50 (|has| |#1| (-368)))) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-1634 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#1| (-555)))) (-1564 (((-2 (|:| -2310 |#1|) (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-3259 (((-954 $)) 79)) (-2159 (($ $ |#1| (-767) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2595 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1821 (($ $ (-767)) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) 76) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1075)) NIL) (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3593 ((|#2|) 44)) (-3908 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-767) (-767)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1726 (((-1165 |#1|) $) NIL)) (-1698 (((-3 (-1075) "failed") $) NIL)) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-2433 ((|#2| $) 40)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) 28)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1075)) (|:| -3311 (-767))) "failed") $) NIL)) (-2062 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) NIL (|has| |#1| (-1144)) CONST)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3238 (($ $) 78 (|has| |#1| (-349)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-1699 (((-3 $ "failed") $ (-767)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 86 (|has| |#1| (-363)))) (-1623 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4203 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3871 (((-767) $) 31) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-3247 (((-954 $)) 35)) (-1590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1692 (((-858) $) 60) (($ (-563)) NIL) (($ |#1|) 57) (($ (-1075)) NIL) (($ |#2|) 67) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) 62) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 20 T CONST)) (-3285 (((-1257 |#1|) $) 74)) (-3276 (($ (-1257 |#1|)) 49)) (-2253 (($) 8 T CONST)) (-3213 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3266 (((-1257 |#1|) $) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 68)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) 71) (($ $ $) NIL)) (-1813 (($ $ $) 32)) (** (($ $ (-917)) NIL) (($ $ (-767)) 80)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 56) (($ $ $) 73) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-708 |#1| |#2|) (-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -3296 (|#2| |#2|)) (-15 -3593 (|#2|)) (-15 -2444 ($ |#2|)) (-15 -2433 (|#2| $)) (-15 -3285 ((-1257 |#1|) $)) (-15 -3276 ($ (-1257 |#1|))) (-15 -3266 ((-1257 |#1|) $)) (-15 -3259 ((-954 $))) (-15 -3247 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -3238 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1233 |#1|)) (T -708))
-((-3296 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-3593 (*1 *2) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-2444 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-3285 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3259 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3247 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3238 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1233 *2)))))
-(-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -3296 (|#2| |#2|)) (-15 -3593 (|#2|)) (-15 -2444 ($ |#2|)) (-15 -2433 (|#2| $)) (-15 -3285 ((-1257 |#1|) $)) (-15 -3276 ($ (-1257 |#1|))) (-15 -3266 ((-1257 |#1|) $)) (-15 -3259 ((-954 $))) (-15 -3247 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -3238 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 ((|#1| $) 13)) (-1693 (((-1113) $) NIL)) (-3311 ((|#2| $) 12)) (-1706 (($ |#1| |#2|) 16)) (-1692 (((-858) $) NIL) (($ (-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) 15) (((-2 (|:| -2552 |#1|) (|:| -3311 |#2|)) $) 14)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 11)))
-(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) (-10 -8 (-15 -3311 (|#2| $)) (-15 -2552 (|#1| $)) (-15 -1706 ($ |#1| |#2|)))) (-846) (-1093) (-1 (-112) (-2 (|:| -2552 |#1|) (|:| -3311 |#2|)) (-2 (|:| -2552 |#1|) (|:| -3311 |#2|)))) (T -709))
-((-3311 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -2552 *3) (|:| -3311 *2)) (-2 (|:| -2552 *3) (|:| -3311 *2)))))) (-2552 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *3)) (-2 (|:| -2552 *2) (|:| -3311 *3)))))) (-1706 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *3)) (-2 (|:| -2552 *2) (|:| -3311 *3)))))))
-(-13 (-846) (-490 (-2 (|:| -2552 |#1|) (|:| -3311 |#2|))) (-10 -8 (-15 -3311 (|#2| $)) (-15 -2552 (|#1| $)) (-15 -1706 ($ |#1| |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 59)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2057 ((|#1| $) NIL) (((-114) $) 39)) (-3951 (((-3 $ "failed") $) 90)) (-2888 ((|#2| (-114) |#2|) 82)) (-3401 (((-112) $) NIL)) (-2879 (($ |#1| (-361 (-114))) 14)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2897 (($ $ (-1 |#2| |#2|)) 58)) (-2906 (($ $ (-1 |#2| |#2|)) 44)) (-2308 ((|#2| $ |#2|) 33)) (-2916 ((|#1| |#1|) 105 (|has| |#1| (-172)))) (-1692 (((-858) $) 66) (($ (-563)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) 37)) (-2926 (($ $) 99 (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-172)))) (-2239 (($) 21 T CONST)) (-2253 (($) 9 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) 48) (($ $ $) NIL)) (-1813 (($ $ $) 73)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) 57)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-172))) (($ $ |#1|) 97 (|has| |#1| (-172)))))
-(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2926 ($ $)) (-15 -2926 ($ $ $)) (-15 -2916 (|#1| |#1|))) |%noBranch|) (-15 -2906 ($ $ (-1 |#2| |#2|))) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2888 (|#2| (-114) |#2|)) (-15 -2879 ($ |#1| (-361 (-114)))))) (-1045) (-643 |#1|)) (T -710))
-((-2926 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2926 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2916 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-643 *3)))) (-2888 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-643 *4)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-643 *2)))))
-(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2926 ($ $)) (-15 -2926 ($ $ $)) (-15 -2916 (|#1| |#1|))) |%noBranch|) (-15 -2906 ($ $ (-1 |#2| |#2|))) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2888 (|#2| (-114) |#2|)) (-15 -2879 ($ |#1| (-361 (-114))))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 33)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2444 (($ |#1| |#2|) 25)) (-3951 (((-3 $ "failed") $) 49)) (-3401 (((-112) $) 35)) (-3593 ((|#2| $) 12)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 50)) (-1693 (((-1113) $) NIL)) (-3322 (((-3 $ "failed") $ $) 48)) (-1692 (((-858) $) 24) (($ (-563)) 19) ((|#1| $) 13)) (-3914 (((-767)) 28)) (-2239 (($) 16 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 39)) (-1825 (($ $) 44) (($ $ $) 38)) (-1813 (($ $ $) 41)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 21) (($ $ $) 20)))
-(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -3593 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -3322 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -2687 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711))
-((-3951 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3593 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1692 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2444 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3322 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2687 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1045) (-10 -8 (-15 -3593 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -3322 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -2687 ($ $))))
-((* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-713 |#2|) (-172)) (T -712))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))))
+(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4363 ((-767) $)) (-15 -3209 ((-767) $)) (-15 -3582 (|t#1| $)) (-15 -4374 ($ $)) (-15 -4092 (|t#1| $ (-767))) (-15 -3283 ($ |t#1| (-767)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-4373 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4373 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1232 |#1|) (-1232 (-407 |#2|)) (-556) (-1232 |#4|) (-1232 (-407 |#5|))) (T -705))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1232 *5)) (-4 *2 (-1232 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1232 (-407 *6))) (-4 *8 (-1232 *7)))))
+(-10 -7 (-15 -4373 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2532 (((-1151) (-859)) 31)) (-4032 (((-1262) (-1151)) 28)) (-2534 (((-1151) (-859)) 24)) (-2533 (((-1151) (-859)) 25)) (-4361 (((-859) $) NIL) (((-1151) (-859)) 23)) (-3444 (((-112) $ $) NIL)))
+(((-706) (-13 (-1094) (-10 -7 (-15 -4361 ((-1151) (-859))) (-15 -2534 ((-1151) (-859))) (-15 -2533 ((-1151) (-859))) (-15 -2532 ((-1151) (-859))) (-15 -4032 ((-1262) (-1151)))))) (T -706))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706)))))
+(-13 (-1094) (-10 -7 (-15 -4361 ((-1151) (-859))) (-15 -2534 ((-1151) (-859))) (-15 -2533 ((-1151) (-859))) (-15 -2532 ((-1151) (-859))) (-15 -4032 ((-1262) (-1151)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL)) (-4257 (($ |#1| |#2|) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2999 ((|#2| $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-2544 (((-3 $ "failed") $ $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) ((|#1| $) NIL)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -2999 (|#2| $)) (-15 -4361 (|#1| $)) (-15 -4257 ($ |#1| |#2|)) (-15 -2544 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707))
+((-2999 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4361 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4257 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2544 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-363) (-10 -8 (-15 -2999 (|#2| $)) (-15 -4361 (|#1| $)) (-15 -4257 ($ |#1| |#2|)) (-15 -2544 ((-3 $ "failed") $ $))))
+((-2953 (((-112) $ $) 77)) (-3596 (((-112) $) 30)) (-4181 (((-1256 |#1|) $ (-767)) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4179 (($ (-1163 |#1|)) NIL)) (-3476 (((-1163 $) $ (-1075)) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1075))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4170 (($ $ $) NIL (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3528 (((-767)) 46 (|has| |#1| (-368)))) (-4175 (($ $ (-767)) NIL)) (-4174 (($ $ (-767)) NIL)) (-2541 ((|#2| |#2|) 43)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-1075) #2#) $) NIL)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-1075) $) NIL)) (-4171 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) 33)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-4257 (($ |#2|) 41)) (-3873 (((-3 $ "failed") $) 85)) (-3384 (($) 50 (|has| |#1| (-368)))) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4173 (($ $ $) NIL)) (-4168 (($ $ $) NIL (|has| |#1| (-556)))) (-4167 (((-2 (|:| -4369 |#1|) (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-2537 (((-954 $)) 79)) (-1756 (($ $ |#1| (-767) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1075) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1075) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ $) NIL (|has| |#1| (-556)))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-3477 (($ (-1163 |#1|) (-1075)) NIL) (($ (-1163 $) (-1075)) NIL)) (-4191 (($ $ (-767)) NIL)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) 76) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1075)) NIL) (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-2999 ((|#2|) 44)) (-3209 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-767) (-767)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4180 (((-1163 |#1|) $) NIL)) (-3475 (((-3 (-1075) #4="failed") $) NIL)) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-3470 ((|#2| $) 40)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) 28)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) NIL)) (-3212 (((-3 (-637 $) #4#) $) NIL)) (-3211 (((-3 (-637 $) #4#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1075)) (|:| -2543 (-767))) #4#) $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) NIL (|has| |#1| (-1144)) CONST)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2535 (($ $) 78 (|has| |#1| (-350)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-637 (-1075)) (-637 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-637 (-1075)) (-637 $)) NIL)) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4178 (((-3 $ #5="failed") $ (-767)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 86 (|has| |#1| (-363)))) (-4172 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4225 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4363 (((-767) $) 31) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1075) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-2536 (((-954 $)) 35)) (-4169 (((-3 $ #5#) $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) #5#) (-407 $) $) NIL (|has| |#1| (-556)))) (-4361 (((-859) $) 60) (($ (-546)) NIL) (($ |#1|) 57) (($ (-1075)) NIL) (($ |#2|) 67) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) 62) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 20 T CONST)) (-2540 (((-1256 |#1|) $) 74)) (-2539 (($ (-1256 |#1|)) 49)) (-3053 (($) 8 T CONST)) (-3058 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2538 (((-1256 |#1|) $) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) 68)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) 71) (($ $ $) NIL)) (-4254 (($ $ $) 32)) (** (($ $ (-915)) NIL) (($ $ (-767)) 80)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 56) (($ $ $) 73) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-708 |#1| |#2|) (-13 (-1232 |#1|) (-613 |#2|) (-10 -8 (-15 -2541 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -4257 ($ |#2|)) (-15 -3470 (|#2| $)) (-15 -2540 ((-1256 |#1|) $)) (-15 -2539 ($ (-1256 |#1|))) (-15 -2538 ((-1256 |#1|) $)) (-15 -2537 ((-954 $))) (-15 -2536 ((-954 $))) (IF (|has| |#1| (-350)) (-15 -2535 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1232 |#1|)) (T -708))
+((-2541 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1232 *3)))) (-2999 (*1 *2) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-4257 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1232 *3)))) (-3470 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-2540 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1256 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1232 *3)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1232 *3)))) (-2538 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1256 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1232 *3)))) (-2537 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1232 *3)))) (-2536 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1232 *3)))) (-2535 (*1 *1 *1) (-12 (-4 *2 (-350)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1232 *2)))))
+(-13 (-1232 |#1|) (-613 |#2|) (-10 -8 (-15 -2541 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -4257 ($ |#2|)) (-15 -3470 (|#2| $)) (-15 -2540 ((-1256 |#1|) $)) (-15 -2539 ($ (-1256 |#1|))) (-15 -2538 ((-1256 |#1|) $)) (-15 -2537 ((-954 $))) (-15 -2536 ((-954 $))) (IF (|has| |#1| (-350)) (-15 -2535 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 ((|#1| $) 13)) (-3651 (((-1113) $) NIL)) (-2543 ((|#2| $) 12)) (-3936 (($ |#1| |#2|) 16)) (-4361 (((-859) $) NIL) (($ (-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) 15) (((-2 (|:| -2542 |#1|) (|:| -2543 |#2|)) $) 14)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 11)))
+(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) (-10 -8 (-15 -2543 (|#2| $)) (-15 -2542 (|#1| $)) (-15 -3936 ($ |#1| |#2|)))) (-846) (-1094) (-1 (-112) (-2 (|:| -2542 |#1|) (|:| -2543 |#2|)) (-2 (|:| -2542 |#1|) (|:| -2543 |#2|)))) (T -709))
+((-2543 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -2542 *3) (|:| -2543 *2)) (-2 (|:| -2542 *3) (|:| -2543 *2)))))) (-2542 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *3)) (-2 (|:| -2542 *2) (|:| -2543 *3)))))) (-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *3)) (-2 (|:| -2542 *2) (|:| -2543 *3)))))))
+(-13 (-846) (-490 (-2 (|:| -2542 |#1|) (|:| -2543 |#2|))) (-10 -8 (-15 -2543 (|#2| $)) (-15 -2542 (|#1| $)) (-15 -3936 ($ |#1| |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 59)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3564 ((|#1| $) NIL) (((-113) $) 39)) (-3873 (((-3 $ "failed") $) 90)) (-2901 ((|#2| (-113) |#2|) 82)) (-2552 (((-112) $) NIL)) (-2900 (($ |#1| (-361 (-113))) 14)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2902 (($ $ (-1 |#2| |#2|)) 58)) (-2903 (($ $ (-1 |#2| |#2|)) 44)) (-4214 ((|#2| $ |#2|) 33)) (-2904 ((|#1| |#1|) 105 (|has| |#1| (-172)))) (-4361 (((-859) $) 66) (($ (-546)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) 37)) (-2905 (($ $) 99 (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-172)))) (-3047 (($) 21 T CONST)) (-3053 (($) 9 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) 48) (($ $ $) NIL)) (-4254 (($ $ $) 73)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ (-113) (-546)) NIL) (($ $ (-546)) 57)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-172))) (($ $ |#1|) 97 (|has| |#1| (-172)))))
+(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-113)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2904 (|#1| |#1|))) |%noBranch|) (-15 -2903 ($ $ (-1 |#2| |#2|))) (-15 -2902 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-546))) (-15 ** ($ $ (-546))) (-15 -2901 (|#2| (-113) |#2|)) (-15 -2900 ($ |#1| (-361 (-113)))))) (-1045) (-643 |#1|)) (T -710))
+((-2905 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2905 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2904 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-643 *3)))) (-2901 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-643 *4)))) (-2900 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-113))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-643 *2)))))
+(-13 (-1045) (-1034 |#1|) (-1034 (-113)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2904 (|#1| |#1|))) |%noBranch|) (-15 -2903 ($ $ (-1 |#2| |#2|))) (-15 -2902 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-546))) (-15 ** ($ $ (-546))) (-15 -2901 (|#2| (-113) |#2|)) (-15 -2900 ($ |#1| (-361 (-113))))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 33)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4257 (($ |#1| |#2|) 25)) (-3873 (((-3 $ "failed") $) 49)) (-2552 (((-112) $) 35)) (-2999 ((|#2| $) 12)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 50)) (-3651 (((-1113) $) NIL)) (-2544 (((-3 $ "failed") $ $) 48)) (-4361 (((-859) $) 24) (($ (-546)) 19) ((|#1| $) 13)) (-3518 (((-767)) 28)) (-3047 (($) 16 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 39)) (-4252 (($ $) 44) (($ $ $) 38)) (-4254 (($ $ $) 41)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 21) (($ $ $) 20)))
+(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -2999 (|#2| $)) (-15 -4361 (|#1| $)) (-15 -4257 ($ |#1| |#2|)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -3873 ((-3 $ "failed") $)) (-15 -2785 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711))
+((-3873 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4361 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4257 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2544 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2785 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-1045) (-10 -8 (-15 -2999 (|#2| $)) (-15 -4361 (|#1| $)) (-15 -4257 ($ |#1| |#2|)) (-15 -2544 ((-3 $ "failed") $ $)) (-15 -3873 ((-3 $ "failed") $)) (-15 -2785 ($ $))))
+((* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|))) (-713 |#2|) (-172)) (T -712))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-713 |#1|) (-140) (-172)) (T -713))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3462 (($ |#1|) 17) (($ $ |#1|) 20)) (-4165 (($ |#1|) 18) (($ $ |#1|) 21)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3401 (((-112) $) NIL)) (-3332 (($ |#1| |#1| |#1| |#1|) 8)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 16)) (-1693 (((-1113) $) NIL)) (-1542 ((|#1| $ |#1|) 24) (((-829 |#1|) $ (-829 |#1|)) 32)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-1692 (((-858) $) 39)) (-2253 (($) 9 T CONST)) (-1718 (((-112) $ $) 44)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 14)))
-(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -3332 ($ |#1| |#1| |#1| |#1|)) (-15 -3462 ($ |#1|)) (-15 -4165 ($ |#1|)) (-15 -3951 ($)) (-15 -3462 ($ $ |#1|)) (-15 -4165 ($ $ |#1|)) (-15 -3951 ($ $)) (-15 -1542 (|#1| $ |#1|)) (-15 -1542 ((-829 |#1|) $ (-829 |#1|))))) (-363)) (T -714))
-((-3332 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3462 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4165 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3951 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1542 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1542 (*1 *2 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))))
-(-13 (-473) (-10 -8 (-15 -3332 ($ |#1| |#1| |#1| |#1|)) (-15 -3462 ($ |#1|)) (-15 -4165 ($ |#1|)) (-15 -3951 ($)) (-15 -3462 ($ $ |#1|)) (-15 -4165 ($ $ |#1|)) (-15 -3951 ($ $)) (-15 -1542 (|#1| $ |#1|)) (-15 -1542 ((-829 |#1|) $ (-829 |#1|)))))
-((-3376 (($ $ (-917)) 12)) (-3364 (($ $ (-917)) 13)) (** (($ $ (-917)) 10)))
-(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -3364 (|#1| |#1| (-917))) (-15 -3376 (|#1| |#1| (-917)))) (-716)) (T -715))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -3364 (|#1| |#1| (-917))) (-15 -3376 (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-3376 (($ $ (-917)) 15)) (-3364 (($ $ (-917)) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-2741 (($ |#1|) 17) (($ $ |#1|) 20)) (-4262 (($ |#1|) 18) (($ $ |#1|) 21)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2552 (((-112) $) NIL)) (-2545 (($ |#1| |#1| |#1| |#1|) 8)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 16)) (-3651 (((-1113) $) NIL)) (-4182 ((|#1| $ |#1|) 24) (((-828 |#1|) $ (-828 |#1|)) 32)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-4361 (((-859) $) 39)) (-3053 (($) 9 T CONST)) (-3444 (((-112) $ $) 44)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ $ $) 14)))
+(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -2545 ($ |#1| |#1| |#1| |#1|)) (-15 -2741 ($ |#1|)) (-15 -4262 ($ |#1|)) (-15 -3873 ($)) (-15 -2741 ($ $ |#1|)) (-15 -4262 ($ $ |#1|)) (-15 -3873 ($ $)) (-15 -4182 (|#1| $ |#1|)) (-15 -4182 ((-828 |#1|) $ (-828 |#1|))))) (-363)) (T -714))
+((-2545 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2741 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4262 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3873 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4262 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3873 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4182 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4182 (*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))))
+(-13 (-473) (-10 -8 (-15 -2545 ($ |#1| |#1| |#1| |#1|)) (-15 -2741 ($ |#1|)) (-15 -4262 ($ |#1|)) (-15 -3873 ($)) (-15 -2741 ($ $ |#1|)) (-15 -4262 ($ $ |#1|)) (-15 -3873 ($ $)) (-15 -4182 (|#1| $ |#1|)) (-15 -4182 ((-828 |#1|) $ (-828 |#1|)))))
+((-2549 (($ $ (-915)) 12)) (-2548 (($ $ (-915)) 13)) (** (($ $ (-915)) 10)))
+(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-915))) (-15 -2548 (|#1| |#1| (-915))) (-15 -2549 (|#1| |#1| (-915)))) (-716)) (T -715))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-915))) (-15 -2548 (|#1| |#1| (-915))) (-15 -2549 (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-2549 (($ $ (-915)) 15)) (-2548 (($ $ (-915)) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)) (** (($ $ (-915)) 13)) (* (($ $ $) 16)))
(((-716) (-140)) (T -716))
-((* (*1 *1 *1 *1) (-4 *1 (-716))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (-3364 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))))
-(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 -3376 ($ $ (-917))) (-15 -3364 ($ $ (-917))) (-15 ** ($ $ (-917)))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-3376 (($ $ (-917)) NIL) (($ $ (-767)) 17)) (-3401 (((-112) $) 10)) (-3364 (($ $ (-917)) NIL) (($ $ (-767)) 18)) (** (($ $ (-917)) NIL) (($ $ (-767)) 15)))
-(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -3364 (|#1| |#1| (-767))) (-15 -3376 (|#1| |#1| (-767))) (-15 -3401 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -3364 (|#1| |#1| (-917))) (-15 -3376 (|#1| |#1| (-917)))) (-718)) (T -717))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -3364 (|#1| |#1| (-767))) (-15 -3376 (|#1| |#1| (-767))) (-15 -3401 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -3364 (|#1| |#1| (-917))) (-15 -3376 (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-3342 (((-3 $ "failed") $) 17)) (-3376 (($ $ (-917)) 15) (($ $ (-767)) 22)) (-3951 (((-3 $ "failed") $) 19)) (-3401 (((-112) $) 23)) (-3353 (((-3 $ "failed") $) 18)) (-3364 (($ $ (-917)) 14) (($ $ (-767)) 21)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2253 (($) 24 T CONST)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 20)) (* (($ $ $) 16)))
+((* (*1 *1 *1 *1) (-4 *1 (-716))) (-2549 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915)))) (-2548 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915)))))
+(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -2549 ($ $ (-915))) (-15 -2548 ($ $ (-915))) (-15 ** ($ $ (-915)))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2549 (($ $ (-915)) NIL) (($ $ (-767)) 17)) (-2552 (((-112) $) 10)) (-2548 (($ $ (-915)) NIL) (($ $ (-767)) 18)) (** (($ $ (-915)) NIL) (($ $ (-767)) 15)))
+(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2548 (|#1| |#1| (-767))) (-15 -2549 (|#1| |#1| (-767))) (-15 -2552 ((-112) |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 -2548 (|#1| |#1| (-915))) (-15 -2549 (|#1| |#1| (-915)))) (-718)) (T -717))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2548 (|#1| |#1| (-767))) (-15 -2549 (|#1| |#1| (-767))) (-15 -2552 ((-112) |#1|)) (-15 ** (|#1| |#1| (-915))) (-15 -2548 (|#1| |#1| (-915))) (-15 -2549 (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-2546 (((-3 $ "failed") $) 17)) (-2549 (($ $ (-915)) 15) (($ $ (-767)) 22)) (-3873 (((-3 $ "failed") $) 19)) (-2552 (((-112) $) 23)) (-2547 (((-3 $ "failed") $) 18)) (-2548 (($ $ (-915)) 14) (($ $ (-767)) 21)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3053 (($) 24 T CONST)) (-3444 (((-112) $ $) 6)) (** (($ $ (-915)) 13) (($ $ (-767)) 20)) (* (($ $ $) 16)))
(((-718) (-140)) (T -718))
-((-2253 (*1 *1) (-4 *1 (-718))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3364 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3951 (*1 *1 *1) (|partial| -4 *1 (-718))) (-3353 (*1 *1 *1) (|partial| -4 *1 (-718))) (-3342 (*1 *1 *1) (|partial| -4 *1 (-718))))
-(-13 (-716) (-10 -8 (-15 (-2253) ($) -2668) (-15 -3401 ((-112) $)) (-15 -3376 ($ $ (-767))) (-15 -3364 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -3951 ((-3 $ "failed") $)) (-15 -3353 ((-3 $ "failed") $)) (-15 -3342 ((-3 $ "failed") $))))
-(((-102) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T))
-((-3750 (((-767)) 35)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 22)) (-2444 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 45)) (-3951 (((-3 $ "failed") $) 65)) (-1690 (($) 39)) (-3975 ((|#2| $) 20)) (-4334 (($) 17)) (-4203 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3388 (((-684 |#2|) (-1257 $) (-1 |#2| |#2|)) 60)) (-2219 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1892 ((|#3| $) 32)) (-4013 (((-1257 $)) 29)))
-(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1690 (|#1|)) (-15 -3750 ((-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3388 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2444 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2219 (|#1| |#3|)) (-15 -2444 (|#1| |#3|)) (-15 -4334 (|#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 (|#3| |#1|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -4013 ((-1257 |#1|))) (-15 -1892 (|#3| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1233 |#2|)) (T -719))
-((-3750 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))))
-(-10 -8 (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1690 (|#1|)) (-15 -3750 ((-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3388 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2444 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2219 (|#1| |#3|)) (-15 -2444 (|#1| |#3|)) (-15 -4334 (|#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2219 (|#3| |#1|)) (-15 -2219 (|#1| (-1257 |#2|))) (-15 -2219 ((-1257 |#2|) |#1|)) (-15 -4013 ((-1257 |#1|))) (-15 -1892 (|#3| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-3231 (($ $) 94 (|has| |#1| (-363)))) (-3211 (((-112) $) 96 (|has| |#1| (-363)))) (-3340 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1731 ((|#1| $) 53)) (-1597 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 113 (|has| |#1| (-363)))) (-2802 (((-418 $) $) 114 (|has| |#1| (-363)))) (-2003 (((-112) $ $) 104 (|has| |#1| (-363)))) (-3750 (((-767)) 87 (|has| |#1| (-368)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2057 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-3458 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3094 (($ $ $) 108 (|has| |#1| (-363)))) (-3330 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-1476 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2444 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-2521 (((-917)) 55)) (-1690 (($) 90 (|has| |#1| (-368)))) (-3054 (($ $ $) 107 (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 102 (|has| |#1| (-363)))) (-4036 (($) 148 (|has| |#1| (-349)))) (-1656 (((-112) $) 149 (|has| |#1| (-349)))) (-3188 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-2560 (((-112) $) 115 (|has| |#1| (-363)))) (-1775 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-3401 (((-112) $) 31)) (-3975 ((|#1| $) 52)) (-1983 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-363)))) (-4035 ((|#2| $) 45 (|has| |#1| (-363)))) (-3990 (((-917) $) 89 (|has| |#1| (-368)))) (-2433 ((|#2| $) 155)) (-3517 (($ (-640 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 116 (|has| |#1| (-363)))) (-2522 (($) 142 (|has| |#1| (-349)) CONST)) (-2552 (($ (-917)) 88 (|has| |#1| (-368)))) (-1693 (((-1113) $) 10)) (-4334 (($) 159)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| |#1| (-363)))) (-3551 (($ (-640 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) 145 (|has| |#1| (-349)))) (-2173 (((-418 $) $) 112 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 109 (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-363)))) (-1993 (((-767) $) 105 (|has| |#1| (-363)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 106 (|has| |#1| (-363)))) (-1623 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-3196 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-4203 (($ $) 136 (-4034 (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 134 (-4034 (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 132 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 131 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 130 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-3388 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3402 ((|#2|) 158)) (-1586 (($) 147 (|has| |#1| (-349)))) (-3759 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2219 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| |#1| (-349)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-563))) 86 (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2047 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1892 ((|#2| $) 46)) (-3914 (((-767)) 28)) (-4013 (((-1257 $)) 68)) (-3223 (((-112) $ $) 95 (|has| |#1| (-363)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $) 135 (-4034 (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 133 (-4034 (-2188 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 128 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 127 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 126 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-2188 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 120 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363)))))
-(((-720 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -720))
-((-4334 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2)))) (-3402 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2444 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2219 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2444 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *5)))))
-(-13 (-409 |t#1| |t#2|) (-172) (-611 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -4334 ($)) (-15 -3402 (|t#2|)) (-15 -2444 ($ |t#2|)) (-15 -2219 ($ |t#2|)) (-15 -2433 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -2444 ((-3 $ "failed") (-407 |t#2|))) (-15 -3388 ((-684 |t#1|) (-1257 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4034 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4034 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4034 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-555) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))) ((-916) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1212) -4034 (|has| |#1| (-349)) (|has| |#1| (-363))))
-((-2569 (($) 11)) (-3951 (((-3 $ "failed") $) 14)) (-3401 (((-112) $) 10)) (** (($ $ (-917)) NIL) (($ $ (-767)) 19)))
-(((-721 |#1|) (-10 -8 (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -3401 ((-112) |#1|)) (-15 -2569 (|#1|)) (-15 ** (|#1| |#1| (-917)))) (-722)) (T -721))
-NIL
-(-10 -8 (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -3401 ((-112) |#1|)) (-15 -2569 (|#1|)) (-15 ** (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-2569 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3401 (((-112) $) 17)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2253 (($) 19 T CONST)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 16)) (* (($ $ $) 14)))
+((-3053 (*1 *1) (-4 *1 (-718))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-2549 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-2548 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3873 (*1 *1 *1) (|partial| -4 *1 (-718))) (-2547 (*1 *1 *1) (|partial| -4 *1 (-718))) (-2546 (*1 *1 *1) (|partial| -4 *1 (-718))))
+(-13 (-716) (-10 -8 (-15 (-3053) ($) -4367) (-15 -2552 ((-112) $)) (-15 -2549 ($ $ (-767))) (-15 -2548 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -3873 ((-3 $ "failed") $)) (-15 -2547 ((-3 $ "failed") $)) (-15 -2546 ((-3 $ "failed") $))))
+(((-102) . T) ((-610 (-859)) . T) ((-716) . T) ((-1094) . T))
+((-3528 (((-767)) 35)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL) ((|#2| $) 22)) (-4257 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 45)) (-3873 (((-3 $ "failed") $) 65)) (-3384 (($) 39)) (-3524 ((|#2| $) 20)) (-2551 (($) 17)) (-4225 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2550 (((-684 |#2|) (-1256 $) (-1 |#2| |#2|)) 60)) (-4385 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2749 ((|#3| $) 32)) (-2169 (((-1256 $)) 29)))
+(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3384 (|#1|)) (-15 -3528 ((-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2550 ((-684 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -4257 ((-3 |#1| "failed") (-407 |#3|))) (-15 -4385 (|#1| |#3|)) (-15 -4257 (|#1| |#3|)) (-15 -2551 (|#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 (|#3| |#1|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -2169 ((-1256 |#1|))) (-15 -2749 (|#3| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1232 |#2|)) (T -719))
+((-3528 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))))
+(-10 -8 (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -3384 (|#1|)) (-15 -3528 ((-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2550 ((-684 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -4257 ((-3 |#1| "failed") (-407 |#3|))) (-15 -4385 (|#1| |#3|)) (-15 -4257 (|#1| |#3|)) (-15 -2551 (|#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4385 (|#3| |#1|)) (-15 -4385 (|#1| (-1256 |#2|))) (-15 -4385 ((-1256 |#2|) |#1|)) (-15 -2169 ((-1256 |#1|))) (-15 -2749 (|#3| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3873 ((-3 |#1| "failed") |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-2220 (($ $) 94 (|has| |#1| (-363)))) (-2218 (((-112) $) 96 (|has| |#1| (-363)))) (-1936 (((-684 |#1|) (-1256 $)) 47) (((-684 |#1|)) 62)) (-3741 ((|#1| $) 53)) (-1826 (((-1180 (-915) (-767)) (-546)) 146 (|has| |#1| (-350)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 113 (|has| |#1| (-363)))) (-4384 (((-405 $) $) 114 (|has| |#1| (-363)))) (-1740 (((-112) $ $) 104 (|has| |#1| (-363)))) (-3528 (((-767)) 87 (|has| |#1| (-368)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 169 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 167 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 164)) (-3564 (((-546) $) 168 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 166 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 165)) (-1946 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-350)))) (-2949 (($ $ $) 108 (|has| |#1| (-363)))) (-1935 (((-684 |#1|) $ (-1256 $)) 54) (((-684 |#1|) $) 60)) (-2408 (((-684 (-546)) (-684 $)) 163 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 162 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-4257 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3873 (((-3 $ "failed") $) 33)) (-3501 (((-915)) 55)) (-3384 (($) 90 (|has| |#1| (-368)))) (-2948 (($ $ $) 107 (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 102 (|has| |#1| (-363)))) (-3222 (($) 148 (|has| |#1| (-350)))) (-1831 (((-112) $) 149 (|has| |#1| (-350)))) (-1921 (($ $ (-767)) 140 (|has| |#1| (-350))) (($ $) 139 (|has| |#1| (-350)))) (-4138 (((-112) $) 115 (|has| |#1| (-363)))) (-4186 (((-915) $) 151 (|has| |#1| (-350))) (((-828 (-915)) $) 137 (|has| |#1| (-350)))) (-2552 (((-112) $) 31)) (-3524 ((|#1| $) 52)) (-3855 (((-3 $ "failed") $) 141 (|has| |#1| (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 111 (|has| |#1| (-363)))) (-2171 ((|#2| $) 45 (|has| |#1| (-363)))) (-2167 (((-915) $) 89 (|has| |#1| (-368)))) (-3470 ((|#2| $) 155)) (-2048 (($ (-637 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 116 (|has| |#1| (-363)))) (-3856 (($) 142 (|has| |#1| (-350)) CONST)) (-2542 (($ (-915)) 88 (|has| |#1| (-368)))) (-3651 (((-1113) $) 10)) (-2551 (($) 159)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 101 (|has| |#1| (-363)))) (-3552 (($ (-637 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) 145 (|has| |#1| (-350)))) (-4147 (((-405 $) $) 112 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 109 (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 103 (|has| |#1| (-363)))) (-1739 (((-767) $) 105 (|has| |#1| (-363)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-363)))) (-4172 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-1922 (((-767) $) 150 (|has| |#1| (-350))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-350)))) (-4225 (($ $) 136 (-3943 (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-767)) 134 (-3943 (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-1169)) 132 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-637 (-1169))) 131 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 130 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-637 (-1169)) (-637 (-767))) 129 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2550 (((-684 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3593 ((|#2|) 158)) (-1825 (($) 147 (|has| |#1| (-350)))) (-3632 (((-1256 |#1|) $ (-1256 $)) 51) (((-684 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-684 |#1|) (-1256 $)) 66)) (-4385 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 144 (|has| |#1| (-350)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-546))) 86 (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546))))))) (-3091 (($ $) 143 (|has| |#1| (-350))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2749 ((|#2| $) 46)) (-3518 (((-767)) 28)) (-2169 (((-1256 $)) 68)) (-2219 (((-112) $ $) 95 (|has| |#1| (-363)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $) 135 (-3943 (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-767)) 133 (-3943 (-3247 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-1169)) 128 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-637 (-1169))) 127 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 126 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-637 (-1169)) (-637 (-767))) 125 (-3247 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 120 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 117 (|has| |#1| (-363)))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-546)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-546))) 118 (|has| |#1| (-363)))))
+(((-720 |#1| |#2|) (-140) (-172) (-1232 |t#1|)) (T -720))
+((-2551 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1232 *2)))) (-3593 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3)))) (-4257 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1232 *3)))) (-4385 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1232 *3)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3)))) (-4257 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1232 *5)) (-5 *2 (-684 *5)))))
+(-13 (-410 |t#1| |t#2|) (-172) (-611 |t#2|) (-412 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2551 ($)) (-15 -3593 (|t#2|)) (-15 -4257 ($ |t#2|)) (-15 -4385 ($ |t#2|)) (-15 -3470 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -4257 ((-3 $ "failed") (-407 |t#2|))) (-15 -2550 ((-684 |t#1|) (-1256 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-350)) (-6 (-350)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3943 (|has| |#1| (-350)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-350)) (|has| |#1| (-363))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 $) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) . T) ((-611 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -3943 (|has| |#1| (-350)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-290) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-307) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-363) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-402) |has| |#1| (-350)) ((-368) -3943 (|has| |#1| (-350)) (|has| |#1| (-368))) ((-350) |has| |#1| (-350)) ((-370 |#1| |#2|) . T) ((-410 |#1| |#2|) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-556) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-643 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))) ((-917) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 #1#) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| |#1| (-350)) ((-1212) -3943 (|has| |#1| (-350)) (|has| |#1| (-363))))
+((-4139 (($) 11)) (-3873 (((-3 $ "failed") $) 14)) (-2552 (((-112) $) 10)) (** (($ $ (-915)) NIL) (($ $ (-767)) 19)))
+(((-721 |#1|) (-10 -8 (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -2552 ((-112) |#1|)) (-15 -4139 (|#1|)) (-15 ** (|#1| |#1| (-915)))) (-722)) (T -721))
+NIL
+(-10 -8 (-15 -3873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -2552 ((-112) |#1|)) (-15 -4139 (|#1|)) (-15 ** (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-4139 (($) 18 T CONST)) (-3873 (((-3 $ "failed") $) 15)) (-2552 (((-112) $) 17)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3053 (($) 19 T CONST)) (-3444 (((-112) $ $) 6)) (** (($ $ (-915)) 13) (($ $ (-767)) 16)) (* (($ $ $) 14)))
(((-722) (-140)) (T -722))
-((-2253 (*1 *1) (-4 *1 (-722))) (-2569 (*1 *1) (-4 *1 (-722))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-3951 (*1 *1 *1) (|partial| -4 *1 (-722))))
-(-13 (-1105) (-10 -8 (-15 (-2253) ($) -2668) (-15 -2569 ($) -2668) (-15 -3401 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -3951 ((-3 $ "failed") $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T))
-((-3413 (((-2 (|:| -2376 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1792 (((-2 (|:| -2376 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3425 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-1913 (((-2 (|:| |poly| |#2|) (|:| -2376 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 47)))
-(((-723 |#1| |#2|) (-10 -7 (-15 -1792 ((-2 (|:| -2376 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| -2376 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3425 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1913 ((-2 (|:| |poly| |#2|) (|:| -2376 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -723))
-((-1913 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2376 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2376 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-723 *5 *3)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2376 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))))
-(-10 -7 (-15 -1792 ((-2 (|:| -2376 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| -2376 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3425 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1913 ((-2 (|:| |poly| |#2|) (|:| -2376 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
-((-4258 ((|#7| (-640 |#5|) |#6|) NIL)) (-2238 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2238 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4258 (|#7| (-640 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-945 |#4| |#2| |#1|) (-945 |#5| |#3| |#1|)) (T -724))
-((-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))))
-(-10 -7 (-15 -2238 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4258 (|#7| (-640 |#5|) |#6|)))
-((-2238 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2238 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-945 |#5| |#3| |#1|) (-945 |#5| |#4| |#2|)) (T -725))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-945 *9 *7 *5)))))
-(-10 -7 (-15 -2238 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2173 (((-418 |#4|) |#4|) 41)))
-(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169))))) (-307) (-945 (-948 |#3|) |#1| |#2|)) (T -726))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-945 (-948 *6) *4 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-860 |#1|)) $) NIL)) (-2138 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-3231 (($ $) NIL (|has| |#2| (-555)))) (-3211 (((-112) $) NIL (|has| |#2| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL (|has| |#2| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-1612 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#2| (-905)))) (-2159 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-860 |#1|)) NIL)) (-3908 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2170 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-1698 (((-3 (-860 |#1|) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#2| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -3311 (-767))) "failed") $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#2| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-1623 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4203 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-3871 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-555))) (($ (-407 (-563))) NIL (-4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))))) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-727 |#1| |#2|) (-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-640 (-1169)) (-1045)) (T -727))
-NIL
-(-945 |#2| (-531 (-860 |#1|)) (-860 |#1|))
-((-3438 (((-2 (|:| -4092 (-948 |#3|)) (|:| -1315 (-948 |#3|))) |#4|) 14)) (-3131 ((|#4| |#4| |#2|) 33)) (-3471 ((|#4| (-407 (-948 |#3|)) |#2|) 64)) (-3460 ((|#4| (-1165 (-948 |#3|)) |#2|) 77)) (-3449 ((|#4| (-1165 |#4|) |#2|) 51)) (-3120 ((|#4| |#4| |#2|) 54)) (-2173 (((-418 |#4|) |#4|) 40)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3438 ((-2 (|:| -4092 (-948 |#3|)) (|:| -1315 (-948 |#3|))) |#4|)) (-15 -3120 (|#4| |#4| |#2|)) (-15 -3449 (|#4| (-1165 |#4|) |#2|)) (-15 -3131 (|#4| |#4| |#2|)) (-15 -3460 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -3471 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2173 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)))) (-555) (-945 (-407 (-948 |#3|)) |#1| |#2|)) (T -728))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) (-3471 (*1 *2 *3 *4) (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))))) (-3131 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *6 (-555)))) (-3120 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-2 (|:| -4092 (-948 *6)) (|:| -1315 (-948 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))))
-(-10 -7 (-15 -3438 ((-2 (|:| -4092 (-948 |#3|)) (|:| -1315 (-948 |#3|))) |#4|)) (-15 -3120 (|#4| |#4| |#2|)) (-15 -3449 (|#4| (-1165 |#4|) |#2|)) (-15 -3131 (|#4| |#4| |#2|)) (-15 -3460 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -3471 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2173 ((-418 |#4|) |#4|)))
-((-2173 (((-418 |#4|) |#4|) 52)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-945 (-407 |#3|) |#1| |#2|)) (T -729))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-945 (-407 *6) *4 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4|)))
-((-2238 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18)))
-(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -2238 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7)))))
-(-10 -7 (-15 -2238 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 28)) (-1787 (((-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|))) $) 29)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767)) 20 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) 58) (((-3 |#1| "failed") $) 61)) (-2057 ((|#2| $) NIL) ((|#1| $) NIL)) (-2750 (($ $) 81 (|has| |#2| (-846)))) (-3951 (((-3 $ "failed") $) 66)) (-1690 (($) 35 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) 55)) (-3919 (((-640 $) $) 39)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| |#2|) 16)) (-2238 (($ (-1 |#1| |#1|) $) 54)) (-3990 (((-917) $) 32 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2715 ((|#2| $) 80 (|has| |#2| (-846)))) (-2725 ((|#1| $) 79 (|has| |#2| (-846)))) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) 27 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 78) (($ (-563)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|)))) 11)) (-3955 (((-640 |#1|) $) 41)) (-3244 ((|#1| $ |#2|) 89)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-2239 (($) 12 T CONST)) (-2253 (($) 33 T CONST)) (-1718 (((-112) $ $) 82)) (-1825 (($ $) 47) (($ $ $) NIL)) (-1813 (($ $ $) 26)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 52) (($ $ $) 91) (($ |#1| $) 49 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2587 ($ |#1| |#2|)) (-15 -3244 (|#1| $ |#2|)) (-15 -1692 ($ (-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|))))) (-15 -1787 ((-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|))) $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (-15 -3805 ((-112) $)) (-15 -3955 ((-640 |#1|) $)) (-15 -3919 ((-640 $) $)) (-15 -3481 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2715 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2750 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731))
-((-2587 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-3244 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2310 *3) (|:| -4223 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2310 *3) (|:| -4223 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2715 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-2725 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722)))))
-(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2587 ($ |#1| |#2|)) (-15 -3244 (|#1| $ |#2|)) (-15 -1692 ($ (-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|))))) (-15 -1787 ((-640 (-2 (|:| -2310 |#1|) (|:| -4223 |#2|))) $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (-15 -3805 ((-112) $)) (-15 -3955 ((-640 |#1|) $)) (-15 -3919 ((-640 $) $)) (-15 -3481 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2715 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2750 ($ $))) |%noBranch|)))
-((-1677 (((-112) $ $) 19)) (-2582 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3816 (($ $ $) 72)) (-3804 (((-112) $ $) 73)) (-3001 (((-112) $ (-767)) 8)) (-1582 (($ (-640 |#1|)) 68) (($) 67)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-4194 (($ $) 62)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) 64)) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22)) (-3834 (($ $ $) 69)) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1693 (((-1113) $) 21)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-4182 (((-640 (-2 (|:| -2556 |#1|) (|:| -1708 (-767)))) $) 61)) (-3827 (($ $ |#1|) 71) (($ $ $) 70)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-1692 (((-858) $) 18)) (-2533 (($ (-640 |#1|)) 66) (($) 65)) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20)) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-732 |#1|) (-140) (-1093)) (T -732))
-NIL
-(-13 (-690 |t#1|) (-1091 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-2582 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3816 (($ $ $) 77)) (-3804 (((-112) $ $) 81)) (-3001 (((-112) $ (-767)) NIL)) (-1582 (($ (-640 |#1|)) 24) (($) 16)) (-3678 (($ (-1 (-112) |#1|) $) 68 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-4194 (($ $) 69)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) 59 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 63 (|has| $ (-6 -4408))) (($ |#1| $ (-563)) 61) (($ (-1 (-112) |#1|) $ (-563)) 64)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $ (-563)) 66) (($ (-1 (-112) |#1|) $ (-563)) 67)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) 80)) (-3491 (($) 14) (($ |#1|) 26) (($ (-640 |#1|)) 21)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) 36)) (-2667 (((-112) |#1| $) 56 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 73)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3834 (($ $ $) 75)) (-2627 ((|#1| $) 53)) (-3867 (($ |#1| $) 54) (($ |#1| $ (-767)) 70)) (-1693 (((-1113) $) NIL)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2808 ((|#1| $) 52)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 48)) (-3445 (($) 13)) (-4182 (((-640 (-2 (|:| -2556 |#1|) (|:| -1708 (-767)))) $) 46)) (-3827 (($ $ |#1|) NIL) (($ $ $) 76)) (-3863 (($) 15) (($ (-640 |#1|)) 23)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 58 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 65)) (-2219 (((-536) $) 34 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 20)) (-1692 (((-858) $) 42)) (-2533 (($ (-640 |#1|)) 25) (($) 17)) (-2820 (($ (-640 |#1|)) 22)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 79)) (-3610 (((-767) $) 57 (|has| $ (-6 -4408)))))
-(((-733 |#1|) (-13 (-732 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -3491 ($)) (-15 -3491 ($ |#1|)) (-15 -3491 ($ (-640 |#1|))) (-15 -3523 ((-640 |#1|) $)) (-15 -1459 ($ |#1| $ (-563))) (-15 -1459 ($ (-1 (-112) |#1|) $ (-563))) (-15 -1691 ($ |#1| $ (-563))) (-15 -1691 ($ (-1 (-112) |#1|) $ (-563))))) (-1093)) (T -733))
-((-3491 (*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-3491 (*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093)))) (-1459 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1459 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4)))) (-1691 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1691 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4)))))
-(-13 (-732 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -3491 ($)) (-15 -3491 ($ |#1|)) (-15 -3491 ($ (-640 |#1|))) (-15 -3523 ((-640 |#1|) $)) (-15 -1459 ($ |#1| $ (-563))) (-15 -1459 ($ (-1 (-112) |#1|) $ (-563))) (-15 -1691 ($ |#1| $ (-563))) (-15 -1691 ($ (-1 (-112) |#1|) $ (-563)))))
-((-2346 (((-1262) (-1151)) 8)))
-(((-734) (-10 -7 (-15 -2346 ((-1262) (-1151))))) (T -734))
-((-2346 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734)))))
-(-10 -7 (-15 -2346 ((-1262) (-1151))))
-((-3502 (((-640 |#1|) (-640 |#1|) (-640 |#1|)) 10)))
-(((-735 |#1|) (-10 -7 (-15 -3502 ((-640 |#1|) (-640 |#1|) (-640 |#1|)))) (-846)) (T -735))
-((-3502 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
-(-10 -7 (-15 -3502 ((-640 |#1|) (-640 |#1|) (-640 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 |#2|) $) 139)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 132 (|has| |#1| (-555)))) (-3231 (($ $) 131 (|has| |#1| (-555)))) (-3211 (((-112) $) 129 (|has| |#1| (-555)))) (-1770 (($ $) 88 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 71 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-2185 (($ $) 70 (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) 87 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 72 (|has| |#1| (-38 (-407 (-563)))))) (-1793 (($ $) 86 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 73 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-2750 (($ $) 123)) (-3951 (((-3 $ "failed") $) 33)) (-3621 (((-948 |#1|) $ (-767)) 101) (((-948 |#1|) $ (-767) (-767)) 100)) (-3381 (((-112) $) 140)) (-2179 (($) 98 (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $ |#2|) 103) (((-767) $ |#2| (-767)) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 69 (|has| |#1| (-38 (-407 (-563)))))) (-3805 (((-112) $) 121)) (-2587 (($ $ (-640 |#2|) (-640 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-767)) 105) (($ $ (-640 |#2|) (-640 (-767))) 104)) (-2238 (($ (-1 |#1| |#1|) $) 120)) (-4372 (($ $) 95 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 118)) (-2725 ((|#1| $) 117)) (-3854 (((-1151) $) 9)) (-2062 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) 10)) (-1751 (($ $ (-767)) 106)) (-3012 (((-3 $ "failed") $ $) 133 (|has| |#1| (-555)))) (-3372 (($ $) 96 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (($ $ |#2| $) 114) (($ $ (-640 |#2|) (-640 $)) 113) (($ $ (-640 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-640 $) (-640 $)) 109)) (-4203 (($ $ |#2|) 42) (($ $ (-640 |#2|)) 41) (($ $ |#2| (-767)) 40) (($ $ (-640 |#2|) (-640 (-767))) 39)) (-3871 (((-531 |#2|) $) 119)) (-1805 (($ $) 85 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 74 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 84 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 75 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 83 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 76 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 141)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-555))) (($ (-407 (-563))) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3244 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-767)) 108) (($ $ (-640 |#2|) (-640 (-767))) 107)) (-2047 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-1839 (($ $) 94 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 82 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 130 (|has| |#1| (-555)))) (-1816 (($ $) 93 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 92 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 80 (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) 91 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 79 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 90 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 78 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 89 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 77 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ |#2|) 38) (($ $ (-640 |#2|)) 37) (($ $ |#2| (-767)) 36) (($ $ (-640 |#2|) (-640 (-767))) 35)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 68 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 127 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
+((-3053 (*1 *1) (-4 *1 (-722))) (-4139 (*1 *1) (-4 *1 (-722))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-3873 (*1 *1 *1) (|partial| -4 *1 (-722))))
+(-13 (-1105) (-10 -8 (-15 (-3053) ($) -4367) (-15 -4139 ($) -4367) (-15 -2552 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -3873 ((-3 $ "failed") $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1105) . T) ((-1094) . T))
+((-2553 (((-2 (|:| -3482 (-405 |#2|)) (|:| |special| (-405 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3829 (((-2 (|:| -3482 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2554 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3846 (((-2 (|:| |poly| |#2|) (|:| -3482 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 47)))
+(((-723 |#1| |#2|) (-10 -7 (-15 -3829 ((-2 (|:| -3482 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2553 ((-2 (|:| -3482 (-405 |#2|)) (|:| |special| (-405 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2554 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3846 ((-2 (|:| |poly| |#2|) (|:| -3482 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1232 |#1|)) (T -723))
+((-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3482 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-2553 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3482 (-405 *3)) (|:| |special| (-405 *3)))) (-5 *1 (-723 *5 *3)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3482 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))))
+(-10 -7 (-15 -3829 ((-2 (|:| -3482 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2553 ((-2 (|:| -3482 (-405 |#2|)) (|:| |special| (-405 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2554 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3846 ((-2 (|:| |poly| |#2|) (|:| -3482 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
+((-2555 ((|#7| (-637 |#5|) |#6|) NIL)) (-4373 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4373 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2555 (|#7| (-637 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-946 |#4| |#2| |#1|) (-946 |#5| |#3| |#1|)) (T -724))
+((-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-946 *8 *6 *5)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-946 *8 *6 *5)))))
+(-10 -7 (-15 -4373 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2555 (|#7| (-637 |#5|) |#6|)))
+((-4373 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4373 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-946 |#5| |#3| |#1|) (-946 |#5| |#4| |#2|)) (T -725))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-946 *9 *7 *5)))))
+(-10 -7 (-15 -4373 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4147 (((-405 |#4|) |#4|) 41)))
+(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))) (-307) (-946 (-942 |#3|) |#1| |#2|)) (T -726))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169)))))) (-4 *6 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-946 (-942 *6) *4 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-860 |#1|)) $) NIL)) (-3476 (((-1163 $) $ (-860 |#1|)) NIL) (((-1163 |#2|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-2220 (($ $) NIL (|has| |#2| (-556)))) (-2218 (((-112) $) NIL (|has| |#2| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-860 |#1|))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL (|has| |#2| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-860 |#1|) #2#) $) NIL)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-860 |#1|) $) NIL)) (-4171 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#2| (-906)))) (-1756 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#2|) (-860 |#1|)) NIL) (($ (-1163 $) (-860 |#1|)) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-860 |#1|)) NIL)) (-3209 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-1757 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-3475 (((-3 (-860 |#1|) #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#2| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2543 (-767))) #3#) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#2| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-906)))) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-637 (-860 |#1|)) (-637 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-637 (-860 |#1|)) (-637 $)) NIL)) (-4172 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4225 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-4363 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-637 (-767)) $ (-637 (-860 |#1|))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-860 |#1|) (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-546))) NIL (-3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546))))))) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-3091 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#2| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-860 |#1|)) NIL) (($ $ (-637 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-637 (-860 |#1|)) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#2| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#2| (-38 (-407 (-546))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-727 |#1| |#2|) (-946 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-637 (-1169)) (-1045)) (T -727))
+NIL
+(-946 |#2| (-531 (-860 |#1|)) (-860 |#1|))
+((-2556 (((-2 (|:| -2784 (-942 |#3|)) (|:| -2215 (-942 |#3|))) |#4|) 14)) (-3376 ((|#4| |#4| |#2|) 33)) (-2559 ((|#4| (-407 (-942 |#3|)) |#2|) 64)) (-2558 ((|#4| (-1163 (-942 |#3|)) |#2|) 77)) (-2557 ((|#4| (-1163 |#4|) |#2|) 51)) (-3375 ((|#4| |#4| |#2|) 54)) (-4147 (((-405 |#4|) |#4|) 40)))
+(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2556 ((-2 (|:| -2784 (-942 |#3|)) (|:| -2215 (-942 |#3|))) |#4|)) (-15 -3375 (|#4| |#4| |#2|)) (-15 -2557 (|#4| (-1163 |#4|) |#2|)) (-15 -3376 (|#4| |#4| |#2|)) (-15 -2558 (|#4| (-1163 (-942 |#3|)) |#2|)) (-15 -2559 (|#4| (-407 (-942 |#3|)) |#2|)) (-15 -4147 ((-405 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)))) (-556) (-946 (-407 (-942 |#3|)) |#1| |#2|)) (T -728))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *6 (-556)) (-5 *2 (-405 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-942 *6)) *4 *5)))) (-2559 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-942 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 (-942 *6))) (-4 *6 (-556)) (-4 *2 (-946 (-407 (-942 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))))) (-3376 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-942 *5)) *4 *3)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-946 (-407 (-942 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *6 (-556)))) (-3375 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-942 *5)) *4 *3)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -2784 (-942 *6)) (|:| -2215 (-942 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-942 *6)) *4 *5)))))
+(-10 -7 (-15 -2556 ((-2 (|:| -2784 (-942 |#3|)) (|:| -2215 (-942 |#3|))) |#4|)) (-15 -3375 (|#4| |#4| |#2|)) (-15 -2557 (|#4| (-1163 |#4|) |#2|)) (-15 -3376 (|#4| |#4| |#2|)) (-15 -2558 (|#4| (-1163 (-942 |#3|)) |#2|)) (-15 -2559 (|#4| (-407 (-942 |#3|)) |#2|)) (-15 -4147 ((-405 |#4|) |#4|)))
+((-4147 (((-405 |#4|) |#4|) 52)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-946 (-407 |#3|) |#1| |#2|)) (T -729))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-405 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 *6) *4 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4|)))
+((-4373 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18)))
+(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -4373 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7)))))
+(-10 -7 (-15 -4373 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 28)) (-4188 (((-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|))) $) 29)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767)) 20 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #1="failed") $) 58) (((-3 |#1| #1#) $) 61)) (-3564 ((|#2| $) NIL) ((|#1| $) NIL)) (-4374 (($ $) 81 (|has| |#2| (-846)))) (-3873 (((-3 $ "failed") $) 66)) (-3384 (($) 35 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) 55)) (-3210 (((-637 $) $) 39)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| |#2|) 16)) (-4373 (($ (-1 |#1| |#1|) $) 54)) (-2167 (((-915) $) 32 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3284 ((|#2| $) 80 (|has| |#2| (-846)))) (-3582 ((|#1| $) 79 (|has| |#2| (-846)))) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) 27 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 78) (($ (-546)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|)))) 11)) (-4232 (((-637 |#1|) $) 41)) (-4092 ((|#1| $ |#2|) 89)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-3047 (($) 12 T CONST)) (-3053 (($) 33 T CONST)) (-3444 (((-112) $ $) 82)) (-4252 (($ $) 47) (($ $ $) NIL)) (-4254 (($ $ $) 26)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 52) (($ $ $) 91) (($ |#1| $) 49 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -3283 ($ |#1| |#2|)) (-15 -4092 (|#1| $ |#2|)) (-15 -4361 ($ (-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|))))) (-15 -4188 ((-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|))) $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (-15 -4352 ((-112) $)) (-15 -4232 ((-637 |#1|) $)) (-15 -3210 ((-637 $) $)) (-15 -2560 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3284 (|#2| $)) (-15 -3582 (|#1| $)) (-15 -4374 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731))
+((-3283 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-4092 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4369 *3) (|:| -4353 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| -4369 *3) (|:| -4353 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-637 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3284 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-3582 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722)))))
+(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -3283 ($ |#1| |#2|)) (-15 -4092 (|#1| $ |#2|)) (-15 -4361 ($ (-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|))))) (-15 -4188 ((-637 (-2 (|:| -4369 |#1|) (|:| -4353 |#2|))) $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (-15 -4352 ((-112) $)) (-15 -4232 ((-637 |#1|) $)) (-15 -3210 ((-637 $) $)) (-15 -2560 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3284 (|#2| $)) (-15 -3582 (|#1| $)) (-15 -4374 ($ $))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-3642 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3644 (($ $ $) 77)) (-3643 (((-112) $ $) 81)) (-1296 (((-112) $ (-767)) NIL)) (-3647 (($ (-637 |#1|)) 24) (($) 16)) (-1666 (($ (-1 (-112) |#1|) $) 68 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2505 (($ $) 69)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) 59 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 63 (|has| $ (-6 -4408))) (($ |#1| $ (-546)) 61) (($ (-1 (-112) |#1|) $ (-546)) 64)) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $ (-546)) 66) (($ (-1 (-112) |#1|) $ (-546)) 67)) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) 80)) (-2561 (($) 14) (($ |#1|) 26) (($ (-637 |#1|)) 21)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) 36)) (-3653 (((-112) |#1| $) 56 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 73)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3646 (($ $ $) 75)) (-1359 ((|#1| $) 53)) (-4022 (($ |#1| $) 54) (($ |#1| $ (-767)) 70)) (-3651 (((-1113) $) NIL)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1360 ((|#1| $) 52)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 48)) (-3979 (($) 13)) (-2504 (((-637 (-2 (|:| -2233 |#1|) (|:| -2104 (-767)))) $) 46)) (-3645 (($ $ |#1|) NIL) (($ $ $) 76)) (-1557 (($) 15) (($ (-637 |#1|)) 23)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 58 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 65)) (-4385 (((-535) $) 34 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 20)) (-4361 (((-859) $) 42)) (-3648 (($ (-637 |#1|)) 25) (($) 17)) (-1361 (($ (-637 |#1|)) 22)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 79)) (-4372 (((-767) $) 57 (|has| $ (-6 -4408)))))
+(((-732 |#1|) (-13 (-733 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -2561 ($)) (-15 -2561 ($ |#1|)) (-15 -2561 ($ (-637 |#1|))) (-15 -2993 ((-637 |#1|) $)) (-15 -3817 ($ |#1| $ (-546))) (-15 -3817 ($ (-1 (-112) |#1|) $ (-546))) (-15 -3816 ($ |#1| $ (-546))) (-15 -3816 ($ (-1 (-112) |#1|) $ (-546))))) (-1094)) (T -732))
+((-2561 (*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1094)))) (-2561 (*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1094)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-732 *3)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1094)))) (-3817 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-732 *2)) (-4 *2 (-1094)))) (-3817 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-546)) (-4 *4 (-1094)) (-5 *1 (-732 *4)))) (-3816 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-732 *2)) (-4 *2 (-1094)))) (-3816 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-546)) (-4 *4 (-1094)) (-5 *1 (-732 *4)))))
+(-13 (-733 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -2561 ($)) (-15 -2561 ($ |#1|)) (-15 -2561 ($ (-637 |#1|))) (-15 -2993 ((-637 |#1|) $)) (-15 -3817 ($ |#1| $ (-546))) (-15 -3817 ($ (-1 (-112) |#1|) $ (-546))) (-15 -3816 ($ |#1| $ (-546))) (-15 -3816 ($ (-1 (-112) |#1|) $ (-546)))))
+((-2953 (((-112) $ $) 19)) (-3642 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3644 (($ $ $) 72)) (-3643 (((-112) $ $) 73)) (-1296 (((-112) $ (-767)) 8)) (-3647 (($ (-637 |#1|)) 68) (($) 67)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2505 (($ $) 62)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) 64)) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22)) (-3646 (($ $ $) 69)) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3651 (((-1113) $) 21)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2504 (((-637 (-2 (|:| -2233 |#1|) (|:| -2104 (-767)))) $) 61)) (-3645 (($ $ |#1|) 71) (($ $ $) 70)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-4361 (((-859) $) 18)) (-3648 (($ (-637 |#1|)) 66) (($) 65)) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20)) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-733 |#1|) (-140) (-1094)) (T -733))
+NIL
+(-13 (-690 |t#1|) (-1092 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-690 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1207) . T))
+((-2562 (((-1262) (-1151)) 8)))
+(((-734) (-10 -7 (-15 -2562 ((-1262) (-1151))))) (T -734))
+((-2562 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734)))))
+(-10 -7 (-15 -2562 ((-1262) (-1151))))
+((-2563 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 10)))
+(((-735 |#1|) (-10 -7 (-15 -2563 ((-637 |#1|) (-637 |#1|) (-637 |#1|)))) (-846)) (T -735))
+((-2563 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
+(-10 -7 (-15 -2563 ((-637 |#1|) (-637 |#1|) (-637 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 |#2|) $) 139)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-2220 (($ $) 131 (|has| |#1| (-556)))) (-2218 (((-112) $) 129 (|has| |#1| (-556)))) (-3898 (($ $) 88 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 71 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-3427 (($ $) 70 (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) 87 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 72 (|has| |#1| (-38 (-407 (-546)))))) (-3900 (($ $) 86 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 73 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-4374 (($ $) 123)) (-3873 (((-3 $ "failed") $) 33)) (-4229 (((-942 |#1|) $ (-767)) 101) (((-942 |#1|) $ (-767) (-767)) 100)) (-3282 (((-112) $) 140)) (-4042 (($) 98 (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $ |#2|) 103) (((-767) $ |#2| (-767)) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 69 (|has| |#1| (-38 (-407 (-546)))))) (-4352 (((-112) $) 121)) (-3283 (($ $ (-637 |#2|) (-637 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-767)) 105) (($ $ (-637 |#2|) (-637 (-767))) 104)) (-4373 (($ (-1 |#1| |#1|) $) 120)) (-4357 (($ $) 95 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 118)) (-3582 ((|#1| $) 117)) (-3650 (((-1151) $) 9)) (-4227 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) 10)) (-4183 (($ $ (-767)) 106)) (-3872 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-4358 (($ $) 96 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (($ $ |#2| $) 114) (($ $ (-637 |#2|) (-637 $)) 113) (($ $ (-637 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-637 $) (-637 $)) 109)) (-4225 (($ $ |#2|) 42) (($ $ (-637 |#2|)) 41) (($ $ |#2| (-767)) 40) (($ $ (-637 |#2|) (-637 (-767))) 39)) (-4363 (((-531 |#2|) $) 119)) (-3901 (($ $) 85 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 74 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 84 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 75 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 83 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 76 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 141)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-546))) 126 (|has| |#1| (-38 (-407 (-546)))))) (-4092 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-767)) 108) (($ $ (-637 |#2|) (-637 (-767))) 107)) (-3091 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-3904 (($ $) 94 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 82 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 130 (|has| |#1| (-556)))) (-3902 (($ $) 93 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 81 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 92 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 80 (|has| |#1| (-38 (-407 (-546)))))) (-3907 (($ $) 91 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 79 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 90 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 78 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 89 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 77 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ |#2|) 38) (($ $ (-637 |#2|)) 37) (($ $ |#2| (-767)) 36) (($ $ (-637 |#2|) (-637 (-767))) 35)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 68 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 128 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 127 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
(((-736 |#1| |#2|) (-140) (-1045) (-846)) (T -736))
-((-3244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-1775 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-2062 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-563)))))))
-(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -3244 ($ $ |t#2| (-767))) (-15 -3244 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -1751 ($ $ (-767))) (-15 -2587 ($ $ |t#2| (-767))) (-15 -2587 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -1775 ((-767) $ |t#2|)) (-15 -1775 ((-767) $ |t#2| (-767))) (-15 -3621 ((-948 |t#1|) $ (-767))) (-15 -3621 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $ |t#2|)) (-6 (-998)) (-6 (-1193))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-290) |has| |#1| (-555)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #0# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))))
-((-2173 (((-418 (-1165 |#4|)) (-1165 |#4|)) 30) (((-418 |#4|) |#4|) 26)))
-(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 |#4|) |#4|)) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -737))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -2173 ((-418 |#4|) |#4|)) (-15 -2173 ((-418 (-1165 |#4|)) (-1165 |#4|))))
-((-3535 (((-418 |#4|) |#4| |#2|) 118)) (-3513 (((-418 |#4|) |#4|) NIL)) (-2802 (((-418 (-1165 |#4|)) (-1165 |#4|)) 109) (((-418 |#4|) |#4|) 40)) (-3560 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2173 (-1165 |#4|)) (|:| -3311 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 68)) (-3606 (((-1165 |#3|) (-1165 |#3|) (-563)) 136)) (-3595 (((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767)) 60)) (-2433 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|)) 64)) (-3573 (((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 25)) (-3547 (((-2 (|:| -3929 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563)) 56)) (-3524 (((-563) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563))))) 133)) (-3584 ((|#4| (-563) (-418 |#4|)) 57)) (-2476 (((-112) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563))))) NIL)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2802 ((-418 |#4|) |#4|)) (-15 -2802 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -3513 ((-418 |#4|) |#4|)) (-15 -3524 ((-563) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))))) (-15 -3535 ((-418 |#4|) |#4| |#2|)) (-15 -3547 ((-2 (|:| -3929 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -3560 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2173 (-1165 |#4|)) (|:| -3311 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -3573 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -3584 (|#4| (-563) (-418 |#4|))) (-15 -2476 ((-112) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))))) (-15 -2433 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -3595 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -3606 ((-1165 |#3|) (-1165 |#3|) (-563)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -738))
-((-3606 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3595 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-2433 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10)) (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1165 *5)))) (-2476 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-2 (|:| -2173 (-1165 *6)) (|:| -3311 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8)) (|:| |Lfact| (-640 (-2 (|:| -2173 (-1165 *8)) (|:| -3311 (-563))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-3560 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-640 (-2 (|:| -2173 (-1165 *9)) (|:| -3311 (-563))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)))) (-3547 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| -3929 (-1165 *9)) (|:| |polval| (-1165 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8)))) (-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2173 (-1165 *6)) (|:| -3311 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))))
-(-10 -7 (-15 -2802 ((-418 |#4|) |#4|)) (-15 -2802 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -3513 ((-418 |#4|) |#4|)) (-15 -3524 ((-563) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))))) (-15 -3535 ((-418 |#4|) |#4| |#2|)) (-15 -3547 ((-2 (|:| -3929 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -3560 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2173 (-1165 |#4|)) (|:| -3311 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -3573 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -3584 (|#4| (-563) (-418 |#4|))) (-15 -2476 ((-112) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))) (-640 (-2 (|:| -2173 (-1165 |#3|)) (|:| -3311 (-563)))))) (-15 -2433 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -3595 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -3606 ((-1165 |#3|) (-1165 |#3|) (-563))))
-((-3617 (($ $ (-917)) 12)))
-(((-739 |#1| |#2|) (-10 -8 (-15 -3617 (|#1| |#1| (-917)))) (-740 |#2|) (-172)) (T -739))
-NIL
-(-10 -8 (-15 -3617 (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3376 (($ $ (-917)) 28)) (-3617 (($ $ (-917)) 33)) (-3364 (($ $ (-917)) 29)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1745 (($ $ $) 25)) (-1692 (((-858) $) 11)) (-1756 (($ $ $ $) 26)) (-1729 (($ $ $) 24)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4092 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-4092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *5)) (-5 *3 (-637 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *5)) (-5 *3 (-637 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-4186 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4186 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-942 *4)))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-942 *4)))) (-4227 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-546)))))))
+(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -4092 ($ $ |t#2| (-767))) (-15 -4092 ($ $ (-637 |t#2|) (-637 (-767)))) (-15 -4183 ($ $ (-767))) (-15 -3283 ($ $ |t#2| (-767))) (-15 -3283 ($ $ (-637 |t#2|) (-637 (-767)))) (-15 -4186 ((-767) $ |t#2|)) (-15 -4186 ((-767) $ |t#2| (-767))) (-15 -4229 ((-942 |t#1|) $ (-767))) (-15 -4229 ((-942 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $ |t#2|)) (-6 (-998)) (-6 (-1193))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-531 |#2|)) . T) ((-25) . T) ((-38 #2=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) |has| |#1| (-38 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-643 #2#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #2#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #1# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1051 #2#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))))
+((-4147 (((-405 (-1163 |#4|)) (-1163 |#4|)) 30) (((-405 |#4|) |#4|) 26)))
+(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 |#4|) |#4|)) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -737))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-405 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -4147 ((-405 |#4|) |#4|)) (-15 -4147 ((-405 (-1163 |#4|)) (-1163 |#4|))))
+((-2566 (((-405 |#4|) |#4| |#2|) 118)) (-2564 (((-405 |#4|) |#4|) NIL)) (-4384 (((-405 (-1163 |#4|)) (-1163 |#4|)) 109) (((-405 |#4|) |#4|) 40)) (-2568 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-637 (-2 (|:| -4147 (-1163 |#4|)) (|:| -2543 (-546)))))) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|))) 68)) (-2572 (((-1163 |#3|) (-1163 |#3|) (-546)) 136)) (-2571 (((-637 (-767)) (-1163 |#4|) (-637 |#2|) (-767)) 60)) (-3470 (((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-1163 |#3|) (-1163 |#3|) |#4| (-637 |#2|) (-637 (-767)) (-637 |#3|)) 64)) (-2569 (((-2 (|:| |upol| (-1163 |#3|)) (|:| |Lval| (-637 |#3|)) (|:| |Lfact| (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546))))) (|:| |ctpol| |#3|)) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|))) 25)) (-2567 (((-2 (|:| -2161 (-1163 |#4|)) (|:| |polval| (-1163 |#3|))) (-1163 |#4|) (-1163 |#3|) (-546)) 56)) (-2565 (((-546) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546))))) 133)) (-2570 ((|#4| (-546) (-405 |#4|)) 57)) (-3768 (((-112) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546))))) NIL)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4384 ((-405 |#4|) |#4|)) (-15 -4384 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -2564 ((-405 |#4|) |#4|)) (-15 -2565 ((-546) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))))) (-15 -2566 ((-405 |#4|) |#4| |#2|)) (-15 -2567 ((-2 (|:| -2161 (-1163 |#4|)) (|:| |polval| (-1163 |#3|))) (-1163 |#4|) (-1163 |#3|) (-546))) (-15 -2568 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-637 (-2 (|:| -4147 (-1163 |#4|)) (|:| -2543 (-546)))))) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|)))) (-15 -2569 ((-2 (|:| |upol| (-1163 |#3|)) (|:| |Lval| (-637 |#3|)) (|:| |Lfact| (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546))))) (|:| |ctpol| |#3|)) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|)))) (-15 -2570 (|#4| (-546) (-405 |#4|))) (-15 -3768 ((-112) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))))) (-15 -3470 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-1163 |#3|) (-1163 |#3|) |#4| (-637 |#2|) (-637 (-767)) (-637 |#3|))) (-15 -2571 ((-637 (-767)) (-1163 |#4|) (-637 |#2|) (-767))) (-15 -2572 ((-1163 |#3|) (-1163 |#3|) (-546)))) (-789) (-846) (-307) (-946 |#3| |#1| |#2|)) (T -738))
+((-2572 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *6)) (-5 *3 (-546)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-4 *7 (-846)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-637 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-3470 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1163 *11)) (-5 *6 (-637 *10)) (-5 *7 (-637 (-767))) (-5 *8 (-637 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-637 (-1163 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1163 *5)))) (-3768 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-2 (|:| -4147 (-1163 *6)) (|:| -2543 (-546))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-546)) (-5 *4 (-405 *2)) (-4 *2 (-946 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-2569 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-5 *5 (-637 (-637 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1163 *8)) (|:| |Lval| (-637 *8)) (|:| |Lfact| (-637 (-2 (|:| -4147 (-1163 *8)) (|:| -2543 (-546))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-2568 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-637 *7)) (-5 *5 (-637 (-637 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-637 (-2 (|:| -4147 (-1163 *9)) (|:| -2543 (-546))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1163 *9)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-546)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| -2161 (-1163 *9)) (|:| |polval| (-1163 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1163 *9)) (-5 *4 (-1163 *8)))) (-2566 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -4147 (-1163 *6)) (|:| -2543 (-546))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-546)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2564 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) (-4384 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-4384 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
+(-10 -7 (-15 -4384 ((-405 |#4|) |#4|)) (-15 -4384 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -2564 ((-405 |#4|) |#4|)) (-15 -2565 ((-546) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))))) (-15 -2566 ((-405 |#4|) |#4| |#2|)) (-15 -2567 ((-2 (|:| -2161 (-1163 |#4|)) (|:| |polval| (-1163 |#3|))) (-1163 |#4|) (-1163 |#3|) (-546))) (-15 -2568 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-637 (-2 (|:| -4147 (-1163 |#4|)) (|:| -2543 (-546)))))) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|)))) (-15 -2569 ((-2 (|:| |upol| (-1163 |#3|)) (|:| |Lval| (-637 |#3|)) (|:| |Lfact| (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546))))) (|:| |ctpol| |#3|)) (-1163 |#4|) (-637 |#2|) (-637 (-637 |#3|)))) (-15 -2570 (|#4| (-546) (-405 |#4|))) (-15 -3768 ((-112) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))) (-637 (-2 (|:| -4147 (-1163 |#3|)) (|:| -2543 (-546)))))) (-15 -3470 ((-3 (-637 (-1163 |#4|)) "failed") (-1163 |#4|) (-1163 |#3|) (-1163 |#3|) |#4| (-637 |#2|) (-637 (-767)) (-637 |#3|))) (-15 -2571 ((-637 (-767)) (-1163 |#4|) (-637 |#2|) (-767))) (-15 -2572 ((-1163 |#3|) (-1163 |#3|) (-546))))
+((-2573 (($ $ (-915)) 12)))
+(((-739 |#1| |#2|) (-10 -8 (-15 -2573 (|#1| |#1| (-915)))) (-740 |#2|) (-172)) (T -739))
+NIL
+(-10 -8 (-15 -2573 (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2549 (($ $ (-915)) 28)) (-2573 (($ $ (-915)) 33)) (-2548 (($ $ (-915)) 29)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-2735 (($ $ $) 25)) (-4361 (((-859) $) 11)) (-2736 (($ $ $ $) 26)) (-2734 (($ $ $) 24)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 30)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-740 |#1|) (-140) (-172)) (T -740))
-((-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
-(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -3617 ($ $ (-917)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-3641 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 25)) (-3629 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 24)))
-(((-741) (-10 -7 (-15 -3629 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -3641 ((-1031) (-684 (-225)) (-563) (-112) (-563))))) (T -741))
-((-3641 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-3629 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))))
-(-10 -7 (-15 -3629 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -3641 ((-1031) (-684 (-225)) (-563) (-112) (-563))))
-((-3672 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-3661 (((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-3650 (((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) 32)))
-(((-742) (-10 -7 (-15 -3650 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3661 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3672 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742))
-((-3672 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-3661 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-3650 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *2 (-1031)) (-5 *1 (-742)))))
-(-10 -7 (-15 -3650 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3661 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3672 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
-((-3815 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 34)) (-3803 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 33)) (-3791 (((-1031) (-563) (-684 (-225)) (-563)) 32)) (-3779 (((-1031) (-563) (-684 (-225)) (-563)) 31)) (-3770 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 30)) (-3758 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-3747 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-3738 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-3724 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-3713 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-3698 (((-1031) (-563) (-684 (-225)) (-563)) 22)) (-3685 (((-1031) (-563) (-684 (-225)) (-563)) 21)))
-(((-743) (-10 -7 (-15 -3685 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3698 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3724 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3738 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3747 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3758 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3770 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3779 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3791 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3803 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3815 ((-1031) (-563) (-563) (-684 (-225)) (-563))))) (T -743))
-((-3815 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3803 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3791 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3779 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3770 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3758 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3747 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3738 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3724 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3713 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3698 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3685 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
-(-10 -7 (-15 -3685 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3698 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3724 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3738 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3747 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3758 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3770 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3779 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3791 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3803 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3815 ((-1031) (-563) (-563) (-684 (-225)) (-563))))
-((-2735 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2723 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563)) 51)) (-2713 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2703 (((-1031) (-225) (-225) (-563) (-563) (-563) (-563)) 46)) (-2693 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-2685 (((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-2677 (((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-2666 (((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-3853 (((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) 38)) (-3844 (((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) 37)) (-3833 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) 33)) (-3826 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) 32)))
-(((-744) (-10 -7 (-15 -3826 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3833 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3844 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3853 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -2666 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2677 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2685 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2693 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2703 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -2723 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2735 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -744))
-((-2735 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2723 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2713 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2703 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2693 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2685 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2677 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2666 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3853 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3844 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3833 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3826 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *2 (-1031)) (-5 *1 (-744)))))
-(-10 -7 (-15 -3826 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3833 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3844 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -3853 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))) (-15 -2666 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2677 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2685 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2693 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2703 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -2723 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2735 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))
-((-2823 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2811 (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2800 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2790 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-2780 (((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2768 (((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2758 (((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-2747 (((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-745) (-10 -7 (-15 -2747 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2758 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2768 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2780 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2790 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2800 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2811 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2811 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2823 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -745))
-((-2823 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2811 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2811 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2800 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2790 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2780 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2768 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2758 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2747 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(-10 -7 (-15 -2747 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2758 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2768 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2780 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2790 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2800 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2811 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2811 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2823 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2854 (((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563)) 45)) (-2846 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-2835 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 23)))
-(((-746) (-10 -7 (-15 -2835 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2846 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2854 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563))))) (T -746))
-((-2854 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2846 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2835 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
-(-10 -7 (-15 -2835 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2846 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2854 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563))))
-((-2949 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563)) 35)) (-2939 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563)) 34)) (-2930 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563)) 33)) (-2920 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-2909 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-2901 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563)) 27)) (-2892 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 24)) (-2883 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 23)) (-2874 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 22)) (-2865 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 21)))
-(((-747) (-10 -7 (-15 -2865 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -2874 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2883 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2892 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2901 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -2909 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2920 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2930 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -2939 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -2949 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563))))) (T -747))
-((-2949 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2939 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2930 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2920 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2909 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2901 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2892 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2883 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2874 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2865 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2865 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -2874 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2883 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2892 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2901 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -2909 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2920 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2930 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -2939 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -2949 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563))))
-((-3136 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 45)) (-3126 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563)) 44)) (-3116 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 43)) (-3104 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 42)) (-3092 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563)) 41)) (-3080 (((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 40)) (-3071 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563)) 39)) (-3062 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563))) 38)) (-3052 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 35)) (-3040 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563)) 34)) (-3030 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563)) 33)) (-3021 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 32)) (-3010 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563)) 31)) (-2999 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563)) 30)) (-2988 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 29)) (-2979 (((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563)) 28)) (-2970 (((-1031) (-563) (-684 (-225)) (-225) (-563)) 24)) (-2960 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 21)))
-(((-748) (-10 -7 (-15 -2960 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2970 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -2979 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -2988 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -2999 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -3010 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -3021 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3030 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -3040 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -3052 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3062 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -3071 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -3080 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3092 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3104 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3116 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -3126 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3136 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))))) (T -748))
-((-3136 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3126 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3116 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3104 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3092 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3080 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3071 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3062 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3052 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3040 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3030 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3021 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3010 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2999 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2988 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2979 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2970 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2960 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2960 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2970 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -2979 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -2988 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -2999 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -3010 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -3021 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3030 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -3040 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -3052 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3062 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -3071 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -3080 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3092 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3104 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3116 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -3126 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3136 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))))
-((-3208 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563)) 63)) (-3198 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3190 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-3181 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563)) 51)) (-3171 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3162 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3155 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3146 (((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-749) (-10 -7 (-15 -3146 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3155 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3162 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3171 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3181 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -3190 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3198 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3208 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563))))) (T -749))
-((-3208 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3198 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3190 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3181 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3171 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3162 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3155 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3146 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(-10 -7 (-15 -3146 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3155 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3162 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3171 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3181 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -3190 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3198 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3208 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563))))
-((-2135 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 47)) (-2124 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563)) 46)) (-2114 (((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 45)) (-2104 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 40)) (-2094 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563)) 39)) (-2084 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-563)) 36)) (-2076 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563)) 35)) (-2067 (((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563)) 34)) (-2055 (((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563)) 33)) (-3219 (((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563)) 32)))
-(((-750) (-10 -7 (-15 -3219 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -2055 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -2067 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -2076 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -2084 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -2094 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -2104 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2114 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2124 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2135 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -750))
-((-2135 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2124 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2114 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2104 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2094 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2084 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2076 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2067 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2055 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3219 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225))) (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750)))))
-(-10 -7 (-15 -3219 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -2055 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -2067 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -2076 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -2084 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -2094 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -2104 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2114 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2124 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2135 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))
-((-2313 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 66)) (-2301 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 61)) (-2290 (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-2279 (((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 37)) (-2269 (((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563)) 33)) (-2259 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 30)) (-2246 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-2230 (((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-2216 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-2205 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563)) 26)) (-2194 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 25)) (-2182 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-2167 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-2156 (((-1031) (-684 (-225)) (-563) (-563) (-563) (-563)) 22)) (-2146 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 21)))
-(((-751) (-10 -7 (-15 -2146 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -2156 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2167 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2182 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2194 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -2205 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -2216 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2230 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2246 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2259 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -2269 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -2279 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2290 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2290 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2301 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2313 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -751))
-((-2313 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2301 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2290 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2290 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2279 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2269 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2259 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2246 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2230 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2216 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2205 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2194 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2182 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2167 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2156 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2146 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(-10 -7 (-15 -2146 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -2156 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2167 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2182 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2194 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -2205 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -2216 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2230 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2246 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2259 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -2269 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -2279 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2290 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2290 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2301 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2313 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))
-((-2428 (((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 61)) (-2417 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563)) 57)) (-2407 (((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2396 (((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 37)) (-2384 (((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563)) 36)) (-2373 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 33)) (-2363 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225))) 32)) (-2354 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563)) 28)) (-2343 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 27)) (-2332 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 26)) (-2323 (((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 22)))
-(((-752) (-10 -7 (-15 -2323 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2332 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2343 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2354 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -2363 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -2373 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2384 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2396 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -2407 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2417 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2428 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752))
-((-2428 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2417 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2407 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2396 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2384 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2373 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2363 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2354 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2343 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2332 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2323 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752)))))
-(-10 -7 (-15 -2323 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2332 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2343 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2354 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -2363 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -2373 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2384 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2396 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -2407 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2417 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2428 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
-((-2475 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225))) 29)) (-2462 (((-1031) (-1151) (-563) (-563) (-684 (-225))) 28)) (-2452 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225))) 27)) (-2441 (((-1031) (-563) (-563) (-563) (-684 (-225))) 21)))
-(((-753) (-10 -7 (-15 -2441 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -2452 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -2462 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -2475 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)))))) (T -753))
-((-2475 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2462 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2452 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2441 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))))
-(-10 -7 (-15 -2441 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -2452 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -2462 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -2475 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)))))
-((-1653 (((-1031) (-225) (-225) (-225) (-225) (-563)) 62)) (-1638 (((-1031) (-225) (-225) (-225) (-563)) 61)) (-1627 (((-1031) (-225) (-225) (-225) (-563)) 60)) (-1616 (((-1031) (-225) (-225) (-563)) 59)) (-1605 (((-1031) (-225) (-563)) 58)) (-1594 (((-1031) (-225) (-563)) 57)) (-1580 (((-1031) (-225) (-563)) 56)) (-1569 (((-1031) (-225) (-563)) 55)) (-1557 (((-1031) (-225) (-563)) 54)) (-1544 (((-1031) (-225) (-563)) 53)) (-1533 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 52)) (-1520 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 51)) (-1506 (((-1031) (-225) (-563)) 50)) (-1495 (((-1031) (-225) (-563)) 49)) (-1484 (((-1031) (-225) (-563)) 48)) (-1473 (((-1031) (-225) (-563)) 47)) (-1460 (((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563)) 46)) (-1450 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 45)) (-1439 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 44)) (-1429 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 43)) (-1418 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 42)) (-2649 (((-1031) (-225) (-563)) 39)) (-2640 (((-1031) (-225) (-563)) 38)) (-2630 (((-1031) (-225) (-563)) 37)) (-2623 (((-1031) (-225) (-563)) 36)) (-2612 (((-1031) (-225) (-563)) 35)) (-2603 (((-1031) (-225) (-563)) 34)) (-2592 (((-1031) (-225) (-563)) 33)) (-2583 (((-1031) (-225) (-563)) 32)) (-2573 (((-1031) (-225) (-563)) 31)) (-2564 (((-1031) (-225) (-563)) 30)) (-2554 (((-1031) (-225) (-225) (-225) (-563)) 29)) (-2543 (((-1031) (-225) (-563)) 28)) (-2531 (((-1031) (-225) (-563)) 27)) (-2519 (((-1031) (-225) (-563)) 26)) (-2507 (((-1031) (-225) (-563)) 25)) (-2496 (((-1031) (-225) (-563)) 24)) (-2486 (((-1031) (-169 (-225)) (-563)) 21)))
-(((-754) (-10 -7 (-15 -2486 ((-1031) (-169 (-225)) (-563))) (-15 -2496 ((-1031) (-225) (-563))) (-15 -2507 ((-1031) (-225) (-563))) (-15 -2519 ((-1031) (-225) (-563))) (-15 -2531 ((-1031) (-225) (-563))) (-15 -2543 ((-1031) (-225) (-563))) (-15 -2554 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2564 ((-1031) (-225) (-563))) (-15 -2573 ((-1031) (-225) (-563))) (-15 -2583 ((-1031) (-225) (-563))) (-15 -2592 ((-1031) (-225) (-563))) (-15 -2603 ((-1031) (-225) (-563))) (-15 -2612 ((-1031) (-225) (-563))) (-15 -2623 ((-1031) (-225) (-563))) (-15 -2630 ((-1031) (-225) (-563))) (-15 -2640 ((-1031) (-225) (-563))) (-15 -2649 ((-1031) (-225) (-563))) (-15 -1418 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1429 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1439 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -1450 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -1460 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1473 ((-1031) (-225) (-563))) (-15 -1484 ((-1031) (-225) (-563))) (-15 -1495 ((-1031) (-225) (-563))) (-15 -1506 ((-1031) (-225) (-563))) (-15 -1520 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1533 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1544 ((-1031) (-225) (-563))) (-15 -1557 ((-1031) (-225) (-563))) (-15 -1569 ((-1031) (-225) (-563))) (-15 -1580 ((-1031) (-225) (-563))) (-15 -1594 ((-1031) (-225) (-563))) (-15 -1605 ((-1031) (-225) (-563))) (-15 -1616 ((-1031) (-225) (-225) (-563))) (-15 -1627 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1638 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1653 ((-1031) (-225) (-225) (-225) (-225) (-563))))) (T -754))
-((-1653 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1638 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1627 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1616 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1557 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1533 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1520 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1460 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1450 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1439 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1429 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1418 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(-10 -7 (-15 -2486 ((-1031) (-169 (-225)) (-563))) (-15 -2496 ((-1031) (-225) (-563))) (-15 -2507 ((-1031) (-225) (-563))) (-15 -2519 ((-1031) (-225) (-563))) (-15 -2531 ((-1031) (-225) (-563))) (-15 -2543 ((-1031) (-225) (-563))) (-15 -2554 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2564 ((-1031) (-225) (-563))) (-15 -2573 ((-1031) (-225) (-563))) (-15 -2583 ((-1031) (-225) (-563))) (-15 -2592 ((-1031) (-225) (-563))) (-15 -2603 ((-1031) (-225) (-563))) (-15 -2612 ((-1031) (-225) (-563))) (-15 -2623 ((-1031) (-225) (-563))) (-15 -2630 ((-1031) (-225) (-563))) (-15 -2640 ((-1031) (-225) (-563))) (-15 -2649 ((-1031) (-225) (-563))) (-15 -1418 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1429 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1439 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -1450 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -1460 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1473 ((-1031) (-225) (-563))) (-15 -1484 ((-1031) (-225) (-563))) (-15 -1495 ((-1031) (-225) (-563))) (-15 -1506 ((-1031) (-225) (-563))) (-15 -1520 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1533 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -1544 ((-1031) (-225) (-563))) (-15 -1557 ((-1031) (-225) (-563))) (-15 -1569 ((-1031) (-225) (-563))) (-15 -1580 ((-1031) (-225) (-563))) (-15 -1594 ((-1031) (-225) (-563))) (-15 -1605 ((-1031) (-225) (-563))) (-15 -1616 ((-1031) (-225) (-225) (-563))) (-15 -1627 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1638 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1653 ((-1031) (-225) (-225) (-225) (-225) (-563))))
-((-1719 (((-1262)) 18)) (-1675 (((-1151)) 22)) (-1664 (((-1151)) 21)) (-1703 (((-1097) (-1169) (-684 (-563))) 37) (((-1097) (-1169) (-684 (-225))) 32)) (-2000 (((-112)) 16)) (-1688 (((-1151) (-1151)) 25)))
-(((-755) (-10 -7 (-15 -1664 ((-1151))) (-15 -1675 ((-1151))) (-15 -1688 ((-1151) (-1151))) (-15 -1703 ((-1097) (-1169) (-684 (-225)))) (-15 -1703 ((-1097) (-1169) (-684 (-563)))) (-15 -2000 ((-112))) (-15 -1719 ((-1262))))) (T -755))
-((-1719 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))) (-2000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-1703 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-1703 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-1675 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-1664 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
-(-10 -7 (-15 -1664 ((-1151))) (-15 -1675 ((-1151))) (-15 -1688 ((-1151) (-1151))) (-15 -1703 ((-1097) (-1169) (-684 (-225)))) (-15 -1703 ((-1097) (-1169) (-684 (-563)))) (-15 -2000 ((-112))) (-15 -1719 ((-1262))))
-((-1745 (($ $ $) 10)) (-1756 (($ $ $ $) 9)) (-1729 (($ $ $) 12)))
-(((-756 |#1|) (-10 -8 (-15 -1729 (|#1| |#1| |#1|)) (-15 -1745 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| |#1| |#1|))) (-757)) (T -756))
-NIL
-(-10 -8 (-15 -1729 (|#1| |#1| |#1|)) (-15 -1745 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3376 (($ $ (-917)) 28)) (-3364 (($ $ (-917)) 29)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1745 (($ $ $) 25)) (-1692 (((-858) $) 11)) (-1756 (($ $ $ $) 26)) (-1729 (($ $ $) 24)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27)))
+((-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
+(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -2573 ($ $ (-915)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-2575 (((-1031) (-684 (-225)) (-546) (-112) (-546)) 25)) (-2574 (((-1031) (-684 (-225)) (-546) (-112) (-546)) 24)))
+(((-741) (-10 -7 (-15 -2574 ((-1031) (-684 (-225)) (-546) (-112) (-546))) (-15 -2575 ((-1031) (-684 (-225)) (-546) (-112) (-546))))) (T -741))
+((-2575 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-2574 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))))
+(-10 -7 (-15 -2574 ((-1031) (-684 (-225)) (-546) (-112) (-546))) (-15 -2575 ((-1031) (-684 (-225)) (-546) (-112) (-546))))
+((-2578 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-2577 (((-1031) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-2576 (((-1031) (-225) (-225) (-225) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) 32)))
+(((-742) (-10 -7 (-15 -2576 ((-1031) (-225) (-225) (-225) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2577 ((-1031) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2578 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742))
+((-2578 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2577 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2576 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031)) (-5 *1 (-742)))))
+(-10 -7 (-15 -2576 ((-1031) (-225) (-225) (-225) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2577 ((-1031) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2578 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
+((-2590 (((-1031) (-546) (-546) (-684 (-225)) (-546)) 34)) (-2589 (((-1031) (-546) (-546) (-684 (-225)) (-546)) 33)) (-2588 (((-1031) (-546) (-684 (-225)) (-546)) 32)) (-2587 (((-1031) (-546) (-684 (-225)) (-546)) 31)) (-2586 (((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 30)) (-2585 (((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 29)) (-2584 (((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546)) 28)) (-2583 (((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546)) 27)) (-2582 (((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 24)) (-2581 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546)) 23)) (-2580 (((-1031) (-546) (-684 (-225)) (-546)) 22)) (-2579 (((-1031) (-546) (-684 (-225)) (-546)) 21)))
+(((-743) (-10 -7 (-15 -2579 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2580 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2581 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2582 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2583 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2584 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2585 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2586 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2587 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2588 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2589 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2590 ((-1031) (-546) (-546) (-684 (-225)) (-546))))) (T -743))
+((-2590 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2589 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2588 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2587 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2586 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2585 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2584 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2583 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2582 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2581 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2580 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2579 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(-10 -7 (-15 -2579 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2580 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2581 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2582 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2583 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2584 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2585 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2586 ((-1031) (-546) (-546) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2587 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2588 ((-1031) (-546) (-684 (-225)) (-546))) (-15 -2589 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2590 ((-1031) (-546) (-546) (-684 (-225)) (-546))))
+((-2602 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2601 (((-1031) (-684 (-225)) (-684 (-225)) (-546) (-546)) 51)) (-2600 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2599 (((-1031) (-225) (-225) (-546) (-546) (-546) (-546)) 46)) (-2598 (((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) 45)) (-2597 (((-1031) (-225) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) 44)) (-2596 (((-1031) (-225) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) 43)) (-2595 (((-1031) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) 42)) (-2594 (((-1031) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) 38)) (-2593 (((-1031) (-225) (-225) (-546) (-684 (-225)) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) 37)) (-2592 (((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) 33)) (-2591 (((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) 32)))
+(((-744) (-10 -7 (-15 -2591 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2592 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2593 ((-1031) (-225) (-225) (-546) (-684 (-225)) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2594 ((-1031) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2595 ((-1031) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2596 ((-1031) (-225) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2597 ((-1031) (-225) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2598 ((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2599 ((-1031) (-225) (-225) (-546) (-546) (-546) (-546))) (-15 -2600 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN))))) (-15 -2601 ((-1031) (-684 (-225)) (-684 (-225)) (-546) (-546))) (-15 -2602 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN))))))) (T -744))
+((-2602 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2601 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2600 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2599 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2598 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2597 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2596 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2595 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2594 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2593 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2592 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2591 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031)) (-5 *1 (-744)))))
+(-10 -7 (-15 -2591 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2592 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2593 ((-1031) (-225) (-225) (-546) (-684 (-225)) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2594 ((-1031) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485))))) (-15 -2595 ((-1031) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2596 ((-1031) (-225) (-225) (-225) (-225) (-546) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2597 ((-1031) (-225) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2598 ((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G))))) (-15 -2599 ((-1031) (-225) (-225) (-546) (-546) (-546) (-546))) (-15 -2600 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN))))) (-15 -2601 ((-1031) (-684 (-225)) (-684 (-225)) (-546) (-546))) (-15 -2602 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-225) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN))))))
+((-2610 (((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2609 (((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL))) (-388) (-388)) 69) (((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2608 (((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCNG)))) 57)) (-2607 (((-1031) (-684 (-225)) (-684 (-225)) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) 50)) (-2606 (((-1031) (-225) (-546) (-546) (-1151) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2605 (((-1031) (-225) (-546) (-546) (-225) (-1151) (-225) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2604 (((-1031) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) 42)) (-2603 (((-1031) (-225) (-546) (-546) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) 38)))
+(((-745) (-10 -7 (-15 -2603 ((-1031) (-225) (-546) (-546) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2604 ((-1031) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))) (-15 -2605 ((-1031) (-225) (-546) (-546) (-225) (-1151) (-225) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2606 ((-1031) (-225) (-546) (-546) (-1151) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2607 ((-1031) (-684 (-225)) (-684 (-225)) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))) (-15 -2608 ((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCNG))))) (-15 -2609 ((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL))))) (-15 -2609 ((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL))) (-388) (-388))) (-15 -2610 ((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -745))
+((-2610 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2609 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2609 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2608 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2607 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2606 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-546)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2605 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-546)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2604 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2603 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
+(-10 -7 (-15 -2603 ((-1031) (-225) (-546) (-546) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2604 ((-1031) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))) (-15 -2605 ((-1031) (-225) (-546) (-546) (-225) (-1151) (-225) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2606 ((-1031) (-225) (-546) (-546) (-1151) (-546) (-225) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT))))) (-15 -2607 ((-1031) (-684 (-225)) (-684 (-225)) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))) (-15 -2608 ((-1031) (-225) (-225) (-546) (-225) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCNG))))) (-15 -2609 ((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL))))) (-15 -2609 ((-1031) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL))) (-388) (-388))) (-15 -2610 ((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 G JACOBG JACGEP))))))
+((-2613 (((-1031) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-670 (-225)) (-546)) 45)) (-2612 (((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-1151) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 BNDY)))) 41)) (-2611 (((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 23)))
+(((-746) (-10 -7 (-15 -2611 ((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2612 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-1151) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 BNDY))))) (-15 -2613 ((-1031) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-670 (-225)) (-546))))) (T -746))
+((-2613 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2612 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-1151)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2611 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
+(-10 -7 (-15 -2611 ((-1031) (-546) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2612 ((-1031) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-1151) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 BNDY))))) (-15 -2613 ((-1031) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-670 (-225)) (-546))))
+((-2623 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-546)) 35)) (-2622 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-225) (-225) (-546)) 34)) (-2621 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-684 (-225)) (-225) (-225) (-546)) 33)) (-2620 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 29)) (-2619 (((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 28)) (-2618 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546)) 27)) (-2617 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546)) 24)) (-2616 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546)) 23)) (-2615 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546)) 22)) (-2614 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546)) 21)))
+(((-747) (-10 -7 (-15 -2614 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))) (-15 -2615 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2616 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2617 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2618 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546))) (-15 -2619 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2620 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2621 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-684 (-225)) (-225) (-225) (-546))) (-15 -2622 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-225) (-225) (-546))) (-15 -2623 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-546))))) (T -747))
+((-2623 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2622 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2621 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *6 (-225)) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2620 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2619 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2618 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2617 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2616 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2615 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2614 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2614 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))) (-15 -2615 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2616 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2617 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2618 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-546))) (-15 -2619 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2620 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2621 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-684 (-225)) (-225) (-225) (-546))) (-15 -2622 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-225) (-225) (-546))) (-15 -2623 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-546))))
+((-2641 (((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546)) 45)) (-2640 (((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-546)) 44)) (-2639 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546)) 43)) (-2638 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 42)) (-2637 (((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546)) 41)) (-2636 (((-1031) (-1151) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546)) 40)) (-2635 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546) (-546) (-546) (-225) (-684 (-225)) (-546)) 39)) (-2634 (((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546))) 38)) (-2633 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546)) 35)) (-2632 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546)) 34)) (-2631 (((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546)) 33)) (-2630 (((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 32)) (-2629 (((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546)) 31)) (-2628 (((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-546)) 30)) (-2627 (((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-546) (-546) (-546)) 29)) (-2626 (((-1031) (-546) (-546) (-546) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-546)) (-546) (-546) (-546)) 28)) (-2625 (((-1031) (-546) (-684 (-225)) (-225) (-546)) 24)) (-2624 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 21)))
+(((-748) (-10 -7 (-15 -2624 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2625 ((-1031) (-546) (-684 (-225)) (-225) (-546))) (-15 -2626 ((-1031) (-546) (-546) (-546) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-546)) (-546) (-546) (-546))) (-15 -2627 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-546) (-546) (-546))) (-15 -2628 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-546))) (-15 -2629 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546))) (-15 -2630 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2631 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546))) (-15 -2632 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546))) (-15 -2633 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2634 ((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546)))) (-15 -2635 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546) (-546) (-546) (-225) (-684 (-225)) (-546))) (-15 -2636 ((-1031) (-1151) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546))) (-15 -2637 ((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2638 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2639 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))) (-15 -2640 ((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2641 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))))) (T -748))
+((-2641 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2640 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2639 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2638 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2637 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2636 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-546))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2635 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *6 (-225)) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2634 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-546))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2633 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2632 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2631 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2630 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2629 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2628 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2627 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2626 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546))) (-5 *3 (-546)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2625 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2624 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(-10 -7 (-15 -2624 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2625 ((-1031) (-546) (-684 (-225)) (-225) (-546))) (-15 -2626 ((-1031) (-546) (-546) (-546) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-546)) (-546) (-546) (-546))) (-15 -2627 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-546) (-546) (-546))) (-15 -2628 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546) (-546) (-546))) (-15 -2629 ((-1031) (-546) (-225) (-225) (-684 (-225)) (-546) (-546) (-225) (-546))) (-15 -2630 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2631 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546))) (-15 -2632 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546))) (-15 -2633 ((-1031) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2634 ((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546)))) (-15 -2635 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546) (-546) (-546) (-225) (-684 (-225)) (-546))) (-15 -2636 ((-1031) (-1151) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546))) (-15 -2637 ((-1031) (-1151) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2638 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2639 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))) (-15 -2640 ((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2641 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546) (-684 (-225)) (-684 (-225)) (-546) (-546) (-546))))
+((-2649 (((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-546) (-684 (-225)) (-546)) 63)) (-2648 (((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-112) (-225) (-546) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-546) (-546) (-546) (-546) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2647 (((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-546) (-546) (-684 (-225)) (-684 (-546)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-2646 (((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-546) (-546) (-684 (-225)) (-546)) 51)) (-2645 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2644 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2643 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2642 (((-1031) (-546) (-225) (-225) (-546) (-225) (-112) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) 38)))
+(((-749) (-10 -7 (-15 -2642 ((-1031) (-546) (-225) (-225) (-546) (-225) (-112) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2644 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 LSFUN2))))) (-15 -2645 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2646 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-546) (-546) (-684 (-225)) (-546))) (-15 -2647 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-546) (-546) (-684 (-225)) (-684 (-546)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2648 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-112) (-225) (-546) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-546) (-546) (-546) (-546) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN))))) (-15 -2649 ((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-546) (-684 (-225)) (-546))))) (T -749))
+((-2649 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2648 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-684 (-546))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2647 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-546))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-546)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2646 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2645 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2644 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2643 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2642 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-546)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
+(-10 -7 (-15 -2642 ((-1031) (-546) (-225) (-225) (-546) (-225) (-112) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2644 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 LSFUN2))))) (-15 -2645 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -2646 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-546) (-546) (-684 (-225)) (-546))) (-15 -2647 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-546) (-546) (-684 (-225)) (-684 (-546)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2648 ((-1031) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-546) (-112) (-225) (-546) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-546) (-546) (-546) (-546) (-546) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-546) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN))))) (-15 -2649 ((-1031) (-546) (-546) (-546) (-225) (-684 (-225)) (-546) (-684 (-225)) (-546))))
+((-2659 (((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546)) 47)) (-2658 (((-1031) (-1151) (-1151) (-546) (-546) (-684 (-168 (-225))) (-546) (-684 (-168 (-225))) (-546) (-546) (-684 (-168 (-225))) (-546)) 46)) (-2657 (((-1031) (-546) (-546) (-546) (-684 (-168 (-225))) (-546)) 45)) (-2656 (((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 40)) (-2655 (((-1031) (-1151) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-684 (-225)) (-546)) 39)) (-2654 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-546)) 36)) (-2653 (((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546)) 35)) (-2652 (((-1031) (-546) (-546) (-546) (-546) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-225) (-225) (-546)) 34)) (-2651 (((-1031) (-546) (-546) (-546) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-112) (-225) (-112) (-684 (-546)) (-684 (-225)) (-546)) 33)) (-2650 (((-1031) (-546) (-546) (-546) (-546) (-225) (-112) (-112) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-546)) 32)))
+(((-750) (-10 -7 (-15 -2650 ((-1031) (-546) (-546) (-546) (-546) (-225) (-112) (-112) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-546))) (-15 -2651 ((-1031) (-546) (-546) (-546) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-112) (-225) (-112) (-684 (-546)) (-684 (-225)) (-546))) (-15 -2652 ((-1031) (-546) (-546) (-546) (-546) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-225) (-225) (-546))) (-15 -2653 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546))) (-15 -2654 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-546))) (-15 -2655 ((-1031) (-1151) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-684 (-225)) (-546))) (-15 -2656 ((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2657 ((-1031) (-546) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2658 ((-1031) (-1151) (-1151) (-546) (-546) (-684 (-168 (-225))) (-546) (-684 (-168 (-225))) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2659 ((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546))))) (T -750))
+((-2659 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-168 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2658 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-168 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2657 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-168 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2656 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2655 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2654 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2653 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2652 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-637 (-112))) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546))) (-5 *7 (-225)) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2651 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-684 (-546))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) (-5 *3 (-546)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2650 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-637 (-112))) (-5 *7 (-684 (-225))) (-5 *8 (-684 (-546))) (-5 *3 (-546)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750)))))
+(-10 -7 (-15 -2650 ((-1031) (-546) (-546) (-546) (-546) (-225) (-112) (-112) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-546))) (-15 -2651 ((-1031) (-546) (-546) (-546) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-684 (-546)) (-112) (-225) (-112) (-684 (-546)) (-684 (-225)) (-546))) (-15 -2652 ((-1031) (-546) (-546) (-546) (-546) (-637 (-112)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-225) (-225) (-546))) (-15 -2653 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546))) (-15 -2654 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-546))) (-15 -2655 ((-1031) (-1151) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-684 (-225)) (-546))) (-15 -2656 ((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2657 ((-1031) (-546) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2658 ((-1031) (-1151) (-1151) (-546) (-546) (-684 (-168 (-225))) (-546) (-684 (-168 (-225))) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2659 ((-1031) (-1151) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546))))
+((-2674 (((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546)) 66)) (-2673 (((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546)) 61)) (-2672 (((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-2671 (((-1031) (-546) (-546) (-546) (-225) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546)) 37)) (-2670 (((-1031) (-546) (-546) (-225) (-225) (-546) (-546) (-684 (-225)) (-546)) 33)) (-2669 (((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546) (-546)) 30)) (-2668 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 29)) (-2667 (((-1031) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 28)) (-2666 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 27)) (-2665 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546)) 26)) (-2664 (((-1031) (-546) (-546) (-684 (-225)) (-546)) 25)) (-2663 (((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 24)) (-2662 (((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546)) 23)) (-2661 (((-1031) (-684 (-225)) (-546) (-546) (-546) (-546)) 22)) (-2660 (((-1031) (-546) (-546) (-684 (-225)) (-546)) 21)))
+(((-751) (-10 -7 (-15 -2660 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2661 ((-1031) (-684 (-225)) (-546) (-546) (-546) (-546))) (-15 -2662 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2663 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2664 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2665 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546))) (-15 -2666 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2667 ((-1031) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2668 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2669 ((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546) (-546))) (-15 -2670 ((-1031) (-546) (-546) (-225) (-225) (-546) (-546) (-684 (-225)) (-546))) (-15 -2671 ((-1031) (-546) (-546) (-546) (-225) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2672 ((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2672 ((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2673 ((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2674 ((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546))))) (T -751))
+((-2674 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-112)) (-5 *5 (-684 (-168 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2673 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2672 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2672 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2671 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-546)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2670 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2669 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2668 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2666 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2665 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2664 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2663 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2662 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2661 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2660 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(-10 -7 (-15 -2660 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2661 ((-1031) (-684 (-225)) (-546) (-546) (-546) (-546))) (-15 -2662 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2663 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2664 ((-1031) (-546) (-546) (-684 (-225)) (-546))) (-15 -2665 ((-1031) (-546) (-546) (-546) (-546) (-684 (-225)) (-546))) (-15 -2666 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2667 ((-1031) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2668 ((-1031) (-546) (-546) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2669 ((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546) (-546))) (-15 -2670 ((-1031) (-546) (-546) (-225) (-225) (-546) (-546) (-684 (-225)) (-546))) (-15 -2671 ((-1031) (-546) (-546) (-546) (-225) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2672 ((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2672 ((-1031) (-546) (-546) (-225) (-546) (-546) (-546) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2673 ((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2674 ((-1031) (-546) (-546) (-546) (-546) (-546) (-112) (-546) (-112) (-546) (-684 (-168 (-225))) (-684 (-168 (-225))) (-546))))
+((-2685 (((-1031) (-546) (-546) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 61)) (-2684 (((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546)) 57)) (-2683 (((-1031) (-546) (-684 (-225)) (-112) (-225) (-546) (-546) (-546) (-546) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2682 (((-1031) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546)) 37)) (-2681 (((-1031) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-546)) 36)) (-2680 (((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546)) 33)) (-2679 (((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225))) 32)) (-2678 (((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546)) 28)) (-2677 (((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546)) 27)) (-2676 (((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546)) 26)) (-2675 (((-1031) (-546) (-684 (-168 (-225))) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-546)) 22)))
+(((-752) (-10 -7 (-15 -2675 ((-1031) (-546) (-684 (-168 (-225))) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2676 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2677 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2678 ((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546))) (-15 -2679 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225)))) (-15 -2680 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2681 ((-1031) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2682 ((-1031) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546))) (-15 -2683 ((-1031) (-546) (-684 (-225)) (-112) (-225) (-546) (-546) (-546) (-546) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2684 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546))) (-15 -2685 ((-1031) (-546) (-546) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752))
+((-2685 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2684 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2683 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2682 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2681 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2680 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2679 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2678 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2677 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2676 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2675 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-168 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752)))))
+(-10 -7 (-15 -2675 ((-1031) (-546) (-684 (-168 (-225))) (-546) (-546) (-546) (-546) (-684 (-168 (-225))) (-546))) (-15 -2676 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2677 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-546))) (-15 -2678 ((-1031) (-684 (-225)) (-546) (-684 (-225)) (-546) (-546) (-546))) (-15 -2679 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-546)) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225)))) (-15 -2680 ((-1031) (-546) (-546) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2681 ((-1031) (-546) (-546) (-546) (-225) (-546) (-684 (-225)) (-684 (-225)) (-546))) (-15 -2682 ((-1031) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-546)) (-684 (-225)) (-684 (-546)) (-684 (-546)) (-684 (-225)) (-684 (-225)) (-684 (-546)) (-546))) (-15 -2683 ((-1031) (-546) (-684 (-225)) (-112) (-225) (-546) (-546) (-546) (-546) (-225) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2684 ((-1031) (-546) (-684 (-225)) (-546) (-684 (-225)) (-684 (-546)) (-546) (-684 (-225)) (-546) (-546) (-546) (-546))) (-15 -2685 ((-1031) (-546) (-546) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-684 (-225)) (-546) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
+((-2689 (((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-546) (-684 (-225))) 29)) (-2688 (((-1031) (-1151) (-546) (-546) (-684 (-225))) 28)) (-2687 (((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-225))) 27)) (-2686 (((-1031) (-546) (-546) (-546) (-684 (-225))) 21)))
+(((-753) (-10 -7 (-15 -2686 ((-1031) (-546) (-546) (-546) (-684 (-225)))) (-15 -2687 ((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-225)))) (-15 -2688 ((-1031) (-1151) (-546) (-546) (-684 (-225)))) (-15 -2689 ((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-546) (-684 (-225)))))) (T -753))
+((-2689 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2687 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2686 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2686 ((-1031) (-546) (-546) (-546) (-684 (-225)))) (-15 -2687 ((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-684 (-546)) (-546) (-684 (-225)))) (-15 -2688 ((-1031) (-1151) (-546) (-546) (-684 (-225)))) (-15 -2689 ((-1031) (-1151) (-546) (-546) (-684 (-225)) (-546) (-546) (-684 (-225)))))
+((-2727 (((-1031) (-225) (-225) (-225) (-225) (-546)) 62)) (-2726 (((-1031) (-225) (-225) (-225) (-546)) 61)) (-2725 (((-1031) (-225) (-225) (-225) (-546)) 60)) (-2724 (((-1031) (-225) (-225) (-546)) 59)) (-2723 (((-1031) (-225) (-546)) 58)) (-2722 (((-1031) (-225) (-546)) 57)) (-2721 (((-1031) (-225) (-546)) 56)) (-2720 (((-1031) (-225) (-546)) 55)) (-2719 (((-1031) (-225) (-546)) 54)) (-2718 (((-1031) (-225) (-546)) 53)) (-2717 (((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546)) 52)) (-2716 (((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546)) 51)) (-2715 (((-1031) (-225) (-546)) 50)) (-2714 (((-1031) (-225) (-546)) 49)) (-2713 (((-1031) (-225) (-546)) 48)) (-2712 (((-1031) (-225) (-546)) 47)) (-2711 (((-1031) (-546) (-225) (-168 (-225)) (-546) (-1151) (-546)) 46)) (-2710 (((-1031) (-1151) (-168 (-225)) (-1151) (-546)) 45)) (-2709 (((-1031) (-1151) (-168 (-225)) (-1151) (-546)) 44)) (-2708 (((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546)) 43)) (-2707 (((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546)) 42)) (-2706 (((-1031) (-225) (-546)) 39)) (-2705 (((-1031) (-225) (-546)) 38)) (-2704 (((-1031) (-225) (-546)) 37)) (-2703 (((-1031) (-225) (-546)) 36)) (-2702 (((-1031) (-225) (-546)) 35)) (-2701 (((-1031) (-225) (-546)) 34)) (-2700 (((-1031) (-225) (-546)) 33)) (-2699 (((-1031) (-225) (-546)) 32)) (-2698 (((-1031) (-225) (-546)) 31)) (-2697 (((-1031) (-225) (-546)) 30)) (-2696 (((-1031) (-225) (-225) (-225) (-546)) 29)) (-2695 (((-1031) (-225) (-546)) 28)) (-2694 (((-1031) (-225) (-546)) 27)) (-2693 (((-1031) (-225) (-546)) 26)) (-2692 (((-1031) (-225) (-546)) 25)) (-2691 (((-1031) (-225) (-546)) 24)) (-2690 (((-1031) (-168 (-225)) (-546)) 21)))
+(((-754) (-10 -7 (-15 -2690 ((-1031) (-168 (-225)) (-546))) (-15 -2691 ((-1031) (-225) (-546))) (-15 -2692 ((-1031) (-225) (-546))) (-15 -2693 ((-1031) (-225) (-546))) (-15 -2694 ((-1031) (-225) (-546))) (-15 -2695 ((-1031) (-225) (-546))) (-15 -2696 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2697 ((-1031) (-225) (-546))) (-15 -2698 ((-1031) (-225) (-546))) (-15 -2699 ((-1031) (-225) (-546))) (-15 -2700 ((-1031) (-225) (-546))) (-15 -2701 ((-1031) (-225) (-546))) (-15 -2702 ((-1031) (-225) (-546))) (-15 -2703 ((-1031) (-225) (-546))) (-15 -2704 ((-1031) (-225) (-546))) (-15 -2705 ((-1031) (-225) (-546))) (-15 -2706 ((-1031) (-225) (-546))) (-15 -2707 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2708 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2709 ((-1031) (-1151) (-168 (-225)) (-1151) (-546))) (-15 -2710 ((-1031) (-1151) (-168 (-225)) (-1151) (-546))) (-15 -2711 ((-1031) (-546) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2712 ((-1031) (-225) (-546))) (-15 -2713 ((-1031) (-225) (-546))) (-15 -2714 ((-1031) (-225) (-546))) (-15 -2715 ((-1031) (-225) (-546))) (-15 -2716 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2717 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2718 ((-1031) (-225) (-546))) (-15 -2719 ((-1031) (-225) (-546))) (-15 -2720 ((-1031) (-225) (-546))) (-15 -2721 ((-1031) (-225) (-546))) (-15 -2722 ((-1031) (-225) (-546))) (-15 -2723 ((-1031) (-225) (-546))) (-15 -2724 ((-1031) (-225) (-225) (-546))) (-15 -2725 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2726 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2727 ((-1031) (-225) (-225) (-225) (-225) (-546))))) (T -754))
+((-2727 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2726 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2725 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2724 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2717 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2716 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2711 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-546)) (-5 *5 (-168 (-225))) (-5 *6 (-1151)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2710 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2709 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2708 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2707 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2696 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(-10 -7 (-15 -2690 ((-1031) (-168 (-225)) (-546))) (-15 -2691 ((-1031) (-225) (-546))) (-15 -2692 ((-1031) (-225) (-546))) (-15 -2693 ((-1031) (-225) (-546))) (-15 -2694 ((-1031) (-225) (-546))) (-15 -2695 ((-1031) (-225) (-546))) (-15 -2696 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2697 ((-1031) (-225) (-546))) (-15 -2698 ((-1031) (-225) (-546))) (-15 -2699 ((-1031) (-225) (-546))) (-15 -2700 ((-1031) (-225) (-546))) (-15 -2701 ((-1031) (-225) (-546))) (-15 -2702 ((-1031) (-225) (-546))) (-15 -2703 ((-1031) (-225) (-546))) (-15 -2704 ((-1031) (-225) (-546))) (-15 -2705 ((-1031) (-225) (-546))) (-15 -2706 ((-1031) (-225) (-546))) (-15 -2707 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2708 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2709 ((-1031) (-1151) (-168 (-225)) (-1151) (-546))) (-15 -2710 ((-1031) (-1151) (-168 (-225)) (-1151) (-546))) (-15 -2711 ((-1031) (-546) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2712 ((-1031) (-225) (-546))) (-15 -2713 ((-1031) (-225) (-546))) (-15 -2714 ((-1031) (-225) (-546))) (-15 -2715 ((-1031) (-225) (-546))) (-15 -2716 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2717 ((-1031) (-225) (-168 (-225)) (-546) (-1151) (-546))) (-15 -2718 ((-1031) (-225) (-546))) (-15 -2719 ((-1031) (-225) (-546))) (-15 -2720 ((-1031) (-225) (-546))) (-15 -2721 ((-1031) (-225) (-546))) (-15 -2722 ((-1031) (-225) (-546))) (-15 -2723 ((-1031) (-225) (-546))) (-15 -2724 ((-1031) (-225) (-225) (-546))) (-15 -2725 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2726 ((-1031) (-225) (-225) (-225) (-546))) (-15 -2727 ((-1031) (-225) (-225) (-225) (-225) (-546))))
+((-2733 (((-1262)) 18)) (-2729 (((-1151)) 22)) (-2728 (((-1151)) 21)) (-2731 (((-1096) (-1169) (-684 (-546))) 37) (((-1096) (-1169) (-684 (-225))) 32)) (-2732 (((-112)) 16)) (-2730 (((-1151) (-1151)) 25)))
+(((-755) (-10 -7 (-15 -2728 ((-1151))) (-15 -2729 ((-1151))) (-15 -2730 ((-1151) (-1151))) (-15 -2731 ((-1096) (-1169) (-684 (-225)))) (-15 -2731 ((-1096) (-1169) (-684 (-546)))) (-15 -2732 ((-112))) (-15 -2733 ((-1262))))) (T -755))
+((-2733 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))) (-2732 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-546))) (-5 *2 (-1096)) (-5 *1 (-755)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1096)) (-5 *1 (-755)))) (-2730 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-2729 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-2728 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
+(-10 -7 (-15 -2728 ((-1151))) (-15 -2729 ((-1151))) (-15 -2730 ((-1151) (-1151))) (-15 -2731 ((-1096) (-1169) (-684 (-225)))) (-15 -2731 ((-1096) (-1169) (-684 (-546)))) (-15 -2732 ((-112))) (-15 -2733 ((-1262))))
+((-2735 (($ $ $) 10)) (-2736 (($ $ $ $) 9)) (-2734 (($ $ $) 12)))
+(((-756 |#1|) (-10 -8 (-15 -2734 (|#1| |#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1| |#1|))) (-757)) (T -756))
+NIL
+(-10 -8 (-15 -2734 (|#1| |#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2549 (($ $ (-915)) 28)) (-2548 (($ $ (-915)) 29)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-2735 (($ $ $) 25)) (-4361 (((-859) $) 11)) (-2736 (($ $ $ $) 26)) (-2734 (($ $ $) 24)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 30)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 27)))
(((-757) (-140)) (T -757))
-((-1756 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-1745 (*1 *1 *1 *1) (-4 *1 (-757))) (-1729 (*1 *1 *1 *1) (-4 *1 (-757))))
-(-13 (-21) (-716) (-10 -8 (-15 -1756 ($ $ $ $)) (-15 -1745 ($ $ $)) (-15 -1729 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T))
-((-1692 (((-858) $) NIL) (($ (-563)) 10)))
-(((-758 |#1|) (-10 -8 (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-759)) (T -758))
-NIL
-(-10 -8 (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3342 (((-3 $ "failed") $) 40)) (-3376 (($ $ (-917)) 28) (($ $ (-767)) 35)) (-3951 (((-3 $ "failed") $) 38)) (-3401 (((-112) $) 34)) (-3353 (((-3 $ "failed") $) 39)) (-3364 (($ $ (-917)) 29) (($ $ (-767)) 36)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1745 (($ $ $) 25)) (-1692 (((-858) $) 11) (($ (-563)) 31)) (-3914 (((-767)) 32)) (-1756 (($ $ $ $) 26)) (-1729 (($ $ $) 24)) (-2239 (($) 18 T CONST)) (-2253 (($) 33 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 30) (($ $ (-767)) 37)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27)))
+((-2736 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-2735 (*1 *1 *1 *1) (-4 *1 (-757))) (-2734 (*1 *1 *1 *1) (-4 *1 (-757))))
+(-13 (-21) (-716) (-10 -8 (-15 -2736 ($ $ $ $)) (-15 -2735 ($ $ $)) (-15 -2734 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-716) . T) ((-1094) . T))
+((-4361 (((-859) $) NIL) (($ (-546)) 10)))
+(((-758 |#1|) (-10 -8 (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-759)) (T -758))
+NIL
+(-10 -8 (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2546 (((-3 $ #1="failed") $) 40)) (-2549 (($ $ (-915)) 28) (($ $ (-767)) 35)) (-3873 (((-3 $ #1#) $) 38)) (-2552 (((-112) $) 34)) (-2547 (((-3 $ #1#) $) 39)) (-2548 (($ $ (-915)) 29) (($ $ (-767)) 36)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-2735 (($ $ $) 25)) (-4361 (((-859) $) 11) (($ (-546)) 31)) (-3518 (((-767)) 32 T CONST)) (-2736 (($ $ $ $) 26)) (-2734 (($ $ $) 24)) (-3047 (($) 18 T CONST)) (-3053 (($) 33 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 30) (($ $ (-767)) 37)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 27)))
(((-759) (-140)) (T -759))
-((-3914 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759)))))
-(-13 (-757) (-718) (-10 -8 (-15 -3914 ((-767))) (-15 -1692 ($ (-563)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1093) . T))
-((-1781 (((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|) 33)) (-1768 (((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|) 23)) (-1892 (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169)) 20) (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563))))) 19)))
-(((-760 |#1|) (-10 -7 (-15 -1892 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -1892 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -1768 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -1781 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|))) (-13 (-363) (-844))) (T -760))
-((-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169)) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -1892 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -1892 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -1768 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -1781 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|)))
-((-3616 (((-174 (-563)) |#1|) 25)))
-(((-761 |#1|) (-10 -7 (-15 -3616 ((-174 (-563)) |#1|))) (-404)) (T -761))
-((-3616 (*1 *2 *3) (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404)))))
-(-10 -7 (-15 -3616 ((-174 (-563)) |#1|)))
-((-3142 ((|#1| |#1| |#1|) 24)) (-3151 ((|#1| |#1| |#1|) 23)) (-3036 ((|#1| |#1| |#1|) 32)) (-3121 ((|#1| |#1| |#1|) 28)) (-3132 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3177 (((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|) 22)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -3177 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3132 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3121 (|#1| |#1| |#1|)) (-15 -3036 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762))
-((-3036 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3121 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3132 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3142 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3151 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))))
-(-10 -7 (-15 -3177 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3132 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3121 (|#1| |#1| |#1|)) (-15 -3036 (|#1| |#1| |#1|)))
-((-3233 (((-686 (-1215)) $ (-1215)) 26)) (-3243 (((-686 (-548)) $ (-548)) 25)) (-3225 (((-767) $ (-128)) 27)) (-3254 (((-686 (-129)) $ (-129)) 24)) (-3884 (((-686 (-1215)) $) 12)) (-3848 (((-686 (-1214)) $) 8)) (-3864 (((-686 (-1213)) $) 10)) (-3896 (((-686 (-548)) $) 13)) (-3857 (((-686 (-547)) $) 9)) (-3874 (((-686 (-546)) $) 11)) (-3839 (((-767) $ (-128)) 7)) (-3907 (((-686 (-129)) $) 14)) (-1791 (((-112) $) 31)) (-1803 (((-686 $) |#1| (-950)) 32)) (-1895 (($ $) 6)))
-(((-763 |#1|) (-140) (-1093)) (T -763))
-((-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1)) (-4 *1 (-763 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(-13 (-575) (-10 -8 (-15 -1803 ((-686 $) |t#1| (-950))) (-15 -1791 ((-112) $))))
-(((-173) . T) ((-527) . T) ((-575) . T) ((-856) . T))
-((-3619 (((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)) 59)) (-3608 (((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) 57)) (-1623 (((-563)) 70)))
-(((-764 |#1| |#2|) (-10 -7 (-15 -1623 ((-563))) (-15 -3608 ((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -3619 ((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)))) (-1233 (-563)) (-409 (-563) |#1|)) (T -764))
-((-3619 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3608 (*1 *2) (-12 (-4 *3 (-1233 (-563))) (-5 *2 (-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3)))) (-1623 (*1 *2) (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 *2 *3)))))
-(-10 -7 (-15 -1623 ((-563))) (-15 -3608 ((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -3619 ((-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563))))
-((-1677 (((-112) $ $) NIL)) (-2057 (((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20) (($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1718 (((-112) $ $) NIL)))
-(((-765) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1692 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1692 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2057 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1692 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1692 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2057 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
-((-1306 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 18) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 17)) (-3510 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 20) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 19)))
-(((-766 |#1|) (-10 -7 (-15 -1306 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1306 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))))) (-555)) (T -766))
-((-3510 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))))
-(-10 -7 (-15 -1306 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1306 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-4092 (($ $ $) 6)) (-3905 (((-3 $ "failed") $ $) 9)) (-3462 (($ $ (-563)) 7)) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($ $) NIL)) (-3054 (($ $ $) NIL)) (-3401 (((-112) $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3551 (($ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-1692 (((-858) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL)))
-(((-767) (-13 (-789) (-722) (-10 -8 (-15 -3054 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3263 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3012 ((-3 $ "failed") $ $)) (-15 -3462 ($ $ (-563))) (-15 -1690 ($ $)) (-6 (-4410 "*"))))) (T -767))
-((-3054 (*1 *1 *1 *1) (-5 *1 (-767))) (-3094 (*1 *1 *1 *1) (-5 *1 (-767))) (-3551 (*1 *1 *1 *1) (-5 *1 (-767))) (-3263 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1765 (-767)) (|:| -3443 (-767)))) (-5 *1 (-767)))) (-3012 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767)))) (-1690 (*1 *1 *1) (-5 *1 (-767))))
-(-13 (-789) (-722) (-10 -8 (-15 -3054 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3263 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3012 ((-3 $ "failed") $ $)) (-15 -3462 ($ $ (-563))) (-15 -1690 ($ $)) (-6 (-4410 "*"))))
-((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-3510 (((-3 |#2| "failed") |#2| |#2| (-114) (-1169)) 35)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -3510 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -768))
-((-3510 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955))))))
-(-10 -7 (-15 -3510 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169))))
-((-1692 (((-770) |#1|) 8)))
-(((-769 |#1|) (-10 -7 (-15 -1692 ((-770) |#1|))) (-1208)) (T -769))
-((-1692 (*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208)))))
-(-10 -7 (-15 -1692 ((-770) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 7)) (-1718 (((-112) $ $) 9)))
-(((-770) (-1093)) (T -770))
-NIL
-(-1093)
-((-3975 ((|#2| |#4|) 35)))
-(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3975 (|#2| |#4|))) (-452) (-1233 |#1|) (-720 |#1| |#2|) (-1233 |#3|)) (T -771))
-((-3975 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5)))))
-(-10 -7 (-15 -3975 (|#2| |#4|)))
-((-3951 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1837 (((-1262) (-1151) (-1151) |#4| |#5|) 33)) (-1814 ((|#4| |#4| |#5|) 72)) (-1826 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|) 76)) (-1846 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|) 16)))
-(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1814 (|#4| |#4| |#5|)) (-15 -1826 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -1837 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -1846 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772))
-((-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1837 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-1826 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1814 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1814 (|#4| |#4| |#5|)) (-15 -1826 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -1837 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -1846 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)))
-((-2130 (((-3 (-1165 (-1165 |#1|)) "failed") |#4|) 43)) (-1859 (((-640 |#4|) |#4|) 15)) (-3715 ((|#4| |#4|) 11)))
-(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1859 ((-640 |#4|) |#4|)) (-15 -2130 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -3715 (|#4| |#4|))) (-349) (-329 |#1|) (-1233 |#2|) (-1233 |#3|) (-917)) (T -773))
-((-3715 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917)))) (-2130 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917)))) (-1859 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917)))))
-(-10 -7 (-15 -1859 ((-640 |#4|) |#4|)) (-15 -2130 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -3715 (|#4| |#4|)))
-((-1868 (((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|)) 53)) (-1880 (((-640 (-767)) |#1|) 13)))
-(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1868 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -1880 ((-640 (-767)) |#1|))) (-1233 |#4|) (-789) (-846) (-307) (-945 |#4| |#2| |#3|)) (T -774))
-((-1880 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5)))) (-1868 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-945 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-640 (-1165 *10))) (|:| |dterm| (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6)) (-5 *5 (-640 *10)))))
-(-10 -7 (-15 -1868 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -1880 ((-640 (-767)) |#1|)))
-((-1912 (((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|) 31)) (-1901 (((-640 |#1|) (-684 (-407 (-563))) |#1|) 21)) (-1892 (((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169)) 18) (((-948 (-407 (-563))) (-684 (-407 (-563)))) 17)))
-(((-775 |#1|) (-10 -7 (-15 -1892 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -1892 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -1901 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -1912 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|))) (-13 (-363) (-844))) (T -775))
-((-1912 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 (-2 (|:| |outval| *4) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169)) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -1892 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -1892 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -1901 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -1912 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 34)) (-2605 (((-640 |#2|) $) NIL)) (-2138 (((-1165 $) $ |#2|) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 |#2|)) NIL)) (-4303 (($ $) 28)) (-1351 (((-112) $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1601 (($ $ $) 92 (|has| |#1| (-555)))) (-4282 (((-640 $) $ $) 105 (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) NIL (-4034 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) NIL (-4034 (-12 (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-988 (-563))))))) (((-3 (-1118 |#1| |#2|) "failed") $) 18)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-4034 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (-4034 (-12 (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-988 (-563))))))) (((-1118 |#1| |#2|) $) NIL)) (-1612 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-555)))) (-2750 (($ $) NIL) (($ $ |#2|) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2264 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3277 (((-112) $) NIL)) (-1564 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 68)) (-4235 (($ $) 118 (|has| |#1| (-452)))) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-4349 (($ $) NIL (|has| |#1| (-555)))) (-4359 (($ $) NIL (|has| |#1| (-555)))) (-1341 (($ $ $) 63) (($ $ $ |#2|) NIL)) (-1332 (($ $ $) 66) (($ $ $ |#2|) NIL)) (-2159 (($ $ |#1| (-531 |#2|) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) 53)) (-3481 (((-767) $) NIL)) (-2274 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-4246 (($ $ $ $ $) 89 (|has| |#1| (-555)))) (-3354 ((|#2| $) 19)) (-2595 (($ (-1165 |#1|) |#2|) NIL) (($ (-1165 $) |#2|) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 36) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4379 (($ $ $) 59)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#2|) NIL)) (-3286 (((-112) $) NIL)) (-3908 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-3343 (((-767) $) 20)) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1698 (((-3 |#2| "failed") $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-452)))) (-4216 (($ $) NIL (|has| |#1| (-452)))) (-3239 (((-640 $) $) NIL)) (-3267 (($ $) 37)) (-4226 (($ $) NIL (|has| |#1| (-452)))) (-3249 (((-640 $) $) 41)) (-3260 (($ $) 39)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4367 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4104 (-767))) $ $) 81)) (-1291 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $) 65) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $ |#2|) NIL)) (-1300 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $) NIL) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $ |#2|) NIL)) (-1322 (($ $ $) 70) (($ $ $ |#2|) NIL)) (-1312 (($ $ $) 73) (($ $ $ |#2|) NIL)) (-3854 (((-1151) $) NIL)) (-3461 (($ $ $) 107 (|has| |#1| (-555)))) (-3312 (((-640 $) $) 30)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3311 (-767))) "failed") $) NIL)) (-2225 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-2163 (($ $ $) NIL)) (-2522 (($ $) 21)) (-2319 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-2176 (($ $ $) NIL)) (-3333 (($ $) 23)) (-1693 (((-1113) $) NIL)) (-4294 (((-2 (|:| -3551 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-555)))) (-4305 (((-2 (|:| -3551 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-555)))) (-2695 (((-112) $) 52)) (-2705 ((|#1| $) 54)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 ((|#1| |#1| $) 115 (|has| |#1| (-452))) (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-4315 (((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-555)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-555)))) (-4326 (($ $ |#1|) 111 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-4338 (($ $ |#1|) 110 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-640 |#2|) (-640 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-640 |#2|) (-640 $)) NIL)) (-1623 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4203 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-3871 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 43) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-3323 (($ $) NIL)) (-3297 (($ $) 33)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536))))) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-4034 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2174 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (|has| |#2| (-611 (-1169)))) (((-1151) $) NIL (-12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169))))) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169))))) (-3885 ((|#1| $) 114 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169)))) (((-1118 |#1| |#2|) $) 15) (($ (-1118 |#1| |#2|)) 16) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 44) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 13 T CONST)) (-1361 (((-3 (-112) "failed") $ $) NIL)) (-2253 (($) 35 T CONST)) (-4259 (($ $ $ $ (-767)) 87 (|has| |#1| (-555)))) (-4271 (($ $ $ (-767)) 86 (|has| |#1| (-555)))) (-3213 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) 62)) (-1813 (($ $ $) 72)) (** (($ $ (-917)) NIL) (($ $ (-767)) 60)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 58) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 57) (($ $ |#1|) NIL)))
+((-3518 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-759)))))
+(-13 (-757) (-718) (-10 -8 (-15 -3518 ((-767)) -4367) (-15 -4361 ($ (-546)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1094) . T))
+((-2738 (((-637 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 (-168 |#1|)))))) (-684 (-168 (-407 (-546)))) |#1|) 33)) (-2737 (((-637 (-168 |#1|)) (-684 (-168 (-407 (-546)))) |#1|) 23)) (-2749 (((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546)))) (-1169)) 20) (((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546))))) 19)))
+(((-760 |#1|) (-10 -7 (-15 -2749 ((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546)))))) (-15 -2749 ((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546)))) (-1169))) (-15 -2737 ((-637 (-168 |#1|)) (-684 (-168 (-407 (-546)))) |#1|)) (-15 -2738 ((-637 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 (-168 |#1|)))))) (-684 (-168 (-407 (-546)))) |#1|))) (-13 (-363) (-844))) (T -760))
+((-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *2 (-637 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 (-168 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *2 (-637 (-168 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *4 (-1169)) (-5 *2 (-942 (-168 (-407 (-546))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *2 (-942 (-168 (-407 (-546))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
+(-10 -7 (-15 -2749 ((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546)))))) (-15 -2749 ((-942 (-168 (-407 (-546)))) (-684 (-168 (-407 (-546)))) (-1169))) (-15 -2737 ((-637 (-168 |#1|)) (-684 (-168 (-407 (-546)))) |#1|)) (-15 -2738 ((-637 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 (-168 |#1|)))))) (-684 (-168 (-407 (-546)))) |#1|)))
+((-3001 (((-174 (-546)) |#1|) 25)))
+(((-761 |#1|) (-10 -7 (-15 -3001 ((-174 (-546)) |#1|))) (-404)) (T -761))
+((-3001 (*1 *2 *3) (-12 (-5 *2 (-174 (-546))) (-5 *1 (-761 *3)) (-4 *3 (-404)))))
+(-10 -7 (-15 -3001 ((-174 (-546)) |#1|)))
+((-2930 ((|#1| |#1| |#1|) 24)) (-2931 ((|#1| |#1| |#1|) 23)) (-2920 ((|#1| |#1| |#1|) 32)) (-2928 ((|#1| |#1| |#1|) 28)) (-2929 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2936 (((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 22)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -2936 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762))
+((-2920 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2928 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2929 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2930 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2931 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2936 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))))
+(-10 -7 (-15 -2936 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)))
+((-2943 (((-686 (-1215)) $ (-1215)) 26)) (-2944 (((-686 (-549)) $ (-549)) 25)) (-2942 (((-767) $ (-129)) 27)) (-2945 (((-686 (-128)) $ (-128)) 24)) (-2157 (((-686 (-1215)) $) 12)) (-2153 (((-686 (-1214)) $) 8)) (-2155 (((-686 (-1213)) $) 10)) (-2158 (((-686 (-549)) $) 13)) (-2154 (((-686 (-548)) $) 9)) (-2156 (((-686 (-547)) $) 11)) (-2152 (((-767) $ (-129)) 7)) (-2159 (((-686 (-128)) $) 14)) (-2739 (((-112) $) 31)) (-2740 (((-686 $) |#1| (-950)) 32)) (-1851 (($ $) 6)))
+(((-763 |#1|) (-140) (-1094)) (T -763))
+((-2740 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-686 *1)) (-4 *1 (-763 *3)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-575) (-10 -8 (-15 -2740 ((-686 $) |t#1| (-950))) (-15 -2739 ((-112) $))))
+(((-173) . T) ((-527) . T) ((-575) . T) ((-857) . T))
+((-4334 (((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546)))) (-546)) 59)) (-4333 (((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546))))) 57)) (-4172 (((-546)) 70)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -4172 ((-546))) (-15 -4333 ((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546)))))) (-15 -4334 ((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546)))) (-546)))) (-1232 (-546)) (-410 (-546) |#1|)) (T -764))
+((-4334 (*1 *2 *3) (-12 (-5 *3 (-546)) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-410 *3 *4)))) (-4333 (*1 *2) (-12 (-4 *3 (-1232 (-546))) (-5 *2 (-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-410 (-546) *3)))) (-4172 (*1 *2) (-12 (-4 *3 (-1232 *2)) (-5 *2 (-546)) (-5 *1 (-764 *3 *4)) (-4 *4 (-410 *2 *3)))))
+(-10 -7 (-15 -4172 ((-546))) (-15 -4333 ((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546)))))) (-15 -4334 ((-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546)) (|:| |basisInv| (-684 (-546)))) (-546))))
+((-2953 (((-112) $ $) NIL)) (-3564 (((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20) (($ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3444 (((-112) $ $) NIL)))
+(((-765) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4361 ($ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4361 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3564 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4361 ($ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4361 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3564 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
+((-2815 (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|))) 18) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169))) 17)) (-3987 (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|))) 20) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169))) 19)))
+(((-766 |#1|) (-10 -7 (-15 -2815 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -2815 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|))))) (-556)) (T -766))
+((-3987 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-766 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-766 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-766 *4)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-766 *5)))))
+(-10 -7 (-15 -2815 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -2815 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-942 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2784 (($ $ $) 6)) (-1397 (((-3 $ "failed") $ $) 9)) (-2741 (($ $ (-546)) 7)) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($ $) NIL)) (-2948 (($ $ $) NIL)) (-2552 (((-112) $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3552 (($ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4361 (((-859) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL)))
+(((-767) (-13 (-789) (-722) (-10 -8 (-15 -2948 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -3552 ($ $ $)) (-15 -3271 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -3872 ((-3 $ "failed") $ $)) (-15 -2741 ($ $ (-546))) (-15 -3384 ($ $)) (-6 (-4410 "*"))))) (T -767))
+((-2948 (*1 *1 *1 *1) (-5 *1 (-767))) (-2949 (*1 *1 *1 *1) (-5 *1 (-767))) (-3552 (*1 *1 *1 *1) (-5 *1 (-767))) (-3271 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2131 (-767)) (|:| -3292 (-767)))) (-5 *1 (-767)))) (-3872 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-767)))) (-3384 (*1 *1 *1) (-5 *1 (-767))))
+(-13 (-789) (-722) (-10 -8 (-15 -2948 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -3552 ($ $ $)) (-15 -3271 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -3872 ((-3 $ "failed") $ $)) (-15 -2741 ($ $ (-546))) (-15 -3384 ($ $)) (-6 (-4410 "*"))))
+((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-3987 (((-3 |#2| "failed") |#2| |#2| (-113) (-1169)) 35)))
+(((-768 |#1| |#2|) (-10 -7 (-15 -3987 ((-3 |#2| "failed") |#2| |#2| (-113) (-1169)))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)) (-13 (-29 |#1|) (-1193) (-956))) (T -768))
+((-3987 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-956))))))
+(-10 -7 (-15 -3987 ((-3 |#2| "failed") |#2| |#2| (-113) (-1169))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 7)) (-3444 (((-112) $ $) 9)))
+(((-769) (-1094)) (T -769))
+NIL
+(-1094)
+((-4361 (((-769) |#1|) 8)))
+(((-770 |#1|) (-10 -7 (-15 -4361 ((-769) |#1|))) (-1207)) (T -770))
+((-4361 (*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-770 *3)) (-4 *3 (-1207)))))
+(-10 -7 (-15 -4361 ((-769) |#1|)))
+((-3524 ((|#2| |#4|) 35)))
+(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3524 (|#2| |#4|))) (-452) (-1232 |#1|) (-720 |#1| |#2|) (-1232 |#3|)) (T -771))
+((-3524 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1232 *5)))))
+(-10 -7 (-15 -3524 (|#2| |#4|)))
+((-3873 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2744 (((-1262) (-1151) (-1151) |#4| |#5|) 33)) (-2742 ((|#4| |#4| |#5|) 72)) (-2743 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|) 76)) (-2745 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|) 16)))
+(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3873 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2742 (|#4| |#4| |#5|)) (-15 -2743 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -2744 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -2745 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772))
+((-2745 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2744 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-2743 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2742 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-3873 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3873 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2742 (|#4| |#4| |#5|)) (-15 -2743 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -2744 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -2745 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)))
+((-3565 (((-3 (-1163 (-1163 |#1|)) "failed") |#4|) 43)) (-2746 (((-637 |#4|) |#4|) 15)) (-4343 ((|#4| |#4|) 11)))
+(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2746 ((-637 |#4|) |#4|)) (-15 -3565 ((-3 (-1163 (-1163 |#1|)) "failed") |#4|)) (-15 -4343 (|#4| |#4|))) (-350) (-329 |#1|) (-1232 |#2|) (-1232 |#3|) (-915)) (T -773))
+((-4343 (*1 *2 *2) (-12 (-4 *3 (-350)) (-4 *4 (-329 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-915)))) (-3565 (*1 *2 *3) (|partial| -12 (-4 *4 (-350)) (-4 *5 (-329 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-1163 (-1163 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-915)))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *5 (-329 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-637 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-915)))))
+(-10 -7 (-15 -2746 ((-637 |#4|) |#4|)) (-15 -3565 ((-3 (-1163 (-1163 |#1|)) "failed") |#4|)) (-15 -4343 (|#4| |#4|)))
+((-2747 (((-2 (|:| |deter| (-637 (-1163 |#5|))) (|:| |dterm| (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-637 |#1|)) (|:| |nlead| (-637 |#5|))) (-1163 |#5|) (-637 |#1|) (-637 |#5|)) 53)) (-2748 (((-637 (-767)) |#1|) 13)))
+(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2747 ((-2 (|:| |deter| (-637 (-1163 |#5|))) (|:| |dterm| (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-637 |#1|)) (|:| |nlead| (-637 |#5|))) (-1163 |#5|) (-637 |#1|) (-637 |#5|))) (-15 -2748 ((-637 (-767)) |#1|))) (-1232 |#4|) (-789) (-846) (-307) (-946 |#4| |#2| |#3|)) (T -774))
+((-2748 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-637 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *6)) (-4 *7 (-946 *6 *4 *5)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1232 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-946 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-637 (-1163 *10))) (|:| |dterm| (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-637 *6)) (|:| |nlead| (-637 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1163 *10)) (-5 *4 (-637 *6)) (-5 *5 (-637 *10)))))
+(-10 -7 (-15 -2747 ((-2 (|:| |deter| (-637 (-1163 |#5|))) (|:| |dterm| (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-637 |#1|)) (|:| |nlead| (-637 |#5|))) (-1163 |#5|) (-637 |#1|) (-637 |#5|))) (-15 -2748 ((-637 (-767)) |#1|)))
+((-2751 (((-637 (-2 (|:| |outval| |#1|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#1|))))) (-684 (-407 (-546))) |#1|) 31)) (-2750 (((-637 |#1|) (-684 (-407 (-546))) |#1|) 21)) (-2749 (((-942 (-407 (-546))) (-684 (-407 (-546))) (-1169)) 18) (((-942 (-407 (-546))) (-684 (-407 (-546)))) 17)))
+(((-775 |#1|) (-10 -7 (-15 -2749 ((-942 (-407 (-546))) (-684 (-407 (-546))))) (-15 -2749 ((-942 (-407 (-546))) (-684 (-407 (-546))) (-1169))) (-15 -2750 ((-637 |#1|) (-684 (-407 (-546))) |#1|)) (-15 -2751 ((-637 (-2 (|:| |outval| |#1|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#1|))))) (-684 (-407 (-546))) |#1|))) (-13 (-363) (-844))) (T -775))
+((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *2 (-637 (-2 (|:| |outval| *4) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *2 (-637 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *4 (-1169)) (-5 *2 (-942 (-407 (-546)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *2 (-942 (-407 (-546)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
+(-10 -7 (-15 -2749 ((-942 (-407 (-546))) (-684 (-407 (-546))))) (-15 -2749 ((-942 (-407 (-546))) (-684 (-407 (-546))) (-1169))) (-15 -2750 ((-637 |#1|) (-684 (-407 (-546))) |#1|)) (-15 -2751 ((-637 (-2 (|:| |outval| |#1|) (|:| |outmult| (-546)) (|:| |outvect| (-637 (-684 |#1|))))) (-684 (-407 (-546))) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 34)) (-3474 (((-637 |#2|) $) NIL)) (-3476 (((-1163 $) $ |#2|) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 |#2|)) NIL)) (-4211 (($ $) 28)) (-3574 (((-112) $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4170 (($ $ $) 92 (|has| |#1| (-556)))) (-3556 (((-637 $) $ $) 105 (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-942 (-407 (-546)))) NIL (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169))))) (((-3 $ #3#) (-942 (-546))) NIL (-3943 (-12 (|has| |#1| (-38 (-546))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546)))))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169)))))) (((-3 $ #3#) (-942 |#1|)) NIL (-3943 (-12 (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-38 (-546))))) (-12 (|has| |#1| (-38 (-546))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-987 (-546))))))) (((-3 (-1118 |#1| |#2|) #2#) $) 18)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) ((|#2| $) NIL) (($ (-942 (-407 (-546)))) NIL (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169))))) (($ (-942 (-546))) NIL (-3943 (-12 (|has| |#1| (-38 (-546))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546)))))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169)))))) (($ (-942 |#1|)) NIL (-3943 (-12 (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-38 (-546))))) (-12 (|has| |#1| (-38 (-546))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-987 (-546))))))) (((-1118 |#1| |#2|) $) NIL)) (-4171 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-556)))) (-4374 (($ $) NIL) (($ $ |#2|) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-4109 (((-112) $ $) NIL) (((-112) $ (-637 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3580 (((-112) $) NIL)) (-4167 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 68)) (-3551 (($ $) 118 (|has| |#1| (-452)))) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-3562 (($ $) NIL (|has| |#1| (-556)))) (-3563 (($ $) NIL (|has| |#1| (-556)))) (-3573 (($ $ $) 63) (($ $ $ |#2|) NIL)) (-3572 (($ $ $) 66) (($ $ $ |#2|) NIL)) (-1756 (($ $ |#1| (-531 |#2|) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| |#1| (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) 53)) (-2560 (((-767) $) NIL)) (-4110 (((-112) $ $) NIL) (((-112) $ (-637 $)) NIL)) (-3553 (($ $ $ $ $) 89 (|has| |#1| (-556)))) (-3588 ((|#2| $) 19)) (-3477 (($ (-1163 |#1|) |#2|) NIL) (($ (-1163 $) |#2|) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 36) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-3567 (($ $ $) 59)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-3581 (((-112) $) NIL)) (-3209 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-637 (-767)) $ (-637 |#2|)) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3587 (((-767) $) 20)) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3475 (((-3 |#2| #4="failed") $) NIL)) (-3548 (($ $) NIL (|has| |#1| (-452)))) (-3549 (($ $) NIL (|has| |#1| (-452)))) (-3576 (((-637 $) $) NIL)) (-3579 (($ $) 37)) (-3550 (($ $) NIL (|has| |#1| (-452)))) (-3577 (((-637 $) $) 41)) (-3578 (($ $) 39)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3566 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3887 (-767))) $ $) 81)) (-3568 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $) 65) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-3569 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $) NIL) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $ |#2|) NIL)) (-3571 (($ $ $) 70) (($ $ $ |#2|) NIL)) (-3570 (($ $ $) 73) (($ $ $ |#2|) NIL)) (-3650 (((-1151) $) NIL)) (-3598 (($ $ $) 107 (|has| |#1| (-556)))) (-3584 (((-637 $) $) 30)) (-3212 (((-3 (-637 $) #4#) $) NIL)) (-3211 (((-3 (-637 $) #4#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| |#2|) (|:| -2543 (-767))) #4#) $) NIL)) (-4106 (((-112) $ $) NIL) (((-112) $ (-637 $)) NIL)) (-4101 (($ $ $) NIL)) (-3856 (($ $) 21)) (-4114 (((-112) $ $) NIL)) (-4107 (((-112) $ $) NIL) (((-112) $ (-637 $)) NIL)) (-4102 (($ $ $) NIL)) (-3586 (($ $) 23)) (-3651 (((-1113) $) NIL)) (-3557 (((-2 (|:| -3552 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-556)))) (-3558 (((-2 (|:| -3552 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-556)))) (-1951 (((-112) $) 52)) (-1950 ((|#1| $) 54)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 ((|#1| |#1| $) 115 (|has| |#1| (-452))) (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3559 (((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-556)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-556)))) (-3560 (($ $ |#1|) 111 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3561 (($ $ |#1|) 110 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-637 |#2|) (-637 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-637 |#2|) (-637 $)) NIL)) (-4172 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4225 (($ $ |#2|) NIL) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-4363 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 43) (((-637 (-767)) $ (-637 |#2|)) NIL)) (-3585 (($ $) NIL)) (-3583 (($ $) 33)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| |#1| (-611 (-535))) (|has| |#2| (-611 (-535))))) (($ (-942 (-407 (-546)))) NIL (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169))))) (($ (-942 (-546))) NIL (-3943 (-12 (|has| |#1| (-38 (-546))) (|has| |#2| (-611 (-1169))) (-3733 (|has| |#1| (-38 (-407 (-546)))))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#2| (-611 (-1169)))))) (($ (-942 |#1|)) NIL (|has| |#2| (-611 (-1169)))) (((-1151) $) NIL (-12 (|has| |#1| (-1034 (-546))) (|has| |#2| (-611 (-1169))))) (((-942 |#1|) $) NIL (|has| |#2| (-611 (-1169))))) (-3206 ((|#1| $) 114 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-942 |#1|) $) NIL (|has| |#2| (-611 (-1169)))) (((-1118 |#1| |#2|) $) 15) (($ (-1118 |#1| |#2|)) 16) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 44) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 13 T CONST)) (-3575 (((-3 (-112) #3#) $ $) NIL)) (-3053 (($) 35 T CONST)) (-3554 (($ $ $ $ (-767)) 87 (|has| |#1| (-556)))) (-3555 (($ $ $ (-767)) 86 (|has| |#1| (-556)))) (-3058 (($ $ |#2|) NIL) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) 62)) (-4254 (($ $ $) 72)) (** (($ $ (-915)) NIL) (($ $ (-767)) 60)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 58) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 57) (($ $ |#1|) NIL)))
(((-776 |#1| |#2|) (-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846)) (T -776))
NIL
(-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|)))
-((-2238 (((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)) 13)))
-(((-777 |#1| |#2|) (-10 -7 (-15 -2238 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) (-1045) (-1045)) (T -777))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6)))))
-(-10 -7 (-15 -2238 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 12)) (-1740 (((-1257 |#1|) $ (-767)) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-1714 (($ (-1165 |#1|)) NIL)) (-2138 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1955 (((-640 $) $ $) 40 (|has| |#1| (-555)))) (-1601 (($ $ $) 36 (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1660 (($ $ (-767)) NIL)) (-1647 (($ $ (-767)) NIL)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL) (((-3 (-1165 |#1|) "failed") $) 10)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL) (((-1165 |#1|) $) NIL)) (-1612 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 44 (|has| |#1| (-172)))) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-1634 (($ $ $) NIL)) (-1577 (($ $ $) 72 (|has| |#1| (-555)))) (-1564 (((-2 (|:| -2310 |#1|) (|:| -1765 $) (|:| -3443 $)) $ $) 71 (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-767) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2595 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1821 (($ $ (-767)) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-4379 (($ $ $) 19)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1075)) NIL) (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3908 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-767) (-767)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1726 (((-1165 |#1|) $) NIL)) (-1698 (((-3 (-1075) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4367 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4104 (-767))) $ $) 26)) (-1975 (($ $ $) 30)) (-1965 (($ $ $) 33)) (-1291 (((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $) 32)) (-3854 (((-1151) $) NIL)) (-3461 (($ $ $) 42 (|has| |#1| (-555)))) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1075)) (|:| -3311 (-767))) "failed") $) NIL)) (-2062 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) NIL (|has| |#1| (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-4294 (((-2 (|:| -3551 $) (|:| |coef2| $)) $ $) 68 (|has| |#1| (-555)))) (-4305 (((-2 (|:| -3551 $) (|:| |coef1| $)) $ $) 64 (|has| |#1| (-555)))) (-1924 (((-2 (|:| -1612 |#1|) (|:| |coef2| $)) $ $) 56 (|has| |#1| (-555)))) (-1935 (((-2 (|:| -1612 |#1|) (|:| |coef1| $)) $ $) 52 (|has| |#1| (-555)))) (-2695 (((-112) $) 13)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2646 (($ $ (-767) |#1| $) 18)) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-4315 (((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 60 (|has| |#1| (-555)))) (-1946 (((-2 (|:| -1612 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 48 (|has| |#1| (-555)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-1699 (((-3 $ "failed") $ (-767)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-1623 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4203 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3871 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1075)) NIL) (((-1165 |#1|) $) 7) (($ (-1165 |#1|)) 8) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 20 T CONST)) (-2253 (($) 23 T CONST)) (-3213 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) 29) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 22) (($ $ |#1|) NIL)))
-(((-778 |#1|) (-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -2646 ($ $ (-767) |#1| $)) (-15 -4379 ($ $ $)) (-15 -4367 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4104 (-767))) $ $)) (-15 -1975 ($ $ $)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -1965 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -1955 ((-640 $) $ $)) (-15 -3461 ($ $ $)) (-15 -4315 ((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4305 ((-2 (|:| -3551 $) (|:| |coef1| $)) $ $)) (-15 -4294 ((-2 (|:| -3551 $) (|:| |coef2| $)) $ $)) (-15 -1946 ((-2 (|:| -1612 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1935 ((-2 (|:| -1612 |#1|) (|:| |coef1| $)) $ $)) (-15 -1924 ((-2 (|:| -1612 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -778))
-((-2646 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-4379 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-4367 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -4104 (-767)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-1975 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-1291 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2310 *3) (|:| |gap| (-767)) (|:| -1765 (-778 *3)) (|:| -3443 (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-1965 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-1955 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3461 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045)))) (-4315 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3551 (-778 *3)) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-4305 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3551 (-778 *3)) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-4294 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3551 (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-1946 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1612 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-1935 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1612 *3) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-1924 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1612 *3) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))))
-(-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -2646 ($ $ (-767) |#1| $)) (-15 -4379 ($ $ $)) (-15 -4367 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4104 (-767))) $ $)) (-15 -1975 ($ $ $)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -1965 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -1955 ((-640 $) $ $)) (-15 -3461 ($ $ $)) (-15 -4315 ((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4305 ((-2 (|:| -3551 $) (|:| |coef1| $)) $ $)) (-15 -4294 ((-2 (|:| -3551 $) (|:| |coef2| $)) $ $)) (-15 -1946 ((-2 (|:| -1612 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1935 ((-2 (|:| -1612 |#1|) (|:| |coef1| $)) $ $)) (-15 -1924 ((-2 (|:| -1612 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1991 ((|#1| (-767) |#1|) 32 (|has| |#1| (-38 (-407 (-563)))))) (-1869 ((|#1| (-767) |#1|) 22)) (-1982 ((|#1| (-767) |#1|) 34 (|has| |#1| (-38 (-407 (-563)))))))
-(((-779 |#1|) (-10 -7 (-15 -1869 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -1982 (|#1| (-767) |#1|)) (-15 -1991 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779))
-((-1991 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-1869 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -1869 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -1982 (|#1| (-767) |#1|)) (-15 -1991 (|#1| (-767) |#1|))) |%noBranch|))
-((-1677 (((-112) $ $) 7)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) 85)) (-2119 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) 101) (((-112) $) 97)) (-2189 ((|#4| |#4| $) 92)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 126)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3793 (((-3 $ "failed") $) 82)) (-2151 ((|#4| |#4| $) 89)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2131 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) 105)) (-3536 (((-112) |#4| $) 136)) (-3514 (((-112) |#4| $) 133)) (-3548 (((-112) |#4| $) 137) (((-112) $) 134)) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) 104) (((-112) $) 103)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3482 (((-640 $) |#4| $) 129)) (-3503 (((-3 (-112) (-640 $)) |#4| $) 132)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3834 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-1956 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2297 (((-640 |#4|) $) 107)) (-2225 (((-112) |#4| $) 99) (((-112) $) 95)) (-2163 ((|#4| |#4| $) 90)) (-2319 (((-112) $ $) 110)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) 100) (((-112) $) 96)) (-2176 ((|#4| |#4| $) 91)) (-1693 (((-1113) $) 10)) (-3782 (((-3 |#4| "failed") $) 84)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2089 (((-3 $ "failed") $ |#4|) 78)) (-1751 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-3871 (((-767) $) 106)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-2141 (($ $) 88)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3255 (((-767) $) 76 (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-3450 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) 81)) (-3525 (((-112) |#4| $) 135)) (-3772 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 12)) (-4181 (((-1256 |#1|) $ (-767)) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4179 (($ (-1163 |#1|)) NIL)) (-3476 (((-1163 $) $ (-1075)) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1075))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2755 (((-637 $) $ $) 40 (|has| |#1| (-556)))) (-4170 (($ $ $) 36 (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4175 (($ $ (-767)) NIL)) (-4174 (($ $ (-767)) NIL)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-1075) #2#) $) NIL) (((-3 (-1163 |#1|) #2#) $) 10)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-1075) $) NIL) (((-1163 |#1|) $) NIL)) (-4171 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 44 (|has| |#1| (-172)))) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4173 (($ $ $) NIL)) (-4168 (($ $ $) 72 (|has| |#1| (-556)))) (-4167 (((-2 (|:| -4369 |#1|) (|:| -2131 $) (|:| -3292 $)) $ $) 71 (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-767) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1075) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1075) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ $) NIL (|has| |#1| (-556)))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-3477 (($ (-1163 |#1|) (-1075)) NIL) (($ (-1163 $) (-1075)) NIL)) (-4191 (($ $ (-767)) NIL)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3567 (($ $ $) 19)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1075)) NIL) (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3209 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-767) (-767)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4180 (((-1163 |#1|) $) NIL)) (-3475 (((-3 (-1075) #4="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3566 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3887 (-767))) $ $) 26)) (-2757 (($ $ $) 30)) (-2756 (($ $ $) 33)) (-3568 (((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $) 32)) (-3650 (((-1151) $) NIL)) (-3598 (($ $ $) 42 (|has| |#1| (-556)))) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) NIL)) (-3212 (((-3 (-637 $) #4#) $) NIL)) (-3211 (((-3 (-637 $) #4#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1075)) (|:| -2543 (-767))) #4#) $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) NIL (|has| |#1| (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3557 (((-2 (|:| -3552 $) (|:| |coef2| $)) $ $) 68 (|has| |#1| (-556)))) (-3558 (((-2 (|:| -3552 $) (|:| |coef1| $)) $ $) 64 (|has| |#1| (-556)))) (-2752 (((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $) 56 (|has| |#1| (-556)))) (-2753 (((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $) 52 (|has| |#1| (-556)))) (-1951 (((-112) $) 13)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4153 (($ $ (-767) |#1| $) 18)) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3559 (((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 60 (|has| |#1| (-556)))) (-2754 (((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 48 (|has| |#1| (-556)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-637 (-1075)) (-637 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-637 (-1075)) (-637 $)) NIL)) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4178 (((-3 $ #5="failed") $ (-767)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4172 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4225 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4363 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1075) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4169 (((-3 $ #5#) $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) #5#) (-407 $) $) NIL (|has| |#1| (-556)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-1075)) NIL) (((-1163 |#1|) $) 7) (($ (-1163 |#1|)) 8) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 20 T CONST)) (-3053 (($) 23 T CONST)) (-3058 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) 29) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 22) (($ $ |#1|) NIL)))
+(((-777 |#1|) (-13 (-1232 |#1|) (-610 (-1163 |#1|)) (-1034 (-1163 |#1|)) (-10 -8 (-15 -4153 ($ $ (-767) |#1| $)) (-15 -3567 ($ $ $)) (-15 -3566 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3887 (-767))) $ $)) (-15 -2757 ($ $ $)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2756 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2755 ((-637 $) $ $)) (-15 -3598 ($ $ $)) (-15 -3559 ((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3558 ((-2 (|:| -3552 $) (|:| |coef1| $)) $ $)) (-15 -3557 ((-2 (|:| -3552 $) (|:| |coef2| $)) $ $)) (-15 -2754 ((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2753 ((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $)) (-15 -2752 ((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -777))
+((-4153 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-777 *3)) (-4 *3 (-1045)))) (-3567 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045)))) (-3566 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3887 (-767)))) (-5 *1 (-777 *3)) (-4 *3 (-1045)))) (-2757 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045)))) (-3568 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4369 *3) (|:| |gap| (-767)) (|:| -2131 (-777 *3)) (|:| -3292 (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-1045)))) (-2756 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045)))) (-2755 (*1 *2 *1 *1) (-12 (-5 *2 (-637 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3598 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-556)) (-4 *2 (-1045)))) (-3559 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3552 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3558 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3552 (-777 *3)) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3557 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3552 (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-2754 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-2753 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
+(-13 (-1232 |#1|) (-610 (-1163 |#1|)) (-1034 (-1163 |#1|)) (-10 -8 (-15 -4153 ($ $ (-767) |#1| $)) (-15 -3567 ($ $ $)) (-15 -3566 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3887 (-767))) $ $)) (-15 -2757 ($ $ $)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2756 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2755 ((-637 $) $ $)) (-15 -3598 ($ $ $)) (-15 -3559 ((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3558 ((-2 (|:| -3552 $) (|:| |coef1| $)) $ $)) (-15 -3557 ((-2 (|:| -3552 $) (|:| |coef2| $)) $ $)) (-15 -2754 ((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2753 ((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $)) (-15 -2752 ((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4373 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 13)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -4373 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) (-1045) (-1045)) (T -778))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-777 *6)) (-5 *1 (-778 *5 *6)))))
+(-10 -7 (-15 -4373 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))))
+((-2759 ((|#1| (-767) |#1|) 32 (|has| |#1| (-38 (-407 (-546)))))) (-3190 ((|#1| (-767) |#1|) 22)) (-2758 ((|#1| (-767) |#1|) 34 (|has| |#1| (-38 (-407 (-546)))))))
+(((-779 |#1|) (-10 -7 (-15 -3190 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -2758 (|#1| (-767) |#1|)) (-15 -2759 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779))
+((-2759 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-172)))) (-2758 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-172)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -3190 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -2758 (|#1| (-767) |#1|)) (-15 -2759 (|#1| (-767) |#1|))) |%noBranch|))
+((-2953 (((-112) $ $) 7)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) 85)) (-4097 (((-637 $) (-637 |#4|)) 86) (((-637 $) (-637 |#4|) (-112)) 111)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) 101) (((-112) $) 97)) (-4103 ((|#4| |#4| $) 92)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 126)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-4213 (((-3 $ #1#) $) 82)) (-4100 ((|#4| |#4| $) 89)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4098 ((|#4| |#4| $) 87)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) 105)) (-3605 (((-112) |#4| $) 136)) (-3603 (((-112) |#4| $) 133)) (-3606 (((-112) |#4| $) 137) (((-112) $) 134)) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) 104) (((-112) $) 103)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) 128)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 127)) (-4212 (((-3 |#4| #1#) $) 83)) (-3600 (((-637 $) |#4| $) 129)) (-3602 (((-3 (-112) (-637 $)) |#4| $) 132)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3646 (((-637 $) |#4| $) 125) (((-637 $) (-637 |#4|) $) 124) (((-637 $) (-637 |#4|) (-637 $)) 123) (((-637 $) |#4| (-637 $)) 122)) (-3851 (($ |#4| $) 117) (($ (-637 |#4|) $) 116)) (-4112 (((-637 |#4|) $) 107)) (-4106 (((-112) |#4| $) 99) (((-112) $) 95)) (-4101 ((|#4| |#4| $) 90)) (-4114 (((-112) $ $) 110)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) 100) (((-112) $) 96)) (-4102 ((|#4| |#4| $) 91)) (-3651 (((-1113) $) 10)) (-4215 (((-3 |#4| #1#) $) 84)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4094 (((-3 $ #1#) $ |#4|) 78)) (-4183 (($ $ |#4|) 77) (((-637 $) |#4| $) 115) (((-637 $) |#4| (-637 $)) 114) (((-637 $) (-637 |#4|) $) 113) (((-637 $) (-637 |#4|) (-637 $)) 112)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-4363 (((-767) $) 106)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-4099 (($ $) 88)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-4093 (((-767) $) 76 (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) 98)) (-3597 (((-637 $) |#4| $) 121) (((-637 $) |#4| (-637 $)) 120) (((-637 $) (-637 |#4|) $) 119) (((-637 $) (-637 |#4|) (-637 $)) 118)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) 81)) (-3604 (((-112) |#4| $) 135)) (-4348 (((-112) |#3| $) 80)) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
(((-780 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -780))
NIL
(-13 (-1065 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T))
-((-2001 (((-3 (-379) "failed") (-316 |#1|) (-917)) 62 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-407 (-948 |#1|)) (-917)) 41 (|has| |#1| (-555))) (((-3 (-379) "failed") (-407 (-948 |#1|))) 40 (|has| |#1| (-555))) (((-3 (-379) "failed") (-948 |#1|) (-917)) 31 (|has| |#1| (-1045))) (((-3 (-379) "failed") (-948 |#1|)) 30 (|has| |#1| (-1045)))) (-3807 (((-379) (-316 |#1|) (-917)) 99 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-407 (-948 |#1|)) (-917)) 91 (|has| |#1| (-555))) (((-379) (-407 (-948 |#1|))) 90 (|has| |#1| (-555))) (((-379) (-948 |#1|) (-917)) 86 (|has| |#1| (-1045))) (((-379) (-948 |#1|)) 85 (|has| |#1| (-1045))) (((-379) |#1| (-917)) 76) (((-379) |#1|) 22)) (-2010 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)) 71 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-917)) 63 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917)) 46 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|)))) 45 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917)) 39 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|))) 38 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)) 28 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2107 (((-169 (-379)) (-316 (-169 |#1|)) (-917)) 102 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|) (-917)) 100 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917)) 93 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 (-169 |#1|)))) 92 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|)) (-917)) 89 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|))) 88 (|has| |#1| (-555))) (((-169 (-379)) (-948 |#1|) (-917)) 84 (|has| |#1| (-1045))) (((-169 (-379)) (-948 |#1|)) 83 (|has| |#1| (-1045))) (((-169 (-379)) (-948 (-169 |#1|)) (-917)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-948 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-917)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-917)) 27) (((-169 (-379)) |#1|) 25)))
-(((-781 |#1|) (-10 -7 (-15 -3807 ((-379) |#1|)) (-15 -3807 ((-379) |#1| (-917))) (-15 -2107 ((-169 (-379)) |#1|)) (-15 -2107 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2107 ((-169 (-379)) (-169 |#1|))) (-15 -2107 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2107 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3807 ((-379) (-948 |#1|))) (-15 -3807 ((-379) (-948 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-948 |#1|))) (-15 -2107 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3807 ((-379) (-407 (-948 |#1|)))) (-15 -3807 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2107 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2107 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2107 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2107 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3807 ((-379) (-316 |#1|))) (-15 -3807 ((-379) (-316 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-316 |#1|))) (-15 -2107 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2107 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-948 |#1|))) (-15 -2001 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -2001 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2001 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) (-611 (-379))) (T -781))
-((-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2001 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2010 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2010 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-2107 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-3807 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))))
-(-10 -7 (-15 -3807 ((-379) |#1|)) (-15 -3807 ((-379) |#1| (-917))) (-15 -2107 ((-169 (-379)) |#1|)) (-15 -2107 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2107 ((-169 (-379)) (-169 |#1|))) (-15 -2107 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2107 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3807 ((-379) (-948 |#1|))) (-15 -3807 ((-379) (-948 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-948 |#1|))) (-15 -2107 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3807 ((-379) (-407 (-948 |#1|)))) (-15 -3807 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2107 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2107 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2107 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2107 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3807 ((-379) (-316 |#1|))) (-15 -3807 ((-379) (-316 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-316 |#1|))) (-15 -2107 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2107 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2107 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-948 |#1|))) (-15 -2001 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -2001 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2001 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2001 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2010 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|))
-((-3909 (((-917) (-1151)) 64)) (-3931 (((-3 (-379) "failed") (-1151)) 32)) (-3920 (((-379) (-1151)) 30)) (-2029 (((-917) (-1151)) 53)) (-2039 (((-1151) (-917)) 54)) (-2018 (((-1151) (-917)) 52)))
-(((-782) (-10 -7 (-15 -2018 ((-1151) (-917))) (-15 -2029 ((-917) (-1151))) (-15 -2039 ((-1151) (-917))) (-15 -3909 ((-917) (-1151))) (-15 -3920 ((-379) (-1151))) (-15 -3931 ((-3 (-379) "failed") (-1151))))) (T -782))
-((-3931 (*1 *2 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))))
-(-10 -7 (-15 -2018 ((-1151) (-917))) (-15 -2029 ((-917) (-1151))) (-15 -2039 ((-1151) (-917))) (-15 -3909 ((-917) (-1151))) (-15 -3920 ((-379) (-1151))) (-15 -3931 ((-3 (-379) "failed") (-1151))))
-((-1677 (((-112) $ $) 7)) (-3940 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 15) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 13)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1207) . T))
+((-2762 (((-3 (-378) "failed") (-314 |#1|) (-915)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-378) "failed") (-314 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-378) "failed") (-407 (-942 |#1|)) (-915)) 41 (|has| |#1| (-556))) (((-3 (-378) "failed") (-407 (-942 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-378) "failed") (-942 |#1|) (-915)) 31 (|has| |#1| (-1045))) (((-3 (-378) "failed") (-942 |#1|)) 30 (|has| |#1| (-1045)))) (-2760 (((-378) (-314 |#1|) (-915)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-378) (-314 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-378) (-407 (-942 |#1|)) (-915)) 91 (|has| |#1| (-556))) (((-378) (-407 (-942 |#1|))) 90 (|has| |#1| (-556))) (((-378) (-942 |#1|) (-915)) 86 (|has| |#1| (-1045))) (((-378) (-942 |#1|)) 85 (|has| |#1| (-1045))) (((-378) |#1| (-915)) 76) (((-378) |#1|) 22)) (-2763 (((-3 (-168 (-378)) "failed") (-314 (-168 |#1|)) (-915)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-168 (-378)) "failed") (-314 (-168 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-168 (-378)) "failed") (-314 |#1|) (-915)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-168 (-378)) "failed") (-314 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|))) (-915)) 46 (|has| |#1| (-556))) (((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-168 (-378)) "failed") (-407 (-942 |#1|)) (-915)) 39 (|has| |#1| (-556))) (((-3 (-168 (-378)) "failed") (-407 (-942 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-168 (-378)) "failed") (-942 |#1|) (-915)) 28 (|has| |#1| (-1045))) (((-3 (-168 (-378)) "failed") (-942 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-915)) 18 (|has| |#1| (-172))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|))) 15 (|has| |#1| (-172)))) (-2761 (((-168 (-378)) (-314 (-168 |#1|)) (-915)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-168 (-378)) (-314 (-168 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-168 (-378)) (-314 |#1|) (-915)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-168 (-378)) (-314 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-168 (-378)) (-407 (-942 (-168 |#1|))) (-915)) 93 (|has| |#1| (-556))) (((-168 (-378)) (-407 (-942 (-168 |#1|)))) 92 (|has| |#1| (-556))) (((-168 (-378)) (-407 (-942 |#1|)) (-915)) 89 (|has| |#1| (-556))) (((-168 (-378)) (-407 (-942 |#1|))) 88 (|has| |#1| (-556))) (((-168 (-378)) (-942 |#1|) (-915)) 84 (|has| |#1| (-1045))) (((-168 (-378)) (-942 |#1|)) 83 (|has| |#1| (-1045))) (((-168 (-378)) (-942 (-168 |#1|)) (-915)) 78 (|has| |#1| (-172))) (((-168 (-378)) (-942 (-168 |#1|))) 77 (|has| |#1| (-172))) (((-168 (-378)) (-168 |#1|) (-915)) 80 (|has| |#1| (-172))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-172))) (((-168 (-378)) |#1| (-915)) 27) (((-168 (-378)) |#1|) 25)))
+(((-781 |#1|) (-10 -7 (-15 -2760 ((-378) |#1|)) (-15 -2760 ((-378) |#1| (-915))) (-15 -2761 ((-168 (-378)) |#1|)) (-15 -2761 ((-168 (-378)) |#1| (-915))) (IF (|has| |#1| (-172)) (PROGN (-15 -2761 ((-168 (-378)) (-168 |#1|))) (-15 -2761 ((-168 (-378)) (-168 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -2761 ((-168 (-378)) (-942 (-168 |#1|)) (-915)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2760 ((-378) (-942 |#1|))) (-15 -2760 ((-378) (-942 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-942 |#1|))) (-15 -2761 ((-168 (-378)) (-942 |#1|) (-915)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2760 ((-378) (-407 (-942 |#1|)))) (-15 -2760 ((-378) (-407 (-942 |#1|)) (-915))) (-15 -2761 ((-168 (-378)) (-407 (-942 |#1|)))) (-15 -2761 ((-168 (-378)) (-407 (-942 |#1|)) (-915))) (-15 -2761 ((-168 (-378)) (-407 (-942 (-168 |#1|))))) (-15 -2761 ((-168 (-378)) (-407 (-942 (-168 |#1|))) (-915))) (IF (|has| |#1| (-846)) (PROGN (-15 -2760 ((-378) (-314 |#1|))) (-15 -2760 ((-378) (-314 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-314 |#1|))) (-15 -2761 ((-168 (-378)) (-314 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-314 (-168 |#1|)))) (-15 -2761 ((-168 (-378)) (-314 (-168 |#1|)) (-915)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-915)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-942 |#1|))) (-15 -2762 ((-3 (-378) "failed") (-942 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-915)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-407 (-942 |#1|)))) (-15 -2762 ((-3 (-378) "failed") (-407 (-942 |#1|)) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 |#1|)) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|))))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|))) (-915))) (IF (|has| |#1| (-846)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-314 |#1|))) (-15 -2762 ((-3 (-378) "failed") (-314 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 |#1|))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 (-168 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 (-168 |#1|)) (-915)))) |%noBranch|)) |%noBranch|)) (-611 (-378))) (T -781))
+((-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-314 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-168 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2762 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2762 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-942 (-168 *5)))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-942 (-168 *4)))) (-4 *4 (-556)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2762 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2762 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2762 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2762 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-172)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-314 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-314 (-168 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 (-168 *5)))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 (-168 *4)))) (-4 *4 (-556)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-172)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-915)) (-4 *5 (-172)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-5 *2 (-168 (-378))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-378))))) (-2761 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-378))))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-5 *2 (-378)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) (-2760 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))))
+(-10 -7 (-15 -2760 ((-378) |#1|)) (-15 -2760 ((-378) |#1| (-915))) (-15 -2761 ((-168 (-378)) |#1|)) (-15 -2761 ((-168 (-378)) |#1| (-915))) (IF (|has| |#1| (-172)) (PROGN (-15 -2761 ((-168 (-378)) (-168 |#1|))) (-15 -2761 ((-168 (-378)) (-168 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -2761 ((-168 (-378)) (-942 (-168 |#1|)) (-915)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2760 ((-378) (-942 |#1|))) (-15 -2760 ((-378) (-942 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-942 |#1|))) (-15 -2761 ((-168 (-378)) (-942 |#1|) (-915)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2760 ((-378) (-407 (-942 |#1|)))) (-15 -2760 ((-378) (-407 (-942 |#1|)) (-915))) (-15 -2761 ((-168 (-378)) (-407 (-942 |#1|)))) (-15 -2761 ((-168 (-378)) (-407 (-942 |#1|)) (-915))) (-15 -2761 ((-168 (-378)) (-407 (-942 (-168 |#1|))))) (-15 -2761 ((-168 (-378)) (-407 (-942 (-168 |#1|))) (-915))) (IF (|has| |#1| (-846)) (PROGN (-15 -2760 ((-378) (-314 |#1|))) (-15 -2760 ((-378) (-314 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-314 |#1|))) (-15 -2761 ((-168 (-378)) (-314 |#1|) (-915))) (-15 -2761 ((-168 (-378)) (-314 (-168 |#1|)))) (-15 -2761 ((-168 (-378)) (-314 (-168 |#1|)) (-915)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-915)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-942 |#1|))) (-15 -2762 ((-3 (-378) "failed") (-942 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-915)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-407 (-942 |#1|)))) (-15 -2762 ((-3 (-378) "failed") (-407 (-942 |#1|)) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 |#1|)) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|))))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-407 (-942 (-168 |#1|))) (-915))) (IF (|has| |#1| (-846)) (PROGN (-15 -2762 ((-3 (-378) "failed") (-314 |#1|))) (-15 -2762 ((-3 (-378) "failed") (-314 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 |#1|))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 |#1|) (-915))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 (-168 |#1|)))) (-15 -2763 ((-3 (-168 (-378)) "failed") (-314 (-168 |#1|)) (-915)))) |%noBranch|)) |%noBranch|))
+((-2767 (((-915) (-1151)) 64)) (-2769 (((-3 (-378) "failed") (-1151)) 32)) (-2768 (((-378) (-1151)) 30)) (-2765 (((-915) (-1151)) 53)) (-2766 (((-1151) (-915)) 54)) (-2764 (((-1151) (-915)) 52)))
+(((-782) (-10 -7 (-15 -2764 ((-1151) (-915))) (-15 -2765 ((-915) (-1151))) (-15 -2766 ((-1151) (-915))) (-15 -2767 ((-915) (-1151))) (-15 -2768 ((-378) (-1151))) (-15 -2769 ((-3 (-378) "failed") (-1151))))) (T -782))
+((-2769 (*1 *2 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-782)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-782)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-915)) (-5 *1 (-782)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1151)) (-5 *1 (-782)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-915)) (-5 *1 (-782)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1151)) (-5 *1 (-782)))))
+(-10 -7 (-15 -2764 ((-1151) (-915))) (-15 -2765 ((-915) (-1151))) (-15 -2766 ((-1151) (-915))) (-15 -2767 ((-915) (-1151))) (-15 -2768 ((-378) (-1151))) (-15 -2769 ((-3 (-378) "failed") (-1151))))
+((-2953 (((-112) $ $) 7)) (-2770 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 15) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 13)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
(((-783) (-140)) (T -783))
-((-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-3940 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-3940 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(-13 (-1093) (-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3940 ((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3940 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-3971 (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 44) (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 43)) (-3981 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 50)) (-3961 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 41)) (-3950 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 52) (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 51)))
-(((-784) (-10 -7 (-15 -3950 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3950 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3961 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3971 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3971 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3981 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))))) (T -784))
-((-3981 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3971 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3971 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3961 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3950 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3950 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))))
-(-10 -7 (-15 -3950 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3950 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3961 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3971 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3971 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3981 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))))
-((-4082 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 53)) (-4049 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 31)) (-4071 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 52)) (-4037 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 29)) (-4060 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 51)) (-4026 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 19)) (-4015 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 32)) (-4005 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 30)) (-3992 (((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 28)))
-(((-785) (-10 -7 (-15 -3992 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4005 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4015 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4026 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4037 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4049 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4060 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4071 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4082 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))))) (T -785))
-((-4082 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4071 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4060 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4049 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4037 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4026 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4015 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-4005 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3992 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))))
-(-10 -7 (-15 -3992 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4005 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4015 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -4026 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4037 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4049 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4060 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4071 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -4082 ((-2 (|:| -2618 (-379)) (|:| -4079 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))))
-((-2381 (((-1203 |#1|) |#1| (-225) (-563)) 46)))
-(((-786 |#1|) (-10 -7 (-15 -2381 ((-1203 |#1|) |#1| (-225) (-563)))) (-970)) (T -786))
-((-2381 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970)))))
-(-10 -7 (-15 -2381 ((-1203 |#1|) |#1| (-225) (-563))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 24)) (-3905 (((-3 $ "failed") $ $) 26)) (-2569 (($) 23 T CONST)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 22 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1825 (($ $ $) 28) (($ $) 27)) (-1813 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29)))
+((-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-2770 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-2770 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(-13 (-1094) (-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2770 ((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225))) (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2770 ((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2773 (((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 44) (((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378))) 43)) (-2774 (((-1262) (-1256 (-378)) (-546) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378))) 50)) (-2772 (((-1262) (-1256 (-378)) (-546) (-378) (-378) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378))) 41)) (-2771 (((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 52) (((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378))) 51)))
+(((-784) (-10 -7 (-15 -2771 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2771 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2772 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2773 ((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2773 ((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2774 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))))) (T -784))
+((-2774 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-2773 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-546)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378)))) (-5 *7 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-2773 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-546)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378)))) (-5 *7 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-2772 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-2771 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-2771 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))))
+(-10 -7 (-15 -2771 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2771 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2772 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2773 ((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2773 ((-1262) (-1256 (-378)) (-546) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))) (-378) (-1256 (-378)) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2774 ((-1262) (-1256 (-378)) (-546) (-378) (-378) (-546) (-1 (-1262) (-1256 (-378)) (-1256 (-378)) (-378)))))
+((-2783 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 53)) (-2780 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 31)) (-2782 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 52)) (-2779 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 29)) (-2781 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 51)) (-2778 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546)) 19)) (-2777 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546)) 32)) (-2776 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546)) 30)) (-2775 (((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546)) 28)))
+(((-785) (-10 -7 (-15 -2775 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2776 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2777 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2778 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2779 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2780 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2781 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2782 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2783 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))))) (T -785))
+((-2783 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2782 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2781 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2780 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2779 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2778 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2777 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))) (-2775 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-546)))))
+(-10 -7 (-15 -2775 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2776 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2777 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546) (-546))) (-15 -2778 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2779 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2780 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2781 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2782 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))) (-15 -2783 ((-2 (|:| -3813 (-378)) (|:| -1691 (-378)) (|:| |totalpts| (-546)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-546) (-546))))
+((-4120 (((-1203 |#1|) |#1| (-225) (-546)) 46)))
+(((-786 |#1|) (-10 -7 (-15 -4120 ((-1203 |#1|) |#1| (-225) (-546)))) (-970)) (T -786))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-546)) (-5 *2 (-1203 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970)))))
+(-10 -7 (-15 -4120 ((-1203 |#1|) |#1| (-225) (-546))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 24)) (-1397 (((-3 $ "failed") $ $) 26)) (-4139 (($) 23 T CONST)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 22 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4252 (($ $ $) 28) (($ $) 27)) (-4254 (($ $ $) 20)) (* (($ (-915) $) 21) (($ (-767) $) 25) (($ (-546) $) 29)))
(((-787) (-140)) (T -787))
NIL
-(-13 (-791) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 24)) (-2569 (($) 23 T CONST)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 22 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25)))
+(-13 (-793) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-846) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 24)) (-4139 (($) 23 T CONST)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 22 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4254 (($ $ $) 20)) (* (($ (-915) $) 21) (($ (-767) $) 25)))
(((-788) (-140)) (T -788))
NIL
(-13 (-790) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-790) . T) ((-846) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 24)) (-4092 (($ $ $) 27)) (-3905 (((-3 $ "failed") $ $) 26)) (-2569 (($) 23 T CONST)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 22 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-790) . T) ((-846) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 24)) (-2784 (($ $ $) 27)) (-1397 (((-3 $ "failed") $ $) 26)) (-4139 (($) 23 T CONST)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 22 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4254 (($ $ $) 20)) (* (($ (-915) $) 21) (($ (-767) $) 25)))
(((-789) (-140)) (T -789))
-((-4092 (*1 *1 *1 *1) (-4 *1 (-789))))
-(-13 (-791) (-10 -8 (-15 -4092 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-917) $) 21)))
+((-2784 (*1 *1 *1 *1) (-4 *1 (-789))))
+(-13 (-793) (-10 -8 (-15 -2784 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-846) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4254 (($ $ $) 20)) (* (($ (-915) $) 21)))
(((-790) (-140)) (T -790))
NIL
(-13 (-846) (-25))
-(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 24)) (-3905 (((-3 $ "failed") $ $) 26)) (-2569 (($) 23 T CONST)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 22 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25)))
-(((-791) (-140)) (T -791))
+(((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-846) . T) ((-1094) . T))
+((-3596 (((-112) $) 41)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL) ((|#2| $) 42)) (-3414 (((-3 (-407 (-546)) "failed") $) 78)) (-3413 (((-112) $) 72)) (-3412 (((-407 (-546)) $) 76)) (-3524 ((|#2| $) 26)) (-4373 (($ (-1 |#2| |#2|) $) 23)) (-2785 (($ $) 59)) (-4385 (((-535) $) 67)) (-3399 (($ $) 21)) (-4361 (((-859) $) 54) (($ (-546)) 39) (($ |#2|) 37) (($ (-407 (-546))) NIL)) (-3518 (((-767)) 10)) (-3794 ((|#2| $) 71)) (-3444 (((-112) $ $) 29)) (-3074 (((-112) $ $) 69)) (-4252 (($ $) 31) (($ $ $) NIL)) (-4254 (($ $ $) 30)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-791 |#1| |#2|) (-10 -8 (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-792 |#2|) (-172)) (T -791))
+((-3518 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4)))))
+(-10 -8 (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-3528 (((-767)) 52 (|has| |#1| (-368)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 94 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 91 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 88)) (-3564 (((-546) $) 93 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 90 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 89)) (-3873 (((-3 $ "failed") $) 33)) (-4058 ((|#1| $) 78)) (-3414 (((-3 (-407 (-546)) "failed") $) 65 (|has| |#1| (-545)))) (-3413 (((-112) $) 67 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 66 (|has| |#1| (-545)))) (-3384 (($) 55 (|has| |#1| (-368)))) (-2552 (((-112) $) 31)) (-2790 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3524 ((|#1| $) 70)) (-2919 (($ $ $) 61 (|has| |#1| (-846)))) (-3249 (($ $ $) 60 (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) 80)) (-2167 (((-915) $) 54 (|has| |#1| (-368)))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 64 (|has| |#1| (-363)))) (-2542 (($ (-915)) 53 (|has| |#1| (-368)))) (-2787 ((|#1| $) 75)) (-2788 ((|#1| $) 76)) (-2789 ((|#1| $) 77)) (-3396 ((|#1| $) 71)) (-3397 ((|#1| $) 72)) (-3398 ((|#1| $) 73)) (-2786 ((|#1| $) 74)) (-3651 (((-1113) $) 10)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 82 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 81 (|has| |#1| (-514 (-1169) |#1|)))) (-4214 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-4385 (((-535) $) 62 (|has| |#1| (-611 (-535))))) (-3399 (($ $) 79)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38) (($ (-407 (-546))) 92 (|has| |#1| (-1034 (-407 (-546)))))) (-3091 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-3794 ((|#1| $) 68 (|has| |#1| (-1054)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 58 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 57 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 59 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 56 (|has| |#1| (-846)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-792 |#1|) (-140) (-172)) (T -792))
+((-3399 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2790 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))) (-3414 (*1 *2 *1) (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))) (-2785 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-38 |t#1|) (-412 |t#1|) (-338 |t#1|) (-10 -8 (-15 -3399 ($ $)) (-15 -4058 (|t#1| $)) (-15 -2789 (|t#1| $)) (-15 -2788 (|t#1| $)) (-15 -2787 (|t#1| $)) (-15 -2786 (|t#1| $)) (-15 -3398 (|t#1| $)) (-15 -3397 (|t#1| $)) (-15 -3396 (|t#1| $)) (-15 -3524 (|t#1| $)) (-15 -2790 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3794 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2785 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1=(-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-412 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #1#) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 24)) (-1397 (((-3 $ "failed") $ $) 26)) (-4139 (($) 23 T CONST)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 22 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4254 (($ $ $) 20)) (* (($ (-915) $) 21) (($ (-767) $) 25)))
+(((-793) (-140)) (T -793))
NIL
(-13 (-788) (-131))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1093) . T))
-((-3439 (((-112) $) 41)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 42)) (-2327 (((-3 (-407 (-563)) "failed") $) 78)) (-2317 (((-112) $) 72)) (-2306 (((-407 (-563)) $) 76)) (-3975 ((|#2| $) 26)) (-2238 (($ (-1 |#2| |#2|) $) 23)) (-2687 (($ $) 59)) (-2219 (((-536) $) 67)) (-2150 (($ $) 21)) (-1692 (((-858) $) 54) (($ (-563)) 39) (($ |#2|) 37) (($ (-407 (-563))) NIL)) (-3914 (((-767)) 10)) (-1462 ((|#2| $) 71)) (-1718 (((-112) $ $) 29)) (-1743 (((-112) $ $) 69)) (-1825 (($ $) 31) (($ $ $) NIL)) (-1813 (($ $ $) 30)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-792 |#1| |#2|) (-10 -8 (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-793 |#2|) (-172)) (T -792))
-((-3914 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) (-4 *3 (-793 *4)))))
-(-10 -8 (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-3750 (((-767)) 52 (|has| |#1| (-368)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 94 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 91 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 88)) (-2057 (((-563) $) 93 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 90 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 89)) (-3951 (((-3 $ "failed") $) 33)) (-2488 ((|#1| $) 78)) (-2327 (((-3 (-407 (-563)) "failed") $) 65 (|has| |#1| (-545)))) (-2317 (((-112) $) 67 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 66 (|has| |#1| (-545)))) (-1690 (($) 55 (|has| |#1| (-368)))) (-3401 (((-112) $) 31)) (-4150 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3975 ((|#1| $) 70)) (-3088 (($ $ $) 61 (|has| |#1| (-846)))) (-1776 (($ $ $) 60 (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) 80)) (-3990 (((-917) $) 54 (|has| |#1| (-368)))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 64 (|has| |#1| (-363)))) (-2552 (($ (-917)) 53 (|has| |#1| (-368)))) (-4116 ((|#1| $) 75)) (-4126 ((|#1| $) 76)) (-4138 ((|#1| $) 77)) (-2118 ((|#1| $) 71)) (-2129 ((|#1| $) 72)) (-2140 ((|#1| $) 73)) (-4103 ((|#1| $) 74)) (-1693 (((-1113) $) 10)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 82 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 81 (|has| |#1| (-514 (-1169) |#1|)))) (-2308 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2219 (((-536) $) 62 (|has| |#1| (-611 (-536))))) (-2150 (($ $) 79)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 92 (|has| |#1| (-1034 (-407 (-563)))))) (-2047 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-1462 ((|#1| $) 68 (|has| |#1| (-1054)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 58 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 57 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 59 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 56 (|has| |#1| (-846)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-793 |#1|) (-140) (-172)) (T -793))
-((-2150 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4150 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-2687 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -2150 ($ $)) (-15 -2488 (|t#1| $)) (-15 -4138 (|t#1| $)) (-15 -4126 (|t#1| $)) (-15 -4116 (|t#1| $)) (-15 -4103 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -2129 (|t#1| $)) (-15 -2118 (|t#1| $)) (-15 -3975 (|t#1| $)) (-15 -4150 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -1462 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2687 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-2238 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|))) (-793 |#2|) (-172) (-793 |#4|) (-172)) (T -794))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5)))))
-(-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-995 |#1|) "failed") $) 35) (((-3 (-563) "failed") $) NIL (-4034 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL (-4034 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2057 ((|#1| $) NIL) (((-995 |#1|) $) 33) (((-563) $) NIL (-4034 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-407 (-563)) $) NIL (-4034 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3951 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 16)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2317 (((-112) $) NIL (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-1690 (($) NIL (|has| |#1| (-368)))) (-3401 (((-112) $) NIL)) (-4150 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-995 |#1|) (-995 |#1|)) 29)) (-3975 ((|#1| $) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-4116 ((|#1| $) 22)) (-4126 ((|#1| $) 20)) (-4138 ((|#1| $) 18)) (-2118 ((|#1| $) 26)) (-2129 ((|#1| $) 25)) (-2140 ((|#1| $) 24)) (-4103 ((|#1| $) 23)) (-1693 (((-1113) $) NIL)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2308 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2150 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-995 |#1|)) 30) (($ (-407 (-563))) NIL (-4034 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-1462 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2239 (($) 8 T CONST)) (-2253 (($) 12 T CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-795 |#1|) (-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -4150 ($ (-995 |#1|) (-995 |#1|))))) (-172)) (T -795))
-((-4150 (*1 *1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3)))))
-(-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -4150 ($ (-995 |#1|) (-995 |#1|)))))
-((-1677 (((-112) $ $) 7)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-4160 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1718 (((-112) $ $) 6)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #1="failed") $) NIL) (((-3 (-992 |#1|) #1#) $) 35) (((-3 (-546) #1#) $) NIL (-3943 (|has| (-992 |#1|) (-1034 (-546))) (|has| |#1| (-1034 (-546))))) (((-3 (-407 (-546)) #1#) $) NIL (-3943 (|has| (-992 |#1|) (-1034 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-3564 ((|#1| $) NIL) (((-992 |#1|) $) 33) (((-546) $) NIL (-3943 (|has| (-992 |#1|) (-1034 (-546))) (|has| |#1| (-1034 (-546))))) (((-407 (-546)) $) NIL (-3943 (|has| (-992 |#1|) (-1034 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-3873 (((-3 $ "failed") $) NIL)) (-4058 ((|#1| $) 16)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL (|has| |#1| (-545)))) (-3413 (((-112) $) NIL (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) NIL (|has| |#1| (-545)))) (-3384 (($) NIL (|has| |#1| (-368)))) (-2552 (((-112) $) NIL)) (-2790 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-992 |#1|) (-992 |#1|)) 29)) (-3524 ((|#1| $) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-2787 ((|#1| $) 22)) (-2788 ((|#1| $) 20)) (-2789 ((|#1| $) 18)) (-3396 ((|#1| $) 26)) (-3397 ((|#1| $) 25)) (-3398 ((|#1| $) 24)) (-2786 ((|#1| $) 23)) (-3651 (((-1113) $) NIL)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-4214 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3399 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-992 |#1|)) 30) (($ (-407 (-546))) NIL (-3943 (|has| (-992 |#1|) (-1034 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-3794 ((|#1| $) NIL (|has| |#1| (-1054)))) (-3047 (($) 8 T CONST)) (-3053 (($) 12 T CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-794 |#1|) (-13 (-792 |#1|) (-412 (-992 |#1|)) (-10 -8 (-15 -2790 ($ (-992 |#1|) (-992 |#1|))))) (-172)) (T -794))
+((-2790 (*1 *1 *2 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-172)) (-5 *1 (-794 *3)))))
+(-13 (-792 |#1|) (-412 (-992 |#1|)) (-10 -8 (-15 -2790 ($ (-992 |#1|) (-992 |#1|)))))
+((-4373 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|))) (-792 |#2|) (-172) (-792 |#4|) (-172)) (T -795))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-792 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-792 *5)))))
+(-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2791 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-3444 (((-112) $ $) 6)))
(((-796) (-140)) (T -796))
-((-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)))))) (-4160 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031)))))
-(-13 (-1093) (-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4160 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-4169 (((-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#3| |#2| (-1169)) 19)))
-(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -4169 ((-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#3| |#2| (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -797))
-((-4169 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-640 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4)))))
-(-10 -7 (-15 -4169 ((-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#3| |#2| (-1169))))
-((-3510 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169)) 18) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169)) 24) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169)) 26) (((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169)) 37) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169)) 35)))
-(((-798 |#1| |#2|) (-10 -7 (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -3510 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -3510 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -3510 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -798))
-((-3510 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-798 *6 *2)))) (-3510 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))))) (-3510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4013 (-640 *3))) *3 "failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955))))) (-3510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4013 (-640 *7))) *7 "failed")) (-5 *1 (-798 *6 *7)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-3510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) (-4 *6 (-13 (-29 *5) (-1193) (-955))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7)))))
-(-10 -7 (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -3510 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4013 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -3510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -3510 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -3510 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|))))
-((-4178 (($) 9)) (-4210 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1304 (((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3867 (($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-4199 (($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-4191 (((-1262)) 12)))
-(((-799) (-10 -8 (-15 -4178 ($)) (-15 -4191 ((-1262))) (-15 -1304 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4199 ($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3867 ($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -4210 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799))
-((-4210 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-799)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-799)))) (-4199 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-799)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-4191 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))) (-4178 (*1 *1) (-5 *1 (-799))))
-(-10 -8 (-15 -4178 ($)) (-15 -4191 ((-1262))) (-15 -1304 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4199 ($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3867 ($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2556 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -4210 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3982 ((|#2| |#2| (-1169)) 16)) (-4221 ((|#2| |#2| (-1169)) 51)) (-4231 (((-1 |#2| |#2|) (-1169)) 11)))
-(((-800 |#1| |#2|) (-10 -7 (-15 -3982 (|#2| |#2| (-1169))) (-15 -4221 (|#2| |#2| (-1169))) (-15 -4231 ((-1 |#2| |#2|) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -800))
-((-4231 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1193) (-955))))) (-4221 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))) (-3982 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))))
-(-10 -7 (-15 -3982 (|#2| |#2| (-1169))) (-15 -4221 (|#2| |#2| (-1169))) (-15 -4231 ((-1 |#2| |#2|) (-1169))))
-((-3510 (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379)) 116) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379)) 117) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379)) 119) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379)) 120) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379)) 121) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379))) 122) (((-1031) (-804) (-1057)) 108) (((-1031) (-804)) 109)) (-2929 (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057)) 75) (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804)) 77)))
-(((-801) (-10 -7 (-15 -3510 ((-1031) (-804))) (-15 -3510 ((-1031) (-804) (-1057))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057))))) (T -801))
-((-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))))
-(-10 -7 (-15 -3510 ((-1031) (-804))) (-15 -3510 ((-1031) (-804) (-1057))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -3510 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057))))
-((-4241 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-640 |#4|))) (-648 |#4|) |#4|) 35)))
-(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4241 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-640 |#4|))) (-648 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802))
-((-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-802 *5 *6 *7 *4)))))
-(-10 -7 (-15 -4241 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-640 |#4|))) (-648 |#4|) |#4|)))
-((-2674 (((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))) 52)) (-4266 (((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4| |#2|) 60) (((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4|) 59) (((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3| |#2|) 20) (((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3|) 21)) (-4277 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-4253 ((|#2| |#3| (-640 (-407 |#2|))) 94) (((-3 |#2| "failed") |#3| (-407 |#2|)) 91)))
-(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4253 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4253 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3| |#2|)) (-15 -4277 (|#2| |#3| |#1|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4| |#2|)) (-15 -4277 (|#2| |#4| |#1|)) (-15 -2674 ((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -803))
-((-2674 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -1420 *7) (|:| |rh| (-640 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6))) (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6))))) (-4277 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2)) (-4 *3 (-651 (-407 *2))))) (-4266 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3412 *4) (|:| -2377 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4)) (-4 *3 (-651 (-407 *4))))) (-4266 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3412 *5) (|:| -2377 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 (-407 *5))))) (-4277 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2))))) (-4266 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3412 *4) (|:| -2377 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4)) (-4 *6 (-651 (-407 *4))))) (-4266 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3412 *5) (|:| -2377 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-4253 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 (-407 *2))))) (-4253 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 *4)))))
-(-10 -7 (-15 -4253 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4253 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#3| |#2|)) (-15 -4277 (|#2| |#3| |#1|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4|)) (-15 -4266 ((-640 (-2 (|:| -3412 |#2|) (|:| -2377 |#2|))) |#4| |#2|)) (-15 -4277 (|#2| |#4| |#1|)) (-15 -2674 ((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|)))))
-((-1677 (((-112) $ $) NIL)) (-2057 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1718 (((-112) $ $) NIL)))
-(((-804) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2057 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2057 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
-((-4363 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|)) 117)) (-4375 (((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 46)) (-4299 (((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|) 94)) (-4289 ((|#2| |#3|) 37)) (-4310 (((-640 (-2 (|:| -2668 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 81)) (-4321 ((|#3| |#3| (-407 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4289 (|#2| |#3|)) (-15 -4299 ((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|)) (-15 -4310 ((-640 (-2 (|:| -2668 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4375 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4363 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4321 (|#3| |#3| |#2|)) (-15 -4321 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -805))
-((-4321 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))) (-4321 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-407 *3))))) (-4363 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -1420 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-407 *7))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-4310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -2668 *5) (|:| -1420 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-4299 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1420 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-4289 (*1 *2 *3) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2))))))
-(-10 -7 (-15 -4289 (|#2| |#3|)) (-15 -4299 ((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|)) (-15 -4310 ((-640 (-2 (|:| -2668 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4375 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4363 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4321 (|#3| |#3| |#2|)) (-15 -4321 (|#3| |#3| (-407 |#2|))))
-((-4332 (((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|))) 122) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|)) 121) (((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|))) 116) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|)) 114)) (-4344 ((|#2| (-649 |#2| (-407 |#2|))) 80) ((|#2| (-648 (-407 |#2|))) 83)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -4332 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -4332 ((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -4332 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -4332 ((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -4344 (|#2| (-648 (-407 |#2|)))) (-15 -4344 (|#2| (-649 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -806))
-((-4344 (*1 *2 *3) (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-4332 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -4013 (-640 (-407 *6))) (|:| -1957 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-4332 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-806 *5 *6)))) (-4332 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -4013 (-640 (-407 *6))) (|:| -1957 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-4332 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -4332 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -4332 ((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -4332 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4013 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -4332 ((-2 (|:| -4013 (-640 (-407 |#2|))) (|:| -1957 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -4344 (|#2| (-648 (-407 |#2|)))) (-15 -4344 (|#2| (-649 |#2| (-407 |#2|)))))
-((-4354 (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|) 48)))
-(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4354 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|))) (-363) (-651 |#1|) (-1233 |#1|) (-720 |#1| |#3|) (-651 |#4|)) (T -807))
-((-4354 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -1957 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4)))))
-(-10 -7 (-15 -4354 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|)))
-((-4363 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-4386 (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|))) 137 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|))) 139 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 39) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 37)) (-4375 (((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 83)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4363 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4375 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -808))
-((-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-4363 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *6)) (|:| -1420 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-4386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))))
-(-10 -7 (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4363 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4375 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -4386 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -4386 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|))
-((-1297 (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|)) 85) (((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|)) 15)) (-1306 (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-640 |#1|))) |#2| |#1|)) 92)) (-3510 (((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4013 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -1297 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -1297 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4013 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -1306 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-640 |#1|))) |#2| |#1|)))) (-363) (-651 |#1|)) (T -809))
-((-1306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4013 (-640 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *6) "failed")) (|:| -4013 (-640 (-1257 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4013 (-640 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -4013 (-684 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6)))) (-1297 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-651 *5)) (-5 *2 (-2 (|:| -1957 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5)))) (-1297 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-684 *5)) (|:| |eqs| (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -1420 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *6 (-651 *5)))))
-(-10 -7 (-15 -1297 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -1297 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -3510 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4013 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -1306 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4013 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-640 |#1|))) |#2| |#1|))))
-((-1317 (((-684 |#1|) (-640 |#1|) (-767)) 13) (((-684 |#1|) (-640 |#1|)) 14)) (-1328 (((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|)) 34)) (-2302 (((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)) 42)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -1317 ((-684 |#1|) (-640 |#1|))) (-15 -1317 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -1328 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -2302 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -810))
-((-2302 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2)))) (-1328 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4)))))
-(-10 -7 (-15 -1317 ((-684 |#1|) (-640 |#1|))) (-15 -1317 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -1328 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -2302 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3439 (((-112) $) NIL (|has| |#2| (-131)))) (-2392 (($ (-917)) NIL (|has| |#2| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) NIL (|has| |#2| (-789)))) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#2| (-368)))) (-2807 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2057 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-1476 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-1690 (($) NIL (|has| |#2| (-368)))) (-4356 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ (-563)) NIL)) (-3414 (((-112) $) NIL (|has| |#2| (-844)))) (-2658 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (|has| |#2| (-722)))) (-3426 (((-112) $) NIL (|has| |#2| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3523 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4347 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#2| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#2| (-1093)))) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#2| (-368)))) (-1693 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3782 ((|#2| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-4121 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2509 (($ (-1257 |#2|)) NIL)) (-3526 (((-134)) NIL (|has| |#2| (-363)))) (-4203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1708 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-4034 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3914 (((-767)) NIL (|has| |#2| (-1045)))) (-1471 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#2| (-844)))) (-2239 (($) NIL (|has| |#2| (-131)) CONST)) (-2253 (($) NIL (|has| |#2| (-722)) CONST)) (-3213 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-1766 (((-112) $ $) NIL (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1743 (((-112) $ $) 11 (-4034 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1813 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1257 |#2|) (-1257 |#2|))) (T -811))
+((-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)))))) (-2791 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031)))))
+(-13 (-1094) (-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2791 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2792 (((-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#3| |#2| (-1169)) 19)))
+(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#3| |#2| (-1169)))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)) (-13 (-29 |#1|) (-1193) (-956)) (-653 |#2|)) (T -797))
+((-2792 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2169 (-637 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-653 *4)))))
+(-10 -7 (-15 -2792 ((-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#3| |#2| (-1169))))
+((-3987 (((-3 |#2| #1="failed") |#2| (-113) (-293 |#2|) (-637 |#2|)) 28) (((-3 |#2| #1#) (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #2="failed") |#2| (-113) (-1169)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #2#) (-293 |#2|) (-113) (-1169)) 18) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 |#2|) (-637 (-113)) (-1169)) 24) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 (-293 |#2|)) (-637 (-113)) (-1169)) 26) (((-3 (-637 (-1256 |#2|)) "failed") (-684 |#2|) (-1169)) 37) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-684 |#2|) (-1256 |#2|) (-1169)) 35)))
+(((-798 |#1| |#2|) (-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-684 |#2|) (-1256 |#2|) (-1169))) (-15 -3987 ((-3 (-637 (-1256 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 (-293 |#2|)) (-637 (-113)) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 |#2|) (-637 (-113)) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #1="failed") (-293 |#2|) (-113) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #1#) |#2| (-113) (-1169))) (-15 -3987 ((-3 |#2| #2="failed") (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|))) (-15 -3987 ((-3 |#2| #2#) |#2| (-113) (-293 |#2|) (-637 |#2|)))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)) (-13 (-29 |#1|) (-1193) (-956))) (T -798))
+((-3987 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-293 *2)) (-5 *5 (-637 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *1 (-798 *6 *2)))) (-3987 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-113)) (-5 *5 (-637 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-956))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))))) (-3987 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2169 (-637 *3))) *3 #1="failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-956))))) (-3987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-113)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2169 (-637 *7))) *7 #1#)) (-5 *1 (-798 *6 *7)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 *7)) (-5 *4 (-637 (-113))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7))))) (-5 *1 (-798 *6 *7)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 (-293 *7))) (-5 *4 (-637 (-113))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7))))) (-5 *1 (-798 *6 *7)))) (-3987 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) (-4 *6 (-13 (-29 *5) (-1193) (-956))) (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-1256 *6))) (-5 *1 (-798 *5 *6)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-956))) (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1256 *7)))))
+(-10 -7 (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-684 |#2|) (-1256 |#2|) (-1169))) (-15 -3987 ((-3 (-637 (-1256 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 (-293 |#2|)) (-637 (-113)) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -2169 (-637 (-1256 |#2|)))) "failed") (-637 |#2|) (-637 (-113)) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #1="failed") (-293 |#2|) (-113) (-1169))) (-15 -3987 ((-3 (-2 (|:| |particular| |#2|) (|:| -2169 (-637 |#2|))) |#2| #1#) |#2| (-113) (-1169))) (-15 -3987 ((-3 |#2| #2="failed") (-293 |#2|) (-113) (-293 |#2|) (-637 |#2|))) (-15 -3987 ((-3 |#2| #2#) |#2| (-113) (-293 |#2|) (-637 |#2|))))
+((-2793 (($) 9)) (-2797 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-2795 (((-637 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-4022 (($ (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-2796 (($ (-637 (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-2794 (((-1262)) 12)))
+(((-799) (-10 -8 (-15 -2793 ($)) (-15 -2794 ((-1262))) (-15 -2795 ((-637 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2796 ($ (-637 (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4022 ($ (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2797 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799))
+((-2797 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-799)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-799)))) (-2796 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-799)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-2794 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))) (-2793 (*1 *1) (-5 *1 (-799))))
+(-10 -8 (-15 -2793 ($)) (-15 -2794 ((-1262))) (-15 -2795 ((-637 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2796 ($ (-637 (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4022 ($ (-2 (|:| -4275 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2233 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2797 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3876 ((|#2| |#2| (-1169)) 16)) (-2798 ((|#2| |#2| (-1169)) 51)) (-2799 (((-1 |#2| |#2|) (-1169)) 11)))
+(((-800 |#1| |#2|) (-10 -7 (-15 -3876 (|#2| |#2| (-1169))) (-15 -2798 (|#2| |#2| (-1169))) (-15 -2799 ((-1 |#2| |#2|) (-1169)))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)) (-13 (-29 |#1|) (-1193) (-956))) (T -800))
+((-2799 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1193) (-956))))) (-2798 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-956))))) (-3876 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-956))))))
+(-10 -7 (-15 -3876 (|#2| |#2| (-1169))) (-15 -2798 (|#2| |#2| (-1169))) (-15 -2799 ((-1 |#2| |#2|) (-1169))))
+((-3987 (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378) (-378)) 116) (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378)) 117) (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-637 (-378)) (-378)) 119) (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-378)) 120) (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-378)) 121) (((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378))) 122) (((-1031) (-804) (-1057)) 108) (((-1031) (-804)) 109)) (-3057 (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804) (-1057)) 75) (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804)) 77)))
+(((-801) (-10 -7 (-15 -3987 ((-1031) (-804))) (-15 -3987 ((-1031) (-804) (-1057))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378) (-378))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804) (-1057))))) (T -801))
+((-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-801)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378))) (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378))) (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378))) (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))))
+(-10 -7 (-15 -3987 ((-1031) (-804))) (-15 -3987 ((-1031) (-804) (-1057))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378))) (-15 -3987 ((-1031) (-1256 (-314 (-378))) (-378) (-378) (-637 (-378)) (-314 (-378)) (-637 (-378)) (-378) (-378))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-804) (-1057))))
+((-2800 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2169 (-637 |#4|))) (-650 |#4|) |#4|) 35)))
+(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2169 (-637 |#4|))) (-650 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802))
+((-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2169 (-637 *4)))) (-5 *1 (-802 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2800 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2169 (-637 |#4|))) (-650 |#4|) |#4|)))
+((-4156 (((-2 (|:| -3674 |#3|) (|:| |rh| (-637 (-407 |#2|)))) |#4| (-637 (-407 |#2|))) 52)) (-2802 (((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4| |#2|) 60) (((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4|) 59) (((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3| |#2|) 20) (((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3|) 21)) (-2803 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2801 ((|#2| |#3| (-637 (-407 |#2|))) 94) (((-3 |#2| "failed") |#3| (-407 |#2|)) 91)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2801 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2801 (|#2| |#3| (-637 (-407 |#2|)))) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3| |#2|)) (-15 -2803 (|#2| |#3| |#1|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4| |#2|)) (-15 -2803 (|#2| |#4| |#1|)) (-15 -4156 ((-2 (|:| -3674 |#3|) (|:| |rh| (-637 (-407 |#2|)))) |#4| (-637 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-546)))) (-1232 |#1|) (-653 |#2|) (-653 (-407 |#2|))) (T -803))
+((-4156 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -3674 *7) (|:| |rh| (-637 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-637 (-407 *6))) (-4 *7 (-653 *6)) (-4 *3 (-653 (-407 *6))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-653 *2)) (-4 *3 (-653 (-407 *2))))) (-2802 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *4 (-1232 *5)) (-5 *2 (-637 (-2 (|:| -4187 *4) (|:| -3634 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-653 *4)) (-4 *3 (-653 (-407 *4))))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-2 (|:| -4187 *5) (|:| -3634 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-653 *5)) (-4 *3 (-653 (-407 *5))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2)) (-4 *5 (-653 (-407 *2))))) (-2802 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *4 (-1232 *5)) (-5 *2 (-637 (-2 (|:| -4187 *4) (|:| -3634 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-653 *4)) (-4 *6 (-653 (-407 *4))))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-2 (|:| -4187 *5) (|:| -3634 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-653 *5)) (-4 *6 (-653 (-407 *5))))) (-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-407 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2)) (-4 *6 (-653 (-407 *2))))) (-2801 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2)) (-4 *6 (-653 *4)))))
+(-10 -7 (-15 -2801 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2801 (|#2| |#3| (-637 (-407 |#2|)))) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#3| |#2|)) (-15 -2803 (|#2| |#3| |#1|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4|)) (-15 -2802 ((-637 (-2 (|:| -4187 |#2|) (|:| -3634 |#2|))) |#4| |#2|)) (-15 -2803 (|#2| |#4| |#1|)) (-15 -4156 ((-2 (|:| -3674 |#3|) (|:| |rh| (-637 (-407 |#2|)))) |#4| (-637 (-407 |#2|)))))
+((-2953 (((-112) $ $) NIL)) (-3564 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3444 (((-112) $ $) NIL)))
+(((-804) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3564 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3564 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225))) (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
+((-2811 (((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 |#3|))) |#3| (-1 (-637 |#2|) |#2| (-1163 |#2|)) (-1 (-405 |#2|) |#2|)) 117)) (-2812 (((-637 (-2 (|:| |poly| |#2|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|)) 46)) (-2805 (((-637 (-2 (|:| |deg| (-767)) (|:| -3674 |#2|))) |#3|) 94)) (-2804 ((|#2| |#3|) 37)) (-2806 (((-637 (-2 (|:| -4367 |#1|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|)) 81)) (-2807 ((|#3| |#3| (-407 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2804 (|#2| |#3|)) (-15 -2805 ((-637 (-2 (|:| |deg| (-767)) (|:| -3674 |#2|))) |#3|)) (-15 -2806 ((-637 (-2 (|:| -4367 |#1|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|))) (-15 -2812 ((-637 (-2 (|:| |poly| |#2|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|))) (-15 -2811 ((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 |#3|))) |#3| (-1 (-637 |#2|) |#2| (-1163 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2807 (|#3| |#3| |#2|)) (-15 -2807 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-546)))) (-1232 |#1|) (-653 |#2|) (-653 (-407 |#2|))) (T -805))
+((-2807 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-653 *5)) (-4 *6 (-653 *3)))) (-2807 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-1232 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-653 *3)) (-4 *5 (-653 (-407 *3))))) (-2811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-637 *7) *7 (-1163 *7))) (-5 *5 (-1 (-405 *7) *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-5 *2 (-637 (-2 (|:| |frac| (-407 *7)) (|:| -3674 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-653 *7)) (-4 *8 (-653 (-407 *7))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-2 (|:| |poly| *6) (|:| -3674 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-653 *6)) (-4 *7 (-653 (-407 *6))))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-2 (|:| -4367 *5) (|:| -3674 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-653 *6)) (-4 *7 (-653 (-407 *6))))) (-2805 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-2 (|:| |deg| (-767)) (|:| -3674 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-653 *5)) (-4 *6 (-653 (-407 *5))))) (-2804 (*1 *2 *3) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2)) (-4 *5 (-653 (-407 *2))))))
+(-10 -7 (-15 -2804 (|#2| |#3|)) (-15 -2805 ((-637 (-2 (|:| |deg| (-767)) (|:| -3674 |#2|))) |#3|)) (-15 -2806 ((-637 (-2 (|:| -4367 |#1|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|))) (-15 -2812 ((-637 (-2 (|:| |poly| |#2|) (|:| -3674 |#3|))) |#3| (-1 (-637 |#1|) |#2|))) (-15 -2811 ((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 |#3|))) |#3| (-1 (-637 |#2|) |#2| (-1163 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2807 (|#3| |#3| |#2|)) (-15 -2807 (|#3| |#3| (-407 |#2|))))
+((-2808 (((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-651 |#2| (-407 |#2|)) (-637 (-407 |#2|))) 122) (((-2 (|:| |particular| (-3 (-407 |#2|) #1="failed")) (|:| -2169 (-637 (-407 |#2|)))) (-651 |#2| (-407 |#2|)) (-407 |#2|)) 121) (((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-650 (-407 |#2|)) (-637 (-407 |#2|))) 116) (((-2 (|:| |particular| (-3 (-407 |#2|) #1#)) (|:| -2169 (-637 (-407 |#2|)))) (-650 (-407 |#2|)) (-407 |#2|)) 114)) (-2809 ((|#2| (-651 |#2| (-407 |#2|))) 80) ((|#2| (-650 (-407 |#2|))) 83)))
+(((-806 |#1| |#2|) (-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 (-407 |#2|) #1="failed")) (|:| -2169 (-637 (-407 |#2|)))) (-650 (-407 |#2|)) (-407 |#2|))) (-15 -2808 ((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-650 (-407 |#2|)) (-637 (-407 |#2|)))) (-15 -2808 ((-2 (|:| |particular| (-3 (-407 |#2|) #1#)) (|:| -2169 (-637 (-407 |#2|)))) (-651 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2808 ((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-651 |#2| (-407 |#2|)) (-637 (-407 |#2|)))) (-15 -2809 (|#2| (-650 (-407 |#2|)))) (-15 -2809 (|#2| (-651 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))) (-1232 |#1|)) (T -806))
+((-2809 (*1 *2 *3) (-12 (-5 *3 (-651 *2 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-650 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *6 (-407 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-2 (|:| -2169 (-637 (-407 *6))) (|:| -1735 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-637 (-407 *6))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4)))) (-5 *1 (-806 *5 *6)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-407 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-2 (|:| -2169 (-637 (-407 *6))) (|:| -1735 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-637 (-407 *6))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2169 (-637 *4)))) (-5 *1 (-806 *5 *6)))))
+(-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 (-407 |#2|) #1="failed")) (|:| -2169 (-637 (-407 |#2|)))) (-650 (-407 |#2|)) (-407 |#2|))) (-15 -2808 ((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-650 (-407 |#2|)) (-637 (-407 |#2|)))) (-15 -2808 ((-2 (|:| |particular| (-3 (-407 |#2|) #1#)) (|:| -2169 (-637 (-407 |#2|)))) (-651 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2808 ((-2 (|:| -2169 (-637 (-407 |#2|))) (|:| -1735 (-684 |#1|))) (-651 |#2| (-407 |#2|)) (-637 (-407 |#2|)))) (-15 -2809 (|#2| (-650 (-407 |#2|)))) (-15 -2809 (|#2| (-651 |#2| (-407 |#2|)))))
+((-2810 (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|) 48)))
+(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2810 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|))) (-363) (-653 |#1|) (-1232 |#1|) (-720 |#1| |#3|) (-653 |#4|)) (T -807))
+((-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1232 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -1735 (-684 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-653 *5)) (-4 *3 (-653 *4)))))
+(-10 -7 (-15 -2810 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|)))
+((-2811 (((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|)) 47)) (-2813 (((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|))) 137 (|has| |#1| (-27))) (((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-405 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-637 (-407 |#2|)) (-650 (-407 |#2|))) 139 (|has| |#1| (-27))) (((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|)) 38) (((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|)) 39) (((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|)) 36) (((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|)) 37)) (-2812 (((-637 (-2 (|:| |poly| |#2|) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|)) 83)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|))) (-15 -2811 ((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2812 ((-637 (-2 (|:| |poly| |#2|) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)))) (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))) (-1232 |#1|)) (T -808))
+((-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-651 *5 (-407 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-637 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-650 (-407 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-637 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-2 (|:| |poly| *6) (|:| -3674 (-651 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-651 *6 (-407 *6))))) (-2811 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-5 *2 (-637 (-2 (|:| |frac| (-407 *6)) (|:| -3674 (-651 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-651 *6 (-407 *6))))) (-2813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-651 *7 (-407 *7))) (-5 *4 (-1 (-637 *6) *7)) (-5 *5 (-1 (-405 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *7 (-1232 *6)) (-5 *2 (-637 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-407 *7))) (-5 *4 (-1 (-637 *6) *7)) (-5 *5 (-1 (-405 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *7 (-1232 *6)) (-5 *2 (-637 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-1 (-637 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5)) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6)))))
+(-10 -7 (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|) (-1 (-405 |#2|) |#2|))) (-15 -2811 ((-637 (-2 (|:| |frac| (-407 |#2|)) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2812 ((-637 (-2 (|:| |poly| |#2|) (|:| -3674 (-651 |#2| (-407 |#2|))))) (-651 |#2| (-407 |#2|)) (-1 (-637 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)))) (-15 -2813 ((-637 (-407 |#2|)) (-650 (-407 |#2|)) (-1 (-405 |#2|) |#2|))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)))) (-15 -2813 ((-637 (-407 |#2|)) (-651 |#2| (-407 |#2|)) (-1 (-405 |#2|) |#2|)))) |%noBranch|))
+((-2814 (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) (-684 |#2|) (-1256 |#1|)) 85) (((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3674 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1256 |#1|)) 15)) (-2815 (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2169 (-637 |#1|))) |#2| |#1|)) 92)) (-3987 (((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -2169 (-684 |#1|))) "failed") (-684 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-809 |#1| |#2|) (-10 -7 (-15 -2814 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3674 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1256 |#1|))) (-15 -2814 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) (-684 |#2|) (-1256 |#1|))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -2169 (-684 |#1|))) "failed") (-684 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) "failed") |#2| |#1|))) (-15 -2815 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2169 (-637 |#1|))) |#2| |#1|)))) (-363) (-653 |#1|)) (T -809))
+((-2815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2169 (-637 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-653 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *6) "failed")) (|:| -2169 (-637 (-1256 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1256 *6)))) (-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2169 (-637 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-653 *6)) (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -2169 (-684 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1256 *6)))) (-2814 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-653 *5)) (-5 *2 (-2 (|:| -1735 (-684 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1256 *5)))) (-2814 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-684 *5)) (|:| |eqs| (-637 (-2 (|:| C (-684 *5)) (|:| |g| (-1256 *5)) (|:| -3674 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)) (-4 *6 (-653 *5)))))
+(-10 -7 (-15 -2814 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3674 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1256 |#1|))) (-15 -2814 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#1|))) (-684 |#2|) (-1256 |#1|))) (-15 -3987 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -2169 (-684 |#1|))) "failed") (-684 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2169 (-637 |#1|))) "failed") |#2| |#1|))) (-15 -2815 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -2169 (-637 (-1256 |#1|)))) (-684 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2169 (-637 |#1|))) |#2| |#1|))))
+((-2816 (((-684 |#1|) (-637 |#1|) (-767)) 13) (((-684 |#1|) (-637 |#1|)) 14)) (-2817 (((-3 (-1256 |#1|) "failed") |#2| |#1| (-637 |#1|)) 34)) (-3751 (((-3 |#1| "failed") |#2| |#1| (-637 |#1|) (-1 |#1| |#1|)) 42)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -2816 ((-684 |#1|) (-637 |#1|))) (-15 -2816 ((-684 |#1|) (-637 |#1|) (-767))) (-15 -2817 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-637 |#1|))) (-15 -3751 ((-3 |#1| "failed") |#2| |#1| (-637 |#1|) (-1 |#1| |#1|)))) (-363) (-653 |#1|)) (T -810))
+((-3751 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-637 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-653 *2)))) (-2817 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-637 *4)) (-4 *4 (-363)) (-5 *2 (-1256 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-653 *4)))) (-2816 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-653 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-653 *4)))))
+(-10 -7 (-15 -2816 ((-684 |#1|) (-637 |#1|))) (-15 -2816 ((-684 |#1|) (-637 |#1|) (-767))) (-15 -2817 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-637 |#1|))) (-15 -3751 ((-3 |#1| "failed") |#2| |#1| (-637 |#1|) (-1 |#1| |#1|))))
+((-2953 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3596 (((-112) $) NIL (|has| |#2| (-131)))) (-4122 (($ (-915)) NIL (|has| |#2| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) NIL (|has| |#2| (-789)))) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#2| (-368)))) (-4038 (((-546) $) NIL (|has| |#2| (-844)))) (-4202 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1094)))) (-3564 (((-546) $) NIL (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2408 (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#2| (-636 (-546))) (|has| |#2| (-1045)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3873 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-3384 (($) NIL (|has| |#2| (-368)))) (-1672 ((|#2| $ (-546) |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ (-546)) NIL)) (-3594 (((-112) $) NIL (|has| |#2| (-844)))) (-2103 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (|has| |#2| (-722)))) (-3595 (((-112) $) NIL (|has| |#2| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2993 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2107 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#2| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#2| (-1094)))) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#2| (-368)))) (-3651 (((-1113) $) NIL (|has| |#2| (-1094)))) (-4215 ((|#2| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ (-546) |#2|) NIL) ((|#2| $ (-546)) NIL)) (-4251 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-1559 (($ (-1256 |#2|)) NIL)) (-4326 (((-134)) NIL (|has| |#2| (-363)))) (-4225 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2104 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#2|) $) NIL) (($ (-546)) NIL (-3943 (-12 (|has| |#2| (-1034 (-546))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#2| (-1034 (-407 (-546)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-610 (-859))))) (-3518 (((-767)) NIL (|has| |#2| (-1045)))) (-2106 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#2| (-844)))) (-3047 (($) NIL (|has| |#2| (-131)) CONST)) (-3053 (($) NIL (|has| |#2| (-722)) CONST)) (-3058 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3444 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3073 (((-112) $ $) NIL (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3074 (((-112) $ $) 11 (-3943 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-4254 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-915)) NIL (|has| |#2| (-722)))) (* (($ (-546) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-915) $) NIL (|has| |#2| (-25)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1256 |#2|) (-1256 |#2|))) (T -811))
NIL
(-238 |#1| |#2|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3989 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-4329 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2605 (((-640 (-814 (-1169))) $) NIL)) (-2138 (((-1165 $) $ (-814 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-814 (-1169)))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3968 (($ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-814 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-814 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-1612 (($ $ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-531 (-814 (-1169))) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#1|) (-814 (-1169))) NIL) (($ (-1165 $) (-814 (-1169))) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-814 (-1169))) NIL)) (-3908 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 (-814 (-1169))) (-531 (-814 (-1169)))) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-1698 (((-3 (-814 (-1169)) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3760 (((-814 (-1169)) $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3978 (((-112) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-814 (-1169))) (|:| -3311 (-767))) "failed") $) NIL)) (-3564 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-814 (-1169)) |#1|) NIL) (($ $ (-640 (-814 (-1169))) (-640 |#1|)) NIL) (($ $ (-814 (-1169)) $) NIL) (($ $ (-640 (-814 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-1623 (($ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-4203 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4001 (((-640 (-1169)) $) NIL)) (-3871 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-814 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1578 (((-637 (-767)) $) NIL) (((-637 (-767)) $ (-1169)) NIL)) (-1612 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-3474 (((-637 (-814 (-1169))) $) NIL)) (-3476 (((-1163 $) $ (-814 (-1169))) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-814 (-1169)))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1574 (($ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-814 (-1169)) #2#) $) NIL) (((-3 (-1169) #2#) $) NIL) (((-3 (-1118 |#1| (-1169)) #2#) $) NIL)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-814 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-4171 (($ $ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-531 (-814 (-1169))) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#1|) (-814 (-1169))) NIL) (($ (-1163 $) (-814 (-1169))) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-637 (-814 (-1169))) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-814 (-1169))) NIL)) (-3209 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-637 (-767)) $ (-637 (-814 (-1169)))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 (-814 (-1169))) (-531 (-814 (-1169)))) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-1613 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3475 (((-3 (-814 (-1169)) #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-1576 (((-814 (-1169)) $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-1577 (((-112) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-814 (-1169))) (|:| -2543 (-767))) #3#) $) NIL)) (-1575 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-814 (-1169)) |#1|) NIL) (($ $ (-637 (-814 (-1169))) (-637 |#1|)) NIL) (($ $ (-814 (-1169)) $) NIL) (($ $ (-637 (-814 (-1169))) (-637 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-637 (-1169)) (-637 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-233)))) (-4172 (($ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-4225 (($ $ (-814 (-1169))) NIL) (($ $ (-637 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-637 (-814 (-1169))) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1579 (((-637 (-1169)) $) NIL)) (-4363 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-637 (-767)) $ (-637 (-814 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-814 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-637 (-814 (-1169))) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-814 (-1169))) NIL) (($ $ (-637 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-637 (-814 (-1169))) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-812 |#1|) (-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -812))
NIL
(-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-3231 (($ $) NIL (|has| |#2| (-363)))) (-3211 (((-112) $) NIL (|has| |#2| (-363)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#2| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-363)))) (-2003 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL (|has| |#2| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#2| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-2560 (((-112) $) NIL (|has| |#2| (-363)))) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-3517 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 20 (|has| |#2| (-363)))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#2| (-363)))) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1993 (((-767) $) NIL (|has| |#2| (-363)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-363)))) (-4203 (($ $ (-767)) NIL) (($ $) 13)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-563))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) 15 (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ (-563)) 18 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-563))) NIL (|has| |#2| (-363)))))
-(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1093) (-896 |#1|) |#1|) (T -813))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-2220 (($ $) NIL (|has| |#2| (-363)))) (-2218 (((-112) $) NIL (|has| |#2| (-363)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#2| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-363)))) (-1740 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL (|has| |#2| (-363)))) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#2| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#2| (-363)))) (-4138 (((-112) $) NIL (|has| |#2| (-363)))) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL (|has| |#2| (-363)))) (-2048 (($ (-637 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 20 (|has| |#2| (-363)))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#2| (-363)))) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#2| (-363)))) (-1739 (((-767) $) NIL (|has| |#2| (-363)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-363)))) (-4225 (($ $ (-767)) NIL) (($ $) 13)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-546))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) 15 (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL) (($ $ (-546)) 18 (|has| |#2| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-546)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-546))) NIL (|has| |#2| (-363)))))
+(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-896 |#1|) |#1|) (T -813))
NIL
(-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-4329 (((-767) $) NIL)) (-2517 ((|#1| $) 10)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-1775 (((-767) $) 11)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-4340 (($ |#1| (-767)) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-4203 (($ $) NIL) (($ $ (-767)) NIL)) (-1692 (((-858) $) NIL) (($ |#1|) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
+((-2953 (((-112) $ $) NIL)) (-1612 (((-767) $) NIL)) (-4246 ((|#1| $) 10)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-4186 (((-767) $) 11)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-1613 (($ |#1| (-767)) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4225 (($ $) NIL) (($ $ (-767)) NIL)) (-4361 (((-859) $) NIL) (($ |#1|) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
(((-814 |#1|) (-266 |#1|) (-846)) (T -814))
NIL
(-266 |#1|)
-((-1677 (((-112) $ $) NIL)) (-3994 (((-640 |#1|) $) 29)) (-3750 (((-767) $) NIL)) (-2569 (($) NIL T CONST)) (-3817 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-3793 (($ $) 31)) (-3951 (((-3 $ "failed") $) NIL)) (-1366 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3401 (((-112) $) NIL)) (-1347 ((|#1| $ (-563)) NIL)) (-1357 (((-767) $ (-563)) NIL)) (-3794 (($ $) 35)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3828 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1396 (((-112) $ $) 33)) (-3419 (((-767) $) 25)) (-3854 (((-1151) $) NIL)) (-1375 (($ $ $) NIL)) (-1385 (($ $ $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 ((|#1| $) 30)) (-1337 (((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $) NIL)) (-3032 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1692 (((-858) $) NIL) (($ |#1|) NIL)) (-2253 (($) 15 T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3782 (|#1| $)) (-15 -3793 ($ $)) (-15 -3794 ($ $)) (-15 -1396 ((-112) $ $)) (-15 -1385 ($ $ $)) (-15 -1375 ($ $ $)) (-15 -3828 ((-3 $ "failed") $ $)) (-15 -3817 ((-3 $ "failed") $ $)) (-15 -3828 ((-3 $ "failed") $ |#1|)) (-15 -3817 ((-3 $ "failed") $ |#1|)) (-15 -3032 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1366 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3750 ((-767) $)) (-15 -1357 ((-767) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $)) (-15 -3419 ((-767) $)) (-15 -3994 ((-640 |#1|) $)))) (-846)) (T -815))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3782 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1396 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1385 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1375 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3828 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3817 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3828 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3817 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3032 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1366 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
-(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3782 (|#1| $)) (-15 -3793 ($ $)) (-15 -3794 ($ $)) (-15 -1396 ((-112) $ $)) (-15 -1385 ($ $ $)) (-15 -1375 ($ $ $)) (-15 -3828 ((-3 $ "failed") $ $)) (-15 -3817 ((-3 $ "failed") $ $)) (-15 -3828 ((-3 $ "failed") $ |#1|)) (-15 -3817 ((-3 $ "failed") $ |#1|)) (-15 -3032 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1366 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3750 ((-767) $)) (-15 -1357 ((-767) $ (-563))) (-15 -1347 (|#1| $ (-563))) (-15 -1337 ((-640 (-2 (|:| |gen| |#1|) (|:| -3372 (-767)))) $)) (-15 -3419 ((-767) $)) (-15 -3994 ((-640 |#1|) $))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2807 (((-563) $) 54)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3414 (((-112) $) 52)) (-3401 (((-112) $) 31)) (-3426 (((-112) $) 53)) (-3088 (($ $ $) 51)) (-1776 (($ $ $) 50)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ $) 43)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-1462 (($ $) 55)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 48)) (-1754 (((-112) $ $) 47)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 49)) (-1743 (((-112) $ $) 46)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-2953 (((-112) $ $) NIL)) (-4349 (((-637 |#1|) $) 29)) (-3528 (((-767) $) NIL)) (-4139 (($) NIL T CONST)) (-4354 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-4213 (($ $) 31)) (-3873 (((-3 $ "failed") $) NIL)) (-2821 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2552 (((-112) $) NIL)) (-2819 ((|#1| $ (-546)) NIL)) (-2820 (((-767) $ (-546)) NIL)) (-4351 (($ $) 35)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4355 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2824 (((-112) $ $) 33)) (-4248 (((-767) $) 25)) (-3650 (((-1151) $) NIL)) (-2822 (($ $ $) NIL)) (-2823 (($ $ $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 ((|#1| $) 30)) (-2818 (((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $) NIL)) (-2950 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4361 (((-859) $) NIL) (($ |#1|) NIL)) (-3053 (($) 15 T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 34)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -4215 (|#1| $)) (-15 -4213 ($ $)) (-15 -4351 ($ $)) (-15 -2824 ((-112) $ $)) (-15 -2823 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4355 ((-3 $ "failed") $ $)) (-15 -4354 ((-3 $ "failed") $ $)) (-15 -4355 ((-3 $ "failed") $ |#1|)) (-15 -4354 ((-3 $ "failed") $ |#1|)) (-15 -2950 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2821 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3528 ((-767) $)) (-15 -2820 ((-767) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $)) (-15 -4248 ((-767) $)) (-15 -4349 ((-637 |#1|) $)))) (-846)) (T -815))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4215 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2824 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2823 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4355 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4354 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4355 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4354 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2950 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -4215 (|#1| $)) (-15 -4213 ($ $)) (-15 -4351 ($ $)) (-15 -2824 ((-112) $ $)) (-15 -2823 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4355 ((-3 $ "failed") $ $)) (-15 -4354 ((-3 $ "failed") $ $)) (-15 -4355 ((-3 $ "failed") $ |#1|)) (-15 -4354 ((-3 $ "failed") $ |#1|)) (-15 -2950 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2821 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3528 ((-767) $)) (-15 -2820 ((-767) $ (-546))) (-15 -2819 (|#1| $ (-546))) (-15 -2818 ((-637 (-2 (|:| |gen| |#1|) (|:| -4358 (-767)))) $)) (-15 -4248 ((-767) $)) (-15 -4349 ((-637 |#1|) $))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4038 (((-546) $) 54)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-3594 (((-112) $) 52)) (-2552 (((-112) $) 31)) (-3595 (((-112) $) 53)) (-2919 (($ $ $) 51)) (-3249 (($ $ $) 50)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ $) 43)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3794 (($ $) 55)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 48)) (-2952 (((-112) $ $) 47)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 49)) (-3074 (((-112) $ $) 46)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-816) (-140)) (T -816))
NIL
-(-13 (-555) (-844))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-3271 (($ (-1113)) 7)) (-3318 (((-112) $ (-1151) (-1113)) 15)) (-3304 (((-818) $) 12)) (-3292 (((-818) $) 11)) (-3281 (((-1262) $) 9)) (-3328 (((-112) $ (-1113)) 16)))
-(((-817) (-10 -8 (-15 -3271 ($ (-1113))) (-15 -3281 ((-1262) $)) (-15 -3292 ((-818) $)) (-15 -3304 ((-818) $)) (-15 -3318 ((-112) $ (-1151) (-1113))) (-15 -3328 ((-112) $ (-1113))))) (T -817))
-((-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-3318 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817)))) (-3271 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817)))))
-(-10 -8 (-15 -3271 ($ (-1113))) (-15 -3281 ((-1262) $)) (-15 -3292 ((-818) $)) (-15 -3304 ((-818) $)) (-15 -3318 ((-112) $ (-1151) (-1113))) (-15 -3328 ((-112) $ (-1113))))
-((-3370 (((-1262) $ (-819)) 12)) (-3569 (((-1262) $ (-1169)) 32)) (-3590 (((-1262) $ (-1151) (-1151)) 34)) (-3580 (((-1262) $ (-1151)) 33)) (-3455 (((-1262) $) 19)) (-3543 (((-1262) $ (-563)) 28)) (-3554 (((-1262) $ (-225)) 30)) (-3444 (((-1262) $) 18)) (-3530 (((-1262) $) 26)) (-3520 (((-1262) $) 25)) (-3497 (((-1262) $) 23)) (-3509 (((-1262) $) 24)) (-3487 (((-1262) $) 22)) (-3477 (((-1262) $) 21)) (-3467 (((-1262) $) 20)) (-3420 (((-1262) $) 16)) (-3433 (((-1262) $) 17)) (-3407 (((-1262) $) 15)) (-3395 (((-1262) $) 14)) (-3382 (((-1262) $) 13)) (-3348 (($ (-1151) (-819)) 9)) (-3338 (($ (-1151) (-1151) (-819)) 8)) (-3789 (((-1169) $) 51)) (-3823 (((-1169) $) 55)) (-3811 (((-2 (|:| |cd| (-1151)) (|:| -3352 (-1151))) $) 54)) (-3798 (((-1151) $) 52)) (-3669 (((-1262) $) 41)) (-3766 (((-563) $) 49)) (-3776 (((-225) $) 50)) (-3658 (((-1262) $) 40)) (-3754 (((-1262) $) 48)) (-3744 (((-1262) $) 47)) (-3720 (((-1262) $) 45)) (-3733 (((-1262) $) 46)) (-3707 (((-1262) $) 44)) (-3693 (((-1262) $) 43)) (-3681 (((-1262) $) 42)) (-3636 (((-1262) $) 38)) (-3647 (((-1262) $) 39)) (-3624 (((-1262) $) 37)) (-3613 (((-1262) $) 36)) (-3602 (((-1262) $) 35)) (-3359 (((-1262) $) 11)))
-(((-818) (-10 -8 (-15 -3338 ($ (-1151) (-1151) (-819))) (-15 -3348 ($ (-1151) (-819))) (-15 -3359 ((-1262) $)) (-15 -3370 ((-1262) $ (-819))) (-15 -3382 ((-1262) $)) (-15 -3395 ((-1262) $)) (-15 -3407 ((-1262) $)) (-15 -3420 ((-1262) $)) (-15 -3433 ((-1262) $)) (-15 -3444 ((-1262) $)) (-15 -3455 ((-1262) $)) (-15 -3467 ((-1262) $)) (-15 -3477 ((-1262) $)) (-15 -3487 ((-1262) $)) (-15 -3497 ((-1262) $)) (-15 -3509 ((-1262) $)) (-15 -3520 ((-1262) $)) (-15 -3530 ((-1262) $)) (-15 -3543 ((-1262) $ (-563))) (-15 -3554 ((-1262) $ (-225))) (-15 -3569 ((-1262) $ (-1169))) (-15 -3580 ((-1262) $ (-1151))) (-15 -3590 ((-1262) $ (-1151) (-1151))) (-15 -3602 ((-1262) $)) (-15 -3613 ((-1262) $)) (-15 -3624 ((-1262) $)) (-15 -3636 ((-1262) $)) (-15 -3647 ((-1262) $)) (-15 -3658 ((-1262) $)) (-15 -3669 ((-1262) $)) (-15 -3681 ((-1262) $)) (-15 -3693 ((-1262) $)) (-15 -3707 ((-1262) $)) (-15 -3720 ((-1262) $)) (-15 -3733 ((-1262) $)) (-15 -3744 ((-1262) $)) (-15 -3754 ((-1262) $)) (-15 -3766 ((-563) $)) (-15 -3776 ((-225) $)) (-15 -3789 ((-1169) $)) (-15 -3798 ((-1151) $)) (-15 -3811 ((-2 (|:| |cd| (-1151)) (|:| -3352 (-1151))) $)) (-15 -3823 ((-1169) $)))) (T -818))
-((-3823 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3352 (-1151)))) (-5 *1 (-818)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3590 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3580 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3554 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3543 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3348 (*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))) (-3338 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))))
-(-10 -8 (-15 -3338 ($ (-1151) (-1151) (-819))) (-15 -3348 ($ (-1151) (-819))) (-15 -3359 ((-1262) $)) (-15 -3370 ((-1262) $ (-819))) (-15 -3382 ((-1262) $)) (-15 -3395 ((-1262) $)) (-15 -3407 ((-1262) $)) (-15 -3420 ((-1262) $)) (-15 -3433 ((-1262) $)) (-15 -3444 ((-1262) $)) (-15 -3455 ((-1262) $)) (-15 -3467 ((-1262) $)) (-15 -3477 ((-1262) $)) (-15 -3487 ((-1262) $)) (-15 -3497 ((-1262) $)) (-15 -3509 ((-1262) $)) (-15 -3520 ((-1262) $)) (-15 -3530 ((-1262) $)) (-15 -3543 ((-1262) $ (-563))) (-15 -3554 ((-1262) $ (-225))) (-15 -3569 ((-1262) $ (-1169))) (-15 -3580 ((-1262) $ (-1151))) (-15 -3590 ((-1262) $ (-1151) (-1151))) (-15 -3602 ((-1262) $)) (-15 -3613 ((-1262) $)) (-15 -3624 ((-1262) $)) (-15 -3636 ((-1262) $)) (-15 -3647 ((-1262) $)) (-15 -3658 ((-1262) $)) (-15 -3669 ((-1262) $)) (-15 -3681 ((-1262) $)) (-15 -3693 ((-1262) $)) (-15 -3707 ((-1262) $)) (-15 -3720 ((-1262) $)) (-15 -3733 ((-1262) $)) (-15 -3744 ((-1262) $)) (-15 -3754 ((-1262) $)) (-15 -3766 ((-563) $)) (-15 -3776 ((-225) $)) (-15 -3789 ((-1169) $)) (-15 -3798 ((-1151) $)) (-15 -3811 ((-2 (|:| |cd| (-1151)) (|:| -3352 (-1151))) $)) (-15 -3823 ((-1169) $)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 10)) (-3850 (($) 13)) (-3859 (($) 11)) (-3841 (($) 14)) (-3830 (($) 12)) (-1718 (((-112) $ $) 8)))
-(((-819) (-13 (-1093) (-10 -8 (-15 -3859 ($)) (-15 -3850 ($)) (-15 -3841 ($)) (-15 -3830 ($))))) (T -819))
-((-3859 (*1 *1) (-5 *1 (-819))) (-3850 (*1 *1) (-5 *1 (-819))) (-3841 (*1 *1) (-5 *1 (-819))) (-3830 (*1 *1) (-5 *1 (-819))))
-(-13 (-1093) (-10 -8 (-15 -3859 ($)) (-15 -3850 ($)) (-15 -3841 ($)) (-15 -3830 ($))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21) (($ (-1169)) 17)) (-2709 (((-112) $) 10)) (-2719 (((-112) $) 9)) (-2699 (((-112) $) 11)) (-2730 (((-112) $) 8)) (-1718 (((-112) $ $) 19)))
-(((-820) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-1169))) (-15 -2730 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -2709 ((-112) $)) (-15 -2699 ((-112) $))))) (T -820))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-1169))) (-15 -2730 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -2709 ((-112) $)) (-15 -2699 ((-112) $))))
-((-1677 (((-112) $ $) NIL)) (-3866 (($ (-820) (-640 (-1169))) 24)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3888 (((-820) $) 25)) (-3877 (((-640 (-1169)) $) 26)) (-1692 (((-858) $) 23)) (-1718 (((-112) $ $) NIL)))
-(((-821) (-13 (-1093) (-10 -8 (-15 -3888 ((-820) $)) (-15 -3877 ((-640 (-1169)) $)) (-15 -3866 ($ (-820) (-640 (-1169))))))) (T -821))
-((-3888 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821)))))
-(-13 (-1093) (-10 -8 (-15 -3888 ((-820) $)) (-15 -3877 ((-640 (-1169)) $)) (-15 -3866 ($ (-820) (-640 (-1169))))))
-((-2742 (((-1262) (-818) (-316 |#1|) (-112)) 23) (((-1262) (-818) (-316 |#1|)) 79) (((-1151) (-316 |#1|) (-112)) 78) (((-1151) (-316 |#1|)) 77)))
-(((-822 |#1|) (-10 -7 (-15 -2742 ((-1151) (-316 |#1|))) (-15 -2742 ((-1151) (-316 |#1|) (-112))) (-15 -2742 ((-1262) (-818) (-316 |#1|))) (-15 -2742 ((-1262) (-818) (-316 |#1|) (-112)))) (-13 (-824) (-846) (-1045))) (T -822))
-((-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *6)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *5)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *5)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *4)))))
-(-10 -7 (-15 -2742 ((-1151) (-316 |#1|))) (-15 -2742 ((-1151) (-316 |#1|) (-112))) (-15 -2742 ((-1262) (-818) (-316 |#1|))) (-15 -2742 ((-1262) (-818) (-316 |#1|) (-112))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2754 ((|#1| $) 10)) (-2516 (($ |#1|) 9)) (-3401 (((-112) $) NIL)) (-2587 (($ |#2| (-767)) NIL)) (-3908 (((-767) $) NIL)) (-2725 ((|#2| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-4203 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3871 (((-767) $) NIL)) (-1692 (((-858) $) 17) (($ (-563)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3244 ((|#2| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-823 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2516 ($ |#1|)) (-15 -2754 (|#1| $)))) (-704 |#2|) (-1045)) (T -823))
-((-2516 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))) (-2754 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045)))))
-(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2516 ($ |#1|)) (-15 -2754 (|#1| $))))
-((-2742 (((-1262) (-818) $ (-112)) 9) (((-1262) (-818) $) 8) (((-1151) $ (-112)) 7) (((-1151) $) 6)))
-(((-824) (-140)) (T -824))
-((-2742 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262)))) (-2742 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151)))))
-(-13 (-10 -8 (-15 -2742 ((-1151) $)) (-15 -2742 ((-1151) $ (-112))) (-15 -2742 ((-1262) (-818) $)) (-15 -2742 ((-1262) (-818) $ (-112)))))
-((-2842 (((-312) (-1151) (-1151)) 12)) (-2831 (((-112) (-1151) (-1151)) 33)) (-2816 (((-112) (-1151)) 32)) (-2786 (((-52) (-1151)) 25)) (-2775 (((-52) (-1151)) 23)) (-2764 (((-52) (-818)) 17)) (-2806 (((-640 (-1151)) (-1151)) 28)) (-2796 (((-640 (-1151))) 27)))
-(((-825) (-10 -7 (-15 -2764 ((-52) (-818))) (-15 -2775 ((-52) (-1151))) (-15 -2786 ((-52) (-1151))) (-15 -2796 ((-640 (-1151)))) (-15 -2806 ((-640 (-1151)) (-1151))) (-15 -2816 ((-112) (-1151))) (-15 -2831 ((-112) (-1151) (-1151))) (-15 -2842 ((-312) (-1151) (-1151))))) (T -825))
-((-2842 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))) (-2796 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(-10 -7 (-15 -2764 ((-52) (-818))) (-15 -2775 ((-52) (-1151))) (-15 -2786 ((-52) (-1151))) (-15 -2796 ((-640 (-1151)))) (-15 -2806 ((-640 (-1151)) (-1151))) (-15 -2816 ((-112) (-1151))) (-15 -2831 ((-112) (-1151) (-1151))) (-15 -2842 ((-312) (-1151) (-1151))))
-((-1677 (((-112) $ $) 19)) (-2582 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3816 (($ $ $) 72)) (-3804 (((-112) $ $) 73)) (-3001 (((-112) $ (-767)) 8)) (-1582 (($ (-640 |#1|)) 68) (($) 67)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-4194 (($ $) 62)) (-3814 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) 64)) (-2514 (((-112) $ (-767)) 9)) (-3088 ((|#1| $) 78)) (-4265 (($ $ $) 81)) (-4300 (($ $ $) 80)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1776 ((|#1| $) 79)) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22)) (-3834 (($ $ $) 69)) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1693 (((-1113) $) 21)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-4182 (((-640 (-2 (|:| -2556 |#1|) (|:| -1708 (-767)))) $) 61)) (-3827 (($ $ |#1|) 71) (($ $ $) 70)) (-3863 (($) 49) (($ (-640 |#1|)) 48)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 50)) (-1692 (((-858) $) 18)) (-2533 (($ (-640 |#1|)) 66) (($) 65)) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20)) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(-13 (-556) (-844))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2885 (((-1262) (-819) $ (-112)) 9) (((-1262) (-819) $) 8) (((-1151) $ (-112)) 7) (((-1151) $) 6)))
+(((-817) (-140)) (T -817))
+((-2885 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-817)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1262)))) (-2885 (*1 *2 *3 *1) (-12 (-4 *1 (-817)) (-5 *3 (-819)) (-5 *2 (-1262)))) (-2885 (*1 *2 *1 *3) (-12 (-4 *1 (-817)) (-5 *3 (-112)) (-5 *2 (-1151)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-817)) (-5 *2 (-1151)))))
+(-13 (-10 -8 (-15 -2885 ((-1151) $)) (-15 -2885 ((-1151) $ (-112))) (-15 -2885 ((-1262) (-819) $)) (-15 -2885 ((-1262) (-819) $ (-112)))))
+((-2825 (($ (-1113)) 7)) (-2829 (((-112) $ (-1151) (-1113)) 15)) (-2828 (((-819) $) 12)) (-2827 (((-819) $) 11)) (-2826 (((-1262) $) 9)) (-2830 (((-112) $ (-1113)) 16)))
+(((-818) (-10 -8 (-15 -2825 ($ (-1113))) (-15 -2826 ((-1262) $)) (-15 -2827 ((-819) $)) (-15 -2828 ((-819) $)) (-15 -2829 ((-112) $ (-1151) (-1113))) (-15 -2830 ((-112) $ (-1113))))) (T -818))
+((-2830 (*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-818)))) (-2829 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-818)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-818)))))
+(-10 -8 (-15 -2825 ($ (-1113))) (-15 -2826 ((-1262) $)) (-15 -2827 ((-819) $)) (-15 -2828 ((-819) $)) (-15 -2829 ((-112) $ (-1151) (-1113))) (-15 -2830 ((-112) $ (-1113))))
+((-2834 (((-1262) $ (-820)) 12)) (-2851 (((-1262) $ (-1169)) 32)) (-2853 (((-1262) $ (-1151) (-1151)) 34)) (-2852 (((-1262) $ (-1151)) 33)) (-2841 (((-1262) $) 19)) (-2849 (((-1262) $ (-546)) 28)) (-2850 (((-1262) $ (-225)) 30)) (-2840 (((-1262) $) 18)) (-2848 (((-1262) $) 26)) (-2847 (((-1262) $) 25)) (-2845 (((-1262) $) 23)) (-2846 (((-1262) $) 24)) (-2844 (((-1262) $) 22)) (-2843 (((-1262) $) 21)) (-2842 (((-1262) $) 20)) (-2838 (((-1262) $) 16)) (-2839 (((-1262) $) 17)) (-2837 (((-1262) $) 15)) (-2836 (((-1262) $) 14)) (-2835 (((-1262) $) 13)) (-2832 (($ (-1151) (-820)) 9)) (-2831 (($ (-1151) (-1151) (-820)) 8)) (-2870 (((-1169) $) 51)) (-2873 (((-1169) $) 55)) (-2872 (((-2 (|:| |cd| (-1151)) (|:| -3956 (-1151))) $) 54)) (-2871 (((-1151) $) 52)) (-2860 (((-1262) $) 41)) (-2868 (((-546) $) 49)) (-2869 (((-225) $) 50)) (-2859 (((-1262) $) 40)) (-2867 (((-1262) $) 48)) (-2866 (((-1262) $) 47)) (-2864 (((-1262) $) 45)) (-2865 (((-1262) $) 46)) (-2863 (((-1262) $) 44)) (-2862 (((-1262) $) 43)) (-2861 (((-1262) $) 42)) (-2857 (((-1262) $) 38)) (-2858 (((-1262) $) 39)) (-2856 (((-1262) $) 37)) (-2855 (((-1262) $) 36)) (-2854 (((-1262) $) 35)) (-2833 (((-1262) $) 11)))
+(((-819) (-10 -8 (-15 -2831 ($ (-1151) (-1151) (-820))) (-15 -2832 ($ (-1151) (-820))) (-15 -2833 ((-1262) $)) (-15 -2834 ((-1262) $ (-820))) (-15 -2835 ((-1262) $)) (-15 -2836 ((-1262) $)) (-15 -2837 ((-1262) $)) (-15 -2838 ((-1262) $)) (-15 -2839 ((-1262) $)) (-15 -2840 ((-1262) $)) (-15 -2841 ((-1262) $)) (-15 -2842 ((-1262) $)) (-15 -2843 ((-1262) $)) (-15 -2844 ((-1262) $)) (-15 -2845 ((-1262) $)) (-15 -2846 ((-1262) $)) (-15 -2847 ((-1262) $)) (-15 -2848 ((-1262) $)) (-15 -2849 ((-1262) $ (-546))) (-15 -2850 ((-1262) $ (-225))) (-15 -2851 ((-1262) $ (-1169))) (-15 -2852 ((-1262) $ (-1151))) (-15 -2853 ((-1262) $ (-1151) (-1151))) (-15 -2854 ((-1262) $)) (-15 -2855 ((-1262) $)) (-15 -2856 ((-1262) $)) (-15 -2857 ((-1262) $)) (-15 -2858 ((-1262) $)) (-15 -2859 ((-1262) $)) (-15 -2860 ((-1262) $)) (-15 -2861 ((-1262) $)) (-15 -2862 ((-1262) $)) (-15 -2863 ((-1262) $)) (-15 -2864 ((-1262) $)) (-15 -2865 ((-1262) $)) (-15 -2866 ((-1262) $)) (-15 -2867 ((-1262) $)) (-15 -2868 ((-546) $)) (-15 -2869 ((-225) $)) (-15 -2870 ((-1169) $)) (-15 -2871 ((-1151) $)) (-15 -2872 ((-2 (|:| |cd| (-1151)) (|:| -3956 (-1151))) $)) (-15 -2873 ((-1169) $)))) (T -819))
+((-2873 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-819)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3956 (-1151)))) (-5 *1 (-819)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-819)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-819)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-819)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2853 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2850 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2849 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1262)) (-5 *1 (-819)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-820)) (-5 *1 (-819)))) (-2831 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(-10 -8 (-15 -2831 ($ (-1151) (-1151) (-820))) (-15 -2832 ($ (-1151) (-820))) (-15 -2833 ((-1262) $)) (-15 -2834 ((-1262) $ (-820))) (-15 -2835 ((-1262) $)) (-15 -2836 ((-1262) $)) (-15 -2837 ((-1262) $)) (-15 -2838 ((-1262) $)) (-15 -2839 ((-1262) $)) (-15 -2840 ((-1262) $)) (-15 -2841 ((-1262) $)) (-15 -2842 ((-1262) $)) (-15 -2843 ((-1262) $)) (-15 -2844 ((-1262) $)) (-15 -2845 ((-1262) $)) (-15 -2846 ((-1262) $)) (-15 -2847 ((-1262) $)) (-15 -2848 ((-1262) $)) (-15 -2849 ((-1262) $ (-546))) (-15 -2850 ((-1262) $ (-225))) (-15 -2851 ((-1262) $ (-1169))) (-15 -2852 ((-1262) $ (-1151))) (-15 -2853 ((-1262) $ (-1151) (-1151))) (-15 -2854 ((-1262) $)) (-15 -2855 ((-1262) $)) (-15 -2856 ((-1262) $)) (-15 -2857 ((-1262) $)) (-15 -2858 ((-1262) $)) (-15 -2859 ((-1262) $)) (-15 -2860 ((-1262) $)) (-15 -2861 ((-1262) $)) (-15 -2862 ((-1262) $)) (-15 -2863 ((-1262) $)) (-15 -2864 ((-1262) $)) (-15 -2865 ((-1262) $)) (-15 -2866 ((-1262) $)) (-15 -2867 ((-1262) $)) (-15 -2868 ((-546) $)) (-15 -2869 ((-225) $)) (-15 -2870 ((-1169) $)) (-15 -2871 ((-1151) $)) (-15 -2872 ((-2 (|:| |cd| (-1151)) (|:| -3956 (-1151))) $)) (-15 -2873 ((-1169) $)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 10)) (-2876 (($) 13)) (-2877 (($) 11)) (-2875 (($) 14)) (-2874 (($) 12)) (-3444 (((-112) $ $) 8)))
+(((-820) (-13 (-1094) (-10 -8 (-15 -2877 ($)) (-15 -2876 ($)) (-15 -2875 ($)) (-15 -2874 ($))))) (T -820))
+((-2877 (*1 *1) (-5 *1 (-820))) (-2876 (*1 *1) (-5 *1 (-820))) (-2875 (*1 *1) (-5 *1 (-820))) (-2874 (*1 *1) (-5 *1 (-820))))
+(-13 (-1094) (-10 -8 (-15 -2877 ($)) (-15 -2876 ($)) (-15 -2875 ($)) (-15 -2874 ($))))
+((-2953 (((-112) $ $) NIL)) (-2878 (($ (-822) (-637 (-1169))) 24)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2880 (((-822) $) 25)) (-2879 (((-637 (-1169)) $) 26)) (-4361 (((-859) $) 23)) (-3444 (((-112) $ $) NIL)))
+(((-821) (-13 (-1094) (-10 -8 (-15 -2880 ((-822) $)) (-15 -2879 ((-637 (-1169)) $)) (-15 -2878 ($ (-822) (-637 (-1169))))))) (T -821))
+((-2880 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-821)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *2 (-822)) (-5 *3 (-637 (-1169))) (-5 *1 (-821)))))
+(-13 (-1094) (-10 -8 (-15 -2880 ((-822) $)) (-15 -2879 ((-637 (-1169)) $)) (-15 -2878 ($ (-822) (-637 (-1169))))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21) (($ (-1169)) 17)) (-2882 (((-112) $) 10)) (-2883 (((-112) $) 9)) (-2881 (((-112) $) 11)) (-2884 (((-112) $) 8)) (-3444 (((-112) $ $) 19)))
+(((-822) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-1169))) (-15 -2884 ((-112) $)) (-15 -2883 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -2881 ((-112) $))))) (T -822))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-822)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-1169))) (-15 -2884 ((-112) $)) (-15 -2883 ((-112) $)) (-15 -2882 ((-112) $)) (-15 -2881 ((-112) $))))
+((-2885 (((-1262) (-819) (-314 |#1|) (-112)) 23) (((-1262) (-819) (-314 |#1|)) 79) (((-1151) (-314 |#1|) (-112)) 78) (((-1151) (-314 |#1|)) 77)))
+(((-823 |#1|) (-10 -7 (-15 -2885 ((-1151) (-314 |#1|))) (-15 -2885 ((-1151) (-314 |#1|) (-112))) (-15 -2885 ((-1262) (-819) (-314 |#1|))) (-15 -2885 ((-1262) (-819) (-314 |#1|) (-112)))) (-13 (-817) (-846) (-1045))) (T -823))
+((-2885 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-819)) (-5 *4 (-314 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-817) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-823 *6)))) (-2885 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-314 *5)) (-4 *5 (-13 (-817) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-823 *5)))) (-2885 (*1 *2 *3 *4) (-12 (-5 *3 (-314 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-817) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-823 *5)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-314 *4)) (-4 *4 (-13 (-817) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-823 *4)))))
+(-10 -7 (-15 -2885 ((-1151) (-314 |#1|))) (-15 -2885 ((-1151) (-314 |#1|) (-112))) (-15 -2885 ((-1262) (-819) (-314 |#1|))) (-15 -2885 ((-1262) (-819) (-314 |#1|) (-112))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2886 ((|#1| $) 10)) (-2887 (($ |#1|) 9)) (-2552 (((-112) $) NIL)) (-3283 (($ |#2| (-767)) NIL)) (-3209 (((-767) $) NIL)) (-3582 ((|#2| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4225 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-4363 (((-767) $) NIL)) (-4361 (((-859) $) 17) (($ (-546)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4092 ((|#2| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-824 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2887 ($ |#1|)) (-15 -2886 (|#1| $)))) (-704 |#2|) (-1045)) (T -824))
+((-2887 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-824 *2 *3)) (-4 *2 (-704 *3)))) (-2886 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1045)))))
+(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2887 ($ |#1|)) (-15 -2886 (|#1| $))))
+((-2895 (((-311) (-1151) (-1151)) 12)) (-2894 (((-112) (-1151) (-1151)) 33)) (-2893 (((-112) (-1151)) 32)) (-2890 (((-51) (-1151)) 25)) (-2889 (((-51) (-1151)) 23)) (-2888 (((-51) (-819)) 17)) (-2892 (((-637 (-1151)) (-1151)) 28)) (-2891 (((-637 (-1151))) 27)))
+(((-825) (-10 -7 (-15 -2888 ((-51) (-819))) (-15 -2889 ((-51) (-1151))) (-15 -2890 ((-51) (-1151))) (-15 -2891 ((-637 (-1151)))) (-15 -2892 ((-637 (-1151)) (-1151))) (-15 -2893 ((-112) (-1151))) (-15 -2894 ((-112) (-1151) (-1151))) (-15 -2895 ((-311) (-1151) (-1151))))) (T -825))
+((-2895 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-825)))) (-2894 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2892 (*1 *2 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))) (-2891 (*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-825)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-825)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-825)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(-10 -7 (-15 -2888 ((-51) (-819))) (-15 -2889 ((-51) (-1151))) (-15 -2890 ((-51) (-1151))) (-15 -2891 ((-637 (-1151)))) (-15 -2892 ((-637 (-1151)) (-1151))) (-15 -2893 ((-112) (-1151))) (-15 -2894 ((-112) (-1151) (-1151))) (-15 -2895 ((-311) (-1151) (-1151))))
+((-2953 (((-112) $ $) 19)) (-3642 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3644 (($ $ $) 72)) (-3643 (((-112) $ $) 73)) (-1296 (((-112) $ (-767)) 8)) (-3647 (($ (-637 |#1|)) 68) (($) 67)) (-1666 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2505 (($ $) 62)) (-1430 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) 64)) (-4134 (((-112) $ (-767)) 9)) (-2919 ((|#1| $) 78)) (-3248 (($ $ $) 81)) (-3924 (($ $ $) 80)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3249 ((|#1| $) 79)) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22)) (-3646 (($ $ $) 69)) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3651 (((-1113) $) 21)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2504 (((-637 (-2 (|:| -2233 |#1|) (|:| -2104 (-767)))) $) 61)) (-3645 (($ $ |#1|) 71) (($ $ $) 70)) (-1557 (($) 49) (($ (-637 |#1|)) 48)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 50)) (-4361 (((-859) $) 18)) (-3648 (($ (-637 |#1|)) 66) (($) 65)) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20)) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-826 |#1|) (-140) (-846)) (T -826))
-((-3088 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))))
-(-13 (-732 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3088 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-732 |#1|) . T) ((-964 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T))
-((-2870 (((-1262) (-1113) (-1113)) 47)) (-2861 (((-1262) (-817) (-52)) 44)) (-2851 (((-52) (-817)) 16)))
-(((-827) (-10 -7 (-15 -2851 ((-52) (-817))) (-15 -2861 ((-1262) (-817) (-52))) (-15 -2870 ((-1262) (-1113) (-1113))))) (T -827))
-((-2870 (*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827)))))
-(-10 -7 (-15 -2851 ((-52) (-817))) (-15 -2861 ((-1262) (-817) (-52))) (-15 -2870 ((-1262) (-1113) (-1113))))
-((-2238 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)) 12) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 13)))
-(((-828 |#1| |#2|) (-10 -7 (-15 -2238 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2238 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) (-1093) (-1093)) (T -828))
-((-2238 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))))
-(-10 -7 (-15 -2238 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2238 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-21)))) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2807 (((-563) $) NIL (|has| |#1| (-844)))) (-2569 (($) NIL (|has| |#1| (-21)) CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 15)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3951 (((-3 $ "failed") $) 40 (|has| |#1| (-844)))) (-2327 (((-3 (-407 (-563)) "failed") $) 49 (|has| |#1| (-545)))) (-2317 (((-112) $) 43 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 46 (|has| |#1| (-545)))) (-3414 (((-112) $) NIL (|has| |#1| (-844)))) (-3401 (((-112) $) NIL (|has| |#1| (-844)))) (-3426 (((-112) $) NIL (|has| |#1| (-844)))) (-3088 (($ $ $) NIL (|has| |#1| (-844)))) (-1776 (($ $ $) NIL (|has| |#1| (-844)))) (-3854 (((-1151) $) NIL)) (-2191 (($) 13)) (-2984 (((-112) $) 12)) (-1693 (((-1113) $) NIL)) (-2994 (((-112) $) 11)) (-1692 (((-858) $) 18) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-4034 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-3914 (((-767)) 34 (|has| |#1| (-844)))) (-1462 (($ $) NIL (|has| |#1| (-844)))) (-2239 (($) 22 (|has| |#1| (-21)) CONST)) (-2253 (($) 31 (|has| |#1| (-844)) CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) 20)) (-1766 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1743 (((-112) $ $) 42 (|has| |#1| (-844)))) (-1825 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1813 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 37 (|has| |#1| (-844))) (($ (-563) $) 25 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21)))))
-(((-829 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2191 ($)) (-15 -2994 ((-112) $)) (-15 -2984 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -829))
-((-2191 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2327 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))))
-(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2191 ($)) (-15 -2994 ((-112) $)) (-15 -2984 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|)))
-((-1692 (((-858) $) 11)))
-(((-830 |#1| |#2|) (-10 -8 (-15 -1692 ((-858) |#1|))) (-831 |#2|) (-1093)) (T -830))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3352 ((|#1| $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2935 (((-55) $) 13)) (-1718 (((-112) $ $) 6)))
-(((-831 |#1|) (-140) (-1093)) (T -831))
-((-3352 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55)))))
-(-13 (-1093) (-10 -8 (-15 -3352 (|t#1| $)) (-15 -2935 ((-55) $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-114) $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2888 ((|#1| (-114) |#1|) NIL)) (-3401 (((-112) $) NIL)) (-2879 (($ |#1| (-361 (-114))) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2897 (($ $ (-1 |#1| |#1|)) NIL)) (-2906 (($ $ (-1 |#1| |#1|)) NIL)) (-2308 ((|#1| $ |#1|) NIL)) (-2916 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-2926 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-832 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2926 ($ $)) (-15 -2926 ($ $ $)) (-15 -2916 (|#1| |#1|))) |%noBranch|) (-15 -2906 ($ $ (-1 |#1| |#1|))) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2888 (|#1| (-114) |#1|)) (-15 -2879 ($ |#1| (-361 (-114)))))) (-1045)) (T -832))
-((-2926 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2926 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2916 (*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) (-2888 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2926 ($ $)) (-15 -2926 ($ $ $)) (-15 -2916 (|#1| |#1|))) |%noBranch|) (-15 -2906 ($ $ (-1 |#1| |#1|))) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2888 (|#1| (-114) |#1|)) (-15 -2879 ($ |#1| (-361 (-114))))))
-((-2945 (((-214 (-502)) (-1151)) 9)))
-(((-833) (-10 -7 (-15 -2945 ((-214 (-502)) (-1151))))) (T -833))
-((-2945 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
-(-10 -7 (-15 -2945 ((-214 (-502)) (-1151))))
-((-1677 (((-112) $ $) NIL)) (-2922 (((-1111) $) 10)) (-3352 (((-506) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1706 (($ (-506) (-1111)) 8)) (-1692 (((-858) $) 26)) (-2935 (((-55) $) 19)) (-1718 (((-112) $ $) 12)))
-(((-834) (-13 (-831 (-506)) (-10 -8 (-15 -2922 ((-1111) $)) (-15 -1706 ($ (-506) (-1111)))))) (T -834))
-((-2922 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834)))) (-1706 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834)))))
-(-13 (-831 (-506)) (-10 -8 (-15 -2922 ((-1111) $)) (-15 -1706 ($ (-506) (-1111)))))
-((-1677 (((-112) $ $) 7)) (-2955 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 14) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 13)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 16) (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 15)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
+((-2919 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))))
+(-13 (-733 |t#1|) (-964 |t#1|) (-10 -8 (-15 -2919 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-690 |#1|) . T) ((-733 |#1|) . T) ((-964 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1207) . T))
+((-2898 (((-1262) (-1113) (-1113)) 47)) (-2897 (((-1262) (-818) (-51)) 44)) (-2896 (((-51) (-818)) 16)))
+(((-827) (-10 -7 (-15 -2896 ((-51) (-818))) (-15 -2897 ((-1262) (-818) (-51))) (-15 -2898 ((-1262) (-1113) (-1113))))) (T -827))
+((-2898 (*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-51)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-51)) (-5 *1 (-827)))))
+(-10 -7 (-15 -2896 ((-51) (-818))) (-15 -2897 ((-1262) (-818) (-51))) (-15 -2898 ((-1262) (-1113) (-1113))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL (|has| |#1| (-21)))) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4038 (((-546) $) NIL (|has| |#1| (-844)))) (-4139 (($) NIL (|has| |#1| (-21)) CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 15)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 9)) (-3873 (((-3 $ "failed") $) 40 (|has| |#1| (-844)))) (-3414 (((-3 (-407 (-546)) "failed") $) 49 (|has| |#1| (-545)))) (-3413 (((-112) $) 43 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 46 (|has| |#1| (-545)))) (-3594 (((-112) $) NIL (|has| |#1| (-844)))) (-2552 (((-112) $) NIL (|has| |#1| (-844)))) (-3595 (((-112) $) NIL (|has| |#1| (-844)))) (-2919 (($ $ $) NIL (|has| |#1| (-844)))) (-3249 (($ $ $) NIL (|has| |#1| (-844)))) (-3650 (((-1151) $) NIL)) (-2899 (($) 13)) (-2912 (((-112) $) 12)) (-3651 (((-1113) $) NIL)) (-2913 (((-112) $) 11)) (-4361 (((-859) $) 18) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) 8) (($ (-546)) NIL (-3943 (|has| |#1| (-844)) (|has| |#1| (-1034 (-546)))))) (-3518 (((-767)) 34 (|has| |#1| (-844)))) (-3794 (($ $) NIL (|has| |#1| (-844)))) (-3047 (($) 22 (|has| |#1| (-21)) CONST)) (-3053 (($) 31 (|has| |#1| (-844)) CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3444 (((-112) $ $) 20)) (-3073 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3074 (((-112) $ $) 42 (|has| |#1| (-844)))) (-4252 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4254 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-915)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 37 (|has| |#1| (-844))) (($ (-546) $) 25 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-915) $) NIL (|has| |#1| (-21)))))
+(((-828 |#1|) (-13 (-1094) (-412 |#1|) (-10 -8 (-15 -2899 ($)) (-15 -2913 ((-112) $)) (-15 -2912 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|))) (-1094)) (T -828))
+((-2899 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1094)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1094)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1094)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-828 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3414 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-828 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
+(-13 (-1094) (-412 |#1|) (-10 -8 (-15 -2899 ($)) (-15 -2913 ((-112) $)) (-15 -2912 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|)))
+((-4373 (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)) 12) (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|)) 13)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -4373 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4373 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) (-1094) (-1094)) (T -829))
+((-4373 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-828 *6)) (-5 *1 (-829 *5 *6)))))
+(-10 -7 (-15 -4373 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4373 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3564 ((|#1| $) NIL) (((-113) $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2901 ((|#1| (-113) |#1|) NIL)) (-2552 (((-112) $) NIL)) (-2900 (($ |#1| (-361 (-113))) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-2902 (($ $ (-1 |#1| |#1|)) NIL)) (-2903 (($ $ (-1 |#1| |#1|)) NIL)) (-4214 ((|#1| $ |#1|) NIL)) (-2904 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-2905 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ (-113) (-546)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-830 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-113)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2904 (|#1| |#1|))) |%noBranch|) (-15 -2903 ($ $ (-1 |#1| |#1|))) (-15 -2902 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-546))) (-15 ** ($ $ (-546))) (-15 -2901 (|#1| (-113) |#1|)) (-15 -2900 ($ |#1| (-361 (-113)))))) (-1045)) (T -830))
+((-2905 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2905 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2904 (*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-830 *3)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-830 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-546)) (-5 *1 (-830 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-830 *3)) (-4 *3 (-1045)))) (-2901 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-830 *2)) (-4 *2 (-1045)))) (-2900 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-113))) (-5 *1 (-830 *2)) (-4 *2 (-1045)))))
+(-13 (-1045) (-1034 |#1|) (-1034 (-113)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2904 (|#1| |#1|))) |%noBranch|) (-15 -2903 ($ $ (-1 |#1| |#1|))) (-15 -2902 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-546))) (-15 ** ($ $ (-546))) (-15 -2901 (|#1| (-113) |#1|)) (-15 -2900 ($ |#1| (-361 (-113))))))
+((-4361 (((-859) $) 11)))
+(((-831 |#1| |#2|) (-10 -8 (-15 -4361 ((-859) |#1|))) (-832 |#2|) (-1094)) (T -831))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3956 ((|#1| $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2906 (((-55) $) 13)) (-3444 (((-112) $ $) 6)))
+(((-832 |#1|) (-140) (-1094)) (T -832))
+((-3956 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
+(-13 (-1094) (-10 -8 (-15 -3956 (|t#1| $)) (-15 -2906 ((-55) $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2907 (((-214 (-502)) (-1151)) 9)))
+(((-833) (-10 -7 (-15 -2907 ((-214 (-502)) (-1151))))) (T -833))
+((-2907 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
+(-10 -7 (-15 -2907 ((-214 (-502)) (-1151))))
+((-2953 (((-112) $ $) NIL)) (-3727 (((-1108) $) 10)) (-3956 (((-506) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3936 (($ (-506) (-1108)) 8)) (-4361 (((-859) $) 26)) (-2906 (((-55) $) 19)) (-3444 (((-112) $ $) 12)))
+(((-834) (-13 (-832 (-506)) (-10 -8 (-15 -3727 ((-1108) $)) (-15 -3936 ($ (-506) (-1108)))))) (T -834))
+((-3727 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-834)))) (-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1108)) (-5 *1 (-834)))))
+(-13 (-832 (-506)) (-10 -8 (-15 -3727 ((-1108) $)) (-15 -3936 ($ (-506) (-1108)))))
+((-2953 (((-112) $ $) 7)) (-2908 (((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 14) (((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 13)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 16) (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 15)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
(((-835) (-140)) (T -835))
-((-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)))))) (-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)))))) (-2955 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) (-5 *2 (-1031)))) (-2955 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-1031)))))
-(-13 (-1093) (-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -2955 ((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -2955 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2911 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 147) (((-1031) (-316 (-379)) (-640 (-379))) 145) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379)))) 144) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379)))) 143) (((-1031) (-837)) 117) (((-1031) (-837) (-1057)) 116)) (-2929 (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057)) 82) (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837)) 84)) (-2965 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 148) (((-1031) (-837)) 133)))
-(((-836) (-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -2911 ((-1031) (-837) (-1057))) (-15 -2911 ((-1031) (-837))) (-15 -2965 ((-1031) (-837))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -2911 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -2965 ((-1031) (-640 (-316 (-379))) (-640 (-379)))))) (T -836))
-((-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836)))))
-(-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -2911 ((-1031) (-837) (-1057))) (-15 -2911 ((-1031) (-837))) (-15 -2965 ((-1031) (-837))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -2911 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -2911 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -2965 ((-1031) (-640 (-316 (-379))) (-640 (-379)))))
-((-1677 (((-112) $ $) NIL)) (-2057 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) $) 21)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 14) (($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))))) 18)) (-1718 (((-112) $ $) NIL)))
-(((-837) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -1692 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -1692 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))))) (-15 -2057 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) $))))) (T -837))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-837)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))) (-5 *1 (-837)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))))) (-5 *1 (-837)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225))))))) (-5 *1 (-837)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -1692 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) (-15 -1692 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))))) (-15 -2057 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))) $))))
-((-2238 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)) 13) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 14)))
-(((-838 |#1| |#2|) (-10 -7 (-15 -2238 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2238 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) (-1093) (-1093)) (T -838))
-((-2238 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))))
-(-10 -7 (-15 -2238 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2238 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-21)))) (-2975 (((-1113) $) 24)) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2807 (((-563) $) NIL (|has| |#1| (-844)))) (-2569 (($) NIL (|has| |#1| (-21)) CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 16)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3951 (((-3 $ "failed") $) 47 (|has| |#1| (-844)))) (-2327 (((-3 (-407 (-563)) "failed") $) 54 (|has| |#1| (-545)))) (-2317 (((-112) $) 49 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 52 (|has| |#1| (-545)))) (-3414 (((-112) $) NIL (|has| |#1| (-844)))) (-3626 (($) 13)) (-3401 (((-112) $) NIL (|has| |#1| (-844)))) (-3426 (((-112) $) NIL (|has| |#1| (-844)))) (-3638 (($) 14)) (-3088 (($ $ $) NIL (|has| |#1| (-844)))) (-1776 (($ $ $) NIL (|has| |#1| (-844)))) (-3854 (((-1151) $) NIL)) (-2984 (((-112) $) 12)) (-1693 (((-1113) $) NIL)) (-2994 (((-112) $) 11)) (-1692 (((-858) $) 22) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-4034 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-3914 (((-767)) 41 (|has| |#1| (-844)))) (-1462 (($ $) NIL (|has| |#1| (-844)))) (-2239 (($) 29 (|has| |#1| (-21)) CONST)) (-2253 (($) 38 (|has| |#1| (-844)) CONST)) (-1779 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) 27)) (-1766 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1743 (((-112) $ $) 48 (|has| |#1| (-844)))) (-1825 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1813 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 44 (|has| |#1| (-844))) (($ (-563) $) 32 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21)))))
-(((-839 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -3626 ($)) (-15 -3638 ($)) (-15 -2994 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2975 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -839))
-((-3626 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-3638 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2327 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))))
-(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -3626 ($)) (-15 -3638 ($)) (-15 -2994 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2975 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|)))
-((-1677 (((-112) $ $) 7)) (-3750 (((-767)) 22)) (-1690 (($) 25)) (-3088 (($ $ $) 13) (($) 21 T CONST)) (-1776 (($ $ $) 14) (($) 20 T CONST)) (-3990 (((-917) $) 24)) (-3854 (((-1151) $) 9)) (-2552 (($ (-917)) 23)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)))
+((-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)))))) (-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)))))) (-2908 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) (-5 *2 (-1031)))) (-2908 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (-5 *2 (-1031)))))
+(-13 (-1094) (-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -2908 ((-1031) (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -2908 ((-1031) (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2909 (((-1031) (-637 (-314 (-378))) (-637 (-378))) 147) (((-1031) (-314 (-378)) (-637 (-378))) 145) (((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-838 (-378)))) 144) (((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-314 (-378))) (-637 (-838 (-378)))) 143) (((-1031) (-837)) 117) (((-1031) (-837) (-1057)) 116)) (-3057 (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837) (-1057)) 82) (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837)) 84)) (-2910 (((-1031) (-637 (-314 (-378))) (-637 (-378))) 148) (((-1031) (-837)) 133)))
+(((-836) (-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837) (-1057))) (-15 -2909 ((-1031) (-837) (-1057))) (-15 -2909 ((-1031) (-837))) (-15 -2910 ((-1031) (-837))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-314 (-378))) (-637 (-838 (-378))))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-838 (-378))))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)))) (-15 -2909 ((-1031) (-637 (-314 (-378))) (-637 (-378)))) (-15 -2910 ((-1031) (-637 (-314 (-378))) (-637 (-378)))))) (T -836))
+((-2910 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-314 (-378)))) (-5 *4 (-637 (-378))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-314 (-378)))) (-5 *4 (-637 (-378))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-378))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-378))) (-5 *5 (-637 (-838 (-378)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-637 (-378))) (-5 *5 (-637 (-838 (-378)))) (-5 *6 (-637 (-314 (-378)))) (-5 *3 (-314 (-378))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-836)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-836)))))
+(-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-837) (-1057))) (-15 -2909 ((-1031) (-837) (-1057))) (-15 -2909 ((-1031) (-837))) (-15 -2910 ((-1031) (-837))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-314 (-378))) (-637 (-838 (-378))))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)) (-637 (-838 (-378))) (-637 (-838 (-378))))) (-15 -2909 ((-1031) (-314 (-378)) (-637 (-378)))) (-15 -2909 ((-1031) (-637 (-314 (-378))) (-637 (-378)))) (-15 -2910 ((-1031) (-637 (-314 (-378))) (-637 (-378)))))
+((-2953 (((-112) $ $) NIL)) (-3564 (((-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) $) 21)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20) (($ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) 14) (($ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))))) 18)) (-3444 (((-112) $ $) NIL)))
+(((-837) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))))) (-15 -4361 ($ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -4361 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))) (-15 -3564 ((-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) $))))) (T -837))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (-5 *1 (-837)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))) (-5 *1 (-837)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))))) (-5 *1 (-837)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225))))))) (-5 *1 (-837)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225))))))) (-15 -4361 ($ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) (-15 -4361 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))) (-15 -3564 ((-3 (|:| |noa| (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225))) (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225)))) (|:| |ub| (-637 (-838 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL (|has| |#1| (-21)))) (-2911 (((-1113) $) 24)) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4038 (((-546) $) NIL (|has| |#1| (-844)))) (-4139 (($) NIL (|has| |#1| (-21)) CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 16)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 9)) (-3873 (((-3 $ "failed") $) 47 (|has| |#1| (-844)))) (-3414 (((-3 (-407 (-546)) "failed") $) 54 (|has| |#1| (-545)))) (-3413 (((-112) $) 49 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 52 (|has| |#1| (-545)))) (-3594 (((-112) $) NIL (|has| |#1| (-844)))) (-2915 (($) 13)) (-2552 (((-112) $) NIL (|has| |#1| (-844)))) (-3595 (((-112) $) NIL (|has| |#1| (-844)))) (-2914 (($) 14)) (-2919 (($ $ $) NIL (|has| |#1| (-844)))) (-3249 (($ $ $) NIL (|has| |#1| (-844)))) (-3650 (((-1151) $) NIL)) (-2912 (((-112) $) 12)) (-3651 (((-1113) $) NIL)) (-2913 (((-112) $) 11)) (-4361 (((-859) $) 22) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) 8) (($ (-546)) NIL (-3943 (|has| |#1| (-844)) (|has| |#1| (-1034 (-546)))))) (-3518 (((-767)) 41 (|has| |#1| (-844)))) (-3794 (($ $) NIL (|has| |#1| (-844)))) (-3047 (($) 29 (|has| |#1| (-21)) CONST)) (-3053 (($) 38 (|has| |#1| (-844)) CONST)) (-2951 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3444 (((-112) $ $) 27)) (-3073 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3074 (((-112) $ $) 48 (|has| |#1| (-844)))) (-4252 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4254 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-915)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 44 (|has| |#1| (-844))) (($ (-546) $) 32 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-915) $) NIL (|has| |#1| (-21)))))
+(((-838 |#1|) (-13 (-1094) (-412 |#1|) (-10 -8 (-15 -2915 ($)) (-15 -2914 ($)) (-15 -2913 ((-112) $)) (-15 -2912 ((-112) $)) (-15 -2911 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|))) (-1094)) (T -838))
+((-2915 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1094)))) (-2914 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1094)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-838 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3414 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-838 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
+(-13 (-1094) (-412 |#1|) (-10 -8 (-15 -2915 ($)) (-15 -2914 ($)) (-15 -2913 ((-112) $)) (-15 -2912 ((-112) $)) (-15 -2911 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|)))
+((-4373 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)) 13) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 14)))
+(((-839 |#1| |#2|) (-10 -7 (-15 -4373 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4373 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)))) (-1094) (-1094)) (T -839))
+((-4373 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-838 *6)) (-5 *1 (-839 *5 *6)))))
+(-10 -7 (-15 -4373 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4373 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|))))
+((-2953 (((-112) $ $) 7)) (-3528 (((-767)) 22)) (-3384 (($) 25)) (-2919 (($ $ $) 13) (($) 21 T CONST)) (-3249 (($ $ $) 14) (($) 20 T CONST)) (-2167 (((-915) $) 24)) (-3650 (((-1151) $) 9)) (-2542 (($ (-915)) 23)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)))
(((-840) (-140)) (T -840))
-((-3088 (*1 *1) (-4 *1 (-840))) (-1776 (*1 *1) (-4 *1 (-840))))
-(-13 (-846) (-368) (-10 -8 (-15 -3088 ($) -2668) (-15 -1776 ($) -2668)))
-(((-102) . T) ((-610 (-858)) . T) ((-368) . T) ((-846) . T) ((-1093) . T))
-((-3016 (((-112) (-1257 |#2|) (-1257 |#2|)) 17)) (-3026 (((-112) (-1257 |#2|) (-1257 |#2|)) 18)) (-3005 (((-112) (-1257 |#2|) (-1257 |#2|)) 14)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -3005 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -3016 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -3026 ((-112) (-1257 |#2|) (-1257 |#2|)))) (-767) (-788)) (T -841))
-((-3026 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-3016 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-3005 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(-10 -7 (-15 -3005 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -3016 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -3026 ((-112) (-1257 |#2|) (-1257 |#2|))))
-((-1677 (((-112) $ $) 7)) (-2569 (($) 23 T CONST)) (-3951 (((-3 $ "failed") $) 26)) (-3401 (((-112) $) 24)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2253 (($) 22 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (** (($ $ (-917)) 21) (($ $ (-767)) 25)) (* (($ $ $) 20)))
+((-2919 (*1 *1) (-4 *1 (-840))) (-3249 (*1 *1) (-4 *1 (-840))))
+(-13 (-846) (-368) (-10 -8 (-15 -2919 ($) -4367) (-15 -3249 ($) -4367)))
+(((-102) . T) ((-610 (-859)) . T) ((-368) . T) ((-846) . T) ((-1094) . T))
+((-2917 (((-112) (-1256 |#2|) (-1256 |#2|)) 17)) (-2918 (((-112) (-1256 |#2|) (-1256 |#2|)) 18)) (-2916 (((-112) (-1256 |#2|) (-1256 |#2|)) 14)))
+(((-841 |#1| |#2|) (-10 -7 (-15 -2916 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2917 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2918 ((-112) (-1256 |#2|) (-1256 |#2|)))) (-767) (-788)) (T -841))
+((-2918 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-2917 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
+(-10 -7 (-15 -2916 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2917 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2918 ((-112) (-1256 |#2|) (-1256 |#2|))))
+((-2953 (((-112) $ $) 7)) (-4139 (($) 23 T CONST)) (-3873 (((-3 $ "failed") $) 26)) (-2552 (((-112) $) 24)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3053 (($) 22 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (** (($ $ (-915)) 21) (($ $ (-767)) 25)) (* (($ $ $) 20)))
(((-842) (-140)) (T -842))
NIL
(-13 (-853) (-722))
-(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1105) . T) ((-1093) . T))
-((-2807 (((-563) $) 17)) (-3414 (((-112) $) 10)) (-3426 (((-112) $) 11)) (-1462 (($ $) 19)))
-(((-843 |#1|) (-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -2807 ((-563) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3414 ((-112) |#1|))) (-844)) (T -843))
+(((-102) . T) ((-610 (-859)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1105) . T) ((-1094) . T))
+((-4038 (((-546) $) 17)) (-3594 (((-112) $) 10)) (-3595 (((-112) $) 11)) (-3794 (($ $) 19)))
+(((-843 |#1|) (-10 -8 (-15 -3794 (|#1| |#1|)) (-15 -4038 ((-546) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -3594 ((-112) |#1|))) (-844)) (T -843))
NIL
-(-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -2807 ((-563) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3414 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 24)) (-3905 (((-3 $ "failed") $ $) 26)) (-2807 (((-563) $) 34)) (-2569 (($) 23 T CONST)) (-3951 (((-3 $ "failed") $) 39)) (-3414 (((-112) $) 36)) (-3401 (((-112) $) 41)) (-3426 (((-112) $) 35)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 43)) (-3914 (((-767)) 44)) (-1462 (($ $) 33)) (-2239 (($) 22 T CONST)) (-2253 (($) 42 T CONST)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (-1825 (($ $ $) 28) (($ $) 27)) (-1813 (($ $ $) 20)) (** (($ $ (-767)) 40) (($ $ (-917)) 37)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -3794 (|#1| |#1|)) (-15 -4038 ((-546) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -3594 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 24)) (-1397 (((-3 $ "failed") $ $) 26)) (-4038 (((-546) $) 34)) (-4139 (($) 23 T CONST)) (-3873 (((-3 $ "failed") $) 39)) (-3594 (((-112) $) 36)) (-2552 (((-112) $) 41)) (-3595 (((-112) $) 35)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 43)) (-3518 (((-767)) 44)) (-3794 (($ $) 33)) (-3047 (($) 22 T CONST)) (-3053 (($) 42 T CONST)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (-4252 (($ $ $) 28) (($ $) 27)) (-4254 (($ $ $) 20)) (** (($ $ (-767)) 40) (($ $ (-915)) 37)) (* (($ (-915) $) 21) (($ (-767) $) 25) (($ (-546) $) 29) (($ $ $) 38)))
(((-844) (-140)) (T -844))
-((-3414 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563)))) (-1462 (*1 *1 *1) (-4 *1 (-844))))
-(-13 (-787) (-1045) (-722) (-10 -8 (-15 -3414 ((-112) $)) (-15 -3426 ((-112) $)) (-15 -2807 ((-563) $)) (-15 -1462 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-3088 (($ $ $) 10)) (-1776 (($ $ $) 9)) (-1779 (((-112) $ $) 12)) (-1754 (((-112) $ $) 11)) (-1766 (((-112) $ $) 13)))
-(((-845 |#1|) (-10 -8 (-15 -3088 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1766 ((-112) |#1| |#1|)) (-15 -1779 ((-112) |#1| |#1|)) (-15 -1754 ((-112) |#1| |#1|))) (-846)) (T -845))
-NIL
-(-10 -8 (-15 -3088 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1766 ((-112) |#1| |#1|)) (-15 -1779 ((-112) |#1| |#1|)) (-15 -1754 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)))
+((-3594 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-546)))) (-3794 (*1 *1 *1) (-4 *1 (-844))))
+(-13 (-787) (-1045) (-722) (-10 -8 (-15 -3594 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -4038 ((-546) $)) (-15 -3794 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2919 (($ $ $) 10)) (-3249 (($ $ $) 9)) (-2951 (((-112) $ $) 12)) (-2952 (((-112) $ $) 11)) (-3073 (((-112) $ $) 13)))
+(((-845 |#1|) (-10 -8 (-15 -2919 (|#1| |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -3073 ((-112) |#1| |#1|)) (-15 -2951 ((-112) |#1| |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-846)) (T -845))
+NIL
+(-10 -8 (-15 -2919 (|#1| |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)) (-15 -3073 ((-112) |#1| |#1|)) (-15 -2951 ((-112) |#1| |#1|)) (-15 -2952 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)))
(((-846) (-140)) (T -846))
-((-1743 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1779 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1776 (*1 *1 *1 *1) (-4 *1 (-846))) (-3088 (*1 *1 *1 *1) (-4 *1 (-846))))
-(-13 (-1093) (-10 -8 (-15 -1743 ((-112) $ $)) (-15 -1754 ((-112) $ $)) (-15 -1779 ((-112) $ $)) (-15 -1766 ((-112) $ $)) (-15 -1776 ($ $ $)) (-15 -3088 ($ $ $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-3076 (($ $ $) 45)) (-3086 (($ $ $) 44)) (-3098 (($ $ $) 42)) (-3058 (($ $ $) 51)) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 46)) (-3067 (((-3 $ "failed") $ $) 49)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4151 (($ $) 35)) (-3142 (($ $ $) 39)) (-3151 (($ $ $) 38)) (-3036 (($ $ $) 47)) (-3121 (($ $ $) 53)) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 41)) (-3132 (((-3 $ "failed") $ $) 48)) (-3012 (((-3 $ "failed") $ |#2|) 28)) (-3885 ((|#2| $) 32)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#2|) 12)) (-3955 (((-640 |#2|) $) 18)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-847 |#1| |#2|) (-10 -8 (-15 -3036 (|#1| |#1| |#1|)) (-15 -3047 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3058 (|#1| |#1| |#1|)) (-15 -3067 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3076 (|#1| |#1| |#1|)) (-15 -3086 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1|)) (-15 -3110 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3121 (|#1| |#1| |#1|)) (-15 -3132 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3955 ((-640 |#2|) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1692 ((-858) |#1|))) (-848 |#2|) (-1045)) (T -847))
-NIL
-(-10 -8 (-15 -3036 (|#1| |#1| |#1|)) (-15 -3047 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3058 (|#1| |#1| |#1|)) (-15 -3067 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3076 (|#1| |#1| |#1|)) (-15 -3086 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1|)) (-15 -3110 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4334 |#1|)) |#1| |#1|)) (-15 -3121 (|#1| |#1| |#1|)) (-15 -3132 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3012 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3955 ((-640 |#2|) |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3076 (($ $ $) 44 (|has| |#1| (-363)))) (-3086 (($ $ $) 45 (|has| |#1| (-363)))) (-3098 (($ $ $) 47 (|has| |#1| (-363)))) (-3058 (($ $ $) 42 (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 41 (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 46 (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2057 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-4151 (($ $) 54 (|has| |#1| (-452)))) (-3401 (((-112) $) 31)) (-2587 (($ |#1| (-767)) 61)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 56 (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 57 (|has| |#1| (-555)))) (-3908 (((-767) $) 65)) (-3142 (($ $ $) 51 (|has| |#1| (-363)))) (-3151 (($ $ $) 52 (|has| |#1| (-363)))) (-3036 (($ $ $) 40 (|has| |#1| (-363)))) (-3121 (($ $ $) 49 (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 48 (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 53 (|has| |#1| (-363)))) (-2725 ((|#1| $) 64)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-3871 (((-767) $) 66)) (-3885 ((|#1| $) 55 (|has| |#1| (-452)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-3955 (((-640 |#1|) $) 60)) (-3244 ((|#1| $ (-767)) 62)) (-3914 (((-767)) 28)) (-3727 ((|#1| $ |#1| |#1|) 59)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+((-3074 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3073 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3249 (*1 *1 *1 *1) (-4 *1 (-846))) (-2919 (*1 *1 *1 *1) (-4 *1 (-846))))
+(-13 (-1094) (-10 -8 (-15 -3074 ((-112) $ $)) (-15 -2952 ((-112) $ $)) (-15 -2951 ((-112) $ $)) (-15 -3073 ((-112) $ $)) (-15 -3249 ($ $ $)) (-15 -2919 ($ $ $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2924 (($ $ $) 45)) (-2925 (($ $ $) 44)) (-2926 (($ $ $) 42)) (-2922 (($ $ $) 51)) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 46)) (-2923 (((-3 $ "failed") $ $) 49)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3909 (($ $) 35)) (-2930 (($ $ $) 39)) (-2931 (($ $ $) 38)) (-2920 (($ $ $) 47)) (-2928 (($ $ $) 53)) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 41)) (-2929 (((-3 $ "failed") $ $) 48)) (-3872 (((-3 $ "failed") $ |#2|) 28)) (-3206 ((|#2| $) 32)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL) (($ |#2|) 12)) (-4232 (((-637 |#2|) $) 18)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-847 |#1| |#2|) (-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2926 (|#1| |#1| |#1|)) (-15 -2927 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4232 ((-637 |#2|) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4361 ((-859) |#1|))) (-848 |#2|) (-1045)) (T -847))
+NIL
+(-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2926 (|#1| |#1| |#1|)) (-15 -2927 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2551 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3872 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4232 ((-637 |#2|) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-2924 (($ $ $) 44 (|has| |#1| (-363)))) (-2925 (($ $ $) 45 (|has| |#1| (-363)))) (-2926 (($ $ $) 47 (|has| |#1| (-363)))) (-2922 (($ $ $) 42 (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 41 (|has| |#1| (-363)))) (-2923 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 46 (|has| |#1| (-363)))) (-3565 (((-3 (-546) #1="failed") $) 74 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 71 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 68)) (-3564 (((-546) $) 73 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 70 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 69)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-3909 (($ $) 54 (|has| |#1| (-452)))) (-2552 (((-112) $) 31)) (-3283 (($ |#1| (-767)) 61)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 56 (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-556)))) (-3209 (((-767) $) 65)) (-2930 (($ $ $) 51 (|has| |#1| (-363)))) (-2931 (($ $ $) 52 (|has| |#1| (-363)))) (-2920 (($ $ $) 40 (|has| |#1| (-363)))) (-2928 (($ $ $) 49 (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 48 (|has| |#1| (-363)))) (-2929 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 53 (|has| |#1| (-363)))) (-3582 ((|#1| $) 64)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-4363 (((-767) $) 66)) (-3206 ((|#1| $) 55 (|has| |#1| (-452)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 72 (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) 67)) (-4232 (((-637 |#1|) $) 60)) (-4092 ((|#1| $ (-767)) 62)) (-3518 (((-767)) 28)) (-2933 ((|#1| $ |#1| |#1|) 59)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
(((-848 |#1|) (-140) (-1045)) (T -848))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2587 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3)))) (-3727 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3012 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-3177 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3142 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3132 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3121 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3110 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1))) (-4 *1 (-848 *3)))) (-3098 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3186 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3)))) (-3086 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3076 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3067 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3058 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3047 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1))) (-4 *1 (-848 *3)))) (-3036 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -3871 ((-767) $)) (-15 -3908 ((-767) $)) (-15 -2725 (|t#1| $)) (-15 -2750 ($ $)) (-15 -3244 (|t#1| $ (-767))) (-15 -2587 ($ |t#1| (-767))) (-15 -3955 ((-640 |t#1|) $)) (-15 -3727 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3012 ((-3 $ "failed") $ |t#1|)) (-15 -3160 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3167 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3885 (|t#1| $)) (-15 -4151 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -3177 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3151 ($ $ $)) (-15 -3142 ($ $ $)) (-15 -3132 ((-3 $ "failed") $ $)) (-15 -3121 ($ $ $)) (-15 -3110 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $)) (-15 -3098 ($ $ $)) (-15 -3186 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -3086 ($ $ $)) (-15 -3076 ($ $ $)) (-15 -3067 ((-3 $ "failed") $ $)) (-15 -3058 ($ $ $)) (-15 -3047 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $)) (-15 -3036 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-4180 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3186 (((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-363)))) (-3167 (((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-555)))) (-3177 (((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-363)))) (-3727 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
-(((-849 |#1| |#2|) (-10 -7 (-15 -4180 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3727 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -3160 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3167 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3177 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3186 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849))
-((-3186 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3177 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3167 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3160 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3727 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-4180 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5)))))
-(-10 -7 (-15 -4180 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3727 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -3160 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3167 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3177 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3186 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3076 (($ $ $) NIL (|has| |#1| (-363)))) (-3086 (($ $ $) NIL (|has| |#1| (-363)))) (-3098 (($ $ $) NIL (|has| |#1| (-363)))) (-3058 (($ $ $) NIL (|has| |#1| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3067 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 32 (|has| |#1| (-363)))) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-1307 (((-858) $ (-858)) NIL)) (-3401 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) NIL)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 28 (|has| |#1| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 26 (|has| |#1| (-555)))) (-3908 (((-767) $) NIL)) (-3142 (($ $ $) NIL (|has| |#1| (-363)))) (-3151 (($ $ $) NIL (|has| |#1| (-363)))) (-3036 (($ $ $) NIL (|has| |#1| (-363)))) (-3121 (($ $ $) NIL (|has| |#1| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3132 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 30 (|has| |#1| (-363)))) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3871 (((-767) $) NIL)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-3727 ((|#1| $ |#1| |#1|) 15)) (-2239 (($) NIL T CONST)) (-2253 (($) 20 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) 19) (($ $ (-767)) 22)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-858))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850))
-((-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-848 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-858)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3076 (($ $ $) NIL (|has| |#2| (-363)))) (-3086 (($ $ $) NIL (|has| |#2| (-363)))) (-3098 (($ $ $) NIL (|has| |#2| (-363)))) (-3058 (($ $ $) NIL (|has| |#2| (-363)))) (-3047 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#2| (-363)))) (-3067 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3186 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-363)))) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-452)))) (-3401 (((-112) $) NIL)) (-2587 (($ |#2| (-767)) 16)) (-3167 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-555)))) (-3160 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-555)))) (-3908 (((-767) $) NIL)) (-3142 (($ $ $) NIL (|has| |#2| (-363)))) (-3151 (($ $ $) NIL (|has| |#2| (-363)))) (-3036 (($ $ $) NIL (|has| |#2| (-363)))) (-3121 (($ $ $) NIL (|has| |#2| (-363)))) (-3110 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#2| (-363)))) (-3132 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3177 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-363)))) (-2725 ((|#2| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-3871 (((-767) $) NIL)) (-3885 ((|#2| $) NIL (|has| |#2| (-452)))) (-1692 (((-858) $) 23) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (($ (-1253 |#1|)) 18)) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-767)) NIL)) (-3914 (((-767)) NIL)) (-3727 ((|#2| $ |#2| |#2|) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) 13 T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-637 *3)))) (-2933 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3872 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-2934 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3)))) (-2935 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-3909 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2929 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2928 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1))) (-4 *1 (-848 *3)))) (-2926 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2937 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3)))) (-2925 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2922 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2921 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1))) (-4 *1 (-848 *3)))) (-2920 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(-13 (-1045) (-111 |t#1| |t#1|) (-412 |t#1|) (-10 -8 (-15 -4363 ((-767) $)) (-15 -3209 ((-767) $)) (-15 -3582 (|t#1| $)) (-15 -4374 ($ $)) (-15 -4092 (|t#1| $ (-767))) (-15 -3283 ($ |t#1| (-767))) (-15 -4232 ((-637 |t#1|) $)) (-15 -2933 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3872 ((-3 $ "failed") $ |t#1|)) (-15 -2934 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2935 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3206 (|t#1| $)) (-15 -3909 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2936 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2931 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -2929 ((-3 $ "failed") $ $)) (-15 -2928 ($ $ $)) (-15 -2927 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $)) (-15 -2926 ($ $ $)) (-15 -2937 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -2925 ($ $ $)) (-15 -2924 ($ $ $)) (-15 -2923 ((-3 $ "failed") $ $)) (-15 -2922 ($ $ $)) (-15 -2921 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $)) (-15 -2920 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #1=(-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-412 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #1#) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2932 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2937 (((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-363)))) (-2935 (((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-556)))) (-2936 (((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-363)))) (-2933 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
+(((-849 |#1| |#2|) (-10 -7 (-15 -2932 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2933 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2934 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2935 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2936 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2937 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849))
+((-2937 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2936 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2935 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2934 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2933 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-2932 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5)))))
+(-10 -7 (-15 -2932 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2933 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2934 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2935 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2936 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2937 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-2924 (($ $ $) NIL (|has| |#1| (-363)))) (-2925 (($ $ $) NIL (|has| |#1| (-363)))) (-2926 (($ $ $) NIL (|has| |#1| (-363)))) (-2922 (($ $ $) NIL (|has| |#1| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2923 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 32 (|has| |#1| (-363)))) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-3939 (((-859) $ (-859)) NIL)) (-2552 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) NIL)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 28 (|has| |#1| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 26 (|has| |#1| (-556)))) (-3209 (((-767) $) NIL)) (-2930 (($ $ $) NIL (|has| |#1| (-363)))) (-2931 (($ $ $) NIL (|has| |#1| (-363)))) (-2920 (($ $ $) NIL (|has| |#1| (-363)))) (-2928 (($ $ $) NIL (|has| |#1| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-2929 (((-3 $ #1#) $ $) NIL (|has| |#1| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 30 (|has| |#1| (-363)))) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-556)))) (-4363 (((-767) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-1034 (-407 (-546))))) (($ |#1|) NIL)) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-2933 ((|#1| $ |#1| |#1|) 15)) (-3047 (($) NIL T CONST)) (-3053 (($) 20 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) 19) (($ $ (-767)) 22)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-859))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850))
+((-3939 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-848 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-859)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-2924 (($ $ $) NIL (|has| |#2| (-363)))) (-2925 (($ $ $) NIL (|has| |#2| (-363)))) (-2926 (($ $ $) NIL (|has| |#2| (-363)))) (-2922 (($ $ $) NIL (|has| |#2| (-363)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#2| (-363)))) (-2923 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-363)))) (-2937 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-363)))) (-3565 (((-3 (-546) #2="failed") $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 |#2| #2#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) ((|#2| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#2| (-452)))) (-2552 (((-112) $) NIL)) (-3283 (($ |#2| (-767)) 16)) (-2935 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-556)))) (-2934 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-556)))) (-3209 (((-767) $) NIL)) (-2930 (($ $ $) NIL (|has| |#2| (-363)))) (-2931 (($ $ $) NIL (|has| |#2| (-363)))) (-2920 (($ $ $) NIL (|has| |#2| (-363)))) (-2928 (($ $ $) NIL (|has| |#2| (-363)))) (-2927 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#2| (-363)))) (-2929 (((-3 $ #1#) $ $) NIL (|has| |#2| (-363)))) (-2936 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-363)))) (-3582 ((|#2| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-556)))) (-4363 (((-767) $) NIL)) (-3206 ((|#2| $) NIL (|has| |#2| (-452)))) (-4361 (((-859) $) 23) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#2| (-1034 (-407 (-546))))) (($ |#2|) NIL) (($ (-1253 |#1|)) 18)) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-767)) NIL)) (-3518 (((-767)) NIL)) (-2933 ((|#2| $ |#2| |#2|) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) 13 T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
(((-851 |#1| |#2| |#3| |#4|) (-13 (-848 |#2|) (-613 (-1253 |#1|))) (-1169) (-1045) (-99 |#2|) (-1 |#2| |#2|)) (T -851))
NIL
(-13 (-848 |#2|) (-613 (-1253 |#1|)))
-((-3214 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-563)))))) (-3204 ((|#1| (-767) (-767) |#1|) 27) ((|#1| (-767) |#1|) 20)) (-3193 ((|#1| (-767) |#1|) 31)) (-1858 ((|#1| (-767) |#1|) 29)) (-1847 ((|#1| (-767) |#1|) 28)))
-(((-852 |#1|) (-10 -7 (-15 -1847 (|#1| (-767) |#1|)) (-15 -1858 (|#1| (-767) |#1|)) (-15 -3193 (|#1| (-767) |#1|)) (-15 -3204 (|#1| (-767) |#1|)) (-15 -3204 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3214 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852))
-((-3214 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-3204 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3193 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-1858 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-1847 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -1847 (|#1| (-767) |#1|)) (-15 -1858 (|#1| (-767) |#1|)) (-15 -3193 (|#1| (-767) |#1|)) (-15 -3204 (|#1| (-767) |#1|)) (-15 -3204 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3214 (|#1| (-767) |#1|)) |%noBranch|))
-((-1677 (((-112) $ $) 7)) (-3088 (($ $ $) 13)) (-1776 (($ $ $) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1779 (((-112) $ $) 16)) (-1754 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 15)) (-1743 (((-112) $ $) 18)) (** (($ $ (-917)) 21)) (* (($ $ $) 20)))
+((-2940 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-546)))))) (-2939 ((|#1| (-767) (-767) |#1|) 27) ((|#1| (-767) |#1|) 20)) (-2938 ((|#1| (-767) |#1|) 31)) (-3189 ((|#1| (-767) |#1|) 29)) (-3188 ((|#1| (-767) |#1|) 28)))
+(((-852 |#1|) (-10 -7 (-15 -3188 (|#1| (-767) |#1|)) (-15 -3189 (|#1| (-767) |#1|)) (-15 -2938 (|#1| (-767) |#1|)) (-15 -2939 (|#1| (-767) |#1|)) (-15 -2939 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -2940 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852))
+((-2940 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-172)))) (-2939 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2939 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2938 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -3188 (|#1| (-767) |#1|)) (-15 -3189 (|#1| (-767) |#1|)) (-15 -2938 (|#1| (-767) |#1|)) (-15 -2939 (|#1| (-767) |#1|)) (-15 -2939 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -2940 (|#1| (-767) |#1|)) |%noBranch|))
+((-2953 (((-112) $ $) 7)) (-2919 (($ $ $) 13)) (-3249 (($ $ $) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-2951 (((-112) $ $) 16)) (-2952 (((-112) $ $) 17)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 15)) (-3074 (((-112) $ $) 18)) (** (($ $ (-915)) 21)) (* (($ $ $) 20)))
(((-853) (-140)) (T -853))
NIL
(-13 (-846) (-1105))
-(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-2618 (((-563) $) 12)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 18) (($ (-563)) 11)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 8)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 9)))
-(((-854) (-13 (-846) (-10 -8 (-15 -1692 ($ (-563))) (-15 -2618 ((-563) $))))) (T -854))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854)))))
-(-13 (-846) (-10 -8 (-15 -1692 ($ (-563))) (-15 -2618 ((-563) $))))
-((-3233 (((-686 (-1215)) $ (-1215)) 15)) (-3243 (((-686 (-548)) $ (-548)) 12)) (-3225 (((-767) $ (-128)) 24)))
-(((-855 |#1|) (-10 -8 (-15 -3225 ((-767) |#1| (-128))) (-15 -3233 ((-686 (-1215)) |#1| (-1215))) (-15 -3243 ((-686 (-548)) |#1| (-548)))) (-856)) (T -855))
-NIL
-(-10 -8 (-15 -3225 ((-767) |#1| (-128))) (-15 -3233 ((-686 (-1215)) |#1| (-1215))) (-15 -3243 ((-686 (-548)) |#1| (-548))))
-((-3233 (((-686 (-1215)) $ (-1215)) 8)) (-3243 (((-686 (-548)) $ (-548)) 9)) (-3225 (((-767) $ (-128)) 7)) (-3254 (((-686 (-129)) $ (-129)) 10)) (-1895 (($ $) 6)))
-(((-856) (-140)) (T -856))
-((-3254 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129)))) (-3243 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548)))) (-3233 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))) (-3225 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(-13 (-173) (-10 -8 (-15 -3254 ((-686 (-129)) $ (-129))) (-15 -3243 ((-686 (-548)) $ (-548))) (-15 -3233 ((-686 (-1215)) $ (-1215))) (-15 -3225 ((-767) $ (-128)))))
+(((-102) . T) ((-610 (-859)) . T) ((-846) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3813 (((-546) $) 12)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 18) (($ (-546)) 11)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 8)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 9)))
+(((-854) (-13 (-846) (-10 -8 (-15 -4361 ($ (-546))) (-15 -3813 ((-546) $))))) (T -854))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-854)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-854)))))
+(-13 (-846) (-10 -8 (-15 -4361 ($ (-546))) (-15 -3813 ((-546) $))))
+((-2941 (((-1262) (-637 (-51))) 24)) (-3866 (((-1262) (-1151) (-859)) 14) (((-1262) (-859)) 9) (((-1262) (-1151)) 11)))
+(((-855) (-10 -7 (-15 -3866 ((-1262) (-1151))) (-15 -3866 ((-1262) (-859))) (-15 -3866 ((-1262) (-1151) (-859))) (-15 -2941 ((-1262) (-637 (-51)))))) (T -855))
+((-2941 (*1 *2 *3) (-12 (-5 *3 (-637 (-51))) (-5 *2 (-1262)) (-5 *1 (-855)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-859)) (-5 *2 (-1262)) (-5 *1 (-855)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-855)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-855)))))
+(-10 -7 (-15 -3866 ((-1262) (-1151))) (-15 -3866 ((-1262) (-859))) (-15 -3866 ((-1262) (-1151) (-859))) (-15 -2941 ((-1262) (-637 (-51)))))
+((-2943 (((-686 (-1215)) $ (-1215)) 15)) (-2944 (((-686 (-549)) $ (-549)) 12)) (-2942 (((-767) $ (-129)) 24)))
+(((-856 |#1|) (-10 -8 (-15 -2942 ((-767) |#1| (-129))) (-15 -2943 ((-686 (-1215)) |#1| (-1215))) (-15 -2944 ((-686 (-549)) |#1| (-549)))) (-857)) (T -856))
+NIL
+(-10 -8 (-15 -2942 ((-767) |#1| (-129))) (-15 -2943 ((-686 (-1215)) |#1| (-1215))) (-15 -2944 ((-686 (-549)) |#1| (-549))))
+((-2943 (((-686 (-1215)) $ (-1215)) 8)) (-2944 (((-686 (-549)) $ (-549)) 9)) (-2942 (((-767) $ (-129)) 7)) (-2945 (((-686 (-128)) $ (-128)) 10)) (-1851 (($ $) 6)))
+(((-857) (-140)) (T -857))
+((-2945 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-128))) (-5 *3 (-128)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-549))) (-5 *3 (-549)))) (-2943 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))) (-2942 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-129)) (-5 *2 (-767)))))
+(-13 (-173) (-10 -8 (-15 -2945 ((-686 (-128)) $ (-128))) (-15 -2944 ((-686 (-549)) $ (-549))) (-15 -2943 ((-686 (-1215)) $ (-1215))) (-15 -2942 ((-767) $ (-129)))))
(((-173) . T))
-((-3233 (((-686 (-1215)) $ (-1215)) NIL)) (-3243 (((-686 (-548)) $ (-548)) NIL)) (-3225 (((-767) $ (-128)) NIL)) (-3254 (((-686 (-129)) $ (-129)) 21)) (-3180 (($ (-388)) 12) (($ (-1151)) 14)) (-3170 (((-112) $) 18)) (-1692 (((-858) $) 25)) (-1895 (($ $) 22)))
-(((-857) (-13 (-856) (-610 (-858)) (-10 -8 (-15 -3180 ($ (-388))) (-15 -3180 ($ (-1151))) (-15 -3170 ((-112) $))))) (T -857))
-((-3180 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))))
-(-13 (-856) (-610 (-858)) (-10 -8 (-15 -3180 ($ (-388))) (-15 -3180 ($ (-1151))) (-15 -3170 ((-112) $))))
-((-1677 (((-112) $ $) NIL) (($ $ $) 77)) (-3387 (($ $ $) 114)) (-3835 (((-563) $) 31) (((-563)) 36)) (-3459 (($ (-563)) 45)) (-3423 (($ $ $) 46) (($ (-640 $)) 76)) (-3295 (($ $ (-640 $)) 74)) (-3480 (((-563) $) 34)) (-3129 (($ $ $) 65)) (-2235 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-3490 (((-563) $) 33)) (-3331 (($ $ $) 64)) (-3737 (($ $) 104)) (-3362 (($ $ $) 118)) (-3197 (($ (-640 $)) 53)) (-3432 (($ $ (-640 $)) 71)) (-3448 (($ (-563) (-563)) 47)) (-3558 (($ $) 115) (($ $ $) 116)) (-1700 (($ $ (-563)) 41) (($ $) 44)) (-3094 (($ $ $) 89)) (-3341 (($ $ $) 121)) (-3284 (($ $) 105)) (-3054 (($ $ $) 90)) (-3248 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3307 (((-1262) $) 10)) (-3275 (($ $) 108) (($ $ (-767)) 111)) (-3310 (($ $ $) 67)) (-3321 (($ $ $) 66)) (-3250 (($ $ (-640 $)) 100)) (-3400 (($ $ $) 103)) (-3218 (($ (-640 $)) 51)) (-3228 (($ $) 62) (($ (-640 $)) 63)) (-3258 (($ $ $) 112)) (-3265 (($ $) 106)) (-3375 (($ $ $) 117)) (-1307 (($ (-563)) 21) (($ (-1169)) 23) (($ (-1151)) 30) (($ (-225)) 25)) (-2200 (($ $ $) 93)) (-2174 (($ $) 94)) (-3512 (((-1262) (-1151)) 15)) (-4003 (($ (-1151)) 14)) (-4040 (($ (-640 (-640 $))) 50)) (-1685 (($ $ (-563)) 40) (($ $) 43)) (-3854 (((-1151) $) NIL)) (-1890 (($ $ $) 120)) (-3982 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2636 (((-112) $) 98)) (-3411 (($ $ (-640 $)) 101) (($ $ $ $) 102)) (-3470 (($ (-563)) 37)) (-4238 (((-563) $) 32) (((-563)) 35)) (-3437 (($ $ $) 38) (($ (-640 $)) 75)) (-1693 (((-1113) $) NIL)) (-3012 (($ $ $) 91)) (-3445 (($) 13)) (-2308 (($ $ (-640 $)) 99)) (-3501 (((-1151) (-1151)) 8)) (-4121 (($ $) 107) (($ $ (-767)) 110)) (-3032 (($ $ $) 88)) (-4203 (($ $ (-767)) 126)) (-3207 (($ (-640 $)) 52)) (-1692 (((-858) $) 19)) (-3412 (($ $ (-563)) 39) (($ $) 42)) (-3237 (($ $) 60) (($ (-640 $)) 61)) (-2533 (($ $) 58) (($ (-640 $)) 59)) (-3083 (($ $) 113)) (-3189 (($ (-640 $)) 57)) (-1864 (($ $ $) 97)) (-3351 (($ $ $) 119)) (-2188 (($ $ $) 92)) (-2177 (($ $ $) 95) (($ $) 96)) (-1779 (($ $ $) 81)) (-1754 (($ $ $) 79)) (-1718 (((-112) $ $) 16) (($ $ $) 17)) (-1766 (($ $ $) 80)) (-1743 (($ $ $) 78)) (-1836 (($ $ $) 86)) (-1825 (($ $ $) 83) (($ $) 84)) (-1813 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-858) (-13 (-1093) (-10 -8 (-15 -3307 ((-1262) $)) (-15 -4003 ($ (-1151))) (-15 -3512 ((-1262) (-1151))) (-15 -1307 ($ (-563))) (-15 -1307 ($ (-1169))) (-15 -1307 ($ (-1151))) (-15 -1307 ($ (-225))) (-15 -3445 ($)) (-15 -3501 ((-1151) (-1151))) (-15 -3835 ((-563) $)) (-15 -4238 ((-563) $)) (-15 -3835 ((-563))) (-15 -4238 ((-563))) (-15 -3490 ((-563) $)) (-15 -3480 ((-563) $)) (-15 -3470 ($ (-563))) (-15 -3459 ($ (-563))) (-15 -3448 ($ (-563) (-563))) (-15 -1685 ($ $ (-563))) (-15 -1700 ($ $ (-563))) (-15 -3412 ($ $ (-563))) (-15 -1685 ($ $)) (-15 -1700 ($ $)) (-15 -3412 ($ $)) (-15 -3437 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -3437 ($ (-640 $))) (-15 -3423 ($ (-640 $))) (-15 -3250 ($ $ (-640 $))) (-15 -3411 ($ $ (-640 $))) (-15 -3411 ($ $ $ $)) (-15 -3400 ($ $ $)) (-15 -2636 ((-112) $)) (-15 -2308 ($ $ (-640 $))) (-15 -3737 ($ $)) (-15 -1890 ($ $ $)) (-15 -3083 ($ $)) (-15 -4040 ($ (-640 (-640 $)))) (-15 -3387 ($ $ $)) (-15 -3558 ($ $)) (-15 -3558 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -3362 ($ $ $)) (-15 -3351 ($ $ $)) (-15 -3341 ($ $ $)) (-15 -4203 ($ $ (-767))) (-15 -1864 ($ $ $)) (-15 -3331 ($ $ $)) (-15 -3129 ($ $ $)) (-15 -3321 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -3432 ($ $ (-640 $))) (-15 -3295 ($ $ (-640 $))) (-15 -3284 ($ $)) (-15 -4121 ($ $)) (-15 -4121 ($ $ (-767))) (-15 -3275 ($ $)) (-15 -3275 ($ $ (-767))) (-15 -3265 ($ $)) (-15 -3258 ($ $ $)) (-15 -2235 ($ $)) (-15 -2235 ($ $ $)) (-15 -2235 ($ $ $ $)) (-15 -3248 ($ $)) (-15 -3248 ($ $ $)) (-15 -3248 ($ $ $ $)) (-15 -3982 ($ $)) (-15 -3982 ($ $ $)) (-15 -3982 ($ $ $ $)) (-15 -2533 ($ $)) (-15 -2533 ($ (-640 $))) (-15 -3237 ($ $)) (-15 -3237 ($ (-640 $))) (-15 -3228 ($ $)) (-15 -3228 ($ (-640 $))) (-15 -3218 ($ (-640 $))) (-15 -3207 ($ (-640 $))) (-15 -3197 ($ (-640 $))) (-15 -3189 ($ (-640 $))) (-15 -1718 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1766 ($ $ $)) (-15 -1779 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -1825 ($ $)) (-15 * ($ $ $)) (-15 -1836 ($ $ $)) (-15 ** ($ $ $)) (-15 -3032 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2188 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -2174 ($ $)) (-15 -2177 ($ $ $)) (-15 -2177 ($ $))))) (T -858))
-((-3307 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858)))) (-4003 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) (-3445 (*1 *1) (-5 *1 (-858))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3835 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4238 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3448 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1685 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3412 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1685 (*1 *1 *1) (-5 *1 (-858))) (-1700 (*1 *1 *1) (-5 *1 (-858))) (-3412 (*1 *1 *1) (-5 *1 (-858))) (-3437 (*1 *1 *1 *1) (-5 *1 (-858))) (-3423 (*1 *1 *1 *1) (-5 *1 (-858))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3411 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3411 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3400 (*1 *1 *1 *1) (-5 *1 (-858))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3737 (*1 *1 *1) (-5 *1 (-858))) (-1890 (*1 *1 *1 *1) (-5 *1 (-858))) (-3083 (*1 *1 *1) (-5 *1 (-858))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858)))) (-3387 (*1 *1 *1 *1) (-5 *1 (-858))) (-3558 (*1 *1 *1) (-5 *1 (-858))) (-3558 (*1 *1 *1 *1) (-5 *1 (-858))) (-3375 (*1 *1 *1 *1) (-5 *1 (-858))) (-3362 (*1 *1 *1 *1) (-5 *1 (-858))) (-3351 (*1 *1 *1 *1) (-5 *1 (-858))) (-3341 (*1 *1 *1 *1) (-5 *1 (-858))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-1864 (*1 *1 *1 *1) (-5 *1 (-858))) (-3331 (*1 *1 *1 *1) (-5 *1 (-858))) (-3129 (*1 *1 *1 *1) (-5 *1 (-858))) (-3321 (*1 *1 *1 *1) (-5 *1 (-858))) (-3310 (*1 *1 *1 *1) (-5 *1 (-858))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3295 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3284 (*1 *1 *1) (-5 *1 (-858))) (-4121 (*1 *1 *1) (-5 *1 (-858))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-3275 (*1 *1 *1) (-5 *1 (-858))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-3265 (*1 *1 *1) (-5 *1 (-858))) (-3258 (*1 *1 *1 *1) (-5 *1 (-858))) (-2235 (*1 *1 *1) (-5 *1 (-858))) (-2235 (*1 *1 *1 *1) (-5 *1 (-858))) (-2235 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3248 (*1 *1 *1) (-5 *1 (-858))) (-3248 (*1 *1 *1 *1) (-5 *1 (-858))) (-3248 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3982 (*1 *1 *1) (-5 *1 (-858))) (-3982 (*1 *1 *1 *1) (-5 *1 (-858))) (-3982 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2533 (*1 *1 *1) (-5 *1 (-858))) (-2533 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3237 (*1 *1 *1) (-5 *1 (-858))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3228 (*1 *1 *1) (-5 *1 (-858))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1718 (*1 *1 *1 *1) (-5 *1 (-858))) (-1677 (*1 *1 *1 *1) (-5 *1 (-858))) (-1743 (*1 *1 *1 *1) (-5 *1 (-858))) (-1754 (*1 *1 *1 *1) (-5 *1 (-858))) (-1766 (*1 *1 *1 *1) (-5 *1 (-858))) (-1779 (*1 *1 *1 *1) (-5 *1 (-858))) (-1813 (*1 *1 *1 *1) (-5 *1 (-858))) (-1825 (*1 *1 *1 *1) (-5 *1 (-858))) (-1825 (*1 *1 *1) (-5 *1 (-858))) (* (*1 *1 *1 *1) (-5 *1 (-858))) (-1836 (*1 *1 *1 *1) (-5 *1 (-858))) (** (*1 *1 *1 *1) (-5 *1 (-858))) (-3032 (*1 *1 *1 *1) (-5 *1 (-858))) (-3094 (*1 *1 *1 *1) (-5 *1 (-858))) (-3054 (*1 *1 *1 *1) (-5 *1 (-858))) (-3012 (*1 *1 *1 *1) (-5 *1 (-858))) (-2188 (*1 *1 *1 *1) (-5 *1 (-858))) (-2200 (*1 *1 *1 *1) (-5 *1 (-858))) (-2174 (*1 *1 *1) (-5 *1 (-858))) (-2177 (*1 *1 *1 *1) (-5 *1 (-858))) (-2177 (*1 *1 *1) (-5 *1 (-858))))
-(-13 (-1093) (-10 -8 (-15 -3307 ((-1262) $)) (-15 -4003 ($ (-1151))) (-15 -3512 ((-1262) (-1151))) (-15 -1307 ($ (-563))) (-15 -1307 ($ (-1169))) (-15 -1307 ($ (-1151))) (-15 -1307 ($ (-225))) (-15 -3445 ($)) (-15 -3501 ((-1151) (-1151))) (-15 -3835 ((-563) $)) (-15 -4238 ((-563) $)) (-15 -3835 ((-563))) (-15 -4238 ((-563))) (-15 -3490 ((-563) $)) (-15 -3480 ((-563) $)) (-15 -3470 ($ (-563))) (-15 -3459 ($ (-563))) (-15 -3448 ($ (-563) (-563))) (-15 -1685 ($ $ (-563))) (-15 -1700 ($ $ (-563))) (-15 -3412 ($ $ (-563))) (-15 -1685 ($ $)) (-15 -1700 ($ $)) (-15 -3412 ($ $)) (-15 -3437 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -3437 ($ (-640 $))) (-15 -3423 ($ (-640 $))) (-15 -3250 ($ $ (-640 $))) (-15 -3411 ($ $ (-640 $))) (-15 -3411 ($ $ $ $)) (-15 -3400 ($ $ $)) (-15 -2636 ((-112) $)) (-15 -2308 ($ $ (-640 $))) (-15 -3737 ($ $)) (-15 -1890 ($ $ $)) (-15 -3083 ($ $)) (-15 -4040 ($ (-640 (-640 $)))) (-15 -3387 ($ $ $)) (-15 -3558 ($ $)) (-15 -3558 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -3362 ($ $ $)) (-15 -3351 ($ $ $)) (-15 -3341 ($ $ $)) (-15 -4203 ($ $ (-767))) (-15 -1864 ($ $ $)) (-15 -3331 ($ $ $)) (-15 -3129 ($ $ $)) (-15 -3321 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -3432 ($ $ (-640 $))) (-15 -3295 ($ $ (-640 $))) (-15 -3284 ($ $)) (-15 -4121 ($ $)) (-15 -4121 ($ $ (-767))) (-15 -3275 ($ $)) (-15 -3275 ($ $ (-767))) (-15 -3265 ($ $)) (-15 -3258 ($ $ $)) (-15 -2235 ($ $)) (-15 -2235 ($ $ $)) (-15 -2235 ($ $ $ $)) (-15 -3248 ($ $)) (-15 -3248 ($ $ $)) (-15 -3248 ($ $ $ $)) (-15 -3982 ($ $)) (-15 -3982 ($ $ $)) (-15 -3982 ($ $ $ $)) (-15 -2533 ($ $)) (-15 -2533 ($ (-640 $))) (-15 -3237 ($ $)) (-15 -3237 ($ (-640 $))) (-15 -3228 ($ $)) (-15 -3228 ($ (-640 $))) (-15 -3218 ($ (-640 $))) (-15 -3207 ($ (-640 $))) (-15 -3197 ($ (-640 $))) (-15 -3189 ($ (-640 $))) (-15 -1718 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1766 ($ $ $)) (-15 -1779 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -1825 ($ $)) (-15 * ($ $ $)) (-15 -1836 ($ $ $)) (-15 ** ($ $ $)) (-15 -3032 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2188 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -2174 ($ $)) (-15 -2177 ($ $ $)) (-15 -2177 ($ $))))
-((-1921 (((-1262) (-640 (-52))) 24)) (-1554 (((-1262) (-1151) (-858)) 14) (((-1262) (-858)) 9) (((-1262) (-1151)) 11)))
-(((-859) (-10 -7 (-15 -1554 ((-1262) (-1151))) (-15 -1554 ((-1262) (-858))) (-15 -1554 ((-1262) (-1151) (-858))) (-15 -1921 ((-1262) (-640 (-52)))))) (T -859))
-((-1921 (*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859)))))
-(-10 -7 (-15 -1554 ((-1262) (-1151))) (-15 -1554 ((-1262) (-858))) (-15 -1554 ((-1262) (-1151) (-858))) (-15 -1921 ((-1262) (-640 (-52)))))
-((-1677 (((-112) $ $) NIL)) (-2517 (((-3 $ "failed") (-1169)) 33)) (-3750 (((-767)) 31)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) 29)) (-3854 (((-1151) $) 39)) (-2552 (($ (-917)) 28)) (-1693 (((-1113) $) NIL)) (-2219 (((-1169) $) 13) (((-536) $) 19) (((-888 (-379)) $) 26) (((-888 (-563)) $) 22)) (-1692 (((-858) $) 16)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 36)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 35)))
-(((-860 |#1|) (-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -2517 ((-3 $ "failed") (-1169))))) (-640 (-1169))) (T -860))
-((-2517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2)))))
-(-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -2517 ((-3 $ "failed") (-1169)))))
-((-1677 (((-112) $ $) NIL)) (-3352 (((-506) $) 9)) (-3523 (((-640 (-439)) $) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21)) (-1718 (((-112) $ $) 16)))
-(((-861) (-13 (-1093) (-10 -8 (-15 -3352 ((-506) $)) (-15 -3523 ((-640 (-439)) $))))) (T -861))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861)))))
-(-13 (-1093) (-10 -8 (-15 -3352 ((-506) $)) (-15 -3523 ((-640 (-439)) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-948 |#1|)) NIL) (((-948 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3914 (((-767)) NIL)) (-3654 (((-1262) (-767)) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1836 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3654 ((-1262) (-767))))) (-1045) (-640 (-1169)) (-640 (-767)) (-767)) (T -862))
-((-1836 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767))) (-14 *5 (-767)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3)) (-14 *7 *3))))
-(-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1836 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3654 ((-1262) (-767)))))
-((-3534 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 31)) (-3546 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 24)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -3546 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -3534 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1248 |#1|) (-1233 |#1|)) (T -863))
-((-3534 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))) (-3546 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))))
-(-10 -7 (-15 -3546 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -3534 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|)))
-((-3546 (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)) 28) (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) 26)))
-(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3546 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -3546 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)))) (-363) (-1169) |#1|) (T -864))
-((-3546 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-3546 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7)))))
-(-10 -7 (-15 -3546 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -3546 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2185 (($ $ (-563)) 63)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-3558 (($ (-1165 (-563)) (-563)) 62)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3572 (($ $) 65)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-1775 (((-767) $) 70)) (-3401 (((-112) $) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3593 (((-563)) 67)) (-3583 (((-563) $) 66)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1751 (($ $ (-563)) 69)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3605 (((-1149 (-563)) $) 71)) (-3369 (($ $) 68)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-1402 (((-563) $ (-563)) 64)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-865 |#1|) (-140) (-563)) (T -865))
-((-3605 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563))))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) (-1751 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3369 (*1 *1 *1) (-4 *1 (-865 *2))) (-3593 (*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3572 (*1 *1 *1) (-4 *1 (-865 *2))) (-1402 (*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-2185 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3558 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4)))))
-(-13 (-307) (-147) (-10 -8 (-15 -3605 ((-1149 (-563)) $)) (-15 -1775 ((-767) $)) (-15 -1751 ($ $ (-563))) (-15 -3369 ($ $)) (-15 -3593 ((-563))) (-15 -3583 ((-563) $)) (-15 -3572 ($ $)) (-15 -1402 ((-563) $ (-563))) (-15 -2185 ($ $ (-563))) (-15 -3558 ($ (-1165 (-563)) (-563)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $ (-563)) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3558 (($ (-1165 (-563)) (-563)) NIL)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3572 (($ $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-1775 (((-767) $) NIL)) (-3401 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3593 (((-563)) NIL)) (-3583 (((-563) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1751 (($ $ (-563)) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3605 (((-1149 (-563)) $) NIL)) (-3369 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-1402 (((-563) $ (-563)) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL)))
-(((-866 |#1|) (-865 |#1|) (-563)) (T -866))
-NIL
-(-865 |#1|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-866 |#1|) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-866 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-2057 (((-866 |#1|) $) NIL) (((-1169) $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-2600 (($ $) NIL) (($ (-563) $) NIL)) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-866 |#1|))) (|:| |vec| (-1257 (-866 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-866 |#1|)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-866 |#1|) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-866 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-866 |#1|) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-866 |#1|) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| (-866 |#1|) (-1144)))) (-3426 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-1776 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-2238 (($ (-1 (-866 |#1|) (-866 |#1|)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-866 |#1|) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-866 |#1|) (-307)))) (-3954 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-866 |#1|)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-866 |#1|) (-866 |#1|)) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-294 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-294 (-866 |#1|)))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-1169)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|)))) (($ $ (-1169) (-866 |#1|)) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-866 |#1|)) NIL (|has| (-866 |#1|) (-286 (-866 |#1|) (-866 |#1|))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-866 |#1|) $) NIL)) (-2219 (((-888 (-563)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-866 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-866 |#1|) (-1018))) (((-225) $) NIL (|has| (-866 |#1|) (-1018)))) (-3616 (((-174 (-407 (-563))) $) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-866 |#1|)) NIL) (($ (-1169)) NIL (|has| (-866 |#1|) (-1034 (-1169))))) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))) (|has| (-866 |#1|) (-145))))) (-3914 (((-767)) NIL)) (-3965 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-3223 (((-112) $ $) NIL)) (-1402 (((-407 (-563)) $ (-563)) NIL)) (-1462 (($ $) NIL (|has| (-866 |#1|) (-816)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1836 (($ $ $) NIL) (($ (-866 |#1|) (-866 |#1|)) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-866 |#1|) $) NIL) (($ $ (-866 |#1|)) NIL)))
-(((-867 |#1|) (-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $)))) (-563)) (T -867))
-((-1402 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563)))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563)))) (-2600 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2))))
-(-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 ((|#2| $) NIL (|has| |#2| (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| |#2| (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| |#2| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563))))) (-2057 ((|#2| $) NIL) (((-1169) $) NIL (|has| |#2| (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-563)))) (((-563) $) NIL (|has| |#2| (-1034 (-563))))) (-2600 (($ $) 31) (($ (-563) $) 32)) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) 53)) (-1690 (($) NIL (|has| |#2| (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#2| (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#2| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#2| (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 ((|#2| $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-3426 (((-112) $) NIL (|has| |#2| (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 49)) (-2522 (($) NIL (|has| |#2| (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| |#2| (-307)))) (-3954 ((|#2| $) NIL (|has| |#2| (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 |#2|) (-640 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (|has| |#2| (-514 (-1169) |#2|))) (($ $ (-1169) |#2|) NIL (|has| |#2| (-514 (-1169) |#2|)))) (-1993 (((-767) $) NIL)) (-2308 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2033 (($ $) NIL)) (-2153 ((|#2| $) NIL)) (-2219 (((-888 (-563)) $) NIL (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#2| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#2| (-611 (-536)))) (((-379) $) NIL (|has| |#2| (-1018))) (((-225) $) NIL (|has| |#2| (-1018)))) (-3616 (((-174 (-407 (-563))) $) 68)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1692 (((-858) $) 86) (($ (-563)) 19) (($ $) NIL) (($ (-407 (-563))) 24) (($ |#2|) 18) (($ (-1169)) NIL (|has| |#2| (-1034 (-1169))))) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-3965 ((|#2| $) NIL (|has| |#2| (-545)))) (-3223 (((-112) $ $) NIL)) (-1402 (((-407 (-563)) $ (-563)) 60)) (-1462 (($ $) NIL (|has| |#2| (-816)))) (-2239 (($) 14 T CONST)) (-2253 (($) 16 T CONST)) (-3213 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) 35)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1825 (($ $) 39) (($ $ $) 41)) (-1813 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 50)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 42) (($ $ $) 44) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-868 |#1| |#2|) (-13 (-988 |#2|) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $)))) (-563) (-865 |#1|)) (T -868))
-((-1402 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5)) (-5 *3 (-563)) (-4 *5 (-865 *4)))) (-3616 (*1 *2 *1) (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))) (-2600 (*1 *1 *1) (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) (-2600 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))))
-(-13 (-988 |#2|) (-10 -8 (-15 -1402 ((-407 (-563)) $ (-563))) (-15 -3616 ((-174 (-407 (-563))) $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $))))
-((-1677 (((-112) $ $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3435 ((|#2| $) 12)) (-2585 (($ |#1| |#2|) 9)) (-3854 (((-1151) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-1693 (((-1113) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#1| $) 11)) (-1706 (($ |#1| |#2|) 10)) (-1692 (((-858) $) 18 (-4034 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))) (-1718 (((-112) $ $) 22 (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))))
-(((-869 |#1| |#2|) (-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -2585 ($ |#1| |#2|)) (-15 -1706 ($ |#1| |#2|)) (-15 -3782 (|#1| $)) (-15 -3435 (|#2| $)))) (-1208) (-1208)) (T -869))
-((-2585 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-1706 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-3782 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208)))) (-3435 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208)))))
-(-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -2585 ($ |#1| |#2|)) (-15 -1706 ($ |#1| |#2|)) (-15 -3782 (|#1| $)) (-15 -3435 (|#2| $))))
-((-1677 (((-112) $ $) NIL)) (-2841 (((-563) $) 15)) (-3640 (($ (-157)) 11)) (-3628 (($ (-157)) 12)) (-3854 (((-1151) $) NIL)) (-2830 (((-157) $) 13)) (-1693 (((-1113) $) NIL)) (-3308 (($ (-157)) 9)) (-3651 (($ (-157)) 8)) (-1692 (((-858) $) 23) (($ (-157)) 16)) (-3996 (($ (-157)) 10)) (-1718 (((-112) $ $) NIL)))
-(((-870) (-13 (-1093) (-10 -8 (-15 -3651 ($ (-157))) (-15 -3308 ($ (-157))) (-15 -3996 ($ (-157))) (-15 -3640 ($ (-157))) (-15 -3628 ($ (-157))) (-15 -2830 ((-157) $)) (-15 -2841 ((-563) $)) (-15 -1692 ($ (-157)))))) (T -870))
-((-3651 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(-13 (-1093) (-10 -8 (-15 -3651 ($ (-157))) (-15 -3308 ($ (-157))) (-15 -3996 ($ (-157))) (-15 -3640 ($ (-157))) (-15 -3628 ($ (-157))) (-15 -2830 ((-157) $)) (-15 -2841 ((-563) $)) (-15 -1692 ($ (-157)))))
-((-1692 (((-316 (-563)) (-407 (-948 (-48)))) 23) (((-316 (-563)) (-948 (-48))) 18)))
-(((-871) (-10 -7 (-15 -1692 ((-316 (-563)) (-948 (-48)))) (-15 -1692 ((-316 (-563)) (-407 (-948 (-48))))))) (T -871))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))))
-(-10 -7 (-15 -1692 ((-316 (-563)) (-948 (-48)))) (-15 -1692 ((-316 (-563)) (-407 (-948 (-48))))))
-((-2238 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 14)))
-(((-872 |#1| |#2|) (-10 -7 (-15 -2238 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1208) (-1208)) (T -872))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))))
-(-10 -7 (-15 -2238 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|))))
-((-2604 (($ |#1| |#1|) 8)) (-3686 ((|#1| $ (-767)) 10)))
-(((-873 |#1|) (-10 -8 (-15 -2604 ($ |#1| |#1|)) (-15 -3686 (|#1| $ (-767)))) (-1208)) (T -873))
-((-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208)))) (-2604 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208)))))
-(-10 -8 (-15 -2604 ($ |#1| |#1|)) (-15 -3686 (|#1| $ (-767))))
-((-2238 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14)))
-(((-874 |#1| |#2|) (-10 -7 (-15 -2238 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1208) (-1208)) (T -874))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
-(-10 -7 (-15 -2238 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
-((-2604 (($ |#1| |#1| |#1|) 8)) (-3686 ((|#1| $ (-767)) 10)))
-(((-875 |#1|) (-10 -8 (-15 -2604 ($ |#1| |#1| |#1|)) (-15 -3686 (|#1| $ (-767)))) (-1208)) (T -875))
-((-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208)))) (-2604 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208)))))
-(-10 -8 (-15 -2604 ($ |#1| |#1| |#1|)) (-15 -3686 (|#1| $ (-767))))
-((-3662 (((-640 (-1174)) (-1151)) 9)))
-(((-876) (-10 -7 (-15 -3662 ((-640 (-1174)) (-1151))))) (T -876))
-((-3662 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876)))))
-(-10 -7 (-15 -3662 ((-640 (-1174)) (-1151))))
-((-2238 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 14)))
-(((-877 |#1| |#2|) (-10 -7 (-15 -2238 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1208) (-1208)) (T -877))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))))
-(-10 -7 (-15 -2238 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
-((-3673 (($ |#1| |#1| |#1|) 8)) (-3686 ((|#1| $ (-767)) 10)))
-(((-878 |#1|) (-10 -8 (-15 -3673 ($ |#1| |#1| |#1|)) (-15 -3686 (|#1| $ (-767)))) (-1208)) (T -878))
-((-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208)))) (-3673 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208)))))
-(-10 -8 (-15 -3673 ($ |#1| |#1| |#1|)) (-15 -3686 (|#1| $ (-767))))
-((-3736 (((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563)))) 30)) (-3725 (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 26)) (-3748 (((-1149 (-640 (-563))) (-640 (-563))) 39) (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 38)) (-3757 (((-1149 (-640 (-563))) (-563)) 40)) (-3699 (((-1149 (-640 (-563))) (-563) (-563)) 22) (((-1149 (-640 (-563))) (-563)) 16) (((-1149 (-640 (-563))) (-563) (-563) (-563)) 12)) (-3712 (((-1149 (-640 (-563))) (-1149 (-640 (-563)))) 24)) (-2150 (((-640 (-563)) (-640 (-563))) 23)))
-(((-879) (-10 -7 (-15 -3699 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -3699 ((-1149 (-640 (-563))) (-563))) (-15 -3699 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -2150 ((-640 (-563)) (-640 (-563)))) (-15 -3712 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -3725 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3736 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -3748 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3748 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -3757 ((-1149 (-640 (-563))) (-563))))) (T -879))
-((-3757 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-3748 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-3736 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563))) (-5 *1 (-879)))) (-3725 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-3699 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))))
-(-10 -7 (-15 -3699 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -3699 ((-1149 (-640 (-563))) (-563))) (-15 -3699 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -2150 ((-640 (-563)) (-640 (-563)))) (-15 -3712 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -3725 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3736 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -3748 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3748 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -3757 ((-1149 (-640 (-563))) (-563))))
-((-2219 (((-888 (-379)) $) 9 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 8 (|has| |#1| (-611 (-888 (-563)))))))
-(((-880 |#1|) (-140) (-1208)) (T -880))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|)))
-(((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))))
-((-1677 (((-112) $ $) NIL)) (-1565 (($) 14)) (-3780 (($ (-885 |#1| |#2|) (-885 |#1| |#3|)) 27)) (-2594 (((-885 |#1| |#3|) $) 16)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2657 (((-112) $) 22)) (-4245 (($) 19)) (-1692 (((-858) $) 30)) (-3769 (((-885 |#1| |#2|) $) 15)) (-1718 (((-112) $ $) 25)))
-(((-881 |#1| |#2| |#3|) (-13 (-1093) (-10 -8 (-15 -2657 ((-112) $)) (-15 -4245 ($)) (-15 -1565 ($)) (-15 -3780 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -3769 ((-885 |#1| |#2|) $)) (-15 -2594 ((-885 |#1| |#3|) $)))) (-1093) (-1093) (-661 |#2|)) (T -881))
-((-2657 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-4245 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-1565 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))) (-3769 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-2594 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))))
-(-13 (-1093) (-10 -8 (-15 -2657 ((-112) $)) (-15 -4245 ($)) (-15 -1565 ($)) (-15 -3780 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -3769 ((-885 |#1| |#2|) $)) (-15 -2594 ((-885 |#1| |#3|) $))))
-((-1677 (((-112) $ $) 7)) (-1812 (((-885 |#1| $) $ (-888 |#1|) (-885 |#1| $)) 13)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
-(((-882 |#1|) (-140) (-1093)) (T -882))
-((-1812 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -1812 ((-885 |t#1| $) $ (-888 |t#1|) (-885 |t#1| $)))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2602 (((-112) (-640 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-2611 (((-885 |#1| |#2|) |#2| |#3|) 42 (-12 (-2174 (|has| |#2| (-1034 (-1169)))) (-2174 (|has| |#2| (-1045))))) (((-640 (-294 (-948 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1045)) (-2174 (|has| |#2| (-1034 (-1169)))))) (((-640 (-294 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1034 (-1169)))) (((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|) 20)))
-(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2602 ((-112) |#2| |#3|)) (-15 -2602 ((-112) (-640 |#2|) |#3|)) (-15 -2611 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -2611 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -2611 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -2611 ((-885 |#1| |#2|) |#2| |#3|))))) (-1093) (-882 |#1|) (-611 (-888 |#1|))) (T -883))
-((-2611 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-2174 (-4 *3 (-1034 (-1169)))) (-2174 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-2174 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5))))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5))))) (-2602 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))))
-(-10 -7 (-15 -2602 ((-112) |#2| |#3|)) (-15 -2602 ((-112) (-640 |#2|) |#3|)) (-15 -2611 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -2611 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -2611 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -2611 ((-885 |#1| |#2|) |#2| |#3|)))))
-((-2238 (((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)) 22)))
-(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2238 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) (-1093) (-1093) (-1093)) (T -884))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7)) (-5 *1 (-884 *5 *6 *7)))))
-(-10 -7 (-15 -2238 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|))))
-((-1677 (((-112) $ $) NIL)) (-2582 (($ $ $) 39)) (-2855 (((-3 (-112) "failed") $ (-888 |#1|)) 36)) (-1565 (($) 12)) (-3854 (((-1151) $) NIL)) (-2629 (($ (-888 |#1|) |#2| $) 20)) (-1693 (((-1113) $) NIL)) (-2648 (((-3 |#2| "failed") (-888 |#1|) $) 50)) (-2657 (((-112) $) 15)) (-4245 (($) 13)) (-2545 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|))) $) 25)) (-1706 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|)))) 23)) (-1692 (((-858) $) 44)) (-2622 (($ (-888 |#1|) |#2| $ |#2|) 48)) (-2639 (($ (-888 |#1|) |#2| $) 47)) (-1718 (((-112) $ $) 41)))
-(((-885 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2657 ((-112) $)) (-15 -4245 ($)) (-15 -1565 ($)) (-15 -2582 ($ $ $)) (-15 -2648 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -2639 ($ (-888 |#1|) |#2| $)) (-15 -2629 ($ (-888 |#1|) |#2| $)) (-15 -2622 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2545 ((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|))) $)) (-15 -1706 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|))))) (-15 -2855 ((-3 (-112) "failed") $ (-888 |#1|))))) (-1093) (-1093)) (T -885))
-((-2657 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-4245 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1565 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2582 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2648 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093)) (-5 *1 (-885 *4 *2)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-2629 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-2622 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 *4)))) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 *4)))) (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)))) (-2855 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -2657 ((-112) $)) (-15 -4245 ($)) (-15 -1565 ($)) (-15 -2582 ($ $ $)) (-15 -2648 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -2639 ($ (-888 |#1|) |#2| $)) (-15 -2629 ($ (-888 |#1|) |#2| $)) (-15 -2622 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2545 ((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|))) $)) (-15 -1706 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 |#2|))))) (-15 -2855 ((-3 (-112) "failed") $ (-888 |#1|)))))
-((-1958 (((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|))) 32) (((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|))) 43) (((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|)) 35)) (-2855 (((-112) (-640 |#2|) (-888 |#1|)) 40) (((-112) |#2| (-888 |#1|)) 36)) (-3301 (((-1 (-112) |#2|) (-888 |#1|)) 16)) (-2873 (((-640 |#2|) (-888 |#1|)) 24)) (-2864 (((-888 |#1|) (-888 |#1|) |#2|) 20)))
-(((-886 |#1| |#2|) (-10 -7 (-15 -1958 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -1958 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -1958 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -3301 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -2855 ((-112) |#2| (-888 |#1|))) (-15 -2855 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -2864 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -2873 ((-640 |#2|) (-888 |#1|)))) (-1093) (-1208)) (T -886))
-((-2873 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-2864 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1208)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-886 *5 *3)) (-4 *3 (-1208)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-1958 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169))) (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-886 *5 *6)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))))
-(-10 -7 (-15 -1958 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -1958 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -1958 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -3301 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -2855 ((-112) |#2| (-888 |#1|))) (-15 -2855 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -2864 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -2873 ((-640 |#2|) (-888 |#1|))))
-((-2238 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 19)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -2238 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1093) (-1093)) (T -887))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -2238 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-1677 (((-112) $ $) NIL)) (-2734 (($ $ (-640 (-52))) 62)) (-2605 (((-640 $) $) 114)) (-2702 (((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $) 23)) (-2748 (((-112) $) 29)) (-2712 (($ $ (-640 (-1169)) (-52)) 24)) (-2746 (($ $ (-640 (-52))) 61)) (-2130 (((-3 |#1| "failed") $) 59) (((-3 (-1169) "failed") $) 136)) (-2057 ((|#1| $) 56) (((-1169) $) NIL)) (-2684 (($ $) 104)) (-2810 (((-112) $) 44)) (-2757 (((-640 (-52)) $) 42)) (-2722 (($ (-1169) (-112) (-112) (-112)) 63)) (-2665 (((-3 (-640 $) "failed") (-640 $)) 70)) (-2779 (((-112) $) 47)) (-2789 (((-112) $) 46)) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) 33)) (-4188 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3959 (((-3 (-2 (|:| |val| $) (|:| -3311 $)) "failed") $) 81)) (-3930 (((-3 (-640 $) "failed") $) 32)) (-2845 (((-3 (-640 $) "failed") $ (-114)) 103) (((-3 (-2 (|:| -2516 (-114)) (|:| |arg| (-640 $))) "failed") $) 91)) (-2834 (((-3 (-640 $) "failed") $) 34)) (-3949 (((-3 (-2 (|:| |val| $) (|:| -3311 (-767))) "failed") $) 37)) (-2822 (((-112) $) 28)) (-1693 (((-1113) $) NIL)) (-2692 (((-112) $) 20)) (-2767 (((-112) $) 43)) (-2676 (((-640 (-52)) $) 107)) (-2799 (((-112) $) 45)) (-2308 (($ (-114) (-640 $)) 88)) (-2369 (((-767) $) 27)) (-1870 (($ $) 60)) (-2219 (($ (-640 $)) 57)) (-3904 (((-112) $) 25)) (-1692 (((-858) $) 51) (($ |#1|) 18) (($ (-1169)) 64)) (-2864 (($ $ (-52)) 106)) (-2239 (($) 87 T CONST)) (-2253 (($) 71 T CONST)) (-1718 (((-112) $ $) 77)) (-1836 (($ $ $) 96)) (-1813 (($ $ $) 100)) (** (($ $ (-767)) 95) (($ $ $) 52)) (* (($ $ $) 101)))
-(((-888 |#1|) (-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 0 ($) -2668) (-15 1 ($) -2668) (-15 -3930 ((-3 (-640 $) "failed") $)) (-15 -3939 ((-3 (-640 $) "failed") $)) (-15 -2845 ((-3 (-640 $) "failed") $ (-114))) (-15 -2845 ((-3 (-2 (|:| -2516 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |val| $) (|:| -3311 (-767))) "failed") $)) (-15 -4188 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2834 ((-3 (-640 $) "failed") $)) (-15 -3959 ((-3 (-2 (|:| |val| $) (|:| -3311 $)) "failed") $)) (-15 -2308 ($ (-114) (-640 $))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -1836 ($ $ $)) (-15 -2369 ((-767) $)) (-15 -2219 ($ (-640 $))) (-15 -1870 ($ $)) (-15 -2822 ((-112) $)) (-15 -2810 ((-112) $)) (-15 -2748 ((-112) $)) (-15 -3904 ((-112) $)) (-15 -2799 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -2779 ((-112) $)) (-15 -2767 ((-112) $)) (-15 -2757 ((-640 (-52)) $)) (-15 -2746 ($ $ (-640 (-52)))) (-15 -2734 ($ $ (-640 (-52)))) (-15 -2722 ($ (-1169) (-112) (-112) (-112))) (-15 -2712 ($ $ (-640 (-1169)) (-52))) (-15 -2702 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -2692 ((-112) $)) (-15 -2684 ($ $)) (-15 -2864 ($ $ (-52))) (-15 -2676 ((-640 (-52)) $)) (-15 -2605 ((-640 $) $)) (-15 -2665 ((-3 (-640 $) "failed") (-640 $))))) (-1093)) (T -888))
-((-2239 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2253 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3930 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2845 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-2845 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2516 (-114)) (|:| |arg| (-640 (-888 *3))))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3949 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3311 (-767)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-4188 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2834 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3959 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3311 (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-1813 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-1836 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2746 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2722 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-2712 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2684 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2864 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2665 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 (-2239) ($) -2668) (-15 (-2253) ($) -2668) (-15 -3930 ((-3 (-640 $) "failed") $)) (-15 -3939 ((-3 (-640 $) "failed") $)) (-15 -2845 ((-3 (-640 $) "failed") $ (-114))) (-15 -2845 ((-3 (-2 (|:| -2516 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |val| $) (|:| -3311 (-767))) "failed") $)) (-15 -4188 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2834 ((-3 (-640 $) "failed") $)) (-15 -3959 ((-3 (-2 (|:| |val| $) (|:| -3311 $)) "failed") $)) (-15 -2308 ($ (-114) (-640 $))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -1836 ($ $ $)) (-15 -2369 ((-767) $)) (-15 -2219 ($ (-640 $))) (-15 -1870 ($ $)) (-15 -2822 ((-112) $)) (-15 -2810 ((-112) $)) (-15 -2748 ((-112) $)) (-15 -3904 ((-112) $)) (-15 -2799 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -2779 ((-112) $)) (-15 -2767 ((-112) $)) (-15 -2757 ((-640 (-52)) $)) (-15 -2746 ($ $ (-640 (-52)))) (-15 -2734 ($ $ (-640 (-52)))) (-15 -2722 ($ (-1169) (-112) (-112) (-112))) (-15 -2712 ($ $ (-640 (-1169)) (-52))) (-15 -2702 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -2692 ((-112) $)) (-15 -2684 ($ $)) (-15 -2864 ($ $ (-52))) (-15 -2676 ((-640 (-52)) $)) (-15 -2605 ((-640 $) $)) (-15 -2665 ((-3 (-640 $) "failed") (-640 $)))))
-((-1677 (((-112) $ $) NIL)) (-3994 (((-640 |#1|) $) 16)) (-2882 (((-112) $) 38)) (-2130 (((-3 (-667 |#1|) "failed") $) 43)) (-2057 (((-667 |#1|) $) 41)) (-3793 (($ $) 18)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3419 (((-767) $) 46)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-667 |#1|) $) 17)) (-1692 (((-858) $) 37) (($ (-667 |#1|)) 21) (((-815 |#1|) $) 27) (($ |#1|) 20)) (-2253 (($) 8 T CONST)) (-2891 (((-640 (-667 |#1|)) $) 23)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 11)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 49)))
-(((-889 |#1|) (-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 1 ($) -2668) (-15 -1692 ((-815 |#1|) $)) (-15 -1692 ($ |#1|)) (-15 -3782 ((-667 |#1|) $)) (-15 -3419 ((-767) $)) (-15 -2891 ((-640 (-667 |#1|)) $)) (-15 -3793 ($ $)) (-15 -2882 ((-112) $)) (-15 -3994 ((-640 |#1|) $)))) (-846)) (T -889))
-((-2253 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1692 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 (-2253) ($) -2668) (-15 -1692 ((-815 |#1|) $)) (-15 -1692 ($ |#1|)) (-15 -3782 ((-667 |#1|) $)) (-15 -3419 ((-767) $)) (-15 -2891 ((-640 (-667 |#1|)) $)) (-15 -3793 ($ $)) (-15 -2882 ((-112) $)) (-15 -3994 ((-640 |#1|) $))))
-((-4027 ((|#1| |#1| |#1|) 19)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -4027 (|#1| |#1| |#1|))) (-1233 |#2|) (-1045)) (T -890))
-((-4027 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3)))))
-(-10 -7 (-15 -4027 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-2929 (((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 14)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2900 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 13)) (-1718 (((-112) $ $) 6)))
+((-2943 (((-686 (-1215)) $ (-1215)) NIL)) (-2944 (((-686 (-549)) $ (-549)) NIL)) (-2942 (((-767) $ (-129)) NIL)) (-2945 (((-686 (-128)) $ (-128)) 21)) (-2947 (($ (-388)) 12) (($ (-1151)) 14)) (-2946 (((-112) $) 18)) (-4361 (((-859) $) 25)) (-1851 (($ $) 22)))
+(((-858) (-13 (-857) (-610 (-859)) (-10 -8 (-15 -2947 ($ (-388))) (-15 -2947 ($ (-1151))) (-15 -2946 ((-112) $))))) (T -858))
+((-2947 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+(-13 (-857) (-610 (-859)) (-10 -8 (-15 -2947 ($ (-388))) (-15 -2947 ($ (-1151))) (-15 -2946 ((-112) $))))
+((-2953 (((-112) $ $) NIL) (($ $ $) 77)) (-2974 (($ $ $) 114)) (-2989 (((-546) $) 31) (((-546)) 36)) (-2984 (($ (-546)) 45)) (-2981 (($ $ $) 46) (($ (-637 $)) 76)) (-2965 (($ $ (-637 $)) 74)) (-2986 (((-546) $) 34)) (-2968 (($ $ $) 65)) (-3938 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2987 (((-546) $) 33)) (-2969 (($ $ $) 64)) (-3949 (($ $) 104)) (-2972 (($ $ $) 118)) (-2955 (($ (-637 $)) 53)) (-3954 (($ $ (-637 $)) 71)) (-2983 (($ (-546) (-546)) 47)) (-2996 (($ $) 115) (($ $ $) 116)) (-3529 (($ $ (-546)) 41) (($ $) 44)) (-2949 (($ $ $) 89)) (-2970 (($ $ $) 121)) (-2964 (($ $) 105)) (-2948 (($ $ $) 90)) (-2960 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3226 (((-1262) $) 10)) (-2963 (($ $) 108) (($ $ (-767)) 111)) (-2966 (($ $ $) 67)) (-2967 (($ $ $) 66)) (-2980 (($ $ (-637 $)) 100)) (-2978 (($ $ $) 103)) (-2957 (($ (-637 $)) 51)) (-2958 (($ $) 62) (($ (-637 $)) 63)) (-2961 (($ $ $) 112)) (-2962 (($ $) 106)) (-2973 (($ $ $) 117)) (-3939 (($ (-546)) 21) (($ (-1169)) 23) (($ (-1151)) 30) (($ (-225)) 25)) (-3246 (($ $ $) 93)) (-3733 (($ $) 94)) (-2991 (((-1262) (-1151)) 15)) (-2992 (($ (-1151)) 14)) (-3516 (($ (-637 (-637 $))) 50)) (-3530 (($ $ (-546)) 40) (($ $) 43)) (-3650 (((-1151) $) NIL)) (-2976 (($ $ $) 120)) (-3876 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2977 (((-112) $) 98)) (-2979 (($ $ (-637 $)) 101) (($ $ $ $) 102)) (-2985 (($ (-546)) 37)) (-2988 (((-546) $) 32) (((-546)) 35)) (-2982 (($ $ $) 38) (($ (-637 $)) 75)) (-3651 (((-1113) $) NIL)) (-3872 (($ $ $) 91)) (-3979 (($) 13)) (-4214 (($ $ (-637 $)) 99)) (-2990 (((-1151) (-1151)) 8)) (-4251 (($ $) 107) (($ $ (-767)) 110)) (-2950 (($ $ $) 88)) (-4225 (($ $ (-767)) 126)) (-2956 (($ (-637 $)) 52)) (-4361 (((-859) $) 19)) (-4187 (($ $ (-546)) 39) (($ $) 42)) (-2959 (($ $) 60) (($ (-637 $)) 61)) (-3648 (($ $) 58) (($ (-637 $)) 59)) (-2975 (($ $) 113)) (-2954 (($ (-637 $)) 57)) (-3494 (($ $ $) 97)) (-2971 (($ $ $) 119)) (-3247 (($ $ $) 92)) (-4152 (($ $ $) 95) (($ $) 96)) (-2951 (($ $ $) 81)) (-2952 (($ $ $) 79)) (-3444 (((-112) $ $) 16) (($ $ $) 17)) (-3073 (($ $ $) 80)) (-3074 (($ $ $) 78)) (-4364 (($ $ $) 86)) (-4252 (($ $ $) 83) (($ $) 84)) (-4254 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-859) (-13 (-1094) (-10 -8 (-15 -3226 ((-1262) $)) (-15 -2992 ($ (-1151))) (-15 -2991 ((-1262) (-1151))) (-15 -3939 ($ (-546))) (-15 -3939 ($ (-1169))) (-15 -3939 ($ (-1151))) (-15 -3939 ($ (-225))) (-15 -3979 ($)) (-15 -2990 ((-1151) (-1151))) (-15 -2989 ((-546) $)) (-15 -2988 ((-546) $)) (-15 -2989 ((-546))) (-15 -2988 ((-546))) (-15 -2987 ((-546) $)) (-15 -2986 ((-546) $)) (-15 -2985 ($ (-546))) (-15 -2984 ($ (-546))) (-15 -2983 ($ (-546) (-546))) (-15 -3530 ($ $ (-546))) (-15 -3529 ($ $ (-546))) (-15 -4187 ($ $ (-546))) (-15 -3530 ($ $)) (-15 -3529 ($ $)) (-15 -4187 ($ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2982 ($ (-637 $))) (-15 -2981 ($ (-637 $))) (-15 -2980 ($ $ (-637 $))) (-15 -2979 ($ $ (-637 $))) (-15 -2979 ($ $ $ $)) (-15 -2978 ($ $ $)) (-15 -2977 ((-112) $)) (-15 -4214 ($ $ (-637 $))) (-15 -3949 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $)) (-15 -3516 ($ (-637 (-637 $)))) (-15 -2974 ($ $ $)) (-15 -2996 ($ $)) (-15 -2996 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2970 ($ $ $)) (-15 -4225 ($ $ (-767))) (-15 -3494 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3954 ($ $ (-637 $))) (-15 -2965 ($ $ (-637 $))) (-15 -2964 ($ $)) (-15 -4251 ($ $)) (-15 -4251 ($ $ (-767))) (-15 -2963 ($ $)) (-15 -2963 ($ $ (-767))) (-15 -2962 ($ $)) (-15 -2961 ($ $ $)) (-15 -3938 ($ $)) (-15 -3938 ($ $ $)) (-15 -3938 ($ $ $ $)) (-15 -2960 ($ $)) (-15 -2960 ($ $ $)) (-15 -2960 ($ $ $ $)) (-15 -3876 ($ $)) (-15 -3876 ($ $ $)) (-15 -3876 ($ $ $ $)) (-15 -3648 ($ $)) (-15 -3648 ($ (-637 $))) (-15 -2959 ($ $)) (-15 -2959 ($ (-637 $))) (-15 -2958 ($ $)) (-15 -2958 ($ (-637 $))) (-15 -2957 ($ (-637 $))) (-15 -2956 ($ (-637 $))) (-15 -2955 ($ (-637 $))) (-15 -2954 ($ (-637 $))) (-15 -3444 ($ $ $)) (-15 -2953 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4252 ($ $)) (-15 * ($ $ $)) (-15 -4364 ($ $ $)) (-15 ** ($ $ $)) (-15 -2950 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -3247 ($ $ $)) (-15 -3246 ($ $ $)) (-15 -3733 ($ $)) (-15 -4152 ($ $ $)) (-15 -4152 ($ $))))) (T -859))
+((-3226 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-859)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-859)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) (-3979 (*1 *1) (-5 *1 (-859))) (-2990 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2989 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2988 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-2983 (*1 *1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))) (-3530 (*1 *1 *1) (-5 *1 (-859))) (-3529 (*1 *1 *1) (-5 *1 (-859))) (-4187 (*1 *1 *1) (-5 *1 (-859))) (-2982 (*1 *1 *1 *1) (-5 *1 (-859))) (-2981 (*1 *1 *1 *1) (-5 *1 (-859))) (-2982 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2979 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2978 (*1 *1 *1 *1) (-5 *1 (-859))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-3949 (*1 *1 *1) (-5 *1 (-859))) (-2976 (*1 *1 *1 *1) (-5 *1 (-859))) (-2975 (*1 *1 *1) (-5 *1 (-859))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-859)))) (-5 *1 (-859)))) (-2974 (*1 *1 *1 *1) (-5 *1 (-859))) (-2996 (*1 *1 *1) (-5 *1 (-859))) (-2996 (*1 *1 *1 *1) (-5 *1 (-859))) (-2973 (*1 *1 *1 *1) (-5 *1 (-859))) (-2972 (*1 *1 *1 *1) (-5 *1 (-859))) (-2971 (*1 *1 *1 *1) (-5 *1 (-859))) (-2970 (*1 *1 *1 *1) (-5 *1 (-859))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859)))) (-3494 (*1 *1 *1 *1) (-5 *1 (-859))) (-2969 (*1 *1 *1 *1) (-5 *1 (-859))) (-2968 (*1 *1 *1 *1) (-5 *1 (-859))) (-2967 (*1 *1 *1 *1) (-5 *1 (-859))) (-2966 (*1 *1 *1 *1) (-5 *1 (-859))) (-3954 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2965 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2964 (*1 *1 *1) (-5 *1 (-859))) (-4251 (*1 *1 *1) (-5 *1 (-859))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859)))) (-2963 (*1 *1 *1) (-5 *1 (-859))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859)))) (-2962 (*1 *1 *1) (-5 *1 (-859))) (-2961 (*1 *1 *1 *1) (-5 *1 (-859))) (-3938 (*1 *1 *1) (-5 *1 (-859))) (-3938 (*1 *1 *1 *1) (-5 *1 (-859))) (-3938 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2960 (*1 *1 *1) (-5 *1 (-859))) (-2960 (*1 *1 *1 *1) (-5 *1 (-859))) (-2960 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3876 (*1 *1 *1) (-5 *1 (-859))) (-3876 (*1 *1 *1 *1) (-5 *1 (-859))) (-3876 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3648 (*1 *1 *1) (-5 *1 (-859))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2959 (*1 *1 *1) (-5 *1 (-859))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2958 (*1 *1 *1) (-5 *1 (-859))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))) (-3444 (*1 *1 *1 *1) (-5 *1 (-859))) (-2953 (*1 *1 *1 *1) (-5 *1 (-859))) (-3074 (*1 *1 *1 *1) (-5 *1 (-859))) (-2952 (*1 *1 *1 *1) (-5 *1 (-859))) (-3073 (*1 *1 *1 *1) (-5 *1 (-859))) (-2951 (*1 *1 *1 *1) (-5 *1 (-859))) (-4254 (*1 *1 *1 *1) (-5 *1 (-859))) (-4252 (*1 *1 *1 *1) (-5 *1 (-859))) (-4252 (*1 *1 *1) (-5 *1 (-859))) (* (*1 *1 *1 *1) (-5 *1 (-859))) (-4364 (*1 *1 *1 *1) (-5 *1 (-859))) (** (*1 *1 *1 *1) (-5 *1 (-859))) (-2950 (*1 *1 *1 *1) (-5 *1 (-859))) (-2949 (*1 *1 *1 *1) (-5 *1 (-859))) (-2948 (*1 *1 *1 *1) (-5 *1 (-859))) (-3872 (*1 *1 *1 *1) (-5 *1 (-859))) (-3247 (*1 *1 *1 *1) (-5 *1 (-859))) (-3246 (*1 *1 *1 *1) (-5 *1 (-859))) (-3733 (*1 *1 *1) (-5 *1 (-859))) (-4152 (*1 *1 *1 *1) (-5 *1 (-859))) (-4152 (*1 *1 *1) (-5 *1 (-859))))
+(-13 (-1094) (-10 -8 (-15 -3226 ((-1262) $)) (-15 -2992 ($ (-1151))) (-15 -2991 ((-1262) (-1151))) (-15 -3939 ($ (-546))) (-15 -3939 ($ (-1169))) (-15 -3939 ($ (-1151))) (-15 -3939 ($ (-225))) (-15 -3979 ($)) (-15 -2990 ((-1151) (-1151))) (-15 -2989 ((-546) $)) (-15 -2988 ((-546) $)) (-15 -2989 ((-546))) (-15 -2988 ((-546))) (-15 -2987 ((-546) $)) (-15 -2986 ((-546) $)) (-15 -2985 ($ (-546))) (-15 -2984 ($ (-546))) (-15 -2983 ($ (-546) (-546))) (-15 -3530 ($ $ (-546))) (-15 -3529 ($ $ (-546))) (-15 -4187 ($ $ (-546))) (-15 -3530 ($ $)) (-15 -3529 ($ $)) (-15 -4187 ($ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2982 ($ (-637 $))) (-15 -2981 ($ (-637 $))) (-15 -2980 ($ $ (-637 $))) (-15 -2979 ($ $ (-637 $))) (-15 -2979 ($ $ $ $)) (-15 -2978 ($ $ $)) (-15 -2977 ((-112) $)) (-15 -4214 ($ $ (-637 $))) (-15 -3949 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $)) (-15 -3516 ($ (-637 (-637 $)))) (-15 -2974 ($ $ $)) (-15 -2996 ($ $)) (-15 -2996 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2970 ($ $ $)) (-15 -4225 ($ $ (-767))) (-15 -3494 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3954 ($ $ (-637 $))) (-15 -2965 ($ $ (-637 $))) (-15 -2964 ($ $)) (-15 -4251 ($ $)) (-15 -4251 ($ $ (-767))) (-15 -2963 ($ $)) (-15 -2963 ($ $ (-767))) (-15 -2962 ($ $)) (-15 -2961 ($ $ $)) (-15 -3938 ($ $)) (-15 -3938 ($ $ $)) (-15 -3938 ($ $ $ $)) (-15 -2960 ($ $)) (-15 -2960 ($ $ $)) (-15 -2960 ($ $ $ $)) (-15 -3876 ($ $)) (-15 -3876 ($ $ $)) (-15 -3876 ($ $ $ $)) (-15 -3648 ($ $)) (-15 -3648 ($ (-637 $))) (-15 -2959 ($ $)) (-15 -2959 ($ (-637 $))) (-15 -2958 ($ $)) (-15 -2958 ($ (-637 $))) (-15 -2957 ($ (-637 $))) (-15 -2956 ($ (-637 $))) (-15 -2955 ($ (-637 $))) (-15 -2954 ($ (-637 $))) (-15 -3444 ($ $ $)) (-15 -2953 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -4254 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4252 ($ $)) (-15 * ($ $ $)) (-15 -4364 ($ $ $)) (-15 ** ($ $ $)) (-15 -2950 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -3247 ($ $ $)) (-15 -3246 ($ $ $)) (-15 -3733 ($ $)) (-15 -4152 ($ $ $)) (-15 -4152 ($ $))))
+((-2953 (((-112) $ $) NIL)) (-4246 (((-3 $ "failed") (-1169)) 33)) (-3528 (((-767)) 31)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) 29)) (-3650 (((-1151) $) 39)) (-2542 (($ (-915)) 28)) (-3651 (((-1113) $) NIL)) (-4385 (((-1169) $) 13) (((-535) $) 19) (((-886 (-378)) $) 26) (((-886 (-546)) $) 22)) (-4361 (((-859) $) 16)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 36)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 35)))
+(((-860 |#1|) (-13 (-840) (-611 (-1169)) (-611 (-535)) (-611 (-886 (-378))) (-611 (-886 (-546))) (-10 -8 (-15 -4246 ((-3 $ "failed") (-1169))))) (-637 (-1169))) (T -860))
+((-4246 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-637 *2)))))
+(-13 (-840) (-611 (-1169)) (-611 (-535)) (-611 (-886 (-378))) (-611 (-886 (-546))) (-10 -8 (-15 -4246 ((-3 $ "failed") (-1169)))))
+((-2953 (((-112) $ $) NIL)) (-3956 (((-506) $) 9)) (-2993 (((-637 (-439)) $) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21)) (-3444 (((-112) $ $) 16)))
+(((-861) (-13 (-1094) (-10 -8 (-15 -3956 ((-506) $)) (-15 -2993 ((-637 (-439)) $))))) (T -861))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-637 (-439))) (-5 *1 (-861)))))
+(-13 (-1094) (-10 -8 (-15 -3956 ((-506) $)) (-15 -2993 ((-637 (-439)) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-942 |#1|)) NIL) (((-942 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3518 (((-767)) NIL)) (-4338 (((-1262) (-767)) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4338 ((-1262) (-767))))) (-1045) (-637 (-1169)) (-637 (-767)) (-767)) (T -862))
+((-4364 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-767))) (-14 *5 (-767)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 *3)) (-14 *7 *3))))
+(-13 (-1045) (-490 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4338 ((-1262) (-767)))))
+((-2994 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 31)) (-2995 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 24)))
+(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2995 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2994 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1249 |#1|) (-1232 |#1|)) (T -863))
+((-2994 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1249 *5)) (-4 *6 (-1232 *5)))) (-2995 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1249 *5)) (-4 *6 (-1232 *5)))))
+(-10 -7 (-15 -2995 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2994 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|)))
+((-2995 (((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|)) 28) (((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) 26)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -2995 ((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (-15 -2995 ((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|)))) (-363) (-1169) |#1|) (T -864))
+((-2995 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1225 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-2995 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1225 *6 *5))) (-5 *1 (-864 *5 *6 *7)))))
+(-10 -7 (-15 -2995 ((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (-15 -2995 ((-3 (-407 (-1225 |#2| |#1|)) "failed") (-767) (-767) (-1246 |#1| |#2| |#3|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-546)) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2996 (($ (-1163 (-546)) (-546)) NIL)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2997 (($ $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4186 (((-767) $) NIL)) (-2552 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2999 (((-546)) NIL)) (-2998 (((-546) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4183 (($ $ (-546)) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3000 (((-1146 (-546)) $) NIL)) (-3281 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-4184 (((-546) $ (-546)) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL)))
+(((-865 |#1|) (-866 |#1|) (-546)) (T -865))
+NIL
+(-866 |#1|)
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-3427 (($ $ (-546)) 63)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-2996 (($ (-1163 (-546)) (-546)) 62)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2997 (($ $) 65)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4186 (((-767) $) 70)) (-2552 (((-112) $) 31)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2999 (((-546)) 67)) (-2998 (((-546) $) 66)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-4183 (($ $ (-546)) 69)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-3000 (((-1146 (-546)) $) 71)) (-3281 (($ $) 68)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-4184 (((-546) $ (-546)) 64)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-866 |#1|) (-140) (-546)) (T -866))
+((-3000 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1146 (-546))))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-767)))) (-4183 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))) (-3281 (*1 *1 *1) (-4 *1 (-866 *2))) (-2999 (*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))) (-2997 (*1 *1 *1) (-4 *1 (-866 *2))) (-4184 (*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))) (-3427 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))) (-2996 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *3 (-546)) (-4 *1 (-866 *4)))))
+(-13 (-307) (-147) (-10 -8 (-15 -3000 ((-1146 (-546)) $)) (-15 -4186 ((-767) $)) (-15 -4183 ($ $ (-546))) (-15 -3281 ($ $)) (-15 -2999 ((-546))) (-15 -2998 ((-546) $)) (-15 -2997 ($ $)) (-15 -4184 ((-546) $ (-546))) (-15 -3427 ($ $ (-546))) (-15 -2996 ($ (-1163 (-546)) (-546)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-865 |#1|) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-865 |#1|) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-865 |#1|) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-865 |#1|) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| (-865 |#1|) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| (-865 |#1|) (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| (-865 |#1|) (-1034 (-546))))) (-3564 (((-865 |#1|) $) NIL) (((-1169) $) NIL (|has| (-865 |#1|) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-865 |#1|) (-1034 (-546)))) (((-546) $) NIL (|has| (-865 |#1|) (-1034 (-546))))) (-4145 (($ $) NIL) (($ (-546) $) NIL)) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-865 |#1|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-865 |#1|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-865 |#1|))) (|:| |vec| (-1256 (-865 |#1|)))) (-684 $) (-1256 $)) NIL) (((-684 (-865 |#1|)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-865 |#1|) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| (-865 |#1|) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-865 |#1|) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-865 |#1|) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-865 |#1|) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-1144)))) (-3595 (((-112) $) NIL (|has| (-865 |#1|) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-865 |#1|) (-846)))) (-3249 (($ $ $) NIL (|has| (-865 |#1|) (-846)))) (-4373 (($ (-1 (-865 |#1|) (-865 |#1|)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-865 |#1|) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-865 |#1|) (-307)))) (-3522 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-865 |#1|) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-865 |#1|) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-865 |#1|)) (-637 (-865 |#1|))) NIL (|has| (-865 |#1|) (-309 (-865 |#1|)))) (($ $ (-865 |#1|) (-865 |#1|)) NIL (|has| (-865 |#1|) (-309 (-865 |#1|)))) (($ $ (-293 (-865 |#1|))) NIL (|has| (-865 |#1|) (-309 (-865 |#1|)))) (($ $ (-637 (-293 (-865 |#1|)))) NIL (|has| (-865 |#1|) (-309 (-865 |#1|)))) (($ $ (-637 (-1169)) (-637 (-865 |#1|))) NIL (|has| (-865 |#1|) (-514 (-1169) (-865 |#1|)))) (($ $ (-1169) (-865 |#1|)) NIL (|has| (-865 |#1|) (-514 (-1169) (-865 |#1|))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-865 |#1|)) NIL (|has| (-865 |#1|) (-286 (-865 |#1|) (-865 |#1|))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| (-865 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-865 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-767)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-865 |#1|) $) NIL)) (-4385 (((-886 (-546)) $) NIL (|has| (-865 |#1|) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-865 |#1|) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-865 |#1|) (-611 (-535)))) (((-378) $) NIL (|has| (-865 |#1|) (-1016))) (((-225) $) NIL (|has| (-865 |#1|) (-1016)))) (-3001 (((-174 (-407 (-546))) $) NIL)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-865 |#1|) (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL) (($ (-865 |#1|)) NIL) (($ (-1169)) NIL (|has| (-865 |#1|) (-1034 (-1169))))) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-865 |#1|) (-906))) (|has| (-865 |#1|) (-145))))) (-3518 (((-767)) NIL)) (-3523 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-545)))) (-2219 (((-112) $ $) NIL)) (-4184 (((-407 (-546)) $ (-546)) NIL)) (-3794 (($ $) NIL (|has| (-865 |#1|) (-816)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $) NIL (|has| (-865 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-865 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-865 |#1|) (-896 (-1169)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-767)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-865 |#1|) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-865 |#1|) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-865 |#1|) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-865 |#1|) (-846)))) (-4364 (($ $ $) NIL) (($ (-865 |#1|) (-865 |#1|)) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-865 |#1|) $) NIL) (($ $ (-865 |#1|)) NIL)))
+(((-867 |#1|) (-13 (-987 (-865 |#1|)) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $)))) (-546)) (T -867))
+((-4184 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-546)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-867 *3)) (-14 *3 (-546)))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-546)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-867 *3)) (-14 *3 *2))))
+(-13 (-987 (-865 |#1|)) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 ((|#2| $) NIL (|has| |#2| (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| |#2| (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (|has| |#2| (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546))))) (-3564 ((|#2| $) NIL) (((-1169) $) NIL (|has| |#2| (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-546)))) (((-546) $) NIL (|has| |#2| (-1034 (-546))))) (-4145 (($ $) 31) (($ (-546) $) 32)) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) 53)) (-3384 (($) NIL (|has| |#2| (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) NIL (|has| |#2| (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| |#2| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| |#2| (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 ((|#2| $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-3595 (((-112) $) NIL (|has| |#2| (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 49)) (-3856 (($) NIL (|has| |#2| (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| |#2| (-307)))) (-3522 ((|#2| $) NIL (|has| |#2| (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 |#2|) (-637 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-637 (-293 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-637 (-1169)) (-637 |#2|)) NIL (|has| |#2| (-514 (-1169) |#2|))) (($ $ (-1169) |#2|) NIL (|has| |#2| (-514 (-1169) |#2|)))) (-1739 (((-767) $) NIL)) (-4214 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3385 (($ $) NIL)) (-3387 ((|#2| $) NIL)) (-4385 (((-886 (-546)) $) NIL (|has| |#2| (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| |#2| (-611 (-886 (-378))))) (((-535) $) NIL (|has| |#2| (-611 (-535)))) (((-378) $) NIL (|has| |#2| (-1016))) (((-225) $) NIL (|has| |#2| (-1016)))) (-3001 (((-174 (-407 (-546))) $) 68)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4361 (((-859) $) 86) (($ (-546)) 19) (($ $) NIL) (($ (-407 (-546))) 24) (($ |#2|) 18) (($ (-1169)) NIL (|has| |#2| (-1034 (-1169))))) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-3523 ((|#2| $) NIL (|has| |#2| (-545)))) (-2219 (((-112) $ $) NIL)) (-4184 (((-407 (-546)) $ (-546)) 60)) (-3794 (($ $) NIL (|has| |#2| (-816)))) (-3047 (($) 14 T CONST)) (-3053 (($) 16 T CONST)) (-3058 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) 35)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4252 (($ $) 39) (($ $ $) 41)) (-4254 (($ $ $) 37)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) 50)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 42) (($ $ $) 44) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-868 |#1| |#2|) (-13 (-987 |#2|) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $)))) (-546) (-866 |#1|)) (T -868))
+((-4184 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-546))) (-5 *1 (-868 *4 *5)) (-5 *3 (-546)) (-4 *5 (-866 *4)))) (-3001 (*1 *2 *1) (-12 (-14 *3 (-546)) (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-866 *3)))) (-4145 (*1 *1 *1) (-12 (-14 *2 (-546)) (-5 *1 (-868 *2 *3)) (-4 *3 (-866 *2)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-866 *3)))))
+(-13 (-987 |#2|) (-10 -8 (-15 -4184 ((-407 (-546)) $ (-546))) (-15 -3001 ((-174 (-407 (-546))) $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $))))
+((-2953 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-4210 ((|#2| $) 12)) (-3002 (($ |#1| |#2|) 9)) (-3650 (((-1151) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3651 (((-1113) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#1| $) 11)) (-3936 (($ |#1| |#2|) 10)) (-4361 (((-859) $) 18 (-3943 (-12 (|has| |#1| (-610 (-859))) (|has| |#2| (-610 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-3444 (((-112) $ $) 22 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))))
+(((-869 |#1| |#2|) (-13 (-1207) (-10 -8 (IF (|has| |#1| (-610 (-859))) (IF (|has| |#2| (-610 (-859))) (-6 (-610 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3002 ($ |#1| |#2|)) (-15 -3936 ($ |#1| |#2|)) (-15 -4215 (|#1| $)) (-15 -4210 (|#2| $)))) (-1207) (-1207)) (T -869))
+((-3002 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-4215 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1207)))) (-4210 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1207)))))
+(-13 (-1207) (-10 -8 (IF (|has| |#1| (-610 (-859))) (IF (|has| |#2| (-610 (-859))) (-6 (-610 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3002 ($ |#1| |#2|)) (-15 -3936 ($ |#1| |#2|)) (-15 -4215 (|#1| $)) (-15 -4210 (|#2| $))))
+((-2953 (((-112) $ $) NIL)) (-3347 (((-546) $) 15)) (-3004 (($ (-157)) 11)) (-3003 (($ (-157)) 12)) (-3650 (((-1151) $) NIL)) (-3346 (((-157) $) 13)) (-3651 (((-1113) $) NIL)) (-3006 (($ (-157)) 9)) (-3007 (($ (-157)) 8)) (-4361 (((-859) $) 23) (($ (-157)) 16)) (-3005 (($ (-157)) 10)) (-3444 (((-112) $ $) NIL)))
+(((-870) (-13 (-1094) (-10 -8 (-15 -3007 ($ (-157))) (-15 -3006 ($ (-157))) (-15 -3005 ($ (-157))) (-15 -3004 ($ (-157))) (-15 -3003 ($ (-157))) (-15 -3346 ((-157) $)) (-15 -3347 ((-546) $)) (-15 -4361 ($ (-157)))))) (T -870))
+((-3007 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3004 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-870)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(-13 (-1094) (-10 -8 (-15 -3007 ($ (-157))) (-15 -3006 ($ (-157))) (-15 -3005 ($ (-157))) (-15 -3004 ($ (-157))) (-15 -3003 ($ (-157))) (-15 -3346 ((-157) $)) (-15 -3347 ((-546) $)) (-15 -4361 ($ (-157)))))
+((-4361 (((-314 (-546)) (-407 (-942 (-48)))) 23) (((-314 (-546)) (-942 (-48))) 18)))
+(((-871) (-10 -7 (-15 -4361 ((-314 (-546)) (-942 (-48)))) (-15 -4361 ((-314 (-546)) (-407 (-942 (-48))))))) (T -871))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 (-48)))) (-5 *2 (-314 (-546))) (-5 *1 (-871)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-942 (-48))) (-5 *2 (-314 (-546))) (-5 *1 (-871)))))
+(-10 -7 (-15 -4361 ((-314 (-546)) (-942 (-48)))) (-15 -4361 ((-314 (-546)) (-407 (-942 (-48))))))
+((-4373 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 14)))
+(((-872 |#1| |#2|) (-10 -7 (-15 -4373 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1207) (-1207)) (T -872))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))))
+(-10 -7 (-15 -4373 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|))))
+((-3782 (($ |#1| |#1|) 8)) (-3010 ((|#1| $ (-767)) 10)))
+(((-873 |#1|) (-10 -8 (-15 -3782 ($ |#1| |#1|)) (-15 -3010 (|#1| $ (-767)))) (-1207)) (T -873))
+((-3010 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1207)))) (-3782 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1207)))))
+(-10 -8 (-15 -3782 ($ |#1| |#1|)) (-15 -3010 (|#1| $ (-767))))
+((-4373 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14)))
+(((-874 |#1| |#2|) (-10 -7 (-15 -4373 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1207) (-1207)) (T -874))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
+(-10 -7 (-15 -4373 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
+((-3782 (($ |#1| |#1| |#1|) 8)) (-3010 ((|#1| $ (-767)) 10)))
+(((-875 |#1|) (-10 -8 (-15 -3782 ($ |#1| |#1| |#1|)) (-15 -3010 (|#1| $ (-767)))) (-1207)) (T -875))
+((-3010 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1207)))) (-3782 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1207)))))
+(-10 -8 (-15 -3782 ($ |#1| |#1| |#1|)) (-15 -3010 (|#1| $ (-767))))
+((-3008 (((-637 (-1174)) (-1151)) 9)))
+(((-876) (-10 -7 (-15 -3008 ((-637 (-1174)) (-1151))))) (T -876))
+((-3008 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-637 (-1174))) (-5 *1 (-876)))))
+(-10 -7 (-15 -3008 ((-637 (-1174)) (-1151))))
+((-4373 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 14)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -4373 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1207) (-1207)) (T -877))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))))
+(-10 -7 (-15 -4373 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
+((-3009 (($ |#1| |#1| |#1|) 8)) (-3010 ((|#1| $ (-767)) 10)))
+(((-878 |#1|) (-10 -8 (-15 -3009 ($ |#1| |#1| |#1|)) (-15 -3010 (|#1| $ (-767)))) (-1207)) (T -878))
+((-3010 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1207)))) (-3009 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1207)))))
+(-10 -8 (-15 -3009 ($ |#1| |#1| |#1|)) (-15 -3010 (|#1| $ (-767))))
+((-3014 (((-1146 (-637 (-546))) (-637 (-546)) (-1146 (-637 (-546)))) 30)) (-3013 (((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546))) 26)) (-3015 (((-1146 (-637 (-546))) (-637 (-546))) 39) (((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546))) 38)) (-3016 (((-1146 (-637 (-546))) (-546)) 40)) (-3011 (((-1146 (-637 (-546))) (-546) (-546)) 22) (((-1146 (-637 (-546))) (-546)) 16) (((-1146 (-637 (-546))) (-546) (-546) (-546)) 12)) (-3012 (((-1146 (-637 (-546))) (-1146 (-637 (-546)))) 24)) (-3399 (((-637 (-546)) (-637 (-546))) 23)))
+(((-879) (-10 -7 (-15 -3011 ((-1146 (-637 (-546))) (-546) (-546) (-546))) (-15 -3011 ((-1146 (-637 (-546))) (-546))) (-15 -3011 ((-1146 (-637 (-546))) (-546) (-546))) (-15 -3399 ((-637 (-546)) (-637 (-546)))) (-15 -3012 ((-1146 (-637 (-546))) (-1146 (-637 (-546))))) (-15 -3013 ((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546)))) (-15 -3014 ((-1146 (-637 (-546))) (-637 (-546)) (-1146 (-637 (-546))))) (-15 -3015 ((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546)))) (-15 -3015 ((-1146 (-637 (-546))) (-637 (-546)))) (-15 -3016 ((-1146 (-637 (-546))) (-546))))) (T -879))
+((-3016 (*1 *2 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))) (-3015 (*1 *2 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546))))) (-3015 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546))))) (-3014 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *3 (-637 (-546))) (-5 *1 (-879)))) (-3013 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546))))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-879)))) (-3011 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))) (-3011 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))))
+(-10 -7 (-15 -3011 ((-1146 (-637 (-546))) (-546) (-546) (-546))) (-15 -3011 ((-1146 (-637 (-546))) (-546))) (-15 -3011 ((-1146 (-637 (-546))) (-546) (-546))) (-15 -3399 ((-637 (-546)) (-637 (-546)))) (-15 -3012 ((-1146 (-637 (-546))) (-1146 (-637 (-546))))) (-15 -3013 ((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546)))) (-15 -3014 ((-1146 (-637 (-546))) (-637 (-546)) (-1146 (-637 (-546))))) (-15 -3015 ((-1146 (-637 (-546))) (-637 (-546)) (-637 (-546)))) (-15 -3015 ((-1146 (-637 (-546))) (-637 (-546)))) (-15 -3016 ((-1146 (-637 (-546))) (-546))))
+((-4385 (((-886 (-378)) $) 9 (|has| |#1| (-611 (-886 (-378))))) (((-886 (-546)) $) 8 (|has| |#1| (-611 (-886 (-546)))))))
+(((-880 |#1|) (-140) (-1207)) (T -880))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-611 (-886 (-546)))) (-6 (-611 (-886 (-546)))) |%noBranch|) (IF (|has| |t#1| (-611 (-886 (-378)))) (-6 (-611 (-886 (-378)))) |%noBranch|)))
+(((-611 (-886 (-378))) |has| |#1| (-611 (-886 (-378)))) ((-611 (-886 (-546))) |has| |#1| (-611 (-886 (-546)))))
+((-2953 (((-112) $ $) NIL)) (-4029 (($) 14)) (-3019 (($ (-884 |#1| |#2|) (-884 |#1| |#3|)) 27)) (-3017 (((-884 |#1| |#3|) $) 16)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3027 (((-112) $) 22)) (-3026 (($) 19)) (-4361 (((-859) $) 30)) (-3018 (((-884 |#1| |#2|) $) 15)) (-3444 (((-112) $ $) 25)))
+(((-881 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -3027 ((-112) $)) (-15 -3026 ($)) (-15 -4029 ($)) (-15 -3019 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -3018 ((-884 |#1| |#2|) $)) (-15 -3017 ((-884 |#1| |#3|) $)))) (-1094) (-1094) (-661 |#2|)) (T -881))
+((-3027 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-661 *4)))) (-3026 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-661 *3)))) (-4029 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-661 *3)))) (-3019 (*1 *1 *2 *3) (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))) (-3018 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-884 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-661 *4)))) (-3017 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-884 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-661 *4)))))
+(-13 (-1094) (-10 -8 (-15 -3027 ((-112) $)) (-15 -3026 ($)) (-15 -4029 ($)) (-15 -3019 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -3018 ((-884 |#1| |#2|) $)) (-15 -3017 ((-884 |#1| |#3|) $))))
+((-2953 (((-112) $ $) 7)) (-3185 (((-884 |#1| $) $ (-886 |#1|) (-884 |#1| $)) 13)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
+(((-882 |#1|) (-140) (-1094)) (T -882))
+((-3185 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-886 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3185 ((-884 |t#1| $) $ (-886 |t#1|) (-884 |t#1| $)))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3020 (((-112) (-637 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3021 (((-884 |#1| |#2|) |#2| |#3|) 42 (-12 (-3733 (|has| |#2| (-1034 (-1169)))) (-3733 (|has| |#2| (-1045))))) (((-637 (-293 (-942 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1045)) (-3733 (|has| |#2| (-1034 (-1169)))))) (((-637 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1034 (-1169)))) (((-881 |#1| |#2| (-637 |#2|)) (-637 |#2|) |#3|) 20)))
+(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -3020 ((-112) |#2| |#3|)) (-15 -3020 ((-112) (-637 |#2|) |#3|)) (-15 -3021 ((-881 |#1| |#2| (-637 |#2|)) (-637 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -3021 ((-637 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3021 ((-637 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3021 ((-884 |#1| |#2|) |#2| |#3|))))) (-1094) (-882 |#1|) (-611 (-886 |#1|))) (T -883))
+((-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-884 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-3733 (-4 *3 (-1034 (-1169)))) (-3733 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-886 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-637 (-293 (-942 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-3733 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-886 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-637 (-293 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-886 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-637 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-637 *6)) (-4 *4 (-611 (-886 *5))))) (-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-886 *5))))) (-3020 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-611 (-886 *5))))))
+(-10 -7 (-15 -3020 ((-112) |#2| |#3|)) (-15 -3020 ((-112) (-637 |#2|) |#3|)) (-15 -3021 ((-881 |#1| |#2| (-637 |#2|)) (-637 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -3021 ((-637 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3021 ((-637 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3021 ((-884 |#1| |#2|) |#2| |#3|)))))
+((-2953 (((-112) $ $) NIL)) (-3642 (($ $ $) 39)) (-3048 (((-3 (-112) "failed") $ (-886 |#1|)) 36)) (-4029 (($) 12)) (-3650 (((-1151) $) NIL)) (-3023 (($ (-886 |#1|) |#2| $) 20)) (-3651 (((-1113) $) NIL)) (-3025 (((-3 |#2| "failed") (-886 |#1|) $) 50)) (-3027 (((-112) $) 15)) (-3026 (($) 13)) (-3665 (((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|))) $) 25)) (-3936 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|)))) 23)) (-4361 (((-859) $) 44)) (-3022 (($ (-886 |#1|) |#2| $ |#2|) 48)) (-3024 (($ (-886 |#1|) |#2| $) 47)) (-3444 (((-112) $ $) 41)))
+(((-884 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3027 ((-112) $)) (-15 -3026 ($)) (-15 -4029 ($)) (-15 -3642 ($ $ $)) (-15 -3025 ((-3 |#2| "failed") (-886 |#1|) $)) (-15 -3024 ($ (-886 |#1|) |#2| $)) (-15 -3023 ($ (-886 |#1|) |#2| $)) (-15 -3022 ($ (-886 |#1|) |#2| $ |#2|)) (-15 -3665 ((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|))) $)) (-15 -3936 ($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|))))) (-15 -3048 ((-3 (-112) "failed") $ (-886 |#1|))))) (-1094) (-1094)) (T -884))
+((-3027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3026 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4029 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3642 (*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3025 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-884 *4 *2)))) (-3024 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))) (-3023 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))) (-3022 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 *4)))) (-5 *1 (-884 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 *4)))) (-4 *4 (-1094)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1094)))) (-3048 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3027 ((-112) $)) (-15 -3026 ($)) (-15 -4029 ($)) (-15 -3642 ($ $ $)) (-15 -3025 ((-3 |#2| "failed") (-886 |#1|) $)) (-15 -3024 ($ (-886 |#1|) |#2| $)) (-15 -3023 ($ (-886 |#1|) |#2| $)) (-15 -3022 ($ (-886 |#1|) |#2| $ |#2|)) (-15 -3665 ((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|))) $)) (-15 -3936 ($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 |#2|))))) (-15 -3048 ((-3 (-112) "failed") $ (-886 |#1|)))))
+((-4373 (((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)) 22)))
+(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -4373 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -885))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-884 *5 *7)) (-5 *1 (-885 *5 *6 *7)))))
+(-10 -7 (-15 -4373 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|))))
+((-2953 (((-112) $ $) NIL)) (-3035 (($ $ (-637 (-51))) 62)) (-3474 (((-637 $) $) 114)) (-3032 (((-2 (|:| |var| (-637 (-1169))) (|:| |pred| (-51))) $) 23)) (-3668 (((-112) $) 29)) (-3033 (($ $ (-637 (-1169)) (-51)) 24)) (-3036 (($ $ (-637 (-51))) 61)) (-3565 (((-3 |#1| #1="failed") $) 59) (((-3 (-1169) #1#) $) 136)) (-3564 ((|#1| $) 56) (((-1169) $) NIL)) (-3030 (($ $) 104)) (-3042 (((-112) $) 44)) (-3037 (((-637 (-51)) $) 42)) (-3034 (($ (-1169) (-112) (-112) (-112)) 63)) (-3028 (((-3 (-637 $) "failed") (-637 $)) 70)) (-3039 (((-112) $) 47)) (-3040 (((-112) $) 46)) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) "failed") $) 33)) (-3045 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3214 (((-3 (-2 (|:| |val| $) (|:| -2543 $)) "failed") $) 81)) (-3211 (((-3 (-637 $) "failed") $) 32)) (-3046 (((-3 (-637 $) "failed") $ (-113)) 103) (((-3 (-2 (|:| -2887 (-113)) (|:| |arg| (-637 $))) "failed") $) 91)) (-3044 (((-3 (-637 $) "failed") $) 34)) (-3213 (((-3 (-2 (|:| |val| $) (|:| -2543 (-767))) "failed") $) 37)) (-3043 (((-112) $) 28)) (-3651 (((-1113) $) NIL)) (-3031 (((-112) $) 20)) (-3038 (((-112) $) 43)) (-3029 (((-637 (-51)) $) 107)) (-3041 (((-112) $) 45)) (-4214 (($ (-113) (-637 $)) 88)) (-3734 (((-767) $) 27)) (-3811 (($ $) 60)) (-4385 (($ (-637 $)) 57)) (-4368 (((-112) $) 25)) (-4361 (((-859) $) 51) (($ |#1|) 18) (($ (-1169)) 64)) (-3049 (($ $ (-51)) 106)) (-3047 (($) 87 T CONST)) (-3053 (($) 71 T CONST)) (-3444 (((-112) $ $) 77)) (-4364 (($ $ $) 96)) (-4254 (($ $ $) 100)) (** (($ $ (-767)) 95) (($ $ $) 52)) (* (($ $ $) 101)))
+(((-886 |#1|) (-13 (-1094) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 0 ($) -4367) (-15 1 ($) -4367) (-15 -3211 ((-3 (-637 $) "failed") $)) (-15 -3212 ((-3 (-637 $) "failed") $)) (-15 -3046 ((-3 (-637 $) "failed") $ (-113))) (-15 -3046 ((-3 (-2 (|:| -2887 (-113)) (|:| |arg| (-637 $))) "failed") $)) (-15 -3213 ((-3 (-2 (|:| |val| $) (|:| -2543 (-767))) "failed") $)) (-15 -3045 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3044 ((-3 (-637 $) "failed") $)) (-15 -3214 ((-3 (-2 (|:| |val| $) (|:| -2543 $)) "failed") $)) (-15 -4214 ($ (-113) (-637 $))) (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -4364 ($ $ $)) (-15 -3734 ((-767) $)) (-15 -4385 ($ (-637 $))) (-15 -3811 ($ $)) (-15 -3043 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -3668 ((-112) $)) (-15 -4368 ((-112) $)) (-15 -3041 ((-112) $)) (-15 -3040 ((-112) $)) (-15 -3039 ((-112) $)) (-15 -3038 ((-112) $)) (-15 -3037 ((-637 (-51)) $)) (-15 -3036 ($ $ (-637 (-51)))) (-15 -3035 ($ $ (-637 (-51)))) (-15 -3034 ($ (-1169) (-112) (-112) (-112))) (-15 -3033 ($ $ (-637 (-1169)) (-51))) (-15 -3032 ((-2 (|:| |var| (-637 (-1169))) (|:| |pred| (-51))) $)) (-15 -3031 ((-112) $)) (-15 -3030 ($ $)) (-15 -3049 ($ $ (-51))) (-15 -3029 ((-637 (-51)) $)) (-15 -3474 ((-637 $) $)) (-15 -3028 ((-3 (-637 $) "failed") (-637 $))))) (-1094)) (T -886))
+((-3047 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-3053 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-3211 (*1 *2 *1) (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3212 (*1 *2 *1) (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3046 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-637 (-886 *4))) (-5 *1 (-886 *4)) (-4 *4 (-1094)))) (-3046 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2887 (-113)) (|:| |arg| (-637 (-886 *3))))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3213 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-886 *3)) (|:| -2543 (-767)))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3045 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-886 *3)) (|:| |den| (-886 *3)))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3214 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-886 *3)) (|:| -2543 (-886 *3)))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 (-886 *4))) (-5 *1 (-886 *4)) (-4 *4 (-1094)))) (-4254 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-4364 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3034 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-886 *4)) (-4 *4 (-1094)))) (-3033 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-51)) (-5 *1 (-886 *4)) (-4 *4 (-1094)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-637 (-1169))) (|:| |pred| (-51)))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3030 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))) (-3028 (*1 *2 *2) (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(-13 (-1094) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 (-3047) ($) -4367) (-15 (-3053) ($) -4367) (-15 -3211 ((-3 (-637 $) "failed") $)) (-15 -3212 ((-3 (-637 $) "failed") $)) (-15 -3046 ((-3 (-637 $) "failed") $ (-113))) (-15 -3046 ((-3 (-2 (|:| -2887 (-113)) (|:| |arg| (-637 $))) "failed") $)) (-15 -3213 ((-3 (-2 (|:| |val| $) (|:| -2543 (-767))) "failed") $)) (-15 -3045 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3044 ((-3 (-637 $) "failed") $)) (-15 -3214 ((-3 (-2 (|:| |val| $) (|:| -2543 $)) "failed") $)) (-15 -4214 ($ (-113) (-637 $))) (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -4364 ($ $ $)) (-15 -3734 ((-767) $)) (-15 -4385 ($ (-637 $))) (-15 -3811 ($ $)) (-15 -3043 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -3668 ((-112) $)) (-15 -4368 ((-112) $)) (-15 -3041 ((-112) $)) (-15 -3040 ((-112) $)) (-15 -3039 ((-112) $)) (-15 -3038 ((-112) $)) (-15 -3037 ((-637 (-51)) $)) (-15 -3036 ($ $ (-637 (-51)))) (-15 -3035 ($ $ (-637 (-51)))) (-15 -3034 ($ (-1169) (-112) (-112) (-112))) (-15 -3033 ($ $ (-637 (-1169)) (-51))) (-15 -3032 ((-2 (|:| |var| (-637 (-1169))) (|:| |pred| (-51))) $)) (-15 -3031 ((-112) $)) (-15 -3030 ($ $)) (-15 -3049 ($ $ (-51))) (-15 -3029 ((-637 (-51)) $)) (-15 -3474 ((-637 $) $)) (-15 -3028 ((-3 (-637 $) "failed") (-637 $)))))
+((-3617 (((-886 |#1|) (-886 |#1|) (-637 (-1169)) (-1 (-112) (-637 |#2|))) 32) (((-886 |#1|) (-886 |#1|) (-637 (-1 (-112) |#2|))) 43) (((-886 |#1|) (-886 |#1|) (-1 (-112) |#2|)) 35)) (-3048 (((-112) (-637 |#2|) (-886 |#1|)) 40) (((-112) |#2| (-886 |#1|)) 36)) (-3937 (((-1 (-112) |#2|) (-886 |#1|)) 16)) (-3050 (((-637 |#2|) (-886 |#1|)) 24)) (-3049 (((-886 |#1|) (-886 |#1|) |#2|) 20)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -3617 ((-886 |#1|) (-886 |#1|) (-1 (-112) |#2|))) (-15 -3617 ((-886 |#1|) (-886 |#1|) (-637 (-1 (-112) |#2|)))) (-15 -3617 ((-886 |#1|) (-886 |#1|) (-637 (-1169)) (-1 (-112) (-637 |#2|)))) (-15 -3937 ((-1 (-112) |#2|) (-886 |#1|))) (-15 -3048 ((-112) |#2| (-886 |#1|))) (-15 -3048 ((-112) (-637 |#2|) (-886 |#1|))) (-15 -3049 ((-886 |#1|) (-886 |#1|) |#2|)) (-15 -3050 ((-637 |#2|) (-886 |#1|)))) (-1094) (-1207)) (T -887))
+((-3050 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-637 *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1207)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1207)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-1207)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3)) (-4 *3 (-1207)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1207)))) (-3617 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-886 *5)) (-5 *3 (-637 (-1169))) (-5 *4 (-1 (-112) (-637 *6))) (-4 *5 (-1094)) (-4 *6 (-1207)) (-5 *1 (-887 *5 *6)))) (-3617 (*1 *2 *2 *3) (-12 (-5 *2 (-886 *4)) (-5 *3 (-637 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1207)) (-5 *1 (-887 *4 *5)))) (-3617 (*1 *2 *2 *3) (-12 (-5 *2 (-886 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1207)) (-5 *1 (-887 *4 *5)))))
+(-10 -7 (-15 -3617 ((-886 |#1|) (-886 |#1|) (-1 (-112) |#2|))) (-15 -3617 ((-886 |#1|) (-886 |#1|) (-637 (-1 (-112) |#2|)))) (-15 -3617 ((-886 |#1|) (-886 |#1|) (-637 (-1169)) (-1 (-112) (-637 |#2|)))) (-15 -3937 ((-1 (-112) |#2|) (-886 |#1|))) (-15 -3048 ((-112) |#2| (-886 |#1|))) (-15 -3048 ((-112) (-637 |#2|) (-886 |#1|))) (-15 -3049 ((-886 |#1|) (-886 |#1|) |#2|)) (-15 -3050 ((-637 |#2|) (-886 |#1|))))
+((-4373 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 19)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -4373 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1094) (-1094)) (T -888))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-886 *6)) (-5 *1 (-888 *5 *6)))))
+(-10 -7 (-15 -4373 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
+((-2953 (((-112) $ $) NIL)) (-4349 (((-637 |#1|) $) 16)) (-3051 (((-112) $) 38)) (-3565 (((-3 (-667 |#1|) "failed") $) 43)) (-3564 (((-667 |#1|) $) 41)) (-4213 (($ $) 18)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-4248 (((-767) $) 46)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-667 |#1|) $) 17)) (-4361 (((-859) $) 37) (($ (-667 |#1|)) 21) (((-815 |#1|) $) 27) (($ |#1|) 20)) (-3053 (($) 8 T CONST)) (-3052 (((-637 (-667 |#1|)) $) 23)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 11)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 49)))
+(((-889 |#1|) (-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 1 ($) -4367) (-15 -4361 ((-815 |#1|) $)) (-15 -4361 ($ |#1|)) (-15 -4215 ((-667 |#1|) $)) (-15 -4248 ((-767) $)) (-15 -3052 ((-637 (-667 |#1|)) $)) (-15 -4213 ($ $)) (-15 -3051 ((-112) $)) (-15 -4349 ((-637 |#1|) $)))) (-846)) (T -889))
+((-3053 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4361 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-637 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
+(-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 (-3053) ($) -4367) (-15 -4361 ((-815 |#1|) $)) (-15 -4361 ($ |#1|)) (-15 -4215 ((-667 |#1|) $)) (-15 -4248 ((-767) $)) (-15 -3052 ((-637 (-667 |#1|)) $)) (-15 -4213 ($ $)) (-15 -3051 ((-112) $)) (-15 -4349 ((-637 |#1|) $))))
+((-3880 ((|#1| |#1| |#1|) 19)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -3880 (|#1| |#1| |#1|))) (-1232 |#2|) (-1045)) (T -890))
+((-3880 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1232 *3)))))
+(-10 -7 (-15 -3880 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3057 (((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 14)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3054 (((-1031) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 13)) (-3444 (((-112) $ $) 6)))
(((-891) (-140)) (T -891))
-((-2929 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151)))))) (-2900 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-1031)))))
-(-13 (-1093) (-10 -7 (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2900 ((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2919 ((|#1| |#1| (-767)) 24)) (-2910 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1913 (((-3 (-2 (|:| -1685 |#1|) (|:| -1700 |#1|)) "failed") |#1| (-767) (-767)) 27) (((-640 |#1|) |#1|) 29)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -1913 ((-640 |#1|) |#1|)) (-15 -1913 ((-3 (-2 (|:| -1685 |#1|) (|:| -1700 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2910 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2919 (|#1| |#1| (-767)))) (-1233 |#2|) (-363)) (T -892))
-((-2919 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1233 *4)))) (-2910 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1233 *3)))) (-1913 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1685 *3) (|:| -1700 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1233 *5)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -1913 ((-640 |#1|) |#1|)) (-15 -1913 ((-3 (-2 (|:| -1685 |#1|) (|:| -1700 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2910 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2919 (|#1| |#1| (-767))))
-((-3510 (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151)) 96) (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225)) 91) (((-1031) (-894) (-1057)) 83) (((-1031) (-894)) 84)) (-2929 (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057)) 59) (((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894)) 61)))
-(((-893) (-10 -7 (-15 -3510 ((-1031) (-894))) (-15 -3510 ((-1031) (-894) (-1057))) (-15 -3510 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -3510 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057))))) (T -893))
-((-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-3510 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3510 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))))
-(-10 -7 (-15 -3510 ((-1031) (-894))) (-15 -3510 ((-1031) (-894) (-1057))) (-15 -3510 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -3510 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -2929 ((-2 (|:| -2929 (-379)) (|:| -3352 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057))))
-((-1677 (((-112) $ $) NIL)) (-2057 (((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $) 19)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 21) (($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 18)) (-1718 (((-112) $ $) NIL)))
-(((-894) (-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2057 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))) (T -894))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2057 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))
-((-4203 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) 10) (($ $ |#2| (-767)) 12) (($ $ (-640 |#2|) (-640 (-767))) 15)) (-3213 (($ $ |#2|) 16) (($ $ (-640 |#2|)) 18) (($ $ |#2| (-767)) 19) (($ $ (-640 |#2|) (-640 (-767))) 21)))
-(((-895 |#1| |#2|) (-10 -8 (-15 -3213 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -3213 (|#1| |#1| |#2| (-767))) (-15 -3213 (|#1| |#1| (-640 |#2|))) (-15 -3213 (|#1| |#1| |#2|)) (-15 -4203 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4203 (|#1| |#1| |#2| (-767))) (-15 -4203 (|#1| |#1| (-640 |#2|))) (-15 -4203 (|#1| |#1| |#2|))) (-896 |#2|) (-1093)) (T -895))
-NIL
-(-10 -8 (-15 -3213 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -3213 (|#1| |#1| |#2| (-767))) (-15 -3213 (|#1| |#1| (-640 |#2|))) (-15 -3213 (|#1| |#1| |#2|)) (-15 -4203 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4203 (|#1| |#1| |#2| (-767))) (-15 -4203 (|#1| |#1| (-640 |#2|))) (-15 -4203 (|#1| |#1| |#2|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-4203 (($ $ |#1|) 42) (($ $ (-640 |#1|)) 41) (($ $ |#1| (-767)) 40) (($ $ (-640 |#1|) (-640 (-767))) 39)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ |#1|) 38) (($ $ (-640 |#1|)) 37) (($ $ |#1| (-767)) 36) (($ $ (-640 |#1|) (-640 (-767))) 35)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-896 |#1|) (-140) (-1093)) (T -896))
-((-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-4203 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093)))) (-3213 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-3213 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-3213 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093)))))
-(-13 (-1045) (-10 -8 (-15 -4203 ($ $ |t#1|)) (-15 -4203 ($ $ (-640 |t#1|))) (-15 -4203 ($ $ |t#1| (-767))) (-15 -4203 ($ $ (-640 |t#1|) (-640 (-767)))) (-15 -3213 ($ $ |t#1|)) (-15 -3213 ($ $ (-640 |t#1|))) (-15 -3213 ($ $ |t#1| (-767))) (-15 -3213 ($ $ (-640 |t#1|) (-640 (-767))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) 26)) (-3001 (((-112) $ (-767)) NIL)) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2996 (($ $ $) NIL (|has| $ (-6 -4409)))) (-3007 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1700 (($ $) 25)) (-2819 (($ |#1|) 12) (($ $ $) 17)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-1685 (($ $) 23)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) 20)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1194 |#1|) $) 9) (((-858) $) 29 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 21 (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-897 |#1|) (-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2819 ($ |#1|)) (-15 -2819 ($ $ $)))) (-1093)) (T -897))
-((-2819 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))) (-2819 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))))
-(-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2819 ($ |#1|)) (-15 -2819 ($ $ $))))
-((-3029 ((|#2| (-1135 |#1| |#2|)) 41)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -3029 (|#2| (-1135 |#1| |#2|)))) (-917) (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (T -898))
-((-3029 (*1 *2 *3) (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (-5 *1 (-898 *4 *2)))))
-(-10 -7 (-15 -3029 (|#2| (-1135 |#1| |#2|))))
-((-1677 (((-112) $ $) 7)) (-2569 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3115 (((-1095 |#1|) $ |#1|) 32)) (-3401 (((-112) $) 17)) (-3088 (($ $ $) 30 (-4034 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1776 (($ $ $) 29 (-4034 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 24)) (-1693 (((-1113) $) 10)) (-1542 ((|#1| $ |#1|) 34)) (-2308 ((|#1| $ |#1|) 33)) (-3039 (($ (-640 (-640 |#1|))) 35)) (-3051 (($ (-640 |#1|)) 36)) (-2150 (($ $ $) 21)) (-1745 (($ $ $) 20)) (-1692 (((-858) $) 11)) (-2253 (($) 19 T CONST)) (-1779 (((-112) $ $) 27 (-4034 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1754 (((-112) $ $) 26 (-4034 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 28 (-4034 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1743 (((-112) $ $) 31)) (-1836 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14)))
-(((-899 |#1|) (-140) (-1093)) (T -899))
-((-3051 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-1542 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-2308 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3)))) (-1743 (*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(-13 (-473) (-10 -8 (-15 -3051 ($ (-640 |t#1|))) (-15 -3039 ($ (-640 (-640 |t#1|)))) (-15 -1542 (|t#1| $ |t#1|)) (-15 -2308 (|t#1| $ |t#1|)) (-15 -3115 ((-1095 |t#1|) $ |t#1|)) (-15 -1743 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|)))
-(((-102) . T) ((-610 (-858)) . T) ((-473) . T) ((-722) . T) ((-846) -4034 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3135 (((-640 (-640 (-767))) $) 107)) (-3091 (((-640 (-767)) (-901 |#1|) $) 129)) (-3079 (((-640 (-767)) (-901 |#1|) $) 130)) (-3145 (((-640 (-901 |#1|)) $) 97)) (-1690 (((-901 |#1|) $ (-563)) 102) (((-901 |#1|) $) 103)) (-3125 (($ (-640 (-901 |#1|))) 109)) (-1775 (((-767) $) 104)) (-3103 (((-1095 (-1095 |#1|)) $) 127)) (-3115 (((-1095 |#1|) $ |#1|) 120) (((-1095 (-1095 |#1|)) $ (-1095 |#1|)) 138) (((-1095 (-640 |#1|)) $ (-640 |#1|)) 141)) (-3070 (((-1095 |#1|) $) 100)) (-2667 (((-112) (-901 |#1|) $) 91)) (-3854 (((-1151) $) NIL)) (-3061 (((-1262) $) 94) (((-1262) $ (-563) (-563)) 142)) (-1693 (((-1113) $) NIL)) (-3154 (((-640 (-901 |#1|)) $) 95)) (-2308 (((-901 |#1|) $ (-767)) 98)) (-3871 (((-767) $) 105)) (-1692 (((-858) $) 118) (((-640 (-901 |#1|)) $) 23) (($ (-640 (-901 |#1|))) 108)) (-4212 (((-640 |#1|) $) 106)) (-1718 (((-112) $ $) 135)) (-1766 (((-112) $ $) 133)) (-1743 (((-112) $ $) 132)))
-(((-900 |#1|) (-13 (-1093) (-10 -8 (-15 -1692 ((-640 (-901 |#1|)) $)) (-15 -3154 ((-640 (-901 |#1|)) $)) (-15 -2308 ((-901 |#1|) $ (-767))) (-15 -1690 ((-901 |#1|) $ (-563))) (-15 -1690 ((-901 |#1|) $)) (-15 -1775 ((-767) $)) (-15 -3871 ((-767) $)) (-15 -4212 ((-640 |#1|) $)) (-15 -3145 ((-640 (-901 |#1|)) $)) (-15 -3135 ((-640 (-640 (-767))) $)) (-15 -1692 ($ (-640 (-901 |#1|)))) (-15 -3125 ($ (-640 (-901 |#1|)))) (-15 -3115 ((-1095 |#1|) $ |#1|)) (-15 -3103 ((-1095 (-1095 |#1|)) $)) (-15 -3115 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -3115 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -2667 ((-112) (-901 |#1|) $)) (-15 -3091 ((-640 (-767)) (-901 |#1|) $)) (-15 -3079 ((-640 (-767)) (-901 |#1|) $)) (-15 -3070 ((-1095 |#1|) $)) (-15 -1743 ((-112) $ $)) (-15 -1766 ((-112) $ $)) (-15 -3061 ((-1262) $)) (-15 -3061 ((-1262) $ (-563) (-563))))) (-1093)) (T -900))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-1690 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4)) (-5 *3 (-1095 *4)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4)) (-5 *3 (-640 *4)))) (-2667 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-900 *4)))) (-3091 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-3079 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1743 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1766 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3061 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -1692 ((-640 (-901 |#1|)) $)) (-15 -3154 ((-640 (-901 |#1|)) $)) (-15 -2308 ((-901 |#1|) $ (-767))) (-15 -1690 ((-901 |#1|) $ (-563))) (-15 -1690 ((-901 |#1|) $)) (-15 -1775 ((-767) $)) (-15 -3871 ((-767) $)) (-15 -4212 ((-640 |#1|) $)) (-15 -3145 ((-640 (-901 |#1|)) $)) (-15 -3135 ((-640 (-640 (-767))) $)) (-15 -1692 ($ (-640 (-901 |#1|)))) (-15 -3125 ($ (-640 (-901 |#1|)))) (-15 -3115 ((-1095 |#1|) $ |#1|)) (-15 -3103 ((-1095 (-1095 |#1|)) $)) (-15 -3115 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -3115 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -2667 ((-112) (-901 |#1|) $)) (-15 -3091 ((-640 (-767)) (-901 |#1|) $)) (-15 -3079 ((-640 (-767)) (-901 |#1|) $)) (-15 -3070 ((-1095 |#1|) $)) (-15 -1743 ((-112) $ $)) (-15 -1766 ((-112) $ $)) (-15 -3061 ((-1262) $)) (-15 -3061 ((-1262) $ (-563) (-563)))))
-((-1677 (((-112) $ $) NIL)) (-1640 (((-640 $) (-640 $)) 77)) (-2807 (((-563) $) 60)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-1775 (((-767) $) 58)) (-3115 (((-1095 |#1|) $ |#1|) 49)) (-3401 (((-112) $) NIL)) (-2959 (((-112) $) 63)) (-2978 (((-767) $) 61)) (-3070 (((-1095 |#1|) $) 42)) (-3088 (($ $ $) NIL (-4034 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1776 (($ $ $) NIL (-4034 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3020 (((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $) 37)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 93)) (-1693 (((-1113) $) NIL)) (-2948 (((-1095 |#1|) $) 100 (|has| |#1| (-368)))) (-2969 (((-112) $) 59)) (-1542 ((|#1| $ |#1|) 47)) (-2308 ((|#1| $ |#1|) 94)) (-3871 (((-767) $) 44)) (-3039 (($ (-640 (-640 |#1|))) 85)) (-2987 (((-967) $) 53)) (-3051 (($ (-640 |#1|)) 22)) (-2150 (($ $ $) NIL)) (-1745 (($ $ $) NIL)) (-3009 (($ (-640 (-640 |#1|))) 39)) (-2998 (($ (-640 (-640 |#1|))) 88)) (-2938 (($ (-640 |#1|)) 96)) (-1692 (((-858) $) 84) (($ (-640 (-640 |#1|))) 66) (($ (-640 |#1|)) 67)) (-2253 (($) 17 T CONST)) (-1779 (((-112) $ $) NIL (-4034 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1718 (((-112) $ $) 45)) (-1766 (((-112) $ $) NIL (-4034 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1743 (((-112) $ $) 65)) (-1836 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 23)))
-(((-901 |#1|) (-13 (-899 |#1|) (-10 -8 (-15 -3020 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -3009 ($ (-640 (-640 |#1|)))) (-15 -1692 ($ (-640 (-640 |#1|)))) (-15 -1692 ($ (-640 |#1|))) (-15 -2998 ($ (-640 (-640 |#1|)))) (-15 -3871 ((-767) $)) (-15 -3070 ((-1095 |#1|) $)) (-15 -2987 ((-967) $)) (-15 -1775 ((-767) $)) (-15 -2978 ((-767) $)) (-15 -2807 ((-563) $)) (-15 -2969 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -1640 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -2948 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2938 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -2938 ($ (-640 |#1|))) |%noBranch|)))) (-1093)) (T -901))
-((-3020 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) (-4 *3 (-1093)))) (-2938 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))))
-(-13 (-899 |#1|) (-10 -8 (-15 -3020 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -3009 ($ (-640 (-640 |#1|)))) (-15 -1692 ($ (-640 (-640 |#1|)))) (-15 -1692 ($ (-640 |#1|))) (-15 -2998 ($ (-640 (-640 |#1|)))) (-15 -3871 ((-767) $)) (-15 -3070 ((-1095 |#1|) $)) (-15 -2987 ((-967) $)) (-15 -1775 ((-767) $)) (-15 -2978 ((-767) $)) (-15 -2807 ((-563) $)) (-15 -2969 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -1640 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -2948 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2938 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -2938 ($ (-640 |#1|))) |%noBranch|))))
-((-1999 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|)) 127)) (-2027 ((|#1|) 76)) (-2017 (((-418 (-1165 |#4|)) (-1165 |#4|)) 136)) (-2038 (((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)) 68)) (-2009 (((-418 (-1165 |#4|)) (-1165 |#4|)) 146)) (-1990 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|) 91)))
-(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1999 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -2009 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2017 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2027 (|#1|)) (-15 -1990 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -2038 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)))) (-905) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -902))
-((-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8)))) (-1990 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))) (-2027 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2009 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-1999 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1999 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -2009 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2017 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2027 (|#1|)) (-15 -1990 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -2038 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|))))
-((-1999 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 36)) (-2027 ((|#1|) 53)) (-2017 (((-418 (-1165 |#2|)) (-1165 |#2|)) 101)) (-2038 (((-418 (-1165 |#2|)) (-1165 |#2|)) 89)) (-2009 (((-418 (-1165 |#2|)) (-1165 |#2|)) 112)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -1999 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -2009 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2017 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2027 (|#1|)) (-15 -2038 ((-418 (-1165 |#2|)) (-1165 |#2|)))) (-905) (-1233 |#1|)) (T -903))
-((-2038 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-2027 (*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-2009 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-1999 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5)))))
-(-10 -7 (-15 -1999 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -2009 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2017 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2027 (|#1|)) (-15 -2038 ((-418 (-1165 |#2|)) (-1165 |#2|))))
-((-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 41)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 18)) (-2047 (((-3 $ "failed") $) 35)))
-(((-904 |#1|) (-10 -8 (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-905)) (T -904))
-NIL
-(-10 -8 (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 61)) (-1798 (($ $) 52)) (-2802 (((-418 $) $) 53)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 58)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-2560 (((-112) $) 54)) (-3401 (((-112) $) 31)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2075 (((-418 (-1165 $)) (-1165 $)) 59)) (-2083 (((-418 (-1165 $)) (-1165 $)) 60)) (-2173 (((-418 $) $) 51)) (-3012 (((-3 $ "failed") $ $) 43)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 57 (|has| $ (-145)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-2047 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-905) (-140)) (T -905))
-((-2103 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905)))) (-2093 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-2083 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-2075 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1)) (-4 *1 (-905)))) (-2054 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905)) (-5 *2 (-1257 *1)))) (-2047 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905)))))
-(-13 (-1212) (-10 -8 (-15 -2093 ((-418 (-1165 $)) (-1165 $))) (-15 -2083 ((-418 (-1165 $)) (-1165 $))) (-15 -2075 ((-418 (-1165 $)) (-1165 $))) (-15 -2103 ((-1165 $) (-1165 $) (-1165 $))) (-15 -2066 ((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $))) (IF (|has| $ (-145)) (PROGN (-15 -2054 ((-3 (-1257 $) "failed") (-684 $))) (-15 -2047 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3761 (((-112) $) NIL)) (-3728 (((-767)) NIL)) (-1731 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1597 (((-1181 (-917) (-767)) (-563)) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 $ "failed") $) NIL)) (-2057 (($ $) NIL)) (-3458 (($ (-1257 $)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-4036 (($) NIL)) (-1656 (((-112) $) NIL)) (-3188 (($ $) NIL) (($ $ (-767)) NIL)) (-2560 (((-112) $) NIL)) (-1775 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3401 (((-112) $) NIL)) (-4024 (($) NIL (|has| $ (-368)))) (-4002 (((-112) $) NIL (|has| $ (-368)))) (-3975 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1983 (((-3 $ "failed") $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4035 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) NIL)) (-3990 (((-917) $) NIL)) (-2196 (((-1165 $) $) NIL (|has| $ (-368)))) (-2184 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-2207 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL T CONST)) (-2552 (($ (-917)) NIL)) (-3751 (((-112) $) NIL)) (-1693 (((-1113) $) NIL)) (-4334 (($) NIL (|has| $ (-368)))) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL)) (-2173 (((-418 $) $) NIL)) (-3740 (((-917)) NIL) (((-829 (-917))) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3196 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3526 (((-134)) NIL)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-3871 (((-917) $) NIL) (((-829 (-917)) $) NIL)) (-3402 (((-1165 $)) NIL)) (-1586 (($) NIL)) (-2220 (($) NIL (|has| $ (-368)))) (-3759 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) NIL)) (-2219 (((-563) $) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL)) (-2047 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3914 (((-767)) NIL)) (-4013 (((-1257 $) (-917)) NIL) (((-1257 $)) NIL)) (-3223 (((-112) $ $) NIL)) (-3772 (((-112) $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3715 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-906 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -906))
-NIL
-(-13 (-349) (-329 $) (-611 (-563)))
-((-2123 (((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 79)) (-2113 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-1775 (((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|)) 15)))
-(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1775 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2113 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -2123 ((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907))
-((-2123 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-2 (|:| -1775 (-767)) (|:| -1518 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-1775 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1775 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2113 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -2123 ((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|))))
-((-2123 (((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 56)) (-2113 (((-112) (-336 (-407 (-563)) |#1| |#2| |#3|)) 16)) (-1775 (((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 14)))
-(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -1775 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -2113 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -2123 ((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)))) (-1233 (-407 (-563))) (-1233 (-407 |#1|)) (-342 (-407 (-563)) |#1| |#2|)) (T -908))
-((-2123 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-2 (|:| -1775 (-767)) (|:| -1518 *6))) (-5 *1 (-908 *4 *5 *6)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-1775 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6)))))
-(-10 -7 (-15 -1775 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -2113 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -2123 ((-3 (-2 (|:| -1775 (-767)) (|:| -1518 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))))
-((-2181 ((|#2| |#2|) 26)) (-2155 (((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) 15)) (-2134 (((-917) (-563)) 35)) (-2166 (((-563) |#2|) 42)) (-2145 (((-563) |#2|) 21) (((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|) 20)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -2134 ((-917) (-563))) (-15 -2145 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -2145 ((-563) |#2|)) (-15 -2155 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -2166 ((-563) |#2|)) (-15 -2181 (|#2| |#2|))) (-1233 (-407 (-563))) (-1233 (-407 |#1|))) (T -909))
-((-2181 (*1 *2 *2) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1233 (-407 *3))))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-2145 (*1 *2 *3) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4))))))
-(-10 -7 (-15 -2134 ((-917) (-563))) (-15 -2145 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -2145 ((-563) |#2|)) (-15 -2155 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -2166 ((-563) |#2|)) (-15 -2181 (|#2| |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 ((|#1| $) 81)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3094 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 75)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-2278 (($ |#1| (-418 |#1|)) 73)) (-2204 (((-1165 |#1|) |#1| |#1|) 41)) (-2193 (($ $) 49)) (-3401 (((-112) $) NIL)) (-2215 (((-563) $) 78)) (-2229 (($ $ (-563)) 80)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2245 ((|#1| $) 77)) (-2258 (((-418 |#1|) $) 76)) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) 74)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-2268 (($ $) 39)) (-1692 (((-858) $) 99) (($ (-563)) 54) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 31) (((-407 |#1|) $) 59) (($ (-407 (-418 |#1|))) 67)) (-3914 (((-767)) 52)) (-3223 (((-112) $ $) NIL)) (-2239 (($) 23 T CONST)) (-2253 (($) 12 T CONST)) (-1718 (((-112) $ $) 68)) (-1836 (($ $ $) NIL)) (-1825 (($ $) 88) (($ $ $) NIL)) (-1813 (($ $ $) 38)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 90) (($ $ $) 37) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -1692 ((-407 |#1|) $)) (-15 -1692 ($ (-407 (-418 |#1|)))) (-15 -2268 ($ $)) (-15 -2258 ((-418 |#1|) $)) (-15 -2245 (|#1| $)) (-15 -2229 ($ $ (-563))) (-15 -2215 ((-563) $)) (-15 -2204 ((-1165 |#1|) |#1| |#1|)) (-15 -2193 ($ $)) (-15 -2278 ($ |#1| (-418 |#1|))) (-15 -3944 (|#1| $)))) (-307)) (T -910))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2245 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2204 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2193 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-2278 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-3944 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(-13 (-363) (-38 |#1|) (-10 -8 (-15 -1692 ((-407 |#1|) $)) (-15 -1692 ($ (-407 (-418 |#1|)))) (-15 -2268 ($ $)) (-15 -2258 ((-418 |#1|) $)) (-15 -2245 (|#1| $)) (-15 -2229 ($ $ (-563))) (-15 -2215 ((-563) $)) (-15 -2204 ((-1165 |#1|) |#1| |#1|)) (-15 -2193 ($ $)) (-15 -2278 ($ |#1| (-418 |#1|))) (-15 -3944 (|#1| $))))
-((-2278 (((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)) 17) (((-52) (-407 (-948 |#1|)) (-1169)) 18)))
-(((-911 |#1|) (-10 -7 (-15 -2278 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -2278 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)))) (-13 (-307) (-147))) (T -911))
-((-2278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5)))))
-(-10 -7 (-15 -2278 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -2278 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169))))
-((-2289 ((|#4| (-640 |#4|)) 121) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-3551 (((-1165 |#4|) (-640 (-1165 |#4|))) 114) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 49) ((|#4| (-640 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3551 (|#4| |#4| |#4|)) (-15 -3551 (|#4| (-640 |#4|))) (-15 -3551 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3551 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -2289 (|#4| |#4| |#4|)) (-15 -2289 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2289 (|#4| (-640 |#4|)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -912))
-((-2289 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-2289 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-2289 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3551 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3551 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))))
-(-10 -7 (-15 -3551 (|#4| |#4| |#4|)) (-15 -3551 (|#4| (-640 |#4|))) (-15 -3551 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3551 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -2289 (|#4| |#4| |#4|)) (-15 -2289 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2289 (|#4| (-640 |#4|))))
-((-2429 (((-900 (-563)) (-967)) 23) (((-900 (-563)) (-640 (-563))) 20)) (-2300 (((-900 (-563)) (-640 (-563))) 48) (((-900 (-563)) (-917)) 49)) (-2418 (((-900 (-563))) 24)) (-2395 (((-900 (-563))) 38) (((-900 (-563)) (-640 (-563))) 37)) (-2385 (((-900 (-563))) 36) (((-900 (-563)) (-640 (-563))) 35)) (-2372 (((-900 (-563))) 34) (((-900 (-563)) (-640 (-563))) 33)) (-2362 (((-900 (-563))) 32) (((-900 (-563)) (-640 (-563))) 31)) (-2353 (((-900 (-563))) 30) (((-900 (-563)) (-640 (-563))) 29)) (-2406 (((-900 (-563))) 40) (((-900 (-563)) (-640 (-563))) 39)) (-2342 (((-900 (-563)) (-640 (-563))) 52) (((-900 (-563)) (-917)) 53)) (-2331 (((-900 (-563)) (-640 (-563))) 50) (((-900 (-563)) (-917)) 51)) (-2312 (((-900 (-563)) (-640 (-563))) 46) (((-900 (-563)) (-917)) 47)) (-2322 (((-900 (-563)) (-640 (-917))) 43)))
-(((-913) (-10 -7 (-15 -2300 ((-900 (-563)) (-917))) (-15 -2300 ((-900 (-563)) (-640 (-563)))) (-15 -2312 ((-900 (-563)) (-917))) (-15 -2312 ((-900 (-563)) (-640 (-563)))) (-15 -2322 ((-900 (-563)) (-640 (-917)))) (-15 -2331 ((-900 (-563)) (-917))) (-15 -2331 ((-900 (-563)) (-640 (-563)))) (-15 -2342 ((-900 (-563)) (-917))) (-15 -2342 ((-900 (-563)) (-640 (-563)))) (-15 -2353 ((-900 (-563)) (-640 (-563)))) (-15 -2353 ((-900 (-563)))) (-15 -2362 ((-900 (-563)) (-640 (-563)))) (-15 -2362 ((-900 (-563)))) (-15 -2372 ((-900 (-563)) (-640 (-563)))) (-15 -2372 ((-900 (-563)))) (-15 -2385 ((-900 (-563)) (-640 (-563)))) (-15 -2385 ((-900 (-563)))) (-15 -2395 ((-900 (-563)) (-640 (-563)))) (-15 -2395 ((-900 (-563)))) (-15 -2406 ((-900 (-563)) (-640 (-563)))) (-15 -2406 ((-900 (-563)))) (-15 -2418 ((-900 (-563)))) (-15 -2429 ((-900 (-563)) (-640 (-563)))) (-15 -2429 ((-900 (-563)) (-967))))) (T -913))
-((-2429 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2418 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2406 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2395 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2385 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2372 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2362 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2353 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(-10 -7 (-15 -2300 ((-900 (-563)) (-917))) (-15 -2300 ((-900 (-563)) (-640 (-563)))) (-15 -2312 ((-900 (-563)) (-917))) (-15 -2312 ((-900 (-563)) (-640 (-563)))) (-15 -2322 ((-900 (-563)) (-640 (-917)))) (-15 -2331 ((-900 (-563)) (-917))) (-15 -2331 ((-900 (-563)) (-640 (-563)))) (-15 -2342 ((-900 (-563)) (-917))) (-15 -2342 ((-900 (-563)) (-640 (-563)))) (-15 -2353 ((-900 (-563)) (-640 (-563)))) (-15 -2353 ((-900 (-563)))) (-15 -2362 ((-900 (-563)) (-640 (-563)))) (-15 -2362 ((-900 (-563)))) (-15 -2372 ((-900 (-563)) (-640 (-563)))) (-15 -2372 ((-900 (-563)))) (-15 -2385 ((-900 (-563)) (-640 (-563)))) (-15 -2385 ((-900 (-563)))) (-15 -2395 ((-900 (-563)) (-640 (-563)))) (-15 -2395 ((-900 (-563)))) (-15 -2406 ((-900 (-563)) (-640 (-563)))) (-15 -2406 ((-900 (-563)))) (-15 -2418 ((-900 (-563)))) (-15 -2429 ((-900 (-563)) (-640 (-563)))) (-15 -2429 ((-900 (-563)) (-967))))
-((-2451 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 12)) (-2440 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 11)))
-(((-914 |#1|) (-10 -7 (-15 -2440 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2451 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))))) (-452)) (T -914))
-((-2451 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))))
-(-10 -7 (-15 -2440 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2451 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))))
-((-1692 (((-316 |#1|) (-477)) 16)))
-(((-915 |#1|) (-10 -7 (-15 -1692 ((-316 |#1|) (-477)))) (-13 (-846) (-555))) (T -915))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-846) (-555))))))
-(-10 -7 (-15 -1692 ((-316 |#1|) (-477))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-3401 (((-112) $) 31)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
-(((-916) (-140)) (T -916))
-((-2474 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2310 (-640 *1)) (|:| -4334 *1))) (-5 *3 (-640 *1)))) (-2461 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916)))))
-(-13 (-452) (-10 -8 (-15 -2474 ((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $))) (-15 -2461 ((-3 (-640 $) "failed") (-640 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3551 (($ $ $) NIL)) (-1692 (((-858) $) NIL)) (-2253 (($) NIL T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL)))
-(((-917) (-13 (-790) (-722) (-10 -8 (-15 -3551 ($ $ $)) (-6 (-4410 "*"))))) (T -917))
-((-3551 (*1 *1 *1 *1) (-5 *1 (-917))))
-(-13 (-790) (-722) (-10 -8 (-15 -3551 ($ $ $)) (-6 (-4410 "*"))))
+((-3057 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151)))))) (-3054 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-1031)))))
+(-13 (-1094) (-10 -7 (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -3054 ((-1031) (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3056 ((|#1| |#1| (-767)) 24)) (-3055 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3846 (((-3 (-2 (|:| -3530 |#1|) (|:| -3529 |#1|)) "failed") |#1| (-767) (-767)) 27) (((-637 |#1|) |#1|) 29)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -3846 ((-637 |#1|) |#1|)) (-15 -3846 ((-3 (-2 (|:| -3530 |#1|) (|:| -3529 |#1|)) "failed") |#1| (-767) (-767))) (-15 -3055 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| (-767)))) (-1232 |#2|) (-363)) (T -892))
+((-3056 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1232 *4)))) (-3055 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1232 *3)))) (-3846 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3530 *3) (|:| -3529 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1232 *5)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -3846 ((-637 |#1|) |#1|)) (-15 -3846 ((-3 (-2 (|:| -3530 |#1|) (|:| -3529 |#1|)) "failed") |#1| (-767) (-767))) (-15 -3055 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| (-767))))
+((-3987 (((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151)) 96) (((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151) (-225)) 91) (((-1031) (-894) (-1057)) 83) (((-1031) (-894)) 84)) (-3057 (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894) (-1057)) 59) (((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894)) 61)))
+(((-893) (-10 -7 (-15 -3987 ((-1031) (-894))) (-15 -3987 ((-1031) (-894) (-1057))) (-15 -3987 ((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151) (-225))) (-15 -3987 ((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894) (-1057))))) (T -893))
+((-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-893)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151))))) (-5 *1 (-893)))) (-3987 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-637 (-637 (-314 *3)))) (-5 *7 (-1151)) (-5 *5 (-637 (-314 (-378)))) (-5 *3 (-378)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3987 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-637 (-637 (-314 *3)))) (-5 *7 (-1151)) (-5 *8 (-225)) (-5 *5 (-637 (-314 (-378)))) (-5 *3 (-378)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))))
+(-10 -7 (-15 -3987 ((-1031) (-894))) (-15 -3987 ((-1031) (-894) (-1057))) (-15 -3987 ((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151) (-225))) (-15 -3987 ((-1031) (-378) (-378) (-378) (-378) (-767) (-767) (-637 (-314 (-378))) (-637 (-637 (-314 (-378)))) (-1151))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894))) (-15 -3057 ((-2 (|:| -3057 (-378)) (|:| -3956 (-1151)) (|:| |explanations| (-637 (-1151)))) (-894) (-1057))))
+((-2953 (((-112) $ $) NIL)) (-3564 (((-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $) 19)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 21) (($ (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 18)) (-3444 (((-112) $ $) NIL)))
+(((-894) (-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -3564 ((-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))) (T -894))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ($ (-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -3564 ((-2 (|:| |pde| (-637 (-314 (-225)))) (|:| |constraints| (-637 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))
+((-4225 (($ $ |#2|) NIL) (($ $ (-637 |#2|)) 10) (($ $ |#2| (-767)) 12) (($ $ (-637 |#2|) (-637 (-767))) 15)) (-3058 (($ $ |#2|) 16) (($ $ (-637 |#2|)) 18) (($ $ |#2| (-767)) 19) (($ $ (-637 |#2|) (-637 (-767))) 21)))
+(((-895 |#1| |#2|) (-10 -8 (-15 -3058 (|#1| |#1| (-637 |#2|) (-637 (-767)))) (-15 -3058 (|#1| |#1| |#2| (-767))) (-15 -3058 (|#1| |#1| (-637 |#2|))) (-15 -3058 (|#1| |#1| |#2|)) (-15 -4225 (|#1| |#1| (-637 |#2|) (-637 (-767)))) (-15 -4225 (|#1| |#1| |#2| (-767))) (-15 -4225 (|#1| |#1| (-637 |#2|))) (-15 -4225 (|#1| |#1| |#2|))) (-896 |#2|) (-1094)) (T -895))
+NIL
+(-10 -8 (-15 -3058 (|#1| |#1| (-637 |#2|) (-637 (-767)))) (-15 -3058 (|#1| |#1| |#2| (-767))) (-15 -3058 (|#1| |#1| (-637 |#2|))) (-15 -3058 (|#1| |#1| |#2|)) (-15 -4225 (|#1| |#1| (-637 |#2|) (-637 (-767)))) (-15 -4225 (|#1| |#1| |#2| (-767))) (-15 -4225 (|#1| |#1| (-637 |#2|))) (-15 -4225 (|#1| |#1| |#2|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4225 (($ $ |#1|) 42) (($ $ (-637 |#1|)) 41) (($ $ |#1| (-767)) 40) (($ $ (-637 |#1|) (-637 (-767))) 39)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ |#1|) 38) (($ $ (-637 |#1|)) 37) (($ $ |#1| (-767)) 36) (($ $ (-637 |#1|) (-637 (-767))) 35)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-896 |#1|) (-140) (-1094)) (T -896))
+((-4225 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-4225 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-4225 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094)))) (-3058 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094)))))
+(-13 (-1045) (-10 -8 (-15 -4225 ($ $ |t#1|)) (-15 -4225 ($ $ (-637 |t#1|))) (-15 -4225 ($ $ |t#1| (-767))) (-15 -4225 ($ $ (-637 |t#1|) (-637 (-767)))) (-15 -3058 ($ $ |t#1|)) (-15 -3058 ($ $ (-637 |t#1|))) (-15 -3058 ($ $ |t#1| (-767))) (-15 -3058 ($ $ (-637 |t#1|) (-637 (-767))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) 26)) (-1296 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1378 (($ $ $) NIL (|has| $ (-6 -4409)))) (-1379 (($ $ $) NIL (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ #2="left" $) NIL (|has| $ (-6 -4409))) (($ $ #3="right" $) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3529 (($ $) 25)) (-3059 (($ |#1|) 12) (($ $ $) 17)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3530 (($ $) 23)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) 20)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1194 |#1|) $) 9) (((-859) $) 29 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-897 |#1|) (-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -3059 ($ |#1|)) (-15 -3059 ($ $ $)))) (-1094)) (T -897))
+((-3059 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))) (-3059 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))))
+(-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -3059 ($ |#1|)) (-15 -3059 ($ $ $))))
+((-2953 (((-112) $ $) NIL)) (-3299 (((-637 $) (-637 $)) 77)) (-4038 (((-546) $) 60)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-4186 (((-767) $) 58)) (-3079 (((-1090 |#1|) $ |#1|) 49)) (-2552 (((-112) $) NIL)) (-3062 (((-112) $) 63)) (-3064 (((-767) $) 61)) (-3075 (((-1090 |#1|) $) 42)) (-2919 (($ $ $) NIL (-3943 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3249 (($ $ $) NIL (-3943 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3068 (((-2 (|:| |preimage| (-637 |#1|)) (|:| |image| (-637 |#1|))) $) 37)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 93)) (-3651 (((-1113) $) NIL)) (-3061 (((-1090 |#1|) $) 100 (|has| |#1| (-368)))) (-3063 (((-112) $) 59)) (-4182 ((|#1| $ |#1|) 47)) (-4214 ((|#1| $ |#1|) 94)) (-4363 (((-767) $) 44)) (-3070 (($ (-637 (-637 |#1|))) 85)) (-3065 (((-967) $) 53)) (-3071 (($ (-637 |#1|)) 22)) (-3399 (($ $ $) NIL)) (-2735 (($ $ $) NIL)) (-3067 (($ (-637 (-637 |#1|))) 39)) (-3066 (($ (-637 (-637 |#1|))) 88)) (-3060 (($ (-637 |#1|)) 96)) (-4361 (((-859) $) 84) (($ (-637 (-637 |#1|))) 66) (($ (-637 |#1|)) 67)) (-3053 (($) 17 T CONST)) (-2951 (((-112) $ $) NIL (-3943 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3444 (((-112) $ $) 45)) (-3073 (((-112) $ $) NIL (-3943 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3074 (((-112) $ $) 65)) (-4364 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ $ $) 23)))
+(((-898 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -3068 ((-2 (|:| |preimage| (-637 |#1|)) (|:| |image| (-637 |#1|))) $)) (-15 -3067 ($ (-637 (-637 |#1|)))) (-15 -4361 ($ (-637 (-637 |#1|)))) (-15 -4361 ($ (-637 |#1|))) (-15 -3066 ($ (-637 (-637 |#1|)))) (-15 -4363 ((-767) $)) (-15 -3075 ((-1090 |#1|) $)) (-15 -3065 ((-967) $)) (-15 -4186 ((-767) $)) (-15 -3064 ((-767) $)) (-15 -4038 ((-546) $)) (-15 -3063 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -3299 ((-637 $) (-637 $))) (IF (|has| |#1| (-368)) (-15 -3061 ((-1090 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3060 ($ (-637 |#1|))) (IF (|has| |#1| (-368)) (-15 -3060 ($ (-637 |#1|))) |%noBranch|)))) (-1094)) (T -898))
+((-3068 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-637 *3)) (|:| |image| (-637 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3067 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-898 *3)))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1094)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-898 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-898 *3)))))
+(-13 (-900 |#1|) (-10 -8 (-15 -3068 ((-2 (|:| |preimage| (-637 |#1|)) (|:| |image| (-637 |#1|))) $)) (-15 -3067 ($ (-637 (-637 |#1|)))) (-15 -4361 ($ (-637 (-637 |#1|)))) (-15 -4361 ($ (-637 |#1|))) (-15 -3066 ($ (-637 (-637 |#1|)))) (-15 -4363 ((-767) $)) (-15 -3075 ((-1090 |#1|) $)) (-15 -3065 ((-967) $)) (-15 -4186 ((-767) $)) (-15 -3064 ((-767) $)) (-15 -4038 ((-546) $)) (-15 -3063 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -3299 ((-637 $) (-637 $))) (IF (|has| |#1| (-368)) (-15 -3061 ((-1090 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3060 ($ (-637 |#1|))) (IF (|has| |#1| (-368)) (-15 -3060 ($ (-637 |#1|))) |%noBranch|))))
+((-3069 ((|#2| (-1135 |#1| |#2|)) 41)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -3069 (|#2| (-1135 |#1| |#2|)))) (-915) (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (T -899))
+((-3069 (*1 *2 *3) (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-915)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (-5 *1 (-899 *4 *2)))))
+(-10 -7 (-15 -3069 (|#2| (-1135 |#1| |#2|))))
+((-2953 (((-112) $ $) 7)) (-4139 (($) 18 T CONST)) (-3873 (((-3 $ "failed") $) 15)) (-3079 (((-1090 |#1|) $ |#1|) 32)) (-2552 (((-112) $) 17)) (-2919 (($ $ $) 30 (-3943 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3249 (($ $ $) 29 (-3943 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 24)) (-3651 (((-1113) $) 10)) (-4182 ((|#1| $ |#1|) 34)) (-4214 ((|#1| $ |#1|) 33)) (-3070 (($ (-637 (-637 |#1|))) 35)) (-3071 (($ (-637 |#1|)) 36)) (-3399 (($ $ $) 21)) (-2735 (($ $ $) 20)) (-4361 (((-859) $) 11)) (-3053 (($) 19 T CONST)) (-2951 (((-112) $ $) 27 (-3943 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2952 (((-112) $ $) 26 (-3943 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 28 (-3943 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3074 (((-112) $ $) 31)) (-4364 (($ $ $) 23)) (** (($ $ (-915)) 13) (($ $ (-767)) 16) (($ $ (-546)) 22)) (* (($ $ $) 14)))
+(((-900 |#1|) (-140) (-1094)) (T -900))
+((-3071 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-4182 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4214 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1090 *3)))) (-3074 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-473) (-10 -8 (-15 -3071 ($ (-637 |t#1|))) (-15 -3070 ($ (-637 (-637 |t#1|)))) (-15 -4182 (|t#1| $ |t#1|)) (-15 -4214 (|t#1| $ |t#1|)) (-15 -3079 ((-1090 |t#1|) $ |t#1|)) (-15 -3074 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|)))
+(((-102) . T) ((-610 (-859)) . T) ((-473) . T) ((-722) . T) ((-846) -3943 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3081 (((-637 (-637 (-767))) $) 107)) (-3077 (((-637 (-767)) (-898 |#1|) $) 129)) (-3076 (((-637 (-767)) (-898 |#1|) $) 130)) (-3082 (((-637 (-898 |#1|)) $) 97)) (-3384 (((-898 |#1|) $ (-546)) 102) (((-898 |#1|) $) 103)) (-3080 (($ (-637 (-898 |#1|))) 109)) (-4186 (((-767) $) 104)) (-3078 (((-1090 (-1090 |#1|)) $) 127)) (-3079 (((-1090 |#1|) $ |#1|) 120) (((-1090 (-1090 |#1|)) $ (-1090 |#1|)) 138) (((-1090 (-637 |#1|)) $ (-637 |#1|)) 141)) (-3075 (((-1090 |#1|) $) 100)) (-3653 (((-112) (-898 |#1|) $) 91)) (-3650 (((-1151) $) NIL)) (-3072 (((-1262) $) 94) (((-1262) $ (-546) (-546)) 142)) (-3651 (((-1113) $) NIL)) (-3084 (((-637 (-898 |#1|)) $) 95)) (-4214 (((-898 |#1|) $ (-767)) 98)) (-4363 (((-767) $) 105)) (-4361 (((-859) $) 118) (((-637 (-898 |#1|)) $) 23) (($ (-637 (-898 |#1|))) 108)) (-3083 (((-637 |#1|) $) 106)) (-3444 (((-112) $ $) 135)) (-3073 (((-112) $ $) 133)) (-3074 (((-112) $ $) 132)))
+(((-901 |#1|) (-13 (-1094) (-10 -8 (-15 -4361 ((-637 (-898 |#1|)) $)) (-15 -3084 ((-637 (-898 |#1|)) $)) (-15 -4214 ((-898 |#1|) $ (-767))) (-15 -3384 ((-898 |#1|) $ (-546))) (-15 -3384 ((-898 |#1|) $)) (-15 -4186 ((-767) $)) (-15 -4363 ((-767) $)) (-15 -3083 ((-637 |#1|) $)) (-15 -3082 ((-637 (-898 |#1|)) $)) (-15 -3081 ((-637 (-637 (-767))) $)) (-15 -4361 ($ (-637 (-898 |#1|)))) (-15 -3080 ($ (-637 (-898 |#1|)))) (-15 -3079 ((-1090 |#1|) $ |#1|)) (-15 -3078 ((-1090 (-1090 |#1|)) $)) (-15 -3079 ((-1090 (-1090 |#1|)) $ (-1090 |#1|))) (-15 -3079 ((-1090 (-637 |#1|)) $ (-637 |#1|))) (-15 -3653 ((-112) (-898 |#1|) $)) (-15 -3077 ((-637 (-767)) (-898 |#1|) $)) (-15 -3076 ((-637 (-767)) (-898 |#1|) $)) (-15 -3075 ((-1090 |#1|) $)) (-15 -3074 ((-112) $ $)) (-15 -3073 ((-112) $ $)) (-15 -3072 ((-1262) $)) (-15 -3072 ((-1262) $ (-546) (-546))))) (-1094)) (T -901))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-898 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-3384 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-898 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-767)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-637 (-898 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-637 (-898 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3079 (*1 *2 *1 *3) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1090 (-1090 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1090 (-1090 *4))) (-5 *1 (-901 *4)) (-5 *3 (-1090 *4)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1090 (-637 *4))) (-5 *1 (-901 *4)) (-5 *3 (-637 *4)))) (-3653 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4)))) (-3077 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-637 (-767))) (-5 *1 (-901 *4)))) (-3076 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-637 (-767))) (-5 *1 (-901 *4)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3073 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3072 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -4361 ((-637 (-898 |#1|)) $)) (-15 -3084 ((-637 (-898 |#1|)) $)) (-15 -4214 ((-898 |#1|) $ (-767))) (-15 -3384 ((-898 |#1|) $ (-546))) (-15 -3384 ((-898 |#1|) $)) (-15 -4186 ((-767) $)) (-15 -4363 ((-767) $)) (-15 -3083 ((-637 |#1|) $)) (-15 -3082 ((-637 (-898 |#1|)) $)) (-15 -3081 ((-637 (-637 (-767))) $)) (-15 -4361 ($ (-637 (-898 |#1|)))) (-15 -3080 ($ (-637 (-898 |#1|)))) (-15 -3079 ((-1090 |#1|) $ |#1|)) (-15 -3078 ((-1090 (-1090 |#1|)) $)) (-15 -3079 ((-1090 (-1090 |#1|)) $ (-1090 |#1|))) (-15 -3079 ((-1090 (-637 |#1|)) $ (-637 |#1|))) (-15 -3653 ((-112) (-898 |#1|) $)) (-15 -3077 ((-637 (-767)) (-898 |#1|) $)) (-15 -3076 ((-637 (-767)) (-898 |#1|) $)) (-15 -3075 ((-1090 |#1|) $)) (-15 -3074 ((-112) $ $)) (-15 -3073 ((-112) $ $)) (-15 -3072 ((-1262) $)) (-15 -3072 ((-1262) $ (-546) (-546)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-4347 (((-112) $) NIL)) (-4344 (((-767)) NIL)) (-3741 (($ $ (-915)) NIL (|has| $ (-368))) (($ $) NIL)) (-1826 (((-1180 (-915) (-767)) (-546)) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 $ "failed") $) NIL)) (-3564 (($ $) NIL)) (-1946 (($ (-1256 $)) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-3222 (($) NIL)) (-1831 (((-112) $) NIL)) (-1921 (($ $) NIL) (($ $ (-767)) NIL)) (-4138 (((-112) $) NIL)) (-4186 (((-828 (-915)) $) NIL) (((-915) $) NIL)) (-2552 (((-112) $) NIL)) (-2170 (($) NIL (|has| $ (-368)))) (-2168 (((-112) $) NIL (|has| $ (-368)))) (-3524 (($ $ (-915)) NIL (|has| $ (-368))) (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2171 (((-1163 $) $ (-915)) NIL (|has| $ (-368))) (((-1163 $) $) NIL)) (-2167 (((-915) $) NIL)) (-1759 (((-1163 $) $) NIL (|has| $ (-368)))) (-1758 (((-3 (-1163 $) "failed") $ $) NIL (|has| $ (-368))) (((-1163 $) $) NIL (|has| $ (-368)))) (-1760 (($ $ (-1163 $)) NIL (|has| $ (-368)))) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL T CONST)) (-2542 (($ (-915)) NIL)) (-4346 (((-112) $) NIL)) (-3651 (((-1113) $) NIL)) (-2551 (($) NIL (|has| $ (-368)))) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL)) (-4147 (((-405 $) $) NIL)) (-4345 (((-915)) NIL) (((-828 (-915))) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-1922 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-4326 (((-134)) NIL)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-4363 (((-915) $) NIL) (((-828 (-915)) $) NIL)) (-3593 (((-1163 $)) NIL)) (-1825 (($) NIL)) (-1761 (($) NIL (|has| $ (-368)))) (-3632 (((-684 $) (-1256 $)) NIL) (((-1256 $) $) NIL)) (-4385 (((-546) $) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL)) (-3091 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3518 (((-767)) NIL)) (-2169 (((-1256 $) (-915)) NIL) (((-1256 $)) NIL)) (-2219 (((-112) $ $) NIL)) (-4348 (((-112) $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-4343 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-902 |#1|) (-13 (-350) (-329 $) (-611 (-546))) (-915)) (T -902))
+NIL
+(-13 (-350) (-329 $) (-611 (-546)))
+((-3086 (((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|)) 127)) (-3089 ((|#1|) 76)) (-3088 (((-405 (-1163 |#4|)) (-1163 |#4|)) 136)) (-3090 (((-405 (-1163 |#4|)) (-637 |#3|) (-1163 |#4|)) 68)) (-3087 (((-405 (-1163 |#4|)) (-1163 |#4|)) 146)) (-3085 (((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|) |#3|) 91)))
+(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3086 ((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|))) (-15 -3087 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -3088 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -3089 (|#1|)) (-15 -3085 ((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|) |#3|)) (-15 -3090 ((-405 (-1163 |#4|)) (-637 |#3|) (-1163 |#4|)))) (-906) (-789) (-846) (-946 |#1| |#2| |#3|)) (T -903))
+((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *7)) (-4 *7 (-846)) (-4 *5 (-906)) (-4 *6 (-789)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-405 (-1163 *8))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1163 *8)))) (-3085 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-637 (-1163 *7))) (-5 *3 (-1163 *7)) (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-903 *5 *6 *4 *7)))) (-3089 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1163 *7)))) (-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 *7))) (-5 *3 (-1163 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-903 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3086 ((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|))) (-15 -3087 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -3088 ((-405 (-1163 |#4|)) (-1163 |#4|))) (-15 -3089 (|#1|)) (-15 -3085 ((-3 (-637 (-1163 |#4|)) "failed") (-637 (-1163 |#4|)) (-1163 |#4|) |#3|)) (-15 -3090 ((-405 (-1163 |#4|)) (-637 |#3|) (-1163 |#4|))))
+((-3086 (((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|)) 36)) (-3089 ((|#1|) 53)) (-3088 (((-405 (-1163 |#2|)) (-1163 |#2|)) 101)) (-3090 (((-405 (-1163 |#2|)) (-1163 |#2|)) 89)) (-3087 (((-405 (-1163 |#2|)) (-1163 |#2|)) 112)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -3086 ((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|))) (-15 -3087 ((-405 (-1163 |#2|)) (-1163 |#2|))) (-15 -3088 ((-405 (-1163 |#2|)) (-1163 |#2|))) (-15 -3089 (|#1|)) (-15 -3090 ((-405 (-1163 |#2|)) (-1163 |#2|)))) (-906) (-1232 |#1|)) (T -904))
+((-3090 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))) (-3089 (*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1232 *2)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))) (-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 *5))) (-5 *3 (-1163 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5)))))
+(-10 -7 (-15 -3086 ((-3 (-637 (-1163 |#2|)) "failed") (-637 (-1163 |#2|)) (-1163 |#2|))) (-15 -3087 ((-405 (-1163 |#2|)) (-1163 |#2|))) (-15 -3088 ((-405 (-1163 |#2|)) (-1163 |#2|))) (-15 -3089 (|#1|)) (-15 -3090 ((-405 (-1163 |#2|)) (-1163 |#2|))))
+((-3093 (((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $)) 41)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 18)) (-3091 (((-3 $ "failed") $) 35)))
+(((-905 |#1|) (-10 -8 (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)))) (-906)) (T -905))
+NIL
+(-10 -8 (-15 -3091 ((-3 |#1| "failed") |#1|)) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 61)) (-4189 (($ $) 52)) (-4384 (((-405 $) $) 53)) (-3093 (((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $)) 58)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-4138 (((-112) $) 54)) (-2552 (((-112) $) 31)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3094 (((-405 (-1163 $)) (-1163 $)) 59)) (-3095 (((-405 (-1163 $)) (-1163 $)) 60)) (-4147 (((-405 $) $) 51)) (-3872 (((-3 $ "failed") $ $) 43)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) 57 (|has| $ (-145)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3091 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-906) (-140)) (T -906))
+((-3097 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-906)))) (-3096 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))) (-3095 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))) (-3094 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))) (-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-637 (-1163 *1))) (-5 *3 (-1163 *1)) (-4 *1 (-906)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-906)) (-5 *2 (-1256 *1)))) (-3091 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
+(-13 (-1212) (-10 -8 (-15 -3096 ((-405 (-1163 $)) (-1163 $))) (-15 -3095 ((-405 (-1163 $)) (-1163 $))) (-15 -3094 ((-405 (-1163 $)) (-1163 $))) (-15 -3097 ((-1163 $) (-1163 $) (-1163 $))) (-15 -3093 ((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $))) (IF (|has| $ (-145)) (PROGN (-15 -3092 ((-3 (-1256 $) "failed") (-684 $))) (-15 -3091 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-3099 (((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#5|)) "failed") (-333 |#2| |#3| |#4| |#5|)) 79)) (-3098 (((-112) (-333 |#2| |#3| |#4| |#5|)) 17)) (-4186 (((-3 (-767) "failed") (-333 |#2| |#3| |#4| |#5|)) 15)))
+(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4186 ((-3 (-767) "failed") (-333 |#2| |#3| |#4| |#5|))) (-15 -3098 ((-112) (-333 |#2| |#3| |#4| |#5|))) (-15 -3099 ((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#5|)) "failed") (-333 |#2| |#3| |#4| |#5|)))) (-13 (-846) (-556) (-1034 (-546))) (-421 |#1|) (-1232 |#2|) (-1232 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907))
+((-3099 (*1 *2 *3) (|partial| -12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-2 (|:| -4186 (-767)) (|:| -2525 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4186 ((-3 (-767) "failed") (-333 |#2| |#3| |#4| |#5|))) (-15 -3098 ((-112) (-333 |#2| |#3| |#4| |#5|))) (-15 -3099 ((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#5|)) "failed") (-333 |#2| |#3| |#4| |#5|))))
+((-3099 (((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#3|)) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|)) 56)) (-3098 (((-112) (-333 (-407 (-546)) |#1| |#2| |#3|)) 16)) (-4186 (((-3 (-767) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|)) 14)))
+(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -4186 ((-3 (-767) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|))) (-15 -3098 ((-112) (-333 (-407 (-546)) |#1| |#2| |#3|))) (-15 -3099 ((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#3|)) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|)))) (-1232 (-407 (-546))) (-1232 (-407 |#1|)) (-342 (-407 (-546)) |#1| |#2|)) (T -908))
+((-3099 (*1 *2 *3) (|partial| -12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6)) (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 (-407 (-546)) *4 *5)) (-5 *2 (-2 (|:| -4186 (-767)) (|:| -2525 *6))) (-5 *1 (-908 *4 *5 *6)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6)) (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 (-407 (-546)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6)) (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 (-407 (-546)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6)))))
+(-10 -7 (-15 -4186 ((-3 (-767) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|))) (-15 -3098 ((-112) (-333 (-407 (-546)) |#1| |#2| |#3|))) (-15 -3099 ((-3 (-2 (|:| -4186 (-767)) (|:| -2525 |#3|)) "failed") (-333 (-407 (-546)) |#1| |#2| |#3|))))
+((-3104 ((|#2| |#2|) 26)) (-3102 (((-546) (-637 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546))))) 15)) (-3100 (((-915) (-546)) 35)) (-3103 (((-546) |#2|) 42)) (-3101 (((-546) |#2|) 21) (((-2 (|:| |den| (-546)) (|:| |gcdnum| (-546))) |#1|) 20)))
+(((-909 |#1| |#2|) (-10 -7 (-15 -3100 ((-915) (-546))) (-15 -3101 ((-2 (|:| |den| (-546)) (|:| |gcdnum| (-546))) |#1|)) (-15 -3101 ((-546) |#2|)) (-15 -3102 ((-546) (-637 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546)))))) (-15 -3103 ((-546) |#2|)) (-15 -3104 (|#2| |#2|))) (-1232 (-407 (-546))) (-1232 (-407 |#1|))) (T -909))
+((-3104 (*1 *2 *2) (-12 (-4 *3 (-1232 (-407 (-546)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1232 (-407 *3))))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1232 (-407 *4))))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546))))) (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1232 (-407 *4))))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1232 (-407 *4))))) (-3101 (*1 *2 *3) (-12 (-4 *3 (-1232 (-407 (-546)))) (-5 *2 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1232 (-407 *3))))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-546)) (-4 *4 (-1232 (-407 *3))) (-5 *2 (-915)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1232 (-407 *4))))))
+(-10 -7 (-15 -3100 ((-915) (-546))) (-15 -3101 ((-2 (|:| |den| (-546)) (|:| |gcdnum| (-546))) |#1|)) (-15 -3101 ((-546) |#2|)) (-15 -3102 ((-546) (-637 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546)))))) (-15 -3103 ((-546) |#2|)) (-15 -3104 (|#2| |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 ((|#1| $) 81)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-2949 (($ $ $) NIL)) (-3873 (((-3 $ "failed") $) 75)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3112 (($ |#1| (-405 |#1|)) 73)) (-3106 (((-1163 |#1|) |#1| |#1|) 41)) (-3105 (($ $) 49)) (-2552 (((-112) $) NIL)) (-3107 (((-546) $) 78)) (-3108 (($ $ (-546)) 80)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3109 ((|#1| $) 77)) (-3110 (((-405 |#1|) $) 76)) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) 74)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3111 (($ $) 39)) (-4361 (((-859) $) 99) (($ (-546)) 54) (($ $) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 31) (((-407 |#1|) $) 59) (($ (-407 (-405 |#1|))) 67)) (-3518 (((-767)) 52)) (-2219 (((-112) $ $) NIL)) (-3047 (($) 23 T CONST)) (-3053 (($) 12 T CONST)) (-3444 (((-112) $ $) 68)) (-4364 (($ $ $) NIL)) (-4252 (($ $) 88) (($ $ $) NIL)) (-4254 (($ $ $) 38)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 90) (($ $ $) 37) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -4361 ((-407 |#1|) $)) (-15 -4361 ($ (-407 (-405 |#1|)))) (-15 -3111 ($ $)) (-15 -3110 ((-405 |#1|) $)) (-15 -3109 (|#1| $)) (-15 -3108 ($ $ (-546))) (-15 -3107 ((-546) $)) (-15 -3106 ((-1163 |#1|) |#1| |#1|)) (-15 -3105 ($ $)) (-15 -3112 ($ |#1| (-405 |#1|))) (-15 -3521 (|#1| $)))) (-307)) (T -910))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-407 (-405 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-405 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3109 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3106 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3112 (*1 *1 *2 *3) (-12 (-5 *3 (-405 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-3521 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
+(-13 (-363) (-38 |#1|) (-10 -8 (-15 -4361 ((-407 |#1|) $)) (-15 -4361 ($ (-407 (-405 |#1|)))) (-15 -3111 ($ $)) (-15 -3110 ((-405 |#1|) $)) (-15 -3109 (|#1| $)) (-15 -3108 ($ $ (-546))) (-15 -3107 ((-546) $)) (-15 -3106 ((-1163 |#1|) |#1| |#1|)) (-15 -3105 ($ $)) (-15 -3112 ($ |#1| (-405 |#1|))) (-15 -3521 (|#1| $))))
+((-3112 (((-51) (-942 |#1|) (-405 (-942 |#1|)) (-1169)) 17) (((-51) (-407 (-942 |#1|)) (-1169)) 18)))
+(((-911 |#1|) (-10 -7 (-15 -3112 ((-51) (-407 (-942 |#1|)) (-1169))) (-15 -3112 ((-51) (-942 |#1|) (-405 (-942 |#1|)) (-1169)))) (-13 (-307) (-147))) (T -911))
+((-3112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-405 (-942 *6))) (-5 *5 (-1169)) (-5 *3 (-942 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-51)) (-5 *1 (-911 *6)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-51)) (-5 *1 (-911 *5)))))
+(-10 -7 (-15 -3112 ((-51) (-407 (-942 |#1|)) (-1169))) (-15 -3112 ((-51) (-942 |#1|) (-405 (-942 |#1|)) (-1169))))
+((-3113 ((|#4| (-637 |#4|)) 121) (((-1163 |#4|) (-1163 |#4|) (-1163 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-3552 (((-1163 |#4|) (-637 (-1163 |#4|))) 114) (((-1163 |#4|) (-1163 |#4|) (-1163 |#4|)) 49) ((|#4| (-637 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3552 (|#4| |#4| |#4|)) (-15 -3552 (|#4| (-637 |#4|))) (-15 -3552 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3552 ((-1163 |#4|) (-637 (-1163 |#4|)))) (-15 -3113 (|#4| |#4| |#4|)) (-15 -3113 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3113 (|#4| (-637 |#4|)))) (-789) (-846) (-307) (-946 |#3| |#1| |#2|)) (T -912))
+((-3113 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3113 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3113 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-637 (-1163 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1163 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-3552 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3552 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))))
+(-10 -7 (-15 -3552 (|#4| |#4| |#4|)) (-15 -3552 (|#4| (-637 |#4|))) (-15 -3552 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3552 ((-1163 |#4|) (-637 (-1163 |#4|)))) (-15 -3113 (|#4| |#4| |#4|)) (-15 -3113 ((-1163 |#4|) (-1163 |#4|) (-1163 |#4|))) (-15 -3113 (|#4| (-637 |#4|))))
+((-3126 (((-901 (-546)) (-967)) 23) (((-901 (-546)) (-637 (-546))) 20)) (-3114 (((-901 (-546)) (-637 (-546))) 48) (((-901 (-546)) (-915)) 49)) (-3125 (((-901 (-546))) 24)) (-3123 (((-901 (-546))) 38) (((-901 (-546)) (-637 (-546))) 37)) (-3122 (((-901 (-546))) 36) (((-901 (-546)) (-637 (-546))) 35)) (-3121 (((-901 (-546))) 34) (((-901 (-546)) (-637 (-546))) 33)) (-3120 (((-901 (-546))) 32) (((-901 (-546)) (-637 (-546))) 31)) (-3119 (((-901 (-546))) 30) (((-901 (-546)) (-637 (-546))) 29)) (-3124 (((-901 (-546))) 40) (((-901 (-546)) (-637 (-546))) 39)) (-3118 (((-901 (-546)) (-637 (-546))) 52) (((-901 (-546)) (-915)) 53)) (-3117 (((-901 (-546)) (-637 (-546))) 50) (((-901 (-546)) (-915)) 51)) (-3115 (((-901 (-546)) (-637 (-546))) 46) (((-901 (-546)) (-915)) 47)) (-3116 (((-901 (-546)) (-637 (-915))) 43)))
+(((-913) (-10 -7 (-15 -3114 ((-901 (-546)) (-915))) (-15 -3114 ((-901 (-546)) (-637 (-546)))) (-15 -3115 ((-901 (-546)) (-915))) (-15 -3115 ((-901 (-546)) (-637 (-546)))) (-15 -3116 ((-901 (-546)) (-637 (-915)))) (-15 -3117 ((-901 (-546)) (-915))) (-15 -3117 ((-901 (-546)) (-637 (-546)))) (-15 -3118 ((-901 (-546)) (-915))) (-15 -3118 ((-901 (-546)) (-637 (-546)))) (-15 -3119 ((-901 (-546)) (-637 (-546)))) (-15 -3119 ((-901 (-546)))) (-15 -3120 ((-901 (-546)) (-637 (-546)))) (-15 -3120 ((-901 (-546)))) (-15 -3121 ((-901 (-546)) (-637 (-546)))) (-15 -3121 ((-901 (-546)))) (-15 -3122 ((-901 (-546)) (-637 (-546)))) (-15 -3122 ((-901 (-546)))) (-15 -3123 ((-901 (-546)) (-637 (-546)))) (-15 -3123 ((-901 (-546)))) (-15 -3124 ((-901 (-546)) (-637 (-546)))) (-15 -3124 ((-901 (-546)))) (-15 -3125 ((-901 (-546)))) (-15 -3126 ((-901 (-546)) (-637 (-546)))) (-15 -3126 ((-901 (-546)) (-967))))) (T -913))
+((-3126 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3125 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3124 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3123 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3122 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3121 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3120 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3119 (*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-637 (-915))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(-10 -7 (-15 -3114 ((-901 (-546)) (-915))) (-15 -3114 ((-901 (-546)) (-637 (-546)))) (-15 -3115 ((-901 (-546)) (-915))) (-15 -3115 ((-901 (-546)) (-637 (-546)))) (-15 -3116 ((-901 (-546)) (-637 (-915)))) (-15 -3117 ((-901 (-546)) (-915))) (-15 -3117 ((-901 (-546)) (-637 (-546)))) (-15 -3118 ((-901 (-546)) (-915))) (-15 -3118 ((-901 (-546)) (-637 (-546)))) (-15 -3119 ((-901 (-546)) (-637 (-546)))) (-15 -3119 ((-901 (-546)))) (-15 -3120 ((-901 (-546)) (-637 (-546)))) (-15 -3120 ((-901 (-546)))) (-15 -3121 ((-901 (-546)) (-637 (-546)))) (-15 -3121 ((-901 (-546)))) (-15 -3122 ((-901 (-546)) (-637 (-546)))) (-15 -3122 ((-901 (-546)))) (-15 -3123 ((-901 (-546)) (-637 (-546)))) (-15 -3123 ((-901 (-546)))) (-15 -3124 ((-901 (-546)) (-637 (-546)))) (-15 -3124 ((-901 (-546)))) (-15 -3125 ((-901 (-546)))) (-15 -3126 ((-901 (-546)) (-637 (-546)))) (-15 -3126 ((-901 (-546)) (-967))))
+((-3128 (((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169))) 12)) (-3127 (((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169))) 11)))
+(((-914 |#1|) (-10 -7 (-15 -3127 ((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3128 ((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169))))) (-452)) (T -914))
+((-3128 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-942 *4))) (-5 *3 (-637 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-942 *4))) (-5 *3 (-637 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))))
+(-10 -7 (-15 -3127 ((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3128 ((-637 (-942 |#1|)) (-637 (-942 |#1|)) (-637 (-1169)))))
+((-2953 (((-112) $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3552 (($ $ $) NIL)) (-4361 (((-859) $) NIL)) (-3053 (($) NIL T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ $ $) NIL)))
+(((-915) (-13 (-790) (-722) (-10 -8 (-15 -3552 ($ $ $)) (-6 (-4410 "*"))))) (T -915))
+((-3552 (*1 *1 *1 *1) (-5 *1 (-915))))
+(-13 (-790) (-722) (-10 -8 (-15 -3552 ($ $ $)) (-6 (-4410 "*"))))
((|NonNegativeInteger|) (< 0 |#1|))
-((-2485 ((|#2| (-640 |#1|) (-640 |#1|)) 24)))
-(((-918 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| (-640 |#1|) (-640 |#1|)))) (-363) (-1233 |#1|)) (T -918))
-((-2485 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4)) (-5 *1 (-918 *4 *2)))))
-(-10 -7 (-15 -2485 (|#2| (-640 |#1|) (-640 |#1|))))
-((-1908 (((-1165 |#2|) (-640 |#2|) (-640 |#2|)) 17) (((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|)) 13)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -1908 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -1908 ((-1165 |#2|) (-640 |#2|) (-640 |#2|)))) (-1169) (-363)) (T -919))
-((-1908 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1169)))) (-1908 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169)) (-4 *5 (-363)) (-5 *1 (-919 *4 *5)))))
-(-10 -7 (-15 -1908 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -1908 ((-1165 |#2|) (-640 |#2|) (-640 |#2|))))
-((-2506 (((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 139)) (-1461 ((|#4| |#4|) 155)) (-2553 (((-640 (-407 (-948 |#1|))) (-640 (-1169))) 119)) (-1449 (((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563)) 75)) (-1346 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|)) 59)) (-1440 (((-684 |#4|) (-684 |#4|) (-640 |#4|)) 55)) (-2518 (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 151)) (-2495 (((-563) (-684 |#4|) (-917) (-1151)) 133) (((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151)) 132) (((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151)) 131) (((-563) (-684 |#4|) (-1151)) 128) (((-563) (-684 |#4|) (-640 (-1169)) (-1151)) 127) (((-563) (-684 |#4|) (-640 |#4|) (-1151)) 126) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917)) 125) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917)) 124) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917)) 123) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|)) 121) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169))) 120) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|)) 116)) (-2563 ((|#4| (-948 |#1|)) 68)) (-1417 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 152)) (-1406 (((-640 (-640 (-563))) (-563) (-563)) 130)) (-1395 (((-640 (-640 |#4|)) (-640 (-640 |#4|))) 88)) (-1384 (((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 86)) (-1374 (((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 85)) (-1472 (((-112) (-640 (-948 |#1|))) 17) (((-112) (-640 |#4|)) 13)) (-2572 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|)) 71)) (-1365 (((-640 |#4|) |#4|) 49)) (-2542 (((-640 (-407 (-948 |#1|))) (-640 |#4|)) 115) (((-684 (-407 (-948 |#1|))) (-684 |#4|)) 56) (((-407 (-948 |#1|)) |#4|) 112)) (-2530 (((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563)) 93)) (-2584 (((-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767)) 84)) (-1428 (((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767)) 102)) (-1356 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -1957 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2521 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) 48)))
-(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -2495 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -2506 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2518 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2530 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -2542 ((-407 (-948 |#1|)) |#4|)) (-15 -2542 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -2542 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -2553 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2563 (|#4| (-948 |#1|))) (-15 -2572 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -2584 ((-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -1346 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -1356 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -1957 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2521 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -1365 ((-640 |#4|) |#4|)) (-15 -1374 ((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -1384 ((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -1395 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -1406 ((-640 (-640 (-563))) (-563) (-563))) (-15 -1417 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -1428 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -1440 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -1449 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -1461 (|#4| |#4|)) (-15 -1472 ((-112) (-640 |#4|))) (-15 -1472 ((-112) (-640 (-948 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-611 (-1169))) (-789) (-945 |#1| |#3| |#2|)) (T -920))
-((-1472 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1461 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))) (-1449 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9)))) (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12)) (|:| |wcond| (-640 (-948 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *9)))) (|:| -4013 (-640 (-1257 (-407 (-948 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-1406 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1365 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1957 (-684 (-407 (-948 *4)))) (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -2521 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4013 (-640 (-1257 (-407 (-948 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1346 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4013 (-640 (-1257 (-407 (-948 *4))))))) (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-2572 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-2530 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8)))) (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11)) (|:| |wcond| (-640 (-948 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *8)))) (|:| -4013 (-640 (-1257 (-407 (-948 *8)))))))))) (|:| |rgsz| (-563)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4013 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4013 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2495 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2495 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4013 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -4013 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-2495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -4013 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4013 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4013 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4013 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8)))))
-(-10 -7 (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -2495 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -2495 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -2495 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -2506 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2518 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2530 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -2542 ((-407 (-948 |#1|)) |#4|)) (-15 -2542 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -2542 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -2553 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2563 (|#4| (-948 |#1|))) (-15 -2572 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -2584 ((-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -1346 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -1356 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -1957 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2521 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -1365 ((-640 |#4|) |#4|)) (-15 -1374 ((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -1384 ((-767) (-640 (-2 (|:| -2521 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -1395 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -1406 ((-640 (-640 (-563))) (-563) (-563))) (-15 -1417 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -1428 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -1440 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -1449 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4013 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -1461 (|#4| |#4|)) (-15 -1472 ((-112) (-640 |#4|))) (-15 -1472 ((-112) (-640 (-948 |#1|)))))
-((-1604 (((-923) |#1| (-1169)) 17) (((-923) |#1| (-1169) (-1087 (-225))) 21)) (-1767 (((-923) |#1| |#1| (-1169) (-1087 (-225))) 19) (((-923) |#1| (-1169) (-1087 (-225))) 15)))
-(((-921 |#1|) (-10 -7 (-15 -1767 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -1767 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -1604 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -1604 ((-923) |#1| (-1169)))) (-611 (-536))) (T -921))
-((-1604 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-1767 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-1767 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))))
-(-10 -7 (-15 -1767 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -1767 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -1604 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -1604 ((-923) |#1| (-1169))))
-((-1292 (($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 69)) (-4337 (((-1087 (-225)) $) 40)) (-4325 (((-1087 (-225)) $) 39)) (-4314 (((-1087 (-225)) $) 38)) (-1744 (((-640 (-640 (-225))) $) 43)) (-1755 (((-1087 (-225)) $) 41)) (-1663 (((-563) (-563)) 32)) (-1717 (((-563) (-563)) 28)) (-1689 (((-563) (-563)) 30)) (-1639 (((-112) (-112)) 35)) (-1676 (((-563)) 31)) (-3998 (($ $ (-1087 (-225))) 72) (($ $) 73)) (-1780 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 77) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 78)) (-1767 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 81) (($ $ (-1087 (-225))) 75)) (-1626 (((-563)) 36)) (-1730 (((-563)) 27)) (-1704 (((-563)) 29)) (-3394 (((-640 (-640 (-939 (-225)))) $) 93)) (-1615 (((-112) (-112)) 37)) (-1692 (((-858) $) 92)) (-1652 (((-112)) 34)))
-(((-922) (-13 (-970) (-10 -8 (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ $ (-1087 (-225)))) (-15 -1292 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3998 ($ $ (-1087 (-225)))) (-15 -3998 ($ $)) (-15 -1755 ((-1087 (-225)) $)) (-15 -1744 ((-640 (-640 (-225))) $)) (-15 -1730 ((-563))) (-15 -1717 ((-563) (-563))) (-15 -1704 ((-563))) (-15 -1689 ((-563) (-563))) (-15 -1676 ((-563))) (-15 -1663 ((-563) (-563))) (-15 -1652 ((-112))) (-15 -1639 ((-112) (-112))) (-15 -1626 ((-563))) (-15 -1615 ((-112) (-112)))))) (T -922))
-((-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-1780 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-1767 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-1767 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-1767 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-1292 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-3998 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-3998 (*1 *1 *1) (-5 *1 (-922))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922)))) (-1730 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1704 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1676 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1652 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-1626 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(-13 (-970) (-10 -8 (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ $ (-1087 (-225)))) (-15 -1292 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3998 ($ $ (-1087 (-225)))) (-15 -3998 ($ $)) (-15 -1755 ((-1087 (-225)) $)) (-15 -1744 ((-640 (-640 (-225))) $)) (-15 -1730 ((-563))) (-15 -1717 ((-563) (-563))) (-15 -1704 ((-563))) (-15 -1689 ((-563) (-563))) (-15 -1676 ((-563))) (-15 -1663 ((-563) (-563))) (-15 -1652 ((-112))) (-15 -1639 ((-112) (-112))) (-15 -1626 ((-563))) (-15 -1615 ((-112) (-112)))))
-((-1292 (($ $ (-1087 (-225))) 69) (($ $ (-1087 (-225)) (-1087 (-225))) 70)) (-4325 (((-1087 (-225)) $) 44)) (-4314 (((-1087 (-225)) $) 43)) (-1755 (((-1087 (-225)) $) 45)) (-1519 (((-563) (-563)) 37)) (-1568 (((-563) (-563)) 33)) (-1543 (((-563) (-563)) 35)) (-1494 (((-112) (-112)) 39)) (-1532 (((-563)) 36)) (-3998 (($ $ (-1087 (-225))) 73) (($ $) 74)) (-1780 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 83) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 84)) (-1604 (($ (-1 (-225) (-225)) (-1087 (-225))) 91) (($ (-1 (-225) (-225))) 94)) (-1767 (($ (-1 (-225) (-225)) (-1087 (-225))) 78) (($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225))) 79) (($ (-640 (-1 (-225) (-225))) (-1087 (-225))) 86) (($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225))) 87) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 81) (($ $ (-1087 (-225))) 75)) (-1593 (((-112) $) 40)) (-1483 (((-563)) 41)) (-1581 (((-563)) 32)) (-1556 (((-563)) 34)) (-3394 (((-640 (-640 (-939 (-225)))) $) 23)) (-3203 (((-112) (-112)) 42)) (-1692 (((-858) $) 105)) (-1505 (((-112)) 38)))
-(((-923) (-13 (-951) (-10 -8 (-15 -1767 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -1767 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1604 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1604 ($ (-1 (-225) (-225)))) (-15 -1767 ($ $ (-1087 (-225)))) (-15 -1593 ((-112) $)) (-15 -1292 ($ $ (-1087 (-225)))) (-15 -1292 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -3998 ($ $ (-1087 (-225)))) (-15 -3998 ($ $)) (-15 -1755 ((-1087 (-225)) $)) (-15 -1581 ((-563))) (-15 -1568 ((-563) (-563))) (-15 -1556 ((-563))) (-15 -1543 ((-563) (-563))) (-15 -1532 ((-563))) (-15 -1519 ((-563) (-563))) (-15 -1505 ((-112))) (-15 -1494 ((-112) (-112))) (-15 -1483 ((-563))) (-15 -3203 ((-112) (-112)))))) (T -923))
-((-1767 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1780 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1604 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) (-1767 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1292 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1292 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-3998 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-3998 (*1 *1 *1) (-5 *1 (-923))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1581 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1556 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1532 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1483 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(-13 (-951) (-10 -8 (-15 -1767 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -1767 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1767 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -1780 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1604 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -1604 ($ (-1 (-225) (-225)))) (-15 -1767 ($ $ (-1087 (-225)))) (-15 -1593 ((-112) $)) (-15 -1292 ($ $ (-1087 (-225)))) (-15 -1292 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -3998 ($ $ (-1087 (-225)))) (-15 -3998 ($ $)) (-15 -1755 ((-1087 (-225)) $)) (-15 -1581 ((-563))) (-15 -1568 ((-563) (-563))) (-15 -1556 ((-563))) (-15 -1543 ((-563) (-563))) (-15 -1532 ((-563))) (-15 -1519 ((-563) (-563))) (-15 -1505 ((-112))) (-15 -1494 ((-112) (-112))) (-15 -1483 ((-563))) (-15 -3203 ((-112) (-112)))))
-((-1790 (((-640 (-1087 (-225))) (-640 (-640 (-939 (-225))))) 24)))
-(((-924) (-10 -7 (-15 -1790 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225)))))))) (T -924))
-((-1790 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924)))))
-(-10 -7 (-15 -1790 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225)))))))
-((-3903 ((|#2| |#2|) 26)) (-1882 ((|#2| |#2|) 27)) (-2668 ((|#2| |#2|) 25)) (-2294 ((|#2| |#2| (-1151)) 24)))
-(((-925 |#1| |#2|) (-10 -7 (-15 -2294 (|#2| |#2| (-1151))) (-15 -2668 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1882 (|#2| |#2|))) (-846) (-430 |#1|)) (T -925))
-((-1882 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -2294 (|#2| |#2| (-1151))) (-15 -2668 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1882 (|#2| |#2|)))
-((-3903 (((-316 (-563)) (-1169)) 16)) (-1882 (((-316 (-563)) (-1169)) 14)) (-2668 (((-316 (-563)) (-1169)) 12)) (-2294 (((-316 (-563)) (-1169) (-1151)) 19)))
-(((-926) (-10 -7 (-15 -2294 ((-316 (-563)) (-1169) (-1151))) (-15 -2668 ((-316 (-563)) (-1169))) (-15 -3903 ((-316 (-563)) (-1169))) (-15 -1882 ((-316 (-563)) (-1169))))) (T -926))
-((-1882 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-2294 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))))
-(-10 -7 (-15 -2294 ((-316 (-563)) (-1169) (-1151))) (-15 -2668 ((-316 (-563)) (-1169))) (-15 -3903 ((-316 (-563)) (-1169))) (-15 -1882 ((-316 (-563)) (-1169))))
-((-1812 (((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)) 25)) (-1802 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -1802 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1812 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-882 |#1|) (-13 (-1093) (-1034 |#2|))) (T -927))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6)))))
-(-10 -7 (-15 -1802 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1812 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|))))
-((-1812 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 30)))
-(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-846) (-882 |#1|)) (-13 (-430 |#2|) (-611 (-888 |#1|)) (-882 |#1|) (-1034 (-609 $)))) (T -928))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $)))) (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5))) (-5 *1 (-928 *5 *6 *3)))))
-(-10 -7 (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))
-((-1812 (((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)) 13)))
-(((-929 |#1|) (-10 -7 (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)))) (-545)) (T -929))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545)) (-5 *1 (-929 *3)))))
-(-10 -7 (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))))
-((-1812 (((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)) 52)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -1812 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) (-1093) (-13 (-846) (-1034 (-609 $)) (-611 (-888 |#1|)) (-882 |#1|))) (T -930))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093)) (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5))) (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6)))))
-(-10 -7 (-15 -1812 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|))))
-((-1812 (((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)) 15)))
-(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -1812 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) (-1093) (-882 |#1|) (-661 |#2|)) (T -931))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3)))))
-(-10 -7 (-15 -1812 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|))))
-((-1812 (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|))) 16)))
-(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1812 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -1812 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) (-1093) (-789) (-846) (-13 (-1045) (-846) (-882 |#1|)) (-13 (-945 |#4| |#2| |#3|) (-611 (-888 |#1|)))) (T -932))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-1812 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1812 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -1812 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|))
-((-1958 ((|#2| |#2| (-640 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -1958 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1958 (|#2| |#2| (-640 (-1 (-112) |#3|))))) (-846) (-430 |#1|) (-1208)) (T -933))
-((-1958 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -1958 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1958 (|#2| |#2| (-640 (-1 (-112) |#3|)))))
-((-1958 (((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))) 18) (((-316 (-563)) (-1169) (-1 (-112) |#1|)) 15)))
-(((-934 |#1|) (-10 -7 (-15 -1958 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -1958 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))))) (-1208)) (T -934))
-((-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))))
-(-10 -7 (-15 -1958 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -1958 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|)))))
-((-1812 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 25)))
-(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-882 |#1|) (-611 (-888 |#1|))) (-988 |#2|)) (T -935))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6)) (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5)) (-5 *1 (-935 *5 *6 *3)))))
-(-10 -7 (-15 -1812 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))
-((-1812 (((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))) 17)))
-(((-936 |#1|) (-10 -7 (-15 -1812 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))))) (-1093)) (T -936))
-((-1812 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *1 (-936 *5)))))
-(-10 -7 (-15 -1812 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169)))))
-((-1824 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 33)) (-1812 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 32)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -1812 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -1824 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) (-1093) (-13 (-1045) (-846)) (-13 (-1045) (-611 (-888 |#1|)) (-1034 |#2|))) (T -937))
-((-1824 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6))) (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093)) (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7))) (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))) (-1812 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9))) (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093)) (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8))) (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9)))))
-(-10 -7 (-15 -1812 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -1824 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))))
-((-1911 (((-1165 (-407 (-563))) (-563)) 62)) (-1902 (((-1165 (-563)) (-563)) 65)) (-2231 (((-1165 (-563)) (-563)) 59)) (-1891 (((-563) (-1165 (-563))) 54)) (-1879 (((-1165 (-407 (-563))) (-563)) 48)) (-1869 (((-1165 (-563)) (-563)) 37)) (-1858 (((-1165 (-563)) (-563)) 67)) (-1847 (((-1165 (-563)) (-563)) 66)) (-1835 (((-1165 (-407 (-563))) (-563)) 50)))
-(((-938) (-10 -7 (-15 -1835 ((-1165 (-407 (-563))) (-563))) (-15 -1847 ((-1165 (-563)) (-563))) (-15 -1858 ((-1165 (-563)) (-563))) (-15 -1869 ((-1165 (-563)) (-563))) (-15 -1879 ((-1165 (-407 (-563))) (-563))) (-15 -1891 ((-563) (-1165 (-563)))) (-15 -2231 ((-1165 (-563)) (-563))) (-15 -1902 ((-1165 (-563)) (-563))) (-15 -1911 ((-1165 (-407 (-563))) (-563))))) (T -938))
-((-1911 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2231 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938)))) (-1879 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1869 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1847 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1835 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))))
-(-10 -7 (-15 -1835 ((-1165 (-407 (-563))) (-563))) (-15 -1847 ((-1165 (-563)) (-563))) (-15 -1858 ((-1165 (-563)) (-563))) (-15 -1869 ((-1165 (-563)) (-563))) (-15 -1879 ((-1165 (-407 (-563))) (-563))) (-15 -1891 ((-563) (-1165 (-563)))) (-15 -2231 ((-1165 (-563)) (-563))) (-15 -1902 ((-1165 (-563)) (-563))) (-15 -1911 ((-1165 (-407 (-563))) (-563))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767)) NIL (|has| |#1| (-23)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 11 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3018 (($ (-640 |#1|)) 13)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3983 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1565 (($ (-767) |#1|) 8)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 10 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4098 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2481 (((-112) $ (-767)) NIL)) (-3419 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1751 (($ $ (-640 |#1|)) 26)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 20) (($ $ (-1224 (-563))) NIL)) (-4121 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-3526 (((-917) $) 16)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4111 (($ $ $) 24)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 17)) (-1706 (($ (-640 |#1|)) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1825 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3610 (((-767) $) 14 (|has| $ (-6 -4408)))))
+((-4361 (((-314 |#1|) (-477)) 16)))
+(((-916 |#1|) (-10 -7 (-15 -4361 ((-314 |#1|) (-477)))) (-13 (-846) (-556))) (T -916))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-314 *4)) (-5 *1 (-916 *4)) (-4 *4 (-13 (-846) (-556))))))
+(-10 -7 (-15 -4361 ((-314 |#1|) (-477))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-2552 (((-112) $) 31)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
+(((-917) (-140)) (T -917))
+((-3130 (*1 *2 *3) (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -4369 (-637 *1)) (|:| -2551 *1))) (-5 *3 (-637 *1)))) (-3129 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-637 *1)) (-4 *1 (-917)))))
+(-13 (-452) (-10 -8 (-15 -3130 ((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $))) (-15 -3129 ((-3 (-637 $) "failed") (-637 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-3498 (((-1163 |#2|) (-637 |#2|) (-637 |#2|)) 17) (((-1225 |#1| |#2|) (-1225 |#1| |#2|) (-637 |#2|) (-637 |#2|)) 13)))
+(((-918 |#1| |#2|) (-10 -7 (-15 -3498 ((-1225 |#1| |#2|) (-1225 |#1| |#2|) (-637 |#2|) (-637 |#2|))) (-15 -3498 ((-1163 |#2|) (-637 |#2|) (-637 |#2|)))) (-1169) (-363)) (T -918))
+((-3498 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-363)) (-5 *2 (-1163 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-1169)))) (-3498 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1225 *4 *5)) (-5 *3 (-637 *5)) (-14 *4 (-1169)) (-4 *5 (-363)) (-5 *1 (-918 *4 *5)))))
+(-10 -7 (-15 -3498 ((-1225 |#1| |#2|) (-1225 |#1| |#2|) (-637 |#2|) (-637 |#2|))) (-15 -3498 ((-1163 |#2|) (-637 |#2|) (-637 |#2|))))
+((-3131 ((|#2| (-637 |#1|) (-637 |#1|)) 24)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -3131 (|#2| (-637 |#1|) (-637 |#1|)))) (-363) (-1232 |#1|)) (T -919))
+((-3131 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-363)) (-4 *2 (-1232 *4)) (-5 *1 (-919 *4 *2)))))
+(-10 -7 (-15 -3131 (|#2| (-637 |#1|) (-637 |#1|))))
+((-3133 (((-546) (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151)) 139)) (-3152 ((|#4| |#4|) 155)) (-3137 (((-637 (-407 (-942 |#1|))) (-637 (-1169))) 119)) (-3151 (((-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-637 (-637 |#4|)) (-767) (-767) (-546)) 75)) (-3141 (((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-637 |#4|)) 59)) (-3150 (((-684 |#4|) (-684 |#4|) (-637 |#4|)) 55)) (-3134 (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151)) 151)) (-3132 (((-546) (-684 |#4|) (-915) (-1151)) 133) (((-546) (-684 |#4|) (-637 (-1169)) (-915) (-1151)) 132) (((-546) (-684 |#4|) (-637 |#4|) (-915) (-1151)) 131) (((-546) (-684 |#4|) (-1151)) 128) (((-546) (-684 |#4|) (-637 (-1169)) (-1151)) 127) (((-546) (-684 |#4|) (-637 |#4|) (-1151)) 126) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-915)) 125) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169)) (-915)) 124) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|) (-915)) 123) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|)) 121) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169))) 120) (((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|)) 116)) (-3138 ((|#4| (-942 |#1|)) 68)) (-3148 (((-112) (-637 |#4|) (-637 (-637 |#4|))) 152)) (-3147 (((-637 (-637 (-546))) (-546) (-546)) 130)) (-3146 (((-637 (-637 |#4|)) (-637 (-637 |#4|))) 88)) (-3145 (((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|))))) 86)) (-3144 (((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|))))) 85)) (-3153 (((-112) (-637 (-942 |#1|))) 17) (((-112) (-637 |#4|)) 13)) (-3139 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-637 |#4|)) (|:| |n0| (-637 |#4|))) (-637 |#4|) (-637 |#4|)) 71)) (-3143 (((-637 |#4|) |#4|) 49)) (-3136 (((-637 (-407 (-942 |#1|))) (-637 |#4|)) 115) (((-684 (-407 (-942 |#1|))) (-684 |#4|)) 56) (((-407 (-942 |#1|)) |#4|) 112)) (-3135 (((-2 (|:| |rgl| (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))))) (|:| |rgsz| (-546))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-767) (-1151) (-546)) 93)) (-3140 (((-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))) (-684 |#4|) (-767)) 84)) (-3149 (((-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) (-684 |#4|) (-767)) 102)) (-3142 (((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| -1735 (-684 (-407 (-942 |#1|)))) (|:| |vec| (-637 (-407 (-942 |#1|)))) (|:| -3501 (-767)) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) 48)))
+(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169)))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|) (-915))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169)) (-915))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-915))) (-15 -3132 ((-546) (-684 |#4|) (-637 |#4|) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 (-1169)) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 |#4|) (-915) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 (-1169)) (-915) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-915) (-1151))) (-15 -3133 ((-546) (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151))) (-15 -3134 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151))) (-15 -3135 ((-2 (|:| |rgl| (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))))) (|:| |rgsz| (-546))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-767) (-1151) (-546))) (-15 -3136 ((-407 (-942 |#1|)) |#4|)) (-15 -3136 ((-684 (-407 (-942 |#1|))) (-684 |#4|))) (-15 -3136 ((-637 (-407 (-942 |#1|))) (-637 |#4|))) (-15 -3137 ((-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3138 (|#4| (-942 |#1|))) (-15 -3139 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-637 |#4|)) (|:| |n0| (-637 |#4|))) (-637 |#4|) (-637 |#4|))) (-15 -3140 ((-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))) (-684 |#4|) (-767))) (-15 -3141 ((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-637 |#4|))) (-15 -3142 ((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| -1735 (-684 (-407 (-942 |#1|)))) (|:| |vec| (-637 (-407 (-942 |#1|)))) (|:| -3501 (-767)) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (-15 -3143 ((-637 |#4|) |#4|)) (-15 -3144 ((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))))) (-15 -3145 ((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))))) (-15 -3146 ((-637 (-637 |#4|)) (-637 (-637 |#4|)))) (-15 -3147 ((-637 (-637 (-546))) (-546) (-546))) (-15 -3148 ((-112) (-637 |#4|) (-637 (-637 |#4|)))) (-15 -3149 ((-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) (-684 |#4|) (-767))) (-15 -3150 ((-684 |#4|) (-684 |#4|) (-637 |#4|))) (-15 -3151 ((-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-637 (-637 |#4|)) (-767) (-767) (-546))) (-15 -3152 (|#4| |#4|)) (-15 -3153 ((-112) (-637 |#4|))) (-15 -3153 ((-112) (-637 (-942 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-611 (-1169))) (-789) (-946 |#1| |#3| |#2|)) (T -920))
+((-3153 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))) (-3151 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) (-5 *4 (-684 *12)) (-5 *5 (-637 (-407 (-942 *9)))) (-5 *6 (-637 (-637 *12))) (-5 *7 (-767)) (-5 *8 (-546)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-637 *12)) (|:| |neqzro| (-637 *12)) (|:| |wcond| (-637 (-942 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *9)))) (|:| -2169 (-637 (-1256 (-407 (-942 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-3150 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *7)) (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-637 (-2 (|:| |det| *8) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-637 *8))) (-5 *3 (-637 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3147 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 (-637 (-546)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-546)) (-4 *7 (-946 *4 *6 *5)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-637 (-637 *6))) (-4 *6 (-946 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| *7) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| *7) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1735 (-684 (-407 (-942 *4)))) (|:| |vec| (-637 (-407 (-942 *4)))) (|:| -3501 (-767)) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1256 (-407 (-942 *4)))) (|:| -2169 (-637 (-1256 (-407 (-942 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1256 (-407 (-942 *4)))) (|:| -2169 (-637 (-1256 (-407 (-942 *4))))))) (-5 *3 (-637 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| *8) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-3139 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-4 *7 (-946 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-637 *7)) (|:| |n0| (-637 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-684 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3136 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-407 (-942 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-3135 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-684 *11)) (-5 *4 (-637 (-407 (-942 *8)))) (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-637 (-2 (|:| |eqzro| (-637 *11)) (|:| |neqzro| (-637 *11)) (|:| |wcond| (-637 (-942 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *8)))) (|:| -2169 (-637 (-1256 (-407 (-942 *8)))))))))) (|:| |rgsz| (-546)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-546)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *7)) (|:| |neqzro| (-637 *7)) (|:| |wcond| (-637 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *4)))) (|:| -2169 (-637 (-1256 (-407 (-942 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8)) (|:| |wcond| (-637 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *5)))) (|:| -2169 (-637 (-1256 (-407 (-942 *5)))))))))) (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-915)) (-5 *5 (-1151)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3132 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-637 (-1169))) (-5 *5 (-915)) (-5 *6 (-1151)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3132 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-637 *10)) (-5 *5 (-915)) (-5 *6 (-1151)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 (-1169))) (-5 *5 (-1151)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 *9)) (-5 *5 (-1151)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-915)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8)) (|:| |wcond| (-637 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *5)))) (|:| -2169 (-637 (-1256 (-407 (-942 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 (-1169))) (-5 *5 (-915)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *9)) (|:| |neqzro| (-637 *9)) (|:| |wcond| (-637 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *6)))) (|:| -2169 (-637 (-1256 (-407 (-942 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *5 (-915)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *9)) (|:| |neqzro| (-637 *9)) (|:| |wcond| (-637 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *6)))) (|:| -2169 (-637 (-1256 (-407 (-942 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-637 *9)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *7)) (|:| |neqzro| (-637 *7)) (|:| |wcond| (-637 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *4)))) (|:| -2169 (-637 (-1256 (-407 (-942 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-637 (-1169))) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8)) (|:| |wcond| (-637 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *5)))) (|:| -2169 (-637 (-1256 (-407 (-942 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-637 (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8)) (|:| |wcond| (-637 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 *5)))) (|:| -2169 (-637 (-1256 (-407 (-942 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-637 *8)))))
+(-10 -7 (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169)))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 |#4|) (-915))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-637 (-1169)) (-915))) (-15 -3132 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-684 |#4|) (-915))) (-15 -3132 ((-546) (-684 |#4|) (-637 |#4|) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 (-1169)) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 |#4|) (-915) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-637 (-1169)) (-915) (-1151))) (-15 -3132 ((-546) (-684 |#4|) (-915) (-1151))) (-15 -3133 ((-546) (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151))) (-15 -3134 ((-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|))))))))) (-1151))) (-15 -3135 ((-2 (|:| |rgl| (-637 (-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))))) (|:| |rgsz| (-546))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-767) (-1151) (-546))) (-15 -3136 ((-407 (-942 |#1|)) |#4|)) (-15 -3136 ((-684 (-407 (-942 |#1|))) (-684 |#4|))) (-15 -3136 ((-637 (-407 (-942 |#1|))) (-637 |#4|))) (-15 -3137 ((-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3138 (|#4| (-942 |#1|))) (-15 -3139 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-637 |#4|)) (|:| |n0| (-637 |#4|))) (-637 |#4|) (-637 |#4|))) (-15 -3140 ((-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))) (-684 |#4|) (-767))) (-15 -3141 ((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-637 |#4|))) (-15 -3142 ((-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))) (-2 (|:| -1735 (-684 (-407 (-942 |#1|)))) (|:| |vec| (-637 (-407 (-942 |#1|)))) (|:| -3501 (-767)) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (-15 -3143 ((-637 |#4|) |#4|)) (-15 -3144 ((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))))) (-15 -3145 ((-767) (-637 (-2 (|:| -3501 (-767)) (|:| |eqns| (-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))) (|:| |fgb| (-637 |#4|)))))) (-15 -3146 ((-637 (-637 |#4|)) (-637 (-637 |#4|)))) (-15 -3147 ((-637 (-637 (-546))) (-546) (-546))) (-15 -3148 ((-112) (-637 |#4|) (-637 (-637 |#4|)))) (-15 -3149 ((-637 (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546))))) (-684 |#4|) (-767))) (-15 -3150 ((-684 |#4|) (-684 |#4|) (-637 |#4|))) (-15 -3151 ((-2 (|:| |eqzro| (-637 |#4|)) (|:| |neqzro| (-637 |#4|)) (|:| |wcond| (-637 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-407 (-942 |#1|)))) (|:| -2169 (-637 (-1256 (-407 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))) (-684 |#4|) (-637 (-407 (-942 |#1|))) (-637 (-637 |#4|)) (-767) (-767) (-546))) (-15 -3152 (|#4| |#4|)) (-15 -3153 ((-112) (-637 |#4|))) (-15 -3153 ((-112) (-637 (-942 |#1|)))))
+((-4289 (($ $ (-1082 (-225))) 69) (($ $ (-1082 (-225)) (-1082 (-225))) 70)) (-3286 (((-1082 (-225)) $) 44)) (-3287 (((-1082 (-225)) $) 43)) (-3177 (((-1082 (-225)) $) 45)) (-3158 (((-546) (-546)) 37)) (-3162 (((-546) (-546)) 33)) (-3160 (((-546) (-546)) 35)) (-3156 (((-112) (-112)) 39)) (-3159 (((-546)) 36)) (-3526 (($ $ (-1082 (-225))) 73) (($ $) 74)) (-3179 (($ (-1 (-939 (-225)) (-225)) (-1082 (-225))) 83) (($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225))) 84)) (-3165 (($ (-1 (-225) (-225)) (-1082 (-225))) 91) (($ (-1 (-225) (-225))) 94)) (-3178 (($ (-1 (-225) (-225)) (-1082 (-225))) 78) (($ (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225))) 79) (($ (-637 (-1 (-225) (-225))) (-1082 (-225))) 86) (($ (-637 (-1 (-225) (-225))) (-1082 (-225)) (-1082 (-225))) 87) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225))) 81) (($ $ (-1082 (-225))) 75)) (-3164 (((-112) $) 40)) (-3155 (((-546)) 41)) (-3163 (((-546)) 32)) (-3161 (((-546)) 34)) (-3288 (((-637 (-637 (-939 (-225)))) $) 23)) (-3154 (((-112) (-112)) 42)) (-4361 (((-859) $) 105)) (-3157 (((-112)) 38)))
+(((-921) (-13 (-951) (-10 -8 (-15 -3178 ($ (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-637 (-1 (-225) (-225))) (-1082 (-225)))) (-15 -3178 ($ (-637 (-1 (-225) (-225))) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3165 ($ (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3165 ($ (-1 (-225) (-225)))) (-15 -3178 ($ $ (-1082 (-225)))) (-15 -3164 ((-112) $)) (-15 -4289 ($ $ (-1082 (-225)))) (-15 -4289 ($ $ (-1082 (-225)) (-1082 (-225)))) (-15 -3526 ($ $ (-1082 (-225)))) (-15 -3526 ($ $)) (-15 -3177 ((-1082 (-225)) $)) (-15 -3163 ((-546))) (-15 -3162 ((-546) (-546))) (-15 -3161 ((-546))) (-15 -3160 ((-546) (-546))) (-15 -3159 ((-546))) (-15 -3158 ((-546) (-546))) (-15 -3157 ((-112))) (-15 -3156 ((-112) (-112))) (-15 -3155 ((-546))) (-15 -3154 ((-112) (-112)))))) (T -921))
+((-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-637 (-1 (-225) (-225)))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-637 (-1 (-225) (-225)))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3179 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921)))) (-3165 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-921)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921)))) (-4289 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921)))) (-3526 (*1 *1 *1) (-5 *1 (-921))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921)))) (-3163 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3161 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3159 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3157 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-3155 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))))
+(-13 (-951) (-10 -8 (-15 -3178 ($ (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-637 (-1 (-225) (-225))) (-1082 (-225)))) (-15 -3178 ($ (-637 (-1 (-225) (-225))) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3165 ($ (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3165 ($ (-1 (-225) (-225)))) (-15 -3178 ($ $ (-1082 (-225)))) (-15 -3164 ((-112) $)) (-15 -4289 ($ $ (-1082 (-225)))) (-15 -4289 ($ $ (-1082 (-225)) (-1082 (-225)))) (-15 -3526 ($ $ (-1082 (-225)))) (-15 -3526 ($ $)) (-15 -3177 ((-1082 (-225)) $)) (-15 -3163 ((-546))) (-15 -3162 ((-546) (-546))) (-15 -3161 ((-546))) (-15 -3160 ((-546) (-546))) (-15 -3159 ((-546))) (-15 -3158 ((-546) (-546))) (-15 -3157 ((-112))) (-15 -3156 ((-112) (-112))) (-15 -3155 ((-546))) (-15 -3154 ((-112) (-112)))))
+((-3165 (((-921) |#1| (-1169)) 17) (((-921) |#1| (-1169) (-1082 (-225))) 21)) (-3178 (((-921) |#1| |#1| (-1169) (-1082 (-225))) 19) (((-921) |#1| (-1169) (-1082 (-225))) 15)))
+(((-922 |#1|) (-10 -7 (-15 -3178 ((-921) |#1| (-1169) (-1082 (-225)))) (-15 -3178 ((-921) |#1| |#1| (-1169) (-1082 (-225)))) (-15 -3165 ((-921) |#1| (-1169) (-1082 (-225)))) (-15 -3165 ((-921) |#1| (-1169)))) (-611 (-535))) (T -922))
+((-3165 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-921)) (-5 *1 (-922 *3)) (-4 *3 (-611 (-535))))) (-3165 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3)) (-4 *3 (-611 (-535))))) (-3178 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3)) (-4 *3 (-611 (-535))))) (-3178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3)) (-4 *3 (-611 (-535))))))
+(-10 -7 (-15 -3178 ((-921) |#1| (-1169) (-1082 (-225)))) (-15 -3178 ((-921) |#1| |#1| (-1169) (-1082 (-225)))) (-15 -3165 ((-921) |#1| (-1169) (-1082 (-225)))) (-15 -3165 ((-921) |#1| (-1169))))
+((-4289 (($ $ (-1082 (-225)) (-1082 (-225)) (-1082 (-225))) 69)) (-3285 (((-1082 (-225)) $) 40)) (-3286 (((-1082 (-225)) $) 39)) (-3287 (((-1082 (-225)) $) 38)) (-3176 (((-637 (-637 (-225))) $) 43)) (-3177 (((-1082 (-225)) $) 41)) (-3170 (((-546) (-546)) 32)) (-3174 (((-546) (-546)) 28)) (-3172 (((-546) (-546)) 30)) (-3168 (((-112) (-112)) 35)) (-3171 (((-546)) 31)) (-3526 (($ $ (-1082 (-225))) 72) (($ $) 73)) (-3179 (($ (-1 (-939 (-225)) (-225)) (-1082 (-225))) 77) (($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225))) 78)) (-3178 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225))) 81) (($ $ (-1082 (-225))) 75)) (-3167 (((-546)) 36)) (-3175 (((-546)) 27)) (-3173 (((-546)) 29)) (-3288 (((-637 (-637 (-939 (-225)))) $) 93)) (-3166 (((-112) (-112)) 37)) (-4361 (((-859) $) 92)) (-3169 (((-112)) 34)))
+(((-923) (-13 (-970) (-10 -8 (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ $ (-1082 (-225)))) (-15 -4289 ($ $ (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3526 ($ $ (-1082 (-225)))) (-15 -3526 ($ $)) (-15 -3177 ((-1082 (-225)) $)) (-15 -3176 ((-637 (-637 (-225))) $)) (-15 -3175 ((-546))) (-15 -3174 ((-546) (-546))) (-15 -3173 ((-546))) (-15 -3172 ((-546) (-546))) (-15 -3171 ((-546))) (-15 -3170 ((-546) (-546))) (-15 -3169 ((-112))) (-15 -3168 ((-112) (-112))) (-15 -3167 ((-546))) (-15 -3166 ((-112) (-112)))))) (T -923))
+((-3179 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923)))) (-3179 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923)))) (-3178 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923)))) (-3178 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923)))) (-4289 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923)))) (-3526 (*1 *1 *1) (-5 *1 (-923))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-225)))) (-5 *1 (-923)))) (-3175 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3173 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3171 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3169 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3167 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(-13 (-970) (-10 -8 (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)))) (-15 -3179 ($ (-1 (-939 (-225)) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)))) (-15 -3178 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3178 ($ $ (-1082 (-225)))) (-15 -4289 ($ $ (-1082 (-225)) (-1082 (-225)) (-1082 (-225)))) (-15 -3526 ($ $ (-1082 (-225)))) (-15 -3526 ($ $)) (-15 -3177 ((-1082 (-225)) $)) (-15 -3176 ((-637 (-637 (-225))) $)) (-15 -3175 ((-546))) (-15 -3174 ((-546) (-546))) (-15 -3173 ((-546))) (-15 -3172 ((-546) (-546))) (-15 -3171 ((-546))) (-15 -3170 ((-546) (-546))) (-15 -3169 ((-112))) (-15 -3168 ((-112) (-112))) (-15 -3167 ((-546))) (-15 -3166 ((-112) (-112)))))
+((-3180 (((-637 (-1082 (-225))) (-637 (-637 (-939 (-225))))) 24)))
+(((-924) (-10 -7 (-15 -3180 ((-637 (-1082 (-225))) (-637 (-637 (-939 (-225)))))))) (T -924))
+((-3180 (*1 *2 *3) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-637 (-1082 (-225)))) (-5 *1 (-924)))))
+(-10 -7 (-15 -3180 ((-637 (-1082 (-225))) (-637 (-637 (-939 (-225)))))))
+((-3182 (((-314 (-546)) (-1169)) 16)) (-3183 (((-314 (-546)) (-1169)) 14)) (-4367 (((-314 (-546)) (-1169)) 12)) (-3181 (((-314 (-546)) (-1169) (-1151)) 19)))
+(((-925) (-10 -7 (-15 -3181 ((-314 (-546)) (-1169) (-1151))) (-15 -4367 ((-314 (-546)) (-1169))) (-15 -3182 ((-314 (-546)) (-1169))) (-15 -3183 ((-314 (-546)) (-1169))))) (T -925))
+((-3183 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-314 (-546))) (-5 *1 (-925)))))
+(-10 -7 (-15 -3181 ((-314 (-546)) (-1169) (-1151))) (-15 -4367 ((-314 (-546)) (-1169))) (-15 -3182 ((-314 (-546)) (-1169))) (-15 -3183 ((-314 (-546)) (-1169))))
+((-3182 ((|#2| |#2|) 26)) (-3183 ((|#2| |#2|) 27)) (-4367 ((|#2| |#2|) 25)) (-3181 ((|#2| |#2| (-1151)) 24)))
+(((-926 |#1| |#2|) (-10 -7 (-15 -3181 (|#2| |#2| (-1151))) (-15 -4367 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3183 (|#2| |#2|))) (-846) (-421 |#1|)) (T -926))
+((-3183 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3)))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3)))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-926 *4 *2)) (-4 *2 (-421 *4)))))
+(-10 -7 (-15 -3181 (|#2| |#2| (-1151))) (-15 -4367 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)))
+((-3185 (((-884 |#1| |#3|) |#2| (-886 |#1|) (-884 |#1| |#3|)) 25)) (-3184 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3185 ((-884 |#1| |#3|) |#2| (-886 |#1|) (-884 |#1| |#3|)))) (-1094) (-882 |#1|) (-13 (-1094) (-1034 |#2|))) (T -927))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6)))))
+(-10 -7 (-15 -3184 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3185 ((-884 |#1| |#3|) |#2| (-886 |#1|) (-884 |#1| |#3|))))
+((-3185 (((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)) 30)))
+(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)))) (-1094) (-13 (-556) (-846) (-882 |#1|)) (-13 (-421 |#2|) (-611 (-886 |#1|)) (-882 |#1|) (-1034 (-608 $)))) (T -928))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-421 *6) (-611 *4) (-882 *5) (-1034 (-608 $)))) (-5 *4 (-886 *5)) (-4 *6 (-13 (-556) (-846) (-882 *5))) (-5 *1 (-928 *5 *6 *3)))))
+(-10 -7 (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))))
+((-3185 (((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|)) 13)))
+(((-929 |#1|) (-10 -7 (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|)))) (-545)) (T -929))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 (-546) *3)) (-5 *4 (-886 (-546))) (-4 *3 (-545)) (-5 *1 (-929 *3)))))
+(-10 -7 (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))))
+((-3185 (((-884 |#1| |#2|) (-608 |#2|) (-886 |#1|) (-884 |#1| |#2|)) 52)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -3185 ((-884 |#1| |#2|) (-608 |#2|) (-886 |#1|) (-884 |#1| |#2|)))) (-1094) (-13 (-846) (-1034 (-608 $)) (-611 (-886 |#1|)) (-882 |#1|))) (T -930))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-846) (-1034 (-608 $)) (-611 *4) (-882 *5))) (-5 *4 (-886 *5)) (-5 *1 (-930 *5 *6)))))
+(-10 -7 (-15 -3185 ((-884 |#1| |#2|) (-608 |#2|) (-886 |#1|) (-884 |#1| |#2|))))
+((-3185 (((-881 |#1| |#2| |#3|) |#3| (-886 |#1|) (-881 |#1| |#2| |#3|)) 15)))
+(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-881 |#1| |#2| |#3|) |#3| (-886 |#1|) (-881 |#1| |#2| |#3|)))) (-1094) (-882 |#1|) (-661 |#2|)) (T -931))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3)))))
+(-10 -7 (-15 -3185 ((-881 |#1| |#2| |#3|) |#3| (-886 |#1|) (-881 |#1| |#2| |#3|))))
+((-3185 (((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-886 |#1|) (-884 |#1| |#5|))) 16)))
+(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3185 ((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-886 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3185 ((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|))) |%noBranch|)) (-1094) (-789) (-846) (-13 (-1045) (-846) (-882 |#1|)) (-13 (-946 |#4| |#2| |#3|) (-611 (-886 |#1|)))) (T -932))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-946 *8 *6 *7) (-611 *4))) (-5 *4 (-886 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-3185 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-886 *6) (-884 *6 *3))) (-4 *8 (-846)) (-5 *2 (-884 *6 *3)) (-5 *4 (-886 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-611 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3185 ((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-886 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3185 ((-884 |#1| |#5|) |#5| (-886 |#1|) (-884 |#1| |#5|))) |%noBranch|))
+((-3617 (((-314 (-546)) (-1169) (-637 (-1 (-112) |#1|))) 18) (((-314 (-546)) (-1169) (-1 (-112) |#1|)) 15)))
+(((-933 |#1|) (-10 -7 (-15 -3617 ((-314 (-546)) (-1169) (-1 (-112) |#1|))) (-15 -3617 ((-314 (-546)) (-1169) (-637 (-1 (-112) |#1|))))) (-1207)) (T -933))
+((-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-637 (-1 (-112) *5))) (-4 *5 (-1207)) (-5 *2 (-314 (-546))) (-5 *1 (-933 *5)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207)) (-5 *2 (-314 (-546))) (-5 *1 (-933 *5)))))
+(-10 -7 (-15 -3617 ((-314 (-546)) (-1169) (-1 (-112) |#1|))) (-15 -3617 ((-314 (-546)) (-1169) (-637 (-1 (-112) |#1|)))))
+((-3617 ((|#2| |#2| (-637 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3617 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3617 (|#2| |#2| (-637 (-1 (-112) |#3|))))) (-846) (-421 |#1|) (-1207)) (T -934))
+((-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-846)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-421 *4)))) (-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-846)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-421 *4)))))
+(-10 -7 (-15 -3617 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3617 (|#2| |#2| (-637 (-1 (-112) |#3|)))))
+((-3185 (((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)) 25)))
+(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)))) (-1094) (-13 (-556) (-882 |#1|) (-611 (-886 |#1|))) (-987 |#2|)) (T -935))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-987 *6)) (-4 *6 (-13 (-556) (-882 *5) (-611 *4))) (-5 *4 (-886 *5)) (-5 *1 (-935 *5 *6 *3)))))
+(-10 -7 (-15 -3185 ((-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))))
+((-3185 (((-884 |#1| (-1169)) (-1169) (-886 |#1|) (-884 |#1| (-1169))) 17)))
+(((-936 |#1|) (-10 -7 (-15 -3185 ((-884 |#1| (-1169)) (-1169) (-886 |#1|) (-884 |#1| (-1169))))) (-1094)) (T -936))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-5 *1 (-936 *5)))))
+(-10 -7 (-15 -3185 ((-884 |#1| (-1169)) (-1169) (-886 |#1|) (-884 |#1| (-1169)))))
+((-3186 (((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))) 33)) (-3185 (((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-1 |#3| (-637 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))) 32)))
+(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-1 |#3| (-637 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)))) (-15 -3186 ((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|))))) (-1094) (-13 (-1045) (-846)) (-13 (-1045) (-611 (-886 |#1|)) (-1034 |#2|))) (T -937))
+((-3186 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 (-886 *6))) (-5 *5 (-1 (-884 *6 *8) *8 (-886 *6) (-884 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1045) (-611 (-886 *6)) (-1034 *7))) (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))) (-3185 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-637 (-886 *7))) (-5 *5 (-1 *9 (-637 *9))) (-5 *6 (-1 (-884 *7 *9) *9 (-886 *7) (-884 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1045) (-611 (-886 *7)) (-1034 *8))) (-5 *2 (-884 *7 *9)) (-5 *3 (-637 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9)))))
+(-10 -7 (-15 -3185 ((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-1 |#3| (-637 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)))) (-15 -3186 ((-884 |#1| |#3|) (-637 |#3|) (-637 (-886 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-886 |#1|) (-884 |#1| |#3|)))))
+((-3194 (((-1163 (-407 (-546))) (-546)) 62)) (-3193 (((-1163 (-546)) (-546)) 65)) (-3745 (((-1163 (-546)) (-546)) 59)) (-3192 (((-546) (-1163 (-546))) 54)) (-3191 (((-1163 (-407 (-546))) (-546)) 48)) (-3190 (((-1163 (-546)) (-546)) 37)) (-3189 (((-1163 (-546)) (-546)) 67)) (-3188 (((-1163 (-546)) (-546)) 66)) (-3187 (((-1163 (-407 (-546))) (-546)) 50)))
+(((-938) (-10 -7 (-15 -3187 ((-1163 (-407 (-546))) (-546))) (-15 -3188 ((-1163 (-546)) (-546))) (-15 -3189 ((-1163 (-546)) (-546))) (-15 -3190 ((-1163 (-546)) (-546))) (-15 -3191 ((-1163 (-407 (-546))) (-546))) (-15 -3192 ((-546) (-1163 (-546)))) (-15 -3745 ((-1163 (-546)) (-546))) (-15 -3193 ((-1163 (-546)) (-546))) (-15 -3194 ((-1163 (-407 (-546))) (-546))))) (T -938))
+((-3194 (*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3193 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3745 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1163 (-546))) (-5 *2 (-546)) (-5 *1 (-938)))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3189 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3188 (*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))) (-3187 (*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(-10 -7 (-15 -3187 ((-1163 (-407 (-546))) (-546))) (-15 -3188 ((-1163 (-546)) (-546))) (-15 -3189 ((-1163 (-546)) (-546))) (-15 -3190 ((-1163 (-546)) (-546))) (-15 -3191 ((-1163 (-407 (-546))) (-546))) (-15 -3192 ((-546) (-1163 (-546)))) (-15 -3745 ((-1163 (-546)) (-546))) (-15 -3193 ((-1163 (-546)) (-546))) (-15 -3194 ((-1163 (-407 (-546))) (-546))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767)) NIL (|has| |#1| (-23)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) 11 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-4121 (($ (-637 |#1|)) 13)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4250 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4029 (($ (-767) |#1|) 8)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 10 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4247 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-4131 (((-112) $ (-767)) NIL)) (-4248 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-4183 (($ $ (-637 |#1|)) 26)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) 20) (($ $ (-1223 (-546))) NIL)) (-4251 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-4326 (((-915) $) 16)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4249 (($ $ $) 24)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535)))) (($ (-637 |#1|)) 17)) (-3936 (($ (-637 |#1|)) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4252 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4254 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-546) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-4372 (((-767) $) 14 (|has| $ (-6 -4408)))))
(((-939 |#1|) (-976 |#1|) (-1045)) (T -939))
NIL
(-976 |#1|)
-((-1945 (((-481 |#1| |#2|) (-948 |#2|)) 20)) (-1974 (((-247 |#1| |#2|) (-948 |#2|)) 33)) (-1954 (((-948 |#2|) (-481 |#1| |#2|)) 25)) (-1934 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 55)) (-1964 (((-948 |#2|) (-247 |#1| |#2|)) 30)) (-1923 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 46)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -1923 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1934 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -1945 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -1954 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -1964 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -1974 ((-247 |#1| |#2|) (-948 |#2|)))) (-640 (-1169)) (-1045)) (T -940))
-((-1974 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(-10 -7 (-15 -1923 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1934 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -1945 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -1954 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -1964 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -1974 ((-247 |#1| |#2|) (-948 |#2|))))
-((-3840 (((-640 |#2|) |#2| |#2|) 10)) (-3865 (((-767) (-640 |#1|)) 37 (|has| |#1| (-844)))) (-3849 (((-640 |#2|) |#2|) 11)) (-3875 (((-767) (-640 |#1|) (-563) (-563)) 39 (|has| |#1| (-844)))) (-3858 ((|#1| |#2|) 32 (|has| |#1| (-844)))))
-(((-941 |#1| |#2|) (-10 -7 (-15 -3840 ((-640 |#2|) |#2| |#2|)) (-15 -3849 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3858 (|#1| |#2|)) (-15 -3865 ((-767) (-640 |#1|))) (-15 -3875 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|)) (-363) (-1233 |#1|)) (T -941))
-((-3875 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4)))) (-3858 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1233 *2)))) (-3849 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4)))) (-3840 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -3840 ((-640 |#2|) |#2| |#2|)) (-15 -3849 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3858 (|#1| |#2|)) (-15 -3865 ((-767) (-640 |#1|))) (-15 -3875 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|))
-((-2238 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 19)))
-(((-942 |#1| |#2|) (-10 -7 (-15 -2238 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1045) (-1045)) (T -942))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6)))))
-(-10 -7 (-15 -2238 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|))))
-((-2138 (((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)) 18)))
-(((-943 |#1| |#2|) (-10 -7 (-15 -2138 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)))) (-1169) (-1045)) (T -943))
-((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6)))))
-(-10 -7 (-15 -2138 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|))))
-((-3897 (((-767) $) 71) (((-767) $ (-640 |#4|)) 74)) (-1798 (($ $) 172)) (-2802 (((-418 $) $) 164)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 115)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) 59)) (-1612 (($ $ $ |#4|) 76)) (-1476 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 105) (((-684 |#2|) (-684 $)) 98)) (-4151 (($ $) 179) (($ $ |#4|) 182)) (-2738 (((-640 $) $) 63)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 198) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 191)) (-3919 (((-640 $) $) 28)) (-2587 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) 57)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#4|) 161)) (-3939 (((-3 (-640 $) "failed") $) 42)) (-3930 (((-3 (-640 $) "failed") $) 31)) (-3949 (((-3 (-2 (|:| |var| |#4|) (|:| -3311 (-767))) "failed") $) 47)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 108)) (-2075 (((-418 (-1165 $)) (-1165 $)) 121)) (-2083 (((-418 (-1165 $)) (-1165 $)) 119)) (-2173 (((-418 $) $) 139)) (-1542 (($ $ (-640 (-294 $))) 21) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL)) (-1623 (($ $ |#4|) 78)) (-2219 (((-888 (-379)) $) 212) (((-888 (-563)) $) 205) (((-536) $) 220)) (-3885 ((|#2| $) NIL) (($ $ |#4|) 174)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 153)) (-3244 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 52) (($ $ (-640 |#4|) (-640 (-767))) 55)) (-2047 (((-3 $ "failed") $) 155)) (-1743 (((-112) $ $) 185)))
-(((-944 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2054 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3885 (|#1| |#1| |#4|)) (-15 -1623 (|#1| |#1| |#4|)) (-15 -1612 (|#1| |#1| |#1| |#4|)) (-15 -2738 ((-640 |#1|) |#1|)) (-15 -3897 ((-767) |#1| (-640 |#4|))) (-15 -3897 ((-767) |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| |#4|) (|:| -3311 (-767))) "failed") |#1|)) (-15 -3939 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3930 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2587 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2587 (|#1| |#1| |#4| (-767))) (-15 -1684 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -3919 ((-640 |#1|) |#1|)) (-15 -3244 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -3244 (|#1| |#1| |#4| (-767))) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -2057 (|#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#4| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2587 (|#1| |#2| |#3|)) (-15 -3244 (|#2| |#1| |#3|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -4151 (|#1| |#1|))) (-945 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -944))
-NIL
-(-10 -8 (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2047 ((-3 |#1| "failed") |#1|)) (-15 -1743 ((-112) |#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -2054 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3885 (|#1| |#1| |#4|)) (-15 -1623 (|#1| |#1| |#4|)) (-15 -1612 (|#1| |#1| |#1| |#4|)) (-15 -2738 ((-640 |#1|) |#1|)) (-15 -3897 ((-767) |#1| (-640 |#4|))) (-15 -3897 ((-767) |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| |#4|) (|:| -3311 (-767))) "failed") |#1|)) (-15 -3939 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3930 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2587 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2587 (|#1| |#1| |#4| (-767))) (-15 -1684 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -3919 ((-640 |#1|) |#1|)) (-15 -3244 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -3244 (|#1| |#1| |#4| (-767))) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -2057 (|#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#4| |#1|)) (-15 -1542 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1542 (|#1| |#1| |#4| |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2587 (|#1| |#2| |#3|)) (-15 -3244 (|#2| |#1| |#3|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -4151 (|#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 |#3|) $) 110)) (-2138 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-3231 (($ $) 88 (|has| |#1| (-555)))) (-3211 (((-112) $) 90 (|has| |#1| (-555)))) (-3897 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-1798 (($ $) 98 (|has| |#1| (-452)))) (-2802 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136)) (-2057 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137)) (-1612 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2750 (($ $) 154)) (-1476 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-4151 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2738 (((-640 $) $) 109)) (-2560 (((-112) $) 96 (|has| |#1| (-905)))) (-2159 (($ $ |#1| |#2| $) 172)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3401 (((-112) $) 31)) (-3481 (((-767) $) 169)) (-2595 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3919 (((-640 $) $) 126)) (-3805 (((-112) $) 152)) (-2587 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#3|) 120)) (-3908 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3088 (($ $ $) 79 (|has| |#1| (-846)))) (-1776 (($ $ $) 78 (|has| |#1| (-846)))) (-2170 (($ (-1 |#2| |#2|) $) 171)) (-2238 (($ (-1 |#1| |#1|) $) 151)) (-1698 (((-3 |#3| "failed") $) 123)) (-2715 (($ $) 149)) (-2725 ((|#1| $) 148)) (-3517 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3854 (((-1151) $) 9)) (-3939 (((-3 (-640 $) "failed") $) 114)) (-3930 (((-3 (-640 $) "failed") $) 115)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3311 (-767))) "failed") $) 113)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 166)) (-2705 ((|#1| $) 167)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3551 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-1623 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4203 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-3871 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-2219 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2188 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-555))) (($ (-407 (-563))) 72 (-4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-3955 (((-640 |#1|) $) 168)) (-3244 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2047 (((-3 $ "failed") $) 73 (-4034 (-2188 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 28)) (-2148 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-1779 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-945 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -945))
-((-4151 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3871 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-3919 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2138 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *3)))) (-1698 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3908 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-1684 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-945 *4 *5 *3)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2595 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-2595 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3930 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3949 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -3311 (-767)))))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3897 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-2738 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-1612 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1623 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3885 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-4151 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-1798 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5)))))
-(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -3871 ((-767) $ |t#3|)) (-15 -3871 ((-640 (-767)) $ (-640 |t#3|))) (-15 -3244 ($ $ |t#3| (-767))) (-15 -3244 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -3919 ((-640 $) $)) (-15 -2138 ((-1165 $) $ |t#3|)) (-15 -2138 ((-1165 |t#1|) $)) (-15 -1698 ((-3 |t#3| "failed") $)) (-15 -3908 ((-767) $ |t#3|)) (-15 -3908 ((-640 (-767)) $ (-640 |t#3|))) (-15 -1684 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |t#3|)) (-15 -2587 ($ $ |t#3| (-767))) (-15 -2587 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -2595 ($ (-1165 |t#1|) |t#3|)) (-15 -2595 ($ (-1165 $) |t#3|)) (-15 -3930 ((-3 (-640 $) "failed") $)) (-15 -3939 ((-3 (-640 $) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |var| |t#3|) (|:| -3311 (-767))) "failed") $)) (-15 -3897 ((-767) $)) (-15 -3897 ((-767) $ (-640 |t#3|))) (-15 -2605 ((-640 |t#3|) $)) (-15 -2738 ((-640 $) $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (IF (|has| |t#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-563)))) (IF (|has| |t#3| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (IF (|has| |t#3| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-563))) (IF (|has| |t#3| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (IF (|has| |t#3| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1612 ($ $ $ |t#3|)) (-15 -1623 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -3885 ($ $ |t#3|)) (-15 -4151 ($ $)) (-15 -4151 ($ $ |t#3|)) (-15 -2802 ((-418 $) $)) (-15 -1798 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-290) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905)))
-((-2605 (((-640 |#2|) |#5|) 36)) (-2138 (((-1165 |#5|) |#5| |#2| (-1165 |#5|)) 23) (((-407 (-1165 |#5|)) |#5| |#2|) 16)) (-2595 ((|#5| (-407 (-1165 |#5|)) |#2|) 30)) (-1698 (((-3 |#2| "failed") |#5|) 65)) (-3939 (((-3 (-640 |#5|) "failed") |#5|) 59)) (-3959 (((-3 (-2 (|:| |val| |#5|) (|:| -3311 (-563))) "failed") |#5|) 47)) (-3930 (((-3 (-640 |#5|) "failed") |#5|) 61)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3311 (-563))) "failed") |#5|) 51)))
-(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2605 ((-640 |#2|) |#5|)) (-15 -1698 ((-3 |#2| "failed") |#5|)) (-15 -2138 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2595 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2138 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -3930 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3949 ((-3 (-2 (|:| |var| |#2|) (|:| -3311 (-563))) "failed") |#5|)) (-15 -3959 ((-3 (-2 (|:| |val| |#5|) (|:| -3311 (-563))) "failed") |#5|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1692 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2153 (|#4| $))))) (T -946))
-((-3959 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3311 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))) (-3949 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3311 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))) (-3939 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))) (-3930 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))) (-2138 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))) (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))) (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) (-2138 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3))) (-5 *1 (-946 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))) (-1698 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *6)) (-15 -2143 (*6 $)) (-15 -2153 (*6 $))))))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))))
-(-10 -7 (-15 -2605 ((-640 |#2|) |#5|)) (-15 -1698 ((-3 |#2| "failed") |#5|)) (-15 -2138 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2595 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2138 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -3930 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3949 ((-3 (-2 (|:| |var| |#2|) (|:| -3311 (-563))) "failed") |#5|)) (-15 -3959 ((-3 (-2 (|:| |val| |#5|) (|:| -3311 (-563))) "failed") |#5|)))
-((-2238 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2238 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -947))
-((-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7)))))
-(-10 -7 (-15 -2238 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1169)) $) 16)) (-2138 (((-1165 $) $ (-1169)) 21) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1169))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1169) $) NIL)) (-1612 (($ $ $ (-1169)) NIL (|has| |#1| (-172)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-531 (-1169)) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1169) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1169) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#1|) (-1169)) NIL) (($ (-1165 $) (-1169)) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1169)) NIL)) (-3908 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 (-1169)) (-531 (-1169))) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1698 (((-3 (-1169) "failed") $) 19)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1169)) (|:| -3311 (-767))) "failed") $) NIL)) (-2062 (($ $ (-1169)) 29 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1169) |#1|) NIL) (($ $ (-640 (-1169)) (-640 |#1|)) NIL) (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL)) (-1623 (($ $ (-1169)) NIL (|has| |#1| (-172)))) (-4203 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-3871 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1169) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 25) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1169)) 27) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-948 |#1|) (-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1169))) |%noBranch|))) (-1045)) (T -948))
-((-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))))
-(-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1169))) |%noBranch|)))
-((-3970 (((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 38)) (-3980 (((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767)) 34)) (-4004 (((-2 (|:| -3311 (-767)) (|:| -2310 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)) 54)) (-3991 (((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 64 (|has| |#3| (-452)))))
-(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3970 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3980 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3991 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -4004 ((-2 (|:| -3311 (-767)) (|:| -2310 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1692 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2153 (|#4| $))))) (T -949))
-((-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *3 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| (-640 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1692 ($ *3)) (-15 -2143 (*3 $)) (-15 -2153 (*3 $))))))) (-3991 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1692 ($ *8)) (-15 -2143 (*8 $)) (-15 -2153 (*8 $))))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -1692 ($ *8)) (-15 -2143 (*8 $)) (-15 -2153 (*8 $))))))) (-3970 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555)) (-4 *7 (-945 *3 *5 *6)) (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))))
-(-10 -7 (-15 -3970 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3980 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3991 ((-2 (|:| -3311 (-767)) (|:| -2310 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -4004 ((-2 (|:| -3311 (-767)) (|:| -2310 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767))))
-((-1677 (((-112) $ $) NIL)) (-2266 (($ (-1113)) 8)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 14) (((-1113) $) 11)) (-1718 (((-112) $ $) 10)))
-(((-950) (-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -2266 ($ (-1113)))))) (T -950))
-((-2266 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950)))))
-(-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -2266 ($ (-1113)))))
-((-4325 (((-1087 (-225)) $) 8)) (-4314 (((-1087 (-225)) $) 9)) (-3394 (((-640 (-640 (-939 (-225)))) $) 10)) (-1692 (((-858) $) 6)))
+((-3197 (((-481 |#1| |#2|) (-942 |#2|)) 20)) (-3200 (((-247 |#1| |#2|) (-942 |#2|)) 33)) (-3198 (((-942 |#2|) (-481 |#1| |#2|)) 25)) (-3196 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 55)) (-3199 (((-942 |#2|) (-247 |#1| |#2|)) 30)) (-3195 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 46)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -3195 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3196 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3197 ((-481 |#1| |#2|) (-942 |#2|))) (-15 -3198 ((-942 |#2|) (-481 |#1| |#2|))) (-15 -3199 ((-942 |#2|) (-247 |#1| |#2|))) (-15 -3200 ((-247 |#1| |#2|) (-942 |#2|)))) (-637 (-1169)) (-1045)) (T -940))
+((-3200 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-637 (-1169))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045)) (-5 *2 (-942 *5)) (-5 *1 (-940 *4 *5)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045)) (-5 *2 (-942 *5)) (-5 *1 (-940 *4 *5)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-637 (-1169))))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
+(-10 -7 (-15 -3195 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3196 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3197 ((-481 |#1| |#2|) (-942 |#2|))) (-15 -3198 ((-942 |#2|) (-481 |#1| |#2|))) (-15 -3199 ((-942 |#2|) (-247 |#1| |#2|))) (-15 -3200 ((-247 |#1| |#2|) (-942 |#2|))))
+((-3201 (((-637 |#2|) |#2| |#2|) 10)) (-3204 (((-767) (-637 |#1|)) 37 (|has| |#1| (-844)))) (-3202 (((-637 |#2|) |#2|) 11)) (-3205 (((-767) (-637 |#1|) (-546) (-546)) 39 (|has| |#1| (-844)))) (-3203 ((|#1| |#2|) 32 (|has| |#1| (-844)))))
+(((-941 |#1| |#2|) (-10 -7 (-15 -3201 ((-637 |#2|) |#2| |#2|)) (-15 -3202 ((-637 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3203 (|#1| |#2|)) (-15 -3204 ((-767) (-637 |#1|))) (-15 -3205 ((-767) (-637 |#1|) (-546) (-546)))) |%noBranch|)) (-363) (-1232 |#1|)) (T -941))
+((-3205 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-546)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1232 *5)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1232 *4)))) (-3203 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1232 *2)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1232 *4)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -3201 ((-637 |#2|) |#2| |#2|)) (-15 -3202 ((-637 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3203 (|#1| |#2|)) (-15 -3204 ((-767) (-637 |#1|))) (-15 -3205 ((-767) (-637 |#1|) (-546) (-546)))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1169)) $) 16)) (-3476 (((-1163 $) $ (-1169)) 21) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1169))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) 8) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-1169) #2#) $) NIL)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-1169) $) NIL)) (-4171 (($ $ $ (-1169)) NIL (|has| |#1| (-172)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-531 (-1169)) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1169) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1169) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#1|) (-1169)) NIL) (($ (-1163 $) (-1169)) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1169)) NIL)) (-3209 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-637 (-767)) $ (-637 (-1169))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 (-1169)) (-531 (-1169))) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3475 (((-3 (-1169) #3="failed") $) 19)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1169)) (|:| -2543 (-767))) #3#) $) NIL)) (-4227 (($ $ (-1169)) 29 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1169) |#1|) NIL) (($ $ (-637 (-1169)) (-637 |#1|)) NIL) (($ $ (-1169) $) NIL) (($ $ (-637 (-1169)) (-637 $)) NIL)) (-4172 (($ $ (-1169)) NIL (|has| |#1| (-172)))) (-4225 (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-4363 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-637 (-767)) $ (-637 (-1169))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1169) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1169) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1169) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 25) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-1169)) 27) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-942 |#1|) (-13 (-946 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1169))) |%noBranch|))) (-1045)) (T -942))
+((-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)))))
+(-13 (-946 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1169))) |%noBranch|)))
+((-4373 (((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)) 19)))
+(((-943 |#1| |#2|) (-10 -7 (-15 -4373 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)))) (-1045) (-1045)) (T -943))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-942 *6)) (-5 *1 (-943 *5 *6)))))
+(-10 -7 (-15 -4373 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|))))
+((-3476 (((-1225 |#1| (-942 |#2|)) (-942 |#2|) (-1253 |#1|)) 18)))
+(((-944 |#1| |#2|) (-10 -7 (-15 -3476 ((-1225 |#1| (-942 |#2|)) (-942 |#2|) (-1253 |#1|)))) (-1169) (-1045)) (T -944))
+((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-5 *2 (-1225 *5 (-942 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-942 *6)))))
+(-10 -7 (-15 -3476 ((-1225 |#1| (-942 |#2|)) (-942 |#2|) (-1253 |#1|))))
+((-3208 (((-767) $) 71) (((-767) $ (-637 |#4|)) 74)) (-4189 (($ $) 172)) (-4384 (((-405 $) $) 164)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 115)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL) (((-3 (-546) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL) (((-546) $) NIL) ((|#4| $) 59)) (-4171 (($ $ $ |#4|) 76)) (-2408 (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 105) (((-684 |#2|) (-684 $)) 98)) (-3909 (($ $) 179) (($ $ |#4|) 182)) (-3207 (((-637 $) $) 63)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 198) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 191)) (-3210 (((-637 $) $) 28)) (-3283 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-637 |#4|) (-637 (-767))) 57)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#4|) 161)) (-3212 (((-3 (-637 $) "failed") $) 42)) (-3211 (((-3 (-637 $) "failed") $) 31)) (-3213 (((-3 (-2 (|:| |var| |#4|) (|:| -2543 (-767))) "failed") $) 47)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 108)) (-3094 (((-405 (-1163 $)) (-1163 $)) 121)) (-3095 (((-405 (-1163 $)) (-1163 $)) 119)) (-4147 (((-405 $) $) 139)) (-4182 (($ $ (-637 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-637 |#4|) (-637 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-637 |#4|) (-637 $)) NIL)) (-4172 (($ $ |#4|) 78)) (-4385 (((-886 (-378)) $) 212) (((-886 (-546)) $) 205) (((-535) $) 220)) (-3206 ((|#2| $) NIL) (($ $ |#4|) 174)) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 153)) (-4092 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 52) (($ $ (-637 |#4|) (-637 (-767))) 55)) (-3091 (((-3 $ #1#) $) 155)) (-3074 (((-112) $ $) 185)))
+(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -3091 ((-3 |#1| #1="failed") |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) #1#) (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3092 ((-3 (-1256 |#1|) #1#) (-684 |#1|))) (-15 -3909 (|#1| |#1| |#4|)) (-15 -3206 (|#1| |#1| |#4|)) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4171 (|#1| |#1| |#1| |#4|)) (-15 -3207 ((-637 |#1|) |#1|)) (-15 -3208 ((-767) |#1| (-637 |#4|))) (-15 -3208 ((-767) |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| |#4|) (|:| -2543 (-767))) "failed") |#1|)) (-15 -3212 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3211 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3283 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -3283 (|#1| |#1| |#4| (-767))) (-15 -4177 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3210 ((-637 |#1|) |#1|)) (-15 -4092 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -4092 (|#1| |#1| |#4| (-767))) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -3565 ((-3 |#4| #2="failed") |#1|)) (-15 -3564 (|#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#4| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -3283 (|#1| |#2| |#3|)) (-15 -4092 (|#2| |#1| |#3|)) (-15 -3565 ((-3 (-546) #2#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #2#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #2#) |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3909 (|#1| |#1|))) (-946 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -945))
+NIL
+(-10 -8 (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -3091 ((-3 |#1| #1="failed") |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) #1#) (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3092 ((-3 (-1256 |#1|) #1#) (-684 |#1|))) (-15 -3909 (|#1| |#1| |#4|)) (-15 -3206 (|#1| |#1| |#4|)) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4171 (|#1| |#1| |#1| |#4|)) (-15 -3207 ((-637 |#1|) |#1|)) (-15 -3208 ((-767) |#1| (-637 |#4|))) (-15 -3208 ((-767) |#1|)) (-15 -3213 ((-3 (-2 (|:| |var| |#4|) (|:| -2543 (-767))) "failed") |#1|)) (-15 -3212 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3211 ((-3 (-637 |#1|) "failed") |#1|)) (-15 -3283 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -3283 (|#1| |#1| |#4| (-767))) (-15 -4177 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3210 ((-637 |#1|) |#1|)) (-15 -4092 (|#1| |#1| (-637 |#4|) (-637 (-767)))) (-15 -4092 (|#1| |#1| |#4| (-767))) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -3565 ((-3 |#4| #2="failed") |#1|)) (-15 -3564 (|#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#4| |#1|)) (-15 -4182 (|#1| |#1| (-637 |#4|) (-637 |#2|))) (-15 -4182 (|#1| |#1| |#4| |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -3283 (|#1| |#2| |#3|)) (-15 -4092 (|#2| |#1| |#3|)) (-15 -3565 ((-3 (-546) #2#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #2#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #2#) |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -3909 (|#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 |#3|) $) 110)) (-3476 (((-1163 $) $ |#3|) 125) (((-1163 |#1|) $) 124)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-2220 (($ $) 88 (|has| |#1| (-556)))) (-2218 (((-112) $) 90 (|has| |#1| (-556)))) (-3208 (((-767) $) 112) (((-767) $ (-637 |#3|)) 111)) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 100 (|has| |#1| (-906)))) (-4189 (($ $) 98 (|has| |#1| (-452)))) (-4384 (((-405 $) $) 97 (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 103 (|has| |#1| (-906)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| #2="failed") $) 164) (((-3 (-407 (-546)) #2#) $) 161 (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) 159 (|has| |#1| (-1034 (-546)))) (((-3 |#3| #2#) $) 136)) (-3564 ((|#1| $) 163) (((-407 (-546)) $) 162 (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) 160 (|has| |#1| (-1034 (-546)))) ((|#3| $) 137)) (-4171 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-4374 (($ $) 154)) (-2408 (((-684 (-546)) (-684 $)) 134 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 133 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3873 (((-3 $ "failed") $) 33)) (-3909 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3207 (((-637 $) $) 109)) (-4138 (((-112) $) 96 (|has| |#1| (-906)))) (-1756 (($ $ |#1| |#2| $) 172)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 83 (-12 (|has| |#3| (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-2552 (((-112) $) 31)) (-2560 (((-767) $) 169)) (-3477 (($ (-1163 |#1|) |#3|) 117) (($ (-1163 $) |#3|) 116)) (-3210 (((-637 $) $) 126)) (-4352 (((-112) $) 152)) (-3283 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-637 |#3|) (-637 (-767))) 118)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3209 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-637 (-767)) $ (-637 |#3|)) 121)) (-2919 (($ $ $) 79 (|has| |#1| (-846)))) (-3249 (($ $ $) 78 (|has| |#1| (-846)))) (-1757 (($ (-1 |#2| |#2|) $) 171)) (-4373 (($ (-1 |#1| |#1|) $) 151)) (-3475 (((-3 |#3| "failed") $) 123)) (-3284 (($ $) 149)) (-3582 ((|#1| $) 148)) (-2048 (($ (-637 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3650 (((-1151) $) 9)) (-3212 (((-3 (-637 $) "failed") $) 114)) (-3211 (((-3 (-637 $) "failed") $) 115)) (-3213 (((-3 (-2 (|:| |var| |#3|) (|:| -2543 (-767))) "failed") $) 113)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 166)) (-1950 ((|#1| $) 167)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 95 (|has| |#1| (-452)))) (-3552 (($ (-637 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 102 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 101 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 99 (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-637 $) (-637 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-637 |#3|) (-637 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-637 |#3|) (-637 $)) 138)) (-4172 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4225 (($ $ |#3|) 42) (($ $ (-637 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-637 |#3|) (-637 (-767))) 39)) (-4363 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-637 (-767)) $ (-637 |#3|)) 129)) (-4385 (((-886 (-378)) $) 82 (-12 (|has| |#3| (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) 81 (-12 (|has| |#3| (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) 80 (-12 (|has| |#3| (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 104 (-3247 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-546))) 72 (-3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))))) (-4232 (((-637 |#1|) $) 168)) (-4092 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-637 |#3|) (-637 (-767))) 127)) (-3091 (((-3 $ "failed") $) 73 (-3943 (-3247 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 28)) (-1755 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 89 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ |#3|) 38) (($ $ (-637 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-637 |#3|) (-637 (-767))) 35)) (-2951 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 75 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 77 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 74 (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 158 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 157 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-946 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -946))
+((-3909 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4363 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4363 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 (-767))))) (-4092 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-4092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 (-767))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3476 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1163 *1)) (-4 *1 (-946 *4 *5 *3)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1163 *3)))) (-3475 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3209 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 (-767))))) (-4177 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-946 *4 *5 *3)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 (-767))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1045)) (-4 *1 (-946 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3211 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3212 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3213 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -2543 (-767)))))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3208 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *5)))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4171 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-4172 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3206 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-3909 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-4189 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4384 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-405 *1)) (-4 *1 (-946 *3 *4 *5)))))
+(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -4363 ((-767) $ |t#3|)) (-15 -4363 ((-637 (-767)) $ (-637 |t#3|))) (-15 -4092 ($ $ |t#3| (-767))) (-15 -4092 ($ $ (-637 |t#3|) (-637 (-767)))) (-15 -3210 ((-637 $) $)) (-15 -3476 ((-1163 $) $ |t#3|)) (-15 -3476 ((-1163 |t#1|) $)) (-15 -3475 ((-3 |t#3| "failed") $)) (-15 -3209 ((-767) $ |t#3|)) (-15 -3209 ((-637 (-767)) $ (-637 |t#3|))) (-15 -4177 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -3283 ($ $ |t#3| (-767))) (-15 -3283 ($ $ (-637 |t#3|) (-637 (-767)))) (-15 -3477 ($ (-1163 |t#1|) |t#3|)) (-15 -3477 ($ (-1163 $) |t#3|)) (-15 -3211 ((-3 (-637 $) "failed") $)) (-15 -3212 ((-3 (-637 $) "failed") $)) (-15 -3213 ((-3 (-2 (|:| |var| |t#3|) (|:| -2543 (-767))) "failed") $)) (-15 -3208 ((-767) $)) (-15 -3208 ((-767) $ (-637 |t#3|))) (-15 -3474 ((-637 |t#3|) $)) (-15 -3207 ((-637 $) $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (IF (|has| |t#3| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-886 (-546)))) (IF (|has| |t#3| (-611 (-886 (-546)))) (-6 (-611 (-886 (-546)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-886 (-378)))) (IF (|has| |t#3| (-611 (-886 (-378)))) (-6 (-611 (-886 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-546))) (IF (|has| |t#3| (-882 (-546))) (-6 (-882 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-378))) (IF (|has| |t#3| (-882 (-378))) (-6 (-882 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4171 ($ $ $ |t#3|)) (-15 -4172 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -3206 ($ $ |t#3|)) (-15 -3909 ($ $)) (-15 -3909 ($ $ |t#3|)) (-15 -4384 ((-405 $) $)) (-15 -4189 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#3| (-611 (-535)))) ((-611 (-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#3| (-611 (-886 (-378))))) ((-611 (-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#3| (-611 (-886 (-546))))) ((-290) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#3| (-882 (-378)))) ((-882 (-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#3| (-882 (-546)))) ((-906) |has| |#1| (-906)) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) |has| |#1| (-906)))
+((-3474 (((-637 |#2|) |#5|) 36)) (-3476 (((-1163 |#5|) |#5| |#2| (-1163 |#5|)) 23) (((-407 (-1163 |#5|)) |#5| |#2|) 16)) (-3477 ((|#5| (-407 (-1163 |#5|)) |#2|) 30)) (-3475 (((-3 |#2| "failed") |#5|) 65)) (-3212 (((-3 (-637 |#5|) "failed") |#5|) 59)) (-3214 (((-3 (-2 (|:| |val| |#5|) (|:| -2543 (-546))) "failed") |#5|) 47)) (-3211 (((-3 (-637 |#5|) "failed") |#5|) 61)) (-3213 (((-3 (-2 (|:| |var| |#2|) (|:| -2543 (-546))) "failed") |#5|) 51)))
+(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3474 ((-637 |#2|) |#5|)) (-15 -3475 ((-3 |#2| "failed") |#5|)) (-15 -3476 ((-407 (-1163 |#5|)) |#5| |#2|)) (-15 -3477 (|#5| (-407 (-1163 |#5|)) |#2|)) (-15 -3476 ((-1163 |#5|) |#5| |#2| (-1163 |#5|))) (-15 -3211 ((-3 (-637 |#5|) "failed") |#5|)) (-15 -3212 ((-3 (-637 |#5|) "failed") |#5|)) (-15 -3213 ((-3 (-2 (|:| |var| |#2|) (|:| -2543 (-546))) "failed") |#5|)) (-15 -3214 ((-3 (-2 (|:| |val| |#5|) (|:| -2543 (-546))) "failed") |#5|))) (-789) (-846) (-1045) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -4361 ($ |#4|)) (-15 -3388 (|#4| $)) (-15 -3387 (|#4| $))))) (T -947))
+((-3214 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2543 (-546)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))) (-3213 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2543 (-546)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))) (-3212 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-637 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))) (-3211 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-637 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))) (-3476 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))) (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1163 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))) (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1163 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))) (-3475 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-946 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-947 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *6)) (-15 -3388 (*6 $)) (-15 -3387 (*6 $))))))) (-3474 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-637 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(-10 -7 (-15 -3474 ((-637 |#2|) |#5|)) (-15 -3475 ((-3 |#2| "failed") |#5|)) (-15 -3476 ((-407 (-1163 |#5|)) |#5| |#2|)) (-15 -3477 (|#5| (-407 (-1163 |#5|)) |#2|)) (-15 -3476 ((-1163 |#5|) |#5| |#2| (-1163 |#5|))) (-15 -3211 ((-3 (-637 |#5|) "failed") |#5|)) (-15 -3212 ((-3 (-637 |#5|) "failed") |#5|)) (-15 -3213 ((-3 (-2 (|:| |var| |#2|) (|:| -2543 (-546))) "failed") |#5|)) (-15 -3214 ((-3 (-2 (|:| |val| |#5|) (|:| -2543 (-546))) "failed") |#5|)))
+((-4373 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4373 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-946 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -948))
+((-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7)))))
+(-10 -7 (-15 -4373 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3215 (((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 38)) (-3216 (((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) (-407 (-546)) (-767)) 34)) (-3218 (((-2 (|:| -2543 (-767)) (|:| -4369 |#4|) (|:| |radicand| (-637 |#4|))) |#4| (-767)) 54)) (-3217 (((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 64 (|has| |#3| (-452)))))
+(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3215 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3216 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) (-407 (-546)) (-767))) (IF (|has| |#3| (-452)) (-15 -3217 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3218 ((-2 (|:| -2543 (-767)) (|:| -4369 |#4|) (|:| |radicand| (-637 |#4|))) |#4| (-767)))) (-789) (-846) (-556) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -4361 ($ |#4|)) (-15 -3388 (|#4| $)) (-15 -3387 (|#4| $))))) (T -949))
+((-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| (-637 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -4361 ($ *3)) (-15 -3388 (*3 $)) (-15 -3387 (*3 $))))))) (-3217 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -4361 ($ *8)) (-15 -3388 (*8 $)) (-15 -3387 (*8 $))))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-546))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -4361 ($ *8)) (-15 -3388 (*8 $)) (-15 -3387 (*8 $))))))) (-3215 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6)) (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(-10 -7 (-15 -3215 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3216 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) (-407 (-546)) (-767))) (IF (|has| |#3| (-452)) (-15 -3217 ((-2 (|:| -2543 (-767)) (|:| -4369 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3218 ((-2 (|:| -2543 (-767)) (|:| -4369 |#4|) (|:| |radicand| (-637 |#4|))) |#4| (-767))))
+((-2953 (((-112) $ $) NIL)) (-3219 (($ (-1113)) 8)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 14) (((-1113) $) 11)) (-3444 (((-112) $ $) 10)))
+(((-950) (-13 (-1094) (-610 (-1113)) (-10 -8 (-15 -3219 ($ (-1113)))))) (T -950))
+((-3219 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950)))))
+(-13 (-1094) (-610 (-1113)) (-10 -8 (-15 -3219 ($ (-1113)))))
+((-3286 (((-1082 (-225)) $) 8)) (-3287 (((-1082 (-225)) $) 9)) (-3288 (((-637 (-637 (-939 (-225)))) $) 10)) (-4361 (((-859) $) 6)))
(((-951) (-140)) (T -951))
-((-3394 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3394 ((-640 (-640 (-939 (-225)))) $)) (-15 -4314 ((-1087 (-225)) $)) (-15 -4325 ((-1087 (-225)) $))))
-(((-610 (-858)) . T))
-((-4014 (((-3 (-684 |#1|) "failed") |#2| (-917)) 15)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -4014 ((-3 (-684 |#1|) "failed") |#2| (-917)))) (-555) (-651 |#1|)) (T -952))
-((-4014 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5)) (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5)))))
-(-10 -7 (-15 -4014 ((-3 (-684 |#1|) "failed") |#2| (-917))))
-((-4132 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-2238 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -4132 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2238 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1208) (-1208)) (T -953))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-953 *5 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5)))))
-(-10 -7 (-15 -4132 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2238 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 16 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 15 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 13)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) |#1|) 12)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) 10 (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) 17 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) 11)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 14) (($ $ (-1224 (-563))) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) NIL)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3610 (((-767) $) 8 (|has| $ (-6 -4408)))))
-(((-954 |#1|) (-19 |#1|) (-1208)) (T -954))
+((-3288 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-637 (-637 (-939 (-225))))))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1082 (-225))))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1082 (-225))))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3288 ((-637 (-637 (-939 (-225)))) $)) (-15 -3287 ((-1082 (-225)) $)) (-15 -3286 ((-1082 (-225)) $))))
+(((-610 (-859)) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 60 (|has| |#1| (-556)))) (-2220 (($ $) 61 (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 28)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) 24)) (-3873 (((-3 $ "failed") $) 35)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-1756 (($ $ |#1| |#2| $) 47)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) 16)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| |#2|) NIL)) (-3209 ((|#2| $) 19)) (-1757 (($ (-1 |#2| |#2|) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3284 (($ $) 23)) (-3582 ((|#1| $) 21)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) 40)) (-1950 ((|#1| $) NIL)) (-4153 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-3872 (((-3 $ "failed") $ $) 73 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-556)))) (-4363 ((|#2| $) 17)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) 39) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 34) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ |#2|) 31)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) 15)) (-1755 (($ $ $ (-767)) 56 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 66 (|has| |#1| (-556)))) (-3047 (($) 22 T CONST)) (-3053 (($) 12 T CONST)) (-3444 (((-112) $ $) 65)) (-4364 (($ $ |#1|) 74 (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) 53) (($ $ (-767)) 51)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-952 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -4153 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-788)) (T -952))
+((-4153 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-952 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *2 (-788)))))
+(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -4153 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
+((-3220 (((-3 (-684 |#1|) "failed") |#2| (-915)) 15)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -3220 ((-3 (-684 |#1|) "failed") |#2| (-915)))) (-556) (-653 |#1|)) (T -953))
+((-3220 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-915)) (-4 *5 (-556)) (-5 *2 (-684 *5)) (-5 *1 (-953 *5 *3)) (-4 *3 (-653 *5)))))
+(-10 -7 (-15 -3220 ((-3 (-684 |#1|) "failed") |#2| (-915))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) 16 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 15 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 13)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) |#1|) 12)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) 10 (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) 17 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) 11)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) 14) (($ $ (-1223 (-546))) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) NIL)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4372 (((-767) $) 8 (|has| $ (-6 -4408)))))
+(((-954 |#1|) (-19 |#1|) (-1207)) (T -954))
NIL
(-19 |#1|)
-((-4025 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)))
-(((-955) (-140)) (T -955))
-((-4025 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955)))) (-4025 (*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169)))))
-(-13 (-10 -8 (-15 -4025 ($ $ (-1169))) (-15 -4025 ($ $ (-1085 $)))))
-((-4036 (((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)) 25) (((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169))) 26) (((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169)) 43)))
-(((-956 |#1|) (-10 -7 (-15 -4036 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -4036 ((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -4036 ((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)))) (-13 (-363) (-147))) (T -956))
-((-4036 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 *6))) (|:| |prim| (-1165 *6)))) (-5 *1 (-956 *6)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5)))) (-4036 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5)))))
-(-10 -7 (-15 -4036 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -4036 ((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -4036 ((-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169))))
-((-4070 (((-640 |#1|) |#1| |#1|) 42)) (-2560 (((-112) |#1|) 39)) (-4059 ((|#1| |#1|) 65)) (-4048 ((|#1| |#1|) 64)))
-(((-957 |#1|) (-10 -7 (-15 -2560 ((-112) |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -4059 (|#1| |#1|)) (-15 -4070 ((-640 |#1|) |#1| |#1|))) (-545)) (T -957))
-((-4070 (*1 *2 *3 *3) (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) (-4059 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-4048 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-2560 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -2560 ((-112) |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -4059 (|#1| |#1|)) (-15 -4070 ((-640 |#1|) |#1| |#1|)))
-((-3307 (((-1262) (-858)) 9)))
-(((-958) (-10 -7 (-15 -3307 ((-1262) (-858))))) (T -958))
-((-3307 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958)))))
-(-10 -7 (-15 -3307 ((-1262) (-858))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 60 (|has| |#1| (-555)))) (-3231 (($ $) 61 (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 28)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) 24)) (-3951 (((-3 $ "failed") $) 35)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-2159 (($ $ |#1| |#2| $) 47)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) 16)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| |#2|) NIL)) (-3908 ((|#2| $) 19)) (-2170 (($ (-1 |#2| |#2|) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2715 (($ $) 23)) (-2725 ((|#1| $) 21)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) 40)) (-2705 ((|#1| $) NIL)) (-2646 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-131)) (|has| |#1| (-555))))) (-3012 (((-3 $ "failed") $ $) 73 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-555)))) (-3871 ((|#2| $) 17)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) 39) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 34) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ |#2|) 31)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) 15)) (-2148 (($ $ $ (-767)) 56 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 66 (|has| |#1| (-555)))) (-2239 (($) 22 T CONST)) (-2253 (($) 12 T CONST)) (-1718 (((-112) $ $) 65)) (-1836 (($ $ |#1|) 74 (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) 53) (($ $ (-767)) 51)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-959 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -2646 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-788)) (T -959))
-((-2646 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -2646 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4092 (($ $ $) 63 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-3905 (((-3 $ "failed") $ $) 50 (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3750 (((-767)) 34 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-4081 ((|#2| $) 21)) (-4091 ((|#1| $) 20)) (-2569 (($) NIL (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3951 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-1690 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3401 (((-112) $) NIL (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-3088 (($ $ $) NIL (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1776 (($ $ $) NIL (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-4102 (($ |#1| |#2|) 19)) (-3990 (((-917) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 37 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2552 (($ (-917)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1693 (((-1113) $) NIL)) (-2150 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1745 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1692 (((-858) $) 14)) (-2239 (($) 40 (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-2253 (($) 24 (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-1779 (((-112) $ $) NIL (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1754 (((-112) $ $) NIL (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1718 (((-112) $ $) 18)) (-1766 (((-112) $ $) NIL (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1743 (((-112) $ $) 66 (-4034 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1836 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1825 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1813 (($ $ $) 43 (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-563)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 31 (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-917)) NIL (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-563) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 46 (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-917) $) NIL (-4034 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 27 (-4034 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))))
-(((-960 |#1| |#2|) (-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -4102 ($ |#1| |#2|)) (-15 -4091 (|#1| $)) (-15 -4081 (|#2| $)))) (-1093) (-1093)) (T -960))
-((-4102 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-4091 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093)))) (-4081 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093)))))
-(-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -4102 ($ |#1| |#2|)) (-15 -4091 (|#1| $)) (-15 -4081 (|#2| $))))
-((-2618 (((-1097) $) 12)) (-3499 (($ (-1169) (-1097)) 13)) (-3352 (((-1169) $) 10)) (-1692 (((-858) $) 22)))
-(((-961) (-13 (-610 (-858)) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -2618 ((-1097) $)) (-15 -3499 ($ (-1169) (-1097)))))) (T -961))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961)))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3352 ((-1169) $)) (-15 -2618 ((-1097) $)) (-15 -3499 ($ (-1169) (-1097)))))
-((-1677 (((-112) $ $) NIL)) (-2605 (((-1095 (-1169)) $) 19)) (-4211 (((-112) $) 26)) (-2517 (((-1169) $) 27)) (-4230 (((-112) $) 24)) (-4220 ((|#1| $) 25)) (-4159 (((-869 $ $) $) 34)) (-4168 (((-112) $) 33)) (-2200 (($ $ $) 12)) (-4200 (($ $) 29)) (-2419 (((-112) $) 28)) (-2174 (($ $) 10)) (-3854 (((-1151) $) NIL)) (-4137 (((-869 $ $) $) 36)) (-4149 (((-112) $) 35)) (-4252 (($ $ $) 13)) (-1693 (((-1113) $) NIL)) (-4115 (((-869 $ $) $) 38)) (-4125 (((-112) $) 37)) (-4240 (($ $ $) 14)) (-1692 (((-858) $) 40) (($ |#1|) 7) (($ (-1169)) 9)) (-4177 (((-869 $ $) $) 32)) (-4190 (((-112) $) 30)) (-2188 (($ $ $) 11)) (-1718 (((-112) $ $) NIL)))
-(((-962 |#1|) (-13 (-963) (-10 -8 (-15 -1692 ($ |#1|)) (-15 -1692 ($ (-1169))) (-15 -2605 ((-1095 (-1169)) $)) (-15 -4230 ((-112) $)) (-15 -4220 (|#1| $)) (-15 -4211 ((-112) $)) (-15 -2517 ((-1169) $)) (-15 -2419 ((-112) $)) (-15 -4200 ($ $)) (-15 -4190 ((-112) $)) (-15 -4177 ((-869 $ $) $)) (-15 -4168 ((-112) $)) (-15 -4159 ((-869 $ $) $)) (-15 -4149 ((-112) $)) (-15 -4137 ((-869 $ $) $)) (-15 -4125 ((-112) $)) (-15 -4115 ((-869 $ $) $)))) (-963)) (T -962))
-((-1692 (*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4220 (*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(-13 (-963) (-10 -8 (-15 -1692 ($ |#1|)) (-15 -1692 ($ (-1169))) (-15 -2605 ((-1095 (-1169)) $)) (-15 -4230 ((-112) $)) (-15 -4220 (|#1| $)) (-15 -4211 ((-112) $)) (-15 -2517 ((-1169) $)) (-15 -2419 ((-112) $)) (-15 -4200 ($ $)) (-15 -4190 ((-112) $)) (-15 -4177 ((-869 $ $) $)) (-15 -4168 ((-112) $)) (-15 -4159 ((-869 $ $) $)) (-15 -4149 ((-112) $)) (-15 -4137 ((-869 $ $) $)) (-15 -4125 ((-112) $)) (-15 -4115 ((-869 $ $) $))))
-((-1677 (((-112) $ $) 7)) (-2200 (($ $ $) 15)) (-2174 (($ $) 17)) (-3854 (((-1151) $) 9)) (-4252 (($ $ $) 14)) (-1693 (((-1113) $) 10)) (-4240 (($ $ $) 13)) (-1692 (((-858) $) 11)) (-2188 (($ $ $) 16)) (-1718 (((-112) $ $) 6)))
+((-4256 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-4257 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-4373 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -4256 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4373 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1207) (-1207)) (T -955))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-954 *6)) (-5 *1 (-955 *5 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-955 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-954 *5)) (-5 *1 (-955 *6 *5)))))
+(-10 -7 (-15 -4256 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4373 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
+((-3221 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)))
+(((-956) (-140)) (T -956))
+((-3221 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-956)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1169)))))
+(-13 (-10 -8 (-15 -3221 ($ $ (-1169))) (-15 -3221 ($ $ (-1085 $)))))
+((-3222 (((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169)) (-1169)) 25) (((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169))) 26) (((-2 (|:| |coef1| (-546)) (|:| |coef2| (-546)) (|:| |prim| (-1163 |#1|))) (-942 |#1|) (-1169) (-942 |#1|) (-1169)) 43)))
+(((-957 |#1|) (-10 -7 (-15 -3222 ((-2 (|:| |coef1| (-546)) (|:| |coef2| (-546)) (|:| |prim| (-1163 |#1|))) (-942 |#1|) (-1169) (-942 |#1|) (-1169))) (-15 -3222 ((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3222 ((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169)) (-1169)))) (-13 (-363) (-147))) (T -957))
+((-3222 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169))) (-5 *5 (-1169)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 *6))) (|:| |prim| (-1163 *6)))) (-5 *1 (-957 *6)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 *5))) (|:| |prim| (-1163 *5)))) (-5 *1 (-957 *5)))) (-3222 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-546)) (|:| |coef2| (-546)) (|:| |prim| (-1163 *5)))) (-5 *1 (-957 *5)))))
+(-10 -7 (-15 -3222 ((-2 (|:| |coef1| (-546)) (|:| |coef2| (-546)) (|:| |prim| (-1163 |#1|))) (-942 |#1|) (-1169) (-942 |#1|) (-1169))) (-15 -3222 ((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169)))) (-15 -3222 ((-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 |#1|))) (|:| |prim| (-1163 |#1|))) (-637 (-942 |#1|)) (-637 (-1169)) (-1169))))
+((-3225 (((-637 |#1|) |#1| |#1|) 42)) (-4138 (((-112) |#1|) 39)) (-3224 ((|#1| |#1|) 65)) (-3223 ((|#1| |#1|) 64)))
+(((-958 |#1|) (-10 -7 (-15 -4138 ((-112) |#1|)) (-15 -3223 (|#1| |#1|)) (-15 -3224 (|#1| |#1|)) (-15 -3225 ((-637 |#1|) |#1| |#1|))) (-545)) (T -958))
+((-3225 (*1 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) (-3224 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-3223 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-4138 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -4138 ((-112) |#1|)) (-15 -3223 (|#1| |#1|)) (-15 -3224 (|#1| |#1|)) (-15 -3225 ((-637 |#1|) |#1| |#1|)))
+((-3226 (((-1262) (-859)) 9)))
+(((-959) (-10 -7 (-15 -3226 ((-1262) (-859))))) (T -959))
+((-3226 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-959)))))
+(-10 -7 (-15 -3226 ((-1262) (-859))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2784 (($ $ $) 63 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-1397 (((-3 $ "failed") $ $) 50 (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3528 (((-767)) 34 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3227 ((|#2| $) 21)) (-3228 ((|#1| $) 20)) (-4139 (($) NIL (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3873 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-3384 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2552 (((-112) $) NIL (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-2919 (($ $ $) NIL (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3249 (($ $ $) NIL (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3229 (($ |#1| |#2|) 19)) (-2167 (((-915) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 37 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2542 (($ (-915)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3651 (((-1113) $) NIL)) (-3399 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2735 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-4361 (((-859) $) 14)) (-3047 (($) 40 (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3053 (($) 24 (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-2951 (((-112) $ $) NIL (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2952 (((-112) $ $) NIL (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3444 (((-112) $ $) 18)) (-3073 (((-112) $ $) NIL (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3074 (((-112) $ $) 66 (-3943 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-4364 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-4252 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4254 (($ $ $) 43 (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-546)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 31 (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-915)) NIL (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-546) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 46 (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-915) $) NIL (-3943 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 27 (-3943 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))))
+(((-960 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -3229 ($ |#1| |#2|)) (-15 -3228 (|#1| $)) (-15 -3227 (|#2| $)))) (-1094) (-1094)) (T -960))
+((-3229 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3228 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094)))))
+(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -3229 ($ |#1| |#2|)) (-15 -3228 (|#1| $)) (-15 -3227 (|#2| $))))
+((-3813 (((-1096) $) 12)) (-3230 (($ (-1169) (-1096)) 13)) (-3956 (((-1169) $) 10)) (-4361 (((-859) $) 22)))
+(((-961) (-13 (-610 (-859)) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -3813 ((-1096) $)) (-15 -3230 ($ (-1169) (-1096)))))) (T -961))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-961)))) (-3230 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1096)) (-5 *1 (-961)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3956 ((-1169) $)) (-15 -3813 ((-1096) $)) (-15 -3230 ($ (-1169) (-1096)))))
+((-2953 (((-112) $ $) NIL)) (-3474 (((-1090 (-1169)) $) 19)) (-3241 (((-112) $) 26)) (-4246 (((-1169) $) 27)) (-3243 (((-112) $) 24)) (-3242 ((|#1| $) 25)) (-3235 (((-869 $ $) $) 34)) (-3236 (((-112) $) 33)) (-3246 (($ $ $) 12)) (-3239 (($ $) 29)) (-3240 (((-112) $) 28)) (-3733 (($ $) 10)) (-3650 (((-1151) $) NIL)) (-3233 (((-869 $ $) $) 36)) (-3234 (((-112) $) 35)) (-3245 (($ $ $) 13)) (-3651 (((-1113) $) NIL)) (-3231 (((-869 $ $) $) 38)) (-3232 (((-112) $) 37)) (-3244 (($ $ $) 14)) (-4361 (((-859) $) 40) (($ |#1|) 7) (($ (-1169)) 9)) (-3237 (((-869 $ $) $) 32)) (-3238 (((-112) $) 30)) (-3247 (($ $ $) 11)) (-3444 (((-112) $ $) NIL)))
+(((-962 |#1|) (-13 (-963) (-10 -8 (-15 -4361 ($ |#1|)) (-15 -4361 ($ (-1169))) (-15 -3474 ((-1090 (-1169)) $)) (-15 -3243 ((-112) $)) (-15 -3242 (|#1| $)) (-15 -3241 ((-112) $)) (-15 -4246 ((-1169) $)) (-15 -3240 ((-112) $)) (-15 -3239 ($ $)) (-15 -3238 ((-112) $)) (-15 -3237 ((-869 $ $) $)) (-15 -3236 ((-112) $)) (-15 -3235 ((-869 $ $) $)) (-15 -3234 ((-112) $)) (-15 -3233 ((-869 $ $) $)) (-15 -3232 ((-112) $)) (-15 -3231 ((-869 $ $) $)))) (-963)) (T -962))
+((-4361 (*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1090 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3242 (*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(-13 (-963) (-10 -8 (-15 -4361 ($ |#1|)) (-15 -4361 ($ (-1169))) (-15 -3474 ((-1090 (-1169)) $)) (-15 -3243 ((-112) $)) (-15 -3242 (|#1| $)) (-15 -3241 ((-112) $)) (-15 -4246 ((-1169) $)) (-15 -3240 ((-112) $)) (-15 -3239 ($ $)) (-15 -3238 ((-112) $)) (-15 -3237 ((-869 $ $) $)) (-15 -3236 ((-112) $)) (-15 -3235 ((-869 $ $) $)) (-15 -3234 ((-112) $)) (-15 -3233 ((-869 $ $) $)) (-15 -3232 ((-112) $)) (-15 -3231 ((-869 $ $) $))))
+((-2953 (((-112) $ $) 7)) (-3246 (($ $ $) 15)) (-3733 (($ $) 17)) (-3650 (((-1151) $) 9)) (-3245 (($ $ $) 14)) (-3651 (((-1113) $) 10)) (-3244 (($ $ $) 13)) (-4361 (((-859) $) 11)) (-3247 (($ $ $) 16)) (-3444 (((-112) $ $) 6)))
(((-963) (-140)) (T -963))
-((-2174 (*1 *1 *1) (-4 *1 (-963))) (-2188 (*1 *1 *1 *1) (-4 *1 (-963))) (-2200 (*1 *1 *1 *1) (-4 *1 (-963))) (-4252 (*1 *1 *1 *1) (-4 *1 (-963))) (-4240 (*1 *1 *1 *1) (-4 *1 (-963))))
-(-13 (-1093) (-10 -8 (-15 -2174 ($ $)) (-15 -2188 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -4252 ($ $ $)) (-15 -4240 ($ $ $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-4265 (($ $ $) 43)) (-4300 (($ $ $) 44)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1776 ((|#1| $) 45)) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+((-3733 (*1 *1 *1) (-4 *1 (-963))) (-3247 (*1 *1 *1 *1) (-4 *1 (-963))) (-3246 (*1 *1 *1 *1) (-4 *1 (-963))) (-3245 (*1 *1 *1 *1) (-4 *1 (-963))) (-3244 (*1 *1 *1 *1) (-4 *1 (-963))))
+(-13 (-1094) (-10 -8 (-15 -3733 ($ $)) (-15 -3247 ($ $ $)) (-15 -3246 ($ $ $)) (-15 -3245 ($ $ $)) (-15 -3244 ($ $ $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-3248 (($ $ $) 43)) (-3924 (($ $ $) 44)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3249 ((|#1| $) 45)) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-964 |#1|) (-140) (-846)) (T -964))
-((-1776 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-4300 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -1776 (|t#1| $)) (-15 -4300 ($ $ $)) (-15 -4265 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1296 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|) 84)) (-1601 ((|#2| |#2| |#2|) 82)) (-1305 (((-2 (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|) 86)) (-1316 (((-2 (|:| |coef1| |#2|) (|:| -3551 |#2|)) |#2| |#2|) 88)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|) 106 (|has| |#1| (-452)))) (-3327 (((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|) 45)) (-4288 (((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|) 63)) (-4298 (((-2 (|:| |coef1| |#2|) (|:| -1612 |#1|)) |#2| |#2|) 65)) (-4385 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-4331 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 70)) (-3202 (((-2 (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|) 96)) (-4362 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 73)) (-3224 (((-640 (-767)) |#2| |#2|) 81)) (-3305 ((|#1| |#2| |#2|) 41)) (-3242 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|) 104 (|has| |#1| (-452)))) (-3232 ((|#1| |#2| |#2|) 102 (|has| |#1| (-452)))) (-3317 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|) 43)) (-4276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|) 62)) (-1612 ((|#1| |#2| |#2|) 60)) (-1564 (((-2 (|:| -2310 |#1|) (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|) 34)) (-3291 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-4374 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-3461 ((|#2| |#2| |#2|) 74)) (-4320 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 68)) (-4309 ((|#2| |#2| |#2| (-767)) 66)) (-3551 ((|#2| |#2| |#2|) 110 (|has| |#1| (-452)))) (-3012 (((-1257 |#2|) (-1257 |#2|) |#1|) 21)) (-3263 (((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|) 38)) (-1327 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|) 94)) (-1623 ((|#1| |#2|) 91)) (-4353 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 72)) (-4343 ((|#2| |#2| |#2| (-767)) 71)) (-3212 (((-640 |#2|) |#2| |#2|) 79)) (-3280 ((|#2| |#2| |#1| |#1| (-767)) 49)) (-3270 ((|#1| |#1| |#1| (-767)) 48)) (* (((-1257 |#2|) |#1| (-1257 |#2|)) 16)))
-(((-965 |#1| |#2|) (-10 -7 (-15 -1612 (|#1| |#2| |#2|)) (-15 -4276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4288 ((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4298 ((-2 (|:| |coef1| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4309 (|#2| |#2| |#2| (-767))) (-15 -4320 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4331 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4343 (|#2| |#2| |#2| (-767))) (-15 -4353 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4362 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3461 (|#2| |#2| |#2|)) (-15 -4374 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2|)) (-15 -1296 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1305 ((-2 (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1316 ((-2 (|:| |coef1| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1623 (|#1| |#2|)) (-15 -1327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|)) (-15 -3202 ((-2 (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|)) (-15 -3212 ((-640 |#2|) |#2| |#2|)) (-15 -3224 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3232 (|#1| |#2| |#2|)) (-15 -3242 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|)) (-15 -3551 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3012 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -1564 ((-2 (|:| -2310 |#1|) (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|)) (-15 -3270 (|#1| |#1| |#1| (-767))) (-15 -3280 (|#2| |#2| |#1| |#1| (-767))) (-15 -3291 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3305 (|#1| |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -3327 ((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|))) (-555) (-1233 |#1|)) (T -965))
-((-3327 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1612 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1612 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-3291 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-3280 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-3270 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1233 *2)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1564 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2310 *4) (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3012 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (-3551 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3232 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3242 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3232 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3232 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-3224 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1623 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1623 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1623 (*1 *2 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-1316 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3551 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1305 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3551 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1296 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3551 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1601 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-4385 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-4374 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3461 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-4362 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-4353 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-4343 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-4331 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-4320 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-4309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-4298 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1612 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-4288 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1612 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-4276 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1612 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1612 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))))
-(-10 -7 (-15 -1612 (|#1| |#2| |#2|)) (-15 -4276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4288 ((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4298 ((-2 (|:| |coef1| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -4309 (|#2| |#2| |#2| (-767))) (-15 -4320 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4331 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4343 (|#2| |#2| |#2| (-767))) (-15 -4353 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -4362 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3461 (|#2| |#2| |#2|)) (-15 -4374 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2|)) (-15 -1296 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1305 ((-2 (|:| |coef2| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1316 ((-2 (|:| |coef1| |#2|) (|:| -3551 |#2|)) |#2| |#2|)) (-15 -1623 (|#1| |#2|)) (-15 -1327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|)) (-15 -3202 ((-2 (|:| |coef2| |#2|) (|:| -1623 |#1|)) |#2|)) (-15 -3212 ((-640 |#2|) |#2| |#2|)) (-15 -3224 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3232 (|#1| |#2| |#2|)) (-15 -3242 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2| |#2|)) (-15 -3551 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3012 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -1564 ((-2 (|:| -2310 |#1|) (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) |#2| |#2|)) (-15 -3270 (|#1| |#1| |#1| (-767))) (-15 -3280 (|#2| |#2| |#1| |#1| (-767))) (-15 -3291 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3305 (|#1| |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)) (-15 -3327 ((-2 (|:| |coef2| |#2|) (|:| -1612 |#1|)) |#2| |#2|)))
-((-1677 (((-112) $ $) NIL)) (-4184 (((-1207) $) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 10)) (-1692 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-966) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))) (T -966))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) 26)) (-2569 (($) NIL T CONST)) (-3347 (((-640 (-640 (-563))) (-640 (-563))) 28)) (-3337 (((-563) $) 44)) (-3358 (($ (-640 (-563))) 17)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2219 (((-640 (-563)) $) 12)) (-2150 (($ $) 31)) (-1692 (((-858) $) 42) (((-640 (-563)) $) 10)) (-2239 (($) 7 T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 19)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-917) $) NIL) (($ (-767) $) 24)))
-(((-967) (-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -3358 ($ (-640 (-563)))) (-15 -3347 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -3337 ((-563) $)) (-15 -2150 ($ $))))) (T -967))
-((-3358 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967)))) (-3347 (*1 *2 *3) (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967)) (-5 *3 (-640 (-563))))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967)))) (-2150 (*1 *1 *1) (-5 *1 (-967))))
-(-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -3358 ($ (-640 (-563)))) (-15 -3347 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -3337 ((-563) $)) (-15 -2150 ($ $))))
-((-1836 (($ $ |#2|) 30)) (-1825 (($ $) 22) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-407 (-563)) $) 26) (($ $ (-407 (-563))) 28)))
-(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1836 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1836 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 |#3|) $) 77)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3381 (((-112) $) 76)) (-3401 (((-112) $) 31)) (-3805 (((-112) $) 65)) (-2587 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-640 |#3|) (-640 |#2|)) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3871 ((|#2| $) 67)) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3244 ((|#1| $ |#2|) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
+((-3249 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-3248 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -3249 (|t#1| $)) (-15 -3924 ($ $ $)) (-15 -3248 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-3261 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|) 84)) (-4170 ((|#2| |#2| |#2|) 82)) (-3262 (((-2 (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|) 86)) (-3263 (((-2 (|:| |coef1| |#2|) (|:| -3552 |#2|)) |#2| |#2|) 88)) (-3270 (((-2 (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|) 106 (|has| |#1| (-452)))) (-3277 (((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 45)) (-3251 (((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 63)) (-3252 (((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 65)) (-3260 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3255 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 70)) (-3265 (((-2 (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|) 96)) (-3258 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 73)) (-3267 (((-637 (-767)) |#2| |#2|) 81)) (-3275 ((|#1| |#2| |#2|) 41)) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|) 104 (|has| |#1| (-452)))) (-3268 ((|#1| |#2| |#2|) 102 (|has| |#1| (-452)))) (-3276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 43)) (-3250 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 62)) (-4171 ((|#1| |#2| |#2|) 60)) (-4167 (((-2 (|:| -4369 |#1|) (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 34)) (-3274 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3259 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-3598 ((|#2| |#2| |#2|) 74)) (-3254 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 68)) (-3253 ((|#2| |#2| |#2| (-767)) 66)) (-3552 ((|#2| |#2| |#2|) 110 (|has| |#1| (-452)))) (-3872 (((-1256 |#2|) (-1256 |#2|) |#1|) 21)) (-3271 (((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 38)) (-3264 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|) 94)) (-4172 ((|#1| |#2|) 91)) (-3257 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 72)) (-3256 ((|#2| |#2| |#2| (-767)) 71)) (-3266 (((-637 |#2|) |#2| |#2|) 79)) (-3273 ((|#2| |#2| |#1| |#1| (-767)) 49)) (-3272 ((|#1| |#1| |#1| (-767)) 48)) (* (((-1256 |#2|) |#1| (-1256 |#2|)) 16)))
+(((-965 |#1| |#2|) (-10 -7 (-15 -4171 (|#1| |#2| |#2|)) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3253 (|#2| |#2| |#2| (-767))) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3256 (|#2| |#2| |#2| (-767))) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3598 (|#2| |#2| |#2|)) (-15 -3259 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4170 (|#2| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -4172 (|#1| |#2|)) (-15 -3264 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|)) (-15 -3265 ((-2 (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|)) (-15 -3266 ((-637 |#2|) |#2| |#2|)) (-15 -3267 ((-637 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|)) (-15 -3552 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -3872 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -4167 ((-2 (|:| -4369 |#1|) (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -3272 (|#1| |#1| |#1| (-767))) (-15 -3273 (|#2| |#2| |#1| |#1| (-767))) (-15 -3274 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3275 (|#1| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3277 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|))) (-556) (-1232 |#1|)) (T -965))
+((-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))) (-3274 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))) (-3273 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))) (-3272 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1232 *2)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-4167 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4369 *4) (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3872 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (-3552 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3268 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3268 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3265 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4172 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3264 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4172 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-4172 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3552 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3552 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3552 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-4170 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3598 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))) (-3258 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))) (-3257 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))) (-3256 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1232 *4)))) (-3255 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))) (-3254 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))) (-3253 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1232 *4)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4171 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3251 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-3250 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))) (-4171 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))))
+(-10 -7 (-15 -4171 (|#1| |#2| |#2|)) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3253 (|#2| |#2| |#2| (-767))) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3256 (|#2| |#2| |#2| (-767))) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3598 (|#2| |#2| |#2|)) (-15 -3259 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4170 (|#2| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -3552 |#2|)) |#2| |#2|)) (-15 -4172 (|#1| |#2|)) (-15 -3264 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|)) (-15 -3265 ((-2 (|:| |coef2| |#2|) (|:| -4172 |#1|)) |#2|)) (-15 -3266 ((-637 |#2|) |#2| |#2|)) (-15 -3267 ((-637 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -3268 |#1|)) |#2| |#2|)) (-15 -3552 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -3872 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -4167 ((-2 (|:| -4369 |#1|) (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -3272 (|#1| |#1| |#1| (-767))) (-15 -3273 (|#2| |#2| |#1| |#1| (-767))) (-15 -3274 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3275 (|#1| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -3277 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)))
+((-2953 (((-112) $ $) NIL)) (-3726 (((-1208) $) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 10)) (-4361 (((-859) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-966) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))) (T -966))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) 26)) (-4139 (($) NIL T CONST)) (-3279 (((-637 (-637 (-546))) (-637 (-546))) 28)) (-3278 (((-546) $) 44)) (-3280 (($ (-637 (-546))) 17)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4385 (((-637 (-546)) $) 12)) (-3399 (($ $) 31)) (-4361 (((-859) $) 42) (((-637 (-546)) $) 10)) (-3047 (($) 7 T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 19)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 18)) (-4254 (($ $ $) 20)) (* (($ (-915) $) NIL) (($ (-767) $) 24)))
+(((-967) (-13 (-793) (-611 (-637 (-546))) (-610 (-637 (-546))) (-10 -8 (-15 -3280 ($ (-637 (-546)))) (-15 -3279 ((-637 (-637 (-546))) (-637 (-546)))) (-15 -3278 ((-546) $)) (-15 -3399 ($ $))))) (T -967))
+((-3280 (*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-967)))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-637 (-637 (-546)))) (-5 *1 (-967)) (-5 *3 (-637 (-546))))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-967)))) (-3399 (*1 *1 *1) (-5 *1 (-967))))
+(-13 (-793) (-611 (-637 (-546))) (-610 (-637 (-546))) (-10 -8 (-15 -3280 ($ (-637 (-546)))) (-15 -3279 ((-637 (-637 (-546))) (-637 (-546)))) (-15 -3278 ((-546) $)) (-15 -3399 ($ $))))
+((-4364 (($ $ |#2|) 30)) (-4252 (($ $) 22) (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-407 (-546)) $) 26) (($ $ (-407 (-546))) 28)))
+(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-407 (-546)))) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 -4364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-915) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 |#3|) $) 77)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-3282 (((-112) $) 76)) (-2552 (((-112) $) 31)) (-4352 (((-112) $) 65)) (-3283 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-637 |#3|) (-637 |#2|)) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4363 ((|#2| $) 67)) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4092 ((|#1| $ |#2|) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
(((-969 |#1| |#2| |#3|) (-140) (-1045) (-788) (-846)) (T -969))
-((-2725 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2715 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2587 ($ $ |t#3| |t#2|)) (-15 -2587 ($ $ (-640 |t#3|) (-640 |t#2|))) (-15 -2715 ($ $)) (-15 -2725 (|t#1| $)) (-15 -3871 (|t#2| $)) (-15 -2605 ((-640 |t#3|) $)) (-15 -3381 ((-112) $)) (-15 -3369 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-4337 (((-1087 (-225)) $) 8)) (-4325 (((-1087 (-225)) $) 9)) (-4314 (((-1087 (-225)) $) 10)) (-3394 (((-640 (-640 (-939 (-225)))) $) 11)) (-1692 (((-858) $) 6)))
+((-3582 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-3283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-637 *5)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3281 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3283 ($ $ |t#3| |t#2|)) (-15 -3283 ($ $ (-637 |t#3|) (-637 |t#2|))) (-15 -3284 ($ $)) (-15 -3582 (|t#1| $)) (-15 -4363 (|t#2| $)) (-15 -3474 ((-637 |t#3|) $)) (-15 -3282 ((-112) $)) (-15 -3281 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-3285 (((-1082 (-225)) $) 8)) (-3286 (((-1082 (-225)) $) 9)) (-3287 (((-1082 (-225)) $) 10)) (-3288 (((-637 (-637 (-939 (-225)))) $) 11)) (-4361 (((-859) $) 6)))
(((-970) (-140)) (T -970))
-((-3394 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3394 ((-640 (-640 (-939 (-225)))) $)) (-15 -4314 ((-1087 (-225)) $)) (-15 -4325 ((-1087 (-225)) $)) (-15 -4337 ((-1087 (-225)) $))))
-(((-610 (-858)) . T))
-((-2605 (((-640 |#4|) $) 23)) (-3508 (((-112) $) 47)) (-3406 (((-112) $) 46)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#4|) 35)) (-3466 (((-112) $) 48)) (-3486 (((-112) $ $) 54)) (-3476 (((-112) $ $) 57)) (-3496 (((-112) $) 52)) (-3418 (((-640 |#5|) (-640 |#5|) $) 89)) (-3431 (((-640 |#5|) (-640 |#5|) $) 86)) (-3443 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-3568 (((-640 |#4|) $) 27)) (-3553 (((-112) |#4| $) 29)) (-3454 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3519 (($ $ |#4|) 32)) (-3542 (($ $ |#4|) 31)) (-3529 (($ $ |#4|) 33)) (-1718 (((-112) $ $) 39)))
-(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3406 ((-112) |#1|)) (-15 -3418 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -3431 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -3443 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3454 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3466 ((-112) |#1|)) (-15 -3476 ((-112) |#1| |#1|)) (-15 -3486 ((-112) |#1| |#1|)) (-15 -3496 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -1640 ((-2 (|:| |under| |#1|) (|:| -3954 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3529 (|#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#4|)) (-15 -3553 ((-112) |#4| |#1|)) (-15 -3568 ((-640 |#4|) |#1|)) (-15 -2605 ((-640 |#4|) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971))
-NIL
-(-10 -8 (-15 -3406 ((-112) |#1|)) (-15 -3418 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -3431 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -3443 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3454 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3466 ((-112) |#1|)) (-15 -3476 ((-112) |#1| |#1|)) (-15 -3486 ((-112) |#1| |#1|)) (-15 -3496 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -1640 ((-2 (|:| |under| |#1|) (|:| -3954 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3529 (|#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#4|)) (-15 -3553 ((-112) |#4| |#1|)) (-15 -3568 ((-640 |#4|) |#1|)) (-15 -2605 ((-640 |#4|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408)))) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408)))) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1693 (((-1113) $) 10)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
+((-3288 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-637 (-637 (-939 (-225))))))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3288 ((-637 (-637 (-939 (-225)))) $)) (-15 -3287 ((-1082 (-225)) $)) (-15 -3286 ((-1082 (-225)) $)) (-15 -3285 ((-1082 (-225)) $))))
+(((-610 (-859)) . T))
+((-3474 (((-637 |#4|) $) 23)) (-3298 (((-112) $) 47)) (-3289 (((-112) $) 46)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#4|) 35)) (-3294 (((-112) $) 48)) (-3296 (((-112) $ $) 54)) (-3295 (((-112) $ $) 57)) (-3297 (((-112) $) 52)) (-3290 (((-637 |#5|) (-637 |#5|) $) 89)) (-3291 (((-637 |#5|) (-637 |#5|) $) 86)) (-3292 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-3304 (((-637 |#4|) $) 27)) (-3303 (((-112) |#4| $) 29)) (-3293 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3300 (($ $ |#4|) 32)) (-3302 (($ $ |#4|) 31)) (-3301 (($ $ |#4|) 33)) (-3444 (((-112) $ $) 39)))
+(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3289 ((-112) |#1|)) (-15 -3290 ((-637 |#5|) (-637 |#5|) |#1|)) (-15 -3291 ((-637 |#5|) (-637 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3293 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3294 ((-112) |#1|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -3297 ((-112) |#1|)) (-15 -3298 ((-112) |#1|)) (-15 -3299 ((-2 (|:| |under| |#1|) (|:| -3522 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#4|)) (-15 -3303 ((-112) |#4| |#1|)) (-15 -3304 ((-637 |#4|) |#1|)) (-15 -3474 ((-637 |#4|) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971))
+NIL
+(-10 -8 (-15 -3289 ((-112) |#1|)) (-15 -3290 ((-637 |#5|) (-637 |#5|) |#1|)) (-15 -3291 ((-637 |#5|) (-637 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3293 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3294 ((-112) |#1|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -3297 ((-112) |#1|)) (-15 -3298 ((-112) |#1|)) (-15 -3299 ((-2 (|:| |under| |#1|) (|:| -3522 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#4|)) (-15 -3303 ((-112) |#4| |#1|)) (-15 -3304 ((-637 |#4|) |#1|)) (-15 -3474 ((-637 |#4|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408)))) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408)))) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3651 (((-1113) $) 10)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
(((-972 |#1| |#2| |#3| |#4|) (-140) (-1045) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -972))
-((-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-3553 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-3542 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3529 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3519 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-1640 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3954 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3486 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3476 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3454 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3443 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3431 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-3418 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))))
-(-13 (-1093) (-151 |t#4|) (-610 (-640 |t#4|)) (-10 -8 (-6 -4408) (-15 -2130 ((-3 $ "failed") (-640 |t#4|))) (-15 -2057 ($ (-640 |t#4|))) (-15 -3354 (|t#3| $)) (-15 -2605 ((-640 |t#3|) $)) (-15 -3568 ((-640 |t#3|) $)) (-15 -3553 ((-112) |t#3| $)) (-15 -3542 ($ $ |t#3|)) (-15 -3529 ($ $ |t#3|)) (-15 -3519 ($ $ |t#3|)) (-15 -1640 ((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |t#3|)) (-15 -3508 ((-112) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -3496 ((-112) $)) (-15 -3486 ((-112) $ $)) (-15 -3476 ((-112) $ $)) (-15 -3466 ((-112) $)) (-15 -3454 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3443 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3431 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -3418 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -3406 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-1093) . T) ((-1208) . T))
-((-3589 (((-640 |#4|) |#4| |#4|) 116)) (-2654 (((-640 |#4|) (-640 |#4|) (-112)) 105 (|has| |#1| (-452))) (((-640 |#4|) (-640 |#4|)) 106 (|has| |#1| (-452)))) (-3706 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 33)) (-3692 (((-112) |#4|) 32)) (-2644 (((-640 |#4|) |#4|) 101 (|has| |#1| (-452)))) (-3646 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|)) 19)) (-3657 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 21)) (-3668 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 22)) (-3797 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|)) 71)) (-3822 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 83)) (-2634 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3579 (((-640 |#4|) (-640 |#4|)) 108)) (-3765 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112)) 46) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 48)) (-3775 ((|#4| |#4| (-640 |#4|)) 47)) (-2662 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 112 (|has| |#1| (-452)))) (-2681 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 115 (|has| |#1| (-452)))) (-2673 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 114 (|has| |#1| (-452)))) (-3601 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|))) 85) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 87) (((-640 |#4|) (-640 |#4|) |#4|) 119) (((-640 |#4|) |#4| |#4|) 117) (((-640 |#4|) (-640 |#4|)) 86)) (-2708 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 98 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3680 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 39)) (-3635 (((-112) (-640 |#4|)) 60)) (-3623 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 51)) (-3732 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 27)) (-3719 (((-112) |#4|) 26)) (-2698 (((-640 |#4|) (-640 |#4|)) 96 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2690 (((-640 |#4|) (-640 |#4|)) 97 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3788 (((-640 |#4|) (-640 |#4|)) 64)) (-3810 (((-640 |#4|) (-640 |#4|)) 77)) (-3612 (((-112) (-640 |#4|) (-640 |#4|)) 49)) (-3753 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 37)) (-3743 (((-112) |#4|) 34)))
-(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3601 ((-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) |#4| |#4|)) (-15 -3579 ((-640 |#4|) (-640 |#4|))) (-15 -3589 ((-640 |#4|) |#4| |#4|)) (-15 -3601 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -3612 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3623 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3635 ((-112) (-640 |#4|))) (-15 -3646 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -3657 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -3668 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -3680 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3692 ((-112) |#4|)) (-15 -3706 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3719 ((-112) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3743 ((-112) |#4|)) (-15 -3753 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3765 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3765 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -3775 (|#4| |#4| (-640 |#4|))) (-15 -3788 ((-640 |#4|) (-640 |#4|))) (-15 -3797 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -3810 ((-640 |#4|) (-640 |#4|))) (-15 -3822 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2634 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2644 ((-640 |#4|) |#4|)) (-15 -2654 ((-640 |#4|) (-640 |#4|))) (-15 -2654 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -2662 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -2673 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -2681 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2690 ((-640 |#4|) (-640 |#4|))) (-15 -2698 ((-640 |#4|) (-640 |#4|))) (-15 -2708 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|)) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973))
-((-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2681 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2673 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2662 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2654 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2644 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-2634 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3822 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3797 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2635 (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3775 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-3765 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3765 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-3657 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3612 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3601 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3601 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3601 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-3589 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3601 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3601 ((-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) |#4| |#4|)) (-15 -3579 ((-640 |#4|) (-640 |#4|))) (-15 -3589 ((-640 |#4|) |#4| |#4|)) (-15 -3601 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -3612 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3623 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3635 ((-112) (-640 |#4|))) (-15 -3646 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -3657 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -3668 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -3680 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3692 ((-112) |#4|)) (-15 -3706 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3719 ((-112) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3743 ((-112) |#4|)) (-15 -3753 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3765 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3765 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -3775 (|#4| |#4| (-640 |#4|))) (-15 -3788 ((-640 |#4|) (-640 |#4|))) (-15 -3797 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -3810 ((-640 |#4|) (-640 |#4|))) (-15 -3822 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2634 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2644 ((-640 |#4|) |#4|)) (-15 -2654 ((-640 |#4|) (-640 |#4|))) (-15 -2654 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -2662 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -2673 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -2681 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2690 ((-640 |#4|) (-640 |#4|))) (-15 -2698 ((-640 |#4|) (-640 |#4|))) (-15 -2708 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|))
-((-2718 (((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2741 (((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 35)) (-2729 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-974 |#1|) (-10 -7 (-15 -2718 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2729 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2741 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -974))
-((-2741 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)))) (-2729 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-2718 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-684 *6)))))
-(-10 -7 (-15 -2718 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2729 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2741 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))))
-((-2802 (((-418 |#4|) |#4|) 48)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2802 ((-418 |#4|) |#4|))) (-846) (-789) (-452) (-945 |#3| |#2| |#1|)) (T -975))
-((-2802 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -2802 ((-418 |#4|) |#4|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3216 (($ (-767)) 112 (|has| |#1| (-23)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-4369 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-3018 (($ (-640 |#1|)) 118)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3983 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4098 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2481 (((-112) $ (-767)) 10)) (-3419 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1751 (($ $ (-640 |#1|)) 116)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4121 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-3526 (((-917) $) 117)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-4111 (($ $ $) 104)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 119)) (-1706 (($ (-640 |#1|)) 70)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1825 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1813 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+((-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5)))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-3302 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3301 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3300 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3299 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3522 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3296 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3295 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3293 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3291 (*1 *2 *2 *1) (-12 (-5 *2 (-637 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-3290 (*1 *2 *2 *1) (-12 (-5 *2 (-637 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(-13 (-1094) (-151 |t#4|) (-610 (-637 |t#4|)) (-10 -8 (-6 -4408) (-15 -3565 ((-3 $ "failed") (-637 |t#4|))) (-15 -3564 ($ (-637 |t#4|))) (-15 -3588 (|t#3| $)) (-15 -3474 ((-637 |t#3|) $)) (-15 -3304 ((-637 |t#3|) $)) (-15 -3303 ((-112) |t#3| $)) (-15 -3302 ($ $ |t#3|)) (-15 -3301 ($ $ |t#3|)) (-15 -3300 ($ $ |t#3|)) (-15 -3299 ((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |t#3|)) (-15 -3298 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3297 ((-112) $)) (-15 -3296 ((-112) $ $)) (-15 -3295 ((-112) $ $)) (-15 -3294 ((-112) $)) (-15 -3293 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3292 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3291 ((-637 |t#4|) (-637 |t#4|) $)) (-15 -3290 ((-637 |t#4|) (-637 |t#4|) $)) (-15 -3289 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1207) . T))
+((-3306 (((-637 |#4|) |#4| |#4|) 116)) (-3329 (((-637 |#4|) (-637 |#4|) (-112)) 105 (|has| |#1| (-452))) (((-637 |#4|) (-637 |#4|)) 106 (|has| |#1| (-452)))) (-3316 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|)) 33)) (-3315 (((-112) |#4|) 32)) (-3328 (((-637 |#4|) |#4|) 101 (|has| |#1| (-452)))) (-3311 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-1 (-112) |#4|) (-637 |#4|)) 19)) (-3312 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|)) 21)) (-3313 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|)) 22)) (-3324 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3735 (-637 |#4|))) "failed") (-637 |#4|)) 71)) (-3326 (((-637 |#4|) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 83)) (-3327 (((-637 |#4|) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3305 (((-637 |#4|) (-637 |#4|)) 108)) (-3321 (((-637 |#4|) (-637 |#4|) (-637 |#4|) (-112)) 46) (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 48)) (-3322 ((|#4| |#4| (-637 |#4|)) 47)) (-3330 (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 112 (|has| |#1| (-452)))) (-3332 (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 115 (|has| |#1| (-452)))) (-3331 (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 114 (|has| |#1| (-452)))) (-3307 (((-637 |#4|) (-637 |#4|) (-637 |#4|) (-1 (-637 |#4|) (-637 |#4|))) 85) (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 87) (((-637 |#4|) (-637 |#4|) |#4|) 119) (((-637 |#4|) |#4| |#4|) 117) (((-637 |#4|) (-637 |#4|)) 86)) (-3335 (((-637 |#4|) (-637 |#4|) (-637 |#4|)) 98 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3314 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|)) 39)) (-3310 (((-112) (-637 |#4|)) 60)) (-3309 (((-112) (-637 |#4|) (-637 (-637 |#4|))) 51)) (-3318 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|)) 27)) (-3317 (((-112) |#4|) 26)) (-3334 (((-637 |#4|) (-637 |#4|)) 96 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3333 (((-637 |#4|) (-637 |#4|)) 97 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3323 (((-637 |#4|) (-637 |#4|)) 64)) (-3325 (((-637 |#4|) (-637 |#4|)) 77)) (-3308 (((-112) (-637 |#4|) (-637 |#4|)) 49)) (-3320 (((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|)) 37)) (-3319 (((-112) |#4|) 34)))
+(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3307 ((-637 |#4|) (-637 |#4|))) (-15 -3307 ((-637 |#4|) |#4| |#4|)) (-15 -3305 ((-637 |#4|) (-637 |#4|))) (-15 -3306 ((-637 |#4|) |#4| |#4|)) (-15 -3307 ((-637 |#4|) (-637 |#4|) |#4|)) (-15 -3307 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3307 ((-637 |#4|) (-637 |#4|) (-637 |#4|) (-1 (-637 |#4|) (-637 |#4|)))) (-15 -3308 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3309 ((-112) (-637 |#4|) (-637 (-637 |#4|)))) (-15 -3310 ((-112) (-637 |#4|))) (-15 -3311 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-1 (-112) |#4|) (-637 |#4|))) (-15 -3312 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|))) (-15 -3313 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|))) (-15 -3314 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3315 ((-112) |#4|)) (-15 -3316 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3317 ((-112) |#4|)) (-15 -3318 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3319 ((-112) |#4|)) (-15 -3320 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3321 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3321 ((-637 |#4|) (-637 |#4|) (-637 |#4|) (-112))) (-15 -3322 (|#4| |#4| (-637 |#4|))) (-15 -3323 ((-637 |#4|) (-637 |#4|))) (-15 -3324 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3735 (-637 |#4|))) "failed") (-637 |#4|))) (-15 -3325 ((-637 |#4|) (-637 |#4|))) (-15 -3326 ((-637 |#4|) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3327 ((-637 |#4|) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3328 ((-637 |#4|) |#4|)) (-15 -3329 ((-637 |#4|) (-637 |#4|))) (-15 -3329 ((-637 |#4|) (-637 |#4|) (-112))) (-15 -3330 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3331 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3332 ((-637 |#4|) (-637 |#4|) (-637 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3333 ((-637 |#4|) (-637 |#4|))) (-15 -3334 ((-637 |#4|) (-637 |#4|))) (-15 -3335 ((-637 |#4|) (-637 |#4|) (-637 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973))
+((-3335 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3332 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3331 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3330 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3329 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3327 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3326 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-637 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3324 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3735 (-637 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3322 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-3321 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3317 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3316 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-637 *8))) (-5 *3 (-637 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3308 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3307 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-637 *7) (-637 *7))) (-5 *2 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-3306 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3307 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3307 ((-637 |#4|) (-637 |#4|))) (-15 -3307 ((-637 |#4|) |#4| |#4|)) (-15 -3305 ((-637 |#4|) (-637 |#4|))) (-15 -3306 ((-637 |#4|) |#4| |#4|)) (-15 -3307 ((-637 |#4|) (-637 |#4|) |#4|)) (-15 -3307 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3307 ((-637 |#4|) (-637 |#4|) (-637 |#4|) (-1 (-637 |#4|) (-637 |#4|)))) (-15 -3308 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3309 ((-112) (-637 |#4|) (-637 (-637 |#4|)))) (-15 -3310 ((-112) (-637 |#4|))) (-15 -3311 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-1 (-112) |#4|) (-637 |#4|))) (-15 -3312 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|))) (-15 -3313 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 (-1 (-112) |#4|)) (-637 |#4|))) (-15 -3314 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3315 ((-112) |#4|)) (-15 -3316 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3317 ((-112) |#4|)) (-15 -3318 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3319 ((-112) |#4|)) (-15 -3320 ((-2 (|:| |goodPols| (-637 |#4|)) (|:| |badPols| (-637 |#4|))) (-637 |#4|))) (-15 -3321 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3321 ((-637 |#4|) (-637 |#4|) (-637 |#4|) (-112))) (-15 -3322 (|#4| |#4| (-637 |#4|))) (-15 -3323 ((-637 |#4|) (-637 |#4|))) (-15 -3324 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3735 (-637 |#4|))) "failed") (-637 |#4|))) (-15 -3325 ((-637 |#4|) (-637 |#4|))) (-15 -3326 ((-637 |#4|) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3327 ((-637 |#4|) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3328 ((-637 |#4|) |#4|)) (-15 -3329 ((-637 |#4|) (-637 |#4|))) (-15 -3329 ((-637 |#4|) (-637 |#4|) (-112))) (-15 -3330 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3331 ((-637 |#4|) (-637 |#4|) (-637 |#4|))) (-15 -3332 ((-637 |#4|) (-637 |#4|) (-637 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3333 ((-637 |#4|) (-637 |#4|))) (-15 -3334 ((-637 |#4|) (-637 |#4|))) (-15 -3335 ((-637 |#4|) (-637 |#4|) (-637 |#4|)))) |%noBranch|) |%noBranch|))
+((-3336 (((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3338 (((-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|)) 35)) (-3337 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-974 |#1|) (-10 -7 (-15 -3336 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3337 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3338 ((-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|)))) (-363)) (T -974))
+((-3338 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-637 (-2 (|:| C (-684 *5)) (|:| |g| (-1256 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)))) (-3337 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-3336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-684 *6)))))
+(-10 -7 (-15 -3336 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3337 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3338 ((-637 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1256 |#1|)))) (-684 |#1|) (-1256 |#1|))))
+((-4384 (((-405 |#4|) |#4|) 48)))
+(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4384 ((-405 |#4|) |#4|))) (-846) (-789) (-452) (-946 |#3| |#2| |#1|)) (T -975))
+((-4384 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-405 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -4384 ((-405 |#4|) |#4|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4253 (($ (-767)) 112 (|has| |#1| (-23)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-3830 (((-546) (-1 (-112) |#1|) $) 97) (((-546) |#1| $) 96 (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) 95 (|has| |#1| (-1094)))) (-4121 (($ (-637 |#1|)) 118)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4250 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4247 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-4131 (((-112) $ (-767)) 10)) (-4248 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-4183 (($ $ (-637 |#1|)) 116)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-4251 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-4326 (((-915) $) 117)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-4249 (($ $ $) 104)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535)))) (($ (-637 |#1|)) 119)) (-3936 (($ (-637 |#1|)) 70)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 82 (|has| |#1| (-846)))) (-4252 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4254 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-546) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-976 |#1|) (-140) (-1045)) (T -976))
-((-3018 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))))
-(-13 (-1255 |t#1|) (-615 (-640 |t#1|)) (-10 -8 (-15 -3018 ($ (-640 |t#1|))) (-15 -3526 ((-917) $)) (-15 -4111 ($ $ $)) (-15 -1751 ($ $ (-640 |t#1|)))))
-(((-34) . T) ((-102) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-615 (-640 |#1|)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T) ((-1255 |#1|) . T))
-((-2238 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17)))
-(((-977 |#1| |#2|) (-10 -7 (-15 -2238 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))))
-(-10 -7 (-15 -2238 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|))))
-((-2774 ((|#1| (-939 |#1|)) 13)) (-2763 ((|#1| (-939 |#1|)) 12)) (-2753 ((|#1| (-939 |#1|)) 11)) (-2795 ((|#1| (-939 |#1|)) 15)) (-2841 ((|#1| (-939 |#1|)) 21)) (-2785 ((|#1| (-939 |#1|)) 14)) (-2805 ((|#1| (-939 |#1|)) 16)) (-2830 ((|#1| (-939 |#1|)) 20)) (-2817 ((|#1| (-939 |#1|)) 19)))
-(((-978 |#1|) (-10 -7 (-15 -2753 (|#1| (-939 |#1|))) (-15 -2763 (|#1| (-939 |#1|))) (-15 -2774 (|#1| (-939 |#1|))) (-15 -2785 (|#1| (-939 |#1|))) (-15 -2795 (|#1| (-939 |#1|))) (-15 -2805 (|#1| (-939 |#1|))) (-15 -2817 (|#1| (-939 |#1|))) (-15 -2830 (|#1| (-939 |#1|))) (-15 -2841 (|#1| (-939 |#1|)))) (-1045)) (T -978))
-((-2841 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(-10 -7 (-15 -2753 (|#1| (-939 |#1|))) (-15 -2763 (|#1| (-939 |#1|))) (-15 -2774 (|#1| (-939 |#1|))) (-15 -2785 (|#1| (-939 |#1|))) (-15 -2795 (|#1| (-939 |#1|))) (-15 -2805 (|#1| (-939 |#1|))) (-15 -2817 (|#1| (-939 |#1|))) (-15 -2830 (|#1| (-939 |#1|))) (-15 -2841 (|#1| (-939 |#1|))))
-((-3015 (((-3 |#1| "failed") |#1|) 18)) (-2896 (((-3 |#1| "failed") |#1|) 6)) (-2993 (((-3 |#1| "failed") |#1|) 16)) (-2878 (((-3 |#1| "failed") |#1|) 4)) (-3035 (((-3 |#1| "failed") |#1|) 20)) (-2915 (((-3 |#1| "failed") |#1|) 8)) (-2850 (((-3 |#1| "failed") |#1| (-767)) 1)) (-2869 (((-3 |#1| "failed") |#1|) 3)) (-2860 (((-3 |#1| "failed") |#1|) 2)) (-3046 (((-3 |#1| "failed") |#1|) 21)) (-2925 (((-3 |#1| "failed") |#1|) 9)) (-3025 (((-3 |#1| "failed") |#1|) 19)) (-2905 (((-3 |#1| "failed") |#1|) 7)) (-3004 (((-3 |#1| "failed") |#1|) 17)) (-2887 (((-3 |#1| "failed") |#1|) 5)) (-3075 (((-3 |#1| "failed") |#1|) 24)) (-2954 (((-3 |#1| "failed") |#1|) 12)) (-3057 (((-3 |#1| "failed") |#1|) 22)) (-2934 (((-3 |#1| "failed") |#1|) 10)) (-3097 (((-3 |#1| "failed") |#1|) 26)) (-2974 (((-3 |#1| "failed") |#1|) 14)) (-3109 (((-3 |#1| "failed") |#1|) 27)) (-2983 (((-3 |#1| "failed") |#1|) 15)) (-3085 (((-3 |#1| "failed") |#1|) 25)) (-2964 (((-3 |#1| "failed") |#1|) 13)) (-3066 (((-3 |#1| "failed") |#1|) 23)) (-2944 (((-3 |#1| "failed") |#1|) 11)))
+((-4121 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-4326 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-915)))) (-4249 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))))
+(-13 (-1255 |t#1|) (-615 (-637 |t#1|)) (-10 -8 (-15 -4121 ($ (-637 |t#1|))) (-15 -4326 ((-915) $)) (-15 -4249 ($ $ $)) (-15 -4183 ($ $ (-637 |t#1|)))))
+(((-34) . T) ((-102) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-615 (-637 |#1|)) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-372 |#1|) . T) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1207) . T) ((-1255 |#1|) . T))
+((-4373 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17)))
+(((-977 |#1| |#2|) (-10 -7 (-15 -4373 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))))
+(-10 -7 (-15 -4373 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|))))
+((-3341 ((|#1| (-939 |#1|)) 13)) (-3340 ((|#1| (-939 |#1|)) 12)) (-3339 ((|#1| (-939 |#1|)) 11)) (-3343 ((|#1| (-939 |#1|)) 15)) (-3347 ((|#1| (-939 |#1|)) 21)) (-3342 ((|#1| (-939 |#1|)) 14)) (-3344 ((|#1| (-939 |#1|)) 16)) (-3346 ((|#1| (-939 |#1|)) 20)) (-3345 ((|#1| (-939 |#1|)) 19)))
+(((-978 |#1|) (-10 -7 (-15 -3339 (|#1| (-939 |#1|))) (-15 -3340 (|#1| (-939 |#1|))) (-15 -3341 (|#1| (-939 |#1|))) (-15 -3342 (|#1| (-939 |#1|))) (-15 -3343 (|#1| (-939 |#1|))) (-15 -3344 (|#1| (-939 |#1|))) (-15 -3345 (|#1| (-939 |#1|))) (-15 -3346 (|#1| (-939 |#1|))) (-15 -3347 (|#1| (-939 |#1|)))) (-1045)) (T -978))
+((-3347 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(-10 -7 (-15 -3339 (|#1| (-939 |#1|))) (-15 -3340 (|#1| (-939 |#1|))) (-15 -3341 (|#1| (-939 |#1|))) (-15 -3342 (|#1| (-939 |#1|))) (-15 -3343 (|#1| (-939 |#1|))) (-15 -3344 (|#1| (-939 |#1|))) (-15 -3345 (|#1| (-939 |#1|))) (-15 -3346 (|#1| (-939 |#1|))) (-15 -3347 (|#1| (-939 |#1|))))
+((-3365 (((-3 |#1| "failed") |#1|) 18)) (-3353 (((-3 |#1| "failed") |#1|) 6)) (-3363 (((-3 |#1| "failed") |#1|) 16)) (-3351 (((-3 |#1| "failed") |#1|) 4)) (-3367 (((-3 |#1| "failed") |#1|) 20)) (-3355 (((-3 |#1| "failed") |#1|) 8)) (-3348 (((-3 |#1| "failed") |#1| (-767)) 1)) (-3350 (((-3 |#1| "failed") |#1|) 3)) (-3349 (((-3 |#1| "failed") |#1|) 2)) (-3368 (((-3 |#1| "failed") |#1|) 21)) (-3356 (((-3 |#1| "failed") |#1|) 9)) (-3366 (((-3 |#1| "failed") |#1|) 19)) (-3354 (((-3 |#1| "failed") |#1|) 7)) (-3364 (((-3 |#1| "failed") |#1|) 17)) (-3352 (((-3 |#1| "failed") |#1|) 5)) (-3371 (((-3 |#1| "failed") |#1|) 24)) (-3359 (((-3 |#1| "failed") |#1|) 12)) (-3369 (((-3 |#1| "failed") |#1|) 22)) (-3357 (((-3 |#1| "failed") |#1|) 10)) (-3373 (((-3 |#1| "failed") |#1|) 26)) (-3361 (((-3 |#1| "failed") |#1|) 14)) (-3374 (((-3 |#1| "failed") |#1|) 27)) (-3362 (((-3 |#1| "failed") |#1|) 15)) (-3372 (((-3 |#1| "failed") |#1|) 25)) (-3360 (((-3 |#1| "failed") |#1|) 13)) (-3370 (((-3 |#1| "failed") |#1|) 23)) (-3358 (((-3 |#1| "failed") |#1|) 11)))
(((-979 |#1|) (-140) (-1193)) (T -979))
-((-3109 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3085 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3075 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3066 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3057 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3046 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3035 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3025 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3015 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3004 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2993 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2934 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2925 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2915 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2905 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2896 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2887 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2878 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2869 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2860 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2850 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(-13 (-10 -7 (-15 -2850 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -2860 ((-3 |t#1| "failed") |t#1|)) (-15 -2869 ((-3 |t#1| "failed") |t#1|)) (-15 -2878 ((-3 |t#1| "failed") |t#1|)) (-15 -2887 ((-3 |t#1| "failed") |t#1|)) (-15 -2896 ((-3 |t#1| "failed") |t#1|)) (-15 -2905 ((-3 |t#1| "failed") |t#1|)) (-15 -2915 ((-3 |t#1| "failed") |t#1|)) (-15 -2925 ((-3 |t#1| "failed") |t#1|)) (-15 -2934 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2993 ((-3 |t#1| "failed") |t#1|)) (-15 -3004 ((-3 |t#1| "failed") |t#1|)) (-15 -3015 ((-3 |t#1| "failed") |t#1|)) (-15 -3025 ((-3 |t#1| "failed") |t#1|)) (-15 -3035 ((-3 |t#1| "failed") |t#1|)) (-15 -3046 ((-3 |t#1| "failed") |t#1|)) (-15 -3057 ((-3 |t#1| "failed") |t#1|)) (-15 -3066 ((-3 |t#1| "failed") |t#1|)) (-15 -3075 ((-3 |t#1| "failed") |t#1|)) (-15 -3085 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -3109 ((-3 |t#1| "failed") |t#1|))))
-((-3131 ((|#4| |#4| (-640 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3120 ((|#4| |#4| (-640 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2238 ((|#4| (-1 |#4| (-948 |#1|)) |#4|) 30)))
-(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3120 (|#4| |#4| |#3|)) (-15 -3120 (|#4| |#4| (-640 |#3|))) (-15 -3131 (|#4| |#4| |#3|)) (-15 -3131 (|#4| |#4| (-640 |#3|))) (-15 -2238 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169))))) (-945 (-948 |#1|) |#2| |#3|)) (T -980))
-((-2238 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-3131 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) (-3120 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-3120 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)) (-15 -2517 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))))
-(-10 -7 (-15 -3120 (|#4| |#4| |#3|)) (-15 -3120 (|#4| |#4| (-640 |#3|))) (-15 -3131 (|#4| |#4| |#3|)) (-15 -3131 (|#4| |#4| (-640 |#3|))) (-15 -2238 (|#4| (-1 |#4| (-948 |#1|)) |#4|)))
-((-3141 ((|#2| |#3|) 35)) (-3619 (((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 73)) (-3608 (((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 89)))
-(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -3141 (|#2| |#3|))) (-349) (-1233 |#1|) (-1233 |#2|) (-720 |#2| |#3|)) (T -981))
-((-3141 (*1 *2 *3) (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))) (-3619 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-3608 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -4013 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))))
-(-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -3141 (|#2| |#3|)))
-((-2022 (((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))) 68)))
-(((-982 |#1| |#2|) (-10 -7 (-15 -2022 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))))) (-640 (-1169)) (-767)) (T -982))
-((-2022 (*1 *2 *2) (-12 (-5 *2 (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767)) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4)))))
-(-10 -7 (-15 -2022 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))))))
-((-1677 (((-112) $ $) NIL)) (-2733 (((-3 (-112) "failed") $) 69)) (-2966 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3176 (($ $ (-3 (-112) "failed")) 70)) (-3185 (($ (-640 |#4|) |#4|) 25)) (-3854 (((-1151) $) NIL)) (-3150 (($ $) 67)) (-1693 (((-1113) $) NIL)) (-1665 (((-112) $) 68)) (-3445 (($) 30)) (-3159 ((|#4| $) 72)) (-3166 (((-640 |#4|) $) 71)) (-1692 (((-858) $) 66)) (-1718 (((-112) $ $) NIL)))
-(((-983 |#1| |#2| |#3| |#4|) (-13 (-1093) (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -3185 ($ (-640 |#4|) |#4|)) (-15 -2733 ((-3 (-112) "failed") $)) (-15 -3176 ($ $ (-3 (-112) "failed"))) (-15 -1665 ((-112) $)) (-15 -3166 ((-640 |#4|) $)) (-15 -3159 (|#4| $)) (-15 -3150 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2966 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-945 |#1| |#3| |#2|)) (T -983))
-((-3445 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))) (-2733 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3176 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-1665 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3166 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-3150 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-2966 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))))
-(-13 (-1093) (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -3185 ($ (-640 |#4|) |#4|)) (-15 -2733 ((-3 (-112) "failed") $)) (-15 -3176 ($ $ (-3 (-112) "failed"))) (-15 -1665 ((-112) $)) (-15 -3166 ((-640 |#4|) $)) (-15 -3159 (|#4| $)) (-15 -3150 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2966 ($ $)) |%noBranch|) |%noBranch|)))
-((-2836 (((-112) |#5| |#5|) 37)) (-2866 (((-112) |#5| |#5|) 51)) (-2912 (((-112) |#5| (-640 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-2875 (((-112) (-640 |#4|) (-640 |#4|)) 57)) (-2931 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) 62)) (-2824 (((-1262)) 33)) (-2812 (((-1262) (-1151) (-1151) (-1151)) 29)) (-2921 (((-640 |#5|) (-640 |#5|)) 80)) (-2940 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) 78)) (-2950 (((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 100)) (-2856 (((-112) |#5| |#5|) 46)) (-2902 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2884 (((-112) (-640 |#4|) (-640 |#4|)) 56)) (-2893 (((-112) (-640 |#4|) (-640 |#4|)) 58)) (-2319 (((-112) (-640 |#4|) (-640 |#4|)) 59)) (-2961 (((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-2847 (((-640 |#5|) (-640 |#5|)) 42)))
-(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2812 ((-1262) (-1151) (-1151) (-1151))) (-15 -2824 ((-1262))) (-15 -2836 ((-112) |#5| |#5|)) (-15 -2847 ((-640 |#5|) (-640 |#5|))) (-15 -2856 ((-112) |#5| |#5|)) (-15 -2866 ((-112) |#5| |#5|)) (-15 -2875 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2884 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2893 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2319 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2902 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2912 ((-112) |#5| |#5|)) (-15 -2912 ((-112) |#5| (-640 |#5|))) (-15 -2921 ((-640 |#5|) (-640 |#5|))) (-15 -2931 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2940 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-15 -2950 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2961 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984))
-((-2961 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1420 (-640 *9)) (|:| -2058 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-2950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -1420 (-640 *9)) (|:| -2058 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2058 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2902 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2319 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2893 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2884 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2875 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2824 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2812 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2812 ((-1262) (-1151) (-1151) (-1151))) (-15 -2824 ((-1262))) (-15 -2836 ((-112) |#5| |#5|)) (-15 -2847 ((-640 |#5|) (-640 |#5|))) (-15 -2856 ((-112) |#5| |#5|)) (-15 -2866 ((-112) |#5| |#5|)) (-15 -2875 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2884 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2893 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2319 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2902 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2912 ((-112) |#5| |#5|)) (-15 -2912 ((-112) |#5| (-640 |#5|))) (-15 -2921 ((-640 |#5|) (-640 |#5|))) (-15 -2931 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2940 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-15 -2950 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2961 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2517 (((-1169) $) 15)) (-2618 (((-1151) $) 16)) (-2377 (($ (-1169) (-1151)) 14)) (-1692 (((-858) $) 13)))
-(((-985) (-13 (-610 (-858)) (-10 -8 (-15 -2377 ($ (-1169) (-1151))) (-15 -2517 ((-1169) $)) (-15 -2618 ((-1151) $))))) (T -985))
-((-2377 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -2377 ($ (-1169) (-1151))) (-15 -2517 ((-1169) $)) (-15 -2618 ((-1151) $))))
-((-2238 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#2| |#1|) |#3|))) (-555) (-555) (-988 |#1|) (-988 |#2|)) (T -986))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) 65) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) 95)) (-2057 ((|#2| $) NIL) (((-1169) $) 60) (((-407 (-563)) $) NIL) (((-563) $) 92)) (-1476 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 112) (((-684 |#2|) (-684 $)) 28)) (-1690 (($) 98)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 75) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84)) (-2043 (($ $) 10)) (-1983 (((-3 $ "failed") $) 20)) (-2238 (($ (-1 |#2| |#2|) $) 22)) (-2522 (($) 16)) (-3935 (($ $) 54)) (-4203 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2033 (($ $) 12)) (-2219 (((-888 (-563)) $) 70) (((-888 (-379)) $) 79) (((-536) $) 40) (((-379) $) 44) (((-225) $) 47)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 90) (($ |#2|) NIL) (($ (-1169)) 57)) (-3914 (((-767)) 31)) (-1743 (((-112) $ $) 50)))
-(((-987 |#1| |#2|) (-10 -8 (-15 -1743 ((-112) |#1| |#1|)) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -1692 (|#1| (-1169))) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -1690 (|#1|)) (-15 -3935 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2043 (|#1| |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| |#1|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-988 |#2|) (-555)) (T -987))
-((-3914 (*1 *2) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) (-4 *3 (-988 *4)))))
-(-10 -8 (-15 -1743 ((-112) |#1| |#1|)) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -1692 (|#1| (-1169))) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -1690 (|#1|)) (-15 -3935 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2043 (|#1| |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1812 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -1476 ((-684 |#2|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| |#1|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3944 ((|#1| $) 138 (|has| |#1| (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 129 (|has| |#1| (-905)))) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 132 (|has| |#1| (-905)))) (-2003 (((-112) $ $) 60)) (-2807 (((-563) $) 119 (|has| |#1| (-816)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 176) (((-3 (-1169) "failed") $) 127 (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 110 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) 108 (|has| |#1| (-1034 (-563))))) (-2057 ((|#1| $) 177) (((-1169) $) 128 (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 111 (|has| |#1| (-1034 (-563)))) (((-563) $) 109 (|has| |#1| (-1034 (-563))))) (-3094 (($ $ $) 56)) (-1476 (((-684 (-563)) (-684 $)) 151 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 150 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 149) (((-684 |#1|) (-684 $)) 148)) (-3951 (((-3 $ "failed") $) 33)) (-1690 (($) 136 (|has| |#1| (-545)))) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-3414 (((-112) $) 121 (|has| |#1| (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 145 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 144 (|has| |#1| (-882 (-379))))) (-3401 (((-112) $) 31)) (-2043 (($ $) 140)) (-2143 ((|#1| $) 142)) (-1983 (((-3 $ "failed") $) 107 (|has| |#1| (-1144)))) (-3426 (((-112) $) 120 (|has| |#1| (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3088 (($ $ $) 117 (|has| |#1| (-846)))) (-1776 (($ $ $) 116 (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) 168)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-2522 (($) 106 (|has| |#1| (-1144)) CONST)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3935 (($ $) 137 (|has| |#1| (-307)))) (-3954 ((|#1| $) 134 (|has| |#1| (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 131 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 130 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 170 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 169 (|has| |#1| (-514 (-1169) |#1|)))) (-1993 (((-767) $) 59)) (-2308 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-4203 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1169)) 163 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 162 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 161 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 160 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2033 (($ $) 139)) (-2153 ((|#1| $) 141)) (-2219 (((-888 (-563)) $) 147 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 146 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 124 (|has| |#1| (-611 (-536)))) (((-379) $) 123 (|has| |#1| (-1018))) (((-225) $) 122 (|has| |#1| (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 133 (-2188 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 180) (($ (-1169)) 126 (|has| |#1| (-1034 (-1169))))) (-2047 (((-3 $ "failed") $) 125 (-4034 (|has| |#1| (-145)) (-2188 (|has| $ (-145)) (|has| |#1| (-905)))))) (-3914 (((-767)) 28)) (-3965 ((|#1| $) 135 (|has| |#1| (-545)))) (-3223 (((-112) $ $) 40)) (-1462 (($ $) 118 (|has| |#1| (-816)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $) 166 (|has| |#1| (-233))) (($ $ (-767)) 164 (|has| |#1| (-233))) (($ $ (-1169)) 159 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 158 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 157 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 156 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1779 (((-112) $ $) 114 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 113 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 115 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 112 (|has| |#1| (-846)))) (-1836 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
-(((-988 |#1|) (-140) (-555)) (T -988))
-((-1836 (*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2043 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-1690 (*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))))
-(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1836 ($ |t#1| |t#1|)) (-15 -2143 (|t#1| $)) (-15 -2153 (|t#1| $)) (-15 -2043 ($ $)) (-15 -2033 ($ $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-1034 (-563))) (PROGN (-6 (-1034 (-563))) (-6 (-1034 (-407 (-563))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1169))) (-6 (-1034 (-1169))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3944 (|t#1| $)) (-15 -3935 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -1690 ($)) (-15 -3965 (|t#1| $)) (-15 -3954 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 #1=(-1169)) |has| |#1| (-1034 (-1169))) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) |has| |#1| (-1018)) ((-611 (-379)) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-791) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -4034 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) |has| |#1| (-905)) ((-916) . T) ((-1018) |has| |#1| (-1018)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-563))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #1#) |has| |#1| (-1034 (-1169))) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1208) . T) ((-1212) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2050 (($ (-1135 |#1| |#2|)) 11)) (-4040 (((-1135 |#1| |#2|) $) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2308 ((|#2| $ (-240 |#1| |#2|)) 16)) (-1692 (((-858) $) NIL)) (-2239 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL)))
-(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2050 ($ (-1135 |#1| |#2|))) (-15 -4040 ((-1135 |#1| |#2|) $)) (-15 -2308 (|#2| $ (-240 |#1| |#2|))))) (-917) (-363)) (T -989))
-((-2050 (*1 *1 *2) (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2050 ($ (-1135 |#1| |#2|))) (-15 -4040 ((-1135 |#1| |#2|) $)) (-15 -2308 (|#2| $ (-240 |#1| |#2|)))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 9)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-990) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $))))) (T -990))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2080 (($ $) 46)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3419 (((-767) $) 45)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2071 ((|#1| $) 44)) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2099 ((|#1| |#1| $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2088 ((|#1| $) 47)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-2061 ((|#1| $) 43)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-991 |#1|) (-140) (-1208)) (T -991))
-((-2099 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-2080 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -2099 (|t#1| |t#1| $)) (-15 -2088 (|t#1| $)) (-15 -2080 ($ $)) (-15 -3419 ((-767) $)) (-15 -2071 (|t#1| $)) (-15 -2061 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-3439 (((-112) $) 42)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 43)) (-2327 (((-3 (-407 (-563)) "failed") $) 78)) (-2317 (((-112) $) 72)) (-2306 (((-407 (-563)) $) 76)) (-3401 (((-112) $) 41)) (-3975 ((|#2| $) 22)) (-2238 (($ (-1 |#2| |#2|) $) 19)) (-2687 (($ $) 59)) (-4203 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2219 (((-536) $) 67)) (-2150 (($ $) 17)) (-1692 (((-858) $) 54) (($ (-563)) 38) (($ |#2|) 36) (($ (-407 (-563))) NIL)) (-3914 (((-767)) 10)) (-1462 ((|#2| $) 71)) (-1718 (((-112) $ $) 25)) (-1743 (((-112) $ $) 69)) (-1825 (($ $) 29) (($ $ $) 28)) (-1813 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL)))
-(((-992 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| (-407 (-563)))) (-15 -1743 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -2687 (|#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -3401 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-993 |#2|) (-172)) (T -992))
-((-3914 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4)))))
-(-10 -8 (-15 -1692 (|#1| (-407 (-563)))) (-15 -1743 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -2687 (|#1| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2238 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -3401 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2130 (((-3 (-563) "failed") $) 118 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 116 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 113)) (-2057 (((-563) $) 117 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 115 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 114)) (-1476 (((-684 (-563)) (-684 $)) 88 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 87 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 86) (((-684 |#1|) (-684 $)) 85)) (-3951 (((-3 $ "failed") $) 33)) (-2488 ((|#1| $) 78)) (-2327 (((-3 (-407 (-563)) "failed") $) 74 (|has| |#1| (-545)))) (-2317 (((-112) $) 76 (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) 75 (|has| |#1| (-545)))) (-2109 (($ |#1| |#1| |#1| |#1|) 79)) (-3401 (((-112) $) 31)) (-3975 ((|#1| $) 80)) (-3088 (($ $ $) 67 (|has| |#1| (-846)))) (-1776 (($ $ $) 66 (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) 89)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71 (|has| |#1| (-363)))) (-2118 ((|#1| $) 81)) (-2129 ((|#1| $) 82)) (-2140 ((|#1| $) 83)) (-1693 (((-1113) $) 10)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 91 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 90 (|has| |#1| (-514 (-1169) |#1|)))) (-2308 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-4203 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1169)) 108 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 107 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 106 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 105 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2219 (((-536) $) 72 (|has| |#1| (-611 (-536))))) (-2150 (($ $) 84)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 61 (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2047 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-1462 ((|#1| $) 77 (|has| |#1| (-1054)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $) 111 (|has| |#1| (-233))) (($ $ (-767)) 109 (|has| |#1| (-233))) (($ $ (-1169)) 104 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 103 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 102 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 101 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1779 (((-112) $ $) 64 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 63 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 65 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 62 (|has| |#1| (-846)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-563))) 69 (|has| |#1| (-363))) (($ (-407 (-563)) $) 68 (|has| |#1| (-363)))))
-(((-993 |#1|) (-140) (-172)) (T -993))
-((-2150 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2109 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2150 ($ $)) (-15 -2140 (|t#1| $)) (-15 -2129 (|t#1| $)) (-15 -2118 (|t#1| $)) (-15 -3975 (|t#1| $)) (-15 -2109 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2488 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -1462 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2317 ((-112) $)) (-15 -2306 ((-407 (-563)) $)) (-15 -2327 ((-3 (-407 (-563)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4034 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 #0#) |has| |#1| (-363)) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-2238 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|))) (-993 |#2|) (-172) (-993 |#4|) (-172)) (T -994))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5)))))
-(-10 -7 (-15 -2238 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 12)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2317 (((-112) $) NIL (|has| |#1| (-545)))) (-2306 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-2109 (($ |#1| |#1| |#1| |#1|) 16)) (-3401 (((-112) $) NIL)) (-3975 ((|#1| $) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2118 ((|#1| $) 15)) (-2129 ((|#1| $) 14)) (-2140 ((|#1| $) 13)) (-1693 (((-1113) $) NIL)) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2308 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2150 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-1462 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2239 (($) 8 T CONST)) (-2253 (($) 10 T CONST)) (-3213 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-363)))))
-(((-995 |#1|) (-993 |#1|) (-172)) (T -995))
-NIL
-(-993 |#1|)
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-2080 (($ $) 20)) (-2161 (($ (-640 |#1|)) 29)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3419 (((-767) $) 22)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) 24)) (-3867 (($ |#1| $) 15)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2071 ((|#1| $) 23)) (-2808 ((|#1| $) 19)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2099 ((|#1| |#1| $) 14)) (-1665 (((-112) $) 17)) (-3445 (($) NIL)) (-2088 ((|#1| $) 18)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) NIL)) (-2061 ((|#1| $) 26)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -2161 ($ (-640 |#1|))))) (-1093)) (T -996))
-((-2161 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3)))))
-(-13 (-991 |#1|) (-10 -8 (-15 -2161 ($ (-640 |#1|)))))
-((-2185 (($ $) 12)) (-2172 (($ $ (-563)) 13)))
-(((-997 |#1|) (-10 -8 (-15 -2185 (|#1| |#1|)) (-15 -2172 (|#1| |#1| (-563)))) (-998)) (T -997))
-NIL
-(-10 -8 (-15 -2185 (|#1| |#1|)) (-15 -2172 (|#1| |#1| (-563))))
-((-2185 (($ $) 6)) (-2172 (($ $ (-563)) 7)) (** (($ $ (-407 (-563))) 8)))
+((-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3357 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3356 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3355 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3354 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3353 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3352 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3351 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3350 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3349 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3348 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(-13 (-10 -7 (-15 -3348 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -3349 ((-3 |t#1| "failed") |t#1|)) (-15 -3350 ((-3 |t#1| "failed") |t#1|)) (-15 -3351 ((-3 |t#1| "failed") |t#1|)) (-15 -3352 ((-3 |t#1| "failed") |t#1|)) (-15 -3353 ((-3 |t#1| "failed") |t#1|)) (-15 -3354 ((-3 |t#1| "failed") |t#1|)) (-15 -3355 ((-3 |t#1| "failed") |t#1|)) (-15 -3356 ((-3 |t#1| "failed") |t#1|)) (-15 -3357 ((-3 |t#1| "failed") |t#1|)) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|))))
+((-3376 ((|#4| |#4| (-637 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3375 ((|#4| |#4| (-637 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4373 ((|#4| (-1 |#4| (-942 |#1|)) |#4|) 30)))
+(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3375 (|#4| |#4| |#3|)) (-15 -3375 (|#4| |#4| (-637 |#3|))) (-15 -3376 (|#4| |#4| |#3|)) (-15 -3376 (|#4| |#4| (-637 |#3|))) (-15 -4373 (|#4| (-1 |#4| (-942 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))) (-946 (-942 |#1|) |#2| |#3|)) (T -980))
+((-4373 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1045)) (-4 *2 (-946 (-942 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1="failed") (-1169)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-3376 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-946 (-942 *4) *5 *6)))) (-3376 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-946 (-942 *4) *5 *3)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-637 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-946 (-942 *4) *5 *6)))) (-3375 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-946 (-942 *4) *5 *3)))))
+(-10 -7 (-15 -3375 (|#4| |#4| |#3|)) (-15 -3375 (|#4| |#4| (-637 |#3|))) (-15 -3376 (|#4| |#4| |#3|)) (-15 -3376 (|#4| |#4| (-637 |#3|))) (-15 -4373 (|#4| (-1 |#4| (-942 |#1|)) |#4|)))
+((-3377 ((|#2| |#3|) 35)) (-4334 (((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 73)) (-4333 (((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 89)))
+(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -3377 (|#2| |#3|))) (-350) (-1232 |#1|) (-1232 |#2|) (-720 |#2| |#3|)) (T -981))
+((-3377 (*1 *2 *3) (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-350)) (-4 *5 (-720 *2 *3)))) (-4334 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-4333 (*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -2169 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))))
+(-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -3377 (|#2| |#3|)))
+((-2953 (((-112) $ $) NIL)) (-3812 (((-3 (-112) #1="failed") $) 69)) (-4064 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3381 (($ $ (-3 (-112) #1#)) 70)) (-3382 (($ (-637 |#4|) |#4|) 25)) (-3650 (((-1151) $) NIL)) (-3378 (($ $) 67)) (-3651 (((-1113) $) NIL)) (-3814 (((-112) $) 68)) (-3979 (($) 30)) (-3379 ((|#4| $) 72)) (-3380 (((-637 |#4|) $) 71)) (-4361 (((-859) $) 66)) (-3444 (((-112) $ $) NIL)))
+(((-982 |#1| |#2| |#3| |#4|) (-13 (-1094) (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -3382 ($ (-637 |#4|) |#4|)) (-15 -3812 ((-3 (-112) #1="failed") $)) (-15 -3381 ($ $ (-3 (-112) #1#))) (-15 -3814 ((-112) $)) (-15 -3380 ((-637 |#4|) $)) (-15 -3379 (|#4| $)) (-15 -3378 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4064 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-946 |#1| |#3| |#2|)) (T -982))
+((-3979 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-982 *4 *5 *6 *3)))) (-3812 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3814 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-637 *6)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-3378 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-4064 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))))
+(-13 (-1094) (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -3382 ($ (-637 |#4|) |#4|)) (-15 -3812 ((-3 (-112) #1="failed") $)) (-15 -3381 ($ $ (-3 (-112) #1#))) (-15 -3814 ((-112) $)) (-15 -3380 ((-637 |#4|) $)) (-15 -3379 (|#4| $)) (-15 -3378 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4064 ($ $)) |%noBranch|) |%noBranch|)))
+((-3383 (((-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546)))) (-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546))))) 68)))
+(((-983 |#1| |#2|) (-10 -7 (-15 -3383 ((-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546)))) (-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546))))))) (-637 (-1169)) (-767)) (T -983))
+((-3383 (*1 *2 *2) (-12 (-5 *2 (-982 (-407 (-546)) (-860 *3) (-239 *4 (-767)) (-247 *3 (-407 (-546))))) (-14 *3 (-637 (-1169))) (-14 *4 (-767)) (-5 *1 (-983 *3 *4)))))
+(-10 -7 (-15 -3383 ((-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546)))) (-982 (-407 (-546)) (-860 |#1|) (-239 |#2| (-767)) (-247 |#1| (-407 (-546)))))))
+((-3678 (((-112) |#5| |#5|) 37)) (-3681 (((-112) |#5| |#5|) 51)) (-3686 (((-112) |#5| (-637 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-3682 (((-112) (-637 |#4|) (-637 |#4|)) 57)) (-3688 (((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) 62)) (-3677 (((-1262)) 33)) (-3676 (((-1262) (-1151) (-1151) (-1151)) 29)) (-3687 (((-637 |#5|) (-637 |#5|)) 80)) (-3689 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) 78)) (-3690 (((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112)) 100)) (-3680 (((-112) |#5| |#5|) 46)) (-3685 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3683 (((-112) (-637 |#4|) (-637 |#4|)) 56)) (-3684 (((-112) (-637 |#4|) (-637 |#4|)) 58)) (-4114 (((-112) (-637 |#4|) (-637 |#4|)) 59)) (-3691 (((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3679 (((-637 |#5|) (-637 |#5|)) 42)))
+(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3676 ((-1262) (-1151) (-1151) (-1151))) (-15 -3677 ((-1262))) (-15 -3678 ((-112) |#5| |#5|)) (-15 -3679 ((-637 |#5|) (-637 |#5|))) (-15 -3680 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3682 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3683 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3684 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -4114 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3685 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3686 ((-112) |#5| |#5|)) (-15 -3686 ((-112) |#5| (-637 |#5|))) (-15 -3687 ((-637 |#5|) (-637 |#5|))) (-15 -3688 ((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3689 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-15 -3690 ((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3691 ((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984))
+((-3691 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *4) (|:| |ineq| (-637 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-637 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-3690 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-637 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *10) (|:| |ineq| (-637 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-637 *9)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-637 (-2 (|:| |val| (-637 *6)) (|:| -1695 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-3687 (*1 *2 *2) (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3685 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3684 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3683 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3682 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3680 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3677 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3676 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3676 ((-1262) (-1151) (-1151) (-1151))) (-15 -3677 ((-1262))) (-15 -3678 ((-112) |#5| |#5|)) (-15 -3679 ((-637 |#5|) (-637 |#5|))) (-15 -3680 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3682 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3683 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3684 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -4114 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3685 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3686 ((-112) |#5| |#5|)) (-15 -3686 ((-112) |#5| (-637 |#5|))) (-15 -3687 ((-637 |#5|) (-637 |#5|))) (-15 -3688 ((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3689 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-15 -3690 ((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3691 ((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-4246 (((-1169) $) 15)) (-3813 (((-1151) $) 16)) (-3634 (($ (-1169) (-1151)) 14)) (-4361 (((-859) $) 13)))
+(((-985) (-13 (-610 (-859)) (-10 -8 (-15 -3634 ($ (-1169) (-1151))) (-15 -4246 ((-1169) $)) (-15 -3813 ((-1151) $))))) (T -985))
+((-3634 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3634 ($ (-1169) (-1151))) (-15 -4246 ((-1169) $)) (-15 -3813 ((-1151) $))))
+((-3565 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1169) #1#) $) 65) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 (-546) #1#) $) 95)) (-3564 ((|#2| $) NIL) (((-1169) $) 60) (((-407 (-546)) $) NIL) (((-546) $) 92)) (-2408 (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 112) (((-684 |#2|) (-684 $)) 28)) (-3384 (($) 98)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 75) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 84)) (-3386 (($ $) 10)) (-3855 (((-3 $ "failed") $) 20)) (-4373 (($ (-1 |#2| |#2|) $) 22)) (-3856 (($) 16)) (-3520 (($ $) 54)) (-4225 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3385 (($ $) 12)) (-4385 (((-886 (-546)) $) 70) (((-886 (-378)) $) 79) (((-535) $) 40) (((-378) $) 44) (((-225) $) 47)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) 90) (($ |#2|) NIL) (($ (-1169)) 57)) (-3518 (((-767)) 31)) (-3074 (((-112) $ $) 50)))
+(((-986 |#1| |#2|) (-10 -8 (-15 -3074 ((-112) |#1| |#1|)) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4361 (|#1| (-1169))) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -3384 (|#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| |#1|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-987 |#2|) (-556)) (T -986))
+((-3518 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4)))))
+(-10 -8 (-15 -3074 ((-112) |#1| |#1|)) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4361 (|#1| (-1169))) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -3384 (|#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -3185 ((-884 (-546) |#1|) |#1| (-886 (-546)) (-884 (-546) |#1|))) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -2408 ((-684 |#2|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| |#1|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3521 ((|#1| $) 138 (|has| |#1| (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 129 (|has| |#1| (-906)))) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 132 (|has| |#1| (-906)))) (-1740 (((-112) $ $) 60)) (-4038 (((-546) $) 119 (|has| |#1| (-816)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| #2="failed") $) 176) (((-3 (-1169) #2#) $) 127 (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) 110 (|has| |#1| (-1034 (-546)))) (((-3 (-546) #2#) $) 108 (|has| |#1| (-1034 (-546))))) (-3564 ((|#1| $) 177) (((-1169) $) 128 (|has| |#1| (-1034 (-1169)))) (((-407 (-546)) $) 111 (|has| |#1| (-1034 (-546)))) (((-546) $) 109 (|has| |#1| (-1034 (-546))))) (-2949 (($ $ $) 56)) (-2408 (((-684 (-546)) (-684 $)) 151 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 150 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 149) (((-684 |#1|) (-684 $)) 148)) (-3873 (((-3 $ "failed") $) 33)) (-3384 (($) 136 (|has| |#1| (-545)))) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-3594 (((-112) $) 121 (|has| |#1| (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 145 (|has| |#1| (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 144 (|has| |#1| (-882 (-378))))) (-2552 (((-112) $) 31)) (-3386 (($ $) 140)) (-3388 ((|#1| $) 142)) (-3855 (((-3 $ "failed") $) 107 (|has| |#1| (-1144)))) (-3595 (((-112) $) 120 (|has| |#1| (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) 53)) (-2919 (($ $ $) 117 (|has| |#1| (-846)))) (-3249 (($ $ $) 116 (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) 168)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3856 (($) 106 (|has| |#1| (-1144)) CONST)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3520 (($ $) 137 (|has| |#1| (-307)))) (-3522 ((|#1| $) 134 (|has| |#1| (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 131 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 130 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 170 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 169 (|has| |#1| (-514 (-1169) |#1|)))) (-1739 (((-767) $) 59)) (-4214 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-4225 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1169)) 163 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 162 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 161 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 160 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3385 (($ $) 139)) (-3387 ((|#1| $) 141)) (-4385 (((-886 (-546)) $) 147 (|has| |#1| (-611 (-886 (-546))))) (((-886 (-378)) $) 146 (|has| |#1| (-611 (-886 (-378))))) (((-535) $) 124 (|has| |#1| (-611 (-535)))) (((-378) $) 123 (|has| |#1| (-1016))) (((-225) $) 122 (|has| |#1| (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 133 (-3247 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ |#1|) 180) (($ (-1169)) 126 (|has| |#1| (-1034 (-1169))))) (-3091 (((-3 $ "failed") $) 125 (-3943 (|has| |#1| (-145)) (-3247 (|has| $ (-145)) (|has| |#1| (-906)))))) (-3518 (((-767)) 28)) (-3523 ((|#1| $) 135 (|has| |#1| (-545)))) (-2219 (((-112) $ $) 40)) (-3794 (($ $) 118 (|has| |#1| (-816)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $) 166 (|has| |#1| (-233))) (($ $ (-767)) 164 (|has| |#1| (-233))) (($ $ (-1169)) 159 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 158 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 157 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 156 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-2951 (((-112) $ $) 114 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 113 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 115 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 112 (|has| |#1| (-846)))) (-4364 (($ $ $) 66) (($ |#1| |#1|) 143)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
+(((-987 |#1|) (-140) (-556)) (T -987))
+((-4364 (*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))) (-3386 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3384 (*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-545)))))
+(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -4364 ($ |t#1| |t#1|)) (-15 -3388 (|t#1| $)) (-15 -3387 (|t#1| $)) (-15 -3386 ($ $)) (-15 -3385 ($ $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-1034 (-546))) (PROGN (-6 (-1034 (-546))) (-6 (-1034 (-407 (-546))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1169))) (-6 (-1034 (-1169))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3521 (|t#1| $)) (-15 -3520 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3384 ($)) (-15 -3523 (|t#1| $)) (-15 -3522 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 #2=(-1169)) |has| |#1| (-1034 (-1169))) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-611 (-225)) |has| |#1| (-1016)) ((-611 (-378)) |has| |#1| (-1016)) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-611 (-886 (-378))) |has| |#1| (-611 (-886 (-378)))) ((-611 (-886 (-546))) |has| |#1| (-611 (-886 (-546)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-793) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -3943 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-378)) |has| |#1| (-882 (-378))) ((-882 (-546)) |has| |#1| (-882 (-546))) ((-880 |#1|) . T) ((-906) |has| |#1| (-906)) ((-917) . T) ((-1016) |has| |#1| (-1016)) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-546))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 #2#) |has| |#1| (-1034 (-1169))) ((-1034 |#1|) . T) ((-1051 #1#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| |#1| (-1144)) ((-1207) . T) ((-1212) . T))
+((-4373 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-987 |#1|) (-987 |#2|)) (T -988))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-987 *6)) (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-987 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3389 (($ (-1135 |#1| |#2|)) 11)) (-3516 (((-1135 |#1| |#2|) $) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4214 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4361 (((-859) $) NIL)) (-3047 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL)))
+(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3389 ($ (-1135 |#1| |#2|))) (-15 -3516 ((-1135 |#1| |#2|) $)) (-15 -4214 (|#2| $ (-239 |#1| |#2|))))) (-915) (-363)) (T -989))
+((-3389 (*1 *1 *2) (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-915)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-915)) (-4 *4 (-363)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-915)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3389 ($ (-1135 |#1| |#2|))) (-15 -3516 ((-1135 |#1| |#2|) $)) (-15 -4214 (|#2| $ (-239 |#1| |#2|)))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 9)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-990) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $))))) (T -990))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-3392 (($ $) 46)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-4248 (((-767) $) 45)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-3391 ((|#1| $) 44)) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3394 ((|#1| |#1| $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-3393 ((|#1| $) 47)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-3390 ((|#1| $) 43)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-991 |#1|) (-140) (-1207)) (T -991))
+((-3394 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))) (-3392 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -3394 (|t#1| |t#1| $)) (-15 -3393 (|t#1| $)) (-15 -3392 ($ $)) (-15 -4248 ((-767) $)) (-15 -3391 (|t#1| $)) (-15 -3390 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4058 ((|#1| $) 12)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL (|has| |#1| (-545)))) (-3413 (((-112) $) NIL (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) NIL (|has| |#1| (-545)))) (-3395 (($ |#1| |#1| |#1| |#1|) 16)) (-2552 (((-112) $) NIL)) (-3524 ((|#1| $) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-3396 ((|#1| $) 15)) (-3397 ((|#1| $) 14)) (-3398 ((|#1| $) 13)) (-3651 (((-1113) $) NIL)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-4214 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4225 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3399 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546))))))) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-3794 ((|#1| $) NIL (|has| |#1| (-1054)))) (-3047 (($) 8 T CONST)) (-3053 (($) 10 T CONST)) (-3058 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-363))) (($ (-407 (-546)) $) NIL (|has| |#1| (-363)))))
+(((-992 |#1|) (-994 |#1|) (-172)) (T -992))
+NIL
+(-994 |#1|)
+((-3596 (((-112) $) 42)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL) ((|#2| $) 43)) (-3414 (((-3 (-407 (-546)) "failed") $) 78)) (-3413 (((-112) $) 72)) (-3412 (((-407 (-546)) $) 76)) (-2552 (((-112) $) 41)) (-3524 ((|#2| $) 22)) (-4373 (($ (-1 |#2| |#2|) $) 19)) (-2785 (($ $) 59)) (-4225 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4385 (((-535) $) 67)) (-3399 (($ $) 17)) (-4361 (((-859) $) 54) (($ (-546)) 38) (($ |#2|) 36) (($ (-407 (-546))) NIL)) (-3518 (((-767)) 10)) (-3794 ((|#2| $) 71)) (-3444 (((-112) $ $) 25)) (-3074 (((-112) $ $) 69)) (-4252 (($ $) 29) (($ $ $) 28)) (-4254 (($ $ $) 26)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL)))
+(((-993 |#1| |#2|) (-10 -8 (-15 -4361 (|#1| (-407 (-546)))) (-15 -3074 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 * (|#1| |#1| (-407 (-546)))) (-15 -2785 (|#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -2552 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-994 |#2|) (-172)) (T -993))
+((-3518 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))))
+(-10 -8 (-15 -4361 (|#1| (-407 (-546)))) (-15 -3074 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-546)) |#1|)) (-15 * (|#1| |#1| (-407 (-546)))) (-15 -2785 (|#1| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)) (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3524 (|#2| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -4373 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1|)) (-15 -3565 ((-3 |#2| #1="failed") |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -2552 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3596 ((-112) |#1|)) (-15 * (|#1| (-915) |#1|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3565 (((-3 (-546) #1="failed") $) 118 (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 116 (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) 113)) (-3564 (((-546) $) 117 (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) 115 (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) 114)) (-2408 (((-684 (-546)) (-684 $)) 88 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 87 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 86) (((-684 |#1|) (-684 $)) 85)) (-3873 (((-3 $ "failed") $) 33)) (-4058 ((|#1| $) 78)) (-3414 (((-3 (-407 (-546)) "failed") $) 74 (|has| |#1| (-545)))) (-3413 (((-112) $) 76 (|has| |#1| (-545)))) (-3412 (((-407 (-546)) $) 75 (|has| |#1| (-545)))) (-3395 (($ |#1| |#1| |#1| |#1|) 79)) (-2552 (((-112) $) 31)) (-3524 ((|#1| $) 80)) (-2919 (($ $ $) 67 (|has| |#1| (-846)))) (-3249 (($ $ $) 66 (|has| |#1| (-846)))) (-4373 (($ (-1 |#1| |#1|) $) 89)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71 (|has| |#1| (-363)))) (-3396 ((|#1| $) 81)) (-3397 ((|#1| $) 82)) (-3398 ((|#1| $) 83)) (-3651 (((-1113) $) 10)) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-293 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-637 (-1169)) (-637 |#1|)) 91 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 90 (|has| |#1| (-514 (-1169) |#1|)))) (-4214 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-4225 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1169)) 108 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 107 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 106 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 105 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4385 (((-535) $) 72 (|has| |#1| (-611 (-535))))) (-3399 (($ $) 84)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 38) (($ (-407 (-546))) 61 (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546))))))) (-3091 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-3794 ((|#1| $) 77 (|has| |#1| (-1054)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $) 111 (|has| |#1| (-233))) (($ $ (-767)) 109 (|has| |#1| (-233))) (($ $ (-1169)) 104 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 103 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 102 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 101 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2951 (((-112) $ $) 64 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 63 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 65 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 62 (|has| |#1| (-846)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70 (|has| |#1| (-363)))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-546))) 69 (|has| |#1| (-363))) (($ (-407 (-546)) $) 68 (|has| |#1| (-363)))))
+(((-994 |#1|) (-140) (-172)) (T -994))
+((-3399 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3395 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))) (-3414 (*1 *2 *1) (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546))))))
+(-13 (-38 |t#1|) (-412 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -3399 ($ $)) (-15 -3398 (|t#1| $)) (-15 -3397 (|t#1| $)) (-15 -3396 (|t#1| $)) (-15 -3524 (|t#1| $)) (-15 -3395 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4058 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3794 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3413 ((-112) $)) (-15 -3412 ((-407 (-546)) $)) (-15 -3414 ((-3 (-407 (-546)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-363))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -3943 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 #1#) |has| |#1| (-363)) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-4373 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|))) (-994 |#2|) (-172) (-994 |#4|) (-172)) (T -995))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5)))))
+(-10 -7 (-15 -4373 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-3392 (($ $) 20)) (-3400 (($ (-637 |#1|)) 29)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-4248 (((-767) $) 22)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) 24)) (-4022 (($ |#1| $) 15)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-3391 ((|#1| $) 23)) (-1360 ((|#1| $) 19)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3394 ((|#1| |#1| $) 14)) (-3814 (((-112) $) 17)) (-3979 (($) NIL)) (-3393 ((|#1| $) 18)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) NIL)) (-3390 ((|#1| $) 26)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -3400 ($ (-637 |#1|))))) (-1094)) (T -996))
+((-3400 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3)))))
+(-13 (-991 |#1|) (-10 -8 (-15 -3400 ($ (-637 |#1|)))))
+((-3427 (($ $) 12)) (-3401 (($ $ (-546)) 13)))
+(((-997 |#1|) (-10 -8 (-15 -3427 (|#1| |#1|)) (-15 -3401 (|#1| |#1| (-546)))) (-998)) (T -997))
+NIL
+(-10 -8 (-15 -3427 (|#1| |#1|)) (-15 -3401 (|#1| |#1| (-546))))
+((-3427 (($ $) 6)) (-3401 (($ $ (-546)) 7)) (** (($ $ (-407 (-546))) 8)))
(((-998) (-140)) (T -998))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563))))) (-2172 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563)))) (-2185 (*1 *1 *1) (-4 *1 (-998))))
-(-13 (-10 -8 (-15 -2185 ($ $)) (-15 -2172 ($ $ (-563))) (-15 ** ($ $ (-407 (-563))))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2535 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3231 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3211 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3340 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-1731 (((-407 |#2|) $) NIL)) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2802 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2003 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3750 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1432 (((-112)) NIL)) (-1421 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-3458 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 70) (($ (-1257 |#2|) |#2|) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3094 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3330 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-1339 (((-1257 $) (-1257 $)) NIL)) (-2444 (($ |#3|) 65) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2443 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-1465 (((-112) |#1| |#1|) NIL)) (-2521 (((-917)) NIL)) (-1690 (($) NIL (|has| (-407 |#2|) (-368)))) (-1409 (((-112)) NIL)) (-1398 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-3054 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-4151 (($ $) NIL)) (-4036 (($) NIL (|has| (-407 |#2|) (-349)))) (-1656 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3188 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-2560 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1775 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-3401 (((-112) $) NIL)) (-1419 (((-767)) NIL)) (-1349 (((-1257 $) (-1257 $)) NIL)) (-3975 (((-407 |#2|) $) NIL)) (-2454 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-1983 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4035 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3990 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3854 (((-1151) $) NIL)) (-2546 (((-684 (-407 |#2|))) 52)) (-1319 (((-684 (-407 |#2|))) 51)) (-2687 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2510 (($ (-1257 |#2|) |#2|) 71)) (-1308 (((-684 (-407 |#2|))) 50)) (-1330 (((-684 (-407 |#2|))) 49)) (-2499 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2524 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 77)) (-1387 (((-1257 $)) 46)) (-3608 (((-1257 $)) 45)) (-1377 (((-112) $) NIL)) (-1368 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2522 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2552 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-2477 (((-3 |#2| "failed")) 63)) (-1693 (((-1113) $) NIL)) (-1486 (((-767)) NIL)) (-4334 (($) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-3551 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2173 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3012 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1993 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-2308 ((|#1| $ |#1| |#1|) NIL)) (-2489 (((-3 |#2| "failed")) 62)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1623 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 42)) (-3196 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3388 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3402 ((|#3|) 53)) (-1586 (($) NIL (|has| (-407 |#2|) (-349)))) (-3759 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 72) (((-684 (-407 |#2|)) (-1257 $)) NIL)) (-2219 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-1359 (((-1257 $) (-1257 $)) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-4034 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2047 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1892 ((|#3| $) NIL)) (-3914 (((-767)) NIL)) (-1452 (((-112)) 60)) (-1443 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-4013 (((-1257 $)) 125)) (-3223 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2465 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1475 (((-112)) NIL)) (-2239 (($) 94 T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4034 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363)))))
-(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-407 |#2|) (-767)) (T -999))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-546))))) (-3401 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-546)))) (-3427 (*1 *1 *1) (-4 *1 (-998))))
+(-13 (-10 -8 (-15 -3427 ($ $)) (-15 -3401 ($ $ (-546))) (-15 ** ($ $ (-407 (-546))))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1798 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-2220 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2218 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1936 (((-684 (-407 |#2|)) (-1256 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-3741 (((-407 |#2|) $) NIL)) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| (-407 |#2|) (-350)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4384 (((-405 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1740 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3528 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1812 (((-112)) NIL)) (-1811 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| (-407 |#2|) (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-3 (-407 |#2|) #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| (-407 |#2|) (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-546))))) (((-407 |#2|) $) NIL)) (-1946 (($ (-1256 (-407 |#2|)) (-1256 $)) NIL) (($ (-1256 (-407 |#2|))) 70) (($ (-1256 |#2|) |#2|) NIL)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-350)))) (-2949 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1935 (((-684 (-407 |#2|)) $ (-1256 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-407 |#2|) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-407 |#2|))) (|:| |vec| (-1256 (-407 |#2|)))) (-684 $) (-1256 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-1803 (((-1256 $) (-1256 $)) NIL)) (-4257 (($ |#3|) 65) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3873 (((-3 $ "failed") $) NIL)) (-1790 (((-637 (-637 |#1|))) NIL (|has| |#1| (-368)))) (-1815 (((-112) |#1| |#1|) NIL)) (-3501 (((-915)) NIL)) (-3384 (($) NIL (|has| (-407 |#2|) (-368)))) (-1810 (((-112)) NIL)) (-1809 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-2948 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| (-407 |#2|) (-363)))) (-3909 (($ $) NIL)) (-3222 (($) NIL (|has| (-407 |#2|) (-350)))) (-1831 (((-112) $) NIL (|has| (-407 |#2|) (-350)))) (-1921 (($ $ (-767)) NIL (|has| (-407 |#2|) (-350))) (($ $) NIL (|has| (-407 |#2|) (-350)))) (-4138 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-4186 (((-915) $) NIL (|has| (-407 |#2|) (-350))) (((-828 (-915)) $) NIL (|has| (-407 |#2|) (-350)))) (-2552 (((-112) $) NIL)) (-3788 (((-767)) NIL)) (-1804 (((-1256 $) (-1256 $)) NIL)) (-3524 (((-407 |#2|) $) NIL)) (-1791 (((-637 (-942 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-3855 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2171 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2167 (((-915) $) NIL (|has| (-407 |#2|) (-368)))) (-3470 ((|#3| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3650 (((-1151) $) NIL)) (-1799 (((-684 (-407 |#2|))) 52)) (-1801 (((-684 (-407 |#2|))) 51)) (-2785 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1796 (($ (-1256 |#2|) |#2|) 71)) (-1800 (((-684 (-407 |#2|))) 50)) (-1802 (((-684 (-407 |#2|))) 49)) (-1795 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1797 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 77)) (-1808 (((-1256 $)) 46)) (-4333 (((-1256 $)) 45)) (-1807 (((-112) $) NIL)) (-1806 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3856 (($) NIL (|has| (-407 |#2|) (-350)) CONST)) (-2542 (($ (-915)) NIL (|has| (-407 |#2|) (-368)))) (-1793 (((-3 |#2| #3="failed")) 63)) (-3651 (((-1113) $) NIL)) (-1817 (((-767)) NIL)) (-2551 (($) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| (-407 |#2|) (-363)))) (-3552 (($ (-637 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| (-407 |#2|) (-350)))) (-4147 (((-405 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3872 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1739 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4214 ((|#1| $ |#1| |#1|) NIL)) (-1794 (((-3 |#2| #3#)) 62)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4172 (((-407 |#2|) (-1256 $)) NIL) (((-407 |#2|)) 42)) (-1922 (((-767) $) NIL (|has| (-407 |#2|) (-350))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-350)))) (-4225 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-2550 (((-684 (-407 |#2|)) (-1256 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3593 ((|#3|) 53)) (-1825 (($) NIL (|has| (-407 |#2|) (-350)))) (-3632 (((-1256 (-407 |#2|)) $ (-1256 $)) NIL) (((-684 (-407 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-407 |#2|)) $) 72) (((-684 (-407 |#2|)) (-1256 $)) NIL)) (-4385 (((-1256 (-407 |#2|)) $) NIL) (($ (-1256 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-350)))) (-1805 (((-1256 $) (-1256 $)) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-546))) NIL (-3943 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-546)))))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3091 (($ $) NIL (|has| (-407 |#2|) (-350))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2749 ((|#3| $) NIL)) (-3518 (((-767)) NIL)) (-1814 (((-112)) 60)) (-1813 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2169 (((-1256 $)) 125)) (-2219 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1792 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1816 (((-112)) NIL)) (-3047 (($) 94 T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350)))) (($ $) NIL (-3943 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-350))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-546)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-546))) NIL (|has| (-407 |#2|) (-363)))))
+(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1212) (-1232 |#1|) (-1232 (-407 |#2|)) (-407 |#2|) (-767)) (T -999))
NIL
(-342 |#1| |#2| |#3|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2252 (((-640 (-563)) $) 54)) (-2199 (($ (-640 (-563))) 62)) (-3944 (((-563) $) 40 (|has| (-563) (-307)))) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL (|has| (-563) (-816)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) 49) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 47 (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) 49 (|has| (-563) (-1034 (-563))))) (-2057 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3094 (($ $ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1690 (($) NIL (|has| (-563) (-545)))) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-2222 (((-640 (-563)) $) 60)) (-3414 (((-112) $) NIL (|has| (-563) (-816)))) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL)) (-2143 (((-563) $) 37)) (-1983 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-3426 (((-112) $) NIL (|has| (-563) (-816)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-563) (-846)))) (-2238 (($ (-1 (-563) (-563)) $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL)) (-2522 (($) NIL (|has| (-563) (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3935 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) 42)) (-2237 (((-1149 (-563)) $) 59)) (-2187 (($ (-640 (-563)) (-640 (-563))) 63)) (-3954 (((-563) $) 53 (|has| (-563) (-545)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2173 (((-418 $) $) NIL)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1542 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-1993 (((-767) $) NIL)) (-2308 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $) 11 (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2033 (($ $) NIL)) (-2153 (((-563) $) 39)) (-2209 (((-640 (-563)) $) 61)) (-2219 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1692 (((-858) $) 77) (($ (-563)) 43) (($ $) NIL) (($ (-407 (-563))) 20) (($ (-563)) 43) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) 18)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3914 (((-767)) 9)) (-3965 (((-563) $) 51 (|has| (-563) (-545)))) (-3223 (((-112) $ $) NIL)) (-1462 (($ $) NIL (|has| (-563) (-816)))) (-2239 (($) 10 T CONST)) (-2253 (($) 12 T CONST)) (-3213 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1779 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) 14)) (-1766 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1743 (((-112) $ $) 33 (|has| (-563) (-846)))) (-1836 (($ $ $) 29) (($ (-563) (-563)) 31)) (-1825 (($ $) 15) (($ $ $) 23)) (-1813 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 25) (($ $ $) 27) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) 25) (($ $ (-563)) NIL)))
-(((-1000 |#1|) (-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -2252 ((-640 (-563)) $)) (-15 -2237 ((-1149 (-563)) $)) (-15 -2222 ((-640 (-563)) $)) (-15 -2209 ((-640 (-563)) $)) (-15 -2199 ($ (-640 (-563)))) (-15 -2187 ($ (-640 (-563)) (-640 (-563)))))) (-563)) (T -1000))
-((-3935 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2199 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-2187 (*1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -3935 ((-407 (-563)) $)) (-15 -2252 ((-640 (-563)) $)) (-15 -2237 ((-1149 (-563)) $)) (-15 -2222 ((-640 (-563)) $)) (-15 -2209 ((-640 (-563)) $)) (-15 -2199 ($ (-640 (-563)))) (-15 -2187 ($ (-640 (-563)) (-640 (-563))))))
-((-2263 (((-52) (-407 (-563)) (-563)) 9)))
-(((-1001) (-10 -7 (-15 -2263 ((-52) (-407 (-563)) (-563))))) (T -1001))
-((-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52)) (-5 *1 (-1001)))))
-(-10 -7 (-15 -2263 ((-52) (-407 (-563)) (-563))))
-((-3750 (((-563)) 13)) (-2296 (((-563)) 16)) (-2283 (((-1262) (-563)) 15)) (-2273 (((-563) (-563)) 17) (((-563)) 12)))
-(((-1002) (-10 -7 (-15 -2273 ((-563))) (-15 -3750 ((-563))) (-15 -2273 ((-563) (-563))) (-15 -2283 ((-1262) (-563))) (-15 -2296 ((-563))))) (T -1002))
-((-2296 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-3750 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-2273 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))))
-(-10 -7 (-15 -2273 ((-563))) (-15 -3750 ((-563))) (-15 -2273 ((-563) (-563))) (-15 -2283 ((-1262) (-563))) (-15 -2296 ((-563))))
-((-2619 (((-418 |#1|) |#1|) 41)) (-2173 (((-418 |#1|) |#1|) 40)))
-(((-1003 |#1|) (-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1|))) (-1233 (-407 (-563)))) (T -1003))
-((-2619 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563)))))))
-(-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1|)))
-((-2327 (((-3 (-407 (-563)) "failed") |#1|) 15)) (-2317 (((-112) |#1|) 14)) (-2306 (((-407 (-563)) |#1|) 10)))
-(((-1004 |#1|) (-10 -7 (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|))) (-1034 (-407 (-563)))) (T -1004))
-((-2327 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-2317 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563)))))) (-2306 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
-(-10 -7 (-15 -2306 ((-407 (-563)) |#1|)) (-15 -2317 ((-112) |#1|)) (-15 -2327 ((-3 (-407 (-563)) "failed") |#1|)))
-((-1849 ((|#2| $ "value" |#2|) 12)) (-2308 ((|#2| $ "value") 10)) (-2367 (((-112) $ $) 18)))
-(((-1005 |#1| |#2|) (-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2367 ((-112) |#1| |#1|)) (-15 -2308 (|#2| |#1| "value"))) (-1006 |#2|) (-1208)) (T -1005))
-NIL
-(-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2367 ((-112) |#1| |#1|)) (-15 -2308 (|#2| |#1| "value")))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2569 (($) 7 T CONST)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47)) (-2379 (((-563) $ $) 44)) (-2889 (((-112) $) 46)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1006 |#1|) (-140) (-1208)) (T -1006))
-((-4345 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-2390 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-2379 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-2367 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2358 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2348 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3)) (-4 *3 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2336 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -4345 ((-640 $) $)) (-15 -2390 ((-640 $) $)) (-15 -1298 ((-112) $)) (-15 -2618 (|t#1| $)) (-15 -2308 (|t#1| $ "value")) (-15 -2889 ((-112) $)) (-15 -2511 ((-640 |t#1|) $)) (-15 -2379 ((-563) $ $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2367 ((-112) $ $)) (-15 -2358 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2348 ($ $ (-640 $))) (-15 -1849 (|t#1| $ "value" |t#1|)) (-15 -2336 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-2185 (($ $) 9) (($ $ (-917)) 43) (($ (-407 (-563))) 13) (($ (-563)) 15)) (-3377 (((-3 $ "failed") (-1165 $) (-917) (-858)) 23) (((-3 $ "failed") (-1165 $) (-917)) 28)) (-2172 (($ $ (-563)) 49)) (-3914 (((-767)) 17)) (-3389 (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 (-407 (-563)))) 54) (((-640 $) (-1165 (-563))) 59) (((-640 $) (-948 $)) 63) (((-640 $) (-948 (-407 (-563)))) 67) (((-640 $) (-948 (-563))) 71)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 47)))
-(((-1007 |#1|) (-10 -8 (-15 -2185 (|#1| (-563))) (-15 -2185 (|#1| (-407 (-563)))) (-15 -2185 (|#1| |#1| (-917))) (-15 -3389 ((-640 |#1|) (-948 (-563)))) (-15 -3389 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -3389 ((-640 |#1|) (-948 |#1|))) (-15 -3389 ((-640 |#1|) (-1165 (-563)))) (-15 -3389 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -3389 ((-640 |#1|) (-1165 |#1|))) (-15 -3377 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -3377 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -2172 (|#1| |#1| (-563))) (-15 -2185 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3914 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-1008)) (T -1007))
-((-3914 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))))
-(-10 -8 (-15 -2185 (|#1| (-563))) (-15 -2185 (|#1| (-407 (-563)))) (-15 -2185 (|#1| |#1| (-917))) (-15 -3389 ((-640 |#1|) (-948 (-563)))) (-15 -3389 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -3389 ((-640 |#1|) (-948 |#1|))) (-15 -3389 ((-640 |#1|) (-1165 (-563)))) (-15 -3389 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -3389 ((-640 |#1|) (-1165 |#1|))) (-15 -3377 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -3377 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -2172 (|#1| |#1| (-563))) (-15 -2185 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3914 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 91)) (-3231 (($ $) 92)) (-3211 (((-112) $) 94)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 111)) (-2802 (((-418 $) $) 112)) (-2185 (($ $) 75) (($ $ (-917)) 61) (($ (-407 (-563))) 60) (($ (-563)) 59)) (-2003 (((-112) $ $) 102)) (-2807 (((-563) $) 128)) (-2569 (($) 17 T CONST)) (-3377 (((-3 $ "failed") (-1165 $) (-917) (-858)) 69) (((-3 $ "failed") (-1165 $) (-917)) 68)) (-2130 (((-3 (-563) "failed") $) 88 (|has| (-407 (-563)) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 86 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) 83)) (-2057 (((-563) $) 87 (|has| (-407 (-563)) (-1034 (-563)))) (((-407 (-563)) $) 85 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 84)) (-2412 (($ $ (-858)) 58)) (-2400 (($ $ (-858)) 57)) (-3094 (($ $ $) 106)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 105)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 100)) (-2560 (((-112) $) 113)) (-3414 (((-112) $) 126)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 74)) (-3426 (((-112) $) 127)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 109)) (-3088 (($ $ $) 125)) (-1776 (($ $ $) 124)) (-2423 (((-3 (-1165 $) "failed") $) 70)) (-2446 (((-3 (-858) "failed") $) 72)) (-2435 (((-3 (-1165 $) "failed") $) 71)) (-3517 (($ (-640 $)) 98) (($ $ $) 97)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 114)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 99)) (-3551 (($ (-640 $)) 96) (($ $ $) 95)) (-2173 (((-418 $) $) 110)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 107)) (-3012 (((-3 $ "failed") $ $) 90)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 101)) (-1993 (((-767) $) 103)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 104)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 118) (($ $) 89) (($ (-407 (-563))) 82) (($ (-563)) 81) (($ (-407 (-563))) 78)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 93)) (-1402 (((-407 (-563)) $ $) 56)) (-3389 (((-640 $) (-1165 $)) 67) (((-640 $) (-1165 (-407 (-563)))) 66) (((-640 $) (-1165 (-563))) 65) (((-640 $) (-948 $)) 64) (((-640 $) (-948 (-407 (-563)))) 63) (((-640 $) (-948 (-563))) 62)) (-1462 (($ $) 129)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 122)) (-1754 (((-112) $ $) 121)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 123)) (-1743 (((-112) $ $) 120)) (-1836 (($ $ $) 119)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 115) (($ $ (-407 (-563))) 73)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 117) (($ $ (-407 (-563))) 116) (($ (-563) $) 80) (($ $ (-563)) 79) (($ (-407 (-563)) $) 77) (($ $ (-407 (-563))) 76)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3407 (((-637 (-546)) $) 54)) (-3403 (($ (-637 (-546))) 62)) (-3521 (((-546) $) 40 (|has| (-546) (-307)))) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL (|has| (-546) (-816)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #2="failed") $) 49) (((-3 (-1169) #2#) $) NIL (|has| (-546) (-1034 (-1169)))) (((-3 (-407 (-546)) #2#) $) 47 (|has| (-546) (-1034 (-546)))) (((-3 (-546) #2#) $) 49 (|has| (-546) (-1034 (-546))))) (-3564 (((-546) $) NIL) (((-1169) $) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) NIL (|has| (-546) (-1034 (-546)))) (((-546) $) NIL (|has| (-546) (-1034 (-546))))) (-2949 (($ $ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| (-546) (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3384 (($) NIL (|has| (-546) (-545)))) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3405 (((-637 (-546)) $) 60)) (-3594 (((-112) $) NIL (|has| (-546) (-816)))) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (|has| (-546) (-882 (-546)))) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (|has| (-546) (-882 (-378))))) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL)) (-3388 (((-546) $) 37)) (-3855 (((-3 $ "failed") $) NIL (|has| (-546) (-1144)))) (-3595 (((-112) $) NIL (|has| (-546) (-816)))) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-546) (-846)))) (-4373 (($ (-1 (-546) (-546)) $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL)) (-3856 (($) NIL (|has| (-546) (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3520 (($ $) NIL (|has| (-546) (-307))) (((-407 (-546)) $) 42)) (-3406 (((-1146 (-546)) $) 59)) (-3402 (($ (-637 (-546)) (-637 (-546))) 63)) (-3522 (((-546) $) 53 (|has| (-546) (-545)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| (-546) (-906)))) (-4147 (((-405 $) $) NIL)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-4182 (($ $ (-637 (-546)) (-637 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-546) (-546)) NIL (|has| (-546) (-309 (-546)))) (($ $ (-293 (-546))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-293 (-546)))) NIL (|has| (-546) (-309 (-546)))) (($ $ (-637 (-1169)) (-637 (-546))) NIL (|has| (-546) (-514 (-1169) (-546)))) (($ $ (-1169) (-546)) NIL (|has| (-546) (-514 (-1169) (-546))))) (-1739 (((-767) $) NIL)) (-4214 (($ $ (-546)) NIL (|has| (-546) (-286 (-546) (-546))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $) 11 (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-3385 (($ $) NIL)) (-3387 (((-546) $) 39)) (-3404 (((-637 (-546)) $) 61)) (-4385 (((-886 (-546)) $) NIL (|has| (-546) (-611 (-886 (-546))))) (((-886 (-378)) $) NIL (|has| (-546) (-611 (-886 (-378))))) (((-535) $) NIL (|has| (-546) (-611 (-535)))) (((-378) $) NIL (|has| (-546) (-1016))) (((-225) $) NIL (|has| (-546) (-1016)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-546) (-906))))) (-4361 (((-859) $) 77) (($ (-546)) 43) (($ $) NIL) (($ (-407 (-546))) 20) (($ (-546)) 43) (($ (-1169)) NIL (|has| (-546) (-1034 (-1169)))) (((-407 (-546)) $) 18)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-546) (-906))) (|has| (-546) (-145))))) (-3518 (((-767)) 9)) (-3523 (((-546) $) 51 (|has| (-546) (-545)))) (-2219 (((-112) $ $) NIL)) (-3794 (($ $) NIL (|has| (-546) (-816)))) (-3047 (($) 10 T CONST)) (-3053 (($) 12 T CONST)) (-3058 (($ $) NIL (|has| (-546) (-233))) (($ $ (-767)) NIL (|has| (-546) (-233))) (($ $ (-1169)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| (-546) (-896 (-1169)))) (($ $ (-1 (-546) (-546)) (-767)) NIL) (($ $ (-1 (-546) (-546))) NIL)) (-2951 (((-112) $ $) NIL (|has| (-546) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3444 (((-112) $ $) 14)) (-3073 (((-112) $ $) NIL (|has| (-546) (-846)))) (-3074 (((-112) $ $) 33 (|has| (-546) (-846)))) (-4364 (($ $ $) 29) (($ (-546) (-546)) 31)) (-4252 (($ $) 15) (($ $ $) 23)) (-4254 (($ $ $) 21)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 25) (($ $ $) 27) (($ $ (-407 (-546))) NIL) (($ (-407 (-546)) $) NIL) (($ (-546) $) 25) (($ $ (-546)) NIL)))
+(((-1000 |#1|) (-13 (-987 (-546)) (-610 (-407 (-546))) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -3407 ((-637 (-546)) $)) (-15 -3406 ((-1146 (-546)) $)) (-15 -3405 ((-637 (-546)) $)) (-15 -3404 ((-637 (-546)) $)) (-15 -3403 ($ (-637 (-546)))) (-15 -3402 ($ (-637 (-546)) (-637 (-546)))))) (-546)) (T -1000))
+((-3520 (*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3403 (*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))) (-3402 (*1 *1 *2 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(-13 (-987 (-546)) (-610 (-407 (-546))) (-10 -8 (-15 -3520 ((-407 (-546)) $)) (-15 -3407 ((-637 (-546)) $)) (-15 -3406 ((-1146 (-546)) $)) (-15 -3405 ((-637 (-546)) $)) (-15 -3404 ((-637 (-546)) $)) (-15 -3403 ($ (-637 (-546)))) (-15 -3402 ($ (-637 (-546)) (-637 (-546))))))
+((-3408 (((-51) (-407 (-546)) (-546)) 9)))
+(((-1001) (-10 -7 (-15 -3408 ((-51) (-407 (-546)) (-546))))) (T -1001))
+((-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-546))) (-5 *4 (-546)) (-5 *2 (-51)) (-5 *1 (-1001)))))
+(-10 -7 (-15 -3408 ((-51) (-407 (-546)) (-546))))
+((-3528 (((-546)) 13)) (-3411 (((-546)) 16)) (-3410 (((-1262) (-546)) 15)) (-3409 (((-546) (-546)) 17) (((-546)) 12)))
+(((-1002) (-10 -7 (-15 -3409 ((-546))) (-15 -3528 ((-546))) (-15 -3409 ((-546) (-546))) (-15 -3410 ((-1262) (-546))) (-15 -3411 ((-546))))) (T -1002))
+((-3411 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1002)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))) (-3528 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))) (-3409 (*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))))
+(-10 -7 (-15 -3409 ((-546))) (-15 -3528 ((-546))) (-15 -3409 ((-546) (-546))) (-15 -3410 ((-1262) (-546))) (-15 -3411 ((-546))))
+((-4148 (((-405 |#1|) |#1|) 41)) (-4147 (((-405 |#1|) |#1|) 40)))
+(((-1003 |#1|) (-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1|))) (-1232 (-407 (-546)))) (T -1003))
+((-4148 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1232 (-407 (-546)))))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1232 (-407 (-546)))))))
+(-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1|)))
+((-3414 (((-3 (-407 (-546)) "failed") |#1|) 15)) (-3413 (((-112) |#1|) 14)) (-3412 (((-407 (-546)) |#1|) 10)))
+(((-1004 |#1|) (-10 -7 (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|))) (-1034 (-407 (-546)))) (T -1004))
+((-3414 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-546)))))) (-3412 (*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
+(-10 -7 (-15 -3412 ((-407 (-546)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3414 ((-3 (-407 (-546)) "failed") |#1|)))
+((-4202 ((|#2| $ "value" |#2|) 12)) (-4214 ((|#2| $ "value") 10)) (-3418 (((-112) $ $) 18)))
+(((-1005 |#1| |#2|) (-10 -8 (-15 -4202 (|#2| |#1| "value" |#2|)) (-15 -3418 ((-112) |#1| |#1|)) (-15 -4214 (|#2| |#1| "value"))) (-1006 |#2|) (-1207)) (T -1005))
+NIL
+(-10 -8 (-15 -4202 (|#2| |#1| "value" |#2|)) (-15 -3418 ((-112) |#1| |#1|)) (-15 -4214 (|#2| |#1| "value")))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4139 (($) 7 T CONST)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ "value") 47)) (-3419 (((-546) $ $) 44)) (-4048 (((-112) $) 46)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1006 |#1|) (-140) (-1207)) (T -1006))
+((-3928 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-637 *1)) (-4 *1 (-1006 *3)))) (-3421 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-637 *1)) (-4 *1 (-1006 *3)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1207)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1207)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-637 *3)))) (-3419 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-546)))) (-3418 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3417 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3)) (-4 *3 (-1207)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1207)))) (-3415 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1207)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -3928 ((-637 $) $)) (-15 -3421 ((-637 $) $)) (-15 -3933 ((-112) $)) (-15 -3813 (|t#1| $)) (-15 -4214 (|t#1| $ "value")) (-15 -4048 ((-112) $)) (-15 -3420 ((-637 |t#1|) $)) (-15 -3419 ((-546) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3418 ((-112) $ $)) (-15 -3417 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -3416 ($ $ (-637 $))) (-15 -4202 (|t#1| $ "value" |t#1|)) (-15 -3415 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-3427 (($ $) 9) (($ $ (-915)) 43) (($ (-407 (-546))) 13) (($ (-546)) 15)) (-3591 (((-3 $ "failed") (-1163 $) (-915) (-859)) 23) (((-3 $ "failed") (-1163 $) (-915)) 28)) (-3401 (($ $ (-546)) 49)) (-3518 (((-767)) 17)) (-3592 (((-637 $) (-1163 $)) NIL) (((-637 $) (-1163 (-407 (-546)))) 54) (((-637 $) (-1163 (-546))) 59) (((-637 $) (-942 $)) 63) (((-637 $) (-942 (-407 (-546)))) 67) (((-637 $) (-942 (-546))) 71)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL) (($ $ (-407 (-546))) 47)))
+(((-1007 |#1|) (-10 -8 (-15 -3427 (|#1| (-546))) (-15 -3427 (|#1| (-407 (-546)))) (-15 -3427 (|#1| |#1| (-915))) (-15 -3592 ((-637 |#1|) (-942 (-546)))) (-15 -3592 ((-637 |#1|) (-942 (-407 (-546))))) (-15 -3592 ((-637 |#1|) (-942 |#1|))) (-15 -3592 ((-637 |#1|) (-1163 (-546)))) (-15 -3592 ((-637 |#1|) (-1163 (-407 (-546))))) (-15 -3592 ((-637 |#1|) (-1163 |#1|))) (-15 -3591 ((-3 |#1| "failed") (-1163 |#1|) (-915))) (-15 -3591 ((-3 |#1| "failed") (-1163 |#1|) (-915) (-859))) (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -3401 (|#1| |#1| (-546))) (-15 -3427 (|#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -3518 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915)))) (-1008)) (T -1007))
+((-3518 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))))
+(-10 -8 (-15 -3427 (|#1| (-546))) (-15 -3427 (|#1| (-407 (-546)))) (-15 -3427 (|#1| |#1| (-915))) (-15 -3592 ((-637 |#1|) (-942 (-546)))) (-15 -3592 ((-637 |#1|) (-942 (-407 (-546))))) (-15 -3592 ((-637 |#1|) (-942 |#1|))) (-15 -3592 ((-637 |#1|) (-1163 (-546)))) (-15 -3592 ((-637 |#1|) (-1163 (-407 (-546))))) (-15 -3592 ((-637 |#1|) (-1163 |#1|))) (-15 -3591 ((-3 |#1| "failed") (-1163 |#1|) (-915))) (-15 -3591 ((-3 |#1| "failed") (-1163 |#1|) (-915) (-859))) (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -3401 (|#1| |#1| (-546))) (-15 -3427 (|#1| |#1|)) (-15 ** (|#1| |#1| (-546))) (-15 -3518 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 91)) (-2220 (($ $) 92)) (-2218 (((-112) $) 94)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 111)) (-4384 (((-405 $) $) 112)) (-3427 (($ $) 75) (($ $ (-915)) 61) (($ (-407 (-546))) 60) (($ (-546)) 59)) (-1740 (((-112) $ $) 102)) (-4038 (((-546) $) 128)) (-4139 (($) 17 T CONST)) (-3591 (((-3 $ "failed") (-1163 $) (-915) (-859)) 69) (((-3 $ "failed") (-1163 $) (-915)) 68)) (-3565 (((-3 (-546) #1="failed") $) 88 (|has| (-407 (-546)) (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 86 (|has| (-407 (-546)) (-1034 (-407 (-546))))) (((-3 (-407 (-546)) #1#) $) 83)) (-3564 (((-546) $) 87 (|has| (-407 (-546)) (-1034 (-546)))) (((-407 (-546)) $) 85 (|has| (-407 (-546)) (-1034 (-407 (-546))))) (((-407 (-546)) $) 84)) (-3423 (($ $ (-859)) 58)) (-3422 (($ $ (-859)) 57)) (-2949 (($ $ $) 106)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 105)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 100)) (-4138 (((-112) $) 113)) (-3594 (((-112) $) 126)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 74)) (-3595 (((-112) $) 127)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 109)) (-2919 (($ $ $) 125)) (-3249 (($ $ $) 124)) (-3424 (((-3 (-1163 $) "failed") $) 70)) (-3426 (((-3 (-859) "failed") $) 72)) (-3425 (((-3 (-1163 $) "failed") $) 71)) (-2048 (($ (-637 $)) 98) (($ $ $) 97)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 114)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 99)) (-3552 (($ (-637 $)) 96) (($ $ $) 95)) (-4147 (((-405 $) $) 110)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 107)) (-3872 (((-3 $ "failed") $ $) 90)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 101)) (-1739 (((-767) $) 103)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 104)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 118) (($ $) 89) (($ (-407 (-546))) 82) (($ (-546)) 81) (($ (-407 (-546))) 78)) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 93)) (-4184 (((-407 (-546)) $ $) 56)) (-3592 (((-637 $) (-1163 $)) 67) (((-637 $) (-1163 (-407 (-546)))) 66) (((-637 $) (-1163 (-546))) 65) (((-637 $) (-942 $)) 64) (((-637 $) (-942 (-407 (-546)))) 63) (((-637 $) (-942 (-546))) 62)) (-3794 (($ $) 129)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 122)) (-2952 (((-112) $ $) 121)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 123)) (-3074 (((-112) $ $) 120)) (-4364 (($ $ $) 119)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 115) (($ $ (-407 (-546))) 73)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ (-407 (-546)) $) 117) (($ $ (-407 (-546))) 116) (($ (-546) $) 80) (($ $ (-546)) 79) (($ (-407 (-546)) $) 77) (($ $ (-407 (-546))) 76)))
(((-1008) (-140)) (T -1008))
-((-2185 (*1 *1 *1) (-4 *1 (-1008))) (-2446 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-2435 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-2423 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-3377 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858)) (-4 *1 (-1008)))) (-3377 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2185 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008)))) (-2412 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-2400 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-1402 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563))))))
-(-13 (-147) (-844) (-172) (-363) (-411 (-407 (-563))) (-38 (-563)) (-38 (-407 (-563))) (-998) (-10 -8 (-15 -2446 ((-3 (-858) "failed") $)) (-15 -2435 ((-3 (-1165 $) "failed") $)) (-15 -2423 ((-3 (-1165 $) "failed") $)) (-15 -3377 ((-3 $ "failed") (-1165 $) (-917) (-858))) (-15 -3377 ((-3 $ "failed") (-1165 $) (-917))) (-15 -3389 ((-640 $) (-1165 $))) (-15 -3389 ((-640 $) (-1165 (-407 (-563))))) (-15 -3389 ((-640 $) (-1165 (-563)))) (-15 -3389 ((-640 $) (-948 $))) (-15 -3389 ((-640 $) (-948 (-407 (-563))))) (-15 -3389 ((-640 $) (-948 (-563)))) (-15 -2185 ($ $ (-917))) (-15 -2185 ($ $)) (-15 -2185 ($ (-407 (-563)))) (-15 -2185 ($ (-563))) (-15 -2412 ($ $ (-858))) (-15 -2400 ($ $ (-858))) (-15 -1402 ((-407 (-563)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 #1=(-563)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-563))) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) |has| (-407 (-563)) (-1034 (-563))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-2456 (((-2 (|:| |ans| |#2|) (|:| -1700 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
-(((-1009 |#1| |#2|) (-10 -7 (-15 -2456 ((-2 (|:| |ans| |#2|) (|:| -1700 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1009))
-((-2456 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1700 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4)))))
-(-10 -7 (-15 -2456 ((-2 (|:| |ans| |#2|) (|:| -1700 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2467 (((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -2467 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1010))
-((-2467 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4)))))
-(-10 -7 (-15 -2467 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -2840 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2501 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)) 31)) (-2479 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 59)) (-2491 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 64)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -2479 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2491 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2501 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1011))
-((-2501 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-2491 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-2479 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -2287 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -2479 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2491 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2501 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|))))
-((-2513 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-2526 (((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 33)))
-(((-1012 |#1| |#2|) (-10 -7 (-15 -2513 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2526 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1012))
-((-2526 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-2513 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2287 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -2513 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2287 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2526 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
-((-2538 (((-1 |#1|) (-640 (-2 (|:| -2618 |#1|) (|:| -4329 (-563))))) 37)) (-1853 (((-1 |#1|) (-1095 |#1|)) 45)) (-2548 (((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)) 34)))
-(((-1013 |#1|) (-10 -7 (-15 -1853 ((-1 |#1|) (-1095 |#1|))) (-15 -2538 ((-1 |#1|) (-640 (-2 (|:| -2618 |#1|) (|:| -4329 (-563)))))) (-15 -2548 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)))) (-1093)) (T -1013))
-((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563)) (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2618 *4) (|:| -4329 (-563))))) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
-(-10 -7 (-15 -1853 ((-1 |#1|) (-1095 |#1|))) (-15 -2538 ((-1 |#1|) (-640 (-2 (|:| -2618 |#1|) (|:| -4329 (-563)))))) (-15 -2548 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563))))
-((-1775 (((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1775 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014))
-((-1775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -1775 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1677 (((-112) $ $) NIL)) (-2559 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 11)) (-1718 (((-112) $ $) NIL)))
-(((-1015) (-13 (-1076) (-10 -8 (-15 -2559 ((-1128) $)) (-15 -3363 ((-1128) $))))) (T -1015))
-((-2559 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))))
-(-13 (-1076) (-10 -8 (-15 -2559 ((-1128) $)) (-15 -3363 ((-1128) $))))
-((-3998 (((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) 31) (((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563))) 28)) (-2590 (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563))) 33) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563))) 29) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) 32) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|) 27)) (-2579 (((-640 (-407 (-563))) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) 19)) (-2568 (((-407 (-563)) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) 16)))
-(((-1016 |#1|) (-10 -7 (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|)) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2568 ((-407 (-563)) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2579 ((-640 (-407 (-563))) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))))) (-1233 (-563))) (T -1016))
-((-2579 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-3998 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-3998 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1685 *5) (|:| -1700 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1685 *5) (|:| -1700 *5))))) (-2590 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563))))) (-2590 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))))
-(-10 -7 (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|)) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2568 ((-407 (-563)) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2579 ((-640 (-407 (-563))) (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))))
-((-3998 (((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) 35) (((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563))) 32)) (-2590 (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563))) 30) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563))) 26) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) 28) (((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|) 24)))
-(((-1017 |#1|) (-10 -7 (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|)) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))) (-1233 (-407 (-563)))) (T -1017))
-((-3998 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-3998 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1685 *5) (|:| -1700 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -1685 *5) (|:| -1700 *5))))) (-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1685 *4) (|:| -1700 *4)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))) (-5 *4 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))))
-(-10 -7 (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1|)) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -2590 ((-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-407 (-563)))) (-15 -3998 ((-3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) "failed") |#1| (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))) (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))))
-((-2219 (((-225) $) 6) (((-379) $) 9)))
-(((-1018) (-140)) (T -1018))
-NIL
-(-13 (-611 (-225)) (-611 (-379)))
-(((-611 (-225)) . T) ((-611 (-379)) . T))
-((-3510 (((-640 (-379)) (-948 (-563)) (-379)) 28) (((-640 (-379)) (-948 (-407 (-563))) (-379)) 27)) (-2782 (((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379)) 37)))
-(((-1019) (-10 -7 (-15 -3510 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -3510 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2782 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379))))) (T -1019))
-((-2782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))))
-(-10 -7 (-15 -3510 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -3510 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2782 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 70)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2185 (($ $) NIL) (($ $ (-917)) NIL) (($ (-407 (-563))) NIL) (($ (-563)) NIL)) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) 65)) (-2569 (($) NIL T CONST)) (-3377 (((-3 $ "failed") (-1165 $) (-917) (-858)) NIL) (((-3 $ "failed") (-1165 $) (-917)) 50)) (-2130 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-563) "failed") $) NIL (-4034 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-2057 (((-407 (-563)) $) 15 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 15) ((|#1| $) 108) (((-563) $) NIL (-4034 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-2412 (($ $ (-858)) 42)) (-2400 (($ $ (-858)) 43)) (-3094 (($ $ $) NIL)) (-3365 (((-407 (-563)) $ $) 19)) (-3951 (((-3 $ "failed") $) 83)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-3414 (((-112) $) 61)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL)) (-3426 (((-112) $) 64)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2423 (((-3 (-1165 $) "failed") $) 78)) (-2446 (((-3 (-858) "failed") $) 77)) (-2435 (((-3 (-1165 $) "failed") $) 75)) (-2599 (((-3 (-1055 $ (-1165 $)) "failed") $) 73)) (-3517 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 84)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-1692 (((-858) $) 82) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) 58) (($ (-407 (-563))) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 110)) (-3914 (((-767)) NIL)) (-3223 (((-112) $ $) NIL)) (-1402 (((-407 (-563)) $ $) 25)) (-3389 (((-640 $) (-1165 $)) 56) (((-640 $) (-1165 (-407 (-563)))) NIL) (((-640 $) (-1165 (-563))) NIL) (((-640 $) (-948 $)) NIL) (((-640 $) (-948 (-407 (-563)))) NIL) (((-640 $) (-948 (-563))) NIL)) (-2608 (($ (-1055 $ (-1165 $)) (-858)) 41)) (-1462 (($ $) 20)) (-2239 (($) 29 T CONST)) (-2253 (($) 35 T CONST)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 71)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 22)) (-1836 (($ $ $) 33)) (-1825 (($ $) 34) (($ $ $) 69)) (-1813 (($ $ $) 103)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 91) (($ $ $) 96) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ (-563) $) 91) (($ $ (-563)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-1020 |#1|) (-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -2608 ($ (-1055 $ (-1165 $)) (-858))) (-15 -2599 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -3365 ((-407 (-563)) $ $)))) (-13 (-844) (-363) (-1018))) (T -1020))
-((-2608 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))) (-2599 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))) (-3365 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))))
-(-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -2608 ($ (-1055 $ (-1165 $)) (-858))) (-15 -2599 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -3365 ((-407 (-563)) $ $))))
-((-2617 (((-2 (|:| -1420 |#2|) (|:| -2516 (-640 |#1|))) |#2| (-640 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-1021 |#1| |#2|) (-10 -7 (-15 -2617 (|#2| |#2| |#1|)) (-15 -2617 ((-2 (|:| -1420 |#2|) (|:| -2516 (-640 |#1|))) |#2| (-640 |#1|)))) (-363) (-651 |#1|)) (T -1021))
-((-2617 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -2516 (-640 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5)))) (-2617 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3)))))
-(-10 -7 (-15 -2617 (|#2| |#2| |#1|)) (-15 -2617 ((-2 (|:| -1420 |#2|) (|:| -2516 (-640 |#1|))) |#2| (-640 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1379 ((|#1| $ |#1|) 14)) (-1849 ((|#1| $ |#1|) 12)) (-1400 (($ |#1|) 10)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2308 ((|#1| $) 11)) (-1389 ((|#1| $) 13)) (-1692 (((-858) $) 21 (|has| |#1| (-1093)))) (-1718 (((-112) $ $) 9)))
-(((-1022 |#1|) (-13 (-1208) (-10 -8 (-15 -1400 ($ |#1|)) (-15 -2308 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -1389 (|#1| $)) (-15 -1379 (|#1| $ |#1|)) (-15 -1718 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1022))
-((-1400 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1389 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1379 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1718 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208)))))
-(-13 (-1208) (-10 -8 (-15 -1400 ($ |#1|)) (-15 -2308 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -1389 (|#1| $)) (-15 -1379 (|#1| $ |#1|)) (-15 -1718 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) NIL)) (-2119 (((-640 $) (-640 |#4|)) 105) (((-640 $) (-640 |#4|) (-112)) 106) (((-640 $) (-640 |#4|) (-112) (-112)) 104) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2605 (((-640 |#3|) $) NIL)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2189 ((|#4| |#4| $) NIL)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 99)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 54)) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) 27 (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3418 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2057 (($ (-640 |#4|)) NIL)) (-3793 (((-3 $ "failed") $) 40)) (-2151 ((|#4| |#4| $) 57)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2131 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) NIL)) (-3536 (((-112) |#4| $) NIL)) (-3514 (((-112) |#4| $) NIL)) (-3548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1936 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 119)) (-2658 (((-640 |#4|) $) 17 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4347 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 22)) (-3568 (((-640 |#3|) $) NIL)) (-3553 (((-112) |#3| $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 97)) (-1481 (((-3 |#4| "failed") $) 38)) (-3482 (((-640 $) |#4| $) 80)) (-3503 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3834 (((-640 $) |#4| $) 102) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 103) (((-640 $) |#4| (-640 $)) NIL)) (-1947 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 114)) (-1956 (($ |#4| $) 70) (($ (-640 |#4|) $) 71) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2297 (((-640 |#4|) $) NIL)) (-2225 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-2319 (((-112) $ $) NIL)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2176 ((|#4| |#4| $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-3 |#4| "failed") $) 36)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2089 (((-3 $ "failed") $ |#4|) 48)) (-1751 (($ $ |#4|) NIL) (((-640 $) |#4| $) 82) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 77)) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 16)) (-3445 (($) 14)) (-3871 (((-767) $) NIL)) (-1708 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) 13)) (-2219 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 21)) (-3519 (($ $ |#3|) 43)) (-3542 (($ $ |#3|) 44)) (-2141 (($ $) NIL)) (-3529 (($ $ |#3|) NIL)) (-1692 (((-858) $) 32) (((-640 |#4|) $) 41)) (-3255 (((-767) $) NIL (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-3450 (((-640 $) |#4| $) 79) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) NIL)) (-3525 (((-112) |#4| $) NIL)) (-3772 (((-112) |#3| $) 53)) (-1718 (((-112) $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1956 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -1947 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -1936 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023))
-((-1956 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-2119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-2119 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1947 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1936 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8)))))
-(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1956 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -1947 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -1936 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)))))
-((-1525 (((-640 (-684 |#1|)) (-640 (-684 |#1|))) 58) (((-684 |#1|) (-684 |#1|)) 57) (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 56) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 53)) (-1511 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 52) (((-684 |#1|) (-684 |#1|) (-917)) 51)) (-1537 (((-640 (-684 (-563))) (-640 (-640 (-563)))) 68) (((-640 (-684 (-563))) (-640 (-901 (-563))) (-563)) 67) (((-684 (-563)) (-640 (-563))) 64) (((-684 (-563)) (-901 (-563)) (-563)) 63)) (-1500 (((-684 (-948 |#1|)) (-767)) 81)) (-1488 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 37 (|has| |#1| (-6 (-4410 "*")))) (((-684 |#1|) (-684 |#1|) (-917)) 35 (|has| |#1| (-6 (-4410 "*"))))))
-(((-1024 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -1488 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -1488 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -1500 ((-684 (-948 |#1|)) (-767))) (-15 -1511 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -1511 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -1525 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1525 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1525 ((-684 |#1|) (-684 |#1|))) (-15 -1525 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1537 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -1537 ((-684 (-563)) (-640 (-563)))) (-15 -1537 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -1537 ((-640 (-684 (-563))) (-640 (-640 (-563)))))) (-1045)) (T -1024))
-((-1537 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563)) (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4)) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-1525 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-1525 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-1511 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-1511 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1488 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-1488 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -1488 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -1488 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -1500 ((-684 (-948 |#1|)) (-767))) (-15 -1511 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -1511 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -1525 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1525 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1525 ((-684 |#1|) (-684 |#1|))) (-15 -1525 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1537 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -1537 ((-684 (-563)) (-640 (-563)))) (-15 -1537 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -1537 ((-640 (-684 (-563))) (-640 (-640 (-563))))))
-((-1588 (((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)) 49 (|has| |#1| (-307)))) (-1792 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))) 75 (|has| |#1| (-363))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|)) 78 (|has| |#1| (-363)))) (-1632 (((-1257 |#1|) (-640 (-1257 |#1|)) (-563)) 92 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-1621 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917)) 84 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112)) 82 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|))) 81 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563)) 80 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-1610 (((-112) (-640 (-684 |#1|))) 70 (|has| |#1| (-363))) (((-112) (-640 (-684 |#1|)) (-563)) 72 (|has| |#1| (-363)))) (-1575 (((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|)) 47 (|has| |#1| (-307)))) (-1563 (((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|)) 33)) (-1549 (((-684 |#1|) (-1257 (-1257 |#1|))) 30)) (-1599 (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563)) 64 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 63 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563)) 68 (|has| |#1| (-363)))))
-(((-1025 |#1|) (-10 -7 (-15 -1549 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -1563 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -1575 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -1588 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -1610 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -1610 ((-112) (-640 (-684 |#1|)))) (-15 -1792 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -1792 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -1632 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1025))
-((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-1621 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4)) (-5 *3 (-640 (-684 *4))))) (-1621 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6)) (-5 *3 (-640 (-684 *6))))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *4)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) (-1599 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-1599 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-1599 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563)) (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)))))
-(-10 -7 (-15 -1549 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -1563 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -1575 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -1588 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1599 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -1610 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -1610 ((-112) (-640 (-684 |#1|)))) (-15 -1792 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -1792 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -1621 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -1632 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|))
-((-4110 ((|#1| (-917) |#1|) 9)))
-(((-1026 |#1|) (-10 -7 (-15 -4110 (|#1| (-917) |#1|))) (-13 (-1093) (-10 -8 (-15 -1813 ($ $ $))))) (T -1026))
-((-4110 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -1813 ($ $ $))))))))
-(-10 -7 (-15 -4110 (|#1| (-917) |#1|)))
-((-1411 (((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563))))) 59)) (-1423 (((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563))))) 48)) (-1434 (((-640 (-316 (-563))) (-684 (-407 (-948 (-563))))) 41)) (-1477 (((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563))))) 68)) (-1454 (((-684 (-316 (-563))) (-684 (-316 (-563)))) 34)) (-1467 (((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563))))) 62)) (-1445 (((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563))))) 66)))
-(((-1027) (-10 -7 (-15 -1411 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -1423 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -1434 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -1445 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -1454 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -1467 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -1477 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563)))))))) (T -1027))
-((-1477 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-1454 (*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-1445 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563)))) (-5 *1 (-1027)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *4 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)) (-5 *3 (-316 (-563))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563)))))))) (-5 *1 (-1027)))))
-(-10 -7 (-15 -1411 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -1423 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -1434 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -1445 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -1454 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -1467 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -1477 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563)))))))
-((-1646 ((|#1| |#1| (-917)) 9)))
-(((-1028 |#1|) (-10 -7 (-15 -1646 (|#1| |#1| (-917)))) (-13 (-1093) (-10 -8 (-15 * ($ $ $))))) (T -1028))
-((-1646 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1646 (|#1| |#1| (-917))))
-((-1692 ((|#1| (-312)) 11) (((-1262) |#1|) 9)))
-(((-1029 |#1|) (-10 -7 (-15 -1692 ((-1262) |#1|)) (-15 -1692 (|#1| (-312)))) (-1208)) (T -1029))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208)))) (-1692 (*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208)))))
-(-10 -7 (-15 -1692 ((-1262) |#1|)) (-15 -1692 (|#1| (-312))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2444 (($ |#4|) 25)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-2433 ((|#4| $) 27)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 46) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3914 (((-767)) 43)) (-2239 (($) 21 T CONST)) (-2253 (($) 23 T CONST)) (-1718 (((-112) $ $) 40)) (-1825 (($ $) 31) (($ $ $) NIL)) (-1813 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2444 ($ |#4|)) (-15 -1692 ($ |#4|)) (-15 -2433 (|#4| $)))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|) (-640 |#4|)) (T -1030))
-((-2444 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-1692 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2)))))
-(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2444 ($ |#4|)) (-15 -1692 ($ |#4|)) (-15 -2433 (|#4| $))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-2208 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1669 (((-112) (-112)) 39)) (-1658 (((-112) (-112)) 38)) (-1849 (((-52) $ (-1169) (-52)) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 (-52) "failed") (-1169) $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1691 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-4356 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4409)))) (-4293 (((-52) $ (-1169)) NIL)) (-2658 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-1169) $) NIL (|has| (-1169) (-846)))) (-3523 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2251 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1304 (((-640 (-1169)) $) 34)) (-2305 (((-112) (-1169) $) NIL)) (-2627 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL)) (-3867 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL)) (-2272 (((-640 (-1169)) $) NIL)) (-2282 (((-112) (-1169) $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-3782 (((-52) $) NIL (|has| (-1169) (-846)))) (-1971 (((-3 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL)) (-2221 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2295 (((-640 (-52)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 (((-52) $ (-1169)) 35) (((-52) $ (-1169) (-52)) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-1692 (((-858) $) 37 (-4034 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1031) (-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -1669 ((-112) (-112))) (-15 -1658 ((-112) (-112))) (-6 -4408)))) (T -1031))
-((-1669 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -1669 ((-112) (-112))) (-15 -1658 ((-112) (-112))) (-6 -4408)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 9)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1032) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $))))) (T -1032))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $))))
-((-2057 ((|#2| $) 10)))
-(((-1033 |#1| |#2|) (-10 -8 (-15 -2057 (|#2| |#1|))) (-1034 |#2|) (-1208)) (T -1033))
-NIL
-(-10 -8 (-15 -2057 (|#2| |#1|)))
-((-2130 (((-3 |#1| "failed") $) 9)) (-2057 ((|#1| $) 8)) (-1692 (($ |#1|) 6)))
-(((-1034 |#1|) (-140) (-1208)) (T -1034))
-((-2130 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))))
-(-13 (-613 |t#1|) (-10 -8 (-15 -2130 ((-3 |t#1| "failed") $)) (-15 -2057 (|t#1| $))))
+((-3427 (*1 *1 *1) (-4 *1 (-1008))) (-3426 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-859)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163 *1)) (-4 *1 (-1008)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163 *1)) (-4 *1 (-1008)))) (-3591 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1163 *1)) (-5 *3 (-915)) (-5 *4 (-859)) (-4 *1 (-1008)))) (-3591 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1163 *1)) (-5 *3 (-915)) (-4 *1 (-1008)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-1008)) (-5 *2 (-637 *1)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1163 (-407 (-546)))) (-5 *2 (-637 *1)) (-4 *1 (-1008)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1163 (-546))) (-5 *2 (-637 *1)) (-4 *1 (-1008)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1008)) (-5 *2 (-637 *1)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *2 (-637 *1)) (-4 *1 (-1008)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-942 (-546))) (-5 *2 (-637 *1)) (-4 *1 (-1008)))) (-3427 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-915)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-4 *1 (-1008)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1008)))) (-3423 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-859)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-859)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-546))))))
+(-13 (-147) (-844) (-172) (-363) (-412 (-407 (-546))) (-38 (-546)) (-38 (-407 (-546))) (-998) (-10 -8 (-15 -3426 ((-3 (-859) "failed") $)) (-15 -3425 ((-3 (-1163 $) "failed") $)) (-15 -3424 ((-3 (-1163 $) "failed") $)) (-15 -3591 ((-3 $ "failed") (-1163 $) (-915) (-859))) (-15 -3591 ((-3 $ "failed") (-1163 $) (-915))) (-15 -3592 ((-637 $) (-1163 $))) (-15 -3592 ((-637 $) (-1163 (-407 (-546))))) (-15 -3592 ((-637 $) (-1163 (-546)))) (-15 -3592 ((-637 $) (-942 $))) (-15 -3592 ((-637 $) (-942 (-407 (-546))))) (-15 -3592 ((-637 $) (-942 (-546)))) (-15 -3427 ($ $ (-915))) (-15 -3427 ($ $)) (-15 -3427 ($ (-407 (-546)))) (-15 -3427 ($ (-546))) (-15 -3423 ($ $ (-859))) (-15 -3422 ($ $ (-859))) (-15 -4184 ((-407 (-546)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 #2=(-546)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-412 (-407 (-546))) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 #2#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 #2#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-844) . T) ((-846) . T) ((-917) . T) ((-998) . T) ((-1034 (-407 (-546))) . T) ((-1034 (-546)) |has| (-407 (-546)) (-1034 (-546))) ((-1051 #1#) . T) ((-1051 #2#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-3428 (((-2 (|:| |ans| |#2|) (|:| -3529 |#2|) (|:| |sol?| (-112))) (-546) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
+(((-1009 |#1| |#2|) (-10 -7 (-15 -3428 ((-2 (|:| |ans| |#2|) (|:| -3529 |#2|) (|:| |sol?| (-112))) (-546) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-27) (-421 |#1|))) (T -1009))
+((-3428 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-637 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-421 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-546)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3529 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4)))))
+(-10 -7 (-15 -3428 ((-2 (|:| |ans| |#2|) (|:| -3529 |#2|) (|:| |sol?| (-112))) (-546) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3429 (((-3 (-637 |#2|) "failed") (-546) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -3429 ((-3 (-637 |#2|) "failed") (-546) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))) (-13 (-1193) (-27) (-421 |#1|))) (T -1010))
+((-3429 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-637 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-421 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-546)) (-5 *2 (-637 *4)) (-5 *1 (-1010 *8 *4)))))
+(-10 -7 (-15 -3429 ((-3 (-637 |#2|) "failed") (-546) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-637 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-637 |#2|)) (-1 (-3 (-2 (|:| -2297 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3432 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3674 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-546)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-546) (-1 |#2| |#2|)) 31)) (-3430 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 59)) (-3431 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 64)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -3430 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3431 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3432 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3674 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-546)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-546) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-546))) (-1232 |#1|)) (T -1011))
+((-3432 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-546)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3674 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-3431 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-3430 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -3486 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -3430 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3431 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3432 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3674 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-546)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-546) (-1 |#2| |#2|))))
+((-3433 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3434 (((-3 (-637 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 33)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -3433 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-3 (-637 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-546))) (-1232 |#1|)) (T -1012))
+((-3434 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4)) (-5 *2 (-637 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-3433 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-546)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -3486 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -3433 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3486 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-3 (-637 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
+((-3435 (((-1 |#1|) (-637 (-2 (|:| -3813 |#1|) (|:| -1612 (-546))))) 37)) (-3493 (((-1 |#1|) (-1090 |#1|)) 45)) (-3436 (((-1 |#1|) (-1256 |#1|) (-1256 (-546)) (-546)) 34)))
+(((-1013 |#1|) (-10 -7 (-15 -3493 ((-1 |#1|) (-1090 |#1|))) (-15 -3435 ((-1 |#1|) (-637 (-2 (|:| -3813 |#1|) (|:| -1612 (-546)))))) (-15 -3436 ((-1 |#1|) (-1256 |#1|) (-1256 (-546)) (-546)))) (-1094)) (T -1013))
+((-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-546))) (-5 *5 (-546)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -3813 *4) (|:| -1612 (-546))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1090 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
+(-10 -7 (-15 -3493 ((-1 |#1|) (-1090 |#1|))) (-15 -3435 ((-1 |#1|) (-637 (-2 (|:| -3813 |#1|) (|:| -1612 (-546)))))) (-15 -3436 ((-1 |#1|) (-1256 |#1|) (-1256 (-546)) (-546))))
+((-4186 (((-767) (-333 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4186 ((-767) (-333 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1232 |#1|) (-1232 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014))
+((-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-333 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4186 ((-767) (-333 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2953 (((-112) $ $) NIL)) (-3437 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 11)) (-3444 (((-112) $ $) NIL)))
+(((-1015) (-13 (-1076) (-10 -8 (-15 -3437 ((-1128) $)) (-15 -3641 ((-1128) $))))) (T -1015))
+((-3437 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))))
+(-13 (-1076) (-10 -8 (-15 -3437 ((-1128) $)) (-15 -3641 ((-1128) $))))
+((-4385 (((-225) $) 6) (((-378) $) 9)))
+(((-1016) (-140)) (T -1016))
+NIL
+(-13 (-611 (-225)) (-611 (-378)))
+(((-611 (-225)) . T) ((-611 (-378)) . T))
+((-3526 (((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) 31) (((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546))) 28)) (-3440 (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546))) 33) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546))) 29) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) 32) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|) 27)) (-3439 (((-637 (-407 (-546))) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) 19)) (-3438 (((-407 (-546)) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) 16)))
+(((-1017 |#1|) (-10 -7 (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|)) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546)))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3438 ((-407 (-546)) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3439 ((-637 (-407 (-546))) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))))) (-1232 (-546))) (T -1017))
+((-3439 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *2 (-637 (-407 (-546)))) (-5 *1 (-1017 *4)) (-4 *4 (-1232 (-546))))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) (-5 *2 (-407 (-546))) (-5 *1 (-1017 *4)) (-4 *4 (-1232 (-546))))) (-3526 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))))) (-3526 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) (-5 *4 (-407 (-546))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))))) (-3440 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *5) (|:| -3529 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))) (-5 *4 (-2 (|:| -3530 *5) (|:| -3529 *5))))) (-3440 (*1 *2 *3 *4) (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))) (-5 *4 (-407 (-546))))) (-3440 (*1 *2 *3 *4) (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))) (-5 *4 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))))))
+(-10 -7 (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|)) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546)))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3438 ((-407 (-546)) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3439 ((-637 (-407 (-546))) (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))))
+((-3526 (((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) 35) (((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546))) 32)) (-3440 (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546))) 30) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546))) 26) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) 28) (((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|) 24)))
+(((-1018 |#1|) (-10 -7 (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|)) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546)))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))) (-1232 (-407 (-546)))) (T -1018))
+((-3526 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546)))))) (-3526 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) (-5 *4 (-407 (-546))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 *4)))) (-3440 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *5) (|:| -3529 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 *5)) (-5 *4 (-2 (|:| -3530 *5) (|:| -3529 *5))))) (-3440 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *4) (|:| -3529 *4)))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 *4)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546)))) (-5 *4 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546)))))))
+(-10 -7 (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1|)) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-407 (-546)))) (-15 -3440 ((-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-407 (-546)))) (-15 -3526 ((-3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) "failed") |#1| (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))) (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))))
+((-3987 (((-637 (-378)) (-942 (-546)) (-378)) 28) (((-637 (-378)) (-942 (-407 (-546))) (-378)) 27)) (-4382 (((-637 (-637 (-378))) (-637 (-942 (-546))) (-637 (-1169)) (-378)) 37)))
+(((-1019) (-10 -7 (-15 -3987 ((-637 (-378)) (-942 (-407 (-546))) (-378))) (-15 -3987 ((-637 (-378)) (-942 (-546)) (-378))) (-15 -4382 ((-637 (-637 (-378))) (-637 (-942 (-546))) (-637 (-1169)) (-378))))) (T -1019))
+((-4382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-637 (-1169))) (-5 *2 (-637 (-637 (-378)))) (-5 *1 (-1019)) (-5 *5 (-378)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-546))) (-5 *2 (-637 (-378))) (-5 *1 (-1019)) (-5 *4 (-378)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *2 (-637 (-378))) (-5 *1 (-1019)) (-5 *4 (-378)))))
+(-10 -7 (-15 -3987 ((-637 (-378)) (-942 (-407 (-546))) (-378))) (-15 -3987 ((-637 (-378)) (-942 (-546)) (-378))) (-15 -4382 ((-637 (-637 (-378))) (-637 (-942 (-546))) (-637 (-1169)) (-378))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 70)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-3427 (($ $) NIL) (($ $ (-915)) NIL) (($ (-407 (-546))) NIL) (($ (-546)) NIL)) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) 65)) (-4139 (($) NIL T CONST)) (-3591 (((-3 $ #1="failed") (-1163 $) (-915) (-859)) NIL) (((-3 $ #1#) (-1163 $) (-915)) 50)) (-3565 (((-3 (-407 (-546)) #2="failed") $) NIL (|has| (-407 (-546)) (-1034 (-407 (-546))))) (((-3 (-407 (-546)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-546) #2#) $) NIL (-3943 (|has| (-407 (-546)) (-1034 (-546))) (|has| |#1| (-1034 (-546)))))) (-3564 (((-407 (-546)) $) 15 (|has| (-407 (-546)) (-1034 (-407 (-546))))) (((-407 (-546)) $) 15) ((|#1| $) 108) (((-546) $) NIL (-3943 (|has| (-407 (-546)) (-1034 (-546))) (|has| |#1| (-1034 (-546)))))) (-3423 (($ $ (-859)) 42)) (-3422 (($ $ (-859)) 43)) (-2949 (($ $ $) NIL)) (-3590 (((-407 (-546)) $ $) 19)) (-3873 (((-3 $ "failed") $) 83)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-3594 (((-112) $) 61)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL)) (-3595 (((-112) $) 64)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3424 (((-3 (-1163 $) #1#) $) 78)) (-3426 (((-3 (-859) #1#) $) 77)) (-3425 (((-3 (-1163 $) #1#) $) 75)) (-3441 (((-3 (-1055 $ (-1163 $)) "failed") $) 73)) (-2048 (($ (-637 $)) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 84)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ (-637 $)) NIL) (($ $ $) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4361 (((-859) $) 82) (($ (-546)) NIL) (($ (-407 (-546))) NIL) (($ $) 58) (($ (-407 (-546))) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL) (($ |#1|) 110)) (-3518 (((-767)) NIL)) (-2219 (((-112) $ $) NIL)) (-4184 (((-407 (-546)) $ $) 25)) (-3592 (((-637 $) (-1163 $)) 56) (((-637 $) (-1163 (-407 (-546)))) NIL) (((-637 $) (-1163 (-546))) NIL) (((-637 $) (-942 $)) NIL) (((-637 $) (-942 (-407 (-546)))) NIL) (((-637 $) (-942 (-546))) NIL)) (-3442 (($ (-1055 $ (-1163 $)) (-859)) 41)) (-3794 (($ $) 20)) (-3047 (($) 29 T CONST)) (-3053 (($) 35 T CONST)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 71)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 22)) (-4364 (($ $ $) 33)) (-4252 (($ $) 34) (($ $ $) 69)) (-4254 (($ $ $) 103)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL) (($ $ (-407 (-546))) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 91) (($ $ $) 96) (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL) (($ (-546) $) 91) (($ $ (-546)) NIL) (($ (-407 (-546)) $) NIL) (($ $ (-407 (-546))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-1020 |#1|) (-13 (-1008) (-412 |#1|) (-38 |#1|) (-10 -8 (-15 -3442 ($ (-1055 $ (-1163 $)) (-859))) (-15 -3441 ((-3 (-1055 $ (-1163 $)) "failed") $)) (-15 -3590 ((-407 (-546)) $ $)))) (-13 (-844) (-363) (-1016))) (T -1020))
+((-3442 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1163 (-1020 *4)))) (-5 *3 (-859)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1016))))) (-3441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1163 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1016))))) (-3590 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1016))))))
+(-13 (-1008) (-412 |#1|) (-38 |#1|) (-10 -8 (-15 -3442 ($ (-1055 $ (-1163 $)) (-859))) (-15 -3441 ((-3 (-1055 $ (-1163 $)) "failed") $)) (-15 -3590 ((-407 (-546)) $ $))))
+((-3443 (((-2 (|:| -3674 |#2|) (|:| -2887 (-637 |#1|))) |#2| (-637 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-1021 |#1| |#2|) (-10 -7 (-15 -3443 (|#2| |#2| |#1|)) (-15 -3443 ((-2 (|:| -3674 |#2|) (|:| -2887 (-637 |#1|))) |#2| (-637 |#1|)))) (-363) (-653 |#1|)) (T -1021))
+((-3443 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3674 *3) (|:| -2887 (-637 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-637 *5)) (-4 *3 (-653 *5)))) (-3443 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-653 *3)))))
+(-10 -7 (-15 -3443 (|#2| |#2| |#1|)) (-15 -3443 ((-2 (|:| -3674 |#2|) (|:| -2887 (-637 |#1|))) |#2| (-637 |#1|))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3445 ((|#1| $ |#1|) 14)) (-4202 ((|#1| $ |#1|) 12)) (-3447 (($ |#1|) 10)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4214 ((|#1| $) 11)) (-3446 ((|#1| $) 13)) (-4361 (((-859) $) 21 (|has| |#1| (-1094)))) (-3444 (((-112) $ $) 9)))
+(((-1022 |#1|) (-13 (-1207) (-10 -8 (-15 -3447 ($ |#1|)) (-15 -4214 (|#1| $)) (-15 -4202 (|#1| $ |#1|)) (-15 -3446 (|#1| $)) (-15 -3445 (|#1| $ |#1|)) (-15 -3444 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1207)) (T -1022))
+((-3447 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))) (-4214 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))) (-4202 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))) (-3446 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))) (-3445 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))) (-3444 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1207)))))
+(-13 (-1207) (-10 -8 (-15 -3447 ($ |#1|)) (-15 -4214 (|#1| $)) (-15 -4202 (|#1| $ |#1|)) (-15 -3446 (|#1| $)) (-15 -3445 (|#1| $ |#1|)) (-15 -3444 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) NIL)) (-4097 (((-637 $) (-637 |#4|)) 105) (((-637 $) (-637 |#4|) (-112)) 106) (((-637 $) (-637 |#4|) (-112) (-112)) 104) (((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3474 (((-637 |#3|) $) NIL)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4103 ((|#4| |#4| $) NIL)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 99)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) 27 (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3290 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) NIL)) (-3564 (($ (-637 |#4|)) NIL)) (-4213 (((-3 $ #1#) $) 40)) (-4100 ((|#4| |#4| $) 57)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3817 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4098 ((|#4| |#4| $) NIL)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) NIL)) (-3605 (((-112) |#4| $) NIL)) (-3603 (((-112) |#4| $) NIL)) (-3606 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3849 (((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112)) 119)) (-2103 (((-637 |#4|) $) 17 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#4|) $) 18 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2107 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 22)) (-3304 (((-637 |#3|) $) NIL)) (-3303 (((-112) |#3| $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) NIL)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 97)) (-4212 (((-3 |#4| #1#) $) 38)) (-3600 (((-637 $) |#4| $) 80)) (-3602 (((-3 (-112) (-637 $)) |#4| $) NIL)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3646 (((-637 $) |#4| $) 102) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) 103) (((-637 $) |#4| (-637 $)) NIL)) (-3850 (((-637 $) (-637 |#4|) (-112) (-112) (-112)) 114)) (-3851 (($ |#4| $) 70) (($ (-637 |#4|) $) 71) (((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4112 (((-637 |#4|) $) NIL)) (-4106 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4101 ((|#4| |#4| $) NIL)) (-4114 (((-112) $ $) NIL)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4102 ((|#4| |#4| $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-3 |#4| #1#) $) 36)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4094 (((-3 $ #1#) $ |#4|) 48)) (-4183 (($ $ |#4|) NIL) (((-637 $) |#4| $) 82) (((-637 $) |#4| (-637 $)) NIL) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) 77)) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 16)) (-3979 (($) 14)) (-4363 (((-767) $) NIL)) (-2104 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) 13)) (-4385 (((-535) $) NIL (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 21)) (-3300 (($ $ |#3|) 43)) (-3302 (($ $ |#3|) 44)) (-4099 (($ $) NIL)) (-3301 (($ $ |#3|) NIL)) (-4361 (((-859) $) 32) (((-637 |#4|) $) 41)) (-4093 (((-767) $) NIL (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) NIL)) (-3597 (((-637 $) |#4| $) 79) (((-637 $) |#4| (-637 $)) NIL) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) NIL)) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) NIL)) (-3604 (((-112) |#4| $) NIL)) (-4348 (((-112) |#3| $) 53)) (-3444 (((-112) $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3851 ((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112))) (-15 -3850 ((-637 $) (-637 |#4|) (-112) (-112) (-112))) (-15 -3849 ((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023))
+((-3851 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-4097 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-4097 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3850 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3849 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-637 *8)) (|:| |towers| (-637 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-637 *8)))))
+(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3851 ((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112))) (-15 -3850 ((-637 $) (-637 |#4|) (-112) (-112) (-112))) (-15 -3849 ((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112)))))
+((-3448 (((-637 (-2 (|:| |radval| (-314 (-546))) (|:| |radmult| (-546)) (|:| |radvect| (-637 (-684 (-314 (-546))))))) (-684 (-407 (-942 (-546))))) 59)) (-3449 (((-637 (-684 (-314 (-546)))) (-314 (-546)) (-684 (-407 (-942 (-546))))) 48)) (-3450 (((-637 (-314 (-546))) (-684 (-407 (-942 (-546))))) 41)) (-3454 (((-637 (-684 (-314 (-546)))) (-684 (-407 (-942 (-546))))) 68)) (-3452 (((-684 (-314 (-546))) (-684 (-314 (-546)))) 34)) (-3453 (((-637 (-684 (-314 (-546)))) (-637 (-684 (-314 (-546))))) 62)) (-3451 (((-3 (-684 (-314 (-546))) "failed") (-684 (-407 (-942 (-546))))) 66)))
+(((-1024) (-10 -7 (-15 -3448 ((-637 (-2 (|:| |radval| (-314 (-546))) (|:| |radmult| (-546)) (|:| |radvect| (-637 (-684 (-314 (-546))))))) (-684 (-407 (-942 (-546)))))) (-15 -3449 ((-637 (-684 (-314 (-546)))) (-314 (-546)) (-684 (-407 (-942 (-546)))))) (-15 -3450 ((-637 (-314 (-546))) (-684 (-407 (-942 (-546)))))) (-15 -3451 ((-3 (-684 (-314 (-546))) "failed") (-684 (-407 (-942 (-546)))))) (-15 -3452 ((-684 (-314 (-546))) (-684 (-314 (-546))))) (-15 -3453 ((-637 (-684 (-314 (-546)))) (-637 (-684 (-314 (-546)))))) (-15 -3454 ((-637 (-684 (-314 (-546)))) (-684 (-407 (-942 (-546)))))))) (T -1024))
+((-3454 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-684 (-314 (-546))))) (-5 *1 (-1024)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-637 (-684 (-314 (-546))))) (-5 *1 (-1024)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-684 (-314 (-546)))) (-5 *1 (-1024)))) (-3451 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-684 (-314 (-546)))) (-5 *1 (-1024)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-314 (-546)))) (-5 *1 (-1024)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-684 (-314 (-546))))) (-5 *1 (-1024)) (-5 *3 (-314 (-546))))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-2 (|:| |radval| (-314 (-546))) (|:| |radmult| (-546)) (|:| |radvect| (-637 (-684 (-314 (-546)))))))) (-5 *1 (-1024)))))
+(-10 -7 (-15 -3448 ((-637 (-2 (|:| |radval| (-314 (-546))) (|:| |radmult| (-546)) (|:| |radvect| (-637 (-684 (-314 (-546))))))) (-684 (-407 (-942 (-546)))))) (-15 -3449 ((-637 (-684 (-314 (-546)))) (-314 (-546)) (-684 (-407 (-942 (-546)))))) (-15 -3450 ((-637 (-314 (-546))) (-684 (-407 (-942 (-546)))))) (-15 -3451 ((-3 (-684 (-314 (-546))) "failed") (-684 (-407 (-942 (-546)))))) (-15 -3452 ((-684 (-314 (-546))) (-684 (-314 (-546))))) (-15 -3453 ((-637 (-684 (-314 (-546)))) (-637 (-684 (-314 (-546)))))) (-15 -3454 ((-637 (-684 (-314 (-546)))) (-684 (-407 (-942 (-546)))))))
+((-3458 (((-637 (-684 |#1|)) (-637 (-684 |#1|))) 58) (((-684 |#1|) (-684 |#1|)) 57) (((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-637 (-684 |#1|))) 56) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 53)) (-3457 (((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915)) 52) (((-684 |#1|) (-684 |#1|) (-915)) 51)) (-3459 (((-637 (-684 (-546))) (-637 (-637 (-546)))) 68) (((-637 (-684 (-546))) (-637 (-898 (-546))) (-546)) 67) (((-684 (-546)) (-637 (-546))) 64) (((-684 (-546)) (-898 (-546)) (-546)) 63)) (-3456 (((-684 (-942 |#1|)) (-767)) 81)) (-3455 (((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915)) 37 (|has| |#1| (-6 (-4410 "*")))) (((-684 |#1|) (-684 |#1|) (-915)) 35 (|has| |#1| (-6 (-4410 "*"))))))
+(((-1025 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3455 ((-684 |#1|) (-684 |#1|) (-915))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3455 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915))) |%noBranch|) (-15 -3456 ((-684 (-942 |#1|)) (-767))) (-15 -3457 ((-684 |#1|) (-684 |#1|) (-915))) (-15 -3457 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915))) (-15 -3458 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3458 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3458 ((-684 |#1|) (-684 |#1|))) (-15 -3458 ((-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3459 ((-684 (-546)) (-898 (-546)) (-546))) (-15 -3459 ((-684 (-546)) (-637 (-546)))) (-15 -3459 ((-637 (-684 (-546))) (-637 (-898 (-546))) (-546))) (-15 -3459 ((-637 (-684 (-546))) (-637 (-637 (-546)))))) (-1045)) (T -1025))
+((-3459 (*1 *2 *3) (-12 (-5 *3 (-637 (-637 (-546)))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-1025 *4)) (-4 *4 (-1045)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-898 (-546)))) (-5 *4 (-546)) (-5 *2 (-637 (-684 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1045)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1025 *4)) (-4 *4 (-1045)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-546))) (-5 *4 (-546)) (-5 *2 (-684 *4)) (-5 *1 (-1025 *5)) (-4 *5 (-1045)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-637 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1025 *3)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1025 *3)))) (-3458 (*1 *2 *2 *2) (-12 (-5 *2 (-637 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1025 *3)))) (-3458 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1025 *3)))) (-3457 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-684 *4))) (-5 *3 (-915)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3457 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-915)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-684 (-942 *4))) (-5 *1 (-1025 *4)) (-4 *4 (-1045)))) (-3455 (*1 *2 *2 *3) (-12 (-5 *2 (-637 (-684 *4))) (-5 *3 (-915)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3455 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-915)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3455 ((-684 |#1|) (-684 |#1|) (-915))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3455 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915))) |%noBranch|) (-15 -3456 ((-684 (-942 |#1|)) (-767))) (-15 -3457 ((-684 |#1|) (-684 |#1|) (-915))) (-15 -3457 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-915))) (-15 -3458 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3458 ((-637 (-684 |#1|)) (-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3458 ((-684 |#1|) (-684 |#1|))) (-15 -3458 ((-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3459 ((-684 (-546)) (-898 (-546)) (-546))) (-15 -3459 ((-684 (-546)) (-637 (-546)))) (-15 -3459 ((-637 (-684 (-546))) (-637 (-898 (-546))) (-546))) (-15 -3459 ((-637 (-684 (-546))) (-637 (-637 (-546))))))
+((-3463 (((-684 |#1|) (-637 (-684 |#1|)) (-1256 |#1|)) 49 (|has| |#1| (-307)))) (-3829 (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 (-1256 |#1|))) 75 (|has| |#1| (-363))) (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 |#1|)) 78 (|has| |#1| (-363)))) (-3467 (((-1256 |#1|) (-637 (-1256 |#1|)) (-546)) 92 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3466 (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-915)) 84 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112)) 82 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|))) 81 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112) (-546) (-546)) 80 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3465 (((-112) (-637 (-684 |#1|))) 70 (|has| |#1| (-363))) (((-112) (-637 (-684 |#1|)) (-546)) 72 (|has| |#1| (-363)))) (-3462 (((-1256 (-1256 |#1|)) (-637 (-684 |#1|)) (-1256 |#1|)) 47 (|has| |#1| (-307)))) (-3461 (((-684 |#1|) (-637 (-684 |#1|)) (-684 |#1|)) 33)) (-3460 (((-684 |#1|) (-1256 (-1256 |#1|))) 30)) (-3464 (((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-546)) 64 (|has| |#1| (-363))) (((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|))) 63 (|has| |#1| (-363))) (((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-112) (-546)) 68 (|has| |#1| (-363)))))
+(((-1026 |#1|) (-10 -7 (-15 -3460 ((-684 |#1|) (-1256 (-1256 |#1|)))) (-15 -3461 ((-684 |#1|) (-637 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3462 ((-1256 (-1256 |#1|)) (-637 (-684 |#1|)) (-1256 |#1|))) (-15 -3463 ((-684 |#1|) (-637 (-684 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-112) (-546))) (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-546))) (-15 -3465 ((-112) (-637 (-684 |#1|)) (-546))) (-15 -3465 ((-112) (-637 (-684 |#1|)))) (-15 -3829 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 |#1|))) (-15 -3829 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112) (-546) (-546))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-915))) (-15 -3467 ((-1256 |#1|) (-637 (-1256 |#1|)) (-546)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1026))
+((-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-1256 *5))) (-5 *4 (-546)) (-5 *2 (-1256 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-637 (-684 *5))))) (-3466 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-637 (-684 *5))))) (-3466 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-637 (-637 (-684 *4)))) (-5 *1 (-1026 *4)) (-5 *3 (-637 (-684 *4))))) (-3466 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-546)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-637 (-637 (-684 *6)))) (-5 *1 (-1026 *6)) (-5 *3 (-637 (-684 *6))))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-637 (-684 *5))))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-637 (-684 *5))))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-637 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1026 *4)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-546)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) (-3464 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-546)) (-5 *2 (-684 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1026 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-3464 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-637 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-546)) (-5 *2 (-684 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1026 *5)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1256 *5)))) (-3461 (*1 *2 *3 *2) (-12 (-5 *3 (-637 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1026 *4)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) (-5 *1 (-1026 *4)))))
+(-10 -7 (-15 -3460 ((-684 |#1|) (-1256 (-1256 |#1|)))) (-15 -3461 ((-684 |#1|) (-637 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3462 ((-1256 (-1256 |#1|)) (-637 (-684 |#1|)) (-1256 |#1|))) (-15 -3463 ((-684 |#1|) (-637 (-684 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-112) (-546))) (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3464 ((-684 |#1|) (-637 (-684 |#1|)) (-637 (-684 |#1|)) (-546))) (-15 -3465 ((-112) (-637 (-684 |#1|)) (-546))) (-15 -3465 ((-112) (-637 (-684 |#1|)))) (-15 -3829 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 |#1|))) (-15 -3829 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112) (-546) (-546))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-112))) (-15 -3466 ((-637 (-637 (-684 |#1|))) (-637 (-684 |#1|)) (-915))) (-15 -3467 ((-1256 |#1|) (-637 (-1256 |#1|)) (-546)))) |%noBranch|) |%noBranch|))
+((-3468 ((|#1| (-915) |#1|) 9)))
+(((-1027 |#1|) (-10 -7 (-15 -3468 (|#1| (-915) |#1|))) (-13 (-1094) (-10 -8 (-15 -4254 ($ $ $))))) (T -1027))
+((-3468 (*1 *2 *3 *2) (-12 (-5 *3 (-915)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -4254 ($ $ $))))))))
+(-10 -7 (-15 -3468 (|#1| (-915) |#1|)))
+((-3469 ((|#1| |#1| (-915)) 9)))
+(((-1028 |#1|) (-10 -7 (-15 -3469 (|#1| |#1| (-915)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1028))
+((-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-915)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3469 (|#1| |#1| (-915))))
+((-4361 ((|#1| (-311)) 11) (((-1262) |#1|) 9)))
+(((-1029 |#1|) (-10 -7 (-15 -4361 ((-1262) |#1|)) (-15 -4361 (|#1| (-311)))) (-1207)) (T -1029))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1029 *2)) (-4 *2 (-1207)))) (-4361 (*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1207)))))
+(-10 -7 (-15 -4361 ((-1262) |#1|)) (-15 -4361 (|#1| (-311))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-4257 (($ |#4|) 25)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-3470 ((|#4| $) 27)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 46) (($ (-546)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3518 (((-767)) 43)) (-3047 (($) 21 T CONST)) (-3053 (($) 23 T CONST)) (-3444 (((-112) $ $) 40)) (-4252 (($ $) 31) (($ $ $) NIL)) (-4254 (($ $ $) 29)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -4257 ($ |#4|)) (-15 -4361 ($ |#4|)) (-15 -3470 (|#4| $)))) (-363) (-789) (-846) (-946 |#1| |#2| |#3|) (-637 |#4|)) (T -1030))
+((-4257 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-637 *2)))) (-4361 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-637 *2)))) (-3470 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-637 *2)))))
+(-13 (-172) (-38 |#1|) (-10 -8 (-15 -4257 ($ |#4|)) (-15 -4361 ($ |#4|)) (-15 -3470 (|#4| $))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-2351 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-3472 (((-112) (-112)) 39)) (-3471 (((-112) (-112)) 38)) (-4202 (((-51) $ (-1169) (-51)) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 (-51) #1="failed") (-1169) $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-3816 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-51) #1#) (-1169) $) NIL)) (-3817 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-1672 (((-51) $ (-1169) (-51)) NIL (|has| $ (-6 -4409)))) (-3505 (((-51) $ (-1169)) NIL)) (-2103 (((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2993 (((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2354 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-2795 (((-637 (-1169)) $) 34)) (-2361 (((-112) (-1169) $) NIL)) (-1359 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL)) (-4022 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL)) (-2356 (((-637 (-1169)) $) NIL)) (-2357 (((-112) (-1169) $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-4215 (((-51) $) NIL (|has| (-1169) (-846)))) (-1431 (((-3 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) "failed") (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL)) (-2352 (($ $ (-51)) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-293 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-51)) (-637 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-293 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-637 (-293 (-51)))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2358 (((-637 (-51)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 (((-51) $ (-1169)) 35) (((-51) $ (-1169) (-51)) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-767) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094)))) (((-767) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-4361 (((-859) $) 37 (-3943 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-610 (-859))) (|has| (-51) (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1031) (-13 (-1184 (-1169) (-51)) (-10 -7 (-15 -3472 ((-112) (-112))) (-15 -3471 ((-112) (-112))) (-6 -4408)))) (T -1031))
+((-3472 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
+(-13 (-1184 (-1169) (-51)) (-10 -7 (-15 -3472 ((-112) (-112))) (-15 -3471 ((-112) (-112))) (-6 -4408)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 9)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1032) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $))))) (T -1032))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $))))
+((-3564 ((|#2| $) 10)))
+(((-1033 |#1| |#2|) (-10 -8 (-15 -3564 (|#2| |#1|))) (-1034 |#2|) (-1207)) (T -1033))
+NIL
+(-10 -8 (-15 -3564 (|#2| |#1|)))
+((-3565 (((-3 |#1| "failed") $) 9)) (-3564 ((|#1| $) 8)) (-4361 (($ |#1|) 6)))
+(((-1034 |#1|) (-140) (-1207)) (T -1034))
+((-3565 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1207)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1207)))))
+(-13 (-613 |t#1|) (-10 -8 (-15 -3565 ((-3 |t#1| "failed") $)) (-15 -3564 (|t#1| $))))
(((-613 |#1|) . T))
-((-1683 (((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))) 38)))
-(((-1035 |#1| |#2|) (-10 -7 (-15 -1683 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))))) (-555) (-13 (-555) (-1034 |#1|))) (T -1035))
-((-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6)))))
-(-10 -7 (-15 -1683 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169)))))
-((-1712 (((-379)) 15)) (-1853 (((-1 (-379)) (-379) (-379)) 20)) (-2287 (((-1 (-379)) (-767)) 42)) (-1724 (((-379)) 33)) (-2376 (((-1 (-379)) (-379) (-379)) 34)) (-1738 (((-379)) 26)) (-1761 (((-1 (-379)) (-379)) 27)) (-1750 (((-379) (-767)) 37)) (-1773 (((-1 (-379)) (-767)) 38)) (-3195 (((-1 (-379)) (-767) (-767)) 41)) (-1474 (((-1 (-379)) (-767) (-767)) 39)))
-(((-1036) (-10 -7 (-15 -1712 ((-379))) (-15 -1724 ((-379))) (-15 -1738 ((-379))) (-15 -1750 ((-379) (-767))) (-15 -1853 ((-1 (-379)) (-379) (-379))) (-15 -2376 ((-1 (-379)) (-379) (-379))) (-15 -1761 ((-1 (-379)) (-379))) (-15 -1773 ((-1 (-379)) (-767))) (-15 -1474 ((-1 (-379)) (-767) (-767))) (-15 -3195 ((-1 (-379)) (-767) (-767))) (-15 -2287 ((-1 (-379)) (-767))))) (T -1036))
-((-2287 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-3195 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-1474 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2376 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-1853 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))) (-1738 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-1724 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-1712 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(-10 -7 (-15 -1712 ((-379))) (-15 -1724 ((-379))) (-15 -1738 ((-379))) (-15 -1750 ((-379) (-767))) (-15 -1853 ((-1 (-379)) (-379) (-379))) (-15 -2376 ((-1 (-379)) (-379) (-379))) (-15 -1761 ((-1 (-379)) (-379))) (-15 -1773 ((-1 (-379)) (-767))) (-15 -1474 ((-1 (-379)) (-767) (-767))) (-15 -3195 ((-1 (-379)) (-767) (-767))) (-15 -2287 ((-1 (-379)) (-767))))
-((-2173 (((-418 |#1|) |#1|) 33)))
-(((-1037 |#1|) (-10 -7 (-15 -2173 ((-418 |#1|) |#1|))) (-1233 (-407 (-948 (-563))))) (T -1037))
-((-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1233 (-407 (-948 (-563))))))))
-(-10 -7 (-15 -2173 ((-418 |#1|) |#1|)))
-((-1786 (((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))) 14)))
-(((-1038 |#1|) (-10 -7 (-15 -1786 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) (-307)) (T -1038))
-((-1786 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4)))))
-(-10 -7 (-15 -1786 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|)))))
-((-2605 (((-640 (-1169)) (-407 (-948 |#1|))) 17)) (-2138 (((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 24)) (-2595 (((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169)) 26)) (-1698 (((-3 (-1169) "failed") (-407 (-948 |#1|))) 20)) (-1542 (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|))))) 32) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 33) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|)))) 28) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 29)) (-1692 (((-407 (-948 |#1|)) |#1|) 11)))
-(((-1039 |#1|) (-10 -7 (-15 -2605 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -1698 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2138 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2595 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1692 ((-407 (-948 |#1|)) |#1|))) (-555)) (T -1039))
-((-1692 (*1 *2 *3) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1542 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5)))) (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5)))) (-1542 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169)) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) (-5 *3 (-407 (-948 *5))))) (-1698 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-1169)) (-5 *1 (-1039 *4)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169))) (-5 *1 (-1039 *4)))))
-(-10 -7 (-15 -2605 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -1698 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2138 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2595 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1542 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1692 ((-407 (-948 |#1|)) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2569 (($) 17 T CONST)) (-1831 ((|#1| $) 22)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1820 ((|#1| $) 21)) (-1797 ((|#1|) 19 T CONST)) (-1692 (((-858) $) 11)) (-1808 ((|#1| $) 20)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15)))
+((-3473 (((-637 (-637 (-293 (-407 (-942 |#2|))))) (-637 (-942 |#2|)) (-637 (-1169))) 38)))
+(((-1035 |#1| |#2|) (-10 -7 (-15 -3473 ((-637 (-637 (-293 (-407 (-942 |#2|))))) (-637 (-942 |#2|)) (-637 (-1169))))) (-556) (-13 (-556) (-1034 |#1|))) (T -1035))
+((-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169))) (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *6)))))) (-5 *1 (-1035 *5 *6)))))
+(-10 -7 (-15 -3473 ((-637 (-637 (-293 (-407 (-942 |#2|))))) (-637 (-942 |#2|)) (-637 (-1169)))))
+((-3474 (((-637 (-1169)) (-407 (-942 |#1|))) 17)) (-3476 (((-407 (-1163 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169)) 24)) (-3477 (((-407 (-942 |#1|)) (-407 (-1163 (-407 (-942 |#1|)))) (-1169)) 26)) (-3475 (((-3 (-1169) "failed") (-407 (-942 |#1|))) 20)) (-4182 (((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-293 (-407 (-942 |#1|))))) 32) (((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|)))) 33) (((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-1169)) (-637 (-407 (-942 |#1|)))) 28) (((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|))) 29)) (-4361 (((-407 (-942 |#1|)) |#1|) 11)))
+(((-1036 |#1|) (-10 -7 (-15 -3474 ((-637 (-1169)) (-407 (-942 |#1|)))) (-15 -3475 ((-3 (-1169) "failed") (-407 (-942 |#1|)))) (-15 -3476 ((-407 (-1163 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169))) (-15 -3477 ((-407 (-942 |#1|)) (-407 (-1163 (-407 (-942 |#1|)))) (-1169))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-1169)) (-637 (-407 (-942 |#1|))))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -4361 ((-407 (-942 |#1|)) |#1|))) (-556)) (T -1036))
+((-4361 (*1 *2 *3) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-556)))) (-4182 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-293 (-407 (-942 *4))))) (-5 *2 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *1 (-1036 *4)))) (-4182 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-407 (-942 *4)))) (-5 *2 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *1 (-1036 *4)))) (-4182 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-637 (-1169))) (-5 *4 (-637 (-407 (-942 *5)))) (-5 *2 (-407 (-942 *5))) (-4 *5 (-556)) (-5 *1 (-1036 *5)))) (-4182 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-942 *4))) (-5 *3 (-1169)) (-4 *4 (-556)) (-5 *1 (-1036 *4)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1163 (-407 (-942 *5))))) (-5 *4 (-1169)) (-5 *2 (-407 (-942 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-556)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-407 (-1163 (-407 (-942 *5))))) (-5 *1 (-1036 *5)) (-5 *3 (-407 (-942 *5))))) (-3475 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-1169)) (-5 *1 (-1036 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-637 (-1169))) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -3474 ((-637 (-1169)) (-407 (-942 |#1|)))) (-15 -3475 ((-3 (-1169) "failed") (-407 (-942 |#1|)))) (-15 -3476 ((-407 (-1163 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169))) (-15 -3477 ((-407 (-942 |#1|)) (-407 (-1163 (-407 (-942 |#1|)))) (-1169))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-1169)) (-637 (-407 (-942 |#1|))))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-293 (-407 (-942 |#1|))))) (-15 -4182 ((-407 (-942 |#1|)) (-407 (-942 |#1|)) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -4361 ((-407 (-942 |#1|)) |#1|)))
+((-3478 (((-378)) 15)) (-3493 (((-1 (-378)) (-378) (-378)) 20)) (-3486 (((-1 (-378)) (-767)) 42)) (-3479 (((-378)) 33)) (-3482 (((-1 (-378)) (-378) (-378)) 34)) (-3480 (((-378)) 26)) (-3483 (((-1 (-378)) (-378)) 27)) (-3481 (((-378) (-767)) 37)) (-3484 (((-1 (-378)) (-767)) 38)) (-3485 (((-1 (-378)) (-767) (-767)) 41)) (-3795 (((-1 (-378)) (-767) (-767)) 39)))
+(((-1037) (-10 -7 (-15 -3478 ((-378))) (-15 -3479 ((-378))) (-15 -3480 ((-378))) (-15 -3481 ((-378) (-767))) (-15 -3493 ((-1 (-378)) (-378) (-378))) (-15 -3482 ((-1 (-378)) (-378) (-378))) (-15 -3483 ((-1 (-378)) (-378))) (-15 -3484 ((-1 (-378)) (-767))) (-15 -3795 ((-1 (-378)) (-767) (-767))) (-15 -3485 ((-1 (-378)) (-767) (-767))) (-15 -3486 ((-1 (-378)) (-767))))) (T -1037))
+((-3486 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))) (-3485 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))) (-3795 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))) (-3483 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378)))) (-3482 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-378)) (-5 *1 (-1037)))) (-3480 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))) (-3479 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))) (-3478 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))))
+(-10 -7 (-15 -3478 ((-378))) (-15 -3479 ((-378))) (-15 -3480 ((-378))) (-15 -3481 ((-378) (-767))) (-15 -3493 ((-1 (-378)) (-378) (-378))) (-15 -3482 ((-1 (-378)) (-378) (-378))) (-15 -3483 ((-1 (-378)) (-378))) (-15 -3484 ((-1 (-378)) (-767))) (-15 -3795 ((-1 (-378)) (-767) (-767))) (-15 -3485 ((-1 (-378)) (-767) (-767))) (-15 -3486 ((-1 (-378)) (-767))))
+((-4147 (((-405 |#1|) |#1|) 33)))
+(((-1038 |#1|) (-10 -7 (-15 -4147 ((-405 |#1|) |#1|))) (-1232 (-407 (-942 (-546))))) (T -1038))
+((-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1232 (-407 (-942 (-546))))))))
+(-10 -7 (-15 -4147 ((-405 |#1|) |#1|)))
+((-3487 (((-407 (-405 (-942 |#1|))) (-407 (-942 |#1|))) 14)))
+(((-1039 |#1|) (-10 -7 (-15 -3487 ((-407 (-405 (-942 |#1|))) (-407 (-942 |#1|))))) (-307)) (T -1039))
+((-3487 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-405 (-942 *4)))) (-5 *1 (-1039 *4)))))
+(-10 -7 (-15 -3487 ((-407 (-405 (-942 |#1|))) (-407 (-942 |#1|)))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4139 (($) 17 T CONST)) (-3491 ((|#1| $) 22)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3490 ((|#1| $) 21)) (-3488 ((|#1|) 19 T CONST)) (-4361 (((-859) $) 11)) (-3489 ((|#1| $) 20)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15)))
(((-1040 |#1|) (-140) (-23)) (T -1040))
-((-1831 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-1797 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -1831 (|t#1| $)) (-15 -1820 (|t#1| $)) (-15 -1808 (|t#1| $)) (-15 -1797 (|t#1|) -2668)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-1842 (($) 24 T CONST)) (-2569 (($) 17 T CONST)) (-1831 ((|#1| $) 22)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1820 ((|#1| $) 21)) (-1797 ((|#1|) 19 T CONST)) (-1692 (((-858) $) 11)) (-1808 ((|#1| $) 20)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15)))
+((-3491 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3488 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3491 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -3489 (|t#1| $)) (-15 -3488 (|t#1|) -4367)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3492 (($) 24 T CONST)) (-4139 (($) 17 T CONST)) (-3491 ((|#1| $) 22)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3490 ((|#1| $) 21)) (-3488 ((|#1|) 19 T CONST)) (-4361 (((-859) $) 11)) (-3489 ((|#1| $) 20)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15)))
(((-1041 |#1|) (-140) (-23)) (T -1041))
-((-1842 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(-13 (-1040 |t#1|) (-10 -8 (-15 -1842 ($) -2668)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1040 |#1|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 (-776 |#1| (-860 |#2|)))))) (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-2119 (((-640 $) (-640 (-776 |#1| (-860 |#2|)))) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-2605 (((-640 (-860 |#2|)) $) NIL)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-2254 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2189 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1798 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2058 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 (-776 |#1| (-860 |#2|)) "failed") $ (-860 |#2|)) NIL)) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) NIL (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-2201 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3418 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-3431 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-2057 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-3793 (((-3 $ "failed") $) NIL)) (-2151 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-1459 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-2264 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2131 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2444 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2284 (((-2 (|:| -1442 (-640 (-776 |#1| (-860 |#2|)))) (|:| -3409 (-640 (-776 |#1| (-860 |#2|))))) $) NIL)) (-3536 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3514 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3548 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2658 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2274 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3354 (((-860 |#2|) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-4347 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-3568 (((-640 (-860 |#2|)) $) NIL)) (-3553 (((-112) (-860 |#2|) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3472 (((-3 (-776 |#1| (-860 |#2|)) (-640 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3461 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2058 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1481 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-3482 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-3503 (((-3 (-112) (-640 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3834 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL)) (-1956 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-2297 (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-2225 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2163 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2319 (((-112) $ $) NIL)) (-3454 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-2241 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2176 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-1971 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-2089 (((-3 $ "failed") $ (-776 |#1| (-860 |#2|))) NIL)) (-1751 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-1458 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-294 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-640 (-294 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-3871 (((-767) $) NIL)) (-1708 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-3519 (($ $ (-860 |#2|)) NIL)) (-3542 (($ $ (-860 |#2|)) NIL)) (-2141 (($ $) NIL)) (-3529 (($ $ (-860 |#2|)) NIL)) (-1692 (((-858) $) NIL) (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-3255 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2211 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-640 (-776 |#1| (-860 |#2|))))) NIL)) (-3450 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-1471 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2100 (((-640 (-860 |#2|)) $) NIL)) (-3525 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3772 (((-112) (-860 |#2|) $) NIL)) (-1718 (((-112) $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -2119 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-640 (-1169))) (T -1042))
-((-2119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6)))))
-(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -2119 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112)))))
-((-1853 (((-1 (-563)) (-1087 (-563))) 33)) (-1897 (((-563) (-563) (-563) (-563) (-563)) 30)) (-1875 (((-1 (-563)) |RationalNumber|) NIL)) (-1886 (((-1 (-563)) |RationalNumber|) NIL)) (-1864 (((-1 (-563)) (-563) |RationalNumber|) NIL)))
-(((-1043) (-10 -7 (-15 -1853 ((-1 (-563)) (-1087 (-563)))) (-15 -1864 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -1875 ((-1 (-563)) |RationalNumber|)) (-15 -1886 ((-1 (-563)) |RationalNumber|)) (-15 -1897 ((-563) (-563) (-563) (-563) (-563))))) (T -1043))
-((-1897 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043)))) (-1886 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-1875 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)) (-5 *3 (-563)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))))
-(-10 -7 (-15 -1853 ((-1 (-563)) (-1087 (-563)))) (-15 -1864 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -1875 ((-1 (-563)) |RationalNumber|)) (-15 -1886 ((-1 (-563)) |RationalNumber|)) (-15 -1897 ((-563) (-563) (-563) (-563) (-563))))
-((-1692 (((-858) $) NIL) (($ (-563)) 10)))
-(((-1044 |#1|) (-10 -8 (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-1045)) (T -1044))
-NIL
-(-10 -8 (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-3492 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(-13 (-1040 |t#1|) (-10 -8 (-15 -3492 ($) -4367)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-859)) . T) ((-1040 |#1|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 (-776 |#1| (-860 |#2|)))))) (-637 (-776 |#1| (-860 |#2|)))) NIL)) (-4097 (((-637 $) (-637 (-776 |#1| (-860 |#2|)))) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-3474 (((-637 (-860 |#2|)) $) NIL)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-4108 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4103 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4189 (((-637 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -1695 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 (-776 |#1| (-860 |#2|)) #1="failed") $ (-860 |#2|)) NIL)) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) NIL (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-4104 (((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3290 (((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-3291 (((-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 (-776 |#1| (-860 |#2|)))) NIL)) (-3564 (($ (-637 (-776 |#1| (-860 |#2|)))) NIL)) (-4213 (((-3 $ #1#) $) NIL)) (-4100 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-3817 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-4109 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4098 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4257 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4111 (((-2 (|:| -4276 (-637 (-776 |#1| (-860 |#2|)))) (|:| -1853 (-637 (-776 |#1| (-860 |#2|))))) $) NIL)) (-3605 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3603 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3606 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2103 (((-637 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4110 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3588 (((-860 |#2|) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-2107 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-3304 (((-637 (-860 |#2|)) $) NIL)) (-3303 (((-112) (-860 |#2|) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3599 (((-3 (-776 |#1| (-860 |#2|)) (-637 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3598 (((-637 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -1695 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4212 (((-3 (-776 |#1| (-860 |#2|)) #1#) $) NIL)) (-3600 (((-637 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-3602 (((-3 (-112) (-637 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3646 (((-637 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) $) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-637 $)) NIL) (((-637 $) (-776 |#1| (-860 |#2|)) (-637 $)) NIL)) (-3851 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-637 (-776 |#1| (-860 |#2|))) $) NIL)) (-4112 (((-637 (-776 |#1| (-860 |#2|))) $) NIL)) (-4106 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4101 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4114 (((-112) $ $) NIL)) (-3293 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-4107 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4102 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-3 (-776 |#1| (-860 |#2|)) #1#) $) NIL)) (-1431 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-4094 (((-3 $ #1#) $ (-776 |#1| (-860 |#2|))) NIL)) (-4183 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-637 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-637 $) (-776 |#1| (-860 |#2|)) (-637 $)) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) $) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-637 $)) NIL)) (-2105 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-776 |#1| (-860 |#2|))) (-637 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-293 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-637 (-293 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4363 (((-767) $) NIL)) (-2104 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-776 |#1| (-860 |#2|)))) NIL)) (-3300 (($ $ (-860 |#2|)) NIL)) (-3302 (($ $ (-860 |#2|)) NIL)) (-4099 (($ $) NIL)) (-3301 (($ $ (-860 |#2|)) NIL)) (-4361 (((-859) $) NIL) (((-637 (-776 |#1| (-860 |#2|))) $) NIL)) (-4093 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 (-776 |#1| (-860 |#2|))))) #1#) (-637 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 (-776 |#1| (-860 |#2|))))) #1#) (-637 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4105 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-637 (-776 |#1| (-860 |#2|))))) NIL)) (-3597 (((-637 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-637 $) (-776 |#1| (-860 |#2|)) (-637 $)) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) $) NIL) (((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-637 $)) NIL)) (-2106 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4095 (((-637 (-860 |#2|)) $) NIL)) (-3604 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-4348 (((-112) (-860 |#2|) $) NIL)) (-3444 (((-112) $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -4097 ((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-637 (-1169))) (T -1042))
+((-4097 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6)))))
+(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -4097 ((-637 $) (-637 (-776 |#1| (-860 |#2|))) (-112) (-112)))))
+((-3493 (((-1 (-546)) (-1082 (-546))) 33)) (-3497 (((-546) (-546) (-546) (-546) (-546)) 30)) (-3495 (((-1 (-546)) |RationalNumber|) NIL)) (-3496 (((-1 (-546)) |RationalNumber|) NIL)) (-3494 (((-1 (-546)) (-546) |RationalNumber|) NIL)))
+(((-1043) (-10 -7 (-15 -3493 ((-1 (-546)) (-1082 (-546)))) (-15 -3494 ((-1 (-546)) (-546) |RationalNumber|)) (-15 -3495 ((-1 (-546)) |RationalNumber|)) (-15 -3496 ((-1 (-546)) |RationalNumber|)) (-15 -3497 ((-546) (-546) (-546) (-546) (-546))))) (T -1043))
+((-3497 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1043)))) (-3496 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))) (-3495 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043)) (-5 *3 (-546)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1082 (-546))) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))))
+(-10 -7 (-15 -3493 ((-1 (-546)) (-1082 (-546)))) (-15 -3494 ((-1 (-546)) (-546) |RationalNumber|)) (-15 -3495 ((-1 (-546)) |RationalNumber|)) (-15 -3496 ((-1 (-546)) |RationalNumber|)) (-15 -3497 ((-546) (-546) (-546) (-546) (-546))))
+((-4361 (((-859) $) NIL) (($ (-546)) 10)))
+(((-1044 |#1|) (-10 -8 (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-1045)) (T -1044))
+NIL
+(-10 -8 (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29)) (-3518 (((-767)) 28 T CONST)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-1045) (-140)) (T -1045))
-((-3914 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))))
-(-13 (-1052) (-722) (-643 $) (-613 (-563)) (-10 -7 (-15 -3914 ((-767))) (-6 -4405)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1908 (((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)) 46)))
-(((-1046 |#1| |#2|) (-10 -7 (-15 -1908 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)))) (-1169) (-363)) (T -1046))
-((-1908 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169)))))
-(-10 -7 (-15 -1908 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767))))
-((-3870 (((-112) $) 29)) (-3893 (((-112) $) 16)) (-2380 (((-767) $) 13)) (-2391 (((-767) $) 14)) (-3881 (((-112) $) 26)) (-2005 (((-112) $) 31)))
-(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2391 ((-767) |#1|)) (-15 -2380 ((-767) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -3870 ((-112) |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3893 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047))
-NIL
-(-10 -8 (-15 -2391 ((-767) |#1|)) (-15 -2380 ((-767) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -3870 ((-112) |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3870 (((-112) $) 51)) (-3905 (((-3 $ "failed") $ $) 19)) (-3893 (((-112) $) 53)) (-3001 (((-112) $ (-767)) 61)) (-2569 (($) 17 T CONST)) (-1940 (($ $) 34 (|has| |#3| (-307)))) (-1960 ((|#4| $ (-563)) 39)) (-2521 (((-767) $) 33 (|has| |#3| (-555)))) (-4293 ((|#3| $ (-563) (-563)) 41)) (-2658 (((-640 |#3|) $) 68 (|has| $ (-6 -4408)))) (-1929 (((-767) $) 32 (|has| |#3| (-555)))) (-1917 (((-640 |#5|) $) 31 (|has| |#3| (-555)))) (-2380 (((-767) $) 45)) (-2391 (((-767) $) 44)) (-2514 (((-112) $ (-767)) 60)) (-1995 (((-563) $) 49)) (-1979 (((-563) $) 47)) (-3523 (((-640 |#3|) $) 69 (|has| $ (-6 -4408)))) (-2667 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4408))))) (-1986 (((-563) $) 48)) (-1969 (((-563) $) 46)) (-4040 (($ (-640 (-640 |#3|))) 54)) (-4347 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3734 (((-640 (-640 |#3|)) $) 43)) (-2481 (((-112) $ (-767)) 59)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-555)))) (-1458 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#3|) (-640 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2941 (((-112) $ $) 55)) (-1665 (((-112) $) 58)) (-3445 (($) 57)) (-2308 ((|#3| $ (-563) (-563)) 42) ((|#3| $ (-563) (-563) |#3|) 40)) (-3881 (((-112) $) 52)) (-1708 (((-767) |#3| $) 70 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4408)))) (-1870 (($ $) 56)) (-1950 ((|#5| $ (-563)) 38)) (-1692 (((-858) $) 11)) (-1471 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4408)))) (-2005 (((-112) $) 50)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3610 (((-767) $) 62 (|has| $ (-6 -4408)))))
+((-3518 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))))
+(-13 (-1052) (-722) (-643 $) (-613 (-546)) (-10 -7 (-15 -3518 ((-767)) -4367) (-6 -4405)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-546)) . T) ((-610 (-859)) . T) ((-643 $) . T) ((-722) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-3498 (((-407 (-942 |#2|)) (-637 |#2|) (-637 |#2|) (-767) (-767)) 46)))
+(((-1046 |#1| |#2|) (-10 -7 (-15 -3498 ((-407 (-942 |#2|)) (-637 |#2|) (-637 |#2|) (-767) (-767)))) (-1169) (-363)) (T -1046))
+((-3498 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-942 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169)))))
+(-10 -7 (-15 -3498 ((-407 (-942 |#2|)) (-637 |#2|) (-637 |#2|) (-767) (-767))))
+((-3513 (((-112) $) 29)) (-3515 (((-112) $) 16)) (-3507 (((-767) $) 13)) (-3506 (((-767) $) 14)) (-3514 (((-112) $) 26)) (-3512 (((-112) $) 31)))
+(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3506 ((-767) |#1|)) (-15 -3507 ((-767) |#1|)) (-15 -3512 ((-112) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -3515 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047))
+NIL
+(-10 -8 (-15 -3506 ((-767) |#1|)) (-15 -3507 ((-767) |#1|)) (-15 -3512 ((-112) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -3515 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3513 (((-112) $) 51)) (-1397 (((-3 $ "failed") $ $) 19)) (-3515 (((-112) $) 53)) (-1296 (((-112) $ (-767)) 61)) (-4139 (($) 17 T CONST)) (-3502 (($ $) 34 (|has| |#3| (-307)))) (-3504 ((|#4| $ (-546)) 39)) (-3501 (((-767) $) 33 (|has| |#3| (-556)))) (-3505 ((|#3| $ (-546) (-546)) 41)) (-2103 (((-637 |#3|) $) 68 (|has| $ (-6 -4408)))) (-3500 (((-767) $) 32 (|has| |#3| (-556)))) (-3499 (((-637 |#5|) $) 31 (|has| |#3| (-556)))) (-3507 (((-767) $) 45)) (-3506 (((-767) $) 44)) (-4134 (((-112) $ (-767)) 60)) (-3511 (((-546) $) 49)) (-3509 (((-546) $) 47)) (-2993 (((-637 |#3|) $) 69 (|has| $ (-6 -4408)))) (-3653 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4408))))) (-3510 (((-546) $) 48)) (-3508 (((-546) $) 46)) (-3516 (($ (-637 (-637 |#3|))) 54)) (-2107 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4008 (((-637 (-637 |#3|)) $) 43)) (-4131 (((-112) $ (-767)) 59)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-2105 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#3|) (-637 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-637 (-293 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1297 (((-112) $ $) 55)) (-3814 (((-112) $) 58)) (-3979 (($) 57)) (-4214 ((|#3| $ (-546) (-546)) 42) ((|#3| $ (-546) (-546) |#3|) 40)) (-3514 (((-112) $) 52)) (-2104 (((-767) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4408)))) (-3811 (($ $) 56)) (-3503 ((|#5| $ (-546)) 38)) (-4361 (((-859) $) 11)) (-2106 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4408)))) (-3512 (((-112) $) 50)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4372 (((-767) $) 62 (|has| $ (-6 -4408)))))
(((-1048 |#1| |#2| |#3| |#4| |#5|) (-140) (-767) (-767) (-1045) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1048))
-((-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5))))) (-2308 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-2308 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1960 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1950 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2238 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3012 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555)))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-1940 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-640 *7)))))
-(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4408) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -4040 ($ (-640 (-640 |t#3|)))) (-15 -3893 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -3870 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -1995 ((-563) $)) (-15 -1986 ((-563) $)) (-15 -1979 ((-563) $)) (-15 -1969 ((-563) $)) (-15 -2380 ((-767) $)) (-15 -2391 ((-767) $)) (-15 -3734 ((-640 (-640 |t#3|)) $)) (-15 -2308 (|t#3| $ (-563) (-563))) (-15 -4293 (|t#3| $ (-563) (-563))) (-15 -2308 (|t#3| $ (-563) (-563) |t#3|)) (-15 -1960 (|t#4| $ (-563))) (-15 -1950 (|t#5| $ (-563))) (-15 -2238 ($ (-1 |t#3| |t#3|) $)) (-15 -2238 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-555)) (-15 -3012 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1836 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -1940 ($ $)) |%noBranch|) (IF (|has| |t#3| (-555)) (PROGN (-15 -2521 ((-767) $)) (-15 -1929 ((-767) $)) (-15 -1917 ((-640 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-610 (-858)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-643 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1093) . T) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3870 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3893 (((-112) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-1940 (($ $) 43 (|has| |#3| (-307)))) (-1960 (((-240 |#2| |#3|) $ (-563)) 32)) (-3902 (($ (-684 |#3|)) 41)) (-2521 (((-767) $) 45 (|has| |#3| (-555)))) (-4293 ((|#3| $ (-563) (-563)) NIL)) (-2658 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-1929 (((-767) $) 47 (|has| |#3| (-555)))) (-1917 (((-640 (-240 |#1| |#3|)) $) 51 (|has| |#3| (-555)))) (-2380 (((-767) $) NIL)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4040 (($ (-640 (-640 |#3|))) 27)) (-4347 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3734 (((-640 (-640 |#3|)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-555)))) (-1458 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#3| $ (-563) (-563)) NIL) ((|#3| $ (-563) (-563) |#3|) NIL)) (-3526 (((-134)) 54 (|has| |#3| (-363)))) (-3881 (((-112) $) NIL)) (-1708 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) 61 (|has| |#3| (-611 (-536))))) (-1950 (((-240 |#1| |#3|) $ (-563)) 36)) (-1692 (((-858) $) 16) (((-684 |#3|) $) 38)) (-1471 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-2239 (($) 13 T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3902 ($ (-684 |#3|))))) (-767) (-767) (-1045)) (T -1049))
-((-3902 (*1 *1 *2) (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)))))
-(-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3902 ($ (-684 |#3|)))))
-((-2444 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2238 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2238 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2444 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050))
-((-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
-(-10 -7 (-15 -2238 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2444 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ |#1|) 23)))
+((-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-637 (-637 *5))))) (-4214 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-3505 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4214 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3503 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4373 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3872 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-4364 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-637 *7)))))
+(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4408) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -3516 ($ (-637 (-637 |t#3|)))) (-15 -3515 ((-112) $)) (-15 -3514 ((-112) $)) (-15 -3513 ((-112) $)) (-15 -3512 ((-112) $)) (-15 -3511 ((-546) $)) (-15 -3510 ((-546) $)) (-15 -3509 ((-546) $)) (-15 -3508 ((-546) $)) (-15 -3507 ((-767) $)) (-15 -3506 ((-767) $)) (-15 -4008 ((-637 (-637 |t#3|)) $)) (-15 -4214 (|t#3| $ (-546) (-546))) (-15 -3505 (|t#3| $ (-546) (-546))) (-15 -4214 (|t#3| $ (-546) (-546) |t#3|)) (-15 -3504 (|t#4| $ (-546))) (-15 -3503 (|t#5| $ (-546))) (-15 -4373 ($ (-1 |t#3| |t#3|) $)) (-15 -4373 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -3872 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -4364 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -3502 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -3501 ((-767) $)) (-15 -3500 ((-767) $)) (-15 -3499 ((-637 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-610 (-859)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-643 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1094) . T) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3513 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3515 (((-112) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-3502 (($ $) 43 (|has| |#3| (-307)))) (-3504 (((-239 |#2| |#3|) $ (-546)) 32)) (-3517 (($ (-684 |#3|)) 41)) (-3501 (((-767) $) 45 (|has| |#3| (-556)))) (-3505 ((|#3| $ (-546) (-546)) NIL)) (-2103 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3500 (((-767) $) 47 (|has| |#3| (-556)))) (-3499 (((-637 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-556)))) (-3507 (((-767) $) NIL)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-3516 (($ (-637 (-637 |#3|))) 27)) (-2107 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4008 (((-637 (-637 |#3|)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-2105 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#3|) (-637 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-637 (-293 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#3| $ (-546) (-546)) NIL) ((|#3| $ (-546) (-546) |#3|) NIL)) (-4326 (((-134)) 54 (|has| |#3| (-363)))) (-3514 (((-112) $) NIL)) (-2104 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) 61 (|has| |#3| (-611 (-535))))) (-3503 (((-239 |#1| |#3|) $ (-546)) 36)) (-4361 (((-859) $) 16) (((-684 |#3|) $) 38)) (-2106 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-3047 (($) 13 T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (-15 -3517 ($ (-684 |#3|))))) (-767) (-767) (-1045)) (T -1049))
+((-3517 (*1 *1 *2) (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)))))
+(-13 (-1048 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|) (-15 -3517 ($ (-684 |#3|)))))
+((-4257 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4373 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4373 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4257 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050))
+((-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
+(-10 -7 (-15 -4373 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4257 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ |#1|) 23)))
(((-1051 |#1|) (-140) (-1052)) (T -1051))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-1052) (-140)) (T -1052))
NIL
(-13 (-21) (-1105))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T))
-((-1763 (($ $) 16)) (-3925 (($ $) 22)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 49)) (-3975 (($ $) 24)) (-3935 (($ $) 11)) (-3954 (($ $) 38)) (-2219 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) 33)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 28) (($ (-563)) NIL) (($ (-407 (-563))) 28)) (-3914 (((-767)) 8)) (-3965 (($ $) 39)))
-(((-1053 |#1|) (-10 -8 (-15 -3925 (|#1| |#1|)) (-15 -1763 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3954 (|#1| |#1|)) (-15 -3965 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| |#1|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-1054)) (T -1053))
-((-3914 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
-(-10 -8 (-15 -3925 (|#1| |#1|)) (-15 -1763 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3954 (|#1| |#1|)) (-15 -3965 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -1812 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 -2219 ((-225) |#1|)) (-15 -2219 ((-379) |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| |#1|)) (-15 -3914 ((-767))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3944 (((-563) $) 90)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-1763 (($ $) 88)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2185 (($ $) 98)) (-2003 (((-112) $ $) 60)) (-2807 (((-563) $) 115)) (-2569 (($) 17 T CONST)) (-3925 (($ $) 87)) (-2130 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2057 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-2560 (((-112) $) 72)) (-3414 (((-112) $) 113)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 97)) (-3975 (($ $) 93)) (-3426 (((-112) $) 114)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3088 (($ $ $) 112)) (-1776 (($ $ $) 111)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-3935 (($ $) 89)) (-3954 (($ $) 91)) (-2173 (((-418 $) $) 75)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-2219 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-3914 (((-767)) 28)) (-3965 (($ $) 92)) (-3223 (((-112) $ $) 40)) (-1462 (($ $) 116)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1779 (((-112) $ $) 109)) (-1754 (((-112) $ $) 108)) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 110)) (-1743 (((-112) $ $) 107)) (-1836 (($ $ $) 66)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-859)) . T) ((-1105) . T) ((-1094) . T))
+((-4185 (($ $) 16)) (-3519 (($ $) 22)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 49)) (-3524 (($ $) 24)) (-3520 (($ $) 11)) (-3522 (($ $) 38)) (-4385 (((-378) $) NIL) (((-225) $) NIL) (((-886 (-378)) $) 33)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL) (($ (-407 (-546))) 28) (($ (-546)) NIL) (($ (-407 (-546))) 28)) (-3518 (((-767)) 8)) (-3523 (($ $) 39)))
+(((-1053 |#1|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| |#1|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-1054)) (T -1053))
+((-3518 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
+(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3185 ((-884 (-378) |#1|) |#1| (-886 (-378)) (-884 (-378) |#1|))) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 -4385 ((-225) |#1|)) (-15 -4385 ((-378) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| |#1|)) (-15 -3518 ((-767))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3521 (((-546) $) 90)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-4185 (($ $) 88)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-3427 (($ $) 98)) (-1740 (((-112) $ $) 60)) (-4038 (((-546) $) 115)) (-4139 (($) 17 T CONST)) (-3519 (($ $) 87)) (-3565 (((-3 (-546) #1="failed") $) 103) (((-3 (-407 (-546)) #1#) $) 100)) (-3564 (((-546) $) 104) (((-407 (-546)) $) 101)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-4138 (((-112) $) 72)) (-3594 (((-112) $) 113)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 94)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 97)) (-3524 (($ $) 93)) (-3595 (((-112) $) 114)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) 53)) (-2919 (($ $ $) 112)) (-3249 (($ $ $) 111)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-3520 (($ $) 89)) (-3522 (($ $) 91)) (-4147 (((-405 $) $) 75)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-4385 (((-378) $) 106) (((-225) $) 105) (((-886 (-378)) $) 95)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ (-546)) 102) (($ (-407 (-546))) 99)) (-3518 (((-767)) 28 T CONST)) (-3523 (($ $) 92)) (-2219 (((-112) $ $) 40)) (-3794 (($ $) 116)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-2951 (((-112) $ $) 109)) (-2952 (((-112) $ $) 108)) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 110)) (-3074 (((-112) $ $) 107)) (-4364 (($ $ $) 66)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70) (($ $ (-407 (-546))) 96)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68)))
(((-1054) (-140)) (T -1054))
-((-1462 (*1 *1 *1) (-4 *1 (-1054))) (-3975 (*1 *1 *1) (-4 *1 (-1054))) (-3965 (*1 *1 *1) (-4 *1 (-1054))) (-3954 (*1 *1 *1) (-4 *1 (-1054))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563)))) (-3935 (*1 *1 *1) (-4 *1 (-1054))) (-1763 (*1 *1 *1) (-4 *1 (-1054))) (-3925 (*1 *1 *1) (-4 *1 (-1054))))
-(-13 (-363) (-844) (-1018) (-1034 (-563)) (-1034 (-407 (-563))) (-998) (-611 (-888 (-379))) (-882 (-379)) (-147) (-10 -8 (-15 -3975 ($ $)) (-15 -3965 ($ $)) (-15 -3954 ($ $)) (-15 -3944 ((-563) $)) (-15 -3935 ($ $)) (-15 -1763 ($ $)) (-15 -3925 ($ $)) (-15 -1462 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) |#2| $) 23)) (-3750 ((|#1| $) 10)) (-2807 (((-563) |#2| $) 87)) (-3377 (((-3 $ "failed") |#2| (-917)) 57)) (-1700 ((|#1| $) 28)) (-3365 ((|#1| |#2| $ |#1|) 37)) (-3998 (($ $) 25)) (-3951 (((-3 |#2| "failed") |#2| $) 86)) (-3414 (((-112) |#2| $) NIL)) (-3426 (((-112) |#2| $) NIL)) (-3986 (((-112) |#2| $) 24)) (-4009 ((|#1| $) 88)) (-1685 ((|#1| $) 27)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3402 ((|#2| $) 78)) (-1692 (((-858) $) 70)) (-1402 ((|#1| |#2| $ |#1|) 38)) (-3389 (((-640 $) |#2|) 59)) (-1718 (((-112) $ $) 73)))
-(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -1685 (|#1| $)) (-15 -1700 (|#1| $)) (-15 -3750 (|#1| $)) (-15 -4009 (|#1| $)) (-15 -3998 ($ $)) (-15 -3986 ((-112) |#2| $)) (-15 -3365 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1233 |#1|)) (T -1055))
-((-3365 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1685 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1700 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3750 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-4009 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3998 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3986 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1233 *4)))))
-(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -1685 (|#1| $)) (-15 -1700 (|#1| $)) (-15 -3750 (|#1| $)) (-15 -4009 (|#1| $)) (-15 -3998 ($ $)) (-15 -3986 ((-112) |#2| $)) (-15 -3365 (|#1| |#2| $ |#1|))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-4297 (($ $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4275 (($ $ $ $) NIL)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-2807 (((-563) $) NIL)) (-3462 (($ $ $) NIL)) (-2569 (($) NIL T CONST)) (-4019 (($ (-1169)) 10) (($ (-563)) 7)) (-2130 (((-3 (-563) "failed") $) NIL)) (-2057 (((-563) $) NIL)) (-3094 (($ $ $) NIL)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL)) (-2317 (((-112) $) NIL)) (-2306 (((-407 (-563)) $) NIL)) (-1690 (($) NIL) (($ $) NIL)) (-3054 (($ $ $) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-4251 (($ $ $ $) NIL)) (-4308 (($ $ $) NIL)) (-3414 (((-112) $) NIL)) (-2101 (($ $ $) NIL)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3401 (((-112) $) NIL)) (-2959 (((-112) $) NIL)) (-1983 (((-3 $ "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4264 (($ $ $ $) NIL)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-2645 (($ $) NIL)) (-3419 (($ $) NIL)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-4239 (($ $ $) NIL)) (-2522 (($) NIL T CONST)) (-2827 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2081 (($ $) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-3873 (($ $) NIL)) (-1870 (($ $) NIL)) (-2219 (((-563) $) 16) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1169)) 9)) (-1692 (((-858) $) 20) (($ (-563)) 6) (($ $) NIL) (($ (-563)) 6)) (-3914 (((-767)) NIL)) (-4319 (((-112) $ $) NIL)) (-1864 (($ $ $) NIL)) (-4212 (($) NIL)) (-3223 (((-112) $ $) NIL)) (-4287 (($ $ $ $) NIL)) (-1462 (($ $) NIL)) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)) (-1825 (($ $) 19) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL)))
-(((-1056) (-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -4019 ($ (-1169))) (-15 -4019 ($ (-563)))))) (T -1056))
-((-4019 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056)))))
-(-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -4019 ($ (-1169))) (-15 -4019 ($ (-563)))))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-2208 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-4042 (($) 9)) (-1849 (((-52) $ (-1169) (-52)) NIL)) (-4130 (($ $) 30)) (-4164 (($ $) 28)) (-4173 (($ $) 27)) (-4154 (($ $) 29)) (-4120 (($ $) 32)) (-4109 (($ $) 33)) (-4183 (($ $) 26)) (-4143 (($ $) 31)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) 25 (|has| $ (-6 -4408)))) (-1576 (((-3 (-52) "failed") (-1169) $) 40)) (-2569 (($) NIL T CONST)) (-4195 (($) 7)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1691 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) 50 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-4030 (((-3 (-1151) "failed") $ (-1151) (-563)) 59)) (-4356 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4409)))) (-4293 (((-52) $ (-1169)) NIL)) (-2658 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-1169) $) NIL (|has| (-1169) (-846)))) (-3523 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) 35 (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2251 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-1304 (((-640 (-1169)) $) NIL)) (-2305 (((-112) (-1169) $) NIL)) (-2627 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL)) (-3867 (($ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) 43)) (-2272 (((-640 (-1169)) $) NIL)) (-2282 (((-112) (-1169) $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-4075 (((-379) $ (-1169)) 49)) (-4064 (((-640 (-1151)) $ (-1151)) 60)) (-3782 (((-52) $) NIL (|has| (-1169) (-846)))) (-1971 (((-3 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL)) (-2221 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-2295 (((-640 (-52)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 (((-52) $ (-1169)) NIL) (((-52) $ (-1169) (-52)) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-4054 (($ $ (-1169)) 51)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) 37)) (-2857 (($ $ $) 38)) (-1692 (((-858) $) NIL (-4034 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-610 (-858)))))) (-4097 (($ $ (-1169) (-379)) 47)) (-4086 (($ $ (-1169) (-379)) 48)) (-2820 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2556 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1057) (-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -2857 ($ $ $)) (-15 -4195 ($)) (-15 -4183 ($ $)) (-15 -4173 ($ $)) (-15 -4164 ($ $)) (-15 -4154 ($ $)) (-15 -4143 ($ $)) (-15 -4130 ($ $)) (-15 -4120 ($ $)) (-15 -4109 ($ $)) (-15 -4097 ($ $ (-1169) (-379))) (-15 -4086 ($ $ (-1169) (-379))) (-15 -4075 ((-379) $ (-1169))) (-15 -4064 ((-640 (-1151)) $ (-1151))) (-15 -4054 ($ $ (-1169))) (-15 -4042 ($)) (-15 -4030 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4408)))) (T -1057))
-((-2857 (*1 *1 *1 *1) (-5 *1 (-1057))) (-4195 (*1 *1) (-5 *1 (-1057))) (-4183 (*1 *1 *1) (-5 *1 (-1057))) (-4173 (*1 *1 *1) (-5 *1 (-1057))) (-4164 (*1 *1 *1) (-5 *1 (-1057))) (-4154 (*1 *1 *1) (-5 *1 (-1057))) (-4143 (*1 *1 *1) (-5 *1 (-1057))) (-4130 (*1 *1 *1) (-5 *1 (-1057))) (-4120 (*1 *1 *1) (-5 *1 (-1057))) (-4109 (*1 *1 *1) (-5 *1 (-1057))) (-4097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-4075 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057)))) (-4064 (*1 *2 *1 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))) (-4054 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))) (-4042 (*1 *1) (-5 *1 (-1057))) (-4030 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057)))))
-(-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -2857 ($ $ $)) (-15 -4195 ($)) (-15 -4183 ($ $)) (-15 -4173 ($ $)) (-15 -4164 ($ $)) (-15 -4154 ($ $)) (-15 -4143 ($ $)) (-15 -4130 ($ $)) (-15 -4120 ($ $)) (-15 -4109 ($ $)) (-15 -4097 ($ $ (-1169) (-379))) (-15 -4086 ($ $ (-1169) (-379))) (-15 -4075 ((-379) $ (-1169))) (-15 -4064 ((-640 (-1151)) $ (-1151))) (-15 -4054 ($ $ (-1169))) (-15 -4042 ($)) (-15 -4030 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4408)))
-((-4303 (($ $) 43)) (-1351 (((-112) $ $) 73)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) 225) (((-3 $ "failed") (-948 (-563))) 224) (((-3 $ "failed") (-948 |#2|)) 227)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) NIL) (($ (-948 (-407 (-563)))) 213) (($ (-948 (-563))) 209) (($ (-948 |#2|)) 229)) (-2750 (($ $) NIL) (($ $ |#4|) 41)) (-2264 (((-112) $ $) 110) (((-112) $ (-640 $)) 111)) (-3277 (((-112) $) 54)) (-1564 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 105)) (-4235 (($ $) 136)) (-4349 (($ $) 132)) (-4359 (($ $) 131)) (-1341 (($ $ $) 78) (($ $ $ |#4|) 83)) (-1332 (($ $ $) 81) (($ $ $ |#4|) 85)) (-2274 (((-112) $ $) 119) (((-112) $ (-640 $)) 120)) (-3354 ((|#4| $) 31)) (-4379 (($ $ $) 108)) (-3286 (((-112) $) 53)) (-3343 (((-767) $) 33)) (-4206 (($ $) 150)) (-4216 (($ $) 147)) (-3239 (((-640 $) $) 67)) (-3267 (($ $) 56)) (-4226 (($ $) 143)) (-3249 (((-640 $) $) 64)) (-3260 (($ $) 58)) (-2725 ((|#2| $) NIL) (($ $ |#4|) 36)) (-4367 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4104 (-767))) $ $) 109)) (-1291 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $) 106) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $ |#4|) 107)) (-1300 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $) 102) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $ |#4|) 103)) (-1322 (($ $ $) 88) (($ $ $ |#4|) 93)) (-1312 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3312 (((-640 $) $) 49)) (-2225 (((-112) $ $) 116) (((-112) $ (-640 $)) 117)) (-2163 (($ $ $) 101)) (-2522 (($ $) 35)) (-2319 (((-112) $ $) 71)) (-2241 (((-112) $ $) 112) (((-112) $ (-640 $)) 114)) (-2176 (($ $ $) 99)) (-3333 (($ $) 38)) (-3551 ((|#2| |#2| $) 140) (($ (-640 $)) NIL) (($ $ $) NIL)) (-4326 (($ $ |#2|) NIL) (($ $ $) 129)) (-4338 (($ $ |#2|) 124) (($ $ $) 127)) (-3323 (($ $) 46)) (-3297 (($ $) 50)) (-2219 (((-888 (-379)) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (($ (-948 (-407 (-563)))) 215) (($ (-948 (-563))) 211) (($ (-948 |#2|)) 226) (((-1151) $) 249) (((-948 |#2|) $) 160)) (-1692 (((-858) $) 28) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-948 |#2|) $) 161) (($ (-407 (-563))) NIL) (($ $) NIL)) (-1361 (((-3 (-112) "failed") $ $) 70)))
-(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 ((-948 |#2|) |#1|)) (-15 -2219 ((-948 |#2|) |#1|)) (-15 -2219 ((-1151) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4216 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -3551 (|#2| |#2| |#1|)) (-15 -4326 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1| |#1|)) (-15 -4326 (|#1| |#1| |#2|)) (-15 -4338 (|#1| |#1| |#2|)) (-15 -4349 (|#1| |#1|)) (-15 -4359 (|#1| |#1|)) (-15 -2219 (|#1| (-948 |#2|))) (-15 -2057 (|#1| (-948 |#2|))) (-15 -2130 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2219 (|#1| (-948 (-563)))) (-15 -2057 (|#1| (-948 (-563)))) (-15 -2130 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2219 (|#1| (-948 (-407 (-563))))) (-15 -2057 (|#1| (-948 (-407 (-563))))) (-15 -2130 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -2163 (|#1| |#1| |#1|)) (-15 -2176 (|#1| |#1| |#1|)) (-15 -4367 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4104 (-767))) |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -1564 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1300 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1| |#4|)) (-15 -1322 (|#1| |#1| |#1| |#4|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1| |#4|)) (-15 -1341 (|#1| |#1| |#1| |#4|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|)) (-15 -2274 ((-112) |#1| (-640 |#1|))) (-15 -2274 ((-112) |#1| |#1|)) (-15 -2225 ((-112) |#1| (-640 |#1|))) (-15 -2225 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| (-640 |#1|))) (-15 -2241 ((-112) |#1| |#1|)) (-15 -2264 ((-112) |#1| (-640 |#1|))) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1351 ((-112) |#1| |#1|)) (-15 -2319 ((-112) |#1| |#1|)) (-15 -1361 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3239 ((-640 |#1|) |#1|)) (-15 -3249 ((-640 |#1|) |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -3277 ((-112) |#1|)) (-15 -3286 ((-112) |#1|)) (-15 -2750 (|#1| |#1| |#4|)) (-15 -2725 (|#1| |#1| |#4|)) (-15 -3297 (|#1| |#1|)) (-15 -3312 ((-640 |#1|) |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -3343 ((-767) |#1|)) (-15 -3354 (|#4| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1692 (|#1| |#4|)) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -2057 (|#4| |#1|)) (-15 -2725 (|#2| |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058))
-NIL
-(-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3551 (|#1| (-640 |#1|))) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 ((-948 |#2|) |#1|)) (-15 -2219 ((-948 |#2|) |#1|)) (-15 -2219 ((-1151) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4216 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -3551 (|#2| |#2| |#1|)) (-15 -4326 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1| |#1|)) (-15 -4326 (|#1| |#1| |#2|)) (-15 -4338 (|#1| |#1| |#2|)) (-15 -4349 (|#1| |#1|)) (-15 -4359 (|#1| |#1|)) (-15 -2219 (|#1| (-948 |#2|))) (-15 -2057 (|#1| (-948 |#2|))) (-15 -2130 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2219 (|#1| (-948 (-563)))) (-15 -2057 (|#1| (-948 (-563)))) (-15 -2130 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2219 (|#1| (-948 (-407 (-563))))) (-15 -2057 (|#1| (-948 (-407 (-563))))) (-15 -2130 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -2163 (|#1| |#1| |#1|)) (-15 -2176 (|#1| |#1| |#1|)) (-15 -4367 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4104 (-767))) |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -1564 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -1291 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1300 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -3443 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-2 (|:| -2310 |#1|) (|:| |gap| (-767)) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1| |#4|)) (-15 -1322 (|#1| |#1| |#1| |#4|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1| |#4|)) (-15 -1341 (|#1| |#1| |#1| |#4|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|)) (-15 -2274 ((-112) |#1| (-640 |#1|))) (-15 -2274 ((-112) |#1| |#1|)) (-15 -2225 ((-112) |#1| (-640 |#1|))) (-15 -2225 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| (-640 |#1|))) (-15 -2241 ((-112) |#1| |#1|)) (-15 -2264 ((-112) |#1| (-640 |#1|))) (-15 -2264 ((-112) |#1| |#1|)) (-15 -1351 ((-112) |#1| |#1|)) (-15 -2319 ((-112) |#1| |#1|)) (-15 -1361 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3239 ((-640 |#1|) |#1|)) (-15 -3249 ((-640 |#1|) |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -3277 ((-112) |#1|)) (-15 -3286 ((-112) |#1|)) (-15 -2750 (|#1| |#1| |#4|)) (-15 -2725 (|#1| |#1| |#4|)) (-15 -3297 (|#1| |#1|)) (-15 -3312 ((-640 |#1|) |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -3343 ((-767) |#1|)) (-15 -3354 (|#4| |#1|)) (-15 -2219 ((-536) |#1|)) (-15 -2219 ((-888 (-563)) |#1|)) (-15 -2219 ((-888 (-379)) |#1|)) (-15 -1692 (|#1| |#4|)) (-15 -2130 ((-3 |#4| "failed") |#1|)) (-15 -2057 (|#4| |#1|)) (-15 -2725 (|#2| |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 |#3|) $) 110)) (-2138 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-3231 (($ $) 88 (|has| |#1| (-555)))) (-3211 (((-112) $) 90 (|has| |#1| (-555)))) (-3897 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-4303 (($ $) 271)) (-1351 (((-112) $ $) 257)) (-3905 (((-3 $ "failed") $ $) 19)) (-1601 (($ $ $) 216 (|has| |#1| (-555)))) (-4282 (((-640 $) $ $) 211 (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-1798 (($ $) 98 (|has| |#1| (-452)))) (-2802 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-948 (-407 (-563)))) 231 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) 228 (-4034 (-12 (-2174 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) 225 (-4034 (-12 (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-2174 (|has| |#1| (-545))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-2174 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-2057 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) (($ (-948 (-407 (-563)))) 230 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 227 (-4034 (-12 (-2174 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 224 (-4034 (-12 (-2174 (|has| |#1| (-38 (-407 (-563))))) (-2174 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-2174 (|has| |#1| (-545))) (-2174 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-2174 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-1612 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-555)))) (-2750 (($ $) 154) (($ $ |#3|) 266)) (-1476 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-2264 (((-112) $ $) 256) (((-112) $ (-640 $)) 255)) (-3951 (((-3 $ "failed") $) 33)) (-3277 (((-112) $) 264)) (-1564 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 236)) (-4235 (($ $) 205 (|has| |#1| (-452)))) (-4151 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2738 (((-640 $) $) 109)) (-2560 (((-112) $) 96 (|has| |#1| (-905)))) (-4349 (($ $) 221 (|has| |#1| (-555)))) (-4359 (($ $) 222 (|has| |#1| (-555)))) (-1341 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1332 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2159 (($ $ |#1| |#2| $) 172)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3401 (((-112) $) 31)) (-3481 (((-767) $) 169)) (-2274 (((-112) $ $) 250) (((-112) $ (-640 $)) 249)) (-4246 (($ $ $ $ $) 207 (|has| |#1| (-555)))) (-3354 ((|#3| $) 275)) (-2595 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3919 (((-640 $) $) 126)) (-3805 (((-112) $) 152)) (-2587 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-4379 (($ $ $) 235)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#3|) 120)) (-3286 (((-112) $) 265)) (-3908 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3088 (($ $ $) 79 (|has| |#1| (-846)))) (-3343 (((-767) $) 274)) (-1776 (($ $ $) 78 (|has| |#1| (-846)))) (-2170 (($ (-1 |#2| |#2|) $) 171)) (-2238 (($ (-1 |#1| |#1|) $) 151)) (-1698 (((-3 |#3| "failed") $) 123)) (-4206 (($ $) 202 (|has| |#1| (-452)))) (-4216 (($ $) 203 (|has| |#1| (-452)))) (-3239 (((-640 $) $) 260)) (-3267 (($ $) 263)) (-4226 (($ $) 204 (|has| |#1| (-452)))) (-3249 (((-640 $) $) 261)) (-3260 (($ $) 262)) (-2715 (($ $) 149)) (-2725 ((|#1| $) 148) (($ $ |#3|) 267)) (-3517 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-4367 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4104 (-767))) $ $) 234)) (-1291 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $) 238) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $ |#3|) 237)) (-1300 (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $) 240) (((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $ |#3|) 239)) (-1322 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1312 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3854 (((-1151) $) 9)) (-3461 (($ $ $) 210 (|has| |#1| (-555)))) (-3312 (((-640 $) $) 269)) (-3939 (((-3 (-640 $) "failed") $) 114)) (-3930 (((-3 (-640 $) "failed") $) 115)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3311 (-767))) "failed") $) 113)) (-2225 (((-112) $ $) 252) (((-112) $ (-640 $)) 251)) (-2163 (($ $ $) 232)) (-2522 (($ $) 273)) (-2319 (((-112) $ $) 258)) (-2241 (((-112) $ $) 254) (((-112) $ (-640 $)) 253)) (-2176 (($ $ $) 233)) (-3333 (($ $) 272)) (-1693 (((-1113) $) 10)) (-4294 (((-2 (|:| -3551 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-555)))) (-4305 (((-2 (|:| -3551 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-555)))) (-2695 (((-112) $) 166)) (-2705 ((|#1| $) 167)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3551 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 99 (|has| |#1| (-905)))) (-4315 (((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-555)))) (-3012 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-4326 (($ $ |#1|) 219 (|has| |#1| (-555))) (($ $ $) 217 (|has| |#1| (-555)))) (-4338 (($ $ |#1|) 220 (|has| |#1| (-555))) (($ $ $) 218 (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-1623 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4203 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-3871 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-3323 (($ $) 270)) (-3297 (($ $) 268)) (-2219 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536))))) (($ (-948 (-407 (-563)))) 229 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 226 (-4034 (-12 (-2174 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 223 (|has| |#3| (-611 (-1169)))) (((-1151) $) 201 (-12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169))))) (((-948 |#1|) $) 200 (|has| |#3| (-611 (-1169))))) (-3885 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2188 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-948 |#1|) $) 199 (|has| |#3| (-611 (-1169)))) (($ (-407 (-563))) 72 (-4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) 168)) (-3244 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2047 (((-3 $ "failed") $) 73 (-4034 (-2188 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 28)) (-2148 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-1361 (((-3 (-112) "failed") $ $) 259)) (-2253 (($) 30 T CONST)) (-4259 (($ $ $ $ (-767)) 208 (|has| |#1| (-555)))) (-4271 (($ $ $ (-767)) 209 (|has| |#1| (-555)))) (-3213 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-1779 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-3794 (*1 *1 *1) (-4 *1 (-1054))) (-3524 (*1 *1 *1) (-4 *1 (-1054))) (-3523 (*1 *1 *1) (-4 *1 (-1054))) (-3522 (*1 *1 *1) (-4 *1 (-1054))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-546)))) (-3520 (*1 *1 *1) (-4 *1 (-1054))) (-4185 (*1 *1 *1) (-4 *1 (-1054))) (-3519 (*1 *1 *1) (-4 *1 (-1054))))
+(-13 (-363) (-844) (-1016) (-1034 (-546)) (-1034 (-407 (-546))) (-998) (-611 (-886 (-378))) (-882 (-378)) (-147) (-10 -8 (-15 -3524 ($ $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -3521 ((-546) $)) (-15 -3520 ($ $)) (-15 -4185 ($ $)) (-15 -3519 ($ $)) (-15 -3794 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-378)) . T) ((-611 (-886 (-378))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-793) . T) ((-844) . T) ((-846) . T) ((-882 (-378)) . T) ((-917) . T) ((-998) . T) ((-1016) . T) ((-1034 (-407 (-546))) . T) ((-1034 (-546)) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) |#2| $) 23)) (-3528 ((|#1| $) 10)) (-4038 (((-546) |#2| $) 87)) (-3591 (((-3 $ #1="failed") |#2| (-915)) 57)) (-3529 ((|#1| $) 28)) (-3590 ((|#1| |#2| $ |#1|) 37)) (-3526 (($ $) 25)) (-3873 (((-3 |#2| #1#) |#2| $) 86)) (-3594 (((-112) |#2| $) NIL)) (-3595 (((-112) |#2| $) NIL)) (-3525 (((-112) |#2| $) 24)) (-3527 ((|#1| $) 88)) (-3530 ((|#1| $) 27)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3593 ((|#2| $) 78)) (-4361 (((-859) $) 70)) (-4184 ((|#1| |#2| $ |#1|) 38)) (-3592 (((-637 $) |#2|) 59)) (-3444 (((-112) $ $) 73)))
+(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -3530 (|#1| $)) (-15 -3529 (|#1| $)) (-15 -3528 (|#1| $)) (-15 -3527 (|#1| $)) (-15 -3526 ($ $)) (-15 -3525 ((-112) |#2| $)) (-15 -3590 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1232 |#1|)) (T -1055))
+((-3590 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3527 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3526 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))) (-3525 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1232 *4)))))
+(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -3530 (|#1| $)) (-15 -3529 (|#1| $)) (-15 -3528 (|#1| $)) (-15 -3527 (|#1| $)) (-15 -3526 ($ $)) (-15 -3525 ((-112) |#2| $)) (-15 -3590 (|#1| |#2| $ |#1|))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-2204 (($ $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2199 (($ $ $ $) NIL)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-4038 (((-546) $) NIL)) (-2741 (($ $ $) NIL)) (-4139 (($) NIL T CONST)) (-3531 (($ (-1169)) 10) (($ (-546)) 7)) (-3565 (((-3 (-546) "failed") $) NIL)) (-3564 (((-546) $) NIL)) (-2949 (($ $ $) NIL)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-684 (-546)) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3412 (((-407 (-546)) $) NIL)) (-3384 (($) NIL) (($ $) NIL)) (-2948 (($ $ $) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2197 (($ $ $ $) NIL)) (-2205 (($ $ $) NIL)) (-3594 (((-112) $) NIL)) (-1446 (($ $ $) NIL)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL)) (-2552 (((-112) $) NIL)) (-3062 (((-112) $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3595 (((-112) $) NIL)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2198 (($ $ $ $) NIL)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-2201 (($ $) NIL)) (-4248 (($ $) NIL)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2196 (($ $ $) NIL)) (-3856 (($) NIL T CONST)) (-2203 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) NIL) (($ (-637 $)) NIL)) (-1444 (($ $) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-2202 (($ $) NIL)) (-3811 (($ $) NIL)) (-4385 (((-546) $) 16) (((-535) $) NIL) (((-886 (-546)) $) NIL) (((-378) $) NIL) (((-225) $) NIL) (($ (-1169)) 9)) (-4361 (((-859) $) 20) (($ (-546)) 6) (($ $) NIL) (($ (-546)) 6)) (-3518 (((-767)) NIL)) (-2206 (((-112) $ $) NIL)) (-3494 (($ $ $) NIL)) (-3083 (($) NIL)) (-2219 (((-112) $ $) NIL)) (-2200 (($ $ $ $) NIL)) (-3794 (($ $) NIL)) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)) (-4252 (($ $) 19) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL)))
+(((-1056) (-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3531 ($ (-1169))) (-15 -3531 ($ (-546)))))) (T -1056))
+((-3531 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1056)))))
+(-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3531 ($ (-1169))) (-15 -3531 ($ (-546)))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-2351 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-3533 (($) 9)) (-4202 (((-51) $ (-1169) (-51)) NIL)) (-3541 (($ $) 30)) (-3544 (($ $) 28)) (-3545 (($ $) 27)) (-3543 (($ $) 29)) (-3540 (($ $) 32)) (-3539 (($ $) 33)) (-3546 (($ $) 26)) (-3542 (($ $) 31)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) 25 (|has| $ (-6 -4408)))) (-2360 (((-3 (-51) #1="failed") (-1169) $) 40)) (-4139 (($) NIL T CONST)) (-3547 (($) 7)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-3816 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) 50 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-51) #1#) (-1169) $) NIL)) (-3817 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408)))) (-3532 (((-3 (-1151) "failed") $ (-1151) (-546)) 59)) (-1672 (((-51) $ (-1169) (-51)) NIL (|has| $ (-6 -4409)))) (-3505 (((-51) $ (-1169)) NIL)) (-2103 (((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2993 (((-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) 35 (|has| $ (-6 -4408))) (((-637 (-51)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2354 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-2795 (((-637 (-1169)) $) NIL)) (-2361 (((-112) (-1169) $) NIL)) (-1359 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL)) (-4022 (($ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) 43)) (-2356 (((-637 (-1169)) $) NIL)) (-2357 (((-112) (-1169) $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-3536 (((-378) $ (-1169)) 49)) (-3535 (((-637 (-1151)) $ (-1151)) 60)) (-4215 (((-51) $) NIL (|has| (-1169) (-846)))) (-1431 (((-3 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) "failed") (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL)) (-2352 (($ $ (-51)) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-293 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL (-12 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-309 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (($ $ (-637 (-51)) (-637 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-293 (-51))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094)))) (($ $ (-637 (-293 (-51)))) NIL (-12 (|has| (-51) (-309 (-51))) (|has| (-51) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094))))) (-2358 (((-637 (-51)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 (((-51) $ (-1169)) NIL) (((-51) $ (-1169) (-51)) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-3534 (($ $ (-1169)) 51)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094)))) (((-767) (-51) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-51) (-1094)))) (((-767) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) 37)) (-4216 (($ $ $) 38)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-610 (-859))) (|has| (-51) (-610 (-859)))))) (-3538 (($ $ (-1169) (-378)) 47)) (-3537 (($ $ (-1169) (-378)) 48)) (-1361 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 (-1169)) (|:| -2233 (-51)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-51) (-1094)) (|has| (-2 (|:| -4275 (-1169)) (|:| -2233 (-51))) (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1057) (-13 (-1184 (-1169) (-51)) (-10 -8 (-15 -4216 ($ $ $)) (-15 -3547 ($)) (-15 -3546 ($ $)) (-15 -3545 ($ $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -3540 ($ $)) (-15 -3539 ($ $)) (-15 -3538 ($ $ (-1169) (-378))) (-15 -3537 ($ $ (-1169) (-378))) (-15 -3536 ((-378) $ (-1169))) (-15 -3535 ((-637 (-1151)) $ (-1151))) (-15 -3534 ($ $ (-1169))) (-15 -3533 ($)) (-15 -3532 ((-3 (-1151) "failed") $ (-1151) (-546))) (-6 -4408)))) (T -1057))
+((-4216 (*1 *1 *1 *1) (-5 *1 (-1057))) (-3547 (*1 *1) (-5 *1 (-1057))) (-3546 (*1 *1 *1) (-5 *1 (-1057))) (-3545 (*1 *1 *1) (-5 *1 (-1057))) (-3544 (*1 *1 *1) (-5 *1 (-1057))) (-3543 (*1 *1 *1) (-5 *1 (-1057))) (-3542 (*1 *1 *1) (-5 *1 (-1057))) (-3541 (*1 *1 *1) (-5 *1 (-1057))) (-3540 (*1 *1 *1) (-5 *1 (-1057))) (-3539 (*1 *1 *1) (-5 *1 (-1057))) (-3538 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-378)) (-5 *1 (-1057)))) (-3537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-378)) (-5 *1 (-1057)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-378)) (-5 *1 (-1057)))) (-3535 (*1 *2 *1 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))) (-3533 (*1 *1) (-5 *1 (-1057))) (-3532 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-1057)))))
+(-13 (-1184 (-1169) (-51)) (-10 -8 (-15 -4216 ($ $ $)) (-15 -3547 ($)) (-15 -3546 ($ $)) (-15 -3545 ($ $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -3540 ($ $)) (-15 -3539 ($ $)) (-15 -3538 ($ $ (-1169) (-378))) (-15 -3537 ($ $ (-1169) (-378))) (-15 -3536 ((-378) $ (-1169))) (-15 -3535 ((-637 (-1151)) $ (-1151))) (-15 -3534 ($ $ (-1169))) (-15 -3533 ($)) (-15 -3532 ((-3 (-1151) "failed") $ (-1151) (-546))) (-6 -4408)))
+((-4211 (($ $) 43)) (-3574 (((-112) $ $) 73)) (-3565 (((-3 |#2| #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 (-546) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-942 (-407 (-546)))) 225) (((-3 $ "failed") (-942 (-546))) 224) (((-3 $ "failed") (-942 |#2|)) 227)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL) (((-546) $) NIL) ((|#4| $) NIL) (($ (-942 (-407 (-546)))) 213) (($ (-942 (-546))) 209) (($ (-942 |#2|)) 229)) (-4374 (($ $) NIL) (($ $ |#4|) 41)) (-4109 (((-112) $ $) 110) (((-112) $ (-637 $)) 111)) (-3580 (((-112) $) 54)) (-4167 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 105)) (-3551 (($ $) 136)) (-3562 (($ $) 132)) (-3563 (($ $) 131)) (-3573 (($ $ $) 78) (($ $ $ |#4|) 83)) (-3572 (($ $ $) 81) (($ $ $ |#4|) 85)) (-4110 (((-112) $ $) 119) (((-112) $ (-637 $)) 120)) (-3588 ((|#4| $) 31)) (-3567 (($ $ $) 108)) (-3581 (((-112) $) 53)) (-3587 (((-767) $) 33)) (-3548 (($ $) 150)) (-3549 (($ $) 147)) (-3576 (((-637 $) $) 67)) (-3579 (($ $) 56)) (-3550 (($ $) 143)) (-3577 (((-637 $) $) 64)) (-3578 (($ $) 58)) (-3582 ((|#2| $) NIL) (($ $ |#4|) 36)) (-3566 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3887 (-767))) $ $) 109)) (-3568 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $) 106) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $ |#4|) 107)) (-3569 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $) 102) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $ |#4|) 103)) (-3571 (($ $ $) 88) (($ $ $ |#4|) 93)) (-3570 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3584 (((-637 $) $) 49)) (-4106 (((-112) $ $) 116) (((-112) $ (-637 $)) 117)) (-4101 (($ $ $) 101)) (-3856 (($ $) 35)) (-4114 (((-112) $ $) 71)) (-4107 (((-112) $ $) 112) (((-112) $ (-637 $)) 114)) (-4102 (($ $ $) 99)) (-3586 (($ $) 38)) (-3552 ((|#2| |#2| $) 140) (($ (-637 $)) NIL) (($ $ $) NIL)) (-3560 (($ $ |#2|) NIL) (($ $ $) 129)) (-3561 (($ $ |#2|) 124) (($ $ $) 127)) (-3585 (($ $) 46)) (-3583 (($ $) 50)) (-4385 (((-886 (-378)) $) NIL) (((-886 (-546)) $) NIL) (((-535) $) NIL) (($ (-942 (-407 (-546)))) 215) (($ (-942 (-546))) 211) (($ (-942 |#2|)) 226) (((-1151) $) 249) (((-942 |#2|) $) 160)) (-4361 (((-859) $) 28) (($ (-546)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-942 |#2|) $) 161) (($ (-407 (-546))) NIL) (($ $) NIL)) (-3575 (((-3 (-112) "failed") $ $) 70)))
+(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 ((-942 |#2|) |#1|)) (-15 -4385 ((-942 |#2|) |#1|)) (-15 -4385 ((-1151) |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3551 (|#1| |#1|)) (-15 -3552 (|#2| |#2| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3561 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#2|)) (-15 -3561 (|#1| |#1| |#2|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -4385 (|#1| (-942 |#2|))) (-15 -3564 (|#1| (-942 |#2|))) (-15 -3565 ((-3 |#1| "failed") (-942 |#2|))) (-15 -4385 (|#1| (-942 (-546)))) (-15 -3564 (|#1| (-942 (-546)))) (-15 -3565 ((-3 |#1| "failed") (-942 (-546)))) (-15 -4385 (|#1| (-942 (-407 (-546))))) (-15 -3564 (|#1| (-942 (-407 (-546))))) (-15 -3565 ((-3 |#1| "failed") (-942 (-407 (-546))))) (-15 -4101 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -3566 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3887 (-767))) |#1| |#1|)) (-15 -3567 (|#1| |#1| |#1|)) (-15 -4167 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3569 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3569 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1| |#4|)) (-15 -3571 (|#1| |#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1| |#4|)) (-15 -3573 (|#1| |#1| |#1| |#4|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -4110 ((-112) |#1| (-637 |#1|))) (-15 -4110 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| (-637 |#1|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -4107 ((-112) |#1| (-637 |#1|))) (-15 -4107 ((-112) |#1| |#1|)) (-15 -4109 ((-112) |#1| (-637 |#1|))) (-15 -4109 ((-112) |#1| |#1|)) (-15 -3574 ((-112) |#1| |#1|)) (-15 -4114 ((-112) |#1| |#1|)) (-15 -3575 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3576 ((-637 |#1|) |#1|)) (-15 -3577 ((-637 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -3581 ((-112) |#1|)) (-15 -4374 (|#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#4|)) (-15 -3583 (|#1| |#1|)) (-15 -3584 ((-637 |#1|) |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3587 ((-767) |#1|)) (-15 -3588 (|#4| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4361 (|#1| |#4|)) (-15 -3565 ((-3 |#4| #1="failed") |#1|)) (-15 -3564 (|#4| |#1|)) (-15 -3582 (|#2| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058))
+NIL
+(-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3552 (|#1| (-637 |#1|))) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 ((-942 |#2|) |#1|)) (-15 -4385 ((-942 |#2|) |#1|)) (-15 -4385 ((-1151) |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3551 (|#1| |#1|)) (-15 -3552 (|#2| |#2| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3561 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#2|)) (-15 -3561 (|#1| |#1| |#2|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -4385 (|#1| (-942 |#2|))) (-15 -3564 (|#1| (-942 |#2|))) (-15 -3565 ((-3 |#1| "failed") (-942 |#2|))) (-15 -4385 (|#1| (-942 (-546)))) (-15 -3564 (|#1| (-942 (-546)))) (-15 -3565 ((-3 |#1| "failed") (-942 (-546)))) (-15 -4385 (|#1| (-942 (-407 (-546))))) (-15 -3564 (|#1| (-942 (-407 (-546))))) (-15 -3565 ((-3 |#1| "failed") (-942 (-407 (-546))))) (-15 -4101 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -3566 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3887 (-767))) |#1| |#1|)) (-15 -3567 (|#1| |#1| |#1|)) (-15 -4167 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3568 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3569 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3569 ((-2 (|:| -4369 |#1|) (|:| |gap| (-767)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1| |#4|)) (-15 -3571 (|#1| |#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1| |#4|)) (-15 -3573 (|#1| |#1| |#1| |#4|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -4110 ((-112) |#1| (-637 |#1|))) (-15 -4110 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| (-637 |#1|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -4107 ((-112) |#1| (-637 |#1|))) (-15 -4107 ((-112) |#1| |#1|)) (-15 -4109 ((-112) |#1| (-637 |#1|))) (-15 -4109 ((-112) |#1| |#1|)) (-15 -3574 ((-112) |#1| |#1|)) (-15 -4114 ((-112) |#1| |#1|)) (-15 -3575 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3576 ((-637 |#1|) |#1|)) (-15 -3577 ((-637 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -3581 ((-112) |#1|)) (-15 -4374 (|#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#4|)) (-15 -3583 (|#1| |#1|)) (-15 -3584 ((-637 |#1|) |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3587 ((-767) |#1|)) (-15 -3588 (|#4| |#1|)) (-15 -4385 ((-535) |#1|)) (-15 -4385 ((-886 (-546)) |#1|)) (-15 -4385 ((-886 (-378)) |#1|)) (-15 -4361 (|#1| |#4|)) (-15 -3565 ((-3 |#4| #1="failed") |#1|)) (-15 -3564 (|#4| |#1|)) (-15 -3582 (|#2| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 |#3|) $) 110)) (-3476 (((-1163 $) $ |#3|) 125) (((-1163 |#1|) $) 124)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-2220 (($ $) 88 (|has| |#1| (-556)))) (-2218 (((-112) $) 90 (|has| |#1| (-556)))) (-3208 (((-767) $) 112) (((-767) $ (-637 |#3|)) 111)) (-4211 (($ $) 271)) (-3574 (((-112) $ $) 257)) (-1397 (((-3 $ "failed") $ $) 19)) (-4170 (($ $ $) 216 (|has| |#1| (-556)))) (-3556 (((-637 $) $ $) 211 (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) 100 (|has| |#1| (-906)))) (-4189 (($ $) 98 (|has| |#1| (-452)))) (-4384 (((-405 $) $) 97 (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 103 (|has| |#1| (-906)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| #2="failed") $) 164) (((-3 (-407 (-546)) #2#) $) 161 (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) 159 (|has| |#1| (-1034 (-546)))) (((-3 |#3| #2#) $) 136) (((-3 $ "failed") (-942 (-407 (-546)))) 231 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169))))) (((-3 $ "failed") (-942 (-546))) 228 (-3943 (-12 (-3733 (|has| |#1| (-38 (-407 (-546))))) (|has| |#1| (-38 (-546))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169)))))) (((-3 $ "failed") (-942 |#1|)) 225 (-3943 (-12 (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-38 (-546)))) (|has| |#3| (-611 (-1169)))) (-12 (-3733 (|has| |#1| (-545))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (|has| |#1| (-38 (-546))) (|has| |#3| (-611 (-1169)))) (-12 (-3733 (|has| |#1| (-987 (-546)))) (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169))))))) (-3564 ((|#1| $) 163) (((-407 (-546)) $) 162 (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) 160 (|has| |#1| (-1034 (-546)))) ((|#3| $) 137) (($ (-942 (-407 (-546)))) 230 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169))))) (($ (-942 (-546))) 227 (-3943 (-12 (-3733 (|has| |#1| (-38 (-407 (-546))))) (|has| |#1| (-38 (-546))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169)))))) (($ (-942 |#1|)) 224 (-3943 (-12 (-3733 (|has| |#1| (-38 (-407 (-546))))) (-3733 (|has| |#1| (-38 (-546)))) (|has| |#3| (-611 (-1169)))) (-12 (-3733 (|has| |#1| (-545))) (-3733 (|has| |#1| (-38 (-407 (-546))))) (|has| |#1| (-38 (-546))) (|has| |#3| (-611 (-1169)))) (-12 (-3733 (|has| |#1| (-987 (-546)))) (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169))))))) (-4171 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-4374 (($ $) 154) (($ $ |#3|) 266)) (-2408 (((-684 (-546)) (-684 $)) 134 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 133 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-4109 (((-112) $ $) 256) (((-112) $ (-637 $)) 255)) (-3873 (((-3 $ "failed") $) 33)) (-3580 (((-112) $) 264)) (-4167 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 236)) (-3551 (($ $) 205 (|has| |#1| (-452)))) (-3909 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3207 (((-637 $) $) 109)) (-4138 (((-112) $) 96 (|has| |#1| (-906)))) (-3562 (($ $) 221 (|has| |#1| (-556)))) (-3563 (($ $) 222 (|has| |#1| (-556)))) (-3573 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3572 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1756 (($ $ |#1| |#2| $) 172)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 83 (-12 (|has| |#3| (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-2552 (((-112) $) 31)) (-2560 (((-767) $) 169)) (-4110 (((-112) $ $) 250) (((-112) $ (-637 $)) 249)) (-3553 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-3588 ((|#3| $) 275)) (-3477 (($ (-1163 |#1|) |#3|) 117) (($ (-1163 $) |#3|) 116)) (-3210 (((-637 $) $) 126)) (-4352 (((-112) $) 152)) (-3283 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-637 |#3|) (-637 (-767))) 118)) (-3567 (($ $ $) 235)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3581 (((-112) $) 265)) (-3209 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-637 (-767)) $ (-637 |#3|)) 121)) (-2919 (($ $ $) 79 (|has| |#1| (-846)))) (-3587 (((-767) $) 274)) (-3249 (($ $ $) 78 (|has| |#1| (-846)))) (-1757 (($ (-1 |#2| |#2|) $) 171)) (-4373 (($ (-1 |#1| |#1|) $) 151)) (-3475 (((-3 |#3| #3="failed") $) 123)) (-3548 (($ $) 202 (|has| |#1| (-452)))) (-3549 (($ $) 203 (|has| |#1| (-452)))) (-3576 (((-637 $) $) 260)) (-3579 (($ $) 263)) (-3550 (($ $) 204 (|has| |#1| (-452)))) (-3577 (((-637 $) $) 261)) (-3578 (($ $) 262)) (-3284 (($ $) 149)) (-3582 ((|#1| $) 148) (($ $ |#3|) 267)) (-2048 (($ (-637 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3566 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3887 (-767))) $ $) 234)) (-3568 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $) 238) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $ |#3|) 237)) (-3569 (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $) 240) (((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $ |#3|) 239)) (-3571 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3570 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3650 (((-1151) $) 9)) (-3598 (($ $ $) 210 (|has| |#1| (-556)))) (-3584 (((-637 $) $) 269)) (-3212 (((-3 (-637 $) #3#) $) 114)) (-3211 (((-3 (-637 $) #3#) $) 115)) (-3213 (((-3 (-2 (|:| |var| |#3|) (|:| -2543 (-767))) #3#) $) 113)) (-4106 (((-112) $ $) 252) (((-112) $ (-637 $)) 251)) (-4101 (($ $ $) 232)) (-3856 (($ $) 273)) (-4114 (((-112) $ $) 258)) (-4107 (((-112) $ $) 254) (((-112) $ (-637 $)) 253)) (-4102 (($ $ $) 233)) (-3586 (($ $) 272)) (-3651 (((-1113) $) 10)) (-3557 (((-2 (|:| -3552 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-3558 (((-2 (|:| -3552 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-1951 (((-112) $) 166)) (-1950 ((|#1| $) 167)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 95 (|has| |#1| (-452)))) (-3552 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-637 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 102 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 101 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 99 (|has| |#1| (-906)))) (-3559 (((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-3872 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3560 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-3561 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-637 $) (-637 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-637 |#3|) (-637 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-637 |#3|) (-637 $)) 138)) (-4172 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4225 (($ $ |#3|) 42) (($ $ (-637 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-637 |#3|) (-637 (-767))) 39)) (-4363 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-637 (-767)) $ (-637 |#3|)) 129)) (-3585 (($ $) 270)) (-3583 (($ $) 268)) (-4385 (((-886 (-378)) $) 82 (-12 (|has| |#3| (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) 81 (-12 (|has| |#3| (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) 80 (-12 (|has| |#3| (-611 (-535))) (|has| |#1| (-611 (-535))))) (($ (-942 (-407 (-546)))) 229 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169))))) (($ (-942 (-546))) 226 (-3943 (-12 (-3733 (|has| |#1| (-38 (-407 (-546))))) (|has| |#1| (-38 (-546))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#3| (-611 (-1169)))))) (($ (-942 |#1|)) 223 (|has| |#3| (-611 (-1169)))) (((-1151) $) 201 (-12 (|has| |#1| (-1034 (-546))) (|has| |#3| (-611 (-1169))))) (((-942 |#1|) $) 200 (|has| |#3| (-611 (-1169))))) (-3206 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 104 (-3247 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-942 |#1|) $) 199 (|has| |#3| (-611 (-1169)))) (($ (-407 (-546))) 72 (-3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546)))))) (($ $) 85 (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) 168)) (-4092 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-637 |#3|) (-637 (-767))) 127)) (-3091 (((-3 $ #1#) $) 73 (-3943 (-3247 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 28)) (-1755 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 89 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3575 (((-3 (-112) "failed") $ $) 259)) (-3053 (($) 30 T CONST)) (-3554 (($ $ $ $ (-767)) 208 (|has| |#1| (-556)))) (-3555 (($ $ $ (-767)) 209 (|has| |#1| (-556)))) (-3058 (($ $ |#3|) 38) (($ $ (-637 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-637 |#3|) (-637 (-767))) 35)) (-2951 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 75 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 77 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 74 (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 158 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 157 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-1059 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -1059))
-((-3354 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3333 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3312 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3297 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2725 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2750 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3267 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3260 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3239 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-1361 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2319 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1351 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2241 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2225 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2274 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2274 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1341 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1332 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1341 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1332 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1322 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1312 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1322 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1312 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1300 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -3443 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1300 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -3443 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-1291 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1291 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-1564 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4379 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4367 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4104 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-2176 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2163 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2130 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2130 (*1 *1 *2) (|partial| -4034 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2057 (*1 *1 *2) (-4034 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2219 (*1 *1 *2) (-4034 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2130 (*1 *1 *2) (|partial| -4034 (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-2174 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-545))) (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2057 (*1 *1 *2) (-4034 (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-2174 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-545))) (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2174 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) (-4359 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4338 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4326 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4338 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4326 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4315 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3551 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4305 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3551 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4294 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3551 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4282 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3461 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-4271 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-4259 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-4246 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-3551 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4216 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4206 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))))
-(-13 (-945 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3354 (|t#3| $)) (-15 -3343 ((-767) $)) (-15 -2522 ($ $)) (-15 -3333 ($ $)) (-15 -4303 ($ $)) (-15 -3323 ($ $)) (-15 -3312 ((-640 $) $)) (-15 -3297 ($ $)) (-15 -2725 ($ $ |t#3|)) (-15 -2750 ($ $ |t#3|)) (-15 -3286 ((-112) $)) (-15 -3277 ((-112) $)) (-15 -3267 ($ $)) (-15 -3260 ($ $)) (-15 -3249 ((-640 $) $)) (-15 -3239 ((-640 $) $)) (-15 -1361 ((-3 (-112) "failed") $ $)) (-15 -2319 ((-112) $ $)) (-15 -1351 ((-112) $ $)) (-15 -2264 ((-112) $ $)) (-15 -2264 ((-112) $ (-640 $))) (-15 -2241 ((-112) $ $)) (-15 -2241 ((-112) $ (-640 $))) (-15 -2225 ((-112) $ $)) (-15 -2225 ((-112) $ (-640 $))) (-15 -2274 ((-112) $ $)) (-15 -2274 ((-112) $ (-640 $))) (-15 -1341 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -1341 ($ $ $ |t#3|)) (-15 -1332 ($ $ $ |t#3|)) (-15 -1322 ($ $ $)) (-15 -1312 ($ $ $)) (-15 -1322 ($ $ $ |t#3|)) (-15 -1312 ($ $ $ |t#3|)) (-15 -1300 ((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $)) (-15 -1300 ((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -3443 $)) $ $ |t#3|)) (-15 -1291 ((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -1291 ((-2 (|:| -2310 $) (|:| |gap| (-767)) (|:| -1765 $) (|:| -3443 $)) $ $ |t#3|)) (-15 -1564 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -4379 ($ $ $)) (-15 -4367 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4104 (-767))) $ $)) (-15 -2176 ($ $ $)) (-15 -2163 ($ $ $)) (IF (|has| |t#3| (-611 (-1169))) (PROGN (-6 (-610 (-948 |t#1|))) (-6 (-611 (-948 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2130 ((-3 $ "failed") (-948 (-407 (-563))))) (-15 -2057 ($ (-948 (-407 (-563))))) (-15 -2219 ($ (-948 (-407 (-563))))) (-15 -2130 ((-3 $ "failed") (-948 (-563)))) (-15 -2057 ($ (-948 (-563)))) (-15 -2219 ($ (-948 (-563)))) (IF (|has| |t#1| (-988 (-563))) |%noBranch| (PROGN (-15 -2130 ((-3 $ "failed") (-948 |t#1|))) (-15 -2057 ($ (-948 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2130 ((-3 $ "failed") (-948 (-563)))) (-15 -2057 ($ (-948 (-563)))) (-15 -2219 ($ (-948 (-563)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2130 ((-3 $ "failed") (-948 |t#1|))) (-15 -2057 ($ (-948 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2130 ((-3 $ "failed") (-948 |t#1|))) (-15 -2057 ($ (-948 |t#1|)))))) (-15 -2219 ($ (-948 |t#1|))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-611 (-1151))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4359 ($ $)) (-15 -4349 ($ $)) (-15 -4338 ($ $ |t#1|)) (-15 -4326 ($ $ |t#1|)) (-15 -4338 ($ $ $)) (-15 -4326 ($ $ $)) (-15 -1601 ($ $ $)) (-15 -4315 ((-2 (|:| -3551 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4305 ((-2 (|:| -3551 $) (|:| |coef1| $)) $ $)) (-15 -4294 ((-2 (|:| -3551 $) (|:| |coef2| $)) $ $)) (-15 -1612 ($ $ $)) (-15 -4282 ((-640 $) $ $)) (-15 -3461 ($ $ $)) (-15 -4271 ($ $ $ (-767))) (-15 -4259 ($ $ $ $ (-767))) (-15 -4246 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3551 (|t#1| |t#1| $)) (-15 -4235 ($ $)) (-15 -4226 ($ $)) (-15 -4216 ($ $)) (-15 -4206 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-610 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-172) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-611 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-611 (-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169)))) ((-290) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#2| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905)))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-2529 (((-640 (-1128)) $) 13)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-1128) $) 15)) (-1718 (((-112) $ $) NIL)))
-(((-1060) (-13 (-1076) (-10 -8 (-15 -2529 ((-640 (-1128)) $)) (-15 -3363 ((-1128) $))))) (T -1060))
-((-2529 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060)))))
-(-13 (-1076) (-10 -8 (-15 -2529 ((-640 (-1128)) $)) (-15 -3363 ((-1128) $))))
-((-3439 (((-112) |#3| $) 13)) (-3377 (((-3 $ "failed") |#3| (-917)) 23)) (-3951 (((-3 |#3| "failed") |#3| $) 38)) (-3414 (((-112) |#3| $) 16)) (-3426 (((-112) |#3| $) 14)))
-(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -3377 ((-3 |#1| "failed") |#3| (-917))) (-15 -3951 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3414 ((-112) |#3| |#1|)) (-15 -3426 ((-112) |#3| |#1|)) (-15 -3439 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1233 |#2|)) (T -1061))
-NIL
-(-10 -8 (-15 -3377 ((-3 |#1| "failed") |#3| (-917))) (-15 -3951 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3414 ((-112) |#3| |#1|)) (-15 -3426 ((-112) |#3| |#1|)) (-15 -3439 ((-112) |#3| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) |#2| $) 21)) (-2807 (((-563) |#2| $) 22)) (-3377 (((-3 $ "failed") |#2| (-917)) 15)) (-3365 ((|#1| |#2| $ |#1|) 13)) (-3951 (((-3 |#2| "failed") |#2| $) 18)) (-3414 (((-112) |#2| $) 19)) (-3426 (((-112) |#2| $) 20)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3402 ((|#2| $) 17)) (-1692 (((-858) $) 11)) (-1402 ((|#1| |#2| $ |#1|) 14)) (-3389 (((-640 $) |#2|) 16)) (-1718 (((-112) $ $) 6)))
-(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1233 |t#1|)) (T -1062))
-((-2807 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-563)))) (-3439 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3426 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3414 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3951 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-3389 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1)) (-4 *1 (-1062 *4 *3)))) (-3377 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4)))) (-1402 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2)))) (-3365 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2)))))
-(-13 (-1093) (-10 -8 (-15 -2807 ((-563) |t#2| $)) (-15 -3439 ((-112) |t#2| $)) (-15 -3426 ((-112) |t#2| $)) (-15 -3414 ((-112) |t#2| $)) (-15 -3951 ((-3 |t#2| "failed") |t#2| $)) (-15 -3402 (|t#2| $)) (-15 -3389 ((-640 $) |t#2|)) (-15 -3377 ((-3 $ "failed") |t#2| (-917))) (-15 -1402 (|t#1| |t#2| $ |t#1|)) (-15 -3365 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1925 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767)) 95)) (-1893 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767)) 56)) (-2671 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767)) 87)) (-1871 (((-767) (-640 |#4|) (-640 |#5|)) 27)) (-1903 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767)) 58) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112)) 60)) (-1913 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 79)) (-2219 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) 82)) (-1881 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-112)) 55)) (-1860 (((-767) (-640 |#4|) (-640 |#5|)) 19)))
-(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1860 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1871 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1881 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-112))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1925 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767))) (-15 -2219 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2671 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063))
-((-2671 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-1925 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2058 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2058 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-1913 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1913 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1903 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1903 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-1893 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1860 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1871 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1881 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-112))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1925 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767))) (-15 -2219 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2671 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767))))
-((-3536 (((-112) |#5| $) 20)) (-3514 (((-112) |#5| $) 23)) (-3548 (((-112) |#5| $) 16) (((-112) $) 44)) (-3834 (((-640 $) |#5| $) NIL) (((-640 $) (-640 |#5|) $) 76) (((-640 $) (-640 |#5|) (-640 $)) 74) (((-640 $) |#5| (-640 $)) 77)) (-1751 (($ $ |#5|) NIL) (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 59) (((-640 $) (-640 |#5|) $) 61) (((-640 $) (-640 |#5|) (-640 $)) 63)) (-3450 (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 53) (((-640 $) (-640 |#5|) $) 55) (((-640 $) (-640 |#5|) (-640 $)) 57)) (-3525 (((-112) |#5| $) 26)))
-(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1751 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1751 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1751 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1751 ((-640 |#1|) |#5| |#1|)) (-15 -3450 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3450 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3450 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3450 ((-640 |#1|) |#5| |#1|)) (-15 -3834 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3834 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3834 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3834 ((-640 |#1|) |#5| |#1|)) (-15 -3514 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#1|)) (-15 -3525 ((-112) |#5| |#1|)) (-15 -3536 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -1751 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064))
-NIL
-(-10 -8 (-15 -1751 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1751 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1751 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1751 ((-640 |#1|) |#5| |#1|)) (-15 -3450 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3450 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3450 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3450 ((-640 |#1|) |#5| |#1|)) (-15 -3834 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3834 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3834 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3834 ((-640 |#1|) |#5| |#1|)) (-15 -3514 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#1|)) (-15 -3525 ((-112) |#5| |#1|)) (-15 -3536 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -1751 (|#1| |#1| |#5|)))
-((-1677 (((-112) $ $) 7)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) 85)) (-2119 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) 101) (((-112) $) 97)) (-2189 ((|#4| |#4| $) 92)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 126)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3793 (((-3 $ "failed") $) 82)) (-2151 ((|#4| |#4| $) 89)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2131 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) 105)) (-3536 (((-112) |#4| $) 136)) (-3514 (((-112) |#4| $) 133)) (-3548 (((-112) |#4| $) 137) (((-112) $) 134)) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) 104) (((-112) $) 103)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3482 (((-640 $) |#4| $) 129)) (-3503 (((-3 (-112) (-640 $)) |#4| $) 132)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3834 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-1956 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2297 (((-640 |#4|) $) 107)) (-2225 (((-112) |#4| $) 99) (((-112) $) 95)) (-2163 ((|#4| |#4| $) 90)) (-2319 (((-112) $ $) 110)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) 100) (((-112) $) 96)) (-2176 ((|#4| |#4| $) 91)) (-1693 (((-1113) $) 10)) (-3782 (((-3 |#4| "failed") $) 84)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2089 (((-3 $ "failed") $ |#4|) 78)) (-1751 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-3871 (((-767) $) 106)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-2141 (($ $) 88)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3255 (((-767) $) 76 (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-3450 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) 81)) (-3525 (((-112) |#4| $) 135)) (-3772 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
+((-3588 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3585 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3584 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3583 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3582 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-4374 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3578 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3577 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3576 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3575 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3574 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4109 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4107 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4106 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4110 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4110 (*1 *2 *1 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-3573 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3573 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3572 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3571 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3571 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3570 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -3292 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3569 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -3292 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-3568 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3568 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-4167 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3567 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3566 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3887 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-4102 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4101 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3565 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-3565 (*1 *1 *2) (|partial| -3943 (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3564 (*1 *1 *2) (-3943 (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-4385 (*1 *1 *2) (-3943 (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3565 (*1 *1 *2) (|partial| -3943 (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-3733 (-4 *3 (-38 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-545))) (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-987 (-546)))) (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3564 (*1 *1 *2) (-3943 (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-3733 (-4 *3 (-38 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-545))) (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-942 *3)) (-12 (-3733 (-4 *3 (-987 (-546)))) (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3561 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3560 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3561 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3560 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3552 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3552 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3557 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3552 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4171 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3556 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3598 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3555 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-3554 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-3553 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3552 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3551 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3550 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3549 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3548 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))))
+(-13 (-946 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3588 (|t#3| $)) (-15 -3587 ((-767) $)) (-15 -3856 ($ $)) (-15 -3586 ($ $)) (-15 -4211 ($ $)) (-15 -3585 ($ $)) (-15 -3584 ((-637 $) $)) (-15 -3583 ($ $)) (-15 -3582 ($ $ |t#3|)) (-15 -4374 ($ $ |t#3|)) (-15 -3581 ((-112) $)) (-15 -3580 ((-112) $)) (-15 -3579 ($ $)) (-15 -3578 ($ $)) (-15 -3577 ((-637 $) $)) (-15 -3576 ((-637 $) $)) (-15 -3575 ((-3 (-112) "failed") $ $)) (-15 -4114 ((-112) $ $)) (-15 -3574 ((-112) $ $)) (-15 -4109 ((-112) $ $)) (-15 -4109 ((-112) $ (-637 $))) (-15 -4107 ((-112) $ $)) (-15 -4107 ((-112) $ (-637 $))) (-15 -4106 ((-112) $ $)) (-15 -4106 ((-112) $ (-637 $))) (-15 -4110 ((-112) $ $)) (-15 -4110 ((-112) $ (-637 $))) (-15 -3573 ($ $ $)) (-15 -3572 ($ $ $)) (-15 -3573 ($ $ $ |t#3|)) (-15 -3572 ($ $ $ |t#3|)) (-15 -3571 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -3571 ($ $ $ |t#3|)) (-15 -3570 ($ $ $ |t#3|)) (-15 -3569 ((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $)) (-15 -3569 ((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -3292 $)) $ $ |t#3|)) (-15 -3568 ((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -3568 ((-2 (|:| -4369 $) (|:| |gap| (-767)) (|:| -2131 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -4167 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -3567 ($ $ $)) (-15 -3566 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3887 (-767))) $ $)) (-15 -4102 ($ $ $)) (-15 -4101 ($ $ $)) (IF (|has| |t#3| (-611 (-1169))) (PROGN (-6 (-610 (-942 |t#1|))) (-6 (-611 (-942 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-546)))) (PROGN (-15 -3565 ((-3 $ "failed") (-942 (-407 (-546))))) (-15 -3564 ($ (-942 (-407 (-546))))) (-15 -4385 ($ (-942 (-407 (-546))))) (-15 -3565 ((-3 $ "failed") (-942 (-546)))) (-15 -3564 ($ (-942 (-546)))) (-15 -4385 ($ (-942 (-546)))) (IF (|has| |t#1| (-987 (-546))) |%noBranch| (PROGN (-15 -3565 ((-3 $ "failed") (-942 |t#1|))) (-15 -3564 ($ (-942 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-546))) (IF (|has| |t#1| (-38 (-407 (-546)))) |%noBranch| (PROGN (-15 -3565 ((-3 $ "failed") (-942 (-546)))) (-15 -3564 ($ (-942 (-546)))) (-15 -4385 ($ (-942 (-546)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -3565 ((-3 $ "failed") (-942 |t#1|))) (-15 -3564 ($ (-942 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-546))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-546)))) |%noBranch| (PROGN (-15 -3565 ((-3 $ "failed") (-942 |t#1|))) (-15 -3564 ($ (-942 |t#1|)))))) (-15 -4385 ($ (-942 |t#1|))) (IF (|has| |t#1| (-1034 (-546))) (-6 (-611 (-1151))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3563 ($ $)) (-15 -3562 ($ $)) (-15 -3561 ($ $ |t#1|)) (-15 -3560 ($ $ |t#1|)) (-15 -3561 ($ $ $)) (-15 -3560 ($ $ $)) (-15 -4170 ($ $ $)) (-15 -3559 ((-2 (|:| -3552 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3558 ((-2 (|:| -3552 $) (|:| |coef1| $)) $ $)) (-15 -3557 ((-2 (|:| -3552 $) (|:| |coef2| $)) $ $)) (-15 -4171 ($ $ $)) (-15 -3556 ((-637 $) $ $)) (-15 -3598 ($ $ $)) (-15 -3555 ($ $ $ (-767))) (-15 -3554 ($ $ $ $ (-767))) (-15 -3553 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3552 (|t#1| |t#1| $)) (-15 -3551 ($ $)) (-15 -3550 ($ $)) (-15 -3549 ($ $)) (-15 -3548 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-610 (-859)) . T) ((-610 (-942 |#1|)) |has| |#3| (-611 (-1169))) ((-172) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-535)) -12 (|has| |#1| (-611 (-535))) (|has| |#3| (-611 (-535)))) ((-611 (-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#3| (-611 (-886 (-378))))) ((-611 (-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#3| (-611 (-886 (-546))))) ((-611 (-942 |#1|)) |has| |#3| (-611 (-1169))) ((-611 (-1151)) -12 (|has| |#1| (-1034 (-546))) (|has| |#3| (-611 (-1169)))) ((-290) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-378)) -12 (|has| |#1| (-882 (-378))) (|has| |#3| (-882 (-378)))) ((-882 (-546)) -12 (|has| |#1| (-882 (-546))) (|has| |#3| (-882 (-546)))) ((-946 |#1| |#2| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) |has| |#1| (-906)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3589 (((-637 (-1128)) $) 13)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-1128) $) 15)) (-3444 (((-112) $ $) NIL)))
+(((-1060) (-13 (-1076) (-10 -8 (-15 -3589 ((-637 (-1128)) $)) (-15 -3641 ((-1128) $))))) (T -1060))
+((-3589 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1060)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060)))))
+(-13 (-1076) (-10 -8 (-15 -3589 ((-637 (-1128)) $)) (-15 -3641 ((-1128) $))))
+((-3596 (((-112) |#3| $) 13)) (-3591 (((-3 $ "failed") |#3| (-915)) 23)) (-3873 (((-3 |#3| "failed") |#3| $) 38)) (-3594 (((-112) |#3| $) 16)) (-3595 (((-112) |#3| $) 14)))
+(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -3591 ((-3 |#1| "failed") |#3| (-915))) (-15 -3873 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3594 ((-112) |#3| |#1|)) (-15 -3595 ((-112) |#3| |#1|)) (-15 -3596 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1232 |#2|)) (T -1061))
+NIL
+(-10 -8 (-15 -3591 ((-3 |#1| "failed") |#3| (-915))) (-15 -3873 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3594 ((-112) |#3| |#1|)) (-15 -3595 ((-112) |#3| |#1|)) (-15 -3596 ((-112) |#3| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) |#2| $) 21)) (-4038 (((-546) |#2| $) 22)) (-3591 (((-3 $ "failed") |#2| (-915)) 15)) (-3590 ((|#1| |#2| $ |#1|) 13)) (-3873 (((-3 |#2| "failed") |#2| $) 18)) (-3594 (((-112) |#2| $) 19)) (-3595 (((-112) |#2| $) 20)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3593 ((|#2| $) 17)) (-4361 (((-859) $) 11)) (-4184 ((|#1| |#2| $ |#1|) 14)) (-3592 (((-637 $) |#2|) 16)) (-3444 (((-112) $ $) 6)))
+(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1232 |t#1|)) (T -1062))
+((-4038 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-546)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3595 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3873 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1232 *3)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1232 *3)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-637 *1)) (-4 *1 (-1062 *4 *3)))) (-3591 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-915)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1232 *4)))) (-4184 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1232 *2)))) (-3590 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1232 *2)))))
+(-13 (-1094) (-10 -8 (-15 -4038 ((-546) |t#2| $)) (-15 -3596 ((-112) |t#2| $)) (-15 -3595 ((-112) |t#2| $)) (-15 -3594 ((-112) |t#2| $)) (-15 -3873 ((-3 |t#2| "failed") |t#2| $)) (-15 -3593 (|t#2| $)) (-15 -3592 ((-637 $) |t#2|)) (-15 -3591 ((-3 $ "failed") |t#2| (-915))) (-15 -4184 (|t#1| |t#2| $ |t#1|)) (-15 -3590 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3847 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767)) 95)) (-3844 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767)) 56)) (-3848 (((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767)) 87)) (-3842 (((-767) (-637 |#4|) (-637 |#5|)) 27)) (-3845 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767)) 58) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112)) 60)) (-3846 (((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112)) 79)) (-4385 (((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) 82)) (-3843 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-112)) 55)) (-3841 (((-767) (-637 |#4|) (-637 |#5|)) 19)))
+(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3842 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3843 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-112))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3847 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767))) (-15 -4385 ((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3848 ((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063))
+((-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-3847 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-637 *11)) (|:| |todo| (-637 (-2 (|:| |val| *3) (|:| -1695 *11)))))) (-5 *6 (-767)) (-5 *2 (-637 (-2 (|:| |val| (-637 *10)) (|:| -1695 *11)))) (-5 *3 (-637 *10)) (-5 *4 (-637 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-3846 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3846 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3845 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3845 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3845 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-3844 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3841 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3842 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3843 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-112))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3847 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767))) (-15 -4385 ((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3848 ((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767))))
+((-3605 (((-112) |#5| $) 20)) (-3603 (((-112) |#5| $) 23)) (-3606 (((-112) |#5| $) 16) (((-112) $) 44)) (-3646 (((-637 $) |#5| $) NIL) (((-637 $) (-637 |#5|) $) 76) (((-637 $) (-637 |#5|) (-637 $)) 74) (((-637 $) |#5| (-637 $)) 77)) (-4183 (($ $ |#5|) NIL) (((-637 $) |#5| $) NIL) (((-637 $) |#5| (-637 $)) 59) (((-637 $) (-637 |#5|) $) 61) (((-637 $) (-637 |#5|) (-637 $)) 63)) (-3597 (((-637 $) |#5| $) NIL) (((-637 $) |#5| (-637 $)) 53) (((-637 $) (-637 |#5|) $) 55) (((-637 $) (-637 |#5|) (-637 $)) 57)) (-3604 (((-112) |#5| $) 26)))
+(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4183 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -4183 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -4183 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -4183 ((-637 |#1|) |#5| |#1|)) (-15 -3597 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -3597 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -3597 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -3597 ((-637 |#1|) |#5| |#1|)) (-15 -3646 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -3646 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -3646 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -3646 ((-637 |#1|) |#5| |#1|)) (-15 -3603 ((-112) |#5| |#1|)) (-15 -3606 ((-112) |#1|)) (-15 -3604 ((-112) |#5| |#1|)) (-15 -3605 ((-112) |#5| |#1|)) (-15 -3606 ((-112) |#5| |#1|)) (-15 -4183 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064))
+NIL
+(-10 -8 (-15 -4183 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -4183 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -4183 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -4183 ((-637 |#1|) |#5| |#1|)) (-15 -3597 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -3597 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -3597 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -3597 ((-637 |#1|) |#5| |#1|)) (-15 -3646 ((-637 |#1|) |#5| (-637 |#1|))) (-15 -3646 ((-637 |#1|) (-637 |#5|) (-637 |#1|))) (-15 -3646 ((-637 |#1|) (-637 |#5|) |#1|)) (-15 -3646 ((-637 |#1|) |#5| |#1|)) (-15 -3603 ((-112) |#5| |#1|)) (-15 -3606 ((-112) |#1|)) (-15 -3604 ((-112) |#5| |#1|)) (-15 -3605 ((-112) |#5| |#1|)) (-15 -3606 ((-112) |#5| |#1|)) (-15 -4183 (|#1| |#1| |#5|)))
+((-2953 (((-112) $ $) 7)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) 85)) (-4097 (((-637 $) (-637 |#4|)) 86) (((-637 $) (-637 |#4|) (-112)) 111)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) 101) (((-112) $) 97)) (-4103 ((|#4| |#4| $) 92)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 126)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-4213 (((-3 $ #1#) $) 82)) (-4100 ((|#4| |#4| $) 89)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4098 ((|#4| |#4| $) 87)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) 105)) (-3605 (((-112) |#4| $) 136)) (-3603 (((-112) |#4| $) 133)) (-3606 (((-112) |#4| $) 137) (((-112) $) 134)) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) 104) (((-112) $) 103)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) 128)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 127)) (-4212 (((-3 |#4| #1#) $) 83)) (-3600 (((-637 $) |#4| $) 129)) (-3602 (((-3 (-112) (-637 $)) |#4| $) 132)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3646 (((-637 $) |#4| $) 125) (((-637 $) (-637 |#4|) $) 124) (((-637 $) (-637 |#4|) (-637 $)) 123) (((-637 $) |#4| (-637 $)) 122)) (-3851 (($ |#4| $) 117) (($ (-637 |#4|) $) 116)) (-4112 (((-637 |#4|) $) 107)) (-4106 (((-112) |#4| $) 99) (((-112) $) 95)) (-4101 ((|#4| |#4| $) 90)) (-4114 (((-112) $ $) 110)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) 100) (((-112) $) 96)) (-4102 ((|#4| |#4| $) 91)) (-3651 (((-1113) $) 10)) (-4215 (((-3 |#4| #1#) $) 84)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4094 (((-3 $ #1#) $ |#4|) 78)) (-4183 (($ $ |#4|) 77) (((-637 $) |#4| $) 115) (((-637 $) |#4| (-637 $)) 114) (((-637 $) (-637 |#4|) $) 113) (((-637 $) (-637 |#4|) (-637 $)) 112)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-4363 (((-767) $) 106)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-4099 (($ $) 88)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-4093 (((-767) $) 76 (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) 98)) (-3597 (((-637 $) |#4| $) 121) (((-637 $) |#4| (-637 $)) 120) (((-637 $) (-637 |#4|) $) 119) (((-637 $) (-637 |#4|) (-637 $)) 118)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) 81)) (-3604 (((-112) |#4| $) 135)) (-4348 (((-112) |#3| $) 80)) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
(((-1065 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1065))
-((-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3525 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3514 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3503 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3492 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3492 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3482 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3472 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3461 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1798 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3834 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3834 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3834 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3834 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3450 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3450 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-1956 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1956 (*1 *1 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-1751 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *5 *6 *7 *8)))))
-(-13 (-1201 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3548 ((-112) |t#4| $)) (-15 -3536 ((-112) |t#4| $)) (-15 -3525 ((-112) |t#4| $)) (-15 -3548 ((-112) $)) (-15 -3514 ((-112) |t#4| $)) (-15 -3503 ((-3 (-112) (-640 $)) |t#4| $)) (-15 -3492 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |t#4| $)) (-15 -3492 ((-112) |t#4| $)) (-15 -3482 ((-640 $) |t#4| $)) (-15 -3472 ((-3 |t#4| (-640 $)) |t#4| |t#4| $)) (-15 -3461 ((-640 (-2 (|:| |val| |t#4|) (|:| -2058 $))) |t#4| |t#4| $)) (-15 -1798 ((-640 (-2 (|:| |val| |t#4|) (|:| -2058 $))) |t#4| $)) (-15 -3834 ((-640 $) |t#4| $)) (-15 -3834 ((-640 $) (-640 |t#4|) $)) (-15 -3834 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -3834 ((-640 $) |t#4| (-640 $))) (-15 -3450 ((-640 $) |t#4| $)) (-15 -3450 ((-640 $) |t#4| (-640 $))) (-15 -3450 ((-640 $) (-640 |t#4|) $)) (-15 -3450 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -1956 ($ |t#4| $)) (-15 -1956 ($ (-640 |t#4|) $)) (-15 -1751 ((-640 $) |t#4| $)) (-15 -1751 ((-640 $) |t#4| (-640 $))) (-15 -1751 ((-640 $) (-640 |t#4|) $)) (-15 -1751 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -2119 ((-640 $) (-640 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T))
-((-3630 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|) 80)) (-3596 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|) 111)) (-3618 (((-640 |#5|) |#4| |#5|) 70)) (-3607 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3000 (((-1262)) 37)) (-2980 (((-1262)) 26)) (-2989 (((-1262) (-1151) (-1151) (-1151)) 33)) (-2971 (((-1262) (-1151) (-1151) (-1151)) 22)) (-3561 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|) 94)) (-3574 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112)) 105) (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3585 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|) 100)))
-(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2971 ((-1262) (-1151) (-1151) (-1151))) (-15 -2980 ((-1262))) (-15 -2989 ((-1262) (-1151) (-1151) (-1151))) (-15 -3000 ((-1262))) (-15 -3561 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3574 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3574 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112))) (-15 -3585 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3596 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3607 ((-112) |#4| |#5|)) (-15 -3607 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3618 ((-640 |#5|) |#4| |#5|)) (-15 -3630 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066))
-((-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3618 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3596 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3585 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2058 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-3574 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3561 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3000 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2989 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2980 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2971 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2971 ((-1262) (-1151) (-1151) (-1151))) (-15 -2980 ((-1262))) (-15 -2989 ((-1262) (-1151) (-1151) (-1151))) (-15 -3000 ((-1262))) (-15 -3561 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3574 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3574 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112))) (-15 -3585 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3596 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3607 ((-112) |#4| |#5|)) (-15 -3607 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3618 ((-640 |#5|) |#4| |#5|)) (-15 -3630 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|)))
-((-1677 (((-112) $ $) NIL)) (-4184 (((-1207) $) 13)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3687 (((-1128) $) 10)) (-1692 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1067) (-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))) (T -1067))
-((-3687 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067)))))
-(-13 (-1076) (-10 -8 (-15 -3687 ((-1128) $)) (-15 -4184 ((-1207) $))))
-((-1677 (((-112) $ $) NIL)) (-3352 (((-1169) $) 8)) (-3854 (((-1151) $) 16)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 13)))
-(((-1068 |#1|) (-13 (-1093) (-10 -8 (-15 -3352 ((-1169) $)))) (-1169)) (T -1068))
-((-3352 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2))))
-(-13 (-1093) (-10 -8 (-15 -3352 ((-1169) $))))
-((-1677 (((-112) $ $) NIL)) (-1958 (($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|))) 33)) (-3710 (($ |#3| |#3|) 22) (($ |#3| |#3| (-640 (-1169))) 20)) (-2350 ((|#3| $) 13)) (-2130 (((-3 (-294 |#3|) "failed") $) 58)) (-2057 (((-294 |#3|) $) NIL)) (-3642 (((-640 (-1169)) $) 16)) (-3960 (((-888 |#1|) $) 11)) (-2339 ((|#3| $) 12)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2308 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-917)) 39)) (-1692 (((-858) $) 86) (($ (-294 |#3|)) 21)) (-1718 (((-112) $ $) 36)))
-(((-1069 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3710 ($ |#3| |#3|)) (-15 -3710 ($ |#3| |#3| (-640 (-1169)))) (-15 -1958 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3960 ((-888 |#1|) $)) (-15 -2339 (|#3| $)) (-15 -2350 (|#3| $)) (-15 -2308 (|#3| $ |#3| (-917))) (-15 -3642 ((-640 (-1169)) $)))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1069))
-((-3710 (*1 *1 *2 *2) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-3710 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-1958 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6))) (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *6)))) (-3960 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2))))) (-2339 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-2350 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-2308 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-3642 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))))
-(-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3710 ($ |#3| |#3|)) (-15 -3710 ($ |#3| |#3| (-640 (-1169)))) (-15 -1958 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3960 ((-888 |#1|) $)) (-15 -2339 (|#3| $)) (-15 -2350 (|#3| $)) (-15 -2308 (|#3| $ |#3| (-917))) (-15 -3642 ((-640 (-1169)) $))))
-((-1677 (((-112) $ $) NIL)) (-1926 (($ (-640 (-1069 |#1| |#2| |#3|))) 13)) (-2727 (((-640 (-1069 |#1| |#2| |#3|)) $) 20)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2308 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-917)) 26)) (-1692 (((-858) $) 16)) (-1718 (((-112) $ $) 19)))
-(((-1070 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -1926 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2727 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -2308 (|#3| $ |#3| (-917))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1070))
-((-1926 (*1 *1 *2) (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1070 *3 *4 *5)))) (-2727 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-2308 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))))
-(-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -1926 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2727 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -2308 (|#3| $ |#3| (-917)))))
-((-3653 (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 74) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 76) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 75)))
-(((-1071 |#1| |#2|) (-10 -7 (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-640 (-1169))) (T -1071))
-((-3653 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))))) (-3653 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))))))
-(-10 -7 (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -3653 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))))
-((-2173 (((-418 |#3|) |#3|) 18)))
-(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-418 |#3|) |#3|))) (-1233 (-407 (-563))) (-13 (-363) (-147) (-720 (-407 (-563)) |#1|)) (-1233 |#2|)) (T -1072))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#3|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 126)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-3231 (($ $) NIL (|has| |#1| (-363)))) (-3211 (((-112) $) NIL (|has| |#1| (-363)))) (-3340 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) 115)) (-1731 ((|#1| $) 119)) (-1597 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3750 (((-767)) 40 (|has| |#1| (-368)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3458 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) 43)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-3330 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 106) (((-684 |#1|) (-684 $)) 101)) (-2444 (($ |#2|) 61) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2521 (((-917)) 77)) (-1690 (($) 44 (|has| |#1| (-368)))) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-4036 (($) NIL (|has| |#1| (-349)))) (-1656 (((-112) $) NIL (|has| |#1| (-349)))) (-3188 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-1775 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-3401 (((-112) $) NIL)) (-3975 ((|#1| $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-4035 ((|#2| $) 84 (|has| |#1| (-363)))) (-3990 (((-917) $) 130 (|has| |#1| (-368)))) (-2433 ((|#2| $) 58)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2522 (($) NIL (|has| |#1| (-349)) CONST)) (-2552 (($ (-917)) 125 (|has| |#1| (-368)))) (-1693 (((-1113) $) NIL)) (-4334 (($) 121)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1608 (((-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))) NIL (|has| |#1| (-349)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-1623 ((|#1| (-1257 $)) NIL) ((|#1|) 109)) (-3196 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-4203 (($ $) NIL (-4034 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-4034 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3388 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3402 ((|#2|) 73)) (-1586 (($) NIL (|has| |#1| (-349)))) (-3759 (((-1257 |#1|) $ (-1257 $)) 89) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 71) (((-684 |#1|) (-1257 $)) 85)) (-2219 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-349)))) (-1692 (((-858) $) 57) (($ (-563)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2047 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1892 ((|#2| $) 82)) (-3914 (((-767)) 75)) (-4013 (((-1257 $)) 81)) (-3223 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2239 (($) 30 T CONST)) (-2253 (($) 19 T CONST)) (-3213 (($ $) NIL (-4034 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-4034 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1718 (((-112) $ $) 63)) (-1836 (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) 67) (($ $ $) NIL)) (-1813 (($ $ $) 65)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363)))))
-(((-1073 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1233 |#1|) |#2|) (T -1073))
+((-3606 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3604 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3603 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-637 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3601 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3601 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3600 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3599 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-637 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3598 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4189 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3646 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3646 (*1 *2 *3 *1) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3646 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3646 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3597 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3597 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3597 (*1 *2 *3 *1) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3597 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3851 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3851 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-4183 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4183 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-4183 (*1 *2 *3 *1) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-4183 (*1 *2 *3 *2) (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *5 *6 *7 *8)))))
+(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3606 ((-112) |t#4| $)) (-15 -3605 ((-112) |t#4| $)) (-15 -3604 ((-112) |t#4| $)) (-15 -3606 ((-112) $)) (-15 -3603 ((-112) |t#4| $)) (-15 -3602 ((-3 (-112) (-637 $)) |t#4| $)) (-15 -3601 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |t#4| $)) (-15 -3601 ((-112) |t#4| $)) (-15 -3600 ((-637 $) |t#4| $)) (-15 -3599 ((-3 |t#4| (-637 $)) |t#4| |t#4| $)) (-15 -3598 ((-637 (-2 (|:| |val| |t#4|) (|:| -1695 $))) |t#4| |t#4| $)) (-15 -4189 ((-637 (-2 (|:| |val| |t#4|) (|:| -1695 $))) |t#4| $)) (-15 -3646 ((-637 $) |t#4| $)) (-15 -3646 ((-637 $) (-637 |t#4|) $)) (-15 -3646 ((-637 $) (-637 |t#4|) (-637 $))) (-15 -3646 ((-637 $) |t#4| (-637 $))) (-15 -3597 ((-637 $) |t#4| $)) (-15 -3597 ((-637 $) |t#4| (-637 $))) (-15 -3597 ((-637 $) (-637 |t#4|) $)) (-15 -3597 ((-637 $) (-637 |t#4|) (-637 $))) (-15 -3851 ($ |t#4| $)) (-15 -3851 ($ (-637 |t#4|) $)) (-15 -4183 ((-637 $) |t#4| $)) (-15 -4183 ((-637 $) |t#4| (-637 $))) (-15 -4183 ((-637 $) (-637 |t#4|) $)) (-15 -4183 ((-637 $) (-637 |t#4|) (-637 $))) (-15 -4097 ((-637 $) (-637 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1207) . T))
+((-3613 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|) 80)) (-3610 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|) 111)) (-3612 (((-637 |#5|) |#4| |#5|) 70)) (-3611 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3695 (((-1262)) 37)) (-3693 (((-1262)) 26)) (-3694 (((-1262) (-1151) (-1151) (-1151)) 33)) (-3692 (((-1262) (-1151) (-1151) (-1151)) 22)) (-3607 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|) 94)) (-3608 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112)) 105) (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3609 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|) 100)))
+(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3692 ((-1262) (-1151) (-1151) (-1151))) (-15 -3693 ((-1262))) (-15 -3694 ((-1262) (-1151) (-1151) (-1151))) (-15 -3695 ((-1262))) (-15 -3607 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3608 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112))) (-15 -3609 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3610 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3611 ((-112) |#4| |#5|)) (-15 -3611 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3612 ((-637 |#5|) |#4| |#5|)) (-15 -3613 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066))
+((-3613 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3612 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3611 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3611 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3610 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3609 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-637 (-2 (|:| |val| *8) (|:| -1695 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-3608 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3607 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3695 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3693 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3692 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3692 ((-1262) (-1151) (-1151) (-1151))) (-15 -3693 ((-1262))) (-15 -3694 ((-1262) (-1151) (-1151) (-1151))) (-15 -3695 ((-1262))) (-15 -3607 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3608 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112))) (-15 -3609 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3610 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3611 ((-112) |#4| |#5|)) (-15 -3611 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3612 ((-637 |#5|) |#4| |#5|)) (-15 -3613 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|)))
+((-2953 (((-112) $ $) NIL)) (-3726 (((-1208) $) 13)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3614 (((-1128) $) 10)) (-4361 (((-859) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1067) (-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))) (T -1067))
+((-3614 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067)))))
+(-13 (-1076) (-10 -8 (-15 -3614 ((-1128) $)) (-15 -3726 ((-1208) $))))
+((-2953 (((-112) $ $) NIL)) (-3617 (($ $ (-637 (-1169)) (-1 (-112) (-637 |#3|))) 33)) (-3618 (($ |#3| |#3|) 22) (($ |#3| |#3| (-637 (-1169))) 20)) (-3934 ((|#3| $) 13)) (-3565 (((-3 (-293 |#3|) "failed") $) 58)) (-3564 (((-293 |#3|) $) NIL)) (-3615 (((-637 (-1169)) $) 16)) (-3616 (((-886 |#1|) $) 11)) (-3935 ((|#3| $) 12)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4214 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-915)) 39)) (-4361 (((-859) $) 86) (($ (-293 |#3|)) 21)) (-3444 (((-112) $ $) 36)))
+(((-1068 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1034 (-293 |#3|)) (-10 -8 (-15 -3618 ($ |#3| |#3|)) (-15 -3618 ($ |#3| |#3| (-637 (-1169)))) (-15 -3617 ($ $ (-637 (-1169)) (-1 (-112) (-637 |#3|)))) (-15 -3616 ((-886 |#1|) $)) (-15 -3935 (|#3| $)) (-15 -3934 (|#3| $)) (-15 -4214 (|#3| $ |#3| (-915))) (-15 -3615 ((-637 (-1169)) $)))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-611 (-886 |#1|))) (-13 (-421 |#2|) (-882 |#1|) (-611 (-886 |#1|)))) (T -1068))
+((-3618 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))) (-3618 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))))) (-3617 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-1 (-112) (-637 *6))) (-4 *6 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-5 *1 (-1068 *4 *5 *6)))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) (-5 *2 (-886 *3)) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-882 *3) (-611 *2))))) (-3935 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))))) (-3934 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))))) (-4214 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-915)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))))) (-3615 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))) (-5 *2 (-637 (-1169))) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))))
+(-13 (-1094) (-286 |#3| |#3|) (-1034 (-293 |#3|)) (-10 -8 (-15 -3618 ($ |#3| |#3|)) (-15 -3618 ($ |#3| |#3| (-637 (-1169)))) (-15 -3617 ($ $ (-637 (-1169)) (-1 (-112) (-637 |#3|)))) (-15 -3616 ((-886 |#1|) $)) (-15 -3935 (|#3| $)) (-15 -3934 (|#3| $)) (-15 -4214 (|#3| $ |#3| (-915))) (-15 -3615 ((-637 (-1169)) $))))
+((-2953 (((-112) $ $) NIL)) (-3956 (((-1169) $) 8)) (-3650 (((-1151) $) 16)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 13)))
+(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -3956 ((-1169) $)))) (-1169)) (T -1069))
+((-3956 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1069 *3)) (-14 *3 *2))))
+(-13 (-1094) (-10 -8 (-15 -3956 ((-1169) $))))
+((-2953 (((-112) $ $) NIL)) (-3620 (($ (-637 (-1068 |#1| |#2| |#3|))) 13)) (-3619 (((-637 (-1068 |#1| |#2| |#3|)) $) 20)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4214 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-915)) 26)) (-4361 (((-859) $) 16)) (-3444 (((-112) $ $) 19)))
+(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -3620 ($ (-637 (-1068 |#1| |#2| |#3|)))) (-15 -3619 ((-637 (-1068 |#1| |#2| |#3|)) $)) (-15 -4214 (|#3| $ |#3| (-915))))) (-1094) (-13 (-1045) (-882 |#1|) (-846) (-611 (-886 |#1|))) (-13 (-421 |#2|) (-882 |#1|) (-611 (-886 |#1|)))) (T -1070))
+((-3620 (*1 *1 *2) (-12 (-5 *2 (-637 (-1068 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))) (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))) (-5 *1 (-1070 *3 *4 *5)))) (-3619 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3)))) (-5 *2 (-637 (-1068 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))) (-4214 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-915)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))))))
+(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -3620 ($ (-637 (-1068 |#1| |#2| |#3|)))) (-15 -3619 ((-637 (-1068 |#1| |#2| |#3|)) $)) (-15 -4214 (|#3| $ |#3| (-915)))))
+((-3621 (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112)) 74) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|))) 76) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112)) 75)))
+(((-1071 |#1| |#2|) (-10 -7 (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112))) (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-637 (-1169))) (T -1071))
+((-3621 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-637 (-942 *4))) (-14 *5 (-637 (-1169))))) (-3621 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))))))
+(-10 -7 (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112))) (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -3621 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 126)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-2220 (($ $) NIL (|has| |#1| (-363)))) (-2218 (((-112) $) NIL (|has| |#1| (-363)))) (-1936 (((-684 |#1|) (-1256 $)) NIL) (((-684 |#1|)) 115)) (-3741 ((|#1| $) 119)) (-1826 (((-1180 (-915) (-767)) (-546)) NIL (|has| |#1| (-350)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3528 (((-767)) 40 (|has| |#1| (-368)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-1946 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) 43)) (-1824 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-350)))) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-1935 (((-684 |#1|) $ (-1256 $)) NIL) (((-684 |#1|) $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 106) (((-684 |#1|) (-684 $)) 101)) (-4257 (($ |#2|) 61) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3873 (((-3 $ "failed") $) NIL)) (-3501 (((-915)) 77)) (-3384 (($) 44 (|has| |#1| (-368)))) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-3222 (($) NIL (|has| |#1| (-350)))) (-1831 (((-112) $) NIL (|has| |#1| (-350)))) (-1921 (($ $ (-767)) NIL (|has| |#1| (-350))) (($ $) NIL (|has| |#1| (-350)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-4186 (((-915) $) NIL (|has| |#1| (-350))) (((-828 (-915)) $) NIL (|has| |#1| (-350)))) (-2552 (((-112) $) NIL)) (-3524 ((|#1| $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-350)))) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-2171 ((|#2| $) 84 (|has| |#1| (-363)))) (-2167 (((-915) $) 130 (|has| |#1| (-368)))) (-3470 ((|#2| $) 58)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-3856 (($) NIL (|has| |#1| (-350)) CONST)) (-2542 (($ (-915)) 125 (|has| |#1| (-368)))) (-3651 (((-1113) $) NIL)) (-2551 (($) 121)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1827 (((-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))) NIL (|has| |#1| (-350)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4172 ((|#1| (-1256 $)) NIL) ((|#1|) 109)) (-1922 (((-767) $) NIL (|has| |#1| (-350))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-350)))) (-4225 (($ $) NIL (-3943 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-767)) NIL (-3943 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2550 (((-684 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3593 ((|#2|) 73)) (-1825 (($) NIL (|has| |#1| (-350)))) (-3632 (((-1256 |#1|) $ (-1256 $)) 89) (((-684 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 71) (((-684 |#1|) (-1256 $)) 85)) (-4385 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3092 (((-3 (-1256 $) "failed") (-684 $)) NIL (|has| |#1| (-350)))) (-4361 (((-859) $) 57) (($ (-546)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-546))))))) (-3091 (($ $) NIL (|has| |#1| (-350))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2749 ((|#2| $) 82)) (-3518 (((-767)) 75)) (-2169 (((-1256 $)) 81)) (-2219 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3047 (($) 30 T CONST)) (-3053 (($) 19 T CONST)) (-3058 (($ $) NIL (-3943 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-767)) NIL (-3943 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-350)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3444 (((-112) $ $) 63)) (-4364 (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) 67) (($ $ $) NIL)) (-4254 (($ $ $) 65)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-407 (-546)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-546))) NIL (|has| |#1| (-363)))))
+(((-1072 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1232 |#1|) |#2|) (T -1072))
NIL
(-720 |#1| |#2|)
-((-2173 (((-418 |#3|) |#3|) 19)))
-(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-418 |#3|) |#3|))) (-1233 (-407 (-948 (-563)))) (-13 (-363) (-147) (-720 (-407 (-948 (-563))) |#1|)) (-1233 |#2|)) (T -1074))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-948 (-563))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5)))))
-(-10 -7 (-15 -2173 ((-418 |#3|) |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3088 (($ $ $) 14)) (-1776 (($ $ $) 15)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3664 (($) 6)) (-2219 (((-1169) $) 18)) (-1692 (((-858) $) 12)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 13)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 8)))
-(((-1075) (-13 (-846) (-611 (-1169)) (-10 -8 (-15 -3664 ($))))) (T -1075))
-((-3664 (*1 *1) (-5 *1 (-1075))))
-(-13 (-846) (-611 (-1169)) (-10 -8 (-15 -3664 ($))))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-1718 (((-112) $ $) 6)))
+((-4147 (((-405 |#3|) |#3|) 18)))
+(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -4147 ((-405 |#3|) |#3|))) (-1232 (-407 (-546))) (-13 (-363) (-147) (-720 (-407 (-546)) |#1|)) (-1232 |#2|)) (T -1073))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-546)) *4))) (-5 *2 (-405 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#3|) |#3|)))
+((-4147 (((-405 |#3|) |#3|) 19)))
+(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -4147 ((-405 |#3|) |#3|))) (-1232 (-407 (-942 (-546)))) (-13 (-363) (-147) (-720 (-407 (-942 (-546))) |#1|)) (-1232 |#2|)) (T -1074))
+((-4147 (*1 *2 *3) (-12 (-4 *4 (-1232 (-407 (-942 (-546))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-942 (-546))) *4))) (-5 *2 (-405 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1232 *5)))))
+(-10 -7 (-15 -4147 ((-405 |#3|) |#3|)))
+((-2953 (((-112) $ $) NIL)) (-2919 (($ $ $) 14)) (-3249 (($ $ $) 15)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3622 (($) 6)) (-4385 (((-1169) $) 18)) (-4361 (((-859) $) 12)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 13)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 8)))
+(((-1075) (-13 (-846) (-611 (-1169)) (-10 -8 (-15 -3622 ($))))) (T -1075))
+((-3622 (*1 *1) (-5 *1 (-1075))))
+(-13 (-846) (-611 (-1169)) (-10 -8 (-15 -3622 ($))))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-3444 (((-112) $ $) 6)))
(((-1076) (-140)) (T -1076))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T))
-((-3676 ((|#1| |#1| (-1 (-563) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3505 (((-1262)) 15)) (-1584 (((-640 |#1|)) 9)))
-(((-1077 |#1|) (-10 -7 (-15 -3505 ((-1262))) (-15 -1584 ((-640 |#1|))) (-15 -3676 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3676 (|#1| |#1| (-1 (-563) |#1| |#1|)))) (-132)) (T -1077))
-((-3676 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-3676 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-1584 (*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))) (-3505 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -3505 ((-1262))) (-15 -1584 ((-640 |#1|))) (-15 -3676 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3676 (|#1| |#1| (-1 (-563) |#1| |#1|))))
-((-3714 (($ (-109) $) 16)) (-3726 (((-3 (-109) "failed") (-1169) $) 15)) (-3445 (($) 7)) (-3701 (($) 17)) (-3688 (($) 18)) (-3739 (((-640 (-175)) $) 10)) (-1692 (((-858) $) 21)))
-(((-1078) (-13 (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -3739 ((-640 (-175)) $)) (-15 -3726 ((-3 (-109) "failed") (-1169) $)) (-15 -3714 ($ (-109) $)) (-15 -3701 ($)) (-15 -3688 ($))))) (T -1078))
-((-3445 (*1 *1) (-5 *1 (-1078))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078)))) (-3726 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))) (-3701 (*1 *1) (-5 *1 (-1078))) (-3688 (*1 *1) (-5 *1 (-1078))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3445 ($)) (-15 -3739 ((-640 (-175)) $)) (-15 -3726 ((-3 (-109) "failed") (-1169) $)) (-15 -3714 ($ (-109) $)) (-15 -3701 ($)) (-15 -3688 ($))))
-((-3749 (((-1257 (-684 |#1|)) (-640 (-684 |#1|))) 42) (((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|))) 62) (((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|)))) 78)) (-3759 (((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))) 36)))
-(((-1079 |#1|) (-10 -7 (-15 -3749 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -3749 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -3749 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3759 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))))) (-363)) (T -1079))
-((-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-948 *5))))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-407 (-948 *5)))))))
-(-10 -7 (-15 -3749 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -3749 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -3749 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3759 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3989 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-4329 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2605 (((-640 (-1081 (-1169))) $) NIL)) (-2138 (((-1165 $) $ (-1081 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1081 (-1169)))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3968 (($ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1081 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1081 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-1612 (($ $ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-531 (-1081 (-1169))) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-2595 (($ (-1165 |#1|) (-1081 (-1169))) NIL) (($ (-1165 $) (-1081 (-1169))) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1081 (-1169))) NIL)) (-3908 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 (-1081 (-1169))) (-531 (-1081 (-1169)))) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-1698 (((-3 (-1081 (-1169)) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3760 (((-1081 (-1169)) $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3978 (((-112) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1081 (-1169))) (|:| -3311 (-767))) "failed") $) NIL)) (-3564 (($ $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1081 (-1169)) |#1|) NIL) (($ $ (-640 (-1081 (-1169))) (-640 |#1|)) NIL) (($ $ (-1081 (-1169)) $) NIL) (($ $ (-640 (-1081 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-1623 (($ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-4203 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4001 (((-640 (-1169)) $) NIL)) (-3871 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1081 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-93) . T) ((-102) . T) ((-613 #1=(-1174)) . T) ((-610 (-859)) . T) ((-610 #1#) . T) ((-490 #1#) . T) ((-1094) . T))
+((-3625 ((|#1| |#1| (-1 (-546) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3623 (((-1262)) 15)) (-3624 (((-637 |#1|)) 9)))
+(((-1077 |#1|) (-10 -7 (-15 -3623 ((-1262))) (-15 -3624 ((-637 |#1|))) (-15 -3625 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3625 (|#1| |#1| (-1 (-546) |#1| |#1|)))) (-132)) (T -1077))
+((-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-546) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-3624 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))) (-3623 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -3623 ((-1262))) (-15 -3624 ((-637 |#1|))) (-15 -3625 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3625 (|#1| |#1| (-1 (-546) |#1| |#1|))))
+((-3628 (($ (-109) $) 16)) (-3629 (((-3 (-109) "failed") (-1169) $) 15)) (-3979 (($) 7)) (-3627 (($) 17)) (-3626 (($) 18)) (-3630 (((-637 (-175)) $) 10)) (-4361 (((-859) $) 21)))
+(((-1078) (-13 (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -3630 ((-637 (-175)) $)) (-15 -3629 ((-3 (-109) "failed") (-1169) $)) (-15 -3628 ($ (-109) $)) (-15 -3627 ($)) (-15 -3626 ($))))) (T -1078))
+((-3979 (*1 *1) (-5 *1 (-1078))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-637 (-175))) (-5 *1 (-1078)))) (-3629 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))) (-3628 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))) (-3627 (*1 *1) (-5 *1 (-1078))) (-3626 (*1 *1) (-5 *1 (-1078))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3979 ($)) (-15 -3630 ((-637 (-175)) $)) (-15 -3629 ((-3 (-109) "failed") (-1169) $)) (-15 -3628 ($ (-109) $)) (-15 -3627 ($)) (-15 -3626 ($))))
+((-3631 (((-1256 (-684 |#1|)) (-637 (-684 |#1|))) 42) (((-1256 (-684 (-942 |#1|))) (-637 (-1169)) (-684 (-942 |#1|))) 62) (((-1256 (-684 (-407 (-942 |#1|)))) (-637 (-1169)) (-684 (-407 (-942 |#1|)))) 78)) (-3632 (((-1256 |#1|) (-684 |#1|) (-637 (-684 |#1|))) 36)))
+(((-1079 |#1|) (-10 -7 (-15 -3631 ((-1256 (-684 (-407 (-942 |#1|)))) (-637 (-1169)) (-684 (-407 (-942 |#1|))))) (-15 -3631 ((-1256 (-684 (-942 |#1|))) (-637 (-1169)) (-684 (-942 |#1|)))) (-15 -3631 ((-1256 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3632 ((-1256 |#1|) (-684 |#1|) (-637 (-684 |#1|))))) (-363)) (T -1079))
+((-3632 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-1256 *5)) (-5 *1 (-1079 *5)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-637 (-684 *4))) (-4 *4 (-363)) (-5 *2 (-1256 (-684 *4))) (-5 *1 (-1079 *4)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-1169))) (-4 *5 (-363)) (-5 *2 (-1256 (-684 (-942 *5)))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-942 *5))))) (-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-1169))) (-4 *5 (-363)) (-5 *2 (-1256 (-684 (-407 (-942 *5))))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-407 (-942 *5)))))))
+(-10 -7 (-15 -3631 ((-1256 (-684 (-407 (-942 |#1|)))) (-637 (-1169)) (-684 (-407 (-942 |#1|))))) (-15 -3631 ((-1256 (-684 (-942 |#1|))) (-637 (-1169)) (-684 (-942 |#1|)))) (-15 -3631 ((-1256 (-684 |#1|)) (-637 (-684 |#1|)))) (-15 -3632 ((-1256 |#1|) (-684 |#1|) (-637 (-684 |#1|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1578 (((-637 (-767)) $) NIL) (((-637 (-767)) $ (-1169)) NIL)) (-1612 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-3474 (((-637 (-1081 (-1169))) $) NIL)) (-3476 (((-1163 $) $ (-1081 (-1169))) NIL) (((-1163 |#1|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1081 (-1169)))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-1574 (($ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-1081 (-1169)) #2#) $) NIL) (((-3 (-1169) #2#) $) NIL) (((-3 (-1118 |#1| (-1169)) #2#) $) NIL)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-1081 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-4171 (($ $ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-531 (-1081 (-1169))) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3477 (($ (-1163 |#1|) (-1081 (-1169))) NIL) (($ (-1163 $) (-1081 (-1169))) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-637 (-1081 (-1169))) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1081 (-1169))) NIL)) (-3209 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-637 (-767)) $ (-637 (-1081 (-1169)))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 (-1081 (-1169))) (-531 (-1081 (-1169)))) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-1613 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3475 (((-3 (-1081 (-1169)) #3="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-1576 (((-1081 (-1169)) $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-1577 (((-112) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1081 (-1169))) (|:| -2543 (-767))) #3#) $) NIL)) (-1575 (($ $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1081 (-1169)) |#1|) NIL) (($ $ (-637 (-1081 (-1169))) (-637 |#1|)) NIL) (($ $ (-1081 (-1169)) $) NIL) (($ $ (-637 (-1081 (-1169))) (-637 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-637 (-1169)) (-637 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-637 (-1169)) (-637 |#1|)) NIL (|has| |#1| (-233)))) (-4172 (($ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-4225 (($ $ (-1081 (-1169))) NIL) (($ $ (-637 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-637 (-1081 (-1169))) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1579 (((-637 (-1169)) $) NIL)) (-4363 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-637 (-767)) $ (-637 (-1081 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-1081 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-637 (-1081 (-1169))) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1081 (-1169))) NIL) (($ $ (-637 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-637 (-1081 (-1169))) (-637 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1080 |#1|) (-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -1080))
NIL
(-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169))))
-((-1677 (((-112) $ $) NIL)) (-4329 (((-767) $) NIL)) (-2517 ((|#1| $) 10)) (-2130 (((-3 |#1| "failed") $) NIL)) (-2057 ((|#1| $) NIL)) (-1775 (((-767) $) 11)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-4340 (($ |#1| (-767)) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-4203 (($ $) NIL) (($ $ (-767)) NIL)) (-1692 (((-858) $) NIL) (($ |#1|) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 15)))
+((-2953 (((-112) $ $) NIL)) (-1612 (((-767) $) NIL)) (-4246 ((|#1| $) 10)) (-3565 (((-3 |#1| "failed") $) NIL)) (-3564 ((|#1| $) NIL)) (-4186 (((-767) $) 11)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-1613 (($ |#1| (-767)) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4225 (($ $) NIL) (($ $ (-767)) NIL)) (-4361 (((-859) $) NIL) (($ |#1|) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 15)))
(((-1081 |#1|) (-266 |#1|) (-846)) (T -1081))
NIL
(-266 |#1|)
-((-2238 (((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 23 (|has| |#1| (-844))) (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 14)))
-(((-1082 |#1| |#2|) (-10 -7 (-15 -2238 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2238 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1082))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-1082 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6)))))
-(-10 -7 (-15 -2238 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2238 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3771 (((-640 (-1128)) $) 9)) (-1718 (((-112) $ $) NIL)))
-(((-1083) (-13 (-1076) (-10 -8 (-15 -3771 ((-640 (-1128)) $))))) (T -1083))
-((-3771 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083)))))
-(-13 (-1076) (-10 -8 (-15 -3771 ((-640 (-1128)) $))))
-((-2238 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 19)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -2238 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-1208) (-1208)) (T -1084))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6)))))
-(-10 -7 (-15 -2238 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2517 (((-1169) $) 11)) (-4260 (((-1087 |#1|) $) 12)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2377 (($ (-1169) (-1087 |#1|)) 10)) (-1692 (((-858) $) 20 (|has| |#1| (-1093)))) (-1718 (((-112) $ $) 15 (|has| |#1| (-1093)))))
-(((-1085 |#1|) (-13 (-1208) (-10 -8 (-15 -2377 ($ (-1169) (-1087 |#1|))) (-15 -2517 ((-1169) $)) (-15 -4260 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1085))
-((-2377 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208)) (-5 *1 (-1085 *4)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))))
-(-13 (-1208) (-10 -8 (-15 -2377 ($ (-1169) (-1087 |#1|))) (-15 -2517 ((-1169) $)) (-15 -4260 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|)))
-((-4260 (($ |#1| |#1|) 8)) (-3792 ((|#1| $) 11)) (-3289 ((|#1| $) 13)) (-3302 (((-563) $) 9)) (-3781 ((|#1| $) 10)) (-3430 ((|#1| $) 12)) (-2219 (($ |#1|) 6)) (-2177 (($ |#1| |#1|) 15)) (-1464 (($ $ (-563)) 14)))
-(((-1086 |#1|) (-140) (-1208)) (T -1086))
-((-2177 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-4260 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))))
-(-13 (-615 |t#1|) (-10 -8 (-15 -2177 ($ |t#1| |t#1|)) (-15 -1464 ($ $ (-563))) (-15 -3289 (|t#1| $)) (-15 -3430 (|t#1| $)) (-15 -3792 (|t#1| $)) (-15 -3781 (|t#1| $)) (-15 -3302 ((-563) $)) (-15 -4260 ($ |t#1| |t#1|))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4151 (($ |#1| |#1|) 15)) (-4373 (((-637 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-844)))) (-3637 ((|#1| $) 10)) (-3639 ((|#1| $) 9)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3635 (((-546) $) 14)) (-3636 ((|#1| $) 12)) (-3638 ((|#1| $) 11)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4378 (((-637 |#1|) $) 35 (|has| |#1| (-844))) (((-637 |#1|) (-637 $)) 34 (|has| |#1| (-844)))) (-4385 (($ |#1|) 26)) (-4361 (((-859) $) 25 (|has| |#1| (-1094)))) (-4152 (($ |#1| |#1|) 8)) (-3640 (($ $ (-546)) 16)) (-3444 (((-112) $ $) 19 (|has| |#1| (-1094)))))
+(((-1082 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-637 |#1|))) |%noBranch|))) (-1207)) (T -1082))
+NIL
+(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-637 |#1|))) |%noBranch|)))
+((-4373 (((-637 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 23 (|has| |#1| (-844))) (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 14)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -4373 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|))) (IF (|has| |#1| (-844)) (-15 -4373 ((-637 |#2|) (-1 |#2| |#1|) (-1082 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1083))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-844)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-637 *6)) (-5 *1 (-1083 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6)))))
+(-10 -7 (-15 -4373 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|))) (IF (|has| |#1| (-844)) (-15 -4373 ((-637 |#2|) (-1 |#2| |#1|) (-1082 |#1|))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3633 (((-637 (-1128)) $) 9)) (-3444 (((-112) $ $) NIL)))
+(((-1084) (-13 (-1076) (-10 -8 (-15 -3633 ((-637 (-1128)) $))))) (T -1084))
+((-3633 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1084)))))
+(-13 (-1076) (-10 -8 (-15 -3633 ((-637 (-1128)) $))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4246 (((-1169) $) 11)) (-4151 (((-1082 |#1|) $) 12)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-3634 (($ (-1169) (-1082 |#1|)) 10)) (-4361 (((-859) $) 20 (|has| |#1| (-1094)))) (-3444 (((-112) $ $) 15 (|has| |#1| (-1094)))))
+(((-1085 |#1|) (-13 (-1207) (-10 -8 (-15 -3634 ($ (-1169) (-1082 |#1|))) (-15 -4246 ((-1169) $)) (-15 -4151 ((-1082 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1207)) (T -1085))
+((-3634 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1082 *4)) (-4 *4 (-1207)) (-5 *1 (-1085 *4)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1207)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-1082 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1207)))))
+(-13 (-1207) (-10 -8 (-15 -3634 ($ (-1169) (-1082 |#1|))) (-15 -4246 ((-1169) $)) (-15 -4151 ((-1082 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-4373 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 19)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -4373 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-1207) (-1207)) (T -1086))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6)))))
+(-10 -7 (-15 -4373 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|))))
+((-4151 (($ |#1| |#1|) 8)) (-3637 ((|#1| $) 11)) (-3639 ((|#1| $) 13)) (-3635 (((-546) $) 9)) (-3636 ((|#1| $) 10)) (-3638 ((|#1| $) 12)) (-4385 (($ |#1|) 6)) (-4152 (($ |#1| |#1|) 15)) (-3640 (($ $ (-546)) 14)))
+(((-1087 |#1|) (-140) (-1207)) (T -1087))
+((-4152 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))) (-3640 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1087 *3)) (-4 *3 (-1207)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1207)) (-5 *2 (-546)))) (-4151 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))))
+(-13 (-615 |t#1|) (-10 -8 (-15 -4152 ($ |t#1| |t#1|)) (-15 -3640 ($ $ (-546))) (-15 -3639 (|t#1| $)) (-15 -3638 (|t#1| $)) (-15 -3637 (|t#1| $)) (-15 -3636 (|t#1| $)) (-15 -3635 ((-546) $)) (-15 -4151 ($ |t#1| |t#1|))))
(((-615 |#1|) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4260 (($ |#1| |#1|) 15)) (-2238 (((-640 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-844)))) (-3792 ((|#1| $) 10)) (-3289 ((|#1| $) 9)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3302 (((-563) $) 14)) (-3781 ((|#1| $) 12)) (-3430 ((|#1| $) 11)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2212 (((-640 |#1|) $) 35 (|has| |#1| (-844))) (((-640 |#1|) (-640 $)) 34 (|has| |#1| (-844)))) (-2219 (($ |#1|) 26)) (-1692 (((-858) $) 25 (|has| |#1| (-1093)))) (-2177 (($ |#1| |#1|) 8)) (-1464 (($ $ (-563)) 16)) (-1718 (((-112) $ $) 19 (|has| |#1| (-1093)))))
-(((-1087 |#1|) (-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|))) (-1208)) (T -1087))
-NIL
-(-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|)))
-((-4260 (($ |#1| |#1|) 8)) (-2238 ((|#2| (-1 |#1| |#1|) $) 16)) (-3792 ((|#1| $) 11)) (-3289 ((|#1| $) 13)) (-3302 (((-563) $) 9)) (-3781 ((|#1| $) 10)) (-3430 ((|#1| $) 12)) (-2212 ((|#2| (-640 $)) 18) ((|#2| $) 17)) (-2219 (($ |#1|) 6)) (-2177 (($ |#1| |#1|) 15)) (-1464 (($ $ (-563)) 14)))
+((-4151 (($ |#1| |#1|) 8)) (-4373 ((|#2| (-1 |#1| |#1|) $) 16)) (-3637 ((|#1| $) 11)) (-3639 ((|#1| $) 13)) (-3635 (((-546) $) 9)) (-3636 ((|#1| $) 10)) (-3638 ((|#1| $) 12)) (-4378 ((|#2| (-637 $)) 18) ((|#2| $) 17)) (-4385 (($ |#1|) 6)) (-4152 (($ |#1| |#1|) 15)) (-3640 (($ $ (-546)) 14)))
(((-1088 |#1| |#2|) (-140) (-844) (-1142 |t#1|)) (T -1088))
-((-2212 (*1 *2 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) (-2238 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))))
-(-13 (-1086 |t#1|) (-10 -8 (-15 -2212 (|t#2| (-640 $))) (-15 -2212 (|t#2| $)) (-15 -2238 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-615 |#1|) . T) ((-1086 |#1|) . T))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1481 (((-1128) $) 12)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3363 (((-640 (-1128)) $) 10)) (-1718 (((-112) $ $) NIL)))
-(((-1089) (-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $)) (-15 -1481 ((-1128) $))))) (T -1089))
-((-3363 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089)))))
-(-13 (-1076) (-10 -8 (-15 -3363 ((-640 (-1128)) $)) (-15 -1481 ((-1128) $))))
-((-2582 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3816 (($ $ $) 10)) (-3827 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1090 |#1| |#2|) (-10 -8 (-15 -2582 (|#1| |#2| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#2|)) (-15 -3827 (|#1| |#1| |#1|))) (-1091 |#2|) (-1093)) (T -1090))
-NIL
-(-10 -8 (-15 -2582 (|#1| |#2| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -3827 (|#1| |#1| |#2|)) (-15 -3827 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-2582 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3816 (($ $ $) 20)) (-3804 (((-112) $ $) 19)) (-3001 (((-112) $ (-767)) 35)) (-1582 (($) 25) (($ (-640 |#1|)) 24)) (-2255 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4408)))) (-2569 (($) 36 T CONST)) (-3814 (($ $) 59 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4408)))) (-2658 (((-640 |#1|) $) 43 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) 28)) (-2514 (((-112) $ (-767)) 34)) (-3523 (((-640 |#1|) $) 44 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 38)) (-2481 (((-112) $ (-767)) 33)) (-3854 (((-1151) $) 9)) (-3834 (($ $ $) 23)) (-1693 (((-1113) $) 10)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1458 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#1|) (-640 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 29)) (-1665 (((-112) $) 32)) (-3445 (($) 31)) (-3827 (($ $ $) 22) (($ $ |#1|) 21)) (-1708 (((-767) |#1| $) 45 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4408)))) (-1870 (($ $) 30)) (-2219 (((-536) $) 60 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 51)) (-1692 (((-858) $) 11)) (-2533 (($) 27) (($ (-640 |#1|)) 26)) (-1471 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 37 (|has| $ (-6 -4408)))))
-(((-1091 |#1|) (-140) (-1093)) (T -1091))
-((-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2533 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2533 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-1582 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3827 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3827 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3816 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3804 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2582 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2582 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2582 (*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(-13 (-1093) (-151 |t#1|) (-10 -8 (-6 -4398) (-15 -3845 ((-112) $ $)) (-15 -2533 ($)) (-15 -2533 ($ (-640 |t#1|))) (-15 -1582 ($)) (-15 -1582 ($ (-640 |t#1|))) (-15 -3834 ($ $ $)) (-15 -3827 ($ $ $)) (-15 -3827 ($ $ |t#1|)) (-15 -3816 ($ $ $)) (-15 -3804 ((-112) $ $)) (-15 -2582 ($ $ $)) (-15 -2582 ($ $ |t#1|)) (-15 -2582 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) . T) ((-1208) . T))
-((-3854 (((-1151) $) 10)) (-1693 (((-1113) $) 8)))
-(((-1092 |#1|) (-10 -8 (-15 -3854 ((-1151) |#1|)) (-15 -1693 ((-1113) |#1|))) (-1093)) (T -1092))
-NIL
-(-10 -8 (-15 -3854 ((-1151) |#1|)) (-15 -1693 ((-1113) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
-(((-1093) (-140)) (T -1093))
-((-1693 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151)))))
-(-13 (-102) (-610 (-858)) (-10 -8 (-15 -1693 ((-1113) $)) (-15 -3854 ((-1151) $))))
-(((-102) . T) ((-610 (-858)) . T))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) 30)) (-2686 (($ (-640 (-917))) 52)) (-2704 (((-3 $ "failed") $ (-917) (-917)) 58)) (-1690 (($) 32)) (-2667 (((-112) (-917) $) 35)) (-3990 (((-917) $) 50)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) 31)) (-2714 (((-3 $ "failed") $ (-917)) 55)) (-1693 (((-1113) $) NIL)) (-2678 (((-1257 $)) 40)) (-2694 (((-640 (-917)) $) 24)) (-1648 (((-767) $ (-917) (-917)) 56)) (-1692 (((-858) $) 29)) (-1718 (((-112) $ $) 21)))
-(((-1094 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2714 ((-3 $ "failed") $ (-917))) (-15 -2704 ((-3 $ "failed") $ (-917) (-917))) (-15 -2694 ((-640 (-917)) $)) (-15 -2686 ($ (-640 (-917)))) (-15 -2678 ((-1257 $))) (-15 -2667 ((-112) (-917) $)) (-15 -1648 ((-767) $ (-917) (-917))))) (-917) (-917)) (T -1094))
-((-2714 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2704 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2678 (*1 *2) (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2667 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-368) (-10 -8 (-15 -2714 ((-3 $ "failed") $ (-917))) (-15 -2704 ((-3 $ "failed") $ (-917) (-917))) (-15 -2694 ((-640 (-917)) $)) (-15 -2686 ($ (-640 (-917)))) (-15 -2678 ((-1257 $))) (-15 -2667 ((-112) (-917) $)) (-15 -1648 ((-767) $ (-917) (-917)))))
-((-1677 (((-112) $ $) NIL)) (-3533 (($) NIL (|has| |#1| (-368)))) (-2582 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 71)) (-3816 (($ $ $) 69)) (-3804 (((-112) $ $) 70)) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#1| (-368)))) (-1582 (($ (-640 |#1|)) NIL) (($) 13)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1691 (($ |#1| $) 65 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4408)))) (-1690 (($) NIL (|has| |#1| (-368)))) (-2658 (((-640 |#1|) $) 19 (|has| $ (-6 -4408)))) (-3845 (((-112) $ $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-3088 ((|#1| $) 55 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1776 ((|#1| $) 53 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 34)) (-3990 (((-917) $) NIL (|has| |#1| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3834 (($ $ $) 67)) (-2627 ((|#1| $) 25)) (-3867 (($ |#1| $) 63)) (-2552 (($ (-917)) NIL (|has| |#1| (-368)))) (-1693 (((-1113) $) NIL)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2808 ((|#1| $) 27)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 21)) (-3445 (($) 11)) (-3827 (($ $ |#1|) NIL) (($ $ $) 68)) (-3863 (($) NIL) (($ (-640 |#1|)) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 16)) (-2219 (((-536) $) 50 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 59)) (-3545 (($ $) NIL (|has| |#1| (-368)))) (-1692 (((-858) $) NIL)) (-3556 (((-767) $) NIL)) (-2533 (($ (-640 |#1|)) NIL) (($) 12)) (-2820 (($ (-640 |#1|)) NIL)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 52)) (-3610 (((-767) $) 10 (|has| $ (-6 -4408)))))
-(((-1095 |#1|) (-425 |#1|) (-1093)) (T -1095))
-NIL
-(-425 |#1|)
-((-1677 (((-112) $ $) 7)) (-2748 (((-112) $) 32)) (-3675 ((|#2| $) 27)) (-2759 (((-112) $) 33)) (-3737 ((|#1| $) 28)) (-2781 (((-112) $) 35)) (-2801 (((-112) $) 37)) (-2769 (((-112) $) 34)) (-3854 (((-1151) $) 9)) (-2736 (((-112) $) 31)) (-3702 ((|#3| $) 26)) (-1693 (((-1113) $) 10)) (-2724 (((-112) $) 30)) (-4341 ((|#4| $) 25)) (-2473 ((|#5| $) 24)) (-1420 (((-112) $ $) 38)) (-2308 (($ $ (-563)) 20) (($ $ (-640 (-563))) 19)) (-2545 (((-640 $) $) 29)) (-2219 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-640 $)) 39)) (-1692 (((-858) $) 11)) (-3674 (($ $) 22)) (-3663 (($ $) 23)) (-2791 (((-112) $) 36)) (-1718 (((-112) $ $) 6)) (-3610 (((-563) $) 21)))
-(((-1096 |#1| |#2| |#3| |#4| |#5|) (-140) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1096))
-((-1420 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2545 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3663 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))))
-(-13 (-1093) (-615 |t#1|) (-615 |t#2|) (-615 |t#3|) (-615 |t#4|) (-615 |t#4|) (-615 |t#5|) (-615 (-640 $)) (-10 -8 (-15 -1420 ((-112) $ $)) (-15 -2801 ((-112) $)) (-15 -2791 ((-112) $)) (-15 -2781 ((-112) $)) (-15 -2769 ((-112) $)) (-15 -2759 ((-112) $)) (-15 -2748 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -2724 ((-112) $)) (-15 -2545 ((-640 $) $)) (-15 -3737 (|t#1| $)) (-15 -3675 (|t#2| $)) (-15 -3702 (|t#3| $)) (-15 -4341 (|t#4| $)) (-15 -2473 (|t#5| $)) (-15 -3663 ($ $)) (-15 -3674 ($ $)) (-15 -3610 ((-563) $)) (-15 -2308 ($ $ (-563))) (-15 -2308 ($ $ (-640 (-563))))))
-(((-102) . T) ((-610 (-858)) . T) ((-615 (-640 $)) . T) ((-615 |#1|) . T) ((-615 |#2|) . T) ((-615 |#3|) . T) ((-615 |#4|) . T) ((-615 |#5|) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-2748 (((-112) $) NIL)) (-3675 (((-1169) $) NIL)) (-2759 (((-112) $) NIL)) (-3737 (((-1151) $) NIL)) (-2781 (((-112) $) NIL)) (-2801 (((-112) $) NIL)) (-2769 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-2736 (((-112) $) NIL)) (-3702 (((-563) $) NIL)) (-1693 (((-1113) $) NIL)) (-2724 (((-112) $) NIL)) (-4341 (((-225) $) NIL)) (-2473 (((-858) $) NIL)) (-1420 (((-112) $ $) NIL)) (-2308 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2545 (((-640 $) $) NIL)) (-2219 (($ (-1151)) NIL) (($ (-1169)) NIL) (($ (-563)) NIL) (($ (-225)) NIL) (($ (-858)) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL)) (-3674 (($ $) NIL)) (-3663 (($ $) NIL)) (-2791 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL)) (-3610 (((-563) $) NIL)))
-(((-1097) (-1096 (-1151) (-1169) (-563) (-225) (-858))) (T -1097))
-NIL
-(-1096 (-1151) (-1169) (-563) (-225) (-858))
-((-1677 (((-112) $ $) NIL)) (-2748 (((-112) $) 39)) (-3675 ((|#2| $) 42)) (-2759 (((-112) $) 18)) (-3737 ((|#1| $) 19)) (-2781 (((-112) $) 37)) (-2801 (((-112) $) 14)) (-2769 (((-112) $) 38)) (-3854 (((-1151) $) NIL)) (-2736 (((-112) $) 40)) (-3702 ((|#3| $) 44)) (-1693 (((-1113) $) NIL)) (-2724 (((-112) $) 41)) (-4341 ((|#4| $) 43)) (-2473 ((|#5| $) 45)) (-1420 (((-112) $ $) 36)) (-2308 (($ $ (-563)) 56) (($ $ (-640 (-563))) 58)) (-2545 (((-640 $) $) 24)) (-2219 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-640 $)) 46)) (-1692 (((-858) $) 25)) (-3674 (($ $) 23)) (-3663 (($ $) 52)) (-2791 (((-112) $) 21)) (-1718 (((-112) $ $) 35)) (-3610 (((-563) $) 54)))
-(((-1098 |#1| |#2| |#3| |#4| |#5|) (-1096 |#1| |#2| |#3| |#4| |#5|) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1098))
-NIL
-(-1096 |#1| |#2| |#3| |#4| |#5|)
-((-2615 (((-1262) $) 23)) (-3424 (($ (-1169) (-434) |#2|) 11)) (-1692 (((-858) $) 16)))
-(((-1099 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3424 ($ (-1169) (-434) |#2|)))) (-846) (-430 |#1|)) (T -1099))
-((-3424 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5)))))
-(-13 (-395) (-10 -8 (-15 -3424 ($ (-1169) (-434) |#2|))))
-((-2836 (((-112) |#5| |#5|) 37)) (-2866 (((-112) |#5| |#5|) 51)) (-2912 (((-112) |#5| (-640 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-2875 (((-112) (-640 |#4|) (-640 |#4|)) 57)) (-2931 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) 62)) (-2824 (((-1262)) 33)) (-2812 (((-1262) (-1151) (-1151) (-1151)) 29)) (-2921 (((-640 |#5|) (-640 |#5|)) 81)) (-2940 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) 79)) (-2950 (((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 101)) (-2856 (((-112) |#5| |#5|) 46)) (-2902 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2884 (((-112) (-640 |#4|) (-640 |#4|)) 56)) (-2893 (((-112) (-640 |#4|) (-640 |#4|)) 58)) (-2319 (((-112) (-640 |#4|) (-640 |#4|)) 59)) (-2961 (((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2847 (((-640 |#5|) (-640 |#5|)) 42)))
-(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2812 ((-1262) (-1151) (-1151) (-1151))) (-15 -2824 ((-1262))) (-15 -2836 ((-112) |#5| |#5|)) (-15 -2847 ((-640 |#5|) (-640 |#5|))) (-15 -2856 ((-112) |#5| |#5|)) (-15 -2866 ((-112) |#5| |#5|)) (-15 -2875 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2884 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2893 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2319 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2902 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2912 ((-112) |#5| |#5|)) (-15 -2912 ((-112) |#5| (-640 |#5|))) (-15 -2921 ((-640 |#5|) (-640 |#5|))) (-15 -2931 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2940 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-15 -2950 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2961 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1100))
-((-2961 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1420 (-640 *9)) (|:| -2058 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-2950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -1420 (-640 *9)) (|:| -2058 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2058 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2902 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2319 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2893 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2884 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2875 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2824 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2812 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2812 ((-1262) (-1151) (-1151) (-1151))) (-15 -2824 ((-1262))) (-15 -2836 ((-112) |#5| |#5|)) (-15 -2847 ((-640 |#5|) (-640 |#5|))) (-15 -2856 ((-112) |#5| |#5|)) (-15 -2866 ((-112) |#5| |#5|)) (-15 -2875 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2884 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2893 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2319 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2902 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2912 ((-112) |#5| |#5|)) (-15 -2912 ((-112) |#5| (-640 |#5|))) (-15 -2921 ((-640 |#5|) (-640 |#5|))) (-15 -2931 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2940 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-15 -2950 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2961 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2058 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3117 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|) 94)) (-3011 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|) 71)) (-3041 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|) 89)) (-3063 (((-640 |#5|) |#4| |#5|) 108)) (-3081 (((-640 |#5|) |#4| |#5|) 115)) (-3105 (((-640 |#5|) |#4| |#5|) 116)) (-3053 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|) 95)) (-3072 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|) 114)) (-3093 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3022 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112)) 83) (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3031 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|) 78)) (-3000 (((-1262)) 37)) (-2980 (((-1262)) 26)) (-2989 (((-1262) (-1151) (-1151) (-1151)) 33)) (-2971 (((-1262) (-1151) (-1151) (-1151)) 22)))
-(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2971 ((-1262) (-1151) (-1151) (-1151))) (-15 -2980 ((-1262))) (-15 -2989 ((-1262) (-1151) (-1151) (-1151))) (-15 -3000 ((-1262))) (-15 -3011 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3022 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3022 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112))) (-15 -3031 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3041 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3093 ((-112) |#4| |#5|)) (-15 -3053 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3063 ((-640 |#5|) |#4| |#5|)) (-15 -3072 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3081 ((-640 |#5|) |#4| |#5|)) (-15 -3093 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3105 ((-640 |#5|) |#4| |#5|)) (-15 -3117 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101))
-((-3117 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3105 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3093 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3081 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3072 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3063 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3093 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3041 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2058 *9)))) (-5 *1 (-1101 *6 *7 *4 *8 *9)))) (-3022 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3011 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3000 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2989 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2980 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2971 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2971 ((-1262) (-1151) (-1151) (-1151))) (-15 -2980 ((-1262))) (-15 -2989 ((-1262) (-1151) (-1151) (-1151))) (-15 -3000 ((-1262))) (-15 -3011 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3022 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3022 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) |#3| (-112))) (-15 -3031 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3041 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#4| |#5|)) (-15 -3093 ((-112) |#4| |#5|)) (-15 -3053 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3063 ((-640 |#5|) |#4| |#5|)) (-15 -3072 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3081 ((-640 |#5|) |#4| |#5|)) (-15 -3093 ((-640 (-2 (|:| |val| (-112)) (|:| -2058 |#5|))) |#4| |#5|)) (-15 -3105 ((-640 |#5|) |#4| |#5|)) (-15 -3117 ((-640 (-2 (|:| |val| |#4|) (|:| -2058 |#5|))) |#4| |#5|)))
-((-1677 (((-112) $ $) 7)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) 85)) (-2119 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) 101) (((-112) $) 97)) (-2189 ((|#4| |#4| $) 92)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 126)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3793 (((-3 $ "failed") $) 82)) (-2151 ((|#4| |#4| $) 89)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2131 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) 105)) (-3536 (((-112) |#4| $) 136)) (-3514 (((-112) |#4| $) 133)) (-3548 (((-112) |#4| $) 137) (((-112) $) 134)) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) 104) (((-112) $) 103)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3482 (((-640 $) |#4| $) 129)) (-3503 (((-3 (-112) (-640 $)) |#4| $) 132)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3834 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-1956 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2297 (((-640 |#4|) $) 107)) (-2225 (((-112) |#4| $) 99) (((-112) $) 95)) (-2163 ((|#4| |#4| $) 90)) (-2319 (((-112) $ $) 110)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) 100) (((-112) $) 96)) (-2176 ((|#4| |#4| $) 91)) (-1693 (((-1113) $) 10)) (-3782 (((-3 |#4| "failed") $) 84)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2089 (((-3 $ "failed") $ |#4|) 78)) (-1751 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-3871 (((-767) $) 106)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-2141 (($ $) 88)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3255 (((-767) $) 76 (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-3450 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) 81)) (-3525 (((-112) |#4| $) 135)) (-3772 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
+((-4378 (*1 *2 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) (-4373 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))))
+(-13 (-1087 |t#1|) (-10 -8 (-15 -4378 (|t#2| (-637 $))) (-15 -4378 (|t#2| $)) (-15 -4373 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-615 |#1|) . T) ((-1087 |#1|) . T))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-4212 (((-1128) $) 12)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3641 (((-637 (-1128)) $) 10)) (-3444 (((-112) $ $) NIL)))
+(((-1089) (-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $)) (-15 -4212 ((-1128) $))))) (T -1089))
+((-3641 (*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1089)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089)))))
+(-13 (-1076) (-10 -8 (-15 -3641 ((-637 (-1128)) $)) (-15 -4212 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-1956 (($) NIL (|has| |#1| (-368)))) (-3642 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 71)) (-3644 (($ $ $) 69)) (-3643 (((-112) $ $) 70)) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#1| (-368)))) (-3647 (($ (-637 |#1|)) NIL) (($) 13)) (-1666 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3816 (($ |#1| $) 65 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4408)))) (-3384 (($) NIL (|has| |#1| (-368)))) (-2103 (((-637 |#1|) $) 19 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2919 ((|#1| $) 55 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3249 ((|#1| $) 53 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 34)) (-2167 (((-915) $) NIL (|has| |#1| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3646 (($ $ $) 67)) (-1359 ((|#1| $) 25)) (-4022 (($ |#1| $) 63)) (-2542 (($ (-915)) NIL (|has| |#1| (-368)))) (-3651 (((-1113) $) NIL)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1360 ((|#1| $) 27)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 21)) (-3979 (($) 11)) (-3645 (($ $ |#1|) NIL) (($ $ $) 68)) (-1557 (($) NIL) (($ (-637 |#1|)) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 16)) (-4385 (((-535) $) 50 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 59)) (-1957 (($ $) NIL (|has| |#1| (-368)))) (-4361 (((-859) $) NIL)) (-1958 (((-767) $) NIL)) (-3648 (($ (-637 |#1|)) NIL) (($) 12)) (-1361 (($ (-637 |#1|)) NIL)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 52)) (-4372 (((-767) $) 10 (|has| $ (-6 -4408)))))
+(((-1090 |#1|) (-426 |#1|) (-1094)) (T -1090))
+NIL
+(-426 |#1|)
+((-3642 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3644 (($ $ $) 10)) (-3645 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1091 |#1| |#2|) (-10 -8 (-15 -3642 (|#1| |#2| |#1|)) (-15 -3642 (|#1| |#1| |#2|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#2|)) (-15 -3645 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091))
+NIL
+(-10 -8 (-15 -3642 (|#1| |#2| |#1|)) (-15 -3642 (|#1| |#1| |#2|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#2|)) (-15 -3645 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3642 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3644 (($ $ $) 20)) (-3643 (((-112) $ $) 19)) (-1296 (((-112) $ (-767)) 35)) (-3647 (($) 25) (($ (-637 |#1|)) 24)) (-4125 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4408)))) (-4139 (($) 36 T CONST)) (-1430 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4408)))) (-2103 (((-637 |#1|) $) 43 (|has| $ (-6 -4408)))) (-3649 (((-112) $ $) 28)) (-4134 (((-112) $ (-767)) 34)) (-2993 (((-637 |#1|) $) 44 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 38)) (-4131 (((-112) $ (-767)) 33)) (-3650 (((-1151) $) 9)) (-3646 (($ $ $) 23)) (-3651 (((-1113) $) 10)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2105 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#1|) (-637 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 (-293 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 29)) (-3814 (((-112) $) 32)) (-3979 (($) 31)) (-3645 (($ $ $) 22) (($ $ |#1|) 21)) (-2104 (((-767) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4408)))) (-3811 (($ $) 30)) (-4385 (((-535) $) 60 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 51)) (-4361 (((-859) $) 11)) (-3648 (($) 27) (($ (-637 |#1|)) 26)) (-2106 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 37 (|has| $ (-6 -4408)))))
+(((-1092 |#1|) (-140) (-1094)) (T -1092))
+((-3649 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3648 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3647 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3647 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3646 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3645 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3645 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3643 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3642 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3642 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3642 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4398) (-15 -3649 ((-112) $ $)) (-15 -3648 ($)) (-15 -3648 ($ (-637 |t#1|))) (-15 -3647 ($)) (-15 -3647 ($ (-637 |t#1|))) (-15 -3646 ($ $ $)) (-15 -3645 ($ $ $)) (-15 -3645 ($ $ |t#1|)) (-15 -3644 ($ $ $)) (-15 -3643 ((-112) $ $)) (-15 -3642 ($ $ $)) (-15 -3642 ($ $ |t#1|)) (-15 -3642 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1207) . T))
+((-3650 (((-1151) $) 10)) (-3651 (((-1113) $) 8)))
+(((-1093 |#1|) (-10 -8 (-15 -3650 ((-1151) |#1|)) (-15 -3651 ((-1113) |#1|))) (-1094)) (T -1093))
+NIL
+(-10 -8 (-15 -3650 ((-1151) |#1|)) (-15 -3651 ((-1113) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
+(((-1094) (-140)) (T -1094))
+((-3651 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1113)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1151)))))
+(-13 (-102) (-610 (-859)) (-10 -8 (-15 -3651 ((-1113) $)) (-15 -3650 ((-1151) $))))
+(((-102) . T) ((-610 (-859)) . T))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) 30)) (-3655 (($ (-637 (-915))) 52)) (-3657 (((-3 $ #1="failed") $ (-915) (-915)) 58)) (-3384 (($) 32)) (-3653 (((-112) (-915) $) 35)) (-2167 (((-915) $) 50)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) 31)) (-3658 (((-3 $ #1#) $ (-915)) 55)) (-3651 (((-1113) $) NIL)) (-3654 (((-1256 $)) 40)) (-3656 (((-637 (-915)) $) 24)) (-3652 (((-767) $ (-915) (-915)) 56)) (-4361 (((-859) $) 29)) (-3444 (((-112) $ $) 21)))
+(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3658 ((-3 $ #1="failed") $ (-915))) (-15 -3657 ((-3 $ #1#) $ (-915) (-915))) (-15 -3656 ((-637 (-915)) $)) (-15 -3655 ($ (-637 (-915)))) (-15 -3654 ((-1256 $))) (-15 -3653 ((-112) (-915) $)) (-15 -3652 ((-767) $ (-915) (-915))))) (-915) (-915)) (T -1095))
+((-3658 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-915)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3657 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-915)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))) (-3654 (*1 *2) (-12 (-5 *2 (-1256 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915)))) (-3653 (*1 *2 *3 *1) (-12 (-5 *3 (-915)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3652 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-368) (-10 -8 (-15 -3658 ((-3 $ #1="failed") $ (-915))) (-15 -3657 ((-3 $ #1#) $ (-915) (-915))) (-15 -3656 ((-637 (-915)) $)) (-15 -3655 ($ (-637 (-915)))) (-15 -3654 ((-1256 $))) (-15 -3653 ((-112) (-915) $)) (-15 -3652 ((-767) $ (-915) (-915)))))
+((-2953 (((-112) $ $) NIL)) (-3668 (((-112) $) NIL)) (-3664 (((-1169) $) NIL)) (-3669 (((-112) $) NIL)) (-3949 (((-1151) $) NIL)) (-3671 (((-112) $) NIL)) (-3673 (((-112) $) NIL)) (-3670 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-3667 (((-112) $) NIL)) (-3663 (((-546) $) NIL)) (-3651 (((-1113) $) NIL)) (-3666 (((-112) $) NIL)) (-3662 (((-225) $) NIL)) (-3661 (((-859) $) NIL)) (-3674 (((-112) $ $) NIL)) (-4214 (($ $ (-546)) NIL) (($ $ (-637 (-546))) NIL)) (-3665 (((-637 $) $) NIL)) (-4385 (($ (-1151)) NIL) (($ (-1169)) NIL) (($ (-546)) NIL) (($ (-225)) NIL) (($ (-859)) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL)) (-3659 (($ $) NIL)) (-3660 (($ $) NIL)) (-3672 (((-112) $) NIL)) (-3444 (((-112) $ $) NIL)) (-4372 (((-546) $) NIL)))
+(((-1096) (-1097 (-1151) (-1169) (-546) (-225) (-859))) (T -1096))
+NIL
+(-1097 (-1151) (-1169) (-546) (-225) (-859))
+((-2953 (((-112) $ $) 7)) (-3668 (((-112) $) 32)) (-3664 ((|#2| $) 27)) (-3669 (((-112) $) 33)) (-3949 ((|#1| $) 28)) (-3671 (((-112) $) 35)) (-3673 (((-112) $) 37)) (-3670 (((-112) $) 34)) (-3650 (((-1151) $) 9)) (-3667 (((-112) $) 31)) (-3663 ((|#3| $) 26)) (-3651 (((-1113) $) 10)) (-3666 (((-112) $) 30)) (-3662 ((|#4| $) 25)) (-3661 ((|#5| $) 24)) (-3674 (((-112) $ $) 38)) (-4214 (($ $ (-546)) 20) (($ $ (-637 (-546))) 19)) (-3665 (((-637 $) $) 29)) (-4385 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-637 $)) 39)) (-4361 (((-859) $) 11)) (-3659 (($ $) 22)) (-3660 (($ $) 23)) (-3672 (((-112) $) 36)) (-3444 (((-112) $ $) 6)) (-4372 (((-546) $) 21)))
+(((-1097 |#1| |#2| |#3| |#4| |#5|) (-140) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1097))
+((-3674 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-637 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-546)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))))
+(-13 (-1094) (-615 |t#1|) (-615 |t#2|) (-615 |t#3|) (-615 |t#4|) (-615 |t#4|) (-615 |t#5|) (-615 (-637 $)) (-10 -8 (-15 -3674 ((-112) $ $)) (-15 -3673 ((-112) $)) (-15 -3672 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -3670 ((-112) $)) (-15 -3669 ((-112) $)) (-15 -3668 ((-112) $)) (-15 -3667 ((-112) $)) (-15 -3666 ((-112) $)) (-15 -3665 ((-637 $) $)) (-15 -3949 (|t#1| $)) (-15 -3664 (|t#2| $)) (-15 -3663 (|t#3| $)) (-15 -3662 (|t#4| $)) (-15 -3661 (|t#5| $)) (-15 -3660 ($ $)) (-15 -3659 ($ $)) (-15 -4372 ((-546) $)) (-15 -4214 ($ $ (-546))) (-15 -4214 ($ $ (-637 (-546))))))
+(((-102) . T) ((-610 (-859)) . T) ((-615 (-637 $)) . T) ((-615 |#1|) . T) ((-615 |#2|) . T) ((-615 |#3|) . T) ((-615 |#4|) . T) ((-615 |#5|) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3668 (((-112) $) 39)) (-3664 ((|#2| $) 42)) (-3669 (((-112) $) 18)) (-3949 ((|#1| $) 19)) (-3671 (((-112) $) 37)) (-3673 (((-112) $) 14)) (-3670 (((-112) $) 38)) (-3650 (((-1151) $) NIL)) (-3667 (((-112) $) 40)) (-3663 ((|#3| $) 44)) (-3651 (((-1113) $) NIL)) (-3666 (((-112) $) 41)) (-3662 ((|#4| $) 43)) (-3661 ((|#5| $) 45)) (-3674 (((-112) $ $) 36)) (-4214 (($ $ (-546)) 56) (($ $ (-637 (-546))) 58)) (-3665 (((-637 $) $) 24)) (-4385 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-637 $)) 46)) (-4361 (((-859) $) 25)) (-3659 (($ $) 23)) (-3660 (($ $) 52)) (-3672 (((-112) $) 21)) (-3444 (((-112) $ $) 35)) (-4372 (((-546) $) 54)))
+(((-1098 |#1| |#2| |#3| |#4| |#5|) (-1097 |#1| |#2| |#3| |#4| |#5|) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1098))
+NIL
+(-1097 |#1| |#2| |#3| |#4| |#5|)
+((-3791 (((-1262) $) 23)) (-3675 (($ (-1169) (-434) |#2|) 11)) (-4361 (((-859) $) 16)))
+(((-1099 |#1| |#2|) (-13 (-396) (-10 -8 (-15 -3675 ($ (-1169) (-434) |#2|)))) (-846) (-421 |#1|)) (T -1099))
+((-3675 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1099 *5 *4)) (-4 *4 (-421 *5)))))
+(-13 (-396) (-10 -8 (-15 -3675 ($ (-1169) (-434) |#2|))))
+((-3678 (((-112) |#5| |#5|) 37)) (-3681 (((-112) |#5| |#5|) 51)) (-3686 (((-112) |#5| (-637 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-3682 (((-112) (-637 |#4|) (-637 |#4|)) 57)) (-3688 (((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) 62)) (-3677 (((-1262)) 33)) (-3676 (((-1262) (-1151) (-1151) (-1151)) 29)) (-3687 (((-637 |#5|) (-637 |#5|)) 81)) (-3689 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) 79)) (-3690 (((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112)) 101)) (-3680 (((-112) |#5| |#5|) 46)) (-3685 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3683 (((-112) (-637 |#4|) (-637 |#4|)) 56)) (-3684 (((-112) (-637 |#4|) (-637 |#4|)) 58)) (-4114 (((-112) (-637 |#4|) (-637 |#4|)) 59)) (-3691 (((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3679 (((-637 |#5|) (-637 |#5|)) 42)))
+(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3676 ((-1262) (-1151) (-1151) (-1151))) (-15 -3677 ((-1262))) (-15 -3678 ((-112) |#5| |#5|)) (-15 -3679 ((-637 |#5|) (-637 |#5|))) (-15 -3680 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3682 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3683 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3684 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -4114 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3685 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3686 ((-112) |#5| |#5|)) (-15 -3686 ((-112) |#5| (-637 |#5|))) (-15 -3687 ((-637 |#5|) (-637 |#5|))) (-15 -3688 ((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3689 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-15 -3690 ((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3691 ((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1100))
+((-3691 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *4) (|:| |ineq| (-637 *9)))) (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-637 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-3690 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-637 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *10) (|:| |ineq| (-637 *9))))) (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-637 *9)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-637 (-2 (|:| |val| (-637 *6)) (|:| -1695 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-3687 (*1 *2 *2) (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3685 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3684 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3683 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3682 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3680 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3677 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3676 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3676 ((-1262) (-1151) (-1151) (-1151))) (-15 -3677 ((-1262))) (-15 -3678 ((-112) |#5| |#5|)) (-15 -3679 ((-637 |#5|) (-637 |#5|))) (-15 -3680 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3682 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3683 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3684 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -4114 ((-112) (-637 |#4|) (-637 |#4|))) (-15 -3685 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3686 ((-112) |#5| |#5|)) (-15 -3686 ((-112) |#5| (-637 |#5|))) (-15 -3687 ((-637 |#5|) (-637 |#5|))) (-15 -3688 ((-112) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3689 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-15 -3690 ((-637 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|)))) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3691 ((-3 (-2 (|:| -3674 (-637 |#4|)) (|:| -1695 |#5|) (|:| |ineq| (-637 |#4|))) "failed") (-637 |#4|) |#5| (-637 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3706 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|) 94)) (-3696 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|) 71)) (-3699 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|) 89)) (-3701 (((-637 |#5|) |#4| |#5|) 108)) (-3703 (((-637 |#5|) |#4| |#5|) 115)) (-3705 (((-637 |#5|) |#4| |#5|) 116)) (-3700 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|) 95)) (-3702 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|) 114)) (-3704 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3697 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112)) 83) (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3698 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|) 78)) (-3695 (((-1262)) 37)) (-3693 (((-1262)) 26)) (-3694 (((-1262) (-1151) (-1151) (-1151)) 33)) (-3692 (((-1262) (-1151) (-1151) (-1151)) 22)))
+(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3692 ((-1262) (-1151) (-1151) (-1151))) (-15 -3693 ((-1262))) (-15 -3694 ((-1262) (-1151) (-1151) (-1151))) (-15 -3695 ((-1262))) (-15 -3696 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3697 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112))) (-15 -3698 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3699 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3704 ((-112) |#4| |#5|)) (-15 -3700 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3701 ((-637 |#5|) |#4| |#5|)) (-15 -3702 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3703 ((-637 |#5|) |#4| |#5|)) (-15 -3704 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3705 ((-637 |#5|) |#4| |#5|)) (-15 -3706 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101))
+((-3706 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3704 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3703 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3702 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3701 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3700 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3704 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3699 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3698 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-637 (-2 (|:| |val| *8) (|:| -1695 *9)))) (-5 *1 (-1101 *6 *7 *4 *8 *9)))) (-3697 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3696 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3695 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3693 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3692 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3692 ((-1262) (-1151) (-1151) (-1151))) (-15 -3693 ((-1262))) (-15 -3694 ((-1262) (-1151) (-1151) (-1151))) (-15 -3695 ((-1262))) (-15 -3696 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3697 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) |#3| (-112))) (-15 -3698 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3699 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#4| |#5|)) (-15 -3704 ((-112) |#4| |#5|)) (-15 -3700 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3701 ((-637 |#5|) |#4| |#5|)) (-15 -3702 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3703 ((-637 |#5|) |#4| |#5|)) (-15 -3704 ((-637 (-2 (|:| |val| (-112)) (|:| -1695 |#5|))) |#4| |#5|)) (-15 -3705 ((-637 |#5|) |#4| |#5|)) (-15 -3706 ((-637 (-2 (|:| |val| |#4|) (|:| -1695 |#5|))) |#4| |#5|)))
+((-2953 (((-112) $ $) 7)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) 85)) (-4097 (((-637 $) (-637 |#4|)) 86) (((-637 $) (-637 |#4|) (-112)) 111)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) 101) (((-112) $) 97)) (-4103 ((|#4| |#4| $) 92)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 126)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-4213 (((-3 $ #1#) $) 82)) (-4100 ((|#4| |#4| $) 89)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4098 ((|#4| |#4| $) 87)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) 105)) (-3605 (((-112) |#4| $) 136)) (-3603 (((-112) |#4| $) 133)) (-3606 (((-112) |#4| $) 137) (((-112) $) 134)) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) 104) (((-112) $) 103)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) 128)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 127)) (-4212 (((-3 |#4| #1#) $) 83)) (-3600 (((-637 $) |#4| $) 129)) (-3602 (((-3 (-112) (-637 $)) |#4| $) 132)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3646 (((-637 $) |#4| $) 125) (((-637 $) (-637 |#4|) $) 124) (((-637 $) (-637 |#4|) (-637 $)) 123) (((-637 $) |#4| (-637 $)) 122)) (-3851 (($ |#4| $) 117) (($ (-637 |#4|) $) 116)) (-4112 (((-637 |#4|) $) 107)) (-4106 (((-112) |#4| $) 99) (((-112) $) 95)) (-4101 ((|#4| |#4| $) 90)) (-4114 (((-112) $ $) 110)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) 100) (((-112) $) 96)) (-4102 ((|#4| |#4| $) 91)) (-3651 (((-1113) $) 10)) (-4215 (((-3 |#4| #1#) $) 84)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4094 (((-3 $ #1#) $ |#4|) 78)) (-4183 (($ $ |#4|) 77) (((-637 $) |#4| $) 115) (((-637 $) |#4| (-637 $)) 114) (((-637 $) (-637 |#4|) $) 113) (((-637 $) (-637 |#4|) (-637 $)) 112)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-4363 (((-767) $) 106)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-4099 (($ $) 88)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-4093 (((-767) $) 76 (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) 98)) (-3597 (((-637 $) |#4| $) 121) (((-637 $) |#4| (-637 $)) 120) (((-637 $) (-637 |#4|) $) 119) (((-637 $) (-637 |#4|) (-637 $)) 118)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) 81)) (-3604 (((-112) |#4| $) 135)) (-4348 (((-112) |#3| $) 80)) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
(((-1102 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1102))
NIL
(-13 (-1065 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T))
-((-3220 (((-640 (-563)) (-563) (-563) (-563)) 22)) (-3209 (((-640 (-563)) (-563) (-563) (-563)) 12)) (-3199 (((-640 (-563)) (-563) (-563) (-563)) 18)) (-3191 (((-563) (-563) (-563)) 9)) (-3182 (((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563)) 45) (((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563)) 40)) (-3172 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112)) 27)) (-3163 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 44)) (-3156 (((-684 (-563)) (-640 (-563)) (-640 (-563))) 32)) (-3147 (((-640 (-684 (-563))) (-640 (-563))) 34)) (-3137 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 48)) (-3127 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563))) 56)))
-(((-1103) (-10 -7 (-15 -3127 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -3137 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -3147 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -3156 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -3163 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -3172 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -3182 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -3182 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -3191 ((-563) (-563) (-563))) (-15 -3199 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3209 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3220 ((-640 (-563)) (-563) (-563) (-563))))) (T -1103))
-((-3220 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3209 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3199 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3191 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103)))) (-3182 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563)) (-5 *1 (-1103)))) (-3182 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103)))) (-3172 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103)))) (-3163 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103)))) (-3156 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1103)))) (-3137 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103)))) (-3127 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))))
-(-10 -7 (-15 -3127 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -3137 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -3147 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -3156 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -3163 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -3172 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -3182 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -3182 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -3191 ((-563) (-563) (-563))) (-15 -3199 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3209 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3220 ((-640 (-563)) (-563) (-563) (-563))))
-((** (($ $ (-917)) 10)))
-(((-1104 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917)))) (-1105)) (T -1104))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-917))))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 14)))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1207) . T))
+((-3717 (((-637 (-546)) (-546) (-546) (-546)) 22)) (-3716 (((-637 (-546)) (-546) (-546) (-546)) 12)) (-3715 (((-637 (-546)) (-546) (-546) (-546)) 18)) (-3714 (((-546) (-546) (-546)) 9)) (-3713 (((-1256 (-546)) (-637 (-546)) (-1256 (-546)) (-546)) 45) (((-1256 (-546)) (-1256 (-546)) (-1256 (-546)) (-546)) 40)) (-3712 (((-637 (-546)) (-637 (-546)) (-637 (-546)) (-112)) 27)) (-3711 (((-684 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546))) 44)) (-3710 (((-684 (-546)) (-637 (-546)) (-637 (-546))) 32)) (-3709 (((-637 (-684 (-546))) (-637 (-546))) 34)) (-3708 (((-637 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546))) 48)) (-3707 (((-684 (-546)) (-637 (-546)) (-637 (-546)) (-637 (-546))) 56)))
+(((-1103) (-10 -7 (-15 -3707 ((-684 (-546)) (-637 (-546)) (-637 (-546)) (-637 (-546)))) (-15 -3708 ((-637 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546)))) (-15 -3709 ((-637 (-684 (-546))) (-637 (-546)))) (-15 -3710 ((-684 (-546)) (-637 (-546)) (-637 (-546)))) (-15 -3711 ((-684 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546)))) (-15 -3712 ((-637 (-546)) (-637 (-546)) (-637 (-546)) (-112))) (-15 -3713 ((-1256 (-546)) (-1256 (-546)) (-1256 (-546)) (-546))) (-15 -3713 ((-1256 (-546)) (-637 (-546)) (-1256 (-546)) (-546))) (-15 -3714 ((-546) (-546) (-546))) (-15 -3715 ((-637 (-546)) (-546) (-546) (-546))) (-15 -3716 ((-637 (-546)) (-546) (-546) (-546))) (-15 -3717 ((-637 (-546)) (-546) (-546) (-546))))) (T -1103))
+((-3717 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))) (-3716 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))) (-3715 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))) (-3714 (*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1103)))) (-3713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1256 (-546))) (-5 *3 (-637 (-546))) (-5 *4 (-546)) (-5 *1 (-1103)))) (-3713 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1256 (-546))) (-5 *3 (-546)) (-5 *1 (-1103)))) (-3712 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *3 (-112)) (-5 *1 (-1103)))) (-3711 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-684 (-546))) (-5 *3 (-637 (-546))) (-5 *1 (-1103)))) (-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1103)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-1103)))) (-3708 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *3 (-684 (-546))) (-5 *1 (-1103)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1103)))))
+(-10 -7 (-15 -3707 ((-684 (-546)) (-637 (-546)) (-637 (-546)) (-637 (-546)))) (-15 -3708 ((-637 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546)))) (-15 -3709 ((-637 (-684 (-546))) (-637 (-546)))) (-15 -3710 ((-684 (-546)) (-637 (-546)) (-637 (-546)))) (-15 -3711 ((-684 (-546)) (-637 (-546)) (-637 (-546)) (-684 (-546)))) (-15 -3712 ((-637 (-546)) (-637 (-546)) (-637 (-546)) (-112))) (-15 -3713 ((-1256 (-546)) (-1256 (-546)) (-1256 (-546)) (-546))) (-15 -3713 ((-1256 (-546)) (-637 (-546)) (-1256 (-546)) (-546))) (-15 -3714 ((-546) (-546) (-546))) (-15 -3715 ((-637 (-546)) (-546) (-546) (-546))) (-15 -3716 ((-637 (-546)) (-546) (-546) (-546))) (-15 -3717 ((-637 (-546)) (-546) (-546) (-546))))
+((** (($ $ (-915)) 10)))
+(((-1104 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-915)))) (-1105)) (T -1104))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-915))))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)) (** (($ $ (-915)) 13)) (* (($ $ $) 14)))
(((-1105) (-140)) (T -1105))
-((* (*1 *1 *1 *1) (-4 *1 (-1105))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917)))))
-(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917)))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-3439 (((-112) $) NIL (|has| |#3| (-131)))) (-2392 (($ (-917)) NIL (|has| |#3| (-1045)))) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4092 (($ $ $) NIL (|has| |#3| (-789)))) (-3905 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3001 (((-112) $ (-767)) NIL)) (-3750 (((-767)) NIL (|has| |#3| (-368)))) (-2807 (((-563) $) NIL (|has| |#3| (-844)))) (-1849 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093)))) (-2057 (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) ((|#3| $) NIL (|has| |#3| (-1093)))) (-1476 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-1690 (($) NIL (|has| |#3| (-368)))) (-4356 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#3| $ (-563)) 12)) (-3414 (((-112) $) NIL (|has| |#3| (-844)))) (-2658 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL (|has| |#3| (-722)))) (-3426 (((-112) $) NIL (|has| |#3| (-844)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3523 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4347 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#3| |#3|) $) NIL)) (-3990 (((-917) $) NIL (|has| |#3| (-368)))) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#3| (-1093)))) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-2552 (($ (-917)) NIL (|has| |#3| (-368)))) (-1693 (((-1113) $) NIL (|has| |#3| (-1093)))) (-3782 ((|#3| $) NIL (|has| (-563) (-846)))) (-2221 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2295 (((-640 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) NIL)) (-4121 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2509 (($ (-1257 |#3|)) NIL)) (-3526 (((-134)) NIL (|has| |#3| (-363)))) (-4203 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-1708 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-1870 (($ $) NIL)) (-1692 (((-1257 |#3|) $) NIL) (($ (-563)) NIL (-4034 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (($ |#3|) NIL (|has| |#3| (-1093))) (((-858) $) NIL (|has| |#3| (-610 (-858))))) (-3914 (((-767)) NIL (|has| |#3| (-1045)))) (-1471 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1462 (($ $) NIL (|has| |#3| (-844)))) (-2239 (($) NIL (|has| |#3| (-131)) CONST)) (-2253 (($) NIL (|has| |#3| (-722)) CONST)) (-3213 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-1779 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1754 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-1766 (((-112) $ $) NIL (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1743 (((-112) $ $) 17 (-4034 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1836 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1825 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-1813 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-917)) NIL (|has| |#3| (-722)))) (* (($ (-563) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1105))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-915)))))
+(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-915)))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-3596 (((-112) $) NIL (|has| |#3| (-131)))) (-4122 (($ (-915)) NIL (|has| |#3| (-1045)))) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-2784 (($ $ $) NIL (|has| |#3| (-789)))) (-1397 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1296 (((-112) $ (-767)) NIL)) (-3528 (((-767)) NIL (|has| |#3| (-368)))) (-4038 (((-546) $) NIL (|has| |#3| (-844)))) (-4202 ((|#3| $ (-546) |#3|) NIL (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094)))) (((-3 (-407 (-546)) #1#) $) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1094)))) (-3564 (((-546) $) NIL (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094)))) (((-407 (-546)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-2408 (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#3| (-636 (-546))) (|has| |#3| (-1045)))) (((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 $) (-1256 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045)))) (-3873 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-3384 (($) NIL (|has| |#3| (-368)))) (-1672 ((|#3| $ (-546) |#3|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#3| $ (-546)) 12)) (-3594 (((-112) $) NIL (|has| |#3| (-844)))) (-2103 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL (|has| |#3| (-722)))) (-3595 (((-112) $) NIL (|has| |#3| (-844)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2993 (((-637 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2107 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#3| |#3|) $) NIL)) (-2167 (((-915) $) NIL (|has| |#3| (-368)))) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#3| (-1094)))) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-2542 (($ (-915)) NIL (|has| |#3| (-368)))) (-3651 (((-1113) $) NIL (|has| |#3| (-1094)))) (-4215 ((|#3| $) NIL (|has| (-546) (-846)))) (-2352 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-637 |#3|) (-637 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-2358 (((-637 |#3|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#3| $ (-546) |#3|) NIL) ((|#3| $ (-546)) NIL)) (-4251 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-1559 (($ (-1256 |#3|)) NIL)) (-4326 (((-134)) NIL (|has| |#3| (-363)))) (-4225 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-2104 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1094))))) (-3811 (($ $) NIL)) (-4361 (((-1256 |#3|) $) NIL) (($ (-546)) NIL (-3943 (-12 (|has| |#3| (-1034 (-546))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-546))) NIL (-12 (|has| |#3| (-1034 (-407 (-546)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-859) $) NIL (|has| |#3| (-610 (-859))))) (-3518 (((-767)) NIL (|has| |#3| (-1045)))) (-2106 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3794 (($ $) NIL (|has| |#3| (-844)))) (-3047 (($) NIL (|has| |#3| (-131)) CONST)) (-3053 (($) NIL (|has| |#3| (-722)) CONST)) (-3058 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-2951 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2952 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3444 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-3073 (((-112) $ $) NIL (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3074 (((-112) $ $) 17 (-3943 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4364 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-4252 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-4254 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-915)) NIL (|has| |#3| (-722)))) (* (($ (-546) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-915) $) NIL (|has| |#3| (-25)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
(((-1106 |#1| |#2| |#3|) (-238 |#1| |#3|) (-767) (-767) (-789)) (T -1106))
NIL
(-238 |#1| |#3|)
-((-2056 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 36)) (-2115 (((-563) (-1230 |#2| |#1|)) 68 (|has| |#1| (-452)))) (-2095 (((-563) (-1230 |#2| |#1|)) 53)) (-2068 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 44)) (-2105 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 67 (|has| |#1| (-452)))) (-2077 (((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 47)) (-2085 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 52)))
-(((-1107 |#1| |#2|) (-10 -7 (-15 -2056 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2068 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2077 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2085 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2095 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2105 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2115 ((-563) (-1230 |#2| |#1|)))) |%noBranch|)) (-816) (-1169)) (T -1107))
-((-2115 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-2105 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5)))) (-2068 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))) (-2056 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))))
-(-10 -7 (-15 -2056 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2068 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2077 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2085 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2095 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2105 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2115 ((-563) (-1230 |#2| |#1|)))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-2125 (($ (-506) (-1111)) 14)) (-2922 (((-1111) $) 20)) (-3352 (((-506) $) 17)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 28) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1108) (-13 (-1076) (-10 -8 (-15 -2125 ($ (-506) (-1111))) (-15 -3352 ((-506) $)) (-15 -2922 ((-1111) $))))) (T -1108))
-((-2125 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108)))))
-(-13 (-1076) (-10 -8 (-15 -2125 ($ (-506) (-1111))) (-15 -3352 ((-506) $)) (-15 -2922 ((-1111) $))))
-((-2807 (((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)) 17) (((-3 (-563) "failed") |#2| (-1169) (-839 |#2|)) 15) (((-3 (-563) "failed") |#2|) 53)))
-(((-1109 |#1| |#2|) (-10 -7 (-15 -2807 ((-3 (-563) "failed") |#2|)) (-15 -2807 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -2807 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|))) (T -1109))
-((-2807 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))))) (-2807 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)))) (-2807 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))))
-(-10 -7 (-15 -2807 ((-3 (-563) "failed") |#2|)) (-15 -2807 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -2807 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151))))
-((-2807 (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)) 35) (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|)))) 30) (((-3 (-563) "failed") (-407 (-948 |#1|))) 13)))
-(((-1110 |#1|) (-10 -7 (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)))) (-452)) (T -1110))
-((-2807 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-2807 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-2807 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *4)))))
-(-10 -7 (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -2807 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151))))
-((-1677 (((-112) $ $) NIL)) (-4184 (((-1174) $) 10)) (-4131 (((-640 (-1174)) $) 11)) (-2922 (($ (-640 (-1174)) (-1174)) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 22)) (-1718 (((-112) $ $) 14)))
-(((-1111) (-13 (-1093) (-10 -8 (-15 -2922 ($ (-640 (-1174)) (-1174))) (-15 -4184 ((-1174) $)) (-15 -4131 ((-640 (-1174)) $))))) (T -1111))
-((-2922 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111)))))
-(-13 (-1093) (-10 -8 (-15 -2922 ($ (-640 (-1174)) (-1174))) (-15 -4184 ((-1174) $)) (-15 -4131 ((-640 (-1174)) $))))
-((-2966 (((-316 (-563)) (-48)) 12)))
-(((-1112) (-10 -7 (-15 -2966 ((-316 (-563)) (-48))))) (T -1112))
-((-2966 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112)))))
-(-10 -7 (-15 -2966 ((-316 (-563)) (-48))))
-((-1677 (((-112) $ $) NIL)) (-3384 (($ $) 40)) (-3439 (((-112) $) 64)) (-2210 (($ $ $) 47)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 89)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-4297 (($ $ $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-4275 (($ $ $ $) 74)) (-1798 (($ $) NIL)) (-2802 (((-418 $) $) NIL)) (-2003 (((-112) $ $) NIL)) (-3750 (((-767)) 76)) (-2807 (((-563) $) NIL)) (-3462 (($ $ $) 71)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL)) (-2057 (((-563) $) NIL)) (-3094 (($ $ $) 58)) (-1476 (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 83) (((-684 (-563)) (-684 $)) 27)) (-3951 (((-3 $ "failed") $) NIL)) (-2327 (((-3 (-407 (-563)) "failed") $) NIL)) (-2317 (((-112) $) NIL)) (-2306 (((-407 (-563)) $) NIL)) (-1690 (($) 86) (($ $) 87)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL)) (-2560 (((-112) $) NIL)) (-4251 (($ $ $ $) NIL)) (-4308 (($ $ $) 84)) (-3414 (((-112) $) NIL)) (-2101 (($ $ $) NIL)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3401 (((-112) $) 65)) (-2959 (((-112) $) 63)) (-2174 (($ $) 41)) (-1983 (((-3 $ "failed") $) NIL)) (-3426 (((-112) $) 75)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4264 (($ $ $ $) 72)) (-3088 (($ $ $) 67) (($) 38 T CONST)) (-1776 (($ $ $) 66) (($) 37 T CONST)) (-2645 (($ $) NIL)) (-3990 (((-917) $) 79)) (-3419 (($ $) 70)) (-3517 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3854 (((-1151) $) NIL)) (-4239 (($ $ $) NIL)) (-2522 (($) NIL T CONST)) (-2552 (($ (-917)) 78)) (-2827 (($ $) 49)) (-1693 (((-1113) $) 69)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3551 (($ $ $) 61) (($ (-640 $)) NIL)) (-2081 (($ $) NIL)) (-2173 (((-418 $) $) NIL)) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL)) (-3012 (((-3 $ "failed") $ $) NIL)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2969 (((-112) $) NIL)) (-1993 (((-767) $) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 60)) (-4203 (($ $ (-767)) NIL) (($ $) NIL)) (-3873 (($ $) 50)) (-1870 (($ $) NIL)) (-2219 (((-563) $) 31) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-1692 (((-858) $) 30) (($ (-563)) 85) (($ $) NIL) (($ (-563)) 85)) (-3914 (((-767)) NIL)) (-4319 (((-112) $ $) NIL)) (-1864 (($ $ $) NIL)) (-4212 (($) 36)) (-3223 (((-112) $ $) NIL)) (-4287 (($ $ $ $) 73)) (-1462 (($ $) 62)) (-1531 (($ $ $) 43)) (-2239 (($) 34 T CONST)) (-3246 (($ $ $) 46)) (-2253 (($) 35 T CONST)) (-2742 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-818) $) 23) (((-1262) (-818) $ (-112)) 24)) (-3256 (($ $) 44)) (-3213 (($ $ (-767)) NIL) (($ $) NIL)) (-3235 (($ $ $) 45)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 39)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 48)) (-1517 (($ $ $) 42)) (-1825 (($ $) 51) (($ $ $) 53)) (-1813 (($ $ $) 52)) (** (($ $ (-917)) NIL) (($ $ (-767)) 56)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 33) (($ $ $) 54)))
-(((-1113) (-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -2174 ($ $)) (-15 -2210 ($ $ $)) (-15 -3256 ($ $)) (-15 -3235 ($ $ $)) (-15 -3246 ($ $ $))))) (T -1113))
-((-2174 (*1 *1 *1) (-5 *1 (-1113))) (-2210 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3256 (*1 *1 *1) (-5 *1 (-1113))) (-3235 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3246 (*1 *1 *1 *1) (-5 *1 (-1113))))
-(-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -2174 ($ $)) (-15 -2210 ($ $ $)) (-15 -3256 ($ $)) (-15 -3235 ($ $ $)) (-15 -3246 ($ $ $))))
+((-3718 (((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|)) 36)) (-3724 (((-546) (-1225 |#2| |#1|)) 68 (|has| |#1| (-452)))) (-3722 (((-546) (-1225 |#2| |#1|)) 53)) (-3719 (((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|)) 44)) (-3723 (((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|)) 67 (|has| |#1| (-452)))) (-3720 (((-637 |#1|) (-1225 |#2| |#1|) (-1225 |#2| |#1|)) 47)) (-3721 (((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|)) 52)))
+(((-1107 |#1| |#2|) (-10 -7 (-15 -3718 ((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3719 ((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3720 ((-637 |#1|) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3721 ((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3722 ((-546) (-1225 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3723 ((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3724 ((-546) (-1225 |#2| |#1|)))) |%noBranch|)) (-816) (-1169)) (T -1107))
+((-3724 (*1 *2 *3) (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))) (-3723 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))) (-3721 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 *4)) (-5 *1 (-1107 *4 *5)))) (-3719 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 (-1225 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1225 *5 *4)))) (-3718 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 (-1225 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1225 *5 *4)))))
+(-10 -7 (-15 -3718 ((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3719 ((-637 (-1225 |#2| |#1|)) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3720 ((-637 |#1|) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3721 ((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3722 ((-546) (-1225 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3723 ((-546) (-1225 |#2| |#1|) (-1225 |#2| |#1|))) (-15 -3724 ((-546) (-1225 |#2| |#1|)))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3726 (((-1174) $) 10)) (-3725 (((-637 (-1174)) $) 11)) (-3727 (($ (-637 (-1174)) (-1174)) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 22)) (-3444 (((-112) $ $) 14)))
+(((-1108) (-13 (-1094) (-10 -8 (-15 -3727 ($ (-637 (-1174)) (-1174))) (-15 -3726 ((-1174) $)) (-15 -3725 ((-637 (-1174)) $))))) (T -1108))
+((-3727 (*1 *1 *2 *3) (-12 (-5 *2 (-637 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1108)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1108)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1108)))))
+(-13 (-1094) (-10 -8 (-15 -3727 ($ (-637 (-1174)) (-1174))) (-15 -3726 ((-1174) $)) (-15 -3725 ((-637 (-1174)) $))))
+((-2953 (((-112) $ $) NIL)) (-3728 (($ (-506) (-1108)) 14)) (-3727 (((-1108) $) 20)) (-3956 (((-506) $) 17)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 28) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1109) (-13 (-1076) (-10 -8 (-15 -3728 ($ (-506) (-1108))) (-15 -3956 ((-506) $)) (-15 -3727 ((-1108) $))))) (T -1109))
+((-3728 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1108)) (-5 *1 (-1109)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1109)))))
+(-13 (-1076) (-10 -8 (-15 -3728 ($ (-506) (-1108))) (-15 -3956 ((-506) $)) (-15 -3727 ((-1108) $))))
+((-4038 (((-3 (-546) #1="failed") |#2| (-1169) |#2| (-1151)) 17) (((-3 (-546) #1#) |#2| (-1169) (-838 |#2|)) 15) (((-3 (-546) #1#) |#2|) 53)))
+(((-1110 |#1| |#2|) (-10 -7 (-15 -4038 ((-3 (-546) #1="failed") |#2|)) (-15 -4038 ((-3 (-546) #1#) |#2| (-1169) (-838 |#2|))) (-15 -4038 ((-3 (-546) #1#) |#2| (-1169) |#2| (-1151)))) (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)) (-452)) (-13 (-27) (-1193) (-421 |#1|))) (T -1110))
+((-4038 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-546)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))))) (-4038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-838 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6))) (-4 *6 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-546)) (-5 *1 (-1110 *6 *3)))) (-4038 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-546)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))))
+(-10 -7 (-15 -4038 ((-3 (-546) #1="failed") |#2|)) (-15 -4038 ((-3 (-546) #1#) |#2| (-1169) (-838 |#2|))) (-15 -4038 ((-3 (-546) #1#) |#2| (-1169) |#2| (-1151))))
+((-4038 (((-3 (-546) #1="failed") (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)) (-1151)) 35) (((-3 (-546) #1#) (-407 (-942 |#1|)) (-1169) (-838 (-407 (-942 |#1|)))) 30) (((-3 (-546) #1#) (-407 (-942 |#1|))) 13)))
+(((-1111 |#1|) (-10 -7 (-15 -4038 ((-3 (-546) #1="failed") (-407 (-942 |#1|)))) (-15 -4038 ((-3 (-546) #1#) (-407 (-942 |#1|)) (-1169) (-838 (-407 (-942 |#1|))))) (-15 -4038 ((-3 (-546) #1#) (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)) (-1151)))) (-452)) (T -1111))
+((-4038 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-942 *6))) (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-546)) (-5 *1 (-1111 *6)))) (-4038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-838 (-407 (-942 *6)))) (-5 *3 (-407 (-942 *6))) (-4 *6 (-452)) (-5 *2 (-546)) (-5 *1 (-1111 *6)))) (-4038 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-452)) (-5 *2 (-546)) (-5 *1 (-1111 *4)))))
+(-10 -7 (-15 -4038 ((-3 (-546) #1="failed") (-407 (-942 |#1|)))) (-15 -4038 ((-3 (-546) #1#) (-407 (-942 |#1|)) (-1169) (-838 (-407 (-942 |#1|))))) (-15 -4038 ((-3 (-546) #1#) (-407 (-942 |#1|)) (-1169) (-407 (-942 |#1|)) (-1151))))
+((-4064 (((-314 (-546)) (-48)) 12)))
+(((-1112) (-10 -7 (-15 -4064 ((-314 (-546)) (-48))))) (T -1112))
+((-4064 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-314 (-546))) (-5 *1 (-1112)))))
+(-10 -7 (-15 -4064 ((-314 (-546)) (-48))))
+((-2953 (((-112) $ $) NIL)) (-2437 (($ $) 40)) (-3596 (((-112) $) 64)) (-3732 (($ $ $) 47)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 89)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-2204 (($ $ $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-2199 (($ $ $ $) 74)) (-4189 (($ $) NIL)) (-4384 (((-405 $) $) NIL)) (-1740 (((-112) $ $) NIL)) (-3528 (((-767)) 76)) (-4038 (((-546) $) NIL)) (-2741 (($ $ $) 71)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) "failed") $) NIL)) (-3564 (((-546) $) NIL)) (-2949 (($ $ $) 58)) (-2408 (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 83) (((-684 (-546)) (-684 $)) 27)) (-3873 (((-3 $ "failed") $) NIL)) (-3414 (((-3 (-407 (-546)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3412 (((-407 (-546)) $) NIL)) (-3384 (($) 86) (($ $) 87)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL)) (-4138 (((-112) $) NIL)) (-2197 (($ $ $ $) NIL)) (-2205 (($ $ $) 84)) (-3594 (((-112) $) NIL)) (-1446 (($ $ $) NIL)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL)) (-2552 (((-112) $) 65)) (-3062 (((-112) $) 63)) (-3733 (($ $) 41)) (-3855 (((-3 $ "failed") $) NIL)) (-3595 (((-112) $) 75)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL)) (-2198 (($ $ $ $) 72)) (-2919 (($ $ $) 67) (($) 38 T CONST)) (-3249 (($ $ $) 66) (($) 37 T CONST)) (-2201 (($ $) NIL)) (-2167 (((-915) $) 79)) (-4248 (($ $) 70)) (-2048 (($ $ $) NIL) (($ (-637 $)) NIL)) (-3650 (((-1151) $) NIL)) (-2196 (($ $ $) NIL)) (-3856 (($) NIL T CONST)) (-2542 (($ (-915)) 78)) (-2203 (($ $) 49)) (-3651 (((-1113) $) 69)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL)) (-3552 (($ $ $) 61) (($ (-637 $)) NIL)) (-1444 (($ $) NIL)) (-4147 (((-405 $) $) NIL)) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL)) (-3872 (((-3 $ "failed") $ $) NIL)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL)) (-3063 (((-112) $) NIL)) (-1739 (((-767) $) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 60)) (-4225 (($ $ (-767)) NIL) (($ $) NIL)) (-2202 (($ $) 50)) (-3811 (($ $) NIL)) (-4385 (((-546) $) 31) (((-535) $) NIL) (((-886 (-546)) $) NIL) (((-378) $) NIL) (((-225) $) NIL)) (-4361 (((-859) $) 30) (($ (-546)) 85) (($ $) NIL) (($ (-546)) 85)) (-3518 (((-767)) NIL T CONST)) (-2206 (((-112) $ $) NIL)) (-3494 (($ $ $) NIL)) (-3083 (($) 36)) (-2219 (((-112) $ $) NIL)) (-2200 (($ $ $ $) 73)) (-3794 (($ $) 62)) (-2435 (($ $ $) 43)) (-3047 (($) 34 T CONST)) (-3729 (($ $ $) 46)) (-3053 (($) 35 T CONST)) (-2885 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-819) $) 23) (((-1262) (-819) $ (-112)) 24)) (-3731 (($ $) 44)) (-3058 (($ $ (-767)) NIL) (($ $) NIL)) (-3730 (($ $ $) 45)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 39)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 48)) (-2436 (($ $ $) 42)) (-4252 (($ $) 51) (($ $ $) 53)) (-4254 (($ $ $) 52)) (** (($ $ (-915)) NIL) (($ $ (-767)) 56)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 33) (($ $ $) 54)))
+(((-1113) (-13 (-545) (-840) (-657) (-817) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3733 ($ $)) (-15 -3732 ($ $ $)) (-15 -3731 ($ $)) (-15 -3730 ($ $ $)) (-15 -3729 ($ $ $))))) (T -1113))
+((-3733 (*1 *1 *1) (-5 *1 (-1113))) (-3732 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3731 (*1 *1 *1) (-5 *1 (-1113))) (-3730 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3729 (*1 *1 *1 *1) (-5 *1 (-1113))))
+(-13 (-545) (-840) (-657) (-817) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3733 ($ $)) (-15 -3732 ($ $ $)) (-15 -3731 ($ $)) (-15 -3730 ($ $ $)) (-15 -3729 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2635 ((|#1| $) 44)) (-3001 (((-112) $ (-767)) 8)) (-2569 (($) 7 T CONST)) (-2147 ((|#1| |#1| $) 46)) (-2136 ((|#1| $) 45)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2627 ((|#1| $) 39)) (-3867 (($ |#1| $) 40)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2808 ((|#1| $) 41)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2369 (((-767) $) 43)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) 42)) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1114 |#1|) (-140) (-1208)) (T -1114))
-((-2147 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-2635 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -2147 (|t#1| |t#1| $)) (-15 -2136 (|t#1| $)) (-15 -2635 (|t#1| $)) (-15 -2369 ((-767) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-1731 ((|#3| $) 76)) (-2130 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2057 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#3| $) 37)) (-1476 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 73) (((-684 |#3|) (-684 $)) 65)) (-4203 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2183 ((|#3| $) 78)) (-2195 ((|#4| $) 32)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#3|) 16)) (** (($ $ (-917)) NIL) (($ $ (-767)) 15) (($ $ (-563)) 82)))
-(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -2183 (|#3| |#1|)) (-15 -1731 (|#3| |#1|)) (-15 -2195 (|#4| |#1|)) (-15 -1476 ((-684 |#3|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1692 (|#1| |#3|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1692 ((-858) |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1115))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -2183 (|#3| |#1|)) (-15 -1731 (|#3| |#1|)) (-15 -2195 (|#4| |#1|)) (-15 -1476 ((-684 |#3|) (-684 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1476 ((-684 (-563)) (-684 |#1|))) (-15 -1692 (|#1| |#3|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-1731 ((|#2| $) 71)) (-3870 (((-112) $) 111)) (-3905 (((-3 $ "failed") $ $) 19)) (-3893 (((-112) $) 109)) (-3001 (((-112) $ (-767)) 101)) (-2217 (($ |#2|) 74)) (-2569 (($) 17 T CONST)) (-1940 (($ $) 128 (|has| |#2| (-307)))) (-1960 ((|#3| $ (-563)) 123)) (-2130 (((-3 (-563) "failed") $) 86 (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 83 (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) 80)) (-2057 (((-563) $) 85 (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) 82 (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) 81)) (-1476 (((-684 (-563)) (-684 $)) 78 (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 77 (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 76) (((-684 |#2|) (-684 $)) 75)) (-3951 (((-3 $ "failed") $) 33)) (-2521 (((-767) $) 129 (|has| |#2| (-555)))) (-4293 ((|#2| $ (-563) (-563)) 121)) (-2658 (((-640 |#2|) $) 94 (|has| $ (-6 -4408)))) (-3401 (((-112) $) 31)) (-1929 (((-767) $) 130 (|has| |#2| (-555)))) (-1917 (((-640 |#4|) $) 131 (|has| |#2| (-555)))) (-2380 (((-767) $) 117)) (-2391 (((-767) $) 118)) (-2514 (((-112) $ (-767)) 102)) (-2157 ((|#2| $) 66 (|has| |#2| (-6 (-4410 "*"))))) (-1995 (((-563) $) 113)) (-1979 (((-563) $) 115)) (-3523 (((-640 |#2|) $) 93 (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-1986 (((-563) $) 114)) (-1969 (((-563) $) 116)) (-4040 (($ (-640 (-640 |#2|))) 108)) (-4347 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3734 (((-640 (-640 |#2|)) $) 119)) (-2481 (((-112) $ (-767)) 103)) (-3854 (((-1151) $) 9)) (-3694 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-1693 (((-1113) $) 10)) (-3012 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-555)))) (-1458 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) 107)) (-1665 (((-112) $) 104)) (-3445 (($) 105)) (-2308 ((|#2| $ (-563) (-563) |#2|) 122) ((|#2| $ (-563) (-563)) 120)) (-4203 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-2183 ((|#2| $) 70)) (-2206 (($ (-640 |#2|)) 73)) (-3881 (((-112) $) 110)) (-2195 ((|#3| $) 72)) (-2168 ((|#2| $) 67 (|has| |#2| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4408))) (((-767) |#2| $) 92 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 106)) (-1950 ((|#4| $ (-563)) 124)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 84 (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) 79)) (-3914 (((-767)) 28)) (-1471 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4408)))) (-2005 (((-112) $) 112)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 64 (|has| |#2| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3610 (((-767) $) 100 (|has| $ (-6 -4408)))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3735 ((|#1| $) 44)) (-1296 (((-112) $ (-767)) 8)) (-4139 (($) 7 T CONST)) (-3737 ((|#1| |#1| $) 46)) (-3736 ((|#1| $) 45)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-1359 ((|#1| $) 39)) (-4022 (($ |#1| $) 40)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-1360 ((|#1| $) 41)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-3734 (((-767) $) 43)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) 42)) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1114 |#1|) (-140) (-1207)) (T -1114))
+((-3737 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -3737 (|t#1| |t#1| $)) (-15 -3736 (|t#1| $)) (-15 -3735 (|t#1| $)) (-15 -3734 ((-767) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-3741 ((|#3| $) 76)) (-3565 (((-3 (-546) #1="failed") $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3564 (((-546) $) NIL) (((-407 (-546)) $) NIL) ((|#3| $) 37)) (-2408 (((-684 (-546)) (-684 $)) NIL) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL) (((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 $) (-1256 $)) 73) (((-684 |#3|) (-684 $)) 65)) (-4225 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3740 ((|#3| $) 78)) (-3742 ((|#4| $) 32)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-407 (-546))) NIL) (($ |#3|) 16)) (** (($ $ (-915)) NIL) (($ $ (-767)) 15) (($ $ (-546)) 82)))
+(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-546))) (-15 -3740 (|#3| |#1|)) (-15 -3741 (|#3| |#1|)) (-15 -3742 (|#4| |#1|)) (-15 -2408 ((-684 |#3|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -4361 (|#1| |#3|)) (-15 -3565 ((-3 |#3| #1="failed") |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))) (-15 -4361 ((-859) |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1115))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-546))) (-15 -3740 (|#3| |#1|)) (-15 -3741 (|#3| |#1|)) (-15 -3742 (|#4| |#1|)) (-15 -2408 ((-684 |#3|) (-684 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 |#3|)) (|:| |vec| (-1256 |#3|))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 |#1|) (-1256 |#1|))) (-15 -2408 ((-684 (-546)) (-684 |#1|))) (-15 -4361 (|#1| |#3|)) (-15 -3565 ((-3 |#3| #1="failed") |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4225 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3741 ((|#2| $) 71)) (-3513 (((-112) $) 111)) (-1397 (((-3 $ "failed") $ $) 19)) (-3515 (((-112) $) 109)) (-1296 (((-112) $ (-767)) 101)) (-3744 (($ |#2|) 74)) (-4139 (($) 17 T CONST)) (-3502 (($ $) 128 (|has| |#2| (-307)))) (-3504 ((|#3| $ (-546)) 123)) (-3565 (((-3 (-546) #1="failed") $) 86 (|has| |#2| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) 83 (|has| |#2| (-1034 (-407 (-546))))) (((-3 |#2| #1#) $) 80)) (-3564 (((-546) $) 85 (|has| |#2| (-1034 (-546)))) (((-407 (-546)) $) 82 (|has| |#2| (-1034 (-407 (-546))))) ((|#2| $) 81)) (-2408 (((-684 (-546)) (-684 $)) 78 (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 77 (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 76) (((-684 |#2|) (-684 $)) 75)) (-3873 (((-3 $ "failed") $) 33)) (-3501 (((-767) $) 129 (|has| |#2| (-556)))) (-3505 ((|#2| $ (-546) (-546)) 121)) (-2103 (((-637 |#2|) $) 94 (|has| $ (-6 -4408)))) (-2552 (((-112) $) 31)) (-3500 (((-767) $) 130 (|has| |#2| (-556)))) (-3499 (((-637 |#4|) $) 131 (|has| |#2| (-556)))) (-3507 (((-767) $) 117)) (-3506 (((-767) $) 118)) (-4134 (((-112) $ (-767)) 102)) (-3738 ((|#2| $) 66 (|has| |#2| (-6 (-4410 #2="*"))))) (-3511 (((-546) $) 113)) (-3509 (((-546) $) 115)) (-2993 (((-637 |#2|) $) 93 (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-3510 (((-546) $) 114)) (-3508 (((-546) $) 116)) (-3516 (($ (-637 (-637 |#2|))) 108)) (-2107 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4008 (((-637 (-637 |#2|)) $) 119)) (-4131 (((-112) $ (-767)) 103)) (-3650 (((-1151) $) 9)) (-4004 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3651 (((-1113) $) 10)) (-3872 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-2105 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) 107)) (-3814 (((-112) $) 104)) (-3979 (($) 105)) (-4214 ((|#2| $ (-546) (-546) |#2|) 122) ((|#2| $ (-546) (-546)) 120)) (-4225 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-767)) 51) (($ $ (-637 (-1169)) (-637 (-767))) 44 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) 42 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-3740 ((|#2| $) 70)) (-3743 (($ (-637 |#2|)) 73)) (-3514 (((-112) $) 110)) (-3742 ((|#3| $) 72)) (-3739 ((|#2| $) 67 (|has| |#2| (-6 (-4410 #2#))))) (-2104 (((-767) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4408))) (((-767) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 106)) (-3503 ((|#4| $ (-546)) 124)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 84 (|has| |#2| (-1034 (-407 (-546))))) (($ |#2|) 79)) (-3518 (((-767)) 28)) (-2106 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4408)))) (-3512 (((-112) $) 112)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-767)) 49) (($ $ (-637 (-1169)) (-637 (-767))) 48 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) 46 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 64 (|has| |#2| (-363)))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-4372 (((-767) $) 100 (|has| $ (-6 -4408)))))
(((-1116 |#1| |#2| |#3| |#4|) (-140) (-767) (-1045) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1116))
-((-2217 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-3694 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
-(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -2217 ($ |t#2|)) (-15 -2206 ($ (-640 |t#2|))) (-15 -2195 (|t#3| $)) (-15 -1731 (|t#2| $)) (-15 -2183 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4410 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2168 (|t#2| $)) (-15 -2157 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -3694 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4410 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#2| (-636 (-563))) ((-636 |#2|) . T) ((-713 |#2|) -4034 (|has| |#2| (-172)) (|has| |#2| (-6 (-4410 "*")))) ((-722) . T) ((-896 (-1169)) |has| |#2| (-896 (-1169))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #0#) |has| |#2| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#2| (-1034 (-563))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T))
-((-2260 ((|#4| |#4|) 70)) (-2231 ((|#4| |#4|) 65)) (-2280 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|) 78)) (-2270 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2247 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 (|#4| |#4|)) (-15 -2247 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2260 (|#4| |#4|)) (-15 -2270 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2280 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1117))
-((-2280 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4)))) (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2247 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(-10 -7 (-15 -2231 (|#4| |#4|)) (-15 -2247 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2260 (|#4| |#4|)) (-15 -2270 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2280 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-640 |#3|))) |#4| |#3|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 17)) (-2605 (((-640 |#2|) $) 159)) (-2138 (((-1165 $) $ |#2|) 53) (((-1165 |#1|) $) 42)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 108 (|has| |#1| (-555)))) (-3231 (($ $) 110 (|has| |#1| (-555)))) (-3211 (((-112) $) 112 (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 |#2|)) 192)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) 156) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL)) (-2057 ((|#1| $) 154) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL)) (-1612 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2750 (($ $) 196)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) 81)) (-4151 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-531 |#2|) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3401 (((-112) $) 19)) (-3481 (((-767) $) 26)) (-2595 (($ (-1165 |#1|) |#2|) 47) (($ (-1165 $) |#2|) 63)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) 32)) (-2587 (($ |#1| (-531 |#2|)) 70) (($ $ |#2| (-767)) 51) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ |#2|) NIL)) (-3908 (((-531 |#2|) $) 186) (((-767) $ |#2|) 187) (((-640 (-767)) $ (-640 |#2|)) 188)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) 120)) (-1698 (((-3 |#2| "failed") $) 161)) (-2715 (($ $) 195)) (-2725 ((|#1| $) 36)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3311 (-767))) "failed") $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) 33)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 138 (|has| |#1| (-452)))) (-3551 (($ (-640 $)) 143 (|has| |#1| (-452))) (($ $ $) 130 (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3012 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-555)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-640 |#2|) (-640 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-640 |#2|) (-640 $)) 176)) (-1623 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4203 (($ $ |#2|) 194) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-3871 (((-531 |#2|) $) 182) (((-767) $ |#2|) 178) (((-640 (-767)) $ (-640 |#2|)) 180)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#1| $) 126 (|has| |#1| (-452))) (($ $ |#2|) 129 (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1692 (((-858) $) 149) (($ (-563)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3955 (((-640 |#1|) $) 152)) (-3244 ((|#1| $ (-531 |#2|)) 72) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 78)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) 115 (|has| |#1| (-555)))) (-2239 (($) 12 T CONST)) (-2253 (($) 14 T CONST)) (-3213 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 97)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 124 (|has| |#1| (-363)))) (-1825 (($ $) 84) (($ $ $) 95)) (-1813 (($ $ $) 48)) (** (($ $ (-917)) 102) (($ $ (-767)) 100)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 87) (($ $ $) 64) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1118 |#1| |#2|) (-945 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1118))
-NIL
-(-945 |#1| (-531 |#2|) |#2|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 |#2|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1770 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 116 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 112 (|has| |#1| (-38 (-407 (-563)))))) (-1793 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3621 (((-948 |#1|) $ (-767)) NIL) (((-948 |#1|) $ (-767) (-767)) NIL)) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3805 (((-112) $) NIL)) (-2587 (($ $ (-640 |#2|) (-640 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 55) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) 110 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-2062 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-3234 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-407 (-563)))))) (-1751 (($ $ (-767)) 13)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3372 (($ $) 108 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (($ $ |#2| $) 94) (($ $ (-640 |#2|) (-640 $)) 87) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-4203 (($ $ |#2|) 97) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-3871 (((-531 |#2|) $) NIL)) (-2291 (((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|))) 76)) (-1805 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 118 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 114 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 15)) (-1692 (((-858) $) 179) (($ (-563)) NIL) (($ |#1|) 40 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#2|) 62) (($ |#3|) 60)) (-3244 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL) ((|#3| $ (-767)) 38)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-1839 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 47 T CONST)) (-2253 (($) 54 T CONST)) (-3213 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) 181 (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 58)) (** (($ $ (-917)) NIL) (($ $ (-767)) 67) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 100 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 57) (($ $ (-407 (-563))) 105 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 103 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1119 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -3244 (|#3| $ (-767))) (-15 -1692 ($ |#2|)) (-15 -1692 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2291 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $ |#2| |#1|)) (-15 -3234 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-945 |#1| (-531 |#2|) |#2|)) (T -1119))
-((-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-1692 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-1692 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846)) (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-3234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) (-4 *5 (-945 *4 (-531 *3) *3)))))
-(-13 (-736 |#1| |#2|) (-10 -8 (-15 -3244 (|#3| $ (-767))) (-15 -1692 ($ |#2|)) (-15 -1692 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2291 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $ |#2| |#1|)) (-15 -3234 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1677 (((-112) $ $) 7)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) 85)) (-2119 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) 101) (((-112) $) 97)) (-2189 ((|#4| |#4| $) 92)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 126)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3793 (((-3 $ "failed") $) 82)) (-2151 ((|#4| |#4| $) 89)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2131 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) 105)) (-3536 (((-112) |#4| $) 136)) (-3514 (((-112) |#4| $) 133)) (-3548 (((-112) |#4| $) 137) (((-112) $) 134)) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) 104) (((-112) $) 103)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3482 (((-640 $) |#4| $) 129)) (-3503 (((-3 (-112) (-640 $)) |#4| $) 132)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3834 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-1956 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2297 (((-640 |#4|) $) 107)) (-2225 (((-112) |#4| $) 99) (((-112) $) 95)) (-2163 ((|#4| |#4| $) 90)) (-2319 (((-112) $ $) 110)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) 100) (((-112) $) 96)) (-2176 ((|#4| |#4| $) 91)) (-1693 (((-1113) $) 10)) (-3782 (((-3 |#4| "failed") $) 84)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2089 (((-3 $ "failed") $ |#4|) 78)) (-1751 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-3871 (((-767) $) 106)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-2141 (($ $) 88)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3255 (((-767) $) 76 (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-3450 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) 81)) (-3525 (((-112) |#4| $) 135)) (-3772 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
+((-3744 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-637 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 #1="*"))) (-4 *2 (-1045)))) (-3738 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 #1#))) (-4 *2 (-1045)))) (-4004 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
+(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-412 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -3744 ($ |t#2|)) (-15 -3743 ($ (-637 |t#2|))) (-15 -3742 (|t#3| $)) (-15 -3741 (|t#2| $)) (-15 -3740 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4410 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3739 (|t#2| $)) (-15 -3738 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -4004 ((-3 $ "failed") $)) (-15 ** ($ $ (-546)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4410 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 #2=(-407 (-546))) |has| |#2| (-1034 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#2|) . T) ((-610 (-859)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-412 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-643 |#2|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#2| (-636 (-546))) ((-636 |#2|) . T) ((-713 |#2|) -3943 (|has| |#2| (-172)) (|has| |#2| (-6 (-4410 #1#)))) ((-722) . T) ((-896 (-1169)) |has| |#2| (-896 (-1169))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #2#) |has| |#2| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#2| (-1034 (-546))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1207) . T))
+((-3747 ((|#4| |#4|) 70)) (-3745 ((|#4| |#4|) 65)) (-3749 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2169 (-637 |#3|))) |#4| |#3|) 78)) (-3748 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3746 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3745 (|#4| |#4|)) (-15 -3746 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3747 (|#4| |#4|)) (-15 -3748 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3749 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2169 (-637 |#3|))) |#4| |#3|))) (-307) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1117))
+((-3749 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2169 (-637 *4)))) (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(-10 -7 (-15 -3745 (|#4| |#4|)) (-15 -3746 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3747 (|#4| |#4|)) (-15 -3748 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3749 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2169 (-637 |#3|))) |#4| |#3|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 17)) (-3474 (((-637 |#2|) $) 159)) (-3476 (((-1163 $) $ |#2|) 53) (((-1163 |#1|) $) 42)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 108 (|has| |#1| (-556)))) (-2220 (($ $) 110 (|has| |#1| (-556)))) (-2218 (((-112) $) 112 (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 |#2|)) 192)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) 156) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 |#2| #2#) $) NIL)) (-3564 ((|#1| $) 154) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) ((|#2| $) NIL)) (-4171 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-4374 (($ $) 196)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) 81)) (-3909 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-531 |#2|) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| |#1| (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-2552 (((-112) $) 19)) (-2560 (((-767) $) 26)) (-3477 (($ (-1163 |#1|) |#2|) 47) (($ (-1163 $) |#2|) 63)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) 32)) (-3283 (($ |#1| (-531 |#2|)) 70) (($ $ |#2| (-767)) 51) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-3209 (((-531 |#2|) $) 186) (((-767) $ |#2|) 187) (((-637 (-767)) $ (-637 |#2|)) 188)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) 120)) (-3475 (((-3 |#2| #3="failed") $) 161)) (-3284 (($ $) 195)) (-3582 ((|#1| $) 36)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-3212 (((-3 (-637 $) #3#) $) NIL)) (-3211 (((-3 (-637 $) #3#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| |#2|) (|:| -2543 (-767))) #3#) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) 33)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 138 (|has| |#1| (-452)))) (-3552 (($ (-637 $)) 143 (|has| |#1| (-452))) (($ $ $) 130 (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#1| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-906)))) (-3872 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-556)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-637 |#2|) (-637 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-637 |#2|) (-637 $)) 176)) (-4172 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4225 (($ $ |#2|) 194) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-4363 (((-531 |#2|) $) 182) (((-767) $ |#2|) 178) (((-637 (-767)) $ (-637 |#2|)) 180)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| |#1| (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| |#1| (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| |#1| (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#1| $) 126 (|has| |#1| (-452))) (($ $ |#2|) 129 (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4361 (((-859) $) 149) (($ (-546)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-4232 (((-637 |#1|) $) 152)) (-4092 ((|#1| $ (-531 |#2|)) 72) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-3091 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 78)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) 115 (|has| |#1| (-556)))) (-3047 (($) 12 T CONST)) (-3053 (($) 14 T CONST)) (-3058 (($ $ |#2|) NIL) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) 97)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 124 (|has| |#1| (-363)))) (-4252 (($ $) 84) (($ $ $) 95)) (-4254 (($ $ $) 48)) (** (($ $ (-915)) 102) (($ $ (-767)) 100)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 87) (($ $ $) 64) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1118 |#1| |#2|) (-946 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1118))
+NIL
+(-946 |#1| (-531 |#2|) |#2|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 |#2|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3898 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 116 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 112 (|has| |#1| (-38 (-407 (-546)))))) (-3900 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4229 (((-942 |#1|) $ (-767)) NIL) (((-942 |#1|) $ (-767) (-767)) NIL)) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4352 (((-112) $) NIL)) (-3283 (($ $ (-637 |#2|) (-637 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 55) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) 110 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-4227 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-4091 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-407 (-546)))))) (-4183 (($ $ (-767)) 13)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4358 (($ $) 108 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (($ $ |#2| $) 94) (($ $ (-637 |#2|) (-637 $)) 87) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL)) (-4225 (($ $ |#2|) 97) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-4363 (((-531 |#2|) $) NIL)) (-3750 (((-1 (-1146 |#3|) |#3|) (-637 |#2|) (-637 (-1146 |#3|))) 76)) (-3901 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 118 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 114 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 15)) (-4361 (((-859) $) 179) (($ (-546)) NIL) (($ |#1|) 40 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#2|) 62) (($ |#3|) 60)) (-4092 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL) ((|#3| $ (-767)) 38)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-3904 (($ $) 152 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) 148 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 156 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-3907 (($ $) 158 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 154 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 150 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 47 T CONST)) (-3053 (($) 54 T CONST)) (-3058 (($ $ |#2|) NIL) (($ $ (-637 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-637 |#2|) (-637 (-767))) NIL)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) 181 (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 58)) (** (($ $ (-915)) NIL) (($ $ (-767)) 67) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 100 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 57) (($ $ (-407 (-546))) 105 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 103 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1119 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -4092 (|#3| $ (-767))) (-15 -4361 ($ |#2|)) (-15 -4361 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3750 ((-1 (-1146 |#3|) |#3|) (-637 |#2|) (-637 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $ |#2| |#1|)) (-15 -4091 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-946 |#1| (-531 |#2|) |#2|)) (T -1119))
+((-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-4361 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-4361 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-1146 *7))) (-4 *6 (-846)) (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1146 *7) *7)) (-5 *1 (-1119 *5 *6 *7)))) (-4227 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-4091 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-546)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) (-4 *5 (-946 *4 (-531 *3) *3)))))
+(-13 (-736 |#1| |#2|) (-10 -8 (-15 -4092 (|#3| $ (-767))) (-15 -4361 ($ |#2|)) (-15 -4361 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3750 ((-1 (-1146 |#3|) |#3|) (-637 |#2|) (-637 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $ |#2| |#1|)) (-15 -4091 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2953 (((-112) $ $) 7)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) 85)) (-4097 (((-637 $) (-637 |#4|)) 86) (((-637 $) (-637 |#4|) (-112)) 111)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) 101) (((-112) $) 97)) (-4103 ((|#4| |#4| $) 92)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 126)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-4213 (((-3 $ #1#) $) 82)) (-4100 ((|#4| |#4| $) 89)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4098 ((|#4| |#4| $) 87)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) 105)) (-3605 (((-112) |#4| $) 136)) (-3603 (((-112) |#4| $) 133)) (-3606 (((-112) |#4| $) 137) (((-112) $) 134)) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) 104) (((-112) $) 103)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) 128)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 127)) (-4212 (((-3 |#4| #1#) $) 83)) (-3600 (((-637 $) |#4| $) 129)) (-3602 (((-3 (-112) (-637 $)) |#4| $) 132)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3646 (((-637 $) |#4| $) 125) (((-637 $) (-637 |#4|) $) 124) (((-637 $) (-637 |#4|) (-637 $)) 123) (((-637 $) |#4| (-637 $)) 122)) (-3851 (($ |#4| $) 117) (($ (-637 |#4|) $) 116)) (-4112 (((-637 |#4|) $) 107)) (-4106 (((-112) |#4| $) 99) (((-112) $) 95)) (-4101 ((|#4| |#4| $) 90)) (-4114 (((-112) $ $) 110)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) 100) (((-112) $) 96)) (-4102 ((|#4| |#4| $) 91)) (-3651 (((-1113) $) 10)) (-4215 (((-3 |#4| #1#) $) 84)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4094 (((-3 $ #1#) $ |#4|) 78)) (-4183 (($ $ |#4|) 77) (((-637 $) |#4| $) 115) (((-637 $) |#4| (-637 $)) 114) (((-637 $) (-637 |#4|) $) 113) (((-637 $) (-637 |#4|) (-637 $)) 112)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-4363 (((-767) $) 106)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-4099 (($ $) 88)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-4093 (((-767) $) 76 (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) 98)) (-3597 (((-637 $) |#4| $) 121) (((-637 $) |#4| (-637 $)) 120) (((-637 $) (-637 |#4|) $) 119) (((-637 $) (-637 |#4|) (-637 $)) 118)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) 81)) (-3604 (((-112) |#4| $) 135)) (-4348 (((-112) |#3| $) 80)) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
(((-1120 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1120))
NIL
(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-780 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T))
-((-3510 (((-640 |#2|) |#1|) 12)) (-2344 (((-640 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-640 |#2|) |#1|) 49)) (-2324 (((-640 |#2|) |#2| |#2| |#2|) 36) (((-640 |#2|) |#1|) 47)) (-2302 ((|#2| |#1|) 43)) (-2314 (((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3599 (((-640 |#2|) |#2| |#2|) 35) (((-640 |#2|) |#1|) 46)) (-2333 (((-640 |#2|) |#2| |#2| |#2| |#2|) 37) (((-640 |#2|) |#1|) 48)) (-2386 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2364 ((|#2| |#2| |#2| |#2|) 40)) (-2355 ((|#2| |#2| |#2|) 39)) (-2374 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1121 |#1| |#2|) (-10 -7 (-15 -3510 ((-640 |#2|) |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2314 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3599 ((-640 |#2|) |#1|)) (-15 -2324 ((-640 |#2|) |#1|)) (-15 -2333 ((-640 |#2|) |#1|)) (-15 -2344 ((-640 |#2|) |#1|)) (-15 -3599 ((-640 |#2|) |#2| |#2|)) (-15 -2324 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -2333 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2344 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2355 (|#2| |#2| |#2|)) (-15 -2364 (|#2| |#2| |#2| |#2|)) (-15 -2374 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2386 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1233 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (T -1121))
-((-2386 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-2374 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-2355 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-2344 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-2333 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-2324 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3599 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-2333 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-2324 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3599 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-2 (|:| |solns| (-640 *5)) (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5)))) (-2302 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -3510 ((-640 |#2|) |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2314 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3599 ((-640 |#2|) |#1|)) (-15 -2324 ((-640 |#2|) |#1|)) (-15 -2333 ((-640 |#2|) |#1|)) (-15 -2344 ((-640 |#2|) |#1|)) (-15 -3599 ((-640 |#2|) |#2| |#2|)) (-15 -2324 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -2333 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2344 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2355 (|#2| |#2| |#2|)) (-15 -2364 (|#2| |#2| |#2| |#2|)) (-15 -2374 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2386 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2397 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|))))) 95) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 94) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|)))) 92) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 90) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|)))) 75) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169)) 76) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|))) 70) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 59)) (-2408 (((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 88) (((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 43)) (-2420 (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)) 98) (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 97)))
-(((-1122 |#1|) (-10 -7 (-15 -2397 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2408 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2408 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2420 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2420 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)))) (-13 (-307) (-846) (-147))) (T -1122))
-((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5)))) (-5 *1 (-1122 *5)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5))) (-5 *1 (-1122 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5)))))
-(-10 -7 (-15 -2397 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2397 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -2397 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2408 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2408 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2420 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2420 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169))))
-((-2442 (((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)) 29)) (-2430 (((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|)))) 40)))
-(((-1123 |#1|) (-10 -7 (-15 -2430 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -2442 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)))) (-13 (-555) (-846))) (T -1123))
-((-2442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5))) (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5)))) (-2430 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846))) (-5 *1 (-1123 *3)))))
-(-10 -7 (-15 -2430 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -2442 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563))))
-((-3510 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))) 222) (((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169)) 20) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169)) 26) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 25) (((-640 (-294 (-316 |#1|))) (-316 |#1|)) 21)))
-(((-1124 |#1|) (-10 -7 (-15 -3510 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -3510 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (T -1124))
-((-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5)) (-5 *3 (-640 (-294 (-316 *5)))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-316 *5)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-294 (-316 *5))))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-294 (-316 *4))))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-316 *4)))))
-(-10 -7 (-15 -3510 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -3510 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -3510 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169)))))
-((-2463 ((|#2| |#2|) 20 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2453 ((|#2| |#2|) 19 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -2453 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2463 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2453 (|#2| |#2|)) (-15 -2463 (|#2| |#2|))) |%noBranch|)) (-1208) (-13 (-601 (-563) |#1|) (-10 -7 (-6 -4408) (-6 -4409)))) (T -1125))
-((-2463 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-2463 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409)))))) (-2453 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409)))))))
-(-10 -7 (-15 -2453 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2463 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2453 (|#2| |#2|)) (-15 -2463 (|#2| |#2|))) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-1414 (((-1157 3 |#1|) $) 107)) (-2555 (((-112) $) 72)) (-2565 (($ $ (-640 (-939 |#1|))) 20) (($ $ (-640 (-640 |#1|))) 75) (($ (-640 (-939 |#1|))) 74) (((-640 (-939 |#1|)) $) 73)) (-2613 (((-112) $) 41)) (-3018 (($ $ (-939 |#1|)) 46) (($ $ (-640 |#1|)) 51) (($ $ (-767)) 53) (($ (-939 |#1|)) 47) (((-939 |#1|) $) 45)) (-4201 (((-2 (|:| -4196 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 105)) (-2650 (((-767) $) 26)) (-1419 (((-767) $) 25)) (-1403 (($ $ (-767) (-939 |#1|)) 39)) (-2532 (((-112) $) 82)) (-2544 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 89) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 91) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 85) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 93) (($ (-640 (-640 (-939 |#1|)))) 86) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 87) (((-640 (-640 (-939 |#1|))) $) 84)) (-4300 (($ (-640 $)) 28) (($ $ $) 29)) (-2487 (((-640 (-171)) $) 102)) (-2276 (((-640 (-939 |#1|)) $) 96)) (-2497 (((-640 (-640 (-171))) $) 101)) (-2508 (((-640 (-640 (-640 (-939 |#1|)))) $) NIL)) (-2520 (((-640 (-640 (-640 (-767)))) $) 99)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2624 (((-767) $ (-640 (-939 |#1|))) 37)) (-2593 (((-112) $) 54)) (-2604 (($ $ (-640 (-939 |#1|))) 56) (($ $ (-640 (-640 |#1|))) 62) (($ (-640 (-939 |#1|))) 57) (((-640 (-939 |#1|)) $) 55)) (-1430 (($) 23) (($ (-1157 3 |#1|)) 24)) (-1870 (($ $) 35)) (-2631 (((-640 $) $) 34)) (-1590 (($ (-640 $)) 31)) (-2641 (((-640 $) $) 33)) (-1692 (((-858) $) 111)) (-2574 (((-112) $) 64)) (-2586 (($ $ (-640 (-939 |#1|))) 66) (($ $ (-640 (-640 |#1|))) 69) (($ (-640 (-939 |#1|))) 67) (((-640 (-939 |#1|)) $) 65)) (-2476 (($ $) 106)) (-1718 (((-112) $ $) NIL)))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1207) . T))
+((-3987 (((-637 |#2|) |#1|) 12)) (-3756 (((-637 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-637 |#2|) |#1|) 49)) (-3754 (((-637 |#2|) |#2| |#2| |#2|) 36) (((-637 |#2|) |#1|) 47)) (-3751 ((|#2| |#1|) 43)) (-3752 (((-2 (|:| |solns| (-637 |#2|)) (|:| |maps| (-637 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3753 (((-637 |#2|) |#2| |#2|) 35) (((-637 |#2|) |#1|) 46)) (-3755 (((-637 |#2|) |#2| |#2| |#2| |#2|) 37) (((-637 |#2|) |#1|) 48)) (-3760 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3758 ((|#2| |#2| |#2| |#2|) 40)) (-3757 ((|#2| |#2| |#2|) 39)) (-3759 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -3987 ((-637 |#2|) |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -3752 ((-2 (|:| |solns| (-637 |#2|)) (|:| |maps| (-637 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3753 ((-637 |#2|) |#1|)) (-15 -3754 ((-637 |#2|) |#1|)) (-15 -3755 ((-637 |#2|) |#1|)) (-15 -3756 ((-637 |#2|) |#1|)) (-15 -3753 ((-637 |#2|) |#2| |#2|)) (-15 -3754 ((-637 |#2|) |#2| |#2| |#2|)) (-15 -3755 ((-637 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3756 ((-637 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3757 (|#2| |#2| |#2|)) (-15 -3758 (|#2| |#2| |#2| |#2|)) (-15 -3759 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1232 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (T -1121))
+((-3760 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))) (-3759 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))) (-3758 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))) (-3756 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))) (-3755 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))) (-3754 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4)))) (-3752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-2 (|:| |solns| (-637 *5)) (|:| |maps| (-637 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1121 *3 *5)) (-4 *3 (-1232 *5)))) (-3751 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546))))))) (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -3987 ((-637 |#2|) |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -3752 ((-2 (|:| |solns| (-637 |#2|)) (|:| |maps| (-637 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3753 ((-637 |#2|) |#1|)) (-15 -3754 ((-637 |#2|) |#1|)) (-15 -3755 ((-637 |#2|) |#1|)) (-15 -3756 ((-637 |#2|) |#1|)) (-15 -3753 ((-637 |#2|) |#2| |#2|)) (-15 -3754 ((-637 |#2|) |#2| |#2| |#2|)) (-15 -3755 ((-637 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3756 ((-637 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3757 (|#2| |#2| |#2|)) (-15 -3758 (|#2| |#2| |#2| |#2|)) (-15 -3759 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3761 (((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|))))) 95) (((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169))) 94) (((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|)))) 92) (((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|))) (-637 (-1169))) 90) (((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|)))) 75) (((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|))) (-1169)) 76) (((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|))) 70) (((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|)) (-1169)) 59)) (-3762 (((-637 (-637 (-314 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169))) 88) (((-637 (-314 |#1|)) (-407 (-942 |#1|)) (-1169)) 43)) (-3763 (((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-407 (-942 |#1|)) (-1169)) 98) (((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169)) 97)))
+(((-1122 |#1|) (-10 -7 (-15 -3761 ((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|)))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|))))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|))))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169)))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -3762 ((-637 (-314 |#1|)) (-407 (-942 |#1|)) (-1169))) (-15 -3762 ((-637 (-637 (-314 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3763 ((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3763 ((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-407 (-942 |#1|)) (-1169)))) (-13 (-307) (-846) (-147))) (T -1122))
+((-3763 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-637 (-314 *5)) (-637 (-293 (-314 *5))))) (-5 *1 (-1122 *5)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-407 (-942 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-637 (-314 *5)) (-637 (-293 (-314 *5))))) (-5 *1 (-1122 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-314 *5)))) (-5 *1 (-1122 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-314 *5))) (-5 *1 (-1122 *5)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-637 (-293 (-407 (-942 *4))))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *4))))) (-5 *1 (-1122 *4)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-293 (-407 (-942 *5))))) (-5 *4 (-637 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *5))))) (-5 *1 (-1122 *5)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-637 (-407 (-942 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *4))))) (-5 *1 (-1122 *4)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *5))))) (-5 *1 (-1122 *5)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-293 (-407 (-942 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1122 *4)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-407 (-942 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1122 *5)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1122 *4)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1122 *5)))))
+(-10 -7 (-15 -3761 ((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|)) (-1169))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-407 (-942 |#1|)))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3761 ((-637 (-293 (-314 |#1|))) (-293 (-407 (-942 |#1|))))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-407 (-942 |#1|))))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169)))) (-15 -3761 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -3762 ((-637 (-314 |#1|)) (-407 (-942 |#1|)) (-1169))) (-15 -3762 ((-637 (-637 (-314 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3763 ((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3763 ((-1158 (-637 (-314 |#1|)) (-637 (-293 (-314 |#1|)))) (-407 (-942 |#1|)) (-1169))))
+((-3765 (((-407 (-1163 (-314 |#1|))) (-1256 (-314 |#1|)) (-407 (-1163 (-314 |#1|))) (-546)) 29)) (-3764 (((-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|)))) 40)))
+(((-1123 |#1|) (-10 -7 (-15 -3764 ((-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))))) (-15 -3765 ((-407 (-1163 (-314 |#1|))) (-1256 (-314 |#1|)) (-407 (-1163 (-314 |#1|))) (-546)))) (-13 (-556) (-846))) (T -1123))
+((-3765 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1163 (-314 *5)))) (-5 *3 (-1256 (-314 *5))) (-5 *4 (-546)) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-1123 *5)))) (-3764 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1163 (-314 *3)))) (-4 *3 (-13 (-556) (-846))) (-5 *1 (-1123 *3)))))
+(-10 -7 (-15 -3764 ((-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))) (-407 (-1163 (-314 |#1|))))) (-15 -3765 ((-407 (-1163 (-314 |#1|))) (-1256 (-314 |#1|)) (-407 (-1163 (-314 |#1|))) (-546))))
+((-3987 (((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-314 |#1|))) (-637 (-1169))) 222) (((-637 (-293 (-314 |#1|))) (-314 |#1|) (-1169)) 20) (((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|)) (-1169)) 26) (((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|))) 25) (((-637 (-293 (-314 |#1|))) (-314 |#1|)) 21)))
+(((-1124 |#1|) (-10 -7 (-15 -3987 ((-637 (-293 (-314 |#1|))) (-314 |#1|))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|)))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|)) (-1169))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-314 |#1|) (-1169))) (-15 -3987 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-314 |#1|))) (-637 (-1169))))) (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (T -1124))
+((-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-1169))) (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *5))))) (-5 *1 (-1124 *5)) (-5 *3 (-637 (-293 (-314 *5)))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-314 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-293 (-314 *5))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-293 (-314 *4))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147))) (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-314 *4)))))
+(-10 -7 (-15 -3987 ((-637 (-293 (-314 |#1|))) (-314 |#1|))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|)))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-293 (-314 |#1|)) (-1169))) (-15 -3987 ((-637 (-293 (-314 |#1|))) (-314 |#1|) (-1169))) (-15 -3987 ((-637 (-637 (-293 (-314 |#1|)))) (-637 (-293 (-314 |#1|))) (-637 (-1169)))))
+((-3767 ((|#2| |#2|) 20 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3766 ((|#2| |#2|) 19 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -3766 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3767 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|))) |%noBranch|)) (-1207) (-13 (-601 (-546) |#1|) (-10 -7 (-6 -4408) (-6 -4409)))) (T -1125))
+((-3767 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1207)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-546) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1207)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-546) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-546) *4) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-546) *4) (-10 -7 (-6 -4408) (-6 -4409)))))))
+(-10 -7 (-15 -3766 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3767 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-4303 (((-1157 3 |#1|) $) 107)) (-3777 (((-112) $) 72)) (-3778 (($ $ (-637 (-939 |#1|))) 20) (($ $ (-637 (-637 |#1|))) 75) (($ (-637 (-939 |#1|))) 74) (((-637 (-939 |#1|)) $) 73)) (-3783 (((-112) $) 41)) (-4121 (($ $ (-939 |#1|)) 46) (($ $ (-637 |#1|)) 51) (($ $ (-767)) 53) (($ (-939 |#1|)) 47) (((-939 |#1|) $) 45)) (-3769 (((-2 (|:| -4265 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 105)) (-3787 (((-767) $) 26)) (-3788 (((-767) $) 25)) (-4302 (($ $ (-767) (-939 |#1|)) 39)) (-3775 (((-112) $) 82)) (-3776 (($ $ (-637 (-637 (-939 |#1|))) (-637 (-171)) (-171)) 89) (($ $ (-637 (-637 (-637 |#1|))) (-637 (-171)) (-171)) 91) (($ $ (-637 (-637 (-939 |#1|))) (-112) (-112)) 85) (($ $ (-637 (-637 (-637 |#1|))) (-112) (-112)) 93) (($ (-637 (-637 (-939 |#1|)))) 86) (($ (-637 (-637 (-939 |#1|))) (-112) (-112)) 87) (((-637 (-637 (-939 |#1|))) $) 84)) (-3924 (($ (-637 $)) 28) (($ $ $) 29)) (-3770 (((-637 (-171)) $) 102)) (-3774 (((-637 (-939 |#1|)) $) 96)) (-3771 (((-637 (-637 (-171))) $) 101)) (-3772 (((-637 (-637 (-637 (-939 |#1|)))) $) NIL)) (-3773 (((-637 (-637 (-637 (-767)))) $) 99)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3784 (((-767) $ (-637 (-939 |#1|))) 37)) (-3781 (((-112) $) 54)) (-3782 (($ $ (-637 (-939 |#1|))) 56) (($ $ (-637 (-637 |#1|))) 62) (($ (-637 (-939 |#1|))) 57) (((-637 (-939 |#1|)) $) 55)) (-3789 (($) 23) (($ (-1157 3 |#1|)) 24)) (-3811 (($ $) 35)) (-3785 (((-637 $) $) 34)) (-4169 (($ (-637 $)) 31)) (-3786 (((-637 $) $) 33)) (-4361 (((-859) $) 111)) (-3779 (((-112) $) 64)) (-3780 (($ $ (-637 (-939 |#1|))) 66) (($ $ (-637 (-637 |#1|))) 69) (($ (-637 (-939 |#1|))) 67) (((-637 (-939 |#1|)) $) 65)) (-3768 (($ $) 106)) (-3444 (((-112) $ $) NIL)))
(((-1126 |#1|) (-1127 |#1|) (-1045)) (T -1126))
NIL
(-1127 |#1|)
-((-1677 (((-112) $ $) 7)) (-1414 (((-1157 3 |#1|) $) 13)) (-2555 (((-112) $) 29)) (-2565 (($ $ (-640 (-939 |#1|))) 33) (($ $ (-640 (-640 |#1|))) 32) (($ (-640 (-939 |#1|))) 31) (((-640 (-939 |#1|)) $) 30)) (-2613 (((-112) $) 44)) (-3018 (($ $ (-939 |#1|)) 49) (($ $ (-640 |#1|)) 48) (($ $ (-767)) 47) (($ (-939 |#1|)) 46) (((-939 |#1|) $) 45)) (-4201 (((-2 (|:| -4196 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 15)) (-2650 (((-767) $) 58)) (-1419 (((-767) $) 59)) (-1403 (($ $ (-767) (-939 |#1|)) 50)) (-2532 (((-112) $) 21)) (-2544 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 28) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 27) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 26) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 25) (($ (-640 (-640 (-939 |#1|)))) 24) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 23) (((-640 (-640 (-939 |#1|))) $) 22)) (-4300 (($ (-640 $)) 57) (($ $ $) 56)) (-2487 (((-640 (-171)) $) 16)) (-2276 (((-640 (-939 |#1|)) $) 20)) (-2497 (((-640 (-640 (-171))) $) 17)) (-2508 (((-640 (-640 (-640 (-939 |#1|)))) $) 18)) (-2520 (((-640 (-640 (-640 (-767)))) $) 19)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2624 (((-767) $ (-640 (-939 |#1|))) 51)) (-2593 (((-112) $) 39)) (-2604 (($ $ (-640 (-939 |#1|))) 43) (($ $ (-640 (-640 |#1|))) 42) (($ (-640 (-939 |#1|))) 41) (((-640 (-939 |#1|)) $) 40)) (-1430 (($) 61) (($ (-1157 3 |#1|)) 60)) (-1870 (($ $) 52)) (-2631 (((-640 $) $) 53)) (-1590 (($ (-640 $)) 55)) (-2641 (((-640 $) $) 54)) (-1692 (((-858) $) 11)) (-2574 (((-112) $) 34)) (-2586 (($ $ (-640 (-939 |#1|))) 38) (($ $ (-640 (-640 |#1|))) 37) (($ (-640 (-939 |#1|))) 36) (((-640 (-939 |#1|)) $) 35)) (-2476 (($ $) 14)) (-1718 (((-112) $ $) 6)))
+((-2953 (((-112) $ $) 7)) (-4303 (((-1157 3 |#1|) $) 13)) (-3777 (((-112) $) 29)) (-3778 (($ $ (-637 (-939 |#1|))) 33) (($ $ (-637 (-637 |#1|))) 32) (($ (-637 (-939 |#1|))) 31) (((-637 (-939 |#1|)) $) 30)) (-3783 (((-112) $) 44)) (-4121 (($ $ (-939 |#1|)) 49) (($ $ (-637 |#1|)) 48) (($ $ (-767)) 47) (($ (-939 |#1|)) 46) (((-939 |#1|) $) 45)) (-3769 (((-2 (|:| -4265 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 15)) (-3787 (((-767) $) 58)) (-3788 (((-767) $) 59)) (-4302 (($ $ (-767) (-939 |#1|)) 50)) (-3775 (((-112) $) 21)) (-3776 (($ $ (-637 (-637 (-939 |#1|))) (-637 (-171)) (-171)) 28) (($ $ (-637 (-637 (-637 |#1|))) (-637 (-171)) (-171)) 27) (($ $ (-637 (-637 (-939 |#1|))) (-112) (-112)) 26) (($ $ (-637 (-637 (-637 |#1|))) (-112) (-112)) 25) (($ (-637 (-637 (-939 |#1|)))) 24) (($ (-637 (-637 (-939 |#1|))) (-112) (-112)) 23) (((-637 (-637 (-939 |#1|))) $) 22)) (-3924 (($ (-637 $)) 57) (($ $ $) 56)) (-3770 (((-637 (-171)) $) 16)) (-3774 (((-637 (-939 |#1|)) $) 20)) (-3771 (((-637 (-637 (-171))) $) 17)) (-3772 (((-637 (-637 (-637 (-939 |#1|)))) $) 18)) (-3773 (((-637 (-637 (-637 (-767)))) $) 19)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3784 (((-767) $ (-637 (-939 |#1|))) 51)) (-3781 (((-112) $) 39)) (-3782 (($ $ (-637 (-939 |#1|))) 43) (($ $ (-637 (-637 |#1|))) 42) (($ (-637 (-939 |#1|))) 41) (((-637 (-939 |#1|)) $) 40)) (-3789 (($) 61) (($ (-1157 3 |#1|)) 60)) (-3811 (($ $) 52)) (-3785 (((-637 $) $) 53)) (-4169 (($ (-637 $)) 55)) (-3786 (((-637 $) $) 54)) (-4361 (((-859) $) 11)) (-3779 (((-112) $) 34)) (-3780 (($ $ (-637 (-939 |#1|))) 38) (($ $ (-637 (-637 |#1|))) 37) (($ (-637 (-939 |#1|))) 36) (((-637 (-939 |#1|)) $) 35)) (-3768 (($ $) 14)) (-3444 (((-112) $ $) 6)))
(((-1127 |#1|) (-140) (-1045)) (T -1127))
-((-1692 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) (-1430 (*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-4300 (*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2641 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-2631 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-1403 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2586 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2586 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2586 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2565 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2565 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2544 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-2544 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-2544 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-2544 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2544 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1127 *4)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-939 *3)))))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-767))))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-939 *3))))))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171)))))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171))))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -4196 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-2476 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3)))))
-(-13 (-1093) (-10 -8 (-15 -1430 ($)) (-15 -1430 ($ (-1157 3 |t#1|))) (-15 -1419 ((-767) $)) (-15 -2650 ((-767) $)) (-15 -4300 ($ (-640 $))) (-15 -4300 ($ $ $)) (-15 -1590 ($ (-640 $))) (-15 -2641 ((-640 $) $)) (-15 -2631 ((-640 $) $)) (-15 -1870 ($ $)) (-15 -2624 ((-767) $ (-640 (-939 |t#1|)))) (-15 -1403 ($ $ (-767) (-939 |t#1|))) (-15 -3018 ($ $ (-939 |t#1|))) (-15 -3018 ($ $ (-640 |t#1|))) (-15 -3018 ($ $ (-767))) (-15 -3018 ($ (-939 |t#1|))) (-15 -3018 ((-939 |t#1|) $)) (-15 -2613 ((-112) $)) (-15 -2604 ($ $ (-640 (-939 |t#1|)))) (-15 -2604 ($ $ (-640 (-640 |t#1|)))) (-15 -2604 ($ (-640 (-939 |t#1|)))) (-15 -2604 ((-640 (-939 |t#1|)) $)) (-15 -2593 ((-112) $)) (-15 -2586 ($ $ (-640 (-939 |t#1|)))) (-15 -2586 ($ $ (-640 (-640 |t#1|)))) (-15 -2586 ($ (-640 (-939 |t#1|)))) (-15 -2586 ((-640 (-939 |t#1|)) $)) (-15 -2574 ((-112) $)) (-15 -2565 ($ $ (-640 (-939 |t#1|)))) (-15 -2565 ($ $ (-640 (-640 |t#1|)))) (-15 -2565 ($ (-640 (-939 |t#1|)))) (-15 -2565 ((-640 (-939 |t#1|)) $)) (-15 -2555 ((-112) $)) (-15 -2544 ($ $ (-640 (-640 (-939 |t#1|))) (-640 (-171)) (-171))) (-15 -2544 ($ $ (-640 (-640 (-640 |t#1|))) (-640 (-171)) (-171))) (-15 -2544 ($ $ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -2544 ($ $ (-640 (-640 (-640 |t#1|))) (-112) (-112))) (-15 -2544 ($ (-640 (-640 (-939 |t#1|))))) (-15 -2544 ($ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -2544 ((-640 (-640 (-939 |t#1|))) $)) (-15 -2532 ((-112) $)) (-15 -2276 ((-640 (-939 |t#1|)) $)) (-15 -2520 ((-640 (-640 (-640 (-767)))) $)) (-15 -2508 ((-640 (-640 (-640 (-939 |t#1|)))) $)) (-15 -2497 ((-640 (-640 (-171))) $)) (-15 -2487 ((-640 (-171)) $)) (-15 -4201 ((-2 (|:| -4196 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -2476 ($ $)) (-15 -1414 ((-1157 3 |t#1|) $)) (-15 -1692 ((-858) $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 176) (($ (-1174)) NIL) (((-1174) $) 7)) (-2224 (((-112) $ (|[\|\|]| (-524))) 17) (((-112) $ (|[\|\|]| (-218))) 21) (((-112) $ (|[\|\|]| (-671))) 25) (((-112) $ (|[\|\|]| (-1267))) 29) (((-112) $ (|[\|\|]| (-138))) 33) (((-112) $ (|[\|\|]| (-133))) 37) (((-112) $ (|[\|\|]| (-1108))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-676))) 49) (((-112) $ (|[\|\|]| (-517))) 53) (((-112) $ (|[\|\|]| (-1060))) 57) (((-112) $ (|[\|\|]| (-1268))) 61) (((-112) $ (|[\|\|]| (-525))) 65) (((-112) $ (|[\|\|]| (-154))) 69) (((-112) $ (|[\|\|]| (-666))) 73) (((-112) $ (|[\|\|]| (-311))) 77) (((-112) $ (|[\|\|]| (-1032))) 81) (((-112) $ (|[\|\|]| (-180))) 85) (((-112) $ (|[\|\|]| (-966))) 89) (((-112) $ (|[\|\|]| (-1067))) 93) (((-112) $ (|[\|\|]| (-1083))) 97) (((-112) $ (|[\|\|]| (-1089))) 101) (((-112) $ (|[\|\|]| (-623))) 105) (((-112) $ (|[\|\|]| (-1159))) 109) (((-112) $ (|[\|\|]| (-156))) 113) (((-112) $ (|[\|\|]| (-137))) 117) (((-112) $ (|[\|\|]| (-478))) 121) (((-112) $ (|[\|\|]| (-590))) 125) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1151))) 135) (((-112) $ (|[\|\|]| (-563))) 139)) (-1904 (((-524) $) 18) (((-218) $) 22) (((-671) $) 26) (((-1267) $) 30) (((-138) $) 34) (((-133) $) 38) (((-1108) $) 42) (((-96) $) 46) (((-676) $) 50) (((-517) $) 54) (((-1060) $) 58) (((-1268) $) 62) (((-525) $) 66) (((-154) $) 70) (((-666) $) 74) (((-311) $) 78) (((-1032) $) 82) (((-180) $) 86) (((-966) $) 90) (((-1067) $) 94) (((-1083) $) 98) (((-1089) $) 102) (((-623) $) 106) (((-1159) $) 110) (((-156) $) 114) (((-137) $) 118) (((-478) $) 122) (((-590) $) 126) (((-506) $) 132) (((-1151) $) 136) (((-563) $) 140)) (-1718 (((-112) $ $) NIL)))
+((-4361 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-859)))) (-3789 (*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-4169 (*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3786 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)))) (-3785 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-637 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-4302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3))))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3776 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-637 (-637 (-939 *5)))) (-5 *3 (-637 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-3776 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-637 (-637 (-637 *5)))) (-5 *3 (-637 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-3776 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-637 (-637 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3776 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-637 (-637 (-637 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3776 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-637 (-637 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1127 *4)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-939 *3)))))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3))))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-637 (-767))))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-637 (-939 *3))))))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-171)))))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-171))))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -4265 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3)))))
+(-13 (-1094) (-10 -8 (-15 -3789 ($)) (-15 -3789 ($ (-1157 3 |t#1|))) (-15 -3788 ((-767) $)) (-15 -3787 ((-767) $)) (-15 -3924 ($ (-637 $))) (-15 -3924 ($ $ $)) (-15 -4169 ($ (-637 $))) (-15 -3786 ((-637 $) $)) (-15 -3785 ((-637 $) $)) (-15 -3811 ($ $)) (-15 -3784 ((-767) $ (-637 (-939 |t#1|)))) (-15 -4302 ($ $ (-767) (-939 |t#1|))) (-15 -4121 ($ $ (-939 |t#1|))) (-15 -4121 ($ $ (-637 |t#1|))) (-15 -4121 ($ $ (-767))) (-15 -4121 ($ (-939 |t#1|))) (-15 -4121 ((-939 |t#1|) $)) (-15 -3783 ((-112) $)) (-15 -3782 ($ $ (-637 (-939 |t#1|)))) (-15 -3782 ($ $ (-637 (-637 |t#1|)))) (-15 -3782 ($ (-637 (-939 |t#1|)))) (-15 -3782 ((-637 (-939 |t#1|)) $)) (-15 -3781 ((-112) $)) (-15 -3780 ($ $ (-637 (-939 |t#1|)))) (-15 -3780 ($ $ (-637 (-637 |t#1|)))) (-15 -3780 ($ (-637 (-939 |t#1|)))) (-15 -3780 ((-637 (-939 |t#1|)) $)) (-15 -3779 ((-112) $)) (-15 -3778 ($ $ (-637 (-939 |t#1|)))) (-15 -3778 ($ $ (-637 (-637 |t#1|)))) (-15 -3778 ($ (-637 (-939 |t#1|)))) (-15 -3778 ((-637 (-939 |t#1|)) $)) (-15 -3777 ((-112) $)) (-15 -3776 ($ $ (-637 (-637 (-939 |t#1|))) (-637 (-171)) (-171))) (-15 -3776 ($ $ (-637 (-637 (-637 |t#1|))) (-637 (-171)) (-171))) (-15 -3776 ($ $ (-637 (-637 (-939 |t#1|))) (-112) (-112))) (-15 -3776 ($ $ (-637 (-637 (-637 |t#1|))) (-112) (-112))) (-15 -3776 ($ (-637 (-637 (-939 |t#1|))))) (-15 -3776 ($ (-637 (-637 (-939 |t#1|))) (-112) (-112))) (-15 -3776 ((-637 (-637 (-939 |t#1|))) $)) (-15 -3775 ((-112) $)) (-15 -3774 ((-637 (-939 |t#1|)) $)) (-15 -3773 ((-637 (-637 (-637 (-767)))) $)) (-15 -3772 ((-637 (-637 (-637 (-939 |t#1|)))) $)) (-15 -3771 ((-637 (-637 (-171))) $)) (-15 -3770 ((-637 (-171)) $)) (-15 -3769 ((-2 (|:| -4265 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -3768 ($ $)) (-15 -4303 ((-1157 3 |t#1|) $)) (-15 -4361 ((-859) $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 176) (($ (-1174)) NIL) (((-1174) $) 7)) (-3980 (((-112) $ (|[\|\|]| (-524))) 17) (((-112) $ (|[\|\|]| (-218))) 21) (((-112) $ (|[\|\|]| (-671))) 25) (((-112) $ (|[\|\|]| (-1267))) 29) (((-112) $ (|[\|\|]| (-138))) 33) (((-112) $ (|[\|\|]| (-133))) 37) (((-112) $ (|[\|\|]| (-1109))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-676))) 49) (((-112) $ (|[\|\|]| (-517))) 53) (((-112) $ (|[\|\|]| (-1060))) 57) (((-112) $ (|[\|\|]| (-1268))) 61) (((-112) $ (|[\|\|]| (-525))) 65) (((-112) $ (|[\|\|]| (-154))) 69) (((-112) $ (|[\|\|]| (-666))) 73) (((-112) $ (|[\|\|]| (-312))) 77) (((-112) $ (|[\|\|]| (-1032))) 81) (((-112) $ (|[\|\|]| (-180))) 85) (((-112) $ (|[\|\|]| (-966))) 89) (((-112) $ (|[\|\|]| (-1067))) 93) (((-112) $ (|[\|\|]| (-1084))) 97) (((-112) $ (|[\|\|]| (-1089))) 101) (((-112) $ (|[\|\|]| (-623))) 105) (((-112) $ (|[\|\|]| (-1159))) 109) (((-112) $ (|[\|\|]| (-156))) 113) (((-112) $ (|[\|\|]| (-137))) 117) (((-112) $ (|[\|\|]| (-478))) 121) (((-112) $ (|[\|\|]| (-590))) 125) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1151))) 135) (((-112) $ (|[\|\|]| (-546))) 139)) (-3986 (((-524) $) 18) (((-218) $) 22) (((-671) $) 26) (((-1267) $) 30) (((-138) $) 34) (((-133) $) 38) (((-1109) $) 42) (((-96) $) 46) (((-676) $) 50) (((-517) $) 54) (((-1060) $) 58) (((-1268) $) 62) (((-525) $) 66) (((-154) $) 70) (((-666) $) 74) (((-312) $) 78) (((-1032) $) 82) (((-180) $) 86) (((-966) $) 90) (((-1067) $) 94) (((-1084) $) 98) (((-1089) $) 102) (((-623) $) 106) (((-1159) $) 110) (((-156) $) 114) (((-137) $) 118) (((-478) $) 122) (((-590) $) 126) (((-506) $) 132) (((-1151) $) 136) (((-546) $) 140)) (-3444 (((-112) $ $) NIL)))
(((-1128) (-1130)) (T -1128))
NIL
(-1130)
-((-2431 (((-640 (-1174)) (-1151)) 9)))
-(((-1129) (-10 -7 (-15 -2431 ((-640 (-1174)) (-1151))))) (T -1129))
-((-2431 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129)))))
-(-10 -7 (-15 -2431 ((-640 (-1174)) (-1151))))
-((-1677 (((-112) $ $) 7)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-2224 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-671))) 76) (((-112) $ (|[\|\|]| (-1267))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1108))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-676))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1060))) 60) (((-112) $ (|[\|\|]| (-1268))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-666))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1032))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-966))) 44) (((-112) $ (|[\|\|]| (-1067))) 42) (((-112) $ (|[\|\|]| (-1083))) 40) (((-112) $ (|[\|\|]| (-1089))) 38) (((-112) $ (|[\|\|]| (-623))) 36) (((-112) $ (|[\|\|]| (-1159))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-590))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1151))) 22) (((-112) $ (|[\|\|]| (-563))) 20)) (-1904 (((-524) $) 79) (((-218) $) 77) (((-671) $) 75) (((-1267) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1108) $) 67) (((-96) $) 65) (((-676) $) 63) (((-517) $) 61) (((-1060) $) 59) (((-1268) $) 57) (((-525) $) 55) (((-154) $) 53) (((-666) $) 51) (((-311) $) 49) (((-1032) $) 47) (((-180) $) 45) (((-966) $) 43) (((-1067) $) 41) (((-1083) $) 39) (((-1089) $) 37) (((-623) $) 35) (((-1159) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-590) $) 25) (((-506) $) 23) (((-1151) $) 21) (((-563) $) 19)) (-1718 (((-112) $ $) 6)))
+((-3790 (((-637 (-1174)) (-1151)) 9)))
+(((-1129) (-10 -7 (-15 -3790 ((-637 (-1174)) (-1151))))) (T -1129))
+((-3790 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-637 (-1174))) (-5 *1 (-1129)))))
+(-10 -7 (-15 -3790 ((-637 (-1174)) (-1151))))
+((-2953 (((-112) $ $) 7)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-3980 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-671))) 76) (((-112) $ (|[\|\|]| (-1267))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-676))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1060))) 60) (((-112) $ (|[\|\|]| (-1268))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-666))) 52) (((-112) $ (|[\|\|]| (-312))) 50) (((-112) $ (|[\|\|]| (-1032))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-966))) 44) (((-112) $ (|[\|\|]| (-1067))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1089))) 38) (((-112) $ (|[\|\|]| (-623))) 36) (((-112) $ (|[\|\|]| (-1159))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-590))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1151))) 22) (((-112) $ (|[\|\|]| (-546))) 20)) (-3986 (((-524) $) 79) (((-218) $) 77) (((-671) $) 75) (((-1267) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-676) $) 63) (((-517) $) 61) (((-1060) $) 59) (((-1268) $) 57) (((-525) $) 55) (((-154) $) 53) (((-666) $) 51) (((-312) $) 49) (((-1032) $) 47) (((-180) $) 45) (((-966) $) 43) (((-1067) $) 41) (((-1084) $) 39) (((-1089) $) 37) (((-623) $) 35) (((-1159) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-590) $) 25) (((-506) $) 23) (((-1151) $) 21) (((-546) $) 19)) (-3444 (((-112) $ $) 6)))
(((-1130) (-140)) (T -1130))
-((-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) (-2224 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563)))))
-(-13 (-1076) (-1252) (-10 -8 (-15 -2224 ((-112) $ (|[\|\|]| (-524)))) (-15 -1904 ((-524) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-218)))) (-15 -1904 ((-218) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-671)))) (-15 -1904 ((-671) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1267)))) (-15 -1904 ((-1267) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-138)))) (-15 -1904 ((-138) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-133)))) (-15 -1904 ((-133) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1108)))) (-15 -1904 ((-1108) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-96)))) (-15 -1904 ((-96) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-676)))) (-15 -1904 ((-676) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-517)))) (-15 -1904 ((-517) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1060)))) (-15 -1904 ((-1060) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1268)))) (-15 -1904 ((-1268) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-525)))) (-15 -1904 ((-525) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-154)))) (-15 -1904 ((-154) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-666)))) (-15 -1904 ((-666) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-311)))) (-15 -1904 ((-311) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1032)))) (-15 -1904 ((-1032) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-180)))) (-15 -1904 ((-180) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-966)))) (-15 -1904 ((-966) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1067)))) (-15 -1904 ((-1067) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1083)))) (-15 -1904 ((-1083) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1089)))) (-15 -1904 ((-1089) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-623)))) (-15 -1904 ((-623) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1159)))) (-15 -1904 ((-1159) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-156)))) (-15 -1904 ((-156) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-137)))) (-15 -1904 ((-137) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-478)))) (-15 -1904 ((-478) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-590)))) (-15 -1904 ((-590) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-506)))) (-15 -1904 ((-506) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-1151)))) (-15 -1904 ((-1151) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-563)))) (-15 -1904 ((-563) $))))
-(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T) ((-1076) . T) ((-1252) . T))
-((-1451 (((-1262) (-640 (-858))) 23) (((-1262) (-858)) 22)) (-1441 (((-1262) (-640 (-858))) 21) (((-1262) (-858)) 20)) (-2615 (((-1262) (-640 (-858))) 19) (((-1262) (-858)) 11) (((-1262) (-1151) (-858)) 17)))
-(((-1131) (-10 -7 (-15 -2615 ((-1262) (-1151) (-858))) (-15 -2615 ((-1262) (-858))) (-15 -1441 ((-1262) (-858))) (-15 -1451 ((-1262) (-858))) (-15 -2615 ((-1262) (-640 (-858)))) (-15 -1441 ((-1262) (-640 (-858)))) (-15 -1451 ((-1262) (-640 (-858)))))) (T -1131))
-((-1451 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))))
-(-10 -7 (-15 -2615 ((-1262) (-1151) (-858))) (-15 -2615 ((-1262) (-858))) (-15 -1441 ((-1262) (-858))) (-15 -1451 ((-1262) (-858))) (-15 -2615 ((-1262) (-640 (-858)))) (-15 -1441 ((-1262) (-640 (-858)))) (-15 -1451 ((-1262) (-640 (-858)))))
-((-1496 (($ $ $) 10)) (-1485 (($ $) 9)) (-1534 (($ $ $) 13)) (-1558 (($ $ $) 15)) (-1521 (($ $ $) 12)) (-1545 (($ $ $) 14)) (-1583 (($ $) 17)) (-1570 (($ $) 16)) (-1462 (($ $) 6)) (-1507 (($ $ $) 11) (($ $) 7)) (-1474 (($ $ $) 8)))
+((-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1109)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-312)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1084)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) (-3980 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-546))) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-546)))))
+(-13 (-1076) (-1252) (-10 -8 (-15 -3980 ((-112) $ (|[\|\|]| (-524)))) (-15 -3986 ((-524) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-218)))) (-15 -3986 ((-218) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-671)))) (-15 -3986 ((-671) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1267)))) (-15 -3986 ((-1267) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-138)))) (-15 -3986 ((-138) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-133)))) (-15 -3986 ((-133) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3986 ((-1109) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-96)))) (-15 -3986 ((-96) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-676)))) (-15 -3986 ((-676) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-517)))) (-15 -3986 ((-517) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1060)))) (-15 -3986 ((-1060) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1268)))) (-15 -3986 ((-1268) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-525)))) (-15 -3986 ((-525) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-154)))) (-15 -3986 ((-154) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-666)))) (-15 -3986 ((-666) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-312)))) (-15 -3986 ((-312) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1032)))) (-15 -3986 ((-1032) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-180)))) (-15 -3986 ((-180) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-966)))) (-15 -3986 ((-966) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1067)))) (-15 -3986 ((-1067) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3986 ((-1084) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1089)))) (-15 -3986 ((-1089) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-623)))) (-15 -3986 ((-623) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1159)))) (-15 -3986 ((-1159) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-156)))) (-15 -3986 ((-156) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-137)))) (-15 -3986 ((-137) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-478)))) (-15 -3986 ((-478) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-590)))) (-15 -3986 ((-590) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-506)))) (-15 -3986 ((-506) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-1151)))) (-15 -3986 ((-1151) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-546)))) (-15 -3986 ((-546) $))))
+(((-93) . T) ((-102) . T) ((-613 #1=(-1174)) . T) ((-610 (-859)) . T) ((-610 #1#) . T) ((-490 #1#) . T) ((-1094) . T) ((-1076) . T) ((-1252) . T))
+((-3793 (((-1262) (-637 (-859))) 23) (((-1262) (-859)) 22)) (-3792 (((-1262) (-637 (-859))) 21) (((-1262) (-859)) 20)) (-3791 (((-1262) (-637 (-859))) 19) (((-1262) (-859)) 11) (((-1262) (-1151) (-859)) 17)))
+(((-1131) (-10 -7 (-15 -3791 ((-1262) (-1151) (-859))) (-15 -3791 ((-1262) (-859))) (-15 -3792 ((-1262) (-859))) (-15 -3793 ((-1262) (-859))) (-15 -3791 ((-1262) (-637 (-859)))) (-15 -3792 ((-1262) (-637 (-859)))) (-15 -3793 ((-1262) (-637 (-859)))))) (T -1131))
+((-3793 (*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131)))))
+(-10 -7 (-15 -3791 ((-1262) (-1151) (-859))) (-15 -3791 ((-1262) (-859))) (-15 -3792 ((-1262) (-859))) (-15 -3793 ((-1262) (-859))) (-15 -3791 ((-1262) (-637 (-859)))) (-15 -3792 ((-1262) (-637 (-859)))) (-15 -3793 ((-1262) (-637 (-859)))))
+((-3797 (($ $ $) 10)) (-3796 (($ $) 9)) (-3800 (($ $ $) 13)) (-3802 (($ $ $) 15)) (-3799 (($ $ $) 12)) (-3801 (($ $ $) 14)) (-3804 (($ $) 17)) (-3803 (($ $) 16)) (-3794 (($ $) 6)) (-3798 (($ $ $) 11) (($ $) 7)) (-3795 (($ $ $) 8)))
(((-1132) (-140)) (T -1132))
-((-1583 (*1 *1 *1) (-4 *1 (-1132))) (-1570 (*1 *1 *1) (-4 *1 (-1132))) (-1558 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1545 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1534 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1521 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1507 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1496 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1485 (*1 *1 *1) (-4 *1 (-1132))) (-1474 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1507 (*1 *1 *1) (-4 *1 (-1132))) (-1462 (*1 *1 *1) (-4 *1 (-1132))))
-(-13 (-10 -8 (-15 -1462 ($ $)) (-15 -1507 ($ $)) (-15 -1474 ($ $ $)) (-15 -1485 ($ $)) (-15 -1496 ($ $ $)) (-15 -1507 ($ $ $)) (-15 -1521 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1545 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1570 ($ $)) (-15 -1583 ($ $))))
-((-1677 (((-112) $ $) 42)) (-2618 ((|#1| $) 16)) (-1595 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-2733 (((-112) $) 18)) (-1654 (($ $ |#1|) 29)) (-1628 (($ $ (-112)) 31)) (-1617 (($ $) 32)) (-1641 (($ $ |#2|) 30)) (-3854 (((-1151) $) NIL)) (-1606 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1693 (((-1113) $) NIL)) (-1665 (((-112) $) 15)) (-3445 (($) 11)) (-1870 (($ $) 28)) (-1706 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -2058 |#2|))) 22) (((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|)))) 25) (((-640 $) |#1| (-640 |#2|)) 27)) (-1394 ((|#2| $) 17)) (-1692 (((-858) $) 51)) (-1718 (((-112) $ $) 40)))
-(((-1133 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -3445 ($)) (-15 -1665 ((-112) $)) (-15 -2618 (|#1| $)) (-15 -1394 (|#2| $)) (-15 -2733 ((-112) $)) (-15 -1706 ($ |#1| |#2| (-112))) (-15 -1706 ($ |#1| |#2|)) (-15 -1706 ($ (-2 (|:| |val| |#1|) (|:| -2058 |#2|)))) (-15 -1706 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|))))) (-15 -1706 ((-640 $) |#1| (-640 |#2|))) (-15 -1870 ($ $)) (-15 -1654 ($ $ |#1|)) (-15 -1641 ($ $ |#2|)) (-15 -1628 ($ $ (-112))) (-15 -1617 ($ $)) (-15 -1606 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1595 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1133))
-((-3445 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-2618 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *3 (-13 (-1093) (-34))))) (-1394 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1706 (*1 *1 *2 *3) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2058 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *4)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -2058 *5)))) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) (-4 *3 (-13 (-1093) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1654 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1641 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))) (-4 *2 (-13 (-1093) (-34))))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1606 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-1595 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))))))
-(-13 (-1093) (-10 -8 (-15 -3445 ($)) (-15 -1665 ((-112) $)) (-15 -2618 (|#1| $)) (-15 -1394 (|#2| $)) (-15 -2733 ((-112) $)) (-15 -1706 ($ |#1| |#2| (-112))) (-15 -1706 ($ |#1| |#2|)) (-15 -1706 ($ (-2 (|:| |val| |#1|) (|:| -2058 |#2|)))) (-15 -1706 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|))))) (-15 -1706 ((-640 $) |#1| (-640 |#2|))) (-15 -1870 ($ $)) (-15 -1654 ($ $ |#1|)) (-15 -1641 ($ $ |#2|)) (-15 -1628 ($ $ (-112))) (-15 -1617 ($ $)) (-15 -1606 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1595 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-1677 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-2618 (((-1133 |#1| |#2|) $) 26)) (-1732 (($ $) 76)) (-1705 (((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1678 (($ $ $ (-640 (-1133 |#1| |#2|))) 90) (($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3001 (((-112) $ (-767)) NIL)) (-2336 (((-1133 |#1| |#2|) $ (-1133 |#1| |#2|)) 43 (|has| $ (-6 -4409)))) (-1849 (((-1133 |#1| |#2|) $ "value" (-1133 |#1| |#2|)) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-1920 (((-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|))) $) 80)) (-1691 (($ (-1133 |#1| |#2|) $) 39)) (-1459 (($ (-1133 |#1| |#2|) $) 31)) (-2658 (((-640 (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 51)) (-1720 (((-112) (-1133 |#1| |#2|) $) 82)) (-2358 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 (-1133 |#1| |#2|)) $) 55 (|has| $ (-6 -4408)))) (-2667 (((-112) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1093))))) (-4347 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 47 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 46)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 (-1133 |#1| |#2|)) $) 53)) (-1298 (((-112) $) 42)) (-3854 (((-1151) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-1693 (((-1113) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-1746 (((-3 $ "failed") $) 75)) (-1458 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-1133 |#1| |#2|)))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-294 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-1133 |#1| |#2|) (-1133 |#1| |#2|)) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-640 (-1133 |#1| |#2|)) (-640 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093))))) (-2941 (((-112) $ $) 50)) (-1665 (((-112) $) 23)) (-3445 (($) 25)) (-2308 (((-1133 |#1| |#2|) $ "value") NIL)) (-2379 (((-563) $ $) NIL)) (-2889 (((-112) $) 44)) (-1708 (((-767) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408))) (((-767) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1093))))) (-1870 (($ $) 49)) (-1706 (($ (-1133 |#1| |#2|)) 10) (($ |#1| |#2| (-640 $)) 13) (($ |#1| |#2| (-640 (-1133 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-640 |#2|)) 18)) (-1906 (((-640 |#2|) $) 81)) (-1692 (((-858) $) 73 (|has| (-1133 |#1| |#2|) (-610 (-858))))) (-4345 (((-640 $) $) 29)) (-2367 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-1471 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 64 (|has| (-1133 |#1| |#2|) (-1093)))) (-3610 (((-767) $) 58 (|has| $ (-6 -4408)))))
-(((-1134 |#1| |#2|) (-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1746 ((-3 $ "failed") $)) (-15 -1732 ($ $)) (-15 -1706 ($ (-1133 |#1| |#2|))) (-15 -1706 ($ |#1| |#2| (-640 $))) (-15 -1706 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -1706 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -1906 ((-640 |#2|) $)) (-15 -1920 ((-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|))) $)) (-15 -1720 ((-112) (-1133 |#1| |#2|) $)) (-15 -1705 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1459 ($ (-1133 |#1| |#2|) $)) (-15 -1691 ($ (-1133 |#1| |#2|) $)) (-15 -1678 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -1678 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1134))
-((-1746 (*1 *1 *1) (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1732 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)))) (-1706 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4)))) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1720 (*1 *2 *3 *1) (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))) (-1705 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1678 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1678 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *1 (-1134 *4 *5)))))
-(-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -1746 ((-3 $ "failed") $)) (-15 -1732 ($ $)) (-15 -1706 ($ (-1133 |#1| |#2|))) (-15 -1706 ($ |#1| |#2| (-640 $))) (-15 -1706 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -1706 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -1906 ((-640 |#2|) $)) (-15 -1920 ((-640 (-2 (|:| |val| |#1|) (|:| -2058 |#2|))) $)) (-15 -1720 ((-112) (-1133 |#1| |#2|) $)) (-15 -1705 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1459 ($ (-1133 |#1| |#2|) $)) (-15 -1691 ($ (-1133 |#1| |#2|) $)) (-15 -1678 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -1678 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-1731 ((|#2| $) NIL)) (-3870 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1757 (($ (-684 |#2|)) 50)) (-3893 (((-112) $) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2217 (($ |#2|) 10)) (-2569 (($) NIL T CONST)) (-1940 (($ $) 63 (|has| |#2| (-307)))) (-1960 (((-240 |#1| |#2|) $ (-563)) 36)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) 77)) (-2521 (((-767) $) 65 (|has| |#2| (-555)))) (-4293 ((|#2| $ (-563) (-563)) NIL)) (-2658 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3401 (((-112) $) NIL)) (-1929 (((-767) $) 67 (|has| |#2| (-555)))) (-1917 (((-640 (-240 |#1| |#2|)) $) 71 (|has| |#2| (-555)))) (-2380 (((-767) $) NIL)) (-1565 (($ |#2|) 20)) (-2391 (((-767) $) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2157 ((|#2| $) 61 (|has| |#2| (-6 (-4410 "*"))))) (-1995 (((-563) $) NIL)) (-1979 (((-563) $) NIL)) (-3523 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1986 (((-563) $) NIL)) (-1969 (((-563) $) NIL)) (-4040 (($ (-640 (-640 |#2|))) 31)) (-4347 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3734 (((-640 (-640 |#2|)) $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3694 (((-3 $ "failed") $) 74 (|has| |#2| (-363)))) (-1693 (((-1113) $) NIL)) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-1458 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) NIL)) (-4203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2183 ((|#2| $) NIL)) (-2206 (($ (-640 |#2|)) 44)) (-3881 (((-112) $) NIL)) (-2195 (((-240 |#1| |#2|) $) NIL)) (-2168 ((|#2| $) 59 (|has| |#2| (-6 (-4410 "*"))))) (-1708 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-1870 (($ $) NIL)) (-2219 (((-536) $) 84 (|has| |#2| (-611 (-536))))) (-1950 (((-240 |#1| |#2|) $ (-563)) 38)) (-1692 (((-858) $) 41) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) 46)) (-3914 (((-767)) 18)) (-1471 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2005 (((-112) $) NIL)) (-2239 (($) 12 T CONST)) (-2253 (($) 15 T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) 57) (($ $ (-563)) 76 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 53) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 55)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1135 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -1565 ($ |#2|)) (-15 -1769 ($ $)) (-15 -1757 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-767) (-1045)) (T -1135))
-((-1565 (*1 *1 *2) (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-767)))))
-(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -1565 ($ |#2|)) (-15 -1769 ($ $)) (-15 -1757 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|)))
-((-1827 (($ $) 19)) (-1782 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2578 (((-112) $ $) 24)) (-1848 (($ $) 17)) (-2308 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) 29)) (-1692 (($ (-144)) 27) (((-858) $) NIL)))
-(((-1136 |#1|) (-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| (-141))) (-15 -1782 (|#1| |#1| (-144))) (-15 -1692 (|#1| (-144))) (-15 -2578 ((-112) |#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2308 ((-144) |#1| (-563))) (-15 -2308 ((-144) |#1| (-563) (-144)))) (-1137)) (T -1136))
-NIL
-(-10 -8 (-15 -1692 ((-858) |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| (-141))) (-15 -1782 (|#1| |#1| (-144))) (-15 -1692 (|#1| (-144))) (-15 -2578 ((-112) |#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -2308 ((-144) |#1| (-563))) (-15 -2308 ((-144) |#1| (-563) (-144))))
-((-1677 (((-112) $ $) 19 (|has| (-144) (-1093)))) (-1815 (($ $) 120)) (-1827 (($ $) 121)) (-1782 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2558 (((-112) $ $) 118)) (-2537 (((-112) $ $ (-563)) 117)) (-1792 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-4073 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-4052 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-2023 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-1804 (($ $ (-1224 (-563)) $) 114)) (-3814 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-4356 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4409)))) (-4293 (((-144) $ (-563)) 51)) (-2578 (((-112) $ $) 119)) (-4369 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-2658 (((-640 (-144)) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) (-144)) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| (-144) (-846)))) (-4300 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-3523 (((-640 (-144)) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| (-144) (-846)))) (-4368 (((-112) $ $ (-144)) 115)) (-1915 (((-767) $ $ (-144)) 116)) (-4347 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1838 (($ $) 122)) (-1848 (($ $) 123)) (-2481 (((-112) $ (-767)) 10)) (-2034 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3854 (((-1151) $) 22 (|has| (-144) (-1093)))) (-3399 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| (-144) (-1093)))) (-3782 (((-144) $) 42 (|has| (-563) (-846)))) (-1971 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2221 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2295 (((-640 (-144)) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-1706 (($ (-640 (-144))) 70)) (-2857 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (($ (-144)) 111) (((-858) $) 18 (|has| (-144) (-610 (-858))))) (-1471 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 84 (|has| (-144) (-846)))) (-1754 (((-112) $ $) 83 (|has| (-144) (-846)))) (-1718 (((-112) $ $) 20 (|has| (-144) (-1093)))) (-1766 (((-112) $ $) 85 (|has| (-144) (-846)))) (-1743 (((-112) $ $) 82 (|has| (-144) (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+((-3804 (*1 *1 *1) (-4 *1 (-1132))) (-3803 (*1 *1 *1) (-4 *1 (-1132))) (-3802 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3801 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3800 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3799 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3798 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3797 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3796 (*1 *1 *1) (-4 *1 (-1132))) (-3795 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3798 (*1 *1 *1) (-4 *1 (-1132))) (-3794 (*1 *1 *1) (-4 *1 (-1132))))
+(-13 (-10 -8 (-15 -3794 ($ $)) (-15 -3798 ($ $)) (-15 -3795 ($ $ $)) (-15 -3796 ($ $)) (-15 -3797 ($ $ $)) (-15 -3798 ($ $ $)) (-15 -3799 ($ $ $)) (-15 -3800 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -3802 ($ $ $)) (-15 -3803 ($ $)) (-15 -3804 ($ $))))
+((-2953 (((-112) $ $) 42)) (-3813 ((|#1| $) 16)) (-3805 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3812 (((-112) $) 18)) (-3810 (($ $ |#1|) 29)) (-3808 (($ $ (-112)) 31)) (-3807 (($ $) 32)) (-3809 (($ $ |#2|) 30)) (-3650 (((-1151) $) NIL)) (-3806 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-3651 (((-1113) $) NIL)) (-3814 (((-112) $) 15)) (-3979 (($) 11)) (-3811 (($ $) 28)) (-3936 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1695 |#2|))) 22) (((-637 $) (-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|)))) 25) (((-637 $) |#1| (-637 |#2|)) 27)) (-4337 ((|#2| $) 17)) (-4361 (((-859) $) 51)) (-3444 (((-112) $ $) 40)))
+(((-1133 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3979 ($)) (-15 -3814 ((-112) $)) (-15 -3813 (|#1| $)) (-15 -4337 (|#2| $)) (-15 -3812 ((-112) $)) (-15 -3936 ($ |#1| |#2| (-112))) (-15 -3936 ($ |#1| |#2|)) (-15 -3936 ($ (-2 (|:| |val| |#1|) (|:| -1695 |#2|)))) (-15 -3936 ((-637 $) (-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|))))) (-15 -3936 ((-637 $) |#1| (-637 |#2|))) (-15 -3811 ($ $)) (-15 -3810 ($ $ |#1|)) (-15 -3809 ($ $ |#2|)) (-15 -3808 ($ $ (-112))) (-15 -3807 ($ $)) (-15 -3806 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3805 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1133))
+((-3979 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3813 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-4337 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3936 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1695 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1133 *3 *4)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-637 (-2 (|:| |val| *4) (|:| -1695 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-637 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-637 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-637 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3810 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3809 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3806 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-3805 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
+(-13 (-1094) (-10 -8 (-15 -3979 ($)) (-15 -3814 ((-112) $)) (-15 -3813 (|#1| $)) (-15 -4337 (|#2| $)) (-15 -3812 ((-112) $)) (-15 -3936 ($ |#1| |#2| (-112))) (-15 -3936 ($ |#1| |#2|)) (-15 -3936 ($ (-2 (|:| |val| |#1|) (|:| -1695 |#2|)))) (-15 -3936 ((-637 $) (-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|))))) (-15 -3936 ((-637 $) |#1| (-637 |#2|))) (-15 -3811 ($ $)) (-15 -3810 ($ $ |#1|)) (-15 -3809 ($ $ |#2|)) (-15 -3808 ($ $ (-112))) (-15 -3807 ($ $)) (-15 -3806 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3805 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2953 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1094)))) (-3813 (((-1133 |#1| |#2|) $) 26)) (-3822 (($ $) 76)) (-3818 (((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3815 (($ $ $ (-637 (-1133 |#1| |#2|))) 90) (($ $ $ (-637 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1296 (((-112) $ (-767)) NIL)) (-3415 (((-1133 |#1| |#2|) $ (-1133 |#1| |#2|)) 43 (|has| $ (-6 -4409)))) (-4202 (((-1133 |#1| |#2|) $ #1="value" (-1133 |#1| |#2|)) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-3820 (((-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|))) $) 80)) (-3816 (($ (-1133 |#1| |#2|) $) 39)) (-3817 (($ (-1133 |#1| |#2|) $) 31)) (-2103 (((-637 (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 51)) (-3819 (((-112) (-1133 |#1| |#2|) $) 82)) (-3417 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1094)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 (-1133 |#1| |#2|)) $) 55 (|has| $ (-6 -4408)))) (-3653 (((-112) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1094))))) (-2107 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 47 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 46)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 (-1133 |#1| |#2|)) $) 53)) (-3933 (((-112) $) 42)) (-3650 (((-1151) $) NIL (|has| (-1133 |#1| |#2|) (-1094)))) (-3651 (((-1113) $) NIL (|has| (-1133 |#1| |#2|) (-1094)))) (-3823 (((-3 $ "failed") $) 75)) (-2105 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-1133 |#1| |#2|)))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1094)))) (($ $ (-293 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1094)))) (($ $ (-1133 |#1| |#2|) (-1133 |#1| |#2|)) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1094)))) (($ $ (-637 (-1133 |#1| |#2|)) (-637 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1094))))) (-1297 (((-112) $ $) 50)) (-3814 (((-112) $) 23)) (-3979 (($) 25)) (-4214 (((-1133 |#1| |#2|) $ #1#) NIL)) (-3419 (((-546) $ $) NIL)) (-4048 (((-112) $) 44)) (-2104 (((-767) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408))) (((-767) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1094))))) (-3811 (($ $) 49)) (-3936 (($ (-1133 |#1| |#2|)) 10) (($ |#1| |#2| (-637 $)) 13) (($ |#1| |#2| (-637 (-1133 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-637 |#2|)) 18)) (-3821 (((-637 |#2|) $) 81)) (-4361 (((-859) $) 73 (|has| (-1133 |#1| |#2|) (-610 (-859))))) (-3928 (((-637 $) $) 29)) (-3418 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1094)))) (-2106 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 64 (|has| (-1133 |#1| |#2|) (-1094)))) (-4372 (((-767) $) 58 (|has| $ (-6 -4408)))))
+(((-1134 |#1| |#2|) (-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -3823 ((-3 $ "failed") $)) (-15 -3822 ($ $)) (-15 -3936 ($ (-1133 |#1| |#2|))) (-15 -3936 ($ |#1| |#2| (-637 $))) (-15 -3936 ($ |#1| |#2| (-637 (-1133 |#1| |#2|)))) (-15 -3936 ($ |#1| |#2| |#1| (-637 |#2|))) (-15 -3821 ((-637 |#2|) $)) (-15 -3820 ((-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|))) $)) (-15 -3819 ((-112) (-1133 |#1| |#2|) $)) (-15 -3818 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3817 ($ (-1133 |#1| |#2|) $)) (-15 -3816 ($ (-1133 |#1| |#2|) $)) (-15 -3815 ($ $ $ (-637 (-1133 |#1| |#2|)))) (-15 -3815 ($ $ $ (-637 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134))
+((-3823 (*1 *1 *1) (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3936 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-637 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3936 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-637 (-1133 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)))) (-3936 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-637 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-637 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3819 (*1 *2 *3 *1) (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))) (-3818 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3815 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-637 (-1133 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3815 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1134 *4 *5)))))
+(-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -3823 ((-3 $ "failed") $)) (-15 -3822 ($ $)) (-15 -3936 ($ (-1133 |#1| |#2|))) (-15 -3936 ($ |#1| |#2| (-637 $))) (-15 -3936 ($ |#1| |#2| (-637 (-1133 |#1| |#2|)))) (-15 -3936 ($ |#1| |#2| |#1| (-637 |#2|))) (-15 -3821 ((-637 |#2|) $)) (-15 -3820 ((-637 (-2 (|:| |val| |#1|) (|:| -1695 |#2|))) $)) (-15 -3819 ((-112) (-1133 |#1| |#2|) $)) (-15 -3818 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3817 ($ (-1133 |#1| |#2|) $)) (-15 -3816 ($ (-1133 |#1| |#2|) $)) (-15 -3815 ($ $ $ (-637 (-1133 |#1| |#2|)))) (-15 -3815 ($ $ $ (-637 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3825 (($ $) NIL)) (-3741 ((|#2| $) NIL)) (-3513 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3824 (($ (-684 |#2|)) 50)) (-3515 (((-112) $) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-3744 (($ |#2|) 10)) (-4139 (($) NIL T CONST)) (-3502 (($ $) 63 (|has| |#2| (-307)))) (-3504 (((-239 |#1| |#2|) $ (-546)) 36)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 |#2| #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) ((|#2| $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) 77)) (-3501 (((-767) $) 65 (|has| |#2| (-556)))) (-3505 ((|#2| $ (-546) (-546)) NIL)) (-2103 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2552 (((-112) $) NIL)) (-3500 (((-767) $) 67 (|has| |#2| (-556)))) (-3499 (((-637 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-556)))) (-3507 (((-767) $) NIL)) (-4029 (($ |#2|) 20)) (-3506 (((-767) $) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-3738 ((|#2| $) 61 (|has| |#2| (-6 (-4410 #2="*"))))) (-3511 (((-546) $) NIL)) (-3509 (((-546) $) NIL)) (-2993 (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3510 (((-546) $) NIL)) (-3508 (((-546) $) NIL)) (-3516 (($ (-637 (-637 |#2|))) 31)) (-2107 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4008 (((-637 (-637 |#2|)) $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-4004 (((-3 $ "failed") $) 74 (|has| |#2| (-363)))) (-3651 (((-1113) $) NIL)) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2105 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ (-546) (-546) |#2|) NIL) ((|#2| $ (-546) (-546)) NIL)) (-4225 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3740 ((|#2| $) NIL)) (-3743 (($ (-637 |#2|)) 44)) (-3514 (((-112) $) NIL)) (-3742 (((-239 |#1| |#2|) $) NIL)) (-3739 ((|#2| $) 59 (|has| |#2| (-6 (-4410 #2#))))) (-2104 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-3811 (($ $) NIL)) (-4385 (((-535) $) 84 (|has| |#2| (-611 (-535))))) (-3503 (((-239 |#1| |#2|) $ (-546)) 38)) (-4361 (((-859) $) 41) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#2| (-1034 (-407 (-546))))) (($ |#2|) NIL) (((-684 |#2|) $) 46)) (-3518 (((-767)) 18)) (-2106 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3512 (((-112) $) NIL)) (-3047 (($) 12 T CONST)) (-3053 (($) 15 T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) 57) (($ $ (-546)) 76 (|has| |#2| (-363)))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1135 |#1| |#2|) (-13 (-1116 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -4029 ($ |#2|)) (-15 -3825 ($ $)) (-15 -3824 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|))) (-767) (-1045)) (T -1135))
+((-4029 (*1 *1 *2) (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-3825 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-767)))))
+(-13 (-1116 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -4029 ($ |#2|)) (-15 -3825 ($ $)) (-15 -3824 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-535))) (-6 (-611 (-535))) |%noBranch|)))
+((-3838 (($ $) 19)) (-3828 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3836 (((-112) $ $) 24)) (-3840 (($ $) 17)) (-4214 (((-144) $ (-546) (-144)) NIL) (((-144) $ (-546)) NIL) (($ $ (-1223 (-546))) NIL) (($ $ $) 29)) (-4361 (($ (-144)) 27) (((-859) $) NIL)))
+(((-1136 |#1|) (-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| (-141))) (-15 -3828 (|#1| |#1| (-144))) (-15 -4361 (|#1| (-144))) (-15 -3836 ((-112) |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4214 ((-144) |#1| (-546))) (-15 -4214 ((-144) |#1| (-546) (-144)))) (-1137)) (T -1136))
+NIL
+(-10 -8 (-15 -4361 ((-859) |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| (-141))) (-15 -3828 (|#1| |#1| (-144))) (-15 -4361 (|#1| (-144))) (-15 -3836 ((-112) |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4214 ((-144) |#1| (-546))) (-15 -4214 ((-144) |#1| (-546) (-144))))
+((-2953 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-3837 (($ $) 120)) (-3838 (($ $) 121)) (-3828 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-3835 (((-112) $ $) 118)) (-3834 (((-112) $ $ (-546)) 117)) (-3829 (((-637 $) $ (-144)) 110) (((-637 $) $ (-141)) 109)) (-1883 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-1881 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 (((-144) $ (-546) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1223 (-546)) (-144)) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-3826 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-3831 (($ $ (-1223 (-546)) $) 114)) (-1430 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-4257 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-1672 (((-144) $ (-546) (-144)) 53 (|has| $ (-6 -4409)))) (-3505 (((-144) $ (-546)) 51)) (-3836 (((-112) $ $) 119)) (-3830 (((-546) (-1 (-112) (-144)) $) 97) (((-546) (-144) $) 96 (|has| (-144) (-1094))) (((-546) (-144) $ (-546)) 95 (|has| (-144) (-1094))) (((-546) $ $ (-546)) 113) (((-546) (-141) $ (-546)) 112)) (-2103 (((-637 (-144)) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) (-144)) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| (-144) (-846)))) (-3924 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-2993 (((-637 (-144)) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| (-144) (-846)))) (-3832 (((-112) $ $ (-144)) 115)) (-3833 (((-767) $ $ (-144)) 116)) (-2107 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-3839 (($ $) 122)) (-3840 (($ $) 123)) (-4131 (((-112) $ (-767)) 10)) (-3827 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3650 (((-1151) $) 22 (|has| (-144) (-1094)))) (-2428 (($ (-144) $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| (-144) (-1094)))) (-4215 (((-144) $) 42 (|has| (-546) (-846)))) (-1431 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2352 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-293 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-637 (-144)) (-637 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2358 (((-637 (-144)) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 (((-144) $ (-546) (-144)) 50) (((-144) $ (-546)) 49) (($ $ (-1223 (-546))) 63) (($ $ $) 102)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| (-144) (-611 (-535))))) (-3936 (($ (-637 (-144))) 70)) (-4216 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (($ (-144)) 111) (((-859) $) 18 (|has| (-144) (-610 (-859))))) (-2106 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2952 (((-112) $ $) 83 (|has| (-144) (-846)))) (-3444 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-3073 (((-112) $ $) 85 (|has| (-144) (-846)))) (-3074 (((-112) $ $) 82 (|has| (-144) (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-1137) (-140)) (T -1137))
-((-1848 (*1 *1 *1) (-4 *1 (-1137))) (-1838 (*1 *1 *1) (-4 *1 (-1137))) (-1827 (*1 *1 *1) (-4 *1 (-1137))) (-1815 (*1 *1 *1) (-4 *1 (-1137))) (-2578 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2558 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2537 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112)))) (-1915 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))) (-4368 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))) (-1804 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563))))) (-4369 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)))) (-4369 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-1782 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-1782 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2034 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2034 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2023 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2023 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2308 (*1 *1 *1 *1) (-4 *1 (-1137))))
-(-13 (-19 (-144)) (-10 -8 (-15 -1848 ($ $)) (-15 -1838 ($ $)) (-15 -1827 ($ $)) (-15 -1815 ($ $)) (-15 -2578 ((-112) $ $)) (-15 -2558 ((-112) $ $)) (-15 -2537 ((-112) $ $ (-563))) (-15 -1915 ((-767) $ $ (-144))) (-15 -4368 ((-112) $ $ (-144))) (-15 -1804 ($ $ (-1224 (-563)) $)) (-15 -4369 ((-563) $ $ (-563))) (-15 -4369 ((-563) (-141) $ (-563))) (-15 -1692 ($ (-144))) (-15 -1792 ((-640 $) $ (-144))) (-15 -1792 ((-640 $) $ (-141))) (-15 -1782 ($ $ (-144))) (-15 -1782 ($ $ (-141))) (-15 -2034 ($ $ (-144))) (-15 -2034 ($ $ (-141))) (-15 -2023 ($ $ (-144))) (-15 -2023 ($ $ (-141))) (-15 -2308 ($ $ $))))
-(((-34) . T) ((-102) -4034 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-610 (-858)) -4034 (|has| (-144) (-1093)) (|has| (-144) (-846)) (|has| (-144) (-610 (-858)))) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-846) |has| (-144) (-846)) ((-1093) -4034 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-1208) . T))
-((-1925 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767)) 93)) (-1893 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767)) 54)) (-2671 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767)) 85)) (-1871 (((-767) (-640 |#4|) (-640 |#5|)) 27)) (-1903 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767)) 56) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112)) 58)) (-1913 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 77)) (-2219 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) 80)) (-1881 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|) 53)) (-1860 (((-767) (-640 |#4|) (-640 |#5|)) 19)))
-(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1860 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1871 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1881 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1925 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767))) (-15 -2219 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2671 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138))
-((-2671 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-1925 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2058 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2058 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11)))) (-1913 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-1913 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-1903 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1903 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-1893 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1881 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1860 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1871 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -1881 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1893 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5| (-767))) (-15 -1903 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) |#4| |#5|)) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1913 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1925 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))))) (-767))) (-15 -2219 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|)))) (-15 -2671 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2058 |#5|))) (-767))))
-((-1677 (((-112) $ $) NIL)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) NIL)) (-2119 (((-640 $) (-640 |#4|)) 110) (((-640 $) (-640 |#4|) (-112)) 111) (((-640 $) (-640 |#4|) (-112) (-112)) 109) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2605 (((-640 |#3|) $) NIL)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2189 ((|#4| |#4| $) NIL)) (-1798 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| $) 84)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 62)) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) 27 (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3418 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2057 (($ (-640 |#4|)) NIL)) (-3793 (((-3 $ "failed") $) 40)) (-2151 ((|#4| |#4| $) 65)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2131 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) NIL)) (-3536 (((-112) |#4| $) NIL)) (-3514 (((-112) |#4| $) NIL)) (-3548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1936 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 124)) (-2658 (((-640 |#4|) $) 17 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4347 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 22)) (-3568 (((-640 |#3|) $) NIL)) (-3553 (((-112) |#3| $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-3472 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-3461 (((-640 (-2 (|:| |val| |#4|) (|:| -2058 $))) |#4| |#4| $) 103)) (-1481 (((-3 |#4| "failed") $) 38)) (-3482 (((-640 $) |#4| $) 88)) (-3503 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-3492 (((-640 (-2 (|:| |val| (-112)) (|:| -2058 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3834 (((-640 $) |#4| $) 107) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 108) (((-640 $) |#4| (-640 $)) NIL)) (-1947 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 119)) (-1956 (($ |#4| $) 75) (($ (-640 |#4|) $) 76) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2297 (((-640 |#4|) $) NIL)) (-2225 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-2319 (((-112) $ $) NIL)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2176 ((|#4| |#4| $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-3 |#4| "failed") $) 36)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2089 (((-3 $ "failed") $ |#4|) 48)) (-1751 (($ $ |#4|) NIL) (((-640 $) |#4| $) 90) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 86)) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 16)) (-3445 (($) 14)) (-3871 (((-767) $) NIL)) (-1708 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) 13)) (-2219 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 21)) (-3519 (($ $ |#3|) 43)) (-3542 (($ $ |#3|) 44)) (-2141 (($ $) NIL)) (-3529 (($ $ |#3|) NIL)) (-1692 (((-858) $) 32) (((-640 |#4|) $) 41)) (-3255 (((-767) $) NIL (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-3450 (((-640 $) |#4| $) 54) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) NIL)) (-3525 (((-112) |#4| $) NIL)) (-3772 (((-112) |#3| $) 61)) (-1718 (((-112) $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1139 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1956 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -1947 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -1936 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1139))
-((-1956 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-2119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-2119 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-1947 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-1936 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1139 *5 *6 *7 *8))))) (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8)))))
-(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1956 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -2119 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -1947 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -1936 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2635 ((|#1| $) 34)) (-3538 (($ (-640 |#1|)) 39)) (-3001 (((-112) $ (-767)) NIL)) (-2569 (($) NIL T CONST)) (-2147 ((|#1| |#1| $) 36)) (-2136 ((|#1| $) 32)) (-2658 (((-640 |#1|) $) 18 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 22)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2627 ((|#1| $) 35)) (-3867 (($ |#1| $) 37)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2808 ((|#1| $) 33)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 31)) (-3445 (($) 38)) (-2369 (((-767) $) 29)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 27)) (-1692 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-2820 (($ (-640 |#1|)) NIL)) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 17 (|has| |#1| (-1093)))) (-3610 (((-767) $) 30 (|has| $ (-6 -4408)))))
-(((-1140 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -3538 ($ (-640 |#1|))))) (-1208)) (T -1140))
-((-3538 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3)))))
-(-13 (-1114 |#1|) (-10 -8 (-15 -3538 ($ (-640 |#1|)))))
-((-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 43) ((|#2| $ (-563) |#2|) 40)) (-1966 (((-112) $) 11)) (-4347 (($ (-1 |#2| |#2|) $) 38)) (-3782 ((|#2| $) NIL) (($ $ (-767)) 16)) (-2221 (($ $ |#2|) 39)) (-1976 (((-112) $) 10)) (-2308 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1224 (-563))) 30) ((|#2| $ (-563)) 22) ((|#2| $ (-563) |#2|) NIL)) (-1941 (($ $ $) 46) (($ $ |#2|) NIL)) (-2857 (($ $ $) 32) (($ |#2| $) NIL) (($ (-640 $)) 35) (($ $ |#2|) NIL)))
-(((-1141 |#1| |#2|) (-10 -8 (-15 -1966 ((-112) |#1|)) (-15 -1976 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2221 (|#1| |#1| |#2|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1941 (|#1| |#1| |#2|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -2308 (|#2| |#1| "last")) (-15 -2308 (|#1| |#1| "rest")) (-15 -3782 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "first")) (-15 -3782 (|#2| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2308 (|#2| |#1| "value")) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|))) (-1142 |#2|) (-1208)) (T -1141))
-NIL
-(-10 -8 (-15 -1966 ((-112) |#1|)) (-15 -1976 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563) |#2|)) (-15 -2308 (|#2| |#1| (-563))) (-15 -2221 (|#1| |#1| |#2|)) (-15 -2857 (|#1| |#1| |#2|)) (-15 -2857 (|#1| (-640 |#1|))) (-15 -2308 (|#1| |#1| (-1224 (-563)))) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1941 (|#1| |#1| |#2|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -2308 (|#2| |#1| "last")) (-15 -2308 (|#1| |#1| "rest")) (-15 -3782 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "first")) (-15 -3782 (|#2| |#1|)) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2308 (|#2| |#1| "value")) (-15 -4347 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3446 ((|#1| $) 65)) (-4303 (($ $) 67)) (-2208 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1909 (($ $ $) 56 (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-3435 ((|#1| $) 66)) (-2569 (($) 7 T CONST)) (-3793 (($ $) 73) (($ $ (-767)) 71)) (-3814 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4356 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 87)) (-1966 (((-112) $) 83)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) 108)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 95 (|has| (-563) (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 94 (|has| (-563) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-3399 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-2272 (((-640 (-563)) $) 92)) (-2282 (((-112) (-563) $) 91)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 76) (($ $ (-767)) 74)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2221 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-1976 (((-112) $) 84)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 90)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-2379 (((-563) $ $) 44)) (-2967 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2889 (((-112) $) 46)) (-1951 (($ $) 62)) (-1930 (($ $) 59 (|has| $ (-6 -4409)))) (-1961 (((-767) $) 63)) (-1970 (($ $) 64)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-2219 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 107)) (-1941 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-2857 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1142 |#1|) (-140) (-1208)) (T -1142))
-((-1976 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(-13 (-1245 |t#1|) (-646 |t#1|) (-10 -8 (-15 -1976 ((-112) $)) (-15 -1966 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T) ((-1245 |#1|) . T))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) NIL)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1143 |#1| |#2| |#3|) (-1184 |#1| |#2|) (-1093) (-1093) |#2|) (T -1143))
+((-3840 (*1 *1 *1) (-4 *1 (-1137))) (-3839 (*1 *1 *1) (-4 *1 (-1137))) (-3838 (*1 *1 *1) (-4 *1 (-1137))) (-3837 (*1 *1 *1) (-4 *1 (-1137))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-3834 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-546)) (-5 *2 (-112)))) (-3833 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))) (-3832 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3831 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1223 (-546))))) (-3830 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-546)))) (-3830 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-546)) (-5 *3 (-141)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) (-3829 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-637 *1)) (-4 *1 (-1137)))) (-3829 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-637 *1)) (-4 *1 (-1137)))) (-3828 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-3828 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-3827 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-3827 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-3826 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-3826 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-4214 (*1 *1 *1 *1) (-4 *1 (-1137))))
+(-13 (-19 (-144)) (-10 -8 (-15 -3840 ($ $)) (-15 -3839 ($ $)) (-15 -3838 ($ $)) (-15 -3837 ($ $)) (-15 -3836 ((-112) $ $)) (-15 -3835 ((-112) $ $)) (-15 -3834 ((-112) $ $ (-546))) (-15 -3833 ((-767) $ $ (-144))) (-15 -3832 ((-112) $ $ (-144))) (-15 -3831 ($ $ (-1223 (-546)) $)) (-15 -3830 ((-546) $ $ (-546))) (-15 -3830 ((-546) (-141) $ (-546))) (-15 -4361 ($ (-144))) (-15 -3829 ((-637 $) $ (-144))) (-15 -3829 ((-637 $) $ (-141))) (-15 -3828 ($ $ (-144))) (-15 -3828 ($ $ (-141))) (-15 -3827 ($ $ (-144))) (-15 -3827 ($ $ (-141))) (-15 -3826 ($ $ (-144))) (-15 -3826 ($ $ (-141))) (-15 -4214 ($ $ $))))
+(((-34) . T) ((-102) -3943 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-610 (-859)) -3943 (|has| (-144) (-1094)) (|has| (-144) (-846)) (|has| (-144) (-610 (-859)))) ((-151 #1=(-144)) . T) ((-611 (-535)) |has| (-144) (-611 (-535))) ((-286 #2=(-546) #1#) . T) ((-288 #2# #1#) . T) ((-309 #1#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-372 #1#) . T) ((-489 #1#) . T) ((-601 #2# #1#) . T) ((-514 #1# #1#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-646 #1#) . T) ((-19 #1#) . T) ((-846) |has| (-144) (-846)) ((-1094) -3943 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-1207) . T))
+((-3847 (((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767)) 93)) (-3844 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767)) 54)) (-3848 (((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767)) 85)) (-3842 (((-767) (-637 |#4|) (-637 |#5|)) 27)) (-3845 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767)) 56) (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112)) 58)) (-3846 (((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112)) 77)) (-4385 (((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) 80)) (-3843 (((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|) 53)) (-3841 (((-767) (-637 |#4|) (-637 |#5|)) 19)))
+(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3842 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3843 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3847 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767))) (-15 -4385 ((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3848 ((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138))
+((-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-3847 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-637 *11)) (|:| |todo| (-637 (-2 (|:| |val| *3) (|:| -1695 *11)))))) (-5 *6 (-767)) (-5 *2 (-637 (-2 (|:| |val| (-637 *10)) (|:| -1695 *11)))) (-5 *3 (-637 *10)) (-5 *4 (-637 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11)))) (-3846 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3846 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3845 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3845 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-3845 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-3844 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3844 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-637 *4)) (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3841 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3842 ((-767) (-637 |#4|) (-637 |#5|))) (-15 -3843 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3844 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5| (-767))) (-15 -3845 ((-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) |#4| |#5|)) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112))) (-15 -3846 ((-637 |#5|) (-637 |#4|) (-637 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3847 ((-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-637 |#4|) (-637 |#5|) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-2 (|:| |done| (-637 |#5|)) (|:| |todo| (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))))) (-767))) (-15 -4385 ((-1151) (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|)))) (-15 -3848 ((-1262) (-637 (-2 (|:| |val| (-637 |#4|)) (|:| -1695 |#5|))) (-767))))
+((-2953 (((-112) $ $) NIL)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) NIL)) (-4097 (((-637 $) (-637 |#4|)) 110) (((-637 $) (-637 |#4|) (-112)) 111) (((-637 $) (-637 |#4|) (-112) (-112)) 109) (((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3474 (((-637 |#3|) $) NIL)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4103 ((|#4| |#4| $) NIL)) (-4189 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| $) 84)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) 27 (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3290 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) NIL)) (-3564 (($ (-637 |#4|)) NIL)) (-4213 (((-3 $ #1#) $) 40)) (-4100 ((|#4| |#4| $) 65)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3817 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4098 ((|#4| |#4| $) NIL)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) NIL)) (-3605 (((-112) |#4| $) NIL)) (-3603 (((-112) |#4| $) NIL)) (-3606 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3849 (((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112)) 124)) (-2103 (((-637 |#4|) $) 17 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#4|) $) 18 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-2107 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 22)) (-3304 (((-637 |#3|) $) NIL)) (-3303 (((-112) |#3| $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-3599 (((-3 |#4| (-637 $)) |#4| |#4| $) NIL)) (-3598 (((-637 (-2 (|:| |val| |#4|) (|:| -1695 $))) |#4| |#4| $) 103)) (-4212 (((-3 |#4| #1#) $) 38)) (-3600 (((-637 $) |#4| $) 88)) (-3602 (((-3 (-112) (-637 $)) |#4| $) NIL)) (-3601 (((-637 (-2 (|:| |val| (-112)) (|:| -1695 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3646 (((-637 $) |#4| $) 107) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) 108) (((-637 $) |#4| (-637 $)) NIL)) (-3850 (((-637 $) (-637 |#4|) (-112) (-112) (-112)) 119)) (-3851 (($ |#4| $) 75) (($ (-637 |#4|) $) 76) (((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4112 (((-637 |#4|) $) NIL)) (-4106 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4101 ((|#4| |#4| $) NIL)) (-4114 (((-112) $ $) NIL)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4102 ((|#4| |#4| $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-3 |#4| #1#) $) 36)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4094 (((-3 $ #1#) $ |#4|) 48)) (-4183 (($ $ |#4|) NIL) (((-637 $) |#4| $) 90) (((-637 $) |#4| (-637 $)) NIL) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) 86)) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 16)) (-3979 (($) 14)) (-4363 (((-767) $) NIL)) (-2104 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) 13)) (-4385 (((-535) $) NIL (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 21)) (-3300 (($ $ |#3|) 43)) (-3302 (($ $ |#3|) 44)) (-4099 (($ $) NIL)) (-3301 (($ $ |#3|) NIL)) (-4361 (((-859) $) 32) (((-637 |#4|) $) 41)) (-4093 (((-767) $) NIL (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) NIL)) (-3597 (((-637 $) |#4| $) 54) (((-637 $) |#4| (-637 $)) NIL) (((-637 $) (-637 |#4|) $) NIL) (((-637 $) (-637 |#4|) (-637 $)) NIL)) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) NIL)) (-3604 (((-112) |#4| $) NIL)) (-4348 (((-112) |#3| $) 61)) (-3444 (((-112) $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1139 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3851 ((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112))) (-15 -3850 ((-637 $) (-637 |#4|) (-112) (-112) (-112))) (-15 -3849 ((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1139))
+((-3851 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-4097 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-4097 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3850 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3849 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-637 *8)) (|:| |towers| (-637 (-1139 *5 *6 *7 *8))))) (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-637 *8)))))
+(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3851 ((-637 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112))) (-15 -4097 ((-637 $) (-637 |#4|) (-112) (-112) (-112) (-112))) (-15 -3850 ((-637 $) (-637 |#4|) (-112) (-112) (-112))) (-15 -3849 ((-2 (|:| |val| (-637 |#4|)) (|:| |towers| (-637 $))) (-637 |#4|) (-112) (-112)))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3735 ((|#1| $) 34)) (-3852 (($ (-637 |#1|)) 39)) (-1296 (((-112) $ (-767)) NIL)) (-4139 (($) NIL T CONST)) (-3737 ((|#1| |#1| $) 36)) (-3736 ((|#1| $) 32)) (-2103 (((-637 |#1|) $) 18 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 22)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-1359 ((|#1| $) 35)) (-4022 (($ |#1| $) 37)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-1360 ((|#1| $) 33)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 31)) (-3979 (($) 38)) (-3734 (((-767) $) 29)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 27)) (-4361 (((-859) $) 14 (|has| |#1| (-610 (-859))))) (-1361 (($ (-637 |#1|)) NIL)) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-4372 (((-767) $) 30 (|has| $ (-6 -4408)))))
+(((-1140 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -3852 ($ (-637 |#1|))))) (-1207)) (T -1140))
+((-3852 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1140 *3)))))
+(-13 (-1114 |#1|) (-10 -8 (-15 -3852 ($ (-637 |#1|)))))
+((-4202 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1223 (-546)) |#2|) 43) ((|#2| $ (-546) |#2|) 40)) (-3853 (((-112) $) 11)) (-2107 (($ (-1 |#2| |#2|) $) 38)) (-4215 ((|#2| $) NIL) (($ $ (-767)) 16)) (-2352 (($ $ |#2|) 39)) (-3854 (((-112) $) 10)) (-4214 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1223 (-546))) 30) ((|#2| $ (-546)) 22) ((|#2| $ (-546) |#2|) NIL)) (-4205 (($ $ $) 46) (($ $ |#2|) NIL)) (-4216 (($ $ $) 32) (($ |#2| $) NIL) (($ (-637 $)) 35) (($ $ |#2|) NIL)))
+(((-1141 |#1| |#2|) (-10 -8 (-15 -3853 ((-112) |#1|)) (-15 -3854 ((-112) |#1|)) (-15 -4202 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -2352 (|#1| |#1| |#2|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4202 (|#2| |#1| (-1223 (-546)) |#2|)) (-15 -4202 (|#2| |#1| #1="last" |#2|)) (-15 -4202 (|#1| |#1| #2="rest" |#1|)) (-15 -4202 (|#2| |#1| #3="first" |#2|)) (-15 -4205 (|#1| |#1| |#2|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -4214 (|#1| |#1| #2#)) (-15 -4215 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| #3#)) (-15 -4215 (|#2| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4202 (|#2| |#1| #4="value" |#2|)) (-15 -4214 (|#2| |#1| #4#)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|))) (-1142 |#2|) (-1207)) (T -1141))
+NIL
+(-10 -8 (-15 -3853 ((-112) |#1|)) (-15 -3854 ((-112) |#1|)) (-15 -4202 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546) |#2|)) (-15 -4214 (|#2| |#1| (-546))) (-15 -2352 (|#1| |#1| |#2|)) (-15 -4216 (|#1| |#1| |#2|)) (-15 -4216 (|#1| (-637 |#1|))) (-15 -4214 (|#1| |#1| (-1223 (-546)))) (-15 -4202 (|#2| |#1| (-1223 (-546)) |#2|)) (-15 -4202 (|#2| |#1| #1="last" |#2|)) (-15 -4202 (|#1| |#1| #2="rest" |#1|)) (-15 -4202 (|#2| |#1| #3="first" |#2|)) (-15 -4205 (|#1| |#1| |#2|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -4214 (|#1| |#1| #2#)) (-15 -4215 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| #3#)) (-15 -4215 (|#2| |#1|)) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#1|)) (-15 -4202 (|#2| |#1| #4="value" |#2|)) (-15 -4214 (|#2| |#1| #4#)) (-15 -2107 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-4209 ((|#1| $) 65)) (-4211 (($ $) 67)) (-2351 (((-1262) $ (-546) (-546)) 97 (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 52 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-4201 (($ $ $) 56 (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) 86 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-4210 ((|#1| $) 66)) (-4139 (($) 7 T CONST)) (-4213 (($ $) 73) (($ $ (-767)) 71)) (-1430 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1672 ((|#1| $ (-546) |#1|) 85 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 87)) (-3853 (((-112) $) 83)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) 108)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 95 (|has| (-546) (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 94 (|has| (-546) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4212 ((|#1| $) 70) (($ $ (-767)) 68)) (-2428 (($ $ $ (-546)) 116) (($ |#1| $ (-546)) 115)) (-2356 (((-637 (-546)) $) 92)) (-2357 (((-112) (-546) $) 91)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 76) (($ $ (-767)) 74)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2352 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-3854 (((-112) $) 84)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 90)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1223 (-546))) 112) ((|#1| $ (-546)) 89) ((|#1| $ (-546) |#1|) 88)) (-3419 (((-546) $ $) 44)) (-2429 (($ $ (-1223 (-546))) 114) (($ $ (-546)) 113)) (-4048 (((-112) $) 46)) (-4206 (($ $) 62)) (-4204 (($ $) 59 (|has| $ (-6 -4409)))) (-4207 (((-767) $) 63)) (-4208 (($ $) 64)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4385 (((-535) $) 98 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 107)) (-4205 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-4216 (($ $ $) 78) (($ |#1| $) 77) (($ (-637 $)) 110) (($ $ |#1|) 109)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1142 |#1|) (-140) (-1207)) (T -1142))
+((-3854 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(-13 (-1245 |t#1|) (-646 |t#1|) (-10 -8 (-15 -3854 ((-112) $)) (-15 -3853 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T) ((-1245 |#1|) . T))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) NIL)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) NIL)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1143 |#1| |#2| |#3|) (-1184 |#1| |#2|) (-1094) (-1094) |#2|) (T -1143))
NIL
(-1184 |#1| |#2|)
-((-1677 (((-112) $ $) 7)) (-1983 (((-3 $ "failed") $) 13)) (-3854 (((-1151) $) 9)) (-2522 (($) 14 T CONST)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11)) (-1718 (((-112) $ $) 6)))
+((-2953 (((-112) $ $) 7)) (-3855 (((-3 $ "failed") $) 13)) (-3650 (((-1151) $) 9)) (-3856 (($) 14 T CONST)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11)) (-3444 (((-112) $ $) 6)))
(((-1144) (-140)) (T -1144))
-((-2522 (*1 *1) (-4 *1 (-1144))) (-1983 (*1 *1 *1) (|partial| -4 *1 (-1144))))
-(-13 (-1093) (-10 -8 (-15 -2522 ($) -2668) (-15 -1983 ((-3 $ "failed") $))))
-(((-102) . T) ((-610 (-858)) . T) ((-1093) . T))
-((-2011 (((-1149 |#1|) (-1149 |#1|)) 17)) (-1992 (((-1149 |#1|) (-1149 |#1|)) 13)) (-2019 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 20)) (-2002 (((-1149 |#1|) (-1149 |#1|)) 15)))
-(((-1145 |#1|) (-10 -7 (-15 -1992 ((-1149 |#1|) (-1149 |#1|))) (-15 -2002 ((-1149 |#1|) (-1149 |#1|))) (-15 -2011 ((-1149 |#1|) (-1149 |#1|))) (-15 -2019 ((-1149 |#1|) (-1149 |#1|) (-563) (-563)))) (-13 (-555) (-147))) (T -1145))
-((-2019 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1145 *4)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))))
-(-10 -7 (-15 -1992 ((-1149 |#1|) (-1149 |#1|))) (-15 -2002 ((-1149 |#1|) (-1149 |#1|))) (-15 -2011 ((-1149 |#1|) (-1149 |#1|))) (-15 -2019 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))))
-((-2857 (((-1149 |#1|) (-1149 (-1149 |#1|))) 15)))
-(((-1146 |#1|) (-10 -7 (-15 -2857 ((-1149 |#1|) (-1149 (-1149 |#1|))))) (-1208)) (T -1146))
-((-2857 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4)) (-4 *4 (-1208)))))
-(-10 -7 (-15 -2857 ((-1149 |#1|) (-1149 (-1149 |#1|)))))
-((-4132 (((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 25)) (-2444 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 26)) (-2238 (((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)) 16)))
-(((-1147 |#1| |#2|) (-10 -7 (-15 -2238 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -4132 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2444 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)))) (-1208) (-1208)) (T -1147))
-((-2444 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208)) (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6)))))
-(-10 -7 (-15 -2238 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -4132 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2444 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))))
-((-2238 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)) 21)))
-(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -1148))
-((-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-1148 *6 *7 *8)))))
-(-10 -7 (-15 -2238 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) NIL)) (-3446 ((|#1| $) NIL)) (-4303 (($ $) 51)) (-2208 (((-1262) $ (-563) (-563)) 76 (|has| $ (-6 -4409)))) (-1887 (($ $ (-563)) 110 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-2040 (((-858) $) 40 (|has| |#1| (-1093)))) (-2030 (((-112)) 39 (|has| |#1| (-1093)))) (-2336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-1909 (($ $ $) 98 (|has| $ (-6 -4409))) (($ $ (-563) $) 122)) (-1898 ((|#1| $ |#1|) 107 (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 102 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4409))) (($ $ "rest" $) 106 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 89 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 55 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 58)) (-3435 ((|#1| $) NIL)) (-2569 (($) NIL T CONST)) (-1796 (($ $) 14)) (-3793 (($ $) 28) (($ $ (-767)) 88)) (-3932 (((-112) (-640 |#1|) $) 116 (|has| |#1| (-1093)))) (-3941 (($ (-640 |#1|)) 112)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) 57)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-1966 (((-112) $) NIL)) (-2658 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1554 (((-1262) (-563) $) 121 (|has| |#1| (-1093)))) (-1785 (((-767) $) 118)) (-2390 (((-640 $) $) NIL)) (-2358 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2481 (((-112) $ (-767)) NIL)) (-2511 (((-640 |#1|) $) NIL)) (-1298 (((-112) $) NIL)) (-1819 (($ $) 90)) (-1830 (((-112) $) 13)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3399 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) 74)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2175 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1807 ((|#1| $) 10)) (-3782 ((|#1| $) 27) (($ $ (-767)) 49)) (-3921 (((-2 (|:| |cycle?| (-112)) (|:| -3250 (-767)) (|:| |period| (-767))) (-767) $) 24)) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2223 (($ (-1 (-112) |#1|) $) 126)) (-2240 (($ (-1 (-112) |#1|) $) 127)) (-2221 (($ $ |#1|) 68 (|has| $ (-6 -4409)))) (-1751 (($ $ (-563)) 31)) (-1976 (((-112) $) 72)) (-1841 (((-112) $) 12)) (-1852 (((-112) $) 117)) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 20)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) 15)) (-3445 (($) 44)) (-2308 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 54) ((|#1| $ (-563) |#1|) NIL)) (-2379 (((-563) $ $) 48)) (-2967 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3910 (($ (-1 $)) 47)) (-2889 (((-112) $) 69)) (-1951 (($ $) 70)) (-1930 (($ $) 99 (|has| $ (-6 -4409)))) (-1961 (((-767) $) NIL)) (-1970 (($ $) NIL)) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 43)) (-2219 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 53)) (-4065 (($ |#1| $) 97)) (-1941 (($ $ $) 100 (|has| $ (-6 -4409))) (($ $ |#1|) 101 (|has| $ (-6 -4409)))) (-2857 (($ $ $) 78) (($ |#1| $) 45) (($ (-640 $)) 83) (($ $ |#1|) 77)) (-3369 (($ $) 50)) (-1692 (($ (-640 |#1|)) 111) (((-858) $) 41 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) NIL)) (-2367 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 114 (|has| |#1| (-1093)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1149 |#1|) (-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4409) (-15 -3941 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3932 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3921 ((-2 (|:| |cycle?| (-112)) (|:| -3250 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3910 ($ (-1 $))) (-15 -4065 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1554 ((-1262) (-563) $)) (-15 -2040 ((-858) $)) (-15 -2030 ((-112)))) |%noBranch|) (-15 -1909 ($ $ (-563) $)) (-15 -2175 ($ (-1 |#1|))) (-15 -2175 ($ (-1 |#1| |#1|) |#1|)) (-15 -2223 ($ (-1 (-112) |#1|) $)) (-15 -2240 ($ (-1 (-112) |#1|) $)))) (-1208)) (T -1149))
-((-3941 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-3932 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)) (-5 *1 (-1149 *4)))) (-3921 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3250 (-767)) (|:| |period| (-767)))) (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-4065 (*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208)))) (-1554 (*1 *2 *3 *1) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-2030 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-1909 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2223 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))))
-(-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4409) (-15 -3941 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3932 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3921 ((-2 (|:| |cycle?| (-112)) (|:| -3250 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3910 ($ (-1 $))) (-15 -4065 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1554 ((-1262) (-563) $)) (-15 -2040 ((-858) $)) (-15 -2030 ((-112)))) |%noBranch|) (-15 -1909 ($ $ (-563) $)) (-15 -2175 ($ (-1 |#1|))) (-15 -2175 ($ (-1 |#1| |#1|) |#1|)) (-15 -2223 ($ (-1 (-112) |#1|) $)) (-15 -2240 ($ (-1 (-112) |#1|) $))))
-((-1677 (((-112) $ $) 19)) (-1815 (($ $) 120)) (-1827 (($ $) 121)) (-1782 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2558 (((-112) $ $) 118)) (-2537 (((-112) $ $ (-563)) 117)) (-3737 (($ (-563)) 127)) (-1792 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-4073 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-4052 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-2023 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-1804 (($ $ (-1224 (-563)) $) 114)) (-3814 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-4356 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4409)))) (-4293 (((-144) $ (-563)) 51)) (-2578 (((-112) $ $) 119)) (-4369 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-2658 (((-640 (-144)) $) 30 (|has| $ (-6 -4408)))) (-1565 (($ (-767) (-144)) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| (-144) (-846)))) (-4300 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-3523 (((-640 (-144)) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| (-144) (-846)))) (-4368 (((-112) $ $ (-144)) 115)) (-1915 (((-767) $ $ (-144)) 116)) (-4347 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1838 (($ $) 122)) (-1848 (($ $) 123)) (-2481 (((-112) $ (-767)) 10)) (-2034 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3854 (((-1151) $) 22)) (-3399 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21)) (-3782 (((-144) $) 42 (|has| (-563) (-846)))) (-1971 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2221 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2295 (((-640 (-144)) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1708 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-1706 (($ (-640 (-144))) 70)) (-2857 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (($ (-144)) 111) (((-858) $) 18)) (-1471 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2742 (((-1151) $) 131) (((-1151) $ (-112)) 130) (((-1262) (-818) $) 129) (((-1262) (-818) $ (-112)) 128)) (-1779 (((-112) $ $) 84 (|has| (-144) (-846)))) (-1754 (((-112) $ $) 83 (|has| (-144) (-846)))) (-1718 (((-112) $ $) 20)) (-1766 (((-112) $ $) 85 (|has| (-144) (-846)))) (-1743 (((-112) $ $) 82 (|has| (-144) (-846)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
+((-3856 (*1 *1) (-4 *1 (-1144))) (-3855 (*1 *1 *1) (|partial| -4 *1 (-1144))))
+(-13 (-1094) (-10 -8 (-15 -3856 ($) -4367) (-15 -3855 ((-3 $ "failed") $))))
+(((-102) . T) ((-610 (-859)) . T) ((-1094) . T))
+((-3859 (((-1146 |#1|) (-1146 |#1|)) 17)) (-3857 (((-1146 |#1|) (-1146 |#1|)) 13)) (-3860 (((-1146 |#1|) (-1146 |#1|) (-546) (-546)) 20)) (-3858 (((-1146 |#1|) (-1146 |#1|)) 15)))
+(((-1145 |#1|) (-10 -7 (-15 -3857 ((-1146 |#1|) (-1146 |#1|))) (-15 -3858 ((-1146 |#1|) (-1146 |#1|))) (-15 -3859 ((-1146 |#1|) (-1146 |#1|))) (-15 -3860 ((-1146 |#1|) (-1146 |#1|) (-546) (-546)))) (-13 (-556) (-147))) (T -1145))
+((-3860 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1145 *4)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))))
+(-10 -7 (-15 -3857 ((-1146 |#1|) (-1146 |#1|))) (-15 -3858 ((-1146 |#1|) (-1146 |#1|))) (-15 -3859 ((-1146 |#1|) (-1146 |#1|))) (-15 -3860 ((-1146 |#1|) (-1146 |#1|) (-546) (-546))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) NIL)) (-4209 ((|#1| $) NIL)) (-4211 (($ $) 51)) (-2351 (((-1262) $ (-546) (-546)) 76 (|has| $ (-6 -4409)))) (-4199 (($ $ (-546)) 110 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-3865 (((-859) $) 40 (|has| |#1| (-1094)))) (-3864 (((-112)) 39 (|has| |#1| (-1094)))) (-3415 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-4201 (($ $ $) 98 (|has| $ (-6 -4409))) (($ $ (-546) $) 122)) (-4200 ((|#1| $ |#1|) 107 (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 102 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4409))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4409))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 89 (|has| $ (-6 -4409))) ((|#1| $ (-546) |#1|) 55 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 58)) (-4210 ((|#1| $) NIL)) (-4139 (($) NIL T CONST)) (-2447 (($ $) 14)) (-4213 (($ $) 28) (($ $ (-767)) 88)) (-3870 (((-112) (-637 |#1|) $) 116 (|has| |#1| (-1094)))) (-3871 (($ (-637 |#1|)) 112)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 57)) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3853 (((-112) $) NIL)) (-2103 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3866 (((-1262) (-546) $) 121 (|has| |#1| (-1094)))) (-2446 (((-767) $) 118)) (-3421 (((-637 $) $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4131 (((-112) $ (-767)) NIL)) (-3420 (((-637 |#1|) $) NIL)) (-3933 (((-112) $) NIL)) (-2449 (($ $) 90)) (-2450 (((-112) $) 13)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-4212 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2428 (($ $ $ (-546)) NIL) (($ |#1| $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) 74)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-3863 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2448 ((|#1| $) 10)) (-4215 ((|#1| $) 27) (($ $ (-767)) 49)) (-3869 (((-2 (|:| |cycle?| (-112)) (|:| -2980 (-767)) (|:| |period| (-767))) (-767) $) 24)) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3862 (($ (-1 (-112) |#1|) $) 126)) (-3861 (($ (-1 (-112) |#1|) $) 127)) (-2352 (($ $ |#1|) 68 (|has| $ (-6 -4409)))) (-4183 (($ $ (-546)) 31)) (-3854 (((-112) $) 72)) (-2451 (((-112) $) 12)) (-2452 (((-112) $) 117)) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 20)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) 15)) (-3979 (($) 44)) (-4214 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1223 (-546))) NIL) ((|#1| $ (-546)) 54) ((|#1| $ (-546) |#1|) NIL)) (-3419 (((-546) $ $) 48)) (-2429 (($ $ (-1223 (-546))) NIL) (($ $ (-546)) NIL)) (-3868 (($ (-1 $)) 47)) (-4048 (((-112) $) 69)) (-4206 (($ $) 70)) (-4204 (($ $) 99 (|has| $ (-6 -4409)))) (-4207 (((-767) $) NIL)) (-4208 (($ $) NIL)) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 43)) (-4385 (((-535) $) NIL (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 53)) (-3867 (($ |#1| $) 97)) (-4205 (($ $ $) 100 (|has| $ (-6 -4409))) (($ $ |#1|) 101 (|has| $ (-6 -4409)))) (-4216 (($ $ $) 78) (($ |#1| $) 45) (($ (-637 $)) 83) (($ $ |#1|) 77)) (-3281 (($ $) 50)) (-4361 (($ (-637 |#1|)) 111) (((-859) $) 41 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) NIL)) (-3418 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 114 (|has| |#1| (-1094)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1146 |#1|) (-13 (-669 |#1|) (-613 (-637 |#1|)) (-10 -8 (-6 -4409) (-15 -3871 ($ (-637 |#1|))) (IF (|has| |#1| (-1094)) (-15 -3870 ((-112) (-637 |#1|) $)) |%noBranch|) (-15 -3869 ((-2 (|:| |cycle?| (-112)) (|:| -2980 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3868 ($ (-1 $))) (-15 -3867 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3866 ((-1262) (-546) $)) (-15 -3865 ((-859) $)) (-15 -3864 ((-112)))) |%noBranch|) (-15 -4201 ($ $ (-546) $)) (-15 -3863 ($ (-1 |#1|))) (-15 -3863 ($ (-1 |#1| |#1|) |#1|)) (-15 -3862 ($ (-1 (-112) |#1|) $)) (-15 -3861 ($ (-1 (-112) |#1|) $)))) (-1207)) (T -1146))
+((-3871 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))) (-3870 (*1 *2 *3 *1) (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-4 *4 (-1207)) (-5 *2 (-112)) (-5 *1 (-1146 *4)))) (-3869 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2980 (-767)) (|:| |period| (-767)))) (-5 *1 (-1146 *4)) (-4 *4 (-1207)) (-5 *3 (-767)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1207)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1207)))) (-3866 (*1 *2 *3 *1) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1146 *4)) (-4 *4 (-1094)) (-4 *4 (-1207)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1146 *3)) (-4 *3 (-1094)) (-4 *3 (-1207)))) (-3864 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1094)) (-4 *3 (-1207)))) (-4201 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1146 *3)) (-4 *3 (-1207)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))) (-3863 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))) (-3862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))) (-3861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))))
+(-13 (-669 |#1|) (-613 (-637 |#1|)) (-10 -8 (-6 -4409) (-15 -3871 ($ (-637 |#1|))) (IF (|has| |#1| (-1094)) (-15 -3870 ((-112) (-637 |#1|) $)) |%noBranch|) (-15 -3869 ((-2 (|:| |cycle?| (-112)) (|:| -2980 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3868 ($ (-1 $))) (-15 -3867 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3866 ((-1262) (-546) $)) (-15 -3865 ((-859) $)) (-15 -3864 ((-112)))) |%noBranch|) (-15 -4201 ($ $ (-546) $)) (-15 -3863 ($ (-1 |#1|))) (-15 -3863 ($ (-1 |#1| |#1|) |#1|)) (-15 -3862 ($ (-1 (-112) |#1|) $)) (-15 -3861 ($ (-1 (-112) |#1|) $))))
+((-4216 (((-1146 |#1|) (-1146 (-1146 |#1|))) 15)))
+(((-1147 |#1|) (-10 -7 (-15 -4216 ((-1146 |#1|) (-1146 (-1146 |#1|))))) (-1207)) (T -1147))
+((-4216 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1207)))))
+(-10 -7 (-15 -4216 ((-1146 |#1|) (-1146 (-1146 |#1|)))))
+((-4256 (((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 25)) (-4257 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 26)) (-4373 (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 16)))
+(((-1148 |#1| |#2|) (-10 -7 (-15 -4373 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -4256 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -4257 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)))) (-1207) (-1207)) (T -1148))
+((-4257 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1148 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1207)) (-4 *3 (-1207)) (-5 *2 (-1146 *3)) (-5 *1 (-1148 *6 *3)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1146 *6)) (-5 *1 (-1148 *5 *6)))))
+(-10 -7 (-15 -4373 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -4256 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -4257 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))))
+((-4373 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)) 21)))
+(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)))) (-1207) (-1207) (-1207)) (T -1149))
+((-4373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8)) (-5 *1 (-1149 *6 *7 *8)))))
+(-10 -7 (-15 -4373 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|))))
+((-2953 (((-112) $ $) 19)) (-3837 (($ $) 120)) (-3838 (($ $) 121)) (-3828 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-3835 (((-112) $ $) 118)) (-3834 (((-112) $ $ (-546)) 117)) (-3949 (($ (-546)) 127)) (-3829 (((-637 $) $ (-144)) 110) (((-637 $) $ (-141)) 109)) (-1883 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-1881 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 (((-144) $ (-546) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1223 (-546)) (-144)) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-3826 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-3831 (($ $ (-1223 (-546)) $) 114)) (-1430 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-4257 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-1672 (((-144) $ (-546) (-144)) 53 (|has| $ (-6 -4409)))) (-3505 (((-144) $ (-546)) 51)) (-3836 (((-112) $ $) 119)) (-3830 (((-546) (-1 (-112) (-144)) $) 97) (((-546) (-144) $) 96 (|has| (-144) (-1094))) (((-546) (-144) $ (-546)) 95 (|has| (-144) (-1094))) (((-546) $ $ (-546)) 113) (((-546) (-141) $ (-546)) 112)) (-2103 (((-637 (-144)) $) 30 (|has| $ (-6 -4408)))) (-4029 (($ (-767) (-144)) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| (-144) (-846)))) (-3924 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-2993 (((-637 (-144)) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| (-144) (-846)))) (-3832 (((-112) $ $ (-144)) 115)) (-3833 (((-767) $ $ (-144)) 116)) (-2107 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-3839 (($ $) 122)) (-3840 (($ $) 123)) (-4131 (((-112) $ (-767)) 10)) (-3827 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3650 (((-1151) $) 22)) (-2428 (($ (-144) $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21)) (-4215 (((-144) $) 42 (|has| (-546) (-846)))) (-1431 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2352 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-293 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-637 (-144)) (-637 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2358 (((-637 (-144)) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 (((-144) $ (-546) (-144)) 50) (((-144) $ (-546)) 49) (($ $ (-1223 (-546))) 63) (($ $ $) 102)) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-2104 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| (-144) (-611 (-535))))) (-3936 (($ (-637 (-144))) 70)) (-4216 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (($ (-144)) 111) (((-859) $) 18)) (-2106 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2885 (((-1151) $) 131) (((-1151) $ (-112)) 130) (((-1262) (-819) $) 129) (((-1262) (-819) $ (-112)) 128)) (-2951 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2952 (((-112) $ $) 83 (|has| (-144) (-846)))) (-3444 (((-112) $ $) 20)) (-3073 (((-112) $ $) 85 (|has| (-144) (-846)))) (-3074 (((-112) $ $) 82 (|has| (-144) (-846)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
(((-1150) (-140)) (T -1150))
-((-3737 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150)))))
-(-13 (-1137) (-1093) (-824) (-10 -8 (-15 -3737 ($ (-563)))))
-(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-824) . T) ((-846) |has| (-144) (-846)) ((-1093) . T) ((-1137) . T) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-1815 (($ $) NIL)) (-1827 (($ $) NIL)) (-1782 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2558 (((-112) $ $) NIL)) (-2537 (((-112) $ $ (-563)) NIL)) (-3737 (($ (-563)) 7)) (-1792 (((-640 $) $ (-144)) NIL) (((-640 $) $ (-141)) NIL)) (-4073 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-4052 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-1640 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-2023 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-1804 (($ $ (-1224 (-563)) $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1459 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4356 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409)))) (-4293 (((-144) $ (-563)) NIL)) (-2578 (((-112) $ $) NIL)) (-4369 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) NIL (|has| (-144) (-1093))) (((-563) $ $ (-563)) NIL) (((-563) (-141) $ (-563)) NIL)) (-2658 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-1565 (($ (-767) (-144)) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| (-144) (-846)))) (-4300 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-3523 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| (-144) (-846)))) (-4368 (((-112) $ $ (-144)) NIL)) (-1915 (((-767) $ $ (-144)) NIL)) (-4347 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1838 (($ $) NIL)) (-1848 (($ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-2034 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3854 (((-1151) $) NIL)) (-3399 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-144) $) NIL (|has| (-563) (-846)))) (-1971 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2221 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2295 (((-640 (-144)) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) NIL)) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1708 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-1706 (($ (-640 (-144))) NIL)) (-2857 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (($ (-144)) NIL) (((-858) $) NIL)) (-1471 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2742 (((-1151) $) 18) (((-1151) $ (-112)) 20) (((-1262) (-818) $) 21) (((-1262) (-818) $ (-112)) 22)) (-1779 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1754 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1743 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
+((-3949 (*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1150)))))
+(-13 (-1137) (-1094) (-817) (-10 -8 (-15 -3949 ($ (-546)))))
+(((-34) . T) ((-102) . T) ((-610 (-859)) . T) ((-151 #1=(-144)) . T) ((-611 (-535)) |has| (-144) (-611 (-535))) ((-286 #2=(-546) #1#) . T) ((-288 #2# #1#) . T) ((-309 #1#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-372 #1#) . T) ((-489 #1#) . T) ((-601 #2# #1#) . T) ((-514 #1# #1#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-646 #1#) . T) ((-19 #1#) . T) ((-817) . T) ((-846) |has| (-144) (-846)) ((-1094) . T) ((-1137) . T) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3837 (($ $) NIL)) (-3838 (($ $) NIL)) (-3828 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-3835 (((-112) $ $) NIL)) (-3834 (((-112) $ $ (-546)) NIL)) (-3949 (($ (-546)) 7)) (-3829 (((-637 $) $ (-144)) NIL) (((-637 $) $ (-141)) NIL)) (-1883 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-1881 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-3299 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 (((-144) $ (-546) (-144)) NIL (|has| $ (-6 -4409))) (((-144) $ (-1223 (-546)) (-144)) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-3826 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-3831 (($ $ (-1223 (-546)) $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-3817 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1672 (((-144) $ (-546) (-144)) NIL (|has| $ (-6 -4409)))) (-3505 (((-144) $ (-546)) NIL)) (-3836 (((-112) $ $) NIL)) (-3830 (((-546) (-1 (-112) (-144)) $) NIL) (((-546) (-144) $) NIL (|has| (-144) (-1094))) (((-546) (-144) $ (-546)) NIL (|has| (-144) (-1094))) (((-546) $ $ (-546)) NIL) (((-546) (-141) $ (-546)) NIL)) (-2103 (((-637 (-144)) $) NIL (|has| $ (-6 -4408)))) (-4029 (($ (-767) (-144)) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| (-144) (-846)))) (-3924 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-2993 (((-637 (-144)) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| (-144) (-846)))) (-3832 (((-112) $ $ (-144)) NIL)) (-3833 (((-767) $ $ (-144)) NIL)) (-2107 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3839 (($ $) NIL)) (-3840 (($ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3827 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3650 (((-1151) $) NIL)) (-2428 (($ (-144) $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-144) $) NIL (|has| (-546) (-846)))) (-1431 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2352 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-293 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-637 (-144)) (-637 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-2358 (((-637 (-144)) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 (((-144) $ (-546) (-144)) NIL) (((-144) $ (-546)) NIL) (($ $ (-1223 (-546))) NIL) (($ $ $) NIL)) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-2104 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-144) (-611 (-535))))) (-3936 (($ (-637 (-144))) NIL)) (-4216 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (($ (-144)) NIL) (((-859) $) NIL)) (-2106 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2885 (((-1151) $) 18) (((-1151) $ (-112)) 20) (((-1262) (-819) $) 21) (((-1262) (-819) $ (-112)) 22)) (-2951 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2952 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3074 (((-112) $ $) NIL (|has| (-144) (-846)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
(((-1151) (-1150)) (T -1151))
NIL
(-1150)
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-2208 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-1151) |#1|) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#1| "failed") (-1151) $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#1| "failed") (-1151) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-1151)) NIL)) (-2658 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-1151) $) NIL (|has| (-1151) (-846)))) (-3523 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1304 (((-640 (-1151)) $) NIL)) (-2305 (((-112) (-1151) $) NIL)) (-2627 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-2272 (((-640 (-1151)) $) NIL)) (-2282 (((-112) (-1151) $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-3782 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1971 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-1151)) NIL) ((|#1| $ (-1151) |#1|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-610 (-858))) (|has| |#1| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1152 |#1|) (-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4408))) (-1093)) (T -1152))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-2351 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-1151) |#1|) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#1| #1="failed") (-1151) $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#1| #1#) (-1151) $) NIL)) (-3817 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-1151)) NIL)) (-2103 (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2993 (((-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2795 (((-637 (-1151)) $) NIL)) (-2361 (((-112) (-1151) $) NIL)) (-1359 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-2356 (((-637 (-1151)) $) NIL)) (-2357 (((-112) (-1151) $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-4215 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1431 (((-3 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) "failed") (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL (-12 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-309 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-1151)) NIL) ((|#1| $ (-1151) |#1|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-610 (-859))) (|has| |#1| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 (-1151)) (|:| -2233 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1152 |#1|) (-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4408))) (-1094)) (T -1152))
NIL
(-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4408)))
-((-1996 (((-1149 |#1|) (-1149 |#1|)) 78)) (-3951 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 37)) (-4072 (((-1149 |#1|) (-407 (-563)) (-1149 |#1|)) 121 (|has| |#1| (-38 (-407 (-563)))))) (-4104 (((-1149 |#1|) |#1| (-1149 |#1|)) 127 (|has| |#1| (-363)))) (-2024 (((-1149 |#1|) (-1149 |#1|)) 91)) (-3972 (((-1149 (-563)) (-563)) 57)) (-4061 (((-1149 |#1|) (-1149 (-1149 |#1|))) 110 (|has| |#1| (-38 (-407 (-563)))))) (-1987 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 96)) (-4223 (((-1149 |#1|) |#1| (-563)) 45)) (-3993 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 60)) (-4083 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 124 (|has| |#1| (-363)))) (-4050 (((-1149 |#1|) |#1| (-1 (-1149 |#1|))) 109 (|has| |#1| (-38 (-407 (-563)))))) (-4093 (((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|))) 125 (|has| |#1| (-363)))) (-2035 (((-1149 |#1|) (-1149 |#1|)) 90)) (-2044 (((-1149 |#1|) (-1149 |#1|)) 76)) (-1980 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 97)) (-2062 (((-1149 |#1|) |#1| (-1149 |#1|)) 106 (|has| |#1| (-38 (-407 (-563)))))) (-3962 (((-1149 (-563)) (-563)) 56)) (-3982 (((-1149 |#1|) |#1|) 59)) (-2006 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 93)) (-4016 (((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|)) 66)) (-3012 (((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|)) 35)) (-2013 (((-1149 |#1|) (-1149 |#1|)) 92)) (-1542 (((-1149 |#1|) (-1149 |#1|) |#1|) 71)) (-4006 (((-1149 |#1|) (-1149 |#1|)) 62)) (-4027 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 72)) (-1692 (((-1149 |#1|) |#1|) 67)) (-4038 (((-1149 |#1|) (-1149 (-1149 |#1|))) 83)) (-1836 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 36)) (-1825 (((-1149 |#1|) (-1149 |#1|)) 21) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 23)) (-1813 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 17)) (* (((-1149 |#1|) (-1149 |#1|) |#1|) 29) (((-1149 |#1|) |#1| (-1149 |#1|)) 26) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 27)))
-(((-1153 |#1|) (-10 -7 (-15 -1813 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1825 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1825 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3012 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -1836 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3951 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -4223 ((-1149 |#1|) |#1| (-563))) (-15 -3962 ((-1149 (-563)) (-563))) (-15 -3972 ((-1149 (-563)) (-563))) (-15 -3982 ((-1149 |#1|) |#1|)) (-15 -3993 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4006 ((-1149 |#1|) (-1149 |#1|))) (-15 -4016 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -1692 ((-1149 |#1|) |#1|)) (-15 -1542 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -4027 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2044 ((-1149 |#1|) (-1149 |#1|))) (-15 -1996 ((-1149 |#1|) (-1149 |#1|))) (-15 -4038 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -2035 ((-1149 |#1|) (-1149 |#1|))) (-15 -2024 ((-1149 |#1|) (-1149 |#1|))) (-15 -2013 ((-1149 |#1|) (-1149 |#1|))) (-15 -2006 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -1987 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -1980 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -4050 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -4061 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -4072 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4083 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4093 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -4104 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|)) (-1045)) (T -1153))
-((-4104 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)))) (-4083 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4072 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-2062 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1980 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-1987 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-2006 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2035 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4038 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-1045)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4027 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1692 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-4016 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3993 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3982 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-3962 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3951 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1836 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3012 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1825 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
-(-10 -7 (-15 -1813 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1825 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1825 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3012 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -1836 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3951 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -4223 ((-1149 |#1|) |#1| (-563))) (-15 -3962 ((-1149 (-563)) (-563))) (-15 -3972 ((-1149 (-563)) (-563))) (-15 -3982 ((-1149 |#1|) |#1|)) (-15 -3993 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4006 ((-1149 |#1|) (-1149 |#1|))) (-15 -4016 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -1692 ((-1149 |#1|) |#1|)) (-15 -1542 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -4027 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2044 ((-1149 |#1|) (-1149 |#1|))) (-15 -1996 ((-1149 |#1|) (-1149 |#1|))) (-15 -4038 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -2035 ((-1149 |#1|) (-1149 |#1|))) (-15 -2024 ((-1149 |#1|) (-1149 |#1|))) (-15 -2013 ((-1149 |#1|) (-1149 |#1|))) (-15 -2006 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -1987 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -1980 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -4050 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -4061 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -4072 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4083 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4093 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -4104 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|))
-((-1770 (((-1149 |#1|) (-1149 |#1|)) 57)) (-1618 (((-1149 |#1|) (-1149 |#1|)) 39)) (-1747 (((-1149 |#1|) (-1149 |#1|)) 53)) (-1596 (((-1149 |#1|) (-1149 |#1|)) 35)) (-1793 (((-1149 |#1|) (-1149 |#1|)) 60)) (-1642 (((-1149 |#1|) (-1149 |#1|)) 42)) (-4372 (((-1149 |#1|) (-1149 |#1|)) 31)) (-3372 (((-1149 |#1|) (-1149 |#1|)) 27)) (-1805 (((-1149 |#1|) (-1149 |#1|)) 61)) (-1655 (((-1149 |#1|) (-1149 |#1|)) 43)) (-1783 (((-1149 |#1|) (-1149 |#1|)) 58)) (-1629 (((-1149 |#1|) (-1149 |#1|)) 40)) (-1758 (((-1149 |#1|) (-1149 |#1|)) 55)) (-1607 (((-1149 |#1|) (-1149 |#1|)) 37)) (-1839 (((-1149 |#1|) (-1149 |#1|)) 65)) (-1694 (((-1149 |#1|) (-1149 |#1|)) 47)) (-1816 (((-1149 |#1|) (-1149 |#1|)) 63)) (-1666 (((-1149 |#1|) (-1149 |#1|)) 45)) (-1861 (((-1149 |#1|) (-1149 |#1|)) 68)) (-1721 (((-1149 |#1|) (-1149 |#1|)) 50)) (-1311 (((-1149 |#1|) (-1149 |#1|)) 69)) (-1734 (((-1149 |#1|) (-1149 |#1|)) 51)) (-1850 (((-1149 |#1|) (-1149 |#1|)) 67)) (-1709 (((-1149 |#1|) (-1149 |#1|)) 49)) (-1828 (((-1149 |#1|) (-1149 |#1|)) 66)) (-1679 (((-1149 |#1|) (-1149 |#1|)) 48)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 33)))
-(((-1154 |#1|) (-10 -7 (-15 -3372 ((-1149 |#1|) (-1149 |#1|))) (-15 -4372 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1596 ((-1149 |#1|) (-1149 |#1|))) (-15 -1607 ((-1149 |#1|) (-1149 |#1|))) (-15 -1618 ((-1149 |#1|) (-1149 |#1|))) (-15 -1629 ((-1149 |#1|) (-1149 |#1|))) (-15 -1642 ((-1149 |#1|) (-1149 |#1|))) (-15 -1655 ((-1149 |#1|) (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-1149 |#1|))) (-15 -1679 ((-1149 |#1|) (-1149 |#1|))) (-15 -1694 ((-1149 |#1|) (-1149 |#1|))) (-15 -1709 ((-1149 |#1|) (-1149 |#1|))) (-15 -1721 ((-1149 |#1|) (-1149 |#1|))) (-15 -1734 ((-1149 |#1|) (-1149 |#1|))) (-15 -1747 ((-1149 |#1|) (-1149 |#1|))) (-15 -1758 ((-1149 |#1|) (-1149 |#1|))) (-15 -1770 ((-1149 |#1|) (-1149 |#1|))) (-15 -1783 ((-1149 |#1|) (-1149 |#1|))) (-15 -1793 ((-1149 |#1|) (-1149 |#1|))) (-15 -1805 ((-1149 |#1|) (-1149 |#1|))) (-15 -1816 ((-1149 |#1|) (-1149 |#1|))) (-15 -1828 ((-1149 |#1|) (-1149 |#1|))) (-15 -1839 ((-1149 |#1|) (-1149 |#1|))) (-15 -1850 ((-1149 |#1|) (-1149 |#1|))) (-15 -1861 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1154))
-((-1311 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3372 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))))
-(-10 -7 (-15 -3372 ((-1149 |#1|) (-1149 |#1|))) (-15 -4372 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1596 ((-1149 |#1|) (-1149 |#1|))) (-15 -1607 ((-1149 |#1|) (-1149 |#1|))) (-15 -1618 ((-1149 |#1|) (-1149 |#1|))) (-15 -1629 ((-1149 |#1|) (-1149 |#1|))) (-15 -1642 ((-1149 |#1|) (-1149 |#1|))) (-15 -1655 ((-1149 |#1|) (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-1149 |#1|))) (-15 -1679 ((-1149 |#1|) (-1149 |#1|))) (-15 -1694 ((-1149 |#1|) (-1149 |#1|))) (-15 -1709 ((-1149 |#1|) (-1149 |#1|))) (-15 -1721 ((-1149 |#1|) (-1149 |#1|))) (-15 -1734 ((-1149 |#1|) (-1149 |#1|))) (-15 -1747 ((-1149 |#1|) (-1149 |#1|))) (-15 -1758 ((-1149 |#1|) (-1149 |#1|))) (-15 -1770 ((-1149 |#1|) (-1149 |#1|))) (-15 -1783 ((-1149 |#1|) (-1149 |#1|))) (-15 -1793 ((-1149 |#1|) (-1149 |#1|))) (-15 -1805 ((-1149 |#1|) (-1149 |#1|))) (-15 -1816 ((-1149 |#1|) (-1149 |#1|))) (-15 -1828 ((-1149 |#1|) (-1149 |#1|))) (-15 -1839 ((-1149 |#1|) (-1149 |#1|))) (-15 -1850 ((-1149 |#1|) (-1149 |#1|))) (-15 -1861 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|))))
-((-1770 (((-1149 |#1|) (-1149 |#1|)) 100)) (-1618 (((-1149 |#1|) (-1149 |#1|)) 64)) (-4127 (((-2 (|:| -1747 (-1149 |#1|)) (|:| -1758 (-1149 |#1|))) (-1149 |#1|)) 96)) (-1747 (((-1149 |#1|) (-1149 |#1|)) 97)) (-4117 (((-2 (|:| -1596 (-1149 |#1|)) (|:| -1607 (-1149 |#1|))) (-1149 |#1|)) 53)) (-1596 (((-1149 |#1|) (-1149 |#1|)) 54)) (-1793 (((-1149 |#1|) (-1149 |#1|)) 102)) (-1642 (((-1149 |#1|) (-1149 |#1|)) 71)) (-4372 (((-1149 |#1|) (-1149 |#1|)) 39)) (-3372 (((-1149 |#1|) (-1149 |#1|)) 36)) (-1805 (((-1149 |#1|) (-1149 |#1|)) 103)) (-1655 (((-1149 |#1|) (-1149 |#1|)) 72)) (-1783 (((-1149 |#1|) (-1149 |#1|)) 101)) (-1629 (((-1149 |#1|) (-1149 |#1|)) 67)) (-1758 (((-1149 |#1|) (-1149 |#1|)) 98)) (-1607 (((-1149 |#1|) (-1149 |#1|)) 55)) (-1839 (((-1149 |#1|) (-1149 |#1|)) 111)) (-1694 (((-1149 |#1|) (-1149 |#1|)) 86)) (-1816 (((-1149 |#1|) (-1149 |#1|)) 105)) (-1666 (((-1149 |#1|) (-1149 |#1|)) 82)) (-1861 (((-1149 |#1|) (-1149 |#1|)) 115)) (-1721 (((-1149 |#1|) (-1149 |#1|)) 90)) (-1311 (((-1149 |#1|) (-1149 |#1|)) 117)) (-1734 (((-1149 |#1|) (-1149 |#1|)) 92)) (-1850 (((-1149 |#1|) (-1149 |#1|)) 113)) (-1709 (((-1149 |#1|) (-1149 |#1|)) 88)) (-1828 (((-1149 |#1|) (-1149 |#1|)) 107)) (-1679 (((-1149 |#1|) (-1149 |#1|)) 84)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 40)))
-(((-1155 |#1|) (-10 -7 (-15 -3372 ((-1149 |#1|) (-1149 |#1|))) (-15 -4372 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4117 ((-2 (|:| -1596 (-1149 |#1|)) (|:| -1607 (-1149 |#1|))) (-1149 |#1|))) (-15 -1596 ((-1149 |#1|) (-1149 |#1|))) (-15 -1607 ((-1149 |#1|) (-1149 |#1|))) (-15 -1618 ((-1149 |#1|) (-1149 |#1|))) (-15 -1629 ((-1149 |#1|) (-1149 |#1|))) (-15 -1642 ((-1149 |#1|) (-1149 |#1|))) (-15 -1655 ((-1149 |#1|) (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-1149 |#1|))) (-15 -1679 ((-1149 |#1|) (-1149 |#1|))) (-15 -1694 ((-1149 |#1|) (-1149 |#1|))) (-15 -1709 ((-1149 |#1|) (-1149 |#1|))) (-15 -1721 ((-1149 |#1|) (-1149 |#1|))) (-15 -1734 ((-1149 |#1|) (-1149 |#1|))) (-15 -4127 ((-2 (|:| -1747 (-1149 |#1|)) (|:| -1758 (-1149 |#1|))) (-1149 |#1|))) (-15 -1747 ((-1149 |#1|) (-1149 |#1|))) (-15 -1758 ((-1149 |#1|) (-1149 |#1|))) (-15 -1770 ((-1149 |#1|) (-1149 |#1|))) (-15 -1783 ((-1149 |#1|) (-1149 |#1|))) (-15 -1793 ((-1149 |#1|) (-1149 |#1|))) (-15 -1805 ((-1149 |#1|) (-1149 |#1|))) (-15 -1816 ((-1149 |#1|) (-1149 |#1|))) (-15 -1828 ((-1149 |#1|) (-1149 |#1|))) (-15 -1839 ((-1149 |#1|) (-1149 |#1|))) (-15 -1850 ((-1149 |#1|) (-1149 |#1|))) (-15 -1861 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1155))
-((-1311 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -1747 (-1149 *4)) (|:| -1758 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-4117 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -1596 (-1149 *4)) (|:| -1607 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3372 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))))
-(-10 -7 (-15 -3372 ((-1149 |#1|) (-1149 |#1|))) (-15 -4372 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4117 ((-2 (|:| -1596 (-1149 |#1|)) (|:| -1607 (-1149 |#1|))) (-1149 |#1|))) (-15 -1596 ((-1149 |#1|) (-1149 |#1|))) (-15 -1607 ((-1149 |#1|) (-1149 |#1|))) (-15 -1618 ((-1149 |#1|) (-1149 |#1|))) (-15 -1629 ((-1149 |#1|) (-1149 |#1|))) (-15 -1642 ((-1149 |#1|) (-1149 |#1|))) (-15 -1655 ((-1149 |#1|) (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-1149 |#1|))) (-15 -1679 ((-1149 |#1|) (-1149 |#1|))) (-15 -1694 ((-1149 |#1|) (-1149 |#1|))) (-15 -1709 ((-1149 |#1|) (-1149 |#1|))) (-15 -1721 ((-1149 |#1|) (-1149 |#1|))) (-15 -1734 ((-1149 |#1|) (-1149 |#1|))) (-15 -4127 ((-2 (|:| -1747 (-1149 |#1|)) (|:| -1758 (-1149 |#1|))) (-1149 |#1|))) (-15 -1747 ((-1149 |#1|) (-1149 |#1|))) (-15 -1758 ((-1149 |#1|) (-1149 |#1|))) (-15 -1770 ((-1149 |#1|) (-1149 |#1|))) (-15 -1783 ((-1149 |#1|) (-1149 |#1|))) (-15 -1793 ((-1149 |#1|) (-1149 |#1|))) (-15 -1805 ((-1149 |#1|) (-1149 |#1|))) (-15 -1816 ((-1149 |#1|) (-1149 |#1|))) (-15 -1828 ((-1149 |#1|) (-1149 |#1|))) (-15 -1839 ((-1149 |#1|) (-1149 |#1|))) (-15 -1850 ((-1149 |#1|) (-1149 |#1|))) (-15 -1861 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|))))
-((-4139 (((-954 |#2|) |#2| |#2|) 35)) (-4151 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
-(((-1156 |#1| |#2|) (-10 -7 (-15 -4139 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -4151 (|#2| |#2| |#1|)) |%noBranch|)) (-555) (-1233 |#1|)) (T -1156))
-((-4151 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1233 *3)))) (-4139 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -4139 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -4151 (|#2| |#2| |#1|)) |%noBranch|))
-((-1677 (((-112) $ $) NIL)) (-4222 (($ $ (-640 (-767))) 66)) (-1414 (($) 25)) (-4322 (($ $) 41)) (-1550 (((-640 $) $) 50)) (-4387 (((-112) $) 16)) (-4161 (((-640 (-939 |#2|)) $) 73)) (-4170 (($ $) 67)) (-4333 (((-767) $) 36)) (-1565 (($) 24)) (-4254 (($ $ (-640 (-767)) (-939 |#2|)) 59) (($ $ (-640 (-767)) (-767)) 60) (($ $ (-767) (-939 |#2|)) 62)) (-4300 (($ $ $) 47) (($ (-640 $)) 49)) (-1407 (((-767) $) 74)) (-1298 (((-112) $) 15)) (-3854 (((-1151) $) NIL)) (-4376 (((-112) $) 17)) (-1693 (((-1113) $) NIL)) (-4179 (((-171) $) 72)) (-4213 (((-939 |#2|) $) 68)) (-4202 (((-767) $) 69)) (-4192 (((-112) $) 71)) (-4232 (($ $ (-640 (-767)) (-171)) 65)) (-4311 (($ $) 42)) (-1692 (((-858) $) 85)) (-4242 (($ $ (-640 (-767)) (-112)) 64)) (-4345 (((-640 $) $) 11)) (-4355 (($ $ (-767)) 35)) (-4364 (($ $) 31)) (-4267 (($ $ $ (-939 |#2|) (-767)) 55)) (-4278 (($ $ (-939 |#2|)) 54)) (-4290 (($ $ (-640 (-767)) (-939 |#2|)) 53) (($ $ (-640 (-767)) (-767)) 57) (((-767) $ (-939 |#2|)) 58)) (-1718 (((-112) $ $) 79)))
-(((-1157 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1298 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -4376 ((-112) $)) (-15 -1565 ($)) (-15 -1414 ($)) (-15 -4364 ($ $)) (-15 -4355 ($ $ (-767))) (-15 -4345 ((-640 $) $)) (-15 -4333 ((-767) $)) (-15 -4322 ($ $)) (-15 -4311 ($ $)) (-15 -4300 ($ $ $)) (-15 -4300 ($ (-640 $))) (-15 -1550 ((-640 $) $)) (-15 -4290 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4278 ($ $ (-939 |#2|))) (-15 -4267 ($ $ $ (-939 |#2|) (-767))) (-15 -4254 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4290 ($ $ (-640 (-767)) (-767))) (-15 -4254 ($ $ (-640 (-767)) (-767))) (-15 -4290 ((-767) $ (-939 |#2|))) (-15 -4254 ($ $ (-767) (-939 |#2|))) (-15 -4242 ($ $ (-640 (-767)) (-112))) (-15 -4232 ($ $ (-640 (-767)) (-171))) (-15 -4222 ($ $ (-640 (-767)))) (-15 -4213 ((-939 |#2|) $)) (-15 -4202 ((-767) $)) (-15 -4192 ((-112) $)) (-15 -4179 ((-171) $)) (-15 -1407 ((-767) $)) (-15 -4170 ($ $)) (-15 -4161 ((-640 (-939 |#2|)) $)))) (-917) (-1045)) (T -1157))
-((-1298 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1565 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-1414 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4364 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4355 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4311 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4300 (*1 *1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4278 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)))) (-4267 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4170 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))))
-(-13 (-1093) (-10 -8 (-15 -1298 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -4376 ((-112) $)) (-15 -1565 ($)) (-15 -1414 ($)) (-15 -4364 ($ $)) (-15 -4355 ($ $ (-767))) (-15 -4345 ((-640 $) $)) (-15 -4333 ((-767) $)) (-15 -4322 ($ $)) (-15 -4311 ($ $)) (-15 -4300 ($ $ $)) (-15 -4300 ($ (-640 $))) (-15 -1550 ((-640 $) $)) (-15 -4290 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4278 ($ $ (-939 |#2|))) (-15 -4267 ($ $ $ (-939 |#2|) (-767))) (-15 -4254 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4290 ($ $ (-640 (-767)) (-767))) (-15 -4254 ($ $ (-640 (-767)) (-767))) (-15 -4290 ((-767) $ (-939 |#2|))) (-15 -4254 ($ $ (-767) (-939 |#2|))) (-15 -4242 ($ $ (-640 (-767)) (-112))) (-15 -4232 ($ $ (-640 (-767)) (-171))) (-15 -4222 ($ $ (-640 (-767)))) (-15 -4213 ((-939 |#2|) $)) (-15 -4202 ((-767) $)) (-15 -4192 ((-112) $)) (-15 -4179 ((-171) $)) (-15 -1407 ((-767) $)) (-15 -4170 ($ $)) (-15 -4161 ((-640 (-939 |#2|)) $))))
-((-1677 (((-112) $ $) NIL)) (-2350 ((|#2| $) 11)) (-2339 ((|#1| $) 10)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1706 (($ |#1| |#2|) 9)) (-1692 (((-858) $) 16)) (-1718 (((-112) $ $) NIL)))
-(((-1158 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1706 ($ |#1| |#2|)) (-15 -2339 (|#1| $)) (-15 -2350 (|#2| $)))) (-1093) (-1093)) (T -1158))
-((-1706 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2339 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093)))) (-2350 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093)))))
-(-13 (-1093) (-10 -8 (-15 -1706 ($ |#1| |#2|)) (-15 -2339 (|#1| $)) (-15 -2350 (|#2| $))))
-((-1677 (((-112) $ $) NIL)) (-3301 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1159) (-13 (-1076) (-10 -8 (-15 -3301 ((-1128) $))))) (T -1159))
-((-3301 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159)))))
-(-13 (-1076) (-10 -8 (-15 -3301 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 11)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3231 (($ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3211 (((-112) $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1763 (($ $ (-563)) NIL) (($ $ (-563) (-563)) 66)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-2609 (((-1167 |#1| |#2| |#3|) $) 36)) (-2591 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 29)) (-2651 (((-1167 |#1| |#2| |#3|) $) 30)) (-1770 (($ $) 107 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 83 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) 103 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 79 (|has| |#1| (-38 (-407 (-563)))))) (-2807 (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) 111 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 87 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2057 (((-1167 |#1| |#2| |#3|) $) 131) (((-1169) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2600 (($ $) 34) (($ (-563) $) 35)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-1167 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1167 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 48)) (-2580 (((-407 (-948 |#1|)) $ (-563)) 65 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 67 (|has| |#1| (-555)))) (-1690 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3414 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3381 (((-112) $) 25)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-1775 (((-563) $) NIL) (((-563) $ (-563)) 24)) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL (|has| |#1| (-363)))) (-2143 (((-1167 |#1| |#2| |#3|) $) 38 (|has| |#1| (-363)))) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1983 (((-3 $ "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-3426 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1821 (($ $ (-917)) NIL)) (-2072 (($ (-1 |#1| (-563)) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-563)) 18) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3088 (($ $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1776 (($ $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4372 (($ $) 72 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2659 (($ (-563) (-1167 |#1| |#2| |#3|)) 33)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) 70 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 71 (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3935 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3954 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-563)) 145)) (-3012 (((-3 $ "failed") $ $) 49 (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) 73 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1167 |#1| |#2| |#3|)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-563)) NIL) (($ $ $) 54 (|has| (-563) (-1105))) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 51) (($ $ (-767)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 50 (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2033 (($ $) NIL (|has| |#1| (-363)))) (-2153 (((-1167 |#1| |#2| |#3|) $) 41 (|has| |#1| (-363)))) (-3871 (((-563) $) 37)) (-1805 (($ $) 113 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 89 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 109 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 85 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 105 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-2219 (((-536) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) 149) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1167 |#1| |#2| |#3|)) 27) (($ (-1253 |#2|)) 23) (($ (-1169)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-3244 ((|#1| $ (-563)) 68)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 12)) (-3965 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1839 (($ $) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 95 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1816 (($ $) 115 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 91 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 99 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 101 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 97 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 117 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 93 (|has| |#1| (-38 (-407 (-563)))))) (-1462 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2239 (($) 20 T CONST)) (-2253 (($) 16 T CONST)) (-3213 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1779 (((-112) $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1754 (((-112) $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1743 (((-112) $ $) NIL (-4034 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 44 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 45 (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) 53) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) 74 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1167 |#1| |#2| |#3|)) 43 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) $) 42 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1160 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1160))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-2235 ((|#2| |#2| (-1085 |#2|)) 26) ((|#2| |#2| (-1169)) 28)))
-(((-1161 |#1| |#2|) (-10 -7 (-15 -2235 (|#2| |#2| (-1169))) (-15 -2235 (|#2| |#2| (-1085 |#2|)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-430 |#1|) (-160) (-27) (-1193))) (T -1161))
-((-2235 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)))) (-2235 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))))))
-(-10 -7 (-15 -2235 (|#2| |#2| (-1169))) (-15 -2235 (|#2| |#2| (-1085 |#2|))))
-((-2235 (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))) 31) (((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|))) 44) (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 33) (((-407 (-948 |#1|)) (-948 |#1|) (-1169)) 36)))
-(((-1162 |#1|) (-10 -7 (-15 -2235 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -2235 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2235 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -2235 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))))) (-13 (-555) (-846) (-1034 (-563)))) (T -1162))
-((-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1162 *5)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3)) (-5 *1 (-1162 *5)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-407 (-948 *5))))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5)))))
-(-10 -7 (-15 -2235 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -2235 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2235 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -2235 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|))))))
-((-2238 (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 13)))
-(((-1163 |#1| |#2|) (-10 -7 (-15 -2238 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)))) (-1045) (-1045)) (T -1163))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6)))))
-(-10 -7 (-15 -2238 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))))
-((-2802 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 51)) (-2173 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 52)))
-(((-1164 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -2802 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))))) (-789) (-846) (-452) (-945 |#3| |#1| |#2|)) (T -1164))
-((-2802 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))))
-(-10 -7 (-15 -2173 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -2802 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))))
-((-1677 (((-112) $ $) 137)) (-3439 (((-112) $) 27)) (-1740 (((-1257 |#1|) $ (-767)) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-1714 (($ (-1165 |#1|)) NIL)) (-2138 (((-1165 $) $ (-1075)) 58) (((-1165 |#1|) $) 47)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) 132 (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1601 (($ $ $) 126 (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) 71 (|has| |#1| (-905)))) (-1798 (($ $) NIL (|has| |#1| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 91 (|has| |#1| (-905)))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1660 (($ $ (-767)) 38)) (-1647 (($ $ (-767)) 39)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2057 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-1612 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 128 (|has| |#1| (-172)))) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) 56)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-1634 (($ $ $) 103)) (-1577 (($ $ $) NIL (|has| |#1| (-555)))) (-1564 (((-2 (|:| -2310 |#1|) (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-4151 (($ $) 133 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-767) $) 45)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1307 (((-858) $ (-858)) 117)) (-1775 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3401 (((-112) $) 29)) (-3481 (((-767) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2595 (($ (-1165 |#1|) (-1075)) 49) (($ (-1165 $) (-1075)) 65)) (-1821 (($ $ (-767)) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) 63) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1075)) NIL) (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 121)) (-3908 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-2170 (($ (-1 (-767) (-767)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-1726 (((-1165 |#1|) $) NIL)) (-1698 (((-3 (-1075) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) 52)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3854 (((-1151) $) NIL)) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) 37)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1075)) (|:| -3311 (-767))) "failed") $) NIL)) (-2062 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) NIL (|has| |#1| (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) 30)) (-2705 ((|#1| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 79 (|has| |#1| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 135 (|has| |#1| (-452)))) (-2646 (($ $ (-767) |#1| $) 98)) (-2075 (((-418 (-1165 $)) (-1165 $)) 77 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 76 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 84 (|has| |#1| (-905)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-1699 (((-3 $ "failed") $ (-767)) 34)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 138 (|has| |#1| (-363)))) (-1623 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) 124 (|has| |#1| (-172)))) (-4203 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3871 (((-767) $) 54) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1692 (((-858) $) 118) (($ (-563)) NIL) (($ |#1|) 53) (($ (-1075)) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) 25 (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 15 T CONST)) (-2253 (($) 16 T CONST)) (-3213 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 96)) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 139 (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 66)) (** (($ $ (-917)) 14) (($ $ (-767)) 12)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 24) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
-(((-1165 |#1|) (-13 (-1233 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-858))) (-15 -2646 ($ $ (-767) |#1| $)))) (-1045)) (T -1165))
-((-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))) (-2646 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))))
-(-13 (-1233 |#1|) (-10 -8 (-15 -1307 ((-858) $ (-858))) (-15 -2646 ($ $ (-767) |#1| $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 11)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 36)) (-2057 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1167 |#1| |#2| |#3|) $) NIL)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1854 (((-407 (-563)) $) 55)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2669 (($ (-407 (-563)) (-1160 |#1| |#2| |#3|)) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-407 (-563))) 20) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1843 (((-1160 |#1| |#2| |#3|) $) 41)) (-1832 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-2659 (((-1160 |#1| |#2| |#3|) $) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-3871 (((-407 (-563)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) 58) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1160 |#1| |#2| |#3|)) 30) (($ (-1167 |#1| |#2| |#3|)) 31) (($ (-1253 |#2|)) 26) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 22 T CONST)) (-2253 (($) 16 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1166 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1166))
-((-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 124)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 115)) (-2051 (((-1230 |#2| |#1|) $ (-767)) 62)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-767)) 78) (($ $ (-767) (-767)) 75)) (-1787 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 101)) (-1770 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 114) (($ (-1149 |#1|)) 109)) (-1793 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 23)) (-3945 (($ $) 26)) (-3621 (((-948 |#1|) $ (-767)) 74) (((-948 |#1|) $ (-767) (-767)) 76)) (-3381 (((-112) $) 119)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $) 121) (((-767) $ (-767)) 123)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) NIL)) (-2072 (($ (-1 |#1| (-563)) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) 13) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-2062 (($ $) 128 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-1751 (($ $ (-767)) 15)) (-3012 (((-3 $ "failed") $ $) 24 (|has| |#1| (-555)))) (-3372 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2308 ((|#1| $ (-767)) 118) (($ $ $) 127 (|has| (-767) (-1105)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 29)) (-3871 (((-767) $) NIL)) (-1805 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) 200) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 125 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 50) (($ (-1253 |#2|)) 32)) (-3955 (((-1149 |#1|) $) 97)) (-3244 ((|#1| $ (-767)) 117)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 53)) (-1839 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 17 T CONST)) (-2253 (($) 19 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) 193)) (-1813 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 197 (|has| |#1| (-363))) (($ $ $) 133 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 136 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1167 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -1692 ($ (-1230 |#2| |#1|))) (-15 -2051 ((-1230 |#2| |#1|) $ (-767))) (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1167))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-2051 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1248 |#1|) (-10 -8 (-15 -1692 ($ (-1230 |#2| |#1|))) (-15 -2051 ((-1230 |#2| |#1|) $ (-767))) (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-1692 (((-858) $) 27) (($ (-1169)) 29)) (-4034 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 40)) (-4023 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 33) (($ $) 34)) (-1355 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 35)) (-1345 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 37)) (-1336 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 36)) (-1325 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 38)) (-3303 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39)))
-(((-1168) (-13 (-610 (-858)) (-10 -8 (-15 -1692 ($ (-1169))) (-15 -1355 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1336 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1345 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1325 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4034 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3303 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4023 ($ $))))) (T -1168))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) (-1355 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1336 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1345 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1325 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4034 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3303 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4023 (*1 *1 *1) (-5 *1 (-1168))))
-(-13 (-610 (-858)) (-10 -8 (-15 -1692 ($ (-1169))) (-15 -1355 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1336 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1345 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1325 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4034 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3303 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4023 ($ $))))
-((-1677 (((-112) $ $) NIL)) (-1329 (($ $ (-640 (-858))) 59)) (-1338 (($ $ (-640 (-858))) 57)) (-3737 (((-1151) $) 84)) (-3432 (((-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858)))) $) 87)) (-1348 (((-112) $) 22)) (-3559 (($ $ (-640 (-640 (-858)))) 56) (($ $ (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858))))) 82)) (-2569 (($) 123 T CONST)) (-1358 (((-1262)) 105)) (-1812 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 66) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 73)) (-1565 (($) 94) (($ $) 100)) (-3352 (($ $) 83)) (-3088 (($ $ $) NIL)) (-1776 (($ $ $) NIL)) (-3652 (((-640 $) $) 106)) (-3854 (((-1151) $) 89)) (-1693 (((-1113) $) NIL)) (-2308 (($ $ (-640 (-858))) 58)) (-2219 (((-536) $) 46) (((-1169) $) 47) (((-888 (-563)) $) 77) (((-888 (-379)) $) 75)) (-1692 (((-858) $) 53) (($ (-1151)) 48)) (-1318 (($ $ (-640 (-858))) 60)) (-2742 (((-1151) $) 33) (((-1151) $ (-112)) 34) (((-1262) (-818) $) 35) (((-1262) (-818) $ (-112)) 36)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 49)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) 50)))
-(((-1169) (-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -1565 ($)) (-15 -1565 ($ $)) (-15 -1358 ((-1262))) (-15 -3352 ($ $)) (-15 -1348 ((-112) $)) (-15 -3432 ((-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3559 ($ $ (-640 (-640 (-858))))) (-15 -3559 ($ $ (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -1338 ($ $ (-640 (-858)))) (-15 -1329 ($ $ (-640 (-858)))) (-15 -1318 ($ $ (-640 (-858)))) (-15 -2308 ($ $ (-640 (-858)))) (-15 -3737 ((-1151) $)) (-15 -3652 ((-640 $) $)) (-15 -2569 ($) -2668)))) (T -1169))
-((-1565 (*1 *1) (-5 *1 (-1169))) (-1565 (*1 *1 *1) (-5 *1 (-1169))) (-1358 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))) (-3352 (*1 *1 *1) (-5 *1 (-1169))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))) (-3432 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-3559 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169)))) (-3559 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169)))) (-2569 (*1 *1) (-5 *1 (-1169))))
-(-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -1565 ($)) (-15 -1565 ($ $)) (-15 -1358 ((-1262))) (-15 -3352 ($ $)) (-15 -1348 ((-112) $)) (-15 -3432 ((-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3559 ($ $ (-640 (-640 (-858))))) (-15 -3559 ($ $ (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -1338 ($ $ (-640 (-858)))) (-15 -1329 ($ $ (-640 (-858)))) (-15 -1318 ($ $ (-640 (-858)))) (-15 -2308 ($ $ (-640 (-858)))) (-15 -3737 ((-1151) $)) (-15 -3652 ((-640 $) $)) (-15 -2569 ($) -2668)))
-((-1367 (((-1257 |#1|) |#1| (-917)) 16) (((-1257 |#1|) (-640 |#1|)) 20)))
-(((-1170 |#1|) (-10 -7 (-15 -1367 ((-1257 |#1|) (-640 |#1|))) (-15 -1367 ((-1257 |#1|) |#1| (-917)))) (-1045)) (T -1170))
-((-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1045)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)) (-5 *1 (-1170 *4)))))
-(-10 -7 (-15 -1367 ((-1257 |#1|) (-640 |#1|))) (-15 -1367 ((-1257 |#1|) |#1| (-917))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2057 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-452)))) (-2159 (($ $ |#1| (-967) $) NIL)) (-3401 (((-112) $) 14)) (-3481 (((-767) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-967)) NIL)) (-3908 (((-967) $) NIL)) (-2170 (($ (-1 (-967) (-967)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#1| $) NIL)) (-2646 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-555))))) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3871 (((-967) $) NIL)) (-3885 ((|#1| $) NIL (|has| |#1| (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-4034 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ (-967)) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2239 (($) 9 T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 17)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 18) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1171 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -2646 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045)) (T -1171))
-((-2646 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))))
-(-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -2646 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
-((-1376 (((-1173) (-1169) $) 25)) (-3349 (($) 29)) (-1397 (((-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-1169) $) 22)) (-3282 (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")) $) 41) (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) 42) (((-1262) (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) 43)) (-3360 (((-1262) (-1169)) 58)) (-3272 (((-1262) (-1169) $) 55) (((-1262) (-1169)) 56) (((-1262)) 57)) (-3329 (((-1262) (-1169)) 37)) (-3306 (((-1169)) 36)) (-3445 (($) 34)) (-4185 (((-437) (-1169) (-437) (-1169) $) 45) (((-437) (-640 (-1169)) (-437) (-1169) $) 49) (((-437) (-1169) (-437)) 46) (((-437) (-1169) (-437) (-1169)) 50)) (-3319 (((-1169)) 35)) (-1692 (((-858) $) 28)) (-3339 (((-1262)) 30) (((-1262) (-1169)) 33)) (-1386 (((-640 (-1169)) (-1169) $) 24)) (-3293 (((-1262) (-1169) (-640 (-1169)) $) 38) (((-1262) (-1169) (-640 (-1169))) 39) (((-1262) (-640 (-1169))) 40)))
-(((-1172) (-13 (-610 (-858)) (-10 -8 (-15 -3349 ($)) (-15 -3339 ((-1262))) (-15 -3339 ((-1262) (-1169))) (-15 -4185 ((-437) (-1169) (-437) (-1169) $)) (-15 -4185 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -4185 ((-437) (-1169) (-437))) (-15 -4185 ((-437) (-1169) (-437) (-1169))) (-15 -3329 ((-1262) (-1169))) (-15 -3319 ((-1169))) (-15 -3306 ((-1169))) (-15 -3293 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -3293 ((-1262) (-1169) (-640 (-1169)))) (-15 -3293 ((-1262) (-640 (-1169)))) (-15 -3282 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")) $)) (-15 -3282 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")))) (-15 -3282 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3785 "void")))) (-15 -3272 ((-1262) (-1169) $)) (-15 -3272 ((-1262) (-1169))) (-15 -3272 ((-1262))) (-15 -3360 ((-1262) (-1169))) (-15 -3445 ($)) (-15 -1397 ((-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-1169) $)) (-15 -1386 ((-640 (-1169)) (-1169) $)) (-15 -1376 ((-1173) (-1169) $))))) (T -1172))
-((-3349 (*1 *1) (-5 *1 (-1172))) (-3339 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3319 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-3306 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-3293 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3282 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3282 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3272 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3272 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3445 (*1 *1) (-5 *1 (-1172))) (-1397 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *1 (-1172)))) (-1386 (*1 *2 *3 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))) (-1376 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3349 ($)) (-15 -3339 ((-1262))) (-15 -3339 ((-1262) (-1169))) (-15 -4185 ((-437) (-1169) (-437) (-1169) $)) (-15 -4185 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -4185 ((-437) (-1169) (-437))) (-15 -4185 ((-437) (-1169) (-437) (-1169))) (-15 -3329 ((-1262) (-1169))) (-15 -3319 ((-1169))) (-15 -3306 ((-1169))) (-15 -3293 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -3293 ((-1262) (-1169) (-640 (-1169)))) (-15 -3293 ((-1262) (-640 (-1169)))) (-15 -3282 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")) $)) (-15 -3282 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3785 "void")))) (-15 -3282 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3785 "void")))) (-15 -3272 ((-1262) (-1169) $)) (-15 -3272 ((-1262) (-1169))) (-15 -3272 ((-1262))) (-15 -3360 ((-1262) (-1169))) (-15 -3445 ($)) (-15 -1397 ((-3 (|:| |fst| (-434)) (|:| -3785 "void")) (-1169) $)) (-15 -1386 ((-640 (-1169)) (-1169) $)) (-15 -1376 ((-1173) (-1169) $))))
-((-3383 (((-640 (-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $) 59)) (-3408 (((-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $) 43)) (-2778 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-437))))) 17)) (-3360 (((-1262) $) 67)) (-3421 (((-640 (-1169)) $) 22)) (-3371 (((-1097) $) 55)) (-3434 (((-437) (-1169) $) 27)) (-3396 (((-640 (-1169)) $) 30)) (-3445 (($) 19)) (-4185 (((-437) (-640 (-1169)) (-437) $) 25) (((-437) (-1169) (-437) $) 24)) (-1692 (((-858) $) 9) (((-1181 (-1169) (-437)) $) 13)))
-(((-1173) (-13 (-610 (-858)) (-10 -8 (-15 -1692 ((-1181 (-1169) (-437)) $)) (-15 -3445 ($)) (-15 -4185 ((-437) (-640 (-1169)) (-437) $)) (-15 -4185 ((-437) (-1169) (-437) $)) (-15 -3434 ((-437) (-1169) $)) (-15 -3421 ((-640 (-1169)) $)) (-15 -3408 ((-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -3396 ((-640 (-1169)) $)) (-15 -3383 ((-640 (-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -3371 ((-1097) $)) (-15 -3360 ((-1262) $)) (-15 -2778 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-437))))))))) (T -1173))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173)))) (-3445 (*1 *1) (-5 *1 (-1173))) (-4185 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173)))) (-4185 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173)))) (-3434 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-3408 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) (-5 *1 (-1173)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))) (-5 *1 (-1173)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-437))))) (-5 *1 (-1173)))))
-(-13 (-610 (-858)) (-10 -8 (-15 -1692 ((-1181 (-1169) (-437)) $)) (-15 -3445 ($)) (-15 -4185 ((-437) (-640 (-1169)) (-437) $)) (-15 -4185 ((-437) (-1169) (-437) $)) (-15 -3434 ((-437) (-1169) $)) (-15 -3421 ((-640 (-1169)) $)) (-15 -3408 ((-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -3396 ((-640 (-1169)) $)) (-15 -3383 ((-640 (-640 (-3 (|:| -3352 (-1169)) (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -3371 ((-1097) $)) (-15 -3360 ((-1262) $)) (-15 -2778 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-437))))))))
-((-1677 (((-112) $ $) NIL)) (-2130 (((-3 (-563) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-1169) "failed") $) 41) (((-3 (-1151) "failed") $) 47)) (-2057 (((-563) $) 30) (((-225) $) 36) (((-1169) $) 42) (((-1151) $) 48)) (-3488 (((-112) $) 53)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3478 (((-3 (-563) (-225) (-1169) (-1151) $) $) 55)) (-3468 (((-640 $) $) 57)) (-2219 (((-1097) $) 24) (($ (-1097)) 25)) (-3456 (((-112) $) 56)) (-1692 (((-858) $) 23) (($ (-563)) 26) (($ (-225)) 32) (($ (-1169)) 38) (($ (-1151)) 44) (((-536) $) 59) (((-563) $) 31) (((-225) $) 37) (((-1169) $) 43) (((-1151) $) 49)) (-2224 (((-112) $ (|[\|\|]| (-563))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-1169))) 19) (((-112) $ (|[\|\|]| (-1151))) 16)) (-3498 (($ (-1169) (-640 $)) 51) (($ $ (-640 $)) 52)) (-1904 (((-563) $) 27) (((-225) $) 33) (((-1169) $) 39) (((-1151) $) 45)) (-1718 (((-112) $ $) 7)))
-(((-1174) (-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2219 ((-1097) $)) (-15 -2219 ($ (-1097))) (-15 -1692 ((-563) $)) (-15 -1904 ((-563) $)) (-15 -1692 ((-225) $)) (-15 -1904 ((-225) $)) (-15 -1692 ((-1169) $)) (-15 -1904 ((-1169) $)) (-15 -1692 ((-1151) $)) (-15 -1904 ((-1151) $)) (-15 -3498 ($ (-1169) (-640 $))) (-15 -3498 ($ $ (-640 $))) (-15 -3488 ((-112) $)) (-15 -3478 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -3468 ((-640 $) $)) (-15 -3456 ((-112) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-563)))) (-15 -2224 ((-112) $ (|[\|\|]| (-225)))) (-15 -2224 ((-112) $ (|[\|\|]| (-1169)))) (-15 -2224 ((-112) $ (|[\|\|]| (-1151))))))) (T -1174))
-((-2219 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174))) (-5 *1 (-1174)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174)))))
-(-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2219 ((-1097) $)) (-15 -2219 ($ (-1097))) (-15 -1692 ((-563) $)) (-15 -1904 ((-563) $)) (-15 -1692 ((-225) $)) (-15 -1904 ((-225) $)) (-15 -1692 ((-1169) $)) (-15 -1904 ((-1169) $)) (-15 -1692 ((-1151) $)) (-15 -1904 ((-1151) $)) (-15 -3498 ($ (-1169) (-640 $))) (-15 -3498 ($ $ (-640 $))) (-15 -3488 ((-112) $)) (-15 -3478 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -3468 ((-640 $) $)) (-15 -3456 ((-112) $)) (-15 -2224 ((-112) $ (|[\|\|]| (-563)))) (-15 -2224 ((-112) $ (|[\|\|]| (-225)))) (-15 -2224 ((-112) $ (|[\|\|]| (-1169)))) (-15 -2224 ((-112) $ (|[\|\|]| (-1151))))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) 10)) (-1690 (($) 14)) (-3088 (($ $ $) NIL) (($) 7 T CONST)) (-1776 (($ $ $) NIL) (($) 8 T CONST)) (-3990 (((-917) $) 13)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) 12)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-1175 |#1|) (-840) (-917)) (T -1175))
-NIL
-(-840)
-((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) 9)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) 7 T CONST)) (-1776 (($ $ $) NIL) (($) 8 T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-3123 (($ $ $) 11)) (-3113 (($ $ $) 10)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($)))) (-917)) (T -1176))
-((-3113 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-3123 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-2569 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))))
-(-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))
-((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-3521 (((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 57)) (-3510 (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|)))) 69) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|))) 65) (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 70) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 64) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|))))) 93) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|)))) 92) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 94) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 91)))
-(((-1177 |#1|) (-10 -7 (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -3521 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))))) (-555)) (T -1177))
-((-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4)))))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-294 (-407 (-948 *5)))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-407 (-948 *5))))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4))))))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)) (-5 *3 (-640 (-294 (-407 (-948 *5))))))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)))))
-(-10 -7 (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -3510 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -3510 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -3521 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))))
-((-3570 (((-1151)) 7)) (-3531 (((-1151)) 11 T CONST)) (-2464 (((-1262) (-1151)) 13)) (-3555 (((-1151)) 8 T CONST)) (-3544 (((-130)) 10 T CONST)))
-(((-1178) (-13 (-1208) (-10 -7 (-15 -3570 ((-1151))) (-15 -3555 ((-1151)) -2668) (-15 -3544 ((-130)) -2668) (-15 -3531 ((-1151)) -2668) (-15 -2464 ((-1262) (-1151)))))) (T -1178))
-((-3570 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3555 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3544 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178)))) (-3531 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178)))))
-(-13 (-1208) (-10 -7 (-15 -3570 ((-1151))) (-15 -3555 ((-1151)) -2668) (-15 -3544 ((-130)) -2668) (-15 -3531 ((-1151)) -2668) (-15 -2464 ((-1262) (-1151)))))
-((-3614 (((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 38)) (-3648 (((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|))) 24)) (-3659 (((-1180 (-640 |#1|)) (-640 |#1|)) 34)) (-3682 (((-640 (-640 |#1|)) (-640 |#1|)) 30)) (-4106 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))) 37)) (-3708 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|)))) 36)) (-3670 (((-640 (-640 |#1|)) (-640 (-640 |#1|))) 28)) (-3694 (((-640 |#1|) (-640 |#1|)) 31)) (-3603 (((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 18)) (-3591 (((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 16)) (-3581 (((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|))) 14)) (-3625 (((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 39)) (-3637 (((-640 (-640 |#1|)) (-1180 (-640 |#1|))) 41)))
-(((-1179 |#1|) (-10 -7 (-15 -3581 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -3591 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3603 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3614 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -3625 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -3637 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -3648 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -3659 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -3670 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -3682 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -3694 ((-640 |#1|) (-640 |#1|))) (-15 -3708 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -4106 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))))) (-846)) (T -1179))
-((-4106 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4)))) (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4)))))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4)))))) (-3708 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5) (|:| |f4| (-640 *5)))) (-5 *1 (-1179 *6)) (-5 *4 (-640 *5)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-3659 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4))))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-846)))) (-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-3603 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-3591 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))) (-3581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4)))) (-5 *1 (-1179 *6)) (-5 *5 (-640 *4)))))
-(-10 -7 (-15 -3581 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -3591 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3603 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3614 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -3625 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -3637 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -3648 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -3659 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -3670 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -3682 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -3694 ((-640 |#1|) (-640 |#1|))) (-15 -3708 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -4106 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|))))))
-((-3721 (($ (-640 (-640 |#1|))) 10)) (-3734 (((-640 (-640 |#1|)) $) 11)) (-1692 (((-858) $) 26)))
-(((-1180 |#1|) (-10 -8 (-15 -3721 ($ (-640 (-640 |#1|)))) (-15 -3734 ((-640 (-640 |#1|)) $)) (-15 -1692 ((-858) $))) (-1093)) (T -1180))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3)))))
-(-10 -8 (-15 -3721 ($ (-640 (-640 |#1|)))) (-15 -3734 ((-640 (-640 |#1|)) $)) (-15 -1692 ((-858) $)))
-((-1677 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1551 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-2208 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) NIL)) (-2569 (($) NIL T CONST)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) NIL)) (-2236 ((|#1| $) NIL (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2251 ((|#1| $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1304 (((-640 |#1|) $) NIL)) (-2305 (((-112) |#1| $) NIL)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-2272 (((-640 |#1|) $) NIL)) (-2282 (((-112) |#1| $) NIL)) (-1693 (((-1113) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3782 ((|#2| $) NIL (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL)) (-2221 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3863 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1692 (((-858) $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) NIL)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) NIL (-4034 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1181 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093)) (T -1181))
+((-4219 (((-1146 |#1|) (-1146 |#1|)) 78)) (-3873 (((-3 (-1146 |#1|) "failed") (-1146 |#1|)) 37)) (-3884 (((-1146 |#1|) (-407 (-546)) (-1146 |#1|)) 121 (|has| |#1| (-38 (-407 (-546)))))) (-3887 (((-1146 |#1|) |#1| (-1146 |#1|)) 127 (|has| |#1| (-363)))) (-4222 (((-1146 |#1|) (-1146 |#1|)) 91)) (-3875 (((-1146 (-546)) (-546)) 57)) (-3883 (((-1146 |#1|) (-1146 (-1146 |#1|))) 110 (|has| |#1| (-38 (-407 (-546)))))) (-4218 (((-1146 |#1|) (-546) (-546) (-1146 |#1|)) 96)) (-4353 (((-1146 |#1|) |#1| (-546)) 45)) (-3877 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 60)) (-3885 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 124 (|has| |#1| (-363)))) (-3882 (((-1146 |#1|) |#1| (-1 (-1146 |#1|))) 109 (|has| |#1| (-38 (-407 (-546)))))) (-3886 (((-1146 |#1|) (-1 |#1| (-546)) |#1| (-1 (-1146 |#1|))) 125 (|has| |#1| (-363)))) (-4223 (((-1146 |#1|) (-1146 |#1|)) 90)) (-4224 (((-1146 |#1|) (-1146 |#1|)) 76)) (-4217 (((-1146 |#1|) (-546) (-546) (-1146 |#1|)) 97)) (-4227 (((-1146 |#1|) |#1| (-1146 |#1|)) 106 (|has| |#1| (-38 (-407 (-546)))))) (-3874 (((-1146 (-546)) (-546)) 56)) (-3876 (((-1146 |#1|) |#1|) 59)) (-4220 (((-1146 |#1|) (-1146 |#1|) (-546) (-546)) 93)) (-3879 (((-1146 |#1|) (-1 |#1| (-546)) (-1146 |#1|)) 66)) (-3872 (((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|)) 35)) (-4221 (((-1146 |#1|) (-1146 |#1|)) 92)) (-4182 (((-1146 |#1|) (-1146 |#1|) |#1|) 71)) (-3878 (((-1146 |#1|) (-1146 |#1|)) 62)) (-3880 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 72)) (-4361 (((-1146 |#1|) |#1|) 67)) (-3881 (((-1146 |#1|) (-1146 (-1146 |#1|))) 83)) (-4364 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 36)) (-4252 (((-1146 |#1|) (-1146 |#1|)) 21) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 23)) (-4254 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 17)) (* (((-1146 |#1|) (-1146 |#1|) |#1|) 29) (((-1146 |#1|) |#1| (-1146 |#1|)) 26) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 27)))
+(((-1153 |#1|) (-10 -7 (-15 -4254 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4252 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4252 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -3872 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3873 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -4353 ((-1146 |#1|) |#1| (-546))) (-15 -3874 ((-1146 (-546)) (-546))) (-15 -3875 ((-1146 (-546)) (-546))) (-15 -3876 ((-1146 |#1|) |#1|)) (-15 -3877 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3878 ((-1146 |#1|) (-1146 |#1|))) (-15 -3879 ((-1146 |#1|) (-1 |#1| (-546)) (-1146 |#1|))) (-15 -4361 ((-1146 |#1|) |#1|)) (-15 -4182 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -3880 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4224 ((-1146 |#1|) (-1146 |#1|))) (-15 -4219 ((-1146 |#1|) (-1146 |#1|))) (-15 -3881 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -4223 ((-1146 |#1|) (-1146 |#1|))) (-15 -4222 ((-1146 |#1|) (-1146 |#1|))) (-15 -4221 ((-1146 |#1|) (-1146 |#1|))) (-15 -4220 ((-1146 |#1|) (-1146 |#1|) (-546) (-546))) (-15 -4218 ((-1146 |#1|) (-546) (-546) (-1146 |#1|))) (-15 -4217 ((-1146 |#1|) (-546) (-546) (-1146 |#1|))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -3882 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -3883 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -3884 ((-1146 |#1|) (-407 (-546)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3885 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3886 ((-1146 |#1|) (-1 |#1| (-546)) |#1| (-1 (-1146 |#1|)))) (-15 -3887 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|)) (-1045)) (T -1153))
+((-3887 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3886 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-546))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4)))) (-3885 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3884 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-546))) (-5 *1 (-1153 *4)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-38 (-407 (-546)))) (-4 *4 (-1045)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)))) (-4227 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4217 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-4218 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-4220 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4222 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4223 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-1045)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3880 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4182 (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4361 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-546))) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3877 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3876 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3875 (*1 *2 *3) (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-546)))) (-3874 (*1 *2 *3) (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-546)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3873 (*1 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4364 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3872 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4252 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4254 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(-10 -7 (-15 -4254 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4252 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4252 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -3872 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -4364 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3873 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -4353 ((-1146 |#1|) |#1| (-546))) (-15 -3874 ((-1146 (-546)) (-546))) (-15 -3875 ((-1146 (-546)) (-546))) (-15 -3876 ((-1146 |#1|) |#1|)) (-15 -3877 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3878 ((-1146 |#1|) (-1146 |#1|))) (-15 -3879 ((-1146 |#1|) (-1 |#1| (-546)) (-1146 |#1|))) (-15 -4361 ((-1146 |#1|) |#1|)) (-15 -4182 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -3880 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4224 ((-1146 |#1|) (-1146 |#1|))) (-15 -4219 ((-1146 |#1|) (-1146 |#1|))) (-15 -3881 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -4223 ((-1146 |#1|) (-1146 |#1|))) (-15 -4222 ((-1146 |#1|) (-1146 |#1|))) (-15 -4221 ((-1146 |#1|) (-1146 |#1|))) (-15 -4220 ((-1146 |#1|) (-1146 |#1|) (-546) (-546))) (-15 -4218 ((-1146 |#1|) (-546) (-546) (-1146 |#1|))) (-15 -4217 ((-1146 |#1|) (-546) (-546) (-1146 |#1|))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -3882 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -3883 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -3884 ((-1146 |#1|) (-407 (-546)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3885 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3886 ((-1146 |#1|) (-1 |#1| (-546)) |#1| (-1 (-1146 |#1|)))) (-15 -3887 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|))
+((-3898 (((-1146 |#1|) (-1146 |#1|)) 100)) (-4054 (((-1146 |#1|) (-1146 |#1|)) 64)) (-3889 (((-2 (|:| -3896 (-1146 |#1|)) (|:| -3897 (-1146 |#1|))) (-1146 |#1|)) 96)) (-3896 (((-1146 |#1|) (-1146 |#1|)) 97)) (-3888 (((-2 (|:| -4053 (-1146 |#1|)) (|:| -4049 (-1146 |#1|))) (-1146 |#1|)) 53)) (-4053 (((-1146 |#1|) (-1146 |#1|)) 54)) (-3900 (((-1146 |#1|) (-1146 |#1|)) 102)) (-4052 (((-1146 |#1|) (-1146 |#1|)) 71)) (-4357 (((-1146 |#1|) (-1146 |#1|)) 39)) (-4358 (((-1146 |#1|) (-1146 |#1|)) 36)) (-3901 (((-1146 |#1|) (-1146 |#1|)) 103)) (-4051 (((-1146 |#1|) (-1146 |#1|)) 72)) (-3899 (((-1146 |#1|) (-1146 |#1|)) 101)) (-4050 (((-1146 |#1|) (-1146 |#1|)) 67)) (-3897 (((-1146 |#1|) (-1146 |#1|)) 98)) (-4049 (((-1146 |#1|) (-1146 |#1|)) 55)) (-3904 (((-1146 |#1|) (-1146 |#1|)) 111)) (-3892 (((-1146 |#1|) (-1146 |#1|)) 86)) (-3902 (((-1146 |#1|) (-1146 |#1|)) 105)) (-3890 (((-1146 |#1|) (-1146 |#1|)) 82)) (-3906 (((-1146 |#1|) (-1146 |#1|)) 115)) (-3894 (((-1146 |#1|) (-1146 |#1|)) 90)) (-3907 (((-1146 |#1|) (-1146 |#1|)) 117)) (-3895 (((-1146 |#1|) (-1146 |#1|)) 92)) (-3905 (((-1146 |#1|) (-1146 |#1|)) 113)) (-3893 (((-1146 |#1|) (-1146 |#1|)) 88)) (-3903 (((-1146 |#1|) (-1146 |#1|)) 107)) (-3891 (((-1146 |#1|) (-1146 |#1|)) 84)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 40)))
+(((-1154 |#1|) (-10 -7 (-15 -4358 ((-1146 |#1|) (-1146 |#1|))) (-15 -4357 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3888 ((-2 (|:| -4053 (-1146 |#1|)) (|:| -4049 (-1146 |#1|))) (-1146 |#1|))) (-15 -4053 ((-1146 |#1|) (-1146 |#1|))) (-15 -4049 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4050 ((-1146 |#1|) (-1146 |#1|))) (-15 -4052 ((-1146 |#1|) (-1146 |#1|))) (-15 -4051 ((-1146 |#1|) (-1146 |#1|))) (-15 -3890 ((-1146 |#1|) (-1146 |#1|))) (-15 -3891 ((-1146 |#1|) (-1146 |#1|))) (-15 -3892 ((-1146 |#1|) (-1146 |#1|))) (-15 -3893 ((-1146 |#1|) (-1146 |#1|))) (-15 -3894 ((-1146 |#1|) (-1146 |#1|))) (-15 -3895 ((-1146 |#1|) (-1146 |#1|))) (-15 -3889 ((-2 (|:| -3896 (-1146 |#1|)) (|:| -3897 (-1146 |#1|))) (-1146 |#1|))) (-15 -3896 ((-1146 |#1|) (-1146 |#1|))) (-15 -3897 ((-1146 |#1|) (-1146 |#1|))) (-15 -3898 ((-1146 |#1|) (-1146 |#1|))) (-15 -3899 ((-1146 |#1|) (-1146 |#1|))) (-15 -3900 ((-1146 |#1|) (-1146 |#1|))) (-15 -3901 ((-1146 |#1|) (-1146 |#1|))) (-15 -3902 ((-1146 |#1|) (-1146 |#1|))) (-15 -3903 ((-1146 |#1|) (-1146 |#1|))) (-15 -3904 ((-1146 |#1|) (-1146 |#1|))) (-15 -3905 ((-1146 |#1|) (-1146 |#1|))) (-15 -3906 ((-1146 |#1|) (-1146 |#1|))) (-15 -3907 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-407 (-546)))) (T -1154))
+((-3907 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-546)))) (-5 *2 (-2 (|:| -3896 (-1146 *4)) (|:| -3897 (-1146 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1146 *4)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-546)))) (-5 *2 (-2 (|:| -4053 (-1146 *4)) (|:| -4049 (-1146 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1146 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4357 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3)))))
+(-10 -7 (-15 -4358 ((-1146 |#1|) (-1146 |#1|))) (-15 -4357 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3888 ((-2 (|:| -4053 (-1146 |#1|)) (|:| -4049 (-1146 |#1|))) (-1146 |#1|))) (-15 -4053 ((-1146 |#1|) (-1146 |#1|))) (-15 -4049 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4050 ((-1146 |#1|) (-1146 |#1|))) (-15 -4052 ((-1146 |#1|) (-1146 |#1|))) (-15 -4051 ((-1146 |#1|) (-1146 |#1|))) (-15 -3890 ((-1146 |#1|) (-1146 |#1|))) (-15 -3891 ((-1146 |#1|) (-1146 |#1|))) (-15 -3892 ((-1146 |#1|) (-1146 |#1|))) (-15 -3893 ((-1146 |#1|) (-1146 |#1|))) (-15 -3894 ((-1146 |#1|) (-1146 |#1|))) (-15 -3895 ((-1146 |#1|) (-1146 |#1|))) (-15 -3889 ((-2 (|:| -3896 (-1146 |#1|)) (|:| -3897 (-1146 |#1|))) (-1146 |#1|))) (-15 -3896 ((-1146 |#1|) (-1146 |#1|))) (-15 -3897 ((-1146 |#1|) (-1146 |#1|))) (-15 -3898 ((-1146 |#1|) (-1146 |#1|))) (-15 -3899 ((-1146 |#1|) (-1146 |#1|))) (-15 -3900 ((-1146 |#1|) (-1146 |#1|))) (-15 -3901 ((-1146 |#1|) (-1146 |#1|))) (-15 -3902 ((-1146 |#1|) (-1146 |#1|))) (-15 -3903 ((-1146 |#1|) (-1146 |#1|))) (-15 -3904 ((-1146 |#1|) (-1146 |#1|))) (-15 -3905 ((-1146 |#1|) (-1146 |#1|))) (-15 -3906 ((-1146 |#1|) (-1146 |#1|))) (-15 -3907 ((-1146 |#1|) (-1146 |#1|))))
+((-3898 (((-1146 |#1|) (-1146 |#1|)) 57)) (-4054 (((-1146 |#1|) (-1146 |#1|)) 39)) (-3896 (((-1146 |#1|) (-1146 |#1|)) 53)) (-4053 (((-1146 |#1|) (-1146 |#1|)) 35)) (-3900 (((-1146 |#1|) (-1146 |#1|)) 60)) (-4052 (((-1146 |#1|) (-1146 |#1|)) 42)) (-4357 (((-1146 |#1|) (-1146 |#1|)) 31)) (-4358 (((-1146 |#1|) (-1146 |#1|)) 27)) (-3901 (((-1146 |#1|) (-1146 |#1|)) 61)) (-4051 (((-1146 |#1|) (-1146 |#1|)) 43)) (-3899 (((-1146 |#1|) (-1146 |#1|)) 58)) (-4050 (((-1146 |#1|) (-1146 |#1|)) 40)) (-3897 (((-1146 |#1|) (-1146 |#1|)) 55)) (-4049 (((-1146 |#1|) (-1146 |#1|)) 37)) (-3904 (((-1146 |#1|) (-1146 |#1|)) 65)) (-3892 (((-1146 |#1|) (-1146 |#1|)) 47)) (-3902 (((-1146 |#1|) (-1146 |#1|)) 63)) (-3890 (((-1146 |#1|) (-1146 |#1|)) 45)) (-3906 (((-1146 |#1|) (-1146 |#1|)) 68)) (-3894 (((-1146 |#1|) (-1146 |#1|)) 50)) (-3907 (((-1146 |#1|) (-1146 |#1|)) 69)) (-3895 (((-1146 |#1|) (-1146 |#1|)) 51)) (-3905 (((-1146 |#1|) (-1146 |#1|)) 67)) (-3893 (((-1146 |#1|) (-1146 |#1|)) 49)) (-3903 (((-1146 |#1|) (-1146 |#1|)) 66)) (-3891 (((-1146 |#1|) (-1146 |#1|)) 48)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 33)))
+(((-1155 |#1|) (-10 -7 (-15 -4358 ((-1146 |#1|) (-1146 |#1|))) (-15 -4357 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4053 ((-1146 |#1|) (-1146 |#1|))) (-15 -4049 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4050 ((-1146 |#1|) (-1146 |#1|))) (-15 -4052 ((-1146 |#1|) (-1146 |#1|))) (-15 -4051 ((-1146 |#1|) (-1146 |#1|))) (-15 -3890 ((-1146 |#1|) (-1146 |#1|))) (-15 -3891 ((-1146 |#1|) (-1146 |#1|))) (-15 -3892 ((-1146 |#1|) (-1146 |#1|))) (-15 -3893 ((-1146 |#1|) (-1146 |#1|))) (-15 -3894 ((-1146 |#1|) (-1146 |#1|))) (-15 -3895 ((-1146 |#1|) (-1146 |#1|))) (-15 -3896 ((-1146 |#1|) (-1146 |#1|))) (-15 -3897 ((-1146 |#1|) (-1146 |#1|))) (-15 -3898 ((-1146 |#1|) (-1146 |#1|))) (-15 -3899 ((-1146 |#1|) (-1146 |#1|))) (-15 -3900 ((-1146 |#1|) (-1146 |#1|))) (-15 -3901 ((-1146 |#1|) (-1146 |#1|))) (-15 -3902 ((-1146 |#1|) (-1146 |#1|))) (-15 -3903 ((-1146 |#1|) (-1146 |#1|))) (-15 -3904 ((-1146 |#1|) (-1146 |#1|))) (-15 -3905 ((-1146 |#1|) (-1146 |#1|))) (-15 -3906 ((-1146 |#1|) (-1146 |#1|))) (-15 -3907 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-407 (-546)))) (T -1155))
+((-3907 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4357 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(-10 -7 (-15 -4358 ((-1146 |#1|) (-1146 |#1|))) (-15 -4357 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4053 ((-1146 |#1|) (-1146 |#1|))) (-15 -4049 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4050 ((-1146 |#1|) (-1146 |#1|))) (-15 -4052 ((-1146 |#1|) (-1146 |#1|))) (-15 -4051 ((-1146 |#1|) (-1146 |#1|))) (-15 -3890 ((-1146 |#1|) (-1146 |#1|))) (-15 -3891 ((-1146 |#1|) (-1146 |#1|))) (-15 -3892 ((-1146 |#1|) (-1146 |#1|))) (-15 -3893 ((-1146 |#1|) (-1146 |#1|))) (-15 -3894 ((-1146 |#1|) (-1146 |#1|))) (-15 -3895 ((-1146 |#1|) (-1146 |#1|))) (-15 -3896 ((-1146 |#1|) (-1146 |#1|))) (-15 -3897 ((-1146 |#1|) (-1146 |#1|))) (-15 -3898 ((-1146 |#1|) (-1146 |#1|))) (-15 -3899 ((-1146 |#1|) (-1146 |#1|))) (-15 -3900 ((-1146 |#1|) (-1146 |#1|))) (-15 -3901 ((-1146 |#1|) (-1146 |#1|))) (-15 -3902 ((-1146 |#1|) (-1146 |#1|))) (-15 -3903 ((-1146 |#1|) (-1146 |#1|))) (-15 -3904 ((-1146 |#1|) (-1146 |#1|))) (-15 -3905 ((-1146 |#1|) (-1146 |#1|))) (-15 -3906 ((-1146 |#1|) (-1146 |#1|))) (-15 -3907 ((-1146 |#1|) (-1146 |#1|))))
+((-3908 (((-954 |#2|) |#2| |#2|) 35)) (-3909 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
+(((-1156 |#1| |#2|) (-10 -7 (-15 -3908 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3909 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1232 |#1|)) (T -1156))
+((-3909 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1232 *3)))) (-3908 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -3908 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3909 (|#2| |#2| |#1|)) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3917 (($ $ (-637 (-767))) 66)) (-4303 (($) 25)) (-3926 (($ $) 41)) (-4166 (((-637 $) $) 50)) (-3932 (((-112) $) 16)) (-3910 (((-637 (-939 |#2|)) $) 73)) (-3911 (($ $) 67)) (-3927 (((-767) $) 36)) (-4029 (($) 24)) (-3920 (($ $ (-637 (-767)) (-939 |#2|)) 59) (($ $ (-637 (-767)) (-767)) 60) (($ $ (-767) (-939 |#2|)) 62)) (-3924 (($ $ $) 47) (($ (-637 $)) 49)) (-3912 (((-767) $) 74)) (-3933 (((-112) $) 15)) (-3650 (((-1151) $) NIL)) (-3931 (((-112) $) 17)) (-3651 (((-1113) $) NIL)) (-3913 (((-171) $) 72)) (-3916 (((-939 |#2|) $) 68)) (-3915 (((-767) $) 69)) (-3914 (((-112) $) 71)) (-3918 (($ $ (-637 (-767)) (-171)) 65)) (-3925 (($ $) 42)) (-4361 (((-859) $) 85)) (-3919 (($ $ (-637 (-767)) (-112)) 64)) (-3928 (((-637 $) $) 11)) (-3929 (($ $ (-767)) 35)) (-3930 (($ $) 31)) (-3921 (($ $ $ (-939 |#2|) (-767)) 55)) (-3922 (($ $ (-939 |#2|)) 54)) (-3923 (($ $ (-637 (-767)) (-939 |#2|)) 53) (($ $ (-637 (-767)) (-767)) 57) (((-767) $ (-939 |#2|)) 58)) (-3444 (((-112) $ $) 79)))
+(((-1157 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3933 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -3931 ((-112) $)) (-15 -4029 ($)) (-15 -4303 ($)) (-15 -3930 ($ $)) (-15 -3929 ($ $ (-767))) (-15 -3928 ((-637 $) $)) (-15 -3927 ((-767) $)) (-15 -3926 ($ $)) (-15 -3925 ($ $)) (-15 -3924 ($ $ $)) (-15 -3924 ($ (-637 $))) (-15 -4166 ((-637 $) $)) (-15 -3923 ($ $ (-637 (-767)) (-939 |#2|))) (-15 -3922 ($ $ (-939 |#2|))) (-15 -3921 ($ $ $ (-939 |#2|) (-767))) (-15 -3920 ($ $ (-637 (-767)) (-939 |#2|))) (-15 -3923 ($ $ (-637 (-767)) (-767))) (-15 -3920 ($ $ (-637 (-767)) (-767))) (-15 -3923 ((-767) $ (-939 |#2|))) (-15 -3920 ($ $ (-767) (-939 |#2|))) (-15 -3919 ($ $ (-637 (-767)) (-112))) (-15 -3918 ($ $ (-637 (-767)) (-171))) (-15 -3917 ($ $ (-637 (-767)))) (-15 -3916 ((-939 |#2|) $)) (-15 -3915 ((-767) $)) (-15 -3914 ((-112) $)) (-15 -3913 ((-171) $)) (-15 -3912 ((-767) $)) (-15 -3911 ($ $)) (-15 -3910 ((-637 (-939 |#2|)) $)))) (-915) (-1045)) (T -1157))
+((-3933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-4029 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-4303 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3925 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3924 (*1 *1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)))) (-3921 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)) (-4 *5 (-1045)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)) (-4 *5 (-1045)))) (-3923 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))) (-3919 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)) (-4 *5 (-1045)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)) (-4 *5 (-1045)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-637 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(-13 (-1094) (-10 -8 (-15 -3933 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -3931 ((-112) $)) (-15 -4029 ($)) (-15 -4303 ($)) (-15 -3930 ($ $)) (-15 -3929 ($ $ (-767))) (-15 -3928 ((-637 $) $)) (-15 -3927 ((-767) $)) (-15 -3926 ($ $)) (-15 -3925 ($ $)) (-15 -3924 ($ $ $)) (-15 -3924 ($ (-637 $))) (-15 -4166 ((-637 $) $)) (-15 -3923 ($ $ (-637 (-767)) (-939 |#2|))) (-15 -3922 ($ $ (-939 |#2|))) (-15 -3921 ($ $ $ (-939 |#2|) (-767))) (-15 -3920 ($ $ (-637 (-767)) (-939 |#2|))) (-15 -3923 ($ $ (-637 (-767)) (-767))) (-15 -3920 ($ $ (-637 (-767)) (-767))) (-15 -3923 ((-767) $ (-939 |#2|))) (-15 -3920 ($ $ (-767) (-939 |#2|))) (-15 -3919 ($ $ (-637 (-767)) (-112))) (-15 -3918 ($ $ (-637 (-767)) (-171))) (-15 -3917 ($ $ (-637 (-767)))) (-15 -3916 ((-939 |#2|) $)) (-15 -3915 ((-767) $)) (-15 -3914 ((-112) $)) (-15 -3913 ((-171) $)) (-15 -3912 ((-767) $)) (-15 -3911 ($ $)) (-15 -3910 ((-637 (-939 |#2|)) $))))
+((-2953 (((-112) $ $) NIL)) (-3934 ((|#2| $) 11)) (-3935 ((|#1| $) 10)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3936 (($ |#1| |#2|) 9)) (-4361 (((-859) $) 16)) (-3444 (((-112) $ $) NIL)))
+(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3936 ($ |#1| |#2|)) (-15 -3935 (|#1| $)) (-15 -3934 (|#2| $)))) (-1094) (-1094)) (T -1158))
+((-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3935 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1094)))) (-3934 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3936 ($ |#1| |#2|)) (-15 -3935 (|#1| $)) (-15 -3934 (|#2| $))))
+((-2953 (((-112) $ $) NIL)) (-3937 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1159) (-13 (-1076) (-10 -8 (-15 -3937 ((-1128) $))))) (T -1159))
+((-3937 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159)))))
+(-13 (-1076) (-10 -8 (-15 -3937 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 11)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2220 (($ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2218 (((-112) $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4185 (($ $ (-546)) NIL) (($ $ (-546) (-546)) 66)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) NIL)) (-4146 (((-1167 |#1| |#2| |#3|) $) 36)) (-4143 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 29)) (-4144 (((-1167 |#1| |#2| |#3|) $) 30)) (-3898 (($ $) 107 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 83 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) 103 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 79 (|has| |#1| (-38 (-407 (-546)))))) (-4038 (((-546) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) 111 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 87 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-1167 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1169) #2#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-546)) #2#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363)))) (((-3 (-546) #2#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))))) (-3564 (((-1167 |#1| |#2| |#3|) $) 131) (((-1169) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-546)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363)))) (((-546) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))))) (-4145 (($ $) 34) (($ (-546) $) 35)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-1167 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1167 |#1| |#2| |#3|)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-546))) (|has| |#1| (-363)))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-546))) (|has| |#1| (-363))))) (-3873 (((-3 $ "failed") $) 48)) (-4142 (((-407 (-942 |#1|)) $ (-546)) 65 (|has| |#1| (-556))) (((-407 (-942 |#1|)) $ (-546) (-546)) 67 (|has| |#1| (-556)))) (-3384 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3594 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3282 (((-112) $) 25)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-378))) (|has| |#1| (-363)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-546))) (|has| |#1| (-363))))) (-4186 (((-546) $) NIL) (((-546) $ (-546)) 24)) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL (|has| |#1| (-363)))) (-3388 (((-1167 |#1| |#2| |#3|) $) 38 (|has| |#1| (-363)))) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3855 (((-3 $ "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-3595 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4191 (($ $ (-915)) NIL)) (-4230 (($ (-1 |#1| (-546)) $) NIL)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-546)) 18) (($ $ (-1075) (-546)) NIL) (($ $ (-637 (-1075)) (-637 (-546))) NIL)) (-2919 (($ $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3249 (($ $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4357 (($ $) 72 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4193 (($ (-546) (-1167 |#1| |#2| |#3|)) 33)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) 70 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 71 (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3520 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3522 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-546)) 145)) (-3872 (((-3 $ "failed") $ $) 49 (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) 73 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-546))))) (($ $ (-1169) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-1169)) (-637 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-293 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-293 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-1167 |#1| |#2| |#3|)) (-637 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-546)) NIL) (($ $ $) 54 (|has| (-546) (-1105))) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 51) (($ $ (-767)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) 50 (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-3385 (($ $) NIL (|has| |#1| (-363)))) (-3387 (((-1167 |#1| |#2| |#3|) $) 41 (|has| |#1| (-363)))) (-4363 (((-546) $) 37)) (-3901 (($ $) 113 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 89 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 109 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 85 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 105 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 81 (|has| |#1| (-38 (-407 (-546)))))) (-4385 (((-535) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-535))) (|has| |#1| (-363)))) (((-378) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1016)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1016)) (|has| |#1| (-363)))) (((-886 (-378)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-886 (-378)))) (|has| |#1| (-363)))) (((-886 (-546)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-886 (-546)))) (|has| |#1| (-363))))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) 149) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1167 |#1| |#2| |#3|)) 27) (($ (-1253 |#2|)) 23) (($ (-1169)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-546))) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-546))))))) (-4092 ((|#1| $ (-546)) 68)) (-3091 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 12)) (-3523 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3904 (($ $) 119 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 95 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3902 (($ $) 115 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 91 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 99 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-546)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 101 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 97 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 117 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 93 (|has| |#1| (-38 (-407 (-546)))))) (-3794 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3047 (($) 20 T CONST)) (-3053 (($) 16 T CONST)) (-3058 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-2951 (((-112) $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2952 (((-112) $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3074 (((-112) $ $) NIL (-3943 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 44 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 45 (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 21)) (** (($ $ (-915)) NIL) (($ $ (-767)) 53) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) 74 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 128 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1167 |#1| |#2| |#3|)) 43 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) $) 42 (|has| |#1| (-363))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1160 |#1| |#2| |#3|) (-13 (-1220 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1160))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1220 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-3938 ((|#2| |#2| (-1085 |#2|)) 26) ((|#2| |#2| (-1169)) 28)))
+(((-1161 |#1| |#2|) (-10 -7 (-15 -3938 (|#2| |#2| (-1169))) (-15 -3938 (|#2| |#2| (-1085 |#2|)))) (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-421 |#1|) (-160) (-27) (-1193))) (T -1161))
+((-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-421 *4) (-160) (-27) (-1193))) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1161 *4 *2)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-421 *4) (-160) (-27) (-1193))))))
+(-10 -7 (-15 -3938 (|#2| |#2| (-1169))) (-15 -3938 (|#2| |#2| (-1085 |#2|))))
+((-3938 (((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1085 (-407 (-942 |#1|)))) 31) (((-407 (-942 |#1|)) (-942 |#1|) (-1085 (-942 |#1|))) 44) (((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1169)) 33) (((-407 (-942 |#1|)) (-942 |#1|) (-1169)) 36)))
+(((-1162 |#1|) (-10 -7 (-15 -3938 ((-407 (-942 |#1|)) (-942 |#1|) (-1169))) (-15 -3938 ((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1169))) (-15 -3938 ((-407 (-942 |#1|)) (-942 |#1|) (-1085 (-942 |#1|)))) (-15 -3938 ((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1085 (-407 (-942 |#1|)))))) (-13 (-556) (-846) (-1034 (-546)))) (T -1162))
+((-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-3 *3 (-314 *5))) (-5 *1 (-1162 *5)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-942 *5))) (-5 *3 (-942 *5)) (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-407 *3)) (-5 *1 (-1162 *5)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-3 (-407 (-942 *5)) (-314 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-407 (-942 *5))))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-407 (-942 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-942 *5)))))
+(-10 -7 (-15 -3938 ((-407 (-942 |#1|)) (-942 |#1|) (-1169))) (-15 -3938 ((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1169))) (-15 -3938 ((-407 (-942 |#1|)) (-942 |#1|) (-1085 (-942 |#1|)))) (-15 -3938 ((-3 (-407 (-942 |#1|)) (-314 |#1|)) (-407 (-942 |#1|)) (-1085 (-407 (-942 |#1|))))))
+((-2953 (((-112) $ $) 137)) (-3596 (((-112) $) 27)) (-4181 (((-1256 |#1|) $ (-767)) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4179 (($ (-1163 |#1|)) NIL)) (-3476 (((-1163 $) $ (-1075)) 58) (((-1163 |#1|) $) 47)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) 132 (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1075))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4170 (($ $ $) 126 (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) 71 (|has| |#1| (-906)))) (-4189 (($ $) NIL (|has| |#1| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 91 (|has| |#1| (-906)))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4175 (($ $ (-767)) 38)) (-4174 (($ $ (-767)) 39)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#1| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-1075) #2#) $) NIL)) (-3564 ((|#1| $) NIL) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-1075) $) NIL)) (-4171 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 128 (|has| |#1| (-172)))) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) 56)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4173 (($ $ $) 103)) (-4168 (($ $ $) NIL (|has| |#1| (-556)))) (-4167 (((-2 (|:| -4369 |#1|) (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-3909 (($ $) 133 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-767) $) 45)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1075) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1075) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-3939 (((-859) $ (-859)) 117)) (-4186 (((-767) $ $) NIL (|has| |#1| (-556)))) (-2552 (((-112) $) 29)) (-2560 (((-767) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-3477 (($ (-1163 |#1|) (-1075)) 49) (($ (-1163 $) (-1075)) 65)) (-4191 (($ $ (-767)) 31)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) 63) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1075)) NIL) (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 121)) (-3209 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-1757 (($ (-1 (-767) (-767)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4180 (((-1163 |#1|) $) NIL)) (-3475 (((-3 (-1075) #4="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) 52)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3650 (((-1151) $) NIL)) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) 37)) (-3212 (((-3 (-637 $) #4#) $) NIL)) (-3211 (((-3 (-637 $) #4#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1075)) (|:| -2543 (-767))) #4#) $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) NIL (|has| |#1| (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) 30)) (-1950 ((|#1| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 79 (|has| |#1| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-452))) (($ $ $) 135 (|has| |#1| (-452)))) (-4153 (($ $ (-767) |#1| $) 98)) (-3094 (((-405 (-1163 $)) (-1163 $)) 77 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 76 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 84 (|has| |#1| (-906)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-637 (-1075)) (-637 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-637 (-1075)) (-637 $)) NIL)) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4178 (((-3 $ #5="failed") $ (-767)) 34)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 138 (|has| |#1| (-363)))) (-4172 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) 124 (|has| |#1| (-172)))) (-4225 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4363 (((-767) $) 54) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1075) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4169 (((-3 $ #5#) $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) #5#) (-407 $) $) NIL (|has| |#1| (-556)))) (-4361 (((-859) $) 118) (($ (-546)) NIL) (($ |#1|) 53) (($ (-1075)) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) 25 (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 15 T CONST)) (-3053 (($) 16 T CONST)) (-3058 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) 96)) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 139 (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 66)) (** (($ $ (-915)) 14) (($ $ (-767)) 12)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 24) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+(((-1163 |#1|) (-13 (-1232 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-859))) (-15 -4153 ($ $ (-767) |#1| $)))) (-1045)) (T -1163))
+((-3939 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1163 *3)) (-4 *3 (-1045)))) (-4153 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1163 *3)) (-4 *3 (-1045)))))
+(-13 (-1232 |#1|) (-10 -8 (-15 -3939 ((-859) $ (-859))) (-15 -4153 ($ $ (-767) |#1| $))))
+((-4373 (((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|)) 13)))
+(((-1164 |#1| |#2|) (-10 -7 (-15 -4373 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|)))) (-1045) (-1045)) (T -1164))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1163 *6)) (-5 *1 (-1164 *5 *6)))))
+(-10 -7 (-15 -4373 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))))
+((-4384 (((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|))) 51)) (-4147 (((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|))) 52)))
+(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4147 ((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|)))) (-15 -4384 ((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|))))) (-789) (-846) (-452) (-946 |#3| |#1| |#2|)) (T -1165))
+((-4384 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-405 (-1163 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1163 (-407 *7))))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-405 (-1163 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1163 (-407 *7))))))
+(-10 -7 (-15 -4147 ((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|)))) (-15 -4384 ((-405 (-1163 (-407 |#4|))) (-1163 (-407 |#4|)))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 11)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) NIL) (($ $ (-407 (-546)) (-407 (-546))) NIL)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-1160 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 36)) (-3564 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1167 |#1| |#2| |#3|) $) NIL)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4195 (((-407 (-546)) $) 55)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4196 (($ (-407 (-546)) (-1160 |#1| |#2| |#3|)) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) NIL) (((-407 (-546)) $ (-407 (-546))) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) NIL) (($ $ (-407 (-546))) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-407 (-546))) 20) (($ $ (-1075) (-407 (-546))) NIL) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4194 (((-1160 |#1| |#2| |#3|) $) 41)) (-4192 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-4193 (((-1160 |#1| |#2| |#3|) $) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) 39 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) NIL) (($ $ $) NIL (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-4363 (((-407 (-546)) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) 58) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1160 |#1| |#2| |#3|)) 30) (($ (-1167 |#1| |#2| |#3|)) 31) (($ (-1253 |#2|)) 26) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 12)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 22 T CONST)) (-3053 (($) 16 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 24)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1166 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1166))
+((-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1241 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 124)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 115)) (-4226 (((-1225 |#2| |#1|) $ (-767)) 62)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-767)) 78) (($ $ (-767) (-767)) 75)) (-4188 (((-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 101)) (-3898 (($ $) 168 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) 164 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 114) (($ (-1146 |#1|)) 109)) (-3900 (($ $) 172 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) 23)) (-4231 (($ $) 26)) (-4229 (((-942 |#1|) $ (-767)) 74) (((-942 |#1|) $ (-767) (-767)) 76)) (-3282 (((-112) $) 119)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $) 121) (((-767) $ (-767)) 123)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) NIL)) (-4230 (($ (-1 |#1| (-546)) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) 13) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-4227 (($ $) 128 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-4183 (($ $ (-767)) 15)) (-3872 (((-3 $ "failed") $ $) 24 (|has| |#1| (-556)))) (-4358 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4214 ((|#1| $ (-767)) 118) (($ $ $) 127 (|has| (-767) (-1105)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 29)) (-4363 (((-767) $) NIL)) (-3901 (($ $) 174 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 150 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 170 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 166 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) 200) (($ (-546)) NIL) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 125 (|has| |#1| (-172))) (($ (-1225 |#2| |#1|)) 50) (($ (-1253 |#2|)) 32)) (-4232 (((-1146 |#1|) $) 97)) (-4092 ((|#1| $ (-767)) 117)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 53)) (-3904 (($ $) 180 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 156 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) 176 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 152 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 184 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 160 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 186 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 162 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 182 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 158 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 178 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 154 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 17 T CONST)) (-3053 (($) 19 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) 193)) (-4254 (($ $ $) 31)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 197 (|has| |#1| (-363))) (($ $ $) 133 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 136 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1167 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-10 -8 (-15 -4361 ($ (-1225 |#2| |#1|))) (-15 -4226 ((-1225 |#2| |#1|) $ (-767))) (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1167))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1225 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1225 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1249 |#1|) (-10 -8 (-15 -4361 ($ (-1225 |#2| |#1|))) (-15 -4226 ((-1225 |#2| |#1|) $ (-767))) (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-4361 (((-859) $) 27) (($ (-1169)) 29)) (-3943 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 40)) (-3940 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-3947 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 35)) (-3945 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 37)) (-3946 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 36)) (-3944 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 38)) (-3942 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $))) 39)))
+(((-1168) (-13 (-610 (-859)) (-10 -8 (-15 -4361 ($ (-1169))) (-15 -3947 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3946 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3945 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3944 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3943 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3942 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3940 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3940 ($ $))))) (T -1168))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) (-3947 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3946 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3945 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3944 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3943 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3942 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3940 (*1 *1 *1) (-5 *1 (-1168))))
+(-13 (-610 (-859)) (-10 -8 (-15 -4361 ($ (-1169))) (-15 -3947 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3946 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3945 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3944 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3943 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3942 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3940 ($ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378))) (|:| CF (-314 (-168 (-378)))) (|:| |switch| $)))) (-15 -3940 ($ $))))
+((-2953 (((-112) $ $) NIL)) (-3951 (($ $ (-637 (-859))) 59)) (-3952 (($ $ (-637 (-859))) 57)) (-3949 (((-1151) $) 84)) (-3954 (((-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859)))) $) 87)) (-3955 (((-112) $) 22)) (-3953 (($ $ (-637 (-637 (-859)))) 56) (($ $ (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859))))) 82)) (-4139 (($) 123 T CONST)) (-3957 (((-1262)) 105)) (-3185 (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 66) (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 73)) (-4029 (($) 94) (($ $) 100)) (-3956 (($ $) 83)) (-2919 (($ $ $) NIL)) (-3249 (($ $ $) NIL)) (-3948 (((-637 $) $) 106)) (-3650 (((-1151) $) 89)) (-3651 (((-1113) $) NIL)) (-4214 (($ $ (-637 (-859))) 58)) (-4385 (((-535) $) 46) (((-1169) $) 47) (((-886 (-546)) $) 77) (((-886 (-378)) $) 75)) (-4361 (((-859) $) 53) (($ (-1151)) 48)) (-3950 (($ $ (-637 (-859))) 60)) (-2885 (((-1151) $) 33) (((-1151) $ (-112)) 34) (((-1262) (-819) $) 35) (((-1262) (-819) $ (-112)) 36)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) 49)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) 50)))
+(((-1169) (-13 (-846) (-611 (-535)) (-817) (-611 (-1169)) (-613 (-1151)) (-611 (-886 (-546))) (-611 (-886 (-378))) (-882 (-546)) (-882 (-378)) (-10 -8 (-15 -4029 ($)) (-15 -4029 ($ $)) (-15 -3957 ((-1262))) (-15 -3956 ($ $)) (-15 -3955 ((-112) $)) (-15 -3954 ((-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859)))) $)) (-15 -3953 ($ $ (-637 (-637 (-859))))) (-15 -3953 ($ $ (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859)))))) (-15 -3952 ($ $ (-637 (-859)))) (-15 -3951 ($ $ (-637 (-859)))) (-15 -3950 ($ $ (-637 (-859)))) (-15 -4214 ($ $ (-637 (-859)))) (-15 -3949 ((-1151) $)) (-15 -3948 ((-637 $) $)) (-15 -4139 ($) -4367)))) (T -1169))
+((-4029 (*1 *1) (-5 *1 (-1169))) (-4029 (*1 *1 *1) (-5 *1 (-1169))) (-3957 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))) (-3956 (*1 *1 *1) (-5 *1 (-1169))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859))))) (-5 *1 (-1169)))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-637 (-859)))) (-5 *1 (-1169)))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859))))) (-5 *1 (-1169)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1169)))) (-4139 (*1 *1) (-5 *1 (-1169))))
+(-13 (-846) (-611 (-535)) (-817) (-611 (-1169)) (-613 (-1151)) (-611 (-886 (-546))) (-611 (-886 (-378))) (-882 (-546)) (-882 (-378)) (-10 -8 (-15 -4029 ($)) (-15 -4029 ($ $)) (-15 -3957 ((-1262))) (-15 -3956 ($ $)) (-15 -3955 ((-112) $)) (-15 -3954 ((-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859)))) $)) (-15 -3953 ($ $ (-637 (-637 (-859))))) (-15 -3953 ($ $ (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859))) (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859))) (|:| |args| (-637 (-859)))))) (-15 -3952 ($ $ (-637 (-859)))) (-15 -3951 ($ $ (-637 (-859)))) (-15 -3950 ($ $ (-637 (-859)))) (-15 -4214 ($ $ (-637 (-859)))) (-15 -3949 ((-1151) $)) (-15 -3948 ((-637 $) $)) (-15 -4139 ($) -4367)))
+((-3958 (((-1256 |#1|) |#1| (-915)) 16) (((-1256 |#1|) (-637 |#1|)) 20)))
+(((-1170 |#1|) (-10 -7 (-15 -3958 ((-1256 |#1|) (-637 |#1|))) (-15 -3958 ((-1256 |#1|) |#1| (-915)))) (-1045)) (T -1170))
+((-3958 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-5 *2 (-1256 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1045)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-1045)) (-5 *2 (-1256 *4)) (-5 *1 (-1170 *4)))))
+(-10 -7 (-15 -3958 ((-1256 |#1|) (-637 |#1|))) (-15 -3958 ((-1256 |#1|) |#1| (-915))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| |#1| (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| |#1| (-1034 (-407 (-546))))) (((-3 |#1| #1#) $) NIL)) (-3564 (((-546) $) NIL (|has| |#1| (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| |#1| (-1034 (-407 (-546))))) ((|#1| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-3909 (($ $) NIL (|has| |#1| (-452)))) (-1756 (($ $ |#1| (-967) $) NIL)) (-2552 (((-112) $) 14)) (-2560 (((-767) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-967)) NIL)) (-3209 (((-967) $) NIL)) (-1757 (($ (-1 (-967) (-967)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#1| $) NIL)) (-4153 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-556))))) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4363 (((-967) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-546))) NIL (-3943 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-1034 (-407 (-546))))))) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ (-967)) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3047 (($) 9 T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 17)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 18) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1171 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-967) (-131)) (-15 -4153 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045)) (T -1171))
+((-4153 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
+(-13 (-326 |#1| #1=(-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| #1# (-131)) (-15 -4153 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
+((-3959 (((-1173) (-1169) $) 25)) (-3969 (($) 29)) (-3961 (((-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) (-1169) $) 22)) (-3963 (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1#)) $) 41) (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) 42) (((-1262) (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) 43)) (-3971 (((-1262) (-1169)) 58)) (-3962 (((-1262) (-1169) $) 55) (((-1262) (-1169)) 56) (((-1262)) 57)) (-3967 (((-1262) (-1169)) 37)) (-3965 (((-1169)) 36)) (-3979 (($) 34)) (-3978 (((-436) (-1169) (-436) (-1169) $) 45) (((-436) (-637 (-1169)) (-436) (-1169) $) 49) (((-436) (-1169) (-436)) 46) (((-436) (-1169) (-436) (-1169)) 50)) (-3966 (((-1169)) 35)) (-4361 (((-859) $) 28)) (-3968 (((-1262)) 30) (((-1262) (-1169)) 33)) (-3960 (((-637 (-1169)) (-1169) $) 24)) (-3964 (((-1262) (-1169) (-637 (-1169)) $) 38) (((-1262) (-1169) (-637 (-1169))) 39) (((-1262) (-637 (-1169))) 40)))
+(((-1172) (-13 (-610 (-859)) (-10 -8 (-15 -3969 ($)) (-15 -3968 ((-1262))) (-15 -3968 ((-1262) (-1169))) (-15 -3978 ((-436) (-1169) (-436) (-1169) $)) (-15 -3978 ((-436) (-637 (-1169)) (-436) (-1169) $)) (-15 -3978 ((-436) (-1169) (-436))) (-15 -3978 ((-436) (-1169) (-436) (-1169))) (-15 -3967 ((-1262) (-1169))) (-15 -3966 ((-1169))) (-15 -3965 ((-1169))) (-15 -3964 ((-1262) (-1169) (-637 (-1169)) $)) (-15 -3964 ((-1262) (-1169) (-637 (-1169)))) (-15 -3964 ((-1262) (-637 (-1169)))) (-15 -3963 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) $)) (-15 -3963 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))) (-15 -3963 ((-1262) (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))) (-15 -3962 ((-1262) (-1169) $)) (-15 -3962 ((-1262) (-1169))) (-15 -3962 ((-1262))) (-15 -3971 ((-1262) (-1169))) (-15 -3979 ($)) (-15 -3961 ((-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-1169) $)) (-15 -3960 ((-637 (-1169)) (-1169) $)) (-15 -3959 ((-1173) (-1169) $))))) (T -1172))
+((-3969 (*1 *1) (-5 *1 (-1172))) (-3968 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3978 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3978 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-637 (-1169))) (-5 *4 (-1169)) (-5 *1 (-1172)))) (-3978 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3978 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3966 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-3965 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-3964 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3963 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3962 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3962 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3979 (*1 *1) (-5 *1 (-1172))) (-3961 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *1 (-1172)))) (-3960 (*1 *2 *3 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))) (-3959 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -3969 ($)) (-15 -3968 ((-1262))) (-15 -3968 ((-1262) (-1169))) (-15 -3978 ((-436) (-1169) (-436) (-1169) $)) (-15 -3978 ((-436) (-637 (-1169)) (-436) (-1169) $)) (-15 -3978 ((-436) (-1169) (-436))) (-15 -3978 ((-436) (-1169) (-436) (-1169))) (-15 -3967 ((-1262) (-1169))) (-15 -3966 ((-1169))) (-15 -3965 ((-1169))) (-15 -3964 ((-1262) (-1169) (-637 (-1169)) $)) (-15 -3964 ((-1262) (-1169) (-637 (-1169)))) (-15 -3964 ((-1262) (-637 (-1169)))) (-15 -3963 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1="void")) $)) (-15 -3963 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))) (-15 -3963 ((-1262) (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))) (-15 -3962 ((-1262) (-1169) $)) (-15 -3962 ((-1262) (-1169))) (-15 -3962 ((-1262))) (-15 -3971 ((-1262) (-1169))) (-15 -3979 ($)) (-15 -3961 ((-3 (|:| |fst| (-434)) (|:| -4325 #1#)) (-1169) $)) (-15 -3960 ((-637 (-1169)) (-1169) $)) (-15 -3959 ((-1173) (-1169) $))))
+((-3973 (((-637 (-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546))))))))) $) 59)) (-3975 (((-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546)))))))) (-434) $) 43)) (-3970 (($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-436))))) 17)) (-3971 (((-1262) $) 67)) (-3976 (((-637 (-1169)) $) 22)) (-3972 (((-1096) $) 55)) (-3977 (((-436) (-1169) $) 27)) (-3974 (((-637 (-1169)) $) 30)) (-3979 (($) 19)) (-3978 (((-436) (-637 (-1169)) (-436) $) 25) (((-436) (-1169) (-436) $) 24)) (-4361 (((-859) $) 9) (((-1180 (-1169) (-436)) $) 13)))
+(((-1173) (-13 (-610 (-859)) (-10 -8 (-15 -4361 ((-1180 (-1169) (-436)) $)) (-15 -3979 ($)) (-15 -3978 ((-436) (-637 (-1169)) (-436) $)) (-15 -3978 ((-436) (-1169) (-436) $)) (-15 -3977 ((-436) (-1169) $)) (-15 -3976 ((-637 (-1169)) $)) (-15 -3975 ((-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546)))))))) (-434) $)) (-15 -3974 ((-637 (-1169)) $)) (-15 -3973 ((-637 (-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546))))))))) $)) (-15 -3972 ((-1096) $)) (-15 -3971 ((-1262) $)) (-15 -3970 ($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-436))))))))) (T -1173))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-1180 (-1169) (-436))) (-5 *1 (-1173)))) (-3979 (*1 *1) (-5 *1 (-1173))) (-3978 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-637 (-1169))) (-5 *1 (-1173)))) (-3978 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1173)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-436)) (-5 *1 (-1173)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1173)))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546))))))))) (-5 *1 (-1173)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1173)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546)))))))))) (-5 *1 (-1173)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-436))))) (-5 *1 (-1173)))))
+(-13 (-610 (-859)) (-10 -8 (-15 -4361 ((-1180 (-1169) (-436)) $)) (-15 -3979 ($)) (-15 -3978 ((-436) (-637 (-1169)) (-436) $)) (-15 -3978 ((-436) (-1169) (-436) $)) (-15 -3977 ((-436) (-1169) $)) (-15 -3976 ((-637 (-1169)) $)) (-15 -3975 ((-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546)))))))) (-434) $)) (-15 -3974 ((-637 (-1169)) $)) (-15 -3973 ((-637 (-637 (-3 (|:| -3956 (-1169)) (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546))))))))) $)) (-15 -3972 ((-1096) $)) (-15 -3971 ((-1262) $)) (-15 -3970 ($ (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-436))))))))
+((-2953 (((-112) $ $) NIL)) (-3565 (((-3 (-546) #1="failed") $) 29) (((-3 (-225) #1#) $) 35) (((-3 (-1169) #1#) $) 41) (((-3 (-1151) #1#) $) 47)) (-3564 (((-546) $) 30) (((-225) $) 36) (((-1169) $) 42) (((-1151) $) 48)) (-3984 (((-112) $) 53)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-3983 (((-3 (-546) (-225) (-1169) (-1151) $) $) 55)) (-3982 (((-637 $) $) 57)) (-4385 (((-1096) $) 24) (($ (-1096)) 25)) (-3981 (((-112) $) 56)) (-4361 (((-859) $) 23) (($ (-546)) 26) (($ (-225)) 32) (($ (-1169)) 38) (($ (-1151)) 44) (((-535) $) 59) (((-546) $) 31) (((-225) $) 37) (((-1169) $) 43) (((-1151) $) 49)) (-3980 (((-112) $ (|[\|\|]| (-546))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-1169))) 19) (((-112) $ (|[\|\|]| (-1151))) 16)) (-3985 (($ (-1169) (-637 $)) 51) (($ $ (-637 $)) 52)) (-3986 (((-546) $) 27) (((-225) $) 33) (((-1169) $) 39) (((-1151) $) 45)) (-3444 (((-112) $ $) 7)))
+(((-1174) (-13 (-1252) (-1094) (-1034 (-546)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-535)) (-10 -8 (-15 -4385 ((-1096) $)) (-15 -4385 ($ (-1096))) (-15 -4361 ((-546) $)) (-15 -3986 ((-546) $)) (-15 -4361 ((-225) $)) (-15 -3986 ((-225) $)) (-15 -4361 ((-1169) $)) (-15 -3986 ((-1169) $)) (-15 -4361 ((-1151) $)) (-15 -3986 ((-1151) $)) (-15 -3985 ($ (-1169) (-637 $))) (-15 -3985 ($ $ (-637 $))) (-15 -3984 ((-112) $)) (-15 -3983 ((-3 (-546) (-225) (-1169) (-1151) $) $)) (-15 -3982 ((-637 $) $)) (-15 -3981 ((-112) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-546)))) (-15 -3980 ((-112) $ (|[\|\|]| (-225)))) (-15 -3980 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3980 ((-112) $ (|[\|\|]| (-1151))))))) (T -1174))
+((-4385 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1174)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1174)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1174)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1174)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-3985 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-1174))) (-5 *1 (-1174)))) (-3985 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1174)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-3 (-546) (-225) (-1169) (-1151) (-1174))) (-5 *1 (-1174)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1174)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-546))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174)))))
+(-13 (-1252) (-1094) (-1034 (-546)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-535)) (-10 -8 (-15 -4385 ((-1096) $)) (-15 -4385 ($ (-1096))) (-15 -4361 ((-546) $)) (-15 -3986 ((-546) $)) (-15 -4361 ((-225) $)) (-15 -3986 ((-225) $)) (-15 -4361 ((-1169) $)) (-15 -3986 ((-1169) $)) (-15 -4361 ((-1151) $)) (-15 -3986 ((-1151) $)) (-15 -3985 ($ (-1169) (-637 $))) (-15 -3985 ($ $ (-637 $))) (-15 -3984 ((-112) $)) (-15 -3983 ((-3 (-546) (-225) (-1169) (-1151) $) $)) (-15 -3982 ((-637 $) $)) (-15 -3981 ((-112) $)) (-15 -3980 ((-112) $ (|[\|\|]| (-546)))) (-15 -3980 ((-112) $ (|[\|\|]| (-225)))) (-15 -3980 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3980 ((-112) $ (|[\|\|]| (-1151))))))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) 11)) (-4139 (($) 7 T CONST)) (-3384 (($) 15)) (-2919 (($ $ $) NIL) (($) 8 T CONST)) (-3249 (($ $ $) NIL) (($) 9 T CONST)) (-2167 (((-915) $) 14)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) 13)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-1175 |#1|) (-13 (-840) (-10 -8 (-15 -4139 ($) -4367))) (-915)) (T -1175))
+((-4139 (*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-915)))))
+(-13 (-840) (-10 -8 (-15 -4139 ($) -4367)))
+((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) 9 T CONST)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) 7 T CONST)) (-3249 (($ $ $) NIL) (($) 8 T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-4140 (($ $ $) 11)) (-4141 (($ $ $) 10)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($) -4367))) (-915)) (T -1176))
+((-4141 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915)))) (-4140 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915)))) (-4139 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915)))))
+(-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($) -4367)))
+((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-3988 (((-637 (-637 (-942 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169))) 57)) (-3987 (((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|)))) 69) (((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|))) 65) (((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169)) 70) (((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169)) 64) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|))))) 93) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|)))) 92) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169))) 94) (((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|))) (-637 (-1169))) 91)))
+(((-1177 |#1|) (-10 -7 (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|))))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|)))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|))))) (-15 -3988 ((-637 (-637 (-942 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169))))) (-556)) (T -1177))
+((-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-942 *5)))) (-5 *1 (-1177 *5)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-293 (-407 (-942 *4)))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-407 (-942 *4))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-293 (-407 (-942 *5)))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-407 (-942 *5))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-1177 *4)) (-5 *3 (-637 (-293 (-407 (-942 *4))))))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-637 (-407 (-942 *4)))) (-4 *4 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-1177 *4)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-1169))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-1177 *5)) (-5 *3 (-637 (-293 (-407 (-942 *5))))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-1177 *5)))))
+(-10 -7 (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|)))) (-637 (-1169)))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-407 (-942 |#1|))))) (-15 -3987 ((-637 (-637 (-293 (-407 (-942 |#1|))))) (-637 (-293 (-407 (-942 |#1|)))))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|)) (-1169))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|))) (-1169))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-407 (-942 |#1|)))) (-15 -3987 ((-637 (-293 (-407 (-942 |#1|)))) (-293 (-407 (-942 |#1|))))) (-15 -3988 ((-637 (-637 (-942 |#1|))) (-637 (-407 (-942 |#1|))) (-637 (-1169)))))
+((-3993 (((-1151)) 7)) (-3990 (((-1151)) 11 T CONST)) (-3989 (((-1262) (-1151)) 13)) (-3992 (((-1151)) 8 T CONST)) (-3991 (((-130)) 10 T CONST)))
+(((-1178) (-13 (-1207) (-10 -7 (-15 -3993 ((-1151))) (-15 -3992 ((-1151)) -4367) (-15 -3991 ((-130)) -4367) (-15 -3990 ((-1151)) -4367) (-15 -3989 ((-1262) (-1151)))))) (T -1178))
+((-3993 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3992 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3991 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178)))) (-3990 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178)))))
+(-13 (-1207) (-10 -7 (-15 -3993 ((-1151))) (-15 -3992 ((-1151)) -4367) (-15 -3991 ((-130)) -4367) (-15 -3990 ((-1151)) -4367) (-15 -3989 ((-1262) (-1151)))))
+((-3997 (((-637 (-637 |#1|)) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|)))) 38)) (-4000 (((-637 (-637 (-637 |#1|))) (-637 (-637 |#1|))) 24)) (-4001 (((-1181 (-637 |#1|)) (-637 |#1|)) 34)) (-4003 (((-637 (-637 |#1|)) (-637 |#1|)) 30)) (-4006 (((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 (-637 (-637 |#1|)))) 37)) (-4005 (((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 |#1|) (-637 (-637 (-637 |#1|))) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|)))) 36)) (-4002 (((-637 (-637 |#1|)) (-637 (-637 |#1|))) 28)) (-4004 (((-637 |#1|) (-637 |#1|)) 31)) (-3996 (((-637 (-637 (-637 |#1|))) (-637 |#1|) (-637 (-637 (-637 |#1|)))) 18)) (-3995 (((-637 (-637 (-637 |#1|))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 (-637 |#1|)))) 16)) (-3994 (((-2 (|:| |fs| (-112)) (|:| |sd| (-637 |#1|)) (|:| |td| (-637 (-637 |#1|)))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 |#1|))) 14)) (-3998 (((-637 (-637 |#1|)) (-637 (-637 (-637 |#1|)))) 39)) (-3999 (((-637 (-637 |#1|)) (-1181 (-637 |#1|))) 41)))
+(((-1179 |#1|) (-10 -7 (-15 -3994 ((-2 (|:| |fs| (-112)) (|:| |sd| (-637 |#1|)) (|:| |td| (-637 (-637 |#1|)))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 |#1|)))) (-15 -3995 ((-637 (-637 (-637 |#1|))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 (-637 |#1|))))) (-15 -3996 ((-637 (-637 (-637 |#1|))) (-637 |#1|) (-637 (-637 (-637 |#1|))))) (-15 -3997 ((-637 (-637 |#1|)) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))))) (-15 -3998 ((-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))))) (-15 -3999 ((-637 (-637 |#1|)) (-1181 (-637 |#1|)))) (-15 -4000 ((-637 (-637 (-637 |#1|))) (-637 (-637 |#1|)))) (-15 -4001 ((-1181 (-637 |#1|)) (-637 |#1|))) (-15 -4002 ((-637 (-637 |#1|)) (-637 (-637 |#1|)))) (-15 -4003 ((-637 (-637 |#1|)) (-637 |#1|))) (-15 -4004 ((-637 |#1|) (-637 |#1|))) (-15 -4005 ((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 |#1|) (-637 (-637 (-637 |#1|))) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|))))) (-15 -4006 ((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 (-637 (-637 |#1|)))))) (-846)) (T -1179))
+((-4006 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-637 *4)) (|:| |f2| (-637 (-637 (-637 *4)))) (|:| |f3| (-637 (-637 *4))) (|:| |f4| (-637 (-637 (-637 *4)))))) (-5 *1 (-1179 *4)) (-5 *3 (-637 (-637 (-637 *4)))))) (-4005 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-637 *6)) (-5 *5 (-637 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-637 *5)) (|:| |f3| *5) (|:| |f4| (-637 *5)))) (-5 *1 (-1179 *6)) (-5 *4 (-637 *5)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-637 (-637 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-637 *4)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-637 *4)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-637 (-637 (-637 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-637 (-637 *4))))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-846)) (-5 *2 (-637 (-637 *4))) (-5 *1 (-1179 *4)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-637 (-637 (-637 *4)))) (-5 *2 (-637 (-637 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-846)))) (-3997 (*1 *2 *2 *3) (-12 (-5 *3 (-637 (-637 (-637 *4)))) (-5 *2 (-637 (-637 *4))) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-3996 (*1 *2 *3 *2) (-12 (-5 *2 (-637 (-637 (-637 *4)))) (-5 *3 (-637 *4)) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-3995 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-637 (-637 (-637 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-637 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))) (-3994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-637 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-637 *4)))) (-5 *1 (-1179 *6)) (-5 *5 (-637 *4)))))
+(-10 -7 (-15 -3994 ((-2 (|:| |fs| (-112)) (|:| |sd| (-637 |#1|)) (|:| |td| (-637 (-637 |#1|)))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 |#1|)))) (-15 -3995 ((-637 (-637 (-637 |#1|))) (-1 (-112) |#1| |#1|) (-637 |#1|) (-637 (-637 (-637 |#1|))))) (-15 -3996 ((-637 (-637 (-637 |#1|))) (-637 |#1|) (-637 (-637 (-637 |#1|))))) (-15 -3997 ((-637 (-637 |#1|)) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))))) (-15 -3998 ((-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))))) (-15 -3999 ((-637 (-637 |#1|)) (-1181 (-637 |#1|)))) (-15 -4000 ((-637 (-637 (-637 |#1|))) (-637 (-637 |#1|)))) (-15 -4001 ((-1181 (-637 |#1|)) (-637 |#1|))) (-15 -4002 ((-637 (-637 |#1|)) (-637 (-637 |#1|)))) (-15 -4003 ((-637 (-637 |#1|)) (-637 |#1|))) (-15 -4004 ((-637 |#1|) (-637 |#1|))) (-15 -4005 ((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 |#1|) (-637 (-637 (-637 |#1|))) (-637 (-637 |#1|)) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|))) (-637 (-637 (-637 |#1|))))) (-15 -4006 ((-2 (|:| |f1| (-637 |#1|)) (|:| |f2| (-637 (-637 (-637 |#1|)))) (|:| |f3| (-637 (-637 |#1|))) (|:| |f4| (-637 (-637 (-637 |#1|))))) (-637 (-637 (-637 |#1|))))))
+((-2953 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4012 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2351 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#2| $ |#1| |#2|) NIL)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4139 (($) NIL T CONST)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) NIL)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) NIL)) (-2353 ((|#1| $) NIL (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-637 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2354 ((|#1| $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2795 (((-637 |#1|) $) NIL)) (-2361 (((-112) |#1| $) NIL)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2356 (((-637 |#1|) $) NIL)) (-2357 (((-112) |#1| $) NIL)) (-3651 (((-1113) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4215 ((|#2| $) NIL (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL)) (-2352 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1557 (($) NIL) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-4361 (((-859) $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) NIL)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) NIL (-3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1180 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1094) (-1094)) (T -1180))
NIL
(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))
-((-3745 ((|#1| (-640 |#1|)) 32)) (-3767 ((|#1| |#1| (-563)) 18)) (-3755 (((-1165 |#1|) |#1| (-917)) 15)))
-(((-1182 |#1|) (-10 -7 (-15 -3745 (|#1| (-640 |#1|))) (-15 -3755 ((-1165 |#1|) |#1| (-917))) (-15 -3767 (|#1| |#1| (-563)))) (-363)) (T -1182))
-((-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-363)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
-(-10 -7 (-15 -3745 (|#1| (-640 |#1|))) (-15 -3755 ((-1165 |#1|) |#1| (-917))) (-15 -3767 (|#1| |#1| (-563))))
-((-1551 (($) 10) (($ (-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)))) 14)) (-1691 (($ (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2658 (((-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) 39) (((-640 |#3|) $) 41)) (-4347 (($ (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2238 (($ (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2627 (((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) 54)) (-3867 (($ (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) 16)) (-2272 (((-640 |#2|) $) 19)) (-2282 (((-112) |#2| $) 59)) (-1971 (((-3 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) 58)) (-2808 (((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) 63)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2295 (((-640 |#3|) $) 43)) (-2308 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) NIL) (((-767) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 67)) (-1692 (((-858) $) 27)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1718 (((-112) $ $) 49)))
-(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -2238 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1551 (|#1| (-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))))) (-15 -1551 (|#1|)) (-15 -2238 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2658 ((-640 |#3|) |#1|)) (-15 -1708 ((-767) |#3| |#1|)) (-15 -2308 (|#3| |#1| |#2| |#3|)) (-15 -2308 (|#3| |#1| |#2|)) (-15 -2295 ((-640 |#3|) |#1|)) (-15 -2282 ((-112) |#2| |#1|)) (-15 -2272 ((-640 |#2|) |#1|)) (-15 -1691 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1691 (|#1| (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1691 (|#1| (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -1971 ((-3 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -2627 ((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -3867 (|#1| (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -2808 ((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -1708 ((-767) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -2658 ((-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1708 ((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1458 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1471 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -4347 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -2238 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|))) (-1184 |#2| |#3|) (-1093) (-1093)) (T -1183))
-NIL
-(-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1692 ((-858) |#1|)) (-15 -2238 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1551 (|#1| (-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))))) (-15 -1551 (|#1|)) (-15 -2238 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1471 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1458 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1708 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2658 ((-640 |#3|) |#1|)) (-15 -1708 ((-767) |#3| |#1|)) (-15 -2308 (|#3| |#1| |#2| |#3|)) (-15 -2308 (|#3| |#1| |#2|)) (-15 -2295 ((-640 |#3|) |#1|)) (-15 -2282 ((-112) |#2| |#1|)) (-15 -2272 ((-640 |#2|) |#1|)) (-15 -1691 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1691 (|#1| (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1691 (|#1| (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -1971 ((-3 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -2627 ((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -3867 (|#1| (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -2808 ((-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -1708 ((-767) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) |#1|)) (-15 -2658 ((-640 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1708 ((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1458 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -1471 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -4347 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)) (-15 -2238 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2556 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2556 |#3|))) |#1|)))
-((-1677 (((-112) $ $) 19 (-4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1551 (($) 72) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 71)) (-2208 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#2| $ |#1| |#2|) 73)) (-3678 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-2255 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-1576 (((-3 |#2| "failed") |#1| $) 61)) (-2569 (($) 7 T CONST)) (-3814 (($ $) 58 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-1691 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-4356 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409)))) (-4293 ((|#2| $ |#1|) 88)) (-2658 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-640 |#2|) $) 79 (|has| $ (-6 -4408)))) (-2514 (((-112) $ (-767)) 9)) (-2236 ((|#1| $) 96 (|has| |#1| (-846)))) (-3523 (((-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-640 |#2|) $) 80 (|has| $ (-6 -4408)))) (-2667 (((-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2251 ((|#1| $) 95 (|has| |#1| (-846)))) (-4347 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409)))) (-2238 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2481 (((-112) $ (-767)) 10)) (-3854 (((-1151) $) 22 (-4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-1304 (((-640 |#1|) $) 63)) (-2305 (((-112) |#1| $) 64)) (-2627 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 39)) (-3867 (($ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 40)) (-2272 (((-640 |#1|) $) 93)) (-2282 (((-112) |#1| $) 92)) (-1693 (((-1113) $) 21 (-4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-3782 ((|#2| $) 97 (|has| |#1| (-846)))) (-1971 (((-3 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 51)) (-2221 (($ $ |#2|) 98 (|has| $ (-6 -4409)))) (-2808 (((-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 41)) (-1458 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2295 (((-640 |#2|) $) 91)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3863 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 48)) (-1708 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 59 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))))) (-1706 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 50)) (-1692 (((-858) $) 18 (-4034 (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858)))))) (-2820 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) 42)) (-1471 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (-4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1184 |#1| |#2|) (-140) (-1093) (-1093)) (T -1184))
-((-1849 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1551 (*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 *3) (|:| -2556 *4)))) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4)))) (-2238 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))))
-(-13 (-607 |t#1| |t#2|) (-601 |t#1| |t#2|) (-10 -8 (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -1551 ($)) (-15 -1551 ($ (-640 (-2 (|:| -2387 |t#1|) (|:| -2556 |t#2|))))) (-15 -2238 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2556 |#2|))) . T) ((-102) -4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-610 (-858)) -4034 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-601 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-1093) -4034 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (-1093))) ((-1208) . T))
-((-3831 (((-112)) 24)) (-3799 (((-1262) (-1151)) 26)) (-3842 (((-112)) 36)) (-3812 (((-1262)) 34)) (-3790 (((-1262) (-1151) (-1151)) 25)) (-3851 (((-112)) 37)) (-3867 (((-1262) |#1| |#2|) 44)) (-3777 (((-1262)) 20)) (-3860 (((-3 |#2| "failed") |#1|) 42)) (-3824 (((-1262)) 35)))
-(((-1185 |#1| |#2|) (-10 -7 (-15 -3777 ((-1262))) (-15 -3790 ((-1262) (-1151) (-1151))) (-15 -3799 ((-1262) (-1151))) (-15 -3812 ((-1262))) (-15 -3824 ((-1262))) (-15 -3831 ((-112))) (-15 -3842 ((-112))) (-15 -3851 ((-112))) (-15 -3860 ((-3 |#2| "failed") |#1|)) (-15 -3867 ((-1262) |#1| |#2|))) (-1093) (-1093)) (T -1185))
-((-3867 (*1 *2 *3 *4) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3860 (*1 *2 *3) (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093)))) (-3851 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3842 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3831 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3824 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3812 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-3777 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))))
-(-10 -7 (-15 -3777 ((-1262))) (-15 -3790 ((-1262) (-1151) (-1151))) (-15 -3799 ((-1262) (-1151))) (-15 -3812 ((-1262))) (-15 -3824 ((-1262))) (-15 -3831 ((-112))) (-15 -3842 ((-112))) (-15 -3851 ((-112))) (-15 -3860 ((-3 |#2| "failed") |#1|)) (-15 -3867 ((-1262) |#1| |#2|)))
-((-3889 (((-1151) (-1151)) 18)) (-3878 (((-52) (-1151)) 21)))
-(((-1186) (-10 -7 (-15 -3878 ((-52) (-1151))) (-15 -3889 ((-1151) (-1151))))) (T -1186))
-((-3889 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186)))))
-(-10 -7 (-15 -3878 ((-52) (-1151))) (-15 -3889 ((-1151) (-1151))))
-((-1692 (((-1188) |#1|) 11)))
-(((-1187 |#1|) (-10 -7 (-15 -1692 ((-1188) |#1|))) (-1093)) (T -1187))
-((-1692 (*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093)))))
-(-10 -7 (-15 -1692 ((-1188) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3594 (((-640 (-1151)) $) 34)) (-2710 (((-640 (-1151)) $ (-640 (-1151))) 37)) (-2700 (((-640 (-1151)) $ (-640 (-1151))) 36)) (-2720 (((-640 (-1151)) $ (-640 (-1151))) 38)) (-2731 (((-640 (-1151)) $) 33)) (-1565 (($) 22)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2743 (((-640 (-1151)) $) 35)) (-1463 (((-1262) $ (-563)) 29) (((-1262) $) 30)) (-2219 (($ (-858) (-563)) 26) (($ (-858) (-563) (-858)) NIL)) (-1692 (((-858) $) 40) (($ (-858)) 24)) (-1718 (((-112) $ $) NIL)))
-(((-1188) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2219 ($ (-858) (-563))) (-15 -2219 ($ (-858) (-563) (-858))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -2743 ((-640 (-1151)) $)) (-15 -3594 ((-640 (-1151)) $)) (-15 -1565 ($)) (-15 -2731 ((-640 (-1151)) $)) (-15 -2720 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2710 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2700 ((-640 (-1151)) $ (-640 (-1151))))))) (T -1188))
-((-2219 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-2219 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-1463 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-1565 (*1 *1) (-5 *1 (-1188))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2720 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2710 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2700 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2219 ($ (-858) (-563))) (-15 -2219 ($ (-858) (-563) (-858))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -2743 ((-640 (-1151)) $)) (-15 -3594 ((-640 (-1151)) $)) (-15 -1565 ($)) (-15 -2731 ((-640 (-1151)) $)) (-15 -2720 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2710 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2700 ((-640 (-1151)) $ (-640 (-1151))))))
-((-1677 (((-112) $ $) NIL)) (-2797 (((-1151) $ (-1151)) 17) (((-1151) $) 16)) (-1862 (((-1151) $ (-1151)) 15)) (-1905 (($ $ (-1151)) NIL)) (-2776 (((-3 (-1151) "failed") $) 11)) (-2787 (((-1151) $) 8)) (-2765 (((-3 (-1151) "failed") $) 12)) (-1872 (((-1151) $) 9)) (-3409 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3352 (((-388) $) NIL)) (-3854 (((-1151) $) NIL)) (-1883 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2755 (((-112) $) 18)) (-1692 (((-858) $) NIL)) (-1895 (($ $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1189) (-13 (-364 (-388) (-1151)) (-10 -8 (-15 -2797 ((-1151) $ (-1151))) (-15 -2797 ((-1151) $)) (-15 -2787 ((-1151) $)) (-15 -2776 ((-3 (-1151) "failed") $)) (-15 -2765 ((-3 (-1151) "failed") $)) (-15 -2755 ((-112) $))))) (T -1189))
-((-2797 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2776 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2765 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))))
-(-13 (-364 (-388) (-1151)) (-10 -8 (-15 -2797 ((-1151) $ (-1151))) (-15 -2797 ((-1151) $)) (-15 -2787 ((-1151) $)) (-15 -2776 ((-3 (-1151) "failed") $)) (-15 -2765 ((-3 (-1151) "failed") $)) (-15 -2755 ((-112) $))))
-((-2807 (((-3 (-563) "failed") |#1|) 19)) (-2818 (((-3 (-563) "failed") |#1|) 14)) (-2832 (((-563) (-1151)) 29)))
-(((-1190 |#1|) (-10 -7 (-15 -2807 ((-3 (-563) "failed") |#1|)) (-15 -2818 ((-3 (-563) "failed") |#1|)) (-15 -2832 ((-563) (-1151)))) (-1045)) (T -1190))
-((-2832 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4)) (-4 *4 (-1045)))) (-2818 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))) (-2807 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
-(-10 -7 (-15 -2807 ((-3 (-563) "failed") |#1|)) (-15 -2818 ((-3 (-563) "failed") |#1|)) (-15 -2832 ((-563) (-1151))))
-((-2843 (((-1126 (-225))) 9)))
-(((-1191) (-10 -7 (-15 -2843 ((-1126 (-225)))))) (T -1191))
-((-2843 (*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191)))))
-(-10 -7 (-15 -2843 ((-1126 (-225)))))
-((-2179 (($) 11)) (-1839 (($ $) 35)) (-1816 (($ $) 33)) (-1666 (($ $) 25)) (-1861 (($ $) 17)) (-1311 (($ $) 15)) (-1850 (($ $) 19)) (-1709 (($ $) 30)) (-1828 (($ $) 34)) (-1679 (($ $) 29)))
-(((-1192 |#1|) (-10 -8 (-15 -2179 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1679 (|#1| |#1|))) (-1193)) (T -1192))
-NIL
-(-10 -8 (-15 -2179 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)))
-((-1770 (($ $) 26)) (-1618 (($ $) 11)) (-1747 (($ $) 27)) (-1596 (($ $) 10)) (-1793 (($ $) 28)) (-1642 (($ $) 9)) (-2179 (($) 16)) (-4372 (($ $) 19)) (-3372 (($ $) 18)) (-1805 (($ $) 29)) (-1655 (($ $) 8)) (-1783 (($ $) 30)) (-1629 (($ $) 7)) (-1758 (($ $) 31)) (-1607 (($ $) 6)) (-1839 (($ $) 20)) (-1694 (($ $) 32)) (-1816 (($ $) 21)) (-1666 (($ $) 33)) (-1861 (($ $) 22)) (-1721 (($ $) 34)) (-1311 (($ $) 23)) (-1734 (($ $) 35)) (-1850 (($ $) 24)) (-1709 (($ $) 36)) (-1828 (($ $) 25)) (-1679 (($ $) 37)) (** (($ $ $) 17)))
+((-4007 (($ (-637 (-637 |#1|))) 10)) (-4008 (((-637 (-637 |#1|)) $) 11)) (-4361 (((-859) $) 26)))
+(((-1181 |#1|) (-10 -8 (-15 -4007 ($ (-637 (-637 |#1|)))) (-15 -4008 ((-637 (-637 |#1|)) $)) (-15 -4361 ((-859) $))) (-1094)) (T -1181))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
+(-10 -8 (-15 -4007 ($ (-637 (-637 |#1|)))) (-15 -4008 ((-637 (-637 |#1|)) $)) (-15 -4361 ((-859) $)))
+((-4009 ((|#1| (-637 |#1|)) 32)) (-4011 ((|#1| |#1| (-546)) 18)) (-4010 (((-1163 |#1|) |#1| (-915)) 15)))
+(((-1182 |#1|) (-10 -7 (-15 -4009 (|#1| (-637 |#1|))) (-15 -4010 ((-1163 |#1|) |#1| (-915))) (-15 -4011 (|#1| |#1| (-546)))) (-363)) (T -1182))
+((-4011 (*1 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *4 (-915)) (-5 *2 (-1163 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-363)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
+(-10 -7 (-15 -4009 (|#1| (-637 |#1|))) (-15 -4010 ((-1163 |#1|) |#1| (-915))) (-15 -4011 (|#1| |#1| (-546))))
+((-4012 (($) 10) (($ (-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)))) 14)) (-3816 (($ (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2103 (((-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) 39) (((-637 |#3|) $) 41)) (-2107 (($ (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4373 (($ (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1359 (((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) 54)) (-4022 (($ (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) 16)) (-2356 (((-637 |#2|) $) 19)) (-2357 (((-112) |#2| $) 59)) (-1431 (((-3 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) "failed") (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) 58)) (-1360 (((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) 63)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2358 (((-637 |#3|) $) 43)) (-4214 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) NIL) (((-767) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 67)) (-4361 (((-859) $) 27)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3444 (((-112) $ $) 49)))
+(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4012 (|#1| (-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))))) (-15 -4012 (|#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2103 ((-637 |#3|) |#1|)) (-15 -2104 ((-767) |#3| |#1|)) (-15 -4214 (|#3| |#1| |#2| |#3|)) (-15 -4214 (|#3| |#1| |#2|)) (-15 -2358 ((-637 |#3|) |#1|)) (-15 -2357 ((-112) |#2| |#1|)) (-15 -2356 ((-637 |#2|) |#1|)) (-15 -3816 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3816 (|#1| (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -3816 (|#1| (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -1431 ((-3 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) "failed") (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -1359 ((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -4022 (|#1| (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -1360 ((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -2104 ((-767) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -2103 ((-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2104 ((-767) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2105 ((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2106 ((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2107 (|#1| (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -4373 (|#1| (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|))) (-1184 |#2| |#3|) (-1094) (-1094)) (T -1183))
+NIL
+(-10 -8 (-15 -3444 ((-112) |#1| |#1|)) (-15 -4361 ((-859) |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4012 (|#1| (-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))))) (-15 -4012 (|#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2106 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2105 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2104 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2103 ((-637 |#3|) |#1|)) (-15 -2104 ((-767) |#3| |#1|)) (-15 -4214 (|#3| |#1| |#2| |#3|)) (-15 -4214 (|#3| |#1| |#2|)) (-15 -2358 ((-637 |#3|) |#1|)) (-15 -2357 ((-112) |#2| |#1|)) (-15 -2356 ((-637 |#2|) |#1|)) (-15 -3816 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3816 (|#1| (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -3816 (|#1| (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -1431 ((-3 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) "failed") (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -1359 ((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -4022 (|#1| (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -1360 ((-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -2104 ((-767) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) |#1|)) (-15 -2103 ((-637 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2104 ((-767) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2105 ((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2106 ((-112) (-1 (-112) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -2107 (|#1| (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)) (-15 -4373 (|#1| (-1 (-2 (|:| -4275 |#2|) (|:| -2233 |#3|)) (-2 (|:| -4275 |#2|) (|:| -2233 |#3|))) |#1|)))
+((-2953 (((-112) $ $) 19 (-3943 (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-4012 (($) 72) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 71)) (-2351 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#2| $ |#1| |#2|) 73)) (-1666 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-4125 (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-2360 (((-3 |#2| #1="failed") |#1| $) 61)) (-4139 (($) 7 T CONST)) (-1430 (($ $) 58 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408))))) (-3816 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| #1#) |#1| $) 62)) (-3817 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-4257 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 56 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-1672 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409)))) (-3505 ((|#2| $ |#1|) 88)) (-2103 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-637 |#2|) $) 79 (|has| $ (-6 -4408)))) (-4134 (((-112) $ (-767)) 9)) (-2353 ((|#1| $) 96 (|has| |#1| (-846)))) (-2993 (((-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-637 |#2|) $) 80 (|has| $ (-6 -4408)))) (-3653 (((-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408))))) (-2354 ((|#1| $) 95 (|has| |#1| (-846)))) (-2107 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409)))) (-4373 (($ (-1 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4131 (((-112) $ (-767)) 10)) (-3650 (((-1151) $) 22 (-3943 (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-2795 (((-637 |#1|) $) 63)) (-2361 (((-112) |#1| $) 64)) (-1359 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 39)) (-4022 (($ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 40)) (-2356 (((-637 |#1|) $) 93)) (-2357 (((-112) |#1| $) 92)) (-3651 (((-1113) $) 21 (-3943 (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-4215 ((|#2| $) 97 (|has| |#1| (-846)))) (-1431 (((-3 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) "failed") (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 51)) (-2352 (($ $ |#2|) 98 (|has| $ (-6 -4409)))) (-1360 (((-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 41)) (-2105 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))))) 26 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-293 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 25 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) 24 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 23 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)))) (($ $ (-637 |#2|) (-637 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-637 (-293 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1094))))) (-2358 (((-637 |#2|) $) 91)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1557 (($) 49) (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 48)) (-2104 (((-767) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 59 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))))) (-3936 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 50)) (-4361 (((-859) $) 18 (-3943 (|has| |#2| (-610 (-859))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859)))))) (-1361 (($ (-637 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) 42)) (-2106 (((-112) (-1 (-112) (-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (-3943 (|has| |#2| (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1184 |#1| |#2|) (-140) (-1094) (-1094)) (T -1184))
+((-4202 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4012 (*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-637 (-2 (|:| -4275 *3) (|:| -2233 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1184 *3 *4)))) (-4373 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(-13 (-607 |t#1| |t#2|) (-601 |t#1| |t#2|) (-10 -8 (-15 -4202 (|t#2| $ |t#1| |t#2|)) (-15 -4012 ($)) (-15 -4012 ($ (-637 (-2 (|:| -4275 |t#1|) (|:| -2233 |t#2|))))) (-15 -4373 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #1=(-2 (|:| -4275 |#1|) (|:| -2233 |#2|))) . T) ((-102) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))) ((-610 (-859)) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-610 (-859))) (|has| |#2| (-1094)) (|has| |#2| (-610 (-859)))) ((-151 #1#) . T) ((-611 (-535)) |has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-611 (-535))) ((-229 #1#) . T) ((-235 #1#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #1#) . T) ((-489 |#2|) . T) ((-601 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-309 (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)))) (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-607 |#1| |#2|) . T) ((-1094) -3943 (|has| (-2 (|:| -4275 |#1|) (|:| -2233 |#2|)) (-1094)) (|has| |#2| (-1094))) ((-1207) . T))
+((-4018 (((-112)) 24)) (-4015 (((-1262) (-1151)) 26)) (-4019 (((-112)) 36)) (-4016 (((-1262)) 34)) (-4014 (((-1262) (-1151) (-1151)) 25)) (-4020 (((-112)) 37)) (-4022 (((-1262) |#1| |#2|) 44)) (-4013 (((-1262)) 20)) (-4021 (((-3 |#2| "failed") |#1|) 42)) (-4017 (((-1262)) 35)))
+(((-1185 |#1| |#2|) (-10 -7 (-15 -4013 ((-1262))) (-15 -4014 ((-1262) (-1151) (-1151))) (-15 -4015 ((-1262) (-1151))) (-15 -4016 ((-1262))) (-15 -4017 ((-1262))) (-15 -4018 ((-112))) (-15 -4019 ((-112))) (-15 -4020 ((-112))) (-15 -4021 ((-3 |#2| "failed") |#1|)) (-15 -4022 ((-1262) |#1| |#2|))) (-1094) (-1094)) (T -1185))
+((-4022 (*1 *2 *3 *4) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4021 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1094)))) (-4020 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4019 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4018 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4017 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4016 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-4014 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-4013 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(-10 -7 (-15 -4013 ((-1262))) (-15 -4014 ((-1262) (-1151) (-1151))) (-15 -4015 ((-1262) (-1151))) (-15 -4016 ((-1262))) (-15 -4017 ((-1262))) (-15 -4018 ((-112))) (-15 -4019 ((-112))) (-15 -4020 ((-112))) (-15 -4021 ((-3 |#2| "failed") |#1|)) (-15 -4022 ((-1262) |#1| |#2|)))
+((-4024 (((-1151) (-1151)) 18)) (-4023 (((-51) (-1151)) 21)))
+(((-1186) (-10 -7 (-15 -4023 ((-51) (-1151))) (-15 -4024 ((-1151) (-1151))))) (T -1186))
+((-4024 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-1186)))))
+(-10 -7 (-15 -4023 ((-51) (-1151))) (-15 -4024 ((-1151) (-1151))))
+((-2953 (((-112) $ $) NIL)) (-4030 (((-637 (-1151)) $) 34)) (-4026 (((-637 (-1151)) $ (-637 (-1151))) 37)) (-4025 (((-637 (-1151)) $ (-637 (-1151))) 36)) (-4027 (((-637 (-1151)) $ (-637 (-1151))) 38)) (-4028 (((-637 (-1151)) $) 33)) (-4029 (($) 22)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4031 (((-637 (-1151)) $) 35)) (-4032 (((-1262) $ (-546)) 29) (((-1262) $) 30)) (-4385 (($ (-859) (-546)) 26) (($ (-859) (-546) (-859)) NIL)) (-4361 (((-859) $) 40) (($ (-859)) 24)) (-3444 (((-112) $ $) NIL)))
+(((-1187) (-13 (-1094) (-613 (-859)) (-10 -8 (-15 -4385 ($ (-859) (-546))) (-15 -4385 ($ (-859) (-546) (-859))) (-15 -4032 ((-1262) $ (-546))) (-15 -4032 ((-1262) $)) (-15 -4031 ((-637 (-1151)) $)) (-15 -4030 ((-637 (-1151)) $)) (-15 -4029 ($)) (-15 -4028 ((-637 (-1151)) $)) (-15 -4027 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4026 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4025 ((-637 (-1151)) $ (-637 (-1151))))))) (T -1187))
+((-4385 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-1187)))) (-4385 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-1187)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1187)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1187)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))) (-4029 (*1 *1) (-5 *1 (-1187))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))) (-4027 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))) (-4025 (*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(-13 (-1094) (-613 (-859)) (-10 -8 (-15 -4385 ($ (-859) (-546))) (-15 -4385 ($ (-859) (-546) (-859))) (-15 -4032 ((-1262) $ (-546))) (-15 -4032 ((-1262) $)) (-15 -4031 ((-637 (-1151)) $)) (-15 -4030 ((-637 (-1151)) $)) (-15 -4029 ($)) (-15 -4028 ((-637 (-1151)) $)) (-15 -4027 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4026 ((-637 (-1151)) $ (-637 (-1151)))) (-15 -4025 ((-637 (-1151)) $ (-637 (-1151))))))
+((-4361 (((-1187) |#1|) 11)))
+(((-1188 |#1|) (-10 -7 (-15 -4361 ((-1187) |#1|))) (-1094)) (T -1188))
+((-4361 (*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -4361 ((-1187) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-4037 (((-1151) $ (-1151)) 17) (((-1151) $) 16)) (-1848 (((-1151) $ (-1151)) 15)) (-1852 (($ $ (-1151)) NIL)) (-4035 (((-3 (-1151) "failed") $) 11)) (-4036 (((-1151) $) 8)) (-4034 (((-3 (-1151) "failed") $) 12)) (-1849 (((-1151) $) 9)) (-1853 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3956 (((-388) $) NIL)) (-3650 (((-1151) $) NIL)) (-1850 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4033 (((-112) $) 18)) (-4361 (((-859) $) NIL)) (-1851 (($ $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1189) (-13 (-365 (-388) (-1151)) (-10 -8 (-15 -4037 ((-1151) $ (-1151))) (-15 -4037 ((-1151) $)) (-15 -4036 ((-1151) $)) (-15 -4035 ((-3 (-1151) "failed") $)) (-15 -4034 ((-3 (-1151) "failed") $)) (-15 -4033 ((-112) $))))) (T -1189))
+((-4037 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))))
+(-13 (-365 (-388) (-1151)) (-10 -8 (-15 -4037 ((-1151) $ (-1151))) (-15 -4037 ((-1151) $)) (-15 -4036 ((-1151) $)) (-15 -4035 ((-3 (-1151) "failed") $)) (-15 -4034 ((-3 (-1151) "failed") $)) (-15 -4033 ((-112) $))))
+((-4038 (((-3 (-546) "failed") |#1|) 19)) (-4039 (((-3 (-546) "failed") |#1|) 14)) (-4040 (((-546) (-1151)) 29)))
+(((-1190 |#1|) (-10 -7 (-15 -4038 ((-3 (-546) "failed") |#1|)) (-15 -4039 ((-3 (-546) "failed") |#1|)) (-15 -4040 ((-546) (-1151)))) (-1045)) (T -1190))
+((-4040 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-546)) (-5 *1 (-1190 *4)) (-4 *4 (-1045)))) (-4039 (*1 *2 *3) (|partial| -12 (-5 *2 (-546)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))) (-4038 (*1 *2 *3) (|partial| -12 (-5 *2 (-546)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
+(-10 -7 (-15 -4038 ((-3 (-546) "failed") |#1|)) (-15 -4039 ((-3 (-546) "failed") |#1|)) (-15 -4040 ((-546) (-1151))))
+((-4041 (((-1126 (-225))) 9)))
+(((-1191) (-10 -7 (-15 -4041 ((-1126 (-225)))))) (T -1191))
+((-4041 (*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191)))))
+(-10 -7 (-15 -4041 ((-1126 (-225)))))
+((-4042 (($) 11)) (-3904 (($ $) 35)) (-3902 (($ $) 33)) (-3890 (($ $) 25)) (-3906 (($ $) 17)) (-3907 (($ $) 15)) (-3905 (($ $) 19)) (-3893 (($ $) 30)) (-3903 (($ $) 34)) (-3891 (($ $) 29)))
+(((-1192 |#1|) (-10 -8 (-15 -4042 (|#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3891 (|#1| |#1|))) (-1193)) (T -1192))
+NIL
+(-10 -8 (-15 -4042 (|#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)))
+((-3898 (($ $) 26)) (-4054 (($ $) 11)) (-3896 (($ $) 27)) (-4053 (($ $) 10)) (-3900 (($ $) 28)) (-4052 (($ $) 9)) (-4042 (($) 16)) (-4357 (($ $) 19)) (-4358 (($ $) 18)) (-3901 (($ $) 29)) (-4051 (($ $) 8)) (-3899 (($ $) 30)) (-4050 (($ $) 7)) (-3897 (($ $) 31)) (-4049 (($ $) 6)) (-3904 (($ $) 20)) (-3892 (($ $) 32)) (-3902 (($ $) 21)) (-3890 (($ $) 33)) (-3906 (($ $) 22)) (-3894 (($ $) 34)) (-3907 (($ $) 23)) (-3895 (($ $) 35)) (-3905 (($ $) 24)) (-3893 (($ $) 36)) (-3903 (($ $) 25)) (-3891 (($ $) 37)) (** (($ $ $) 17)))
(((-1193) (-140)) (T -1193))
-((-2179 (*1 *1) (-4 *1 (-1193))))
-(-13 (-1196) (-95) (-493) (-35) (-284) (-10 -8 (-15 -2179 ($))))
+((-4042 (*1 *1) (-4 *1 (-1193))))
+(-13 (-1196) (-95) (-493) (-35) (-284) (-10 -8 (-15 -4042 ($))))
(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1196) . T))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2618 ((|#1| $) 17)) (-4268 (($ |#1| (-640 $)) 23) (($ (-640 |#1|)) 27) (($ |#1|) 25)) (-3001 (((-112) $ (-767)) 47)) (-2336 ((|#1| $ |#1|) 14 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 13 (|has| $ (-6 -4409)))) (-2569 (($) NIL T CONST)) (-2658 (((-640 |#1|) $) 51 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 42)) (-2358 (((-112) $ $) 32 (|has| |#1| (-1093)))) (-2514 (((-112) $ (-767)) 40)) (-3523 (((-640 |#1|) $) 52 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4347 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 22)) (-2481 (((-112) $ (-767)) 39)) (-2511 (((-640 |#1|) $) 36)) (-1298 (((-112) $) 35)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1458 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 73)) (-1665 (((-112) $) 9)) (-3445 (($) 10)) (-2308 ((|#1| $ "value") NIL)) (-2379 (((-563) $ $) 31)) (-2852 (((-640 $) $) 58)) (-2862 (((-112) $ $) 76)) (-2871 (((-640 $) $) 71)) (-2880 (($ $) 72)) (-2889 (((-112) $) 55)) (-1708 (((-767) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4408))) (((-767) |#1| $) 16 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1870 (($ $) 57)) (-1692 (((-858) $) 60 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 12)) (-2367 (((-112) $ $) 29 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 28 (|has| |#1| (-1093)))) (-3610 (((-767) $) 38 (|has| $ (-6 -4408)))))
-(((-1194 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -4268 ($ |#1| (-640 $))) (-15 -4268 ($ (-640 |#1|))) (-15 -4268 ($ |#1|)) (-15 -2889 ((-112) $)) (-15 -2880 ($ $)) (-15 -2871 ((-640 $) $)) (-15 -2862 ((-112) $ $)) (-15 -2852 ((-640 $) $)))) (-1093)) (T -1194))
-((-2889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-4268 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3)))) (-4268 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-2862 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))))
-(-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -4268 ($ |#1| (-640 $))) (-15 -4268 ($ (-640 |#1|))) (-15 -4268 ($ |#1|)) (-15 -2889 ((-112) $)) (-15 -2880 ($ $)) (-15 -2871 ((-640 $) $)) (-15 -2862 ((-112) $ $)) (-15 -2852 ((-640 $) $))))
-((-1618 (($ $) 15)) (-1642 (($ $) 12)) (-1655 (($ $) 10)) (-1629 (($ $) 17)))
-(((-1195 |#1|) (-10 -8 (-15 -1629 (|#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -1618 (|#1| |#1|))) (-1196)) (T -1195))
-NIL
-(-10 -8 (-15 -1629 (|#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)))
-((-1618 (($ $) 11)) (-1596 (($ $) 10)) (-1642 (($ $) 9)) (-1655 (($ $) 8)) (-1629 (($ $) 7)) (-1607 (($ $) 6)))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3813 ((|#1| $) 17)) (-4047 (($ |#1| (-637 $)) 23) (($ (-637 |#1|)) 27) (($ |#1|) 25)) (-1296 (((-112) $ (-767)) 47)) (-3415 ((|#1| $ |#1|) 14 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 13 (|has| $ (-6 -4409)))) (-4139 (($) NIL T CONST)) (-2103 (((-637 |#1|) $) 51 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 42)) (-3417 (((-112) $ $) 32 (|has| |#1| (-1094)))) (-4134 (((-112) $ (-767)) 40)) (-2993 (((-637 |#1|) $) 52 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2107 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 22)) (-4131 (((-112) $ (-767)) 39)) (-3420 (((-637 |#1|) $) 36)) (-3933 (((-112) $) 35)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-2105 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 73)) (-3814 (((-112) $) 9)) (-3979 (($) 10)) (-4214 ((|#1| $ #1#) NIL)) (-3419 (((-546) $ $) 31)) (-4043 (((-637 $) $) 58)) (-4044 (((-112) $ $) 76)) (-4045 (((-637 $) $) 71)) (-4046 (($ $) 72)) (-4048 (((-112) $) 55)) (-2104 (((-767) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4408))) (((-767) |#1| $) 16 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3811 (($ $) 57)) (-4361 (((-859) $) 60 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 12)) (-3418 (((-112) $ $) 29 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 28 (|has| |#1| (-1094)))) (-4372 (((-767) $) 38 (|has| $ (-6 -4408)))))
+(((-1194 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -4047 ($ |#1| (-637 $))) (-15 -4047 ($ (-637 |#1|))) (-15 -4047 ($ |#1|)) (-15 -4048 ((-112) $)) (-15 -4046 ($ $)) (-15 -4045 ((-637 $) $)) (-15 -4044 ((-112) $ $)) (-15 -4043 ((-637 $) $)))) (-1094)) (T -1194))
+((-4048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))) (-4047 (*1 *1 *2 *3) (-12 (-5 *3 (-637 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1094)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-1194 *3)))) (-4047 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1094)))) (-4046 (*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1094)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-637 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))) (-4044 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-637 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))))
+(-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -4047 ($ |#1| (-637 $))) (-15 -4047 ($ (-637 |#1|))) (-15 -4047 ($ |#1|)) (-15 -4048 ((-112) $)) (-15 -4046 ($ $)) (-15 -4045 ((-637 $) $)) (-15 -4044 ((-112) $ $)) (-15 -4043 ((-637 $) $))))
+((-4054 (($ $) 15)) (-4052 (($ $) 12)) (-4051 (($ $) 10)) (-4050 (($ $) 17)))
+(((-1195 |#1|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4051 (|#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4054 (|#1| |#1|))) (-1196)) (T -1195))
+NIL
+(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4051 (|#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4054 (|#1| |#1|)))
+((-4054 (($ $) 11)) (-4053 (($ $) 10)) (-4052 (($ $) 9)) (-4051 (($ $) 8)) (-4050 (($ $) 7)) (-4049 (($ $) 6)))
(((-1196) (-140)) (T -1196))
-((-1618 (*1 *1 *1) (-4 *1 (-1196))) (-1596 (*1 *1 *1) (-4 *1 (-1196))) (-1642 (*1 *1 *1) (-4 *1 (-1196))) (-1655 (*1 *1 *1) (-4 *1 (-1196))) (-1629 (*1 *1 *1) (-4 *1 (-1196))) (-1607 (*1 *1 *1) (-4 *1 (-1196))))
-(-13 (-10 -8 (-15 -1607 ($ $)) (-15 -1629 ($ $)) (-15 -1655 ($ $)) (-15 -1642 ($ $)) (-15 -1596 ($ $)) (-15 -1618 ($ $))))
-((-2917 ((|#2| |#2|) 88)) (-2927 (((-112) |#2|) 26)) (-2488 ((|#2| |#2|) 30)) (-2498 ((|#2| |#2|) 32)) (-2898 ((|#2| |#2| (-1169)) 83) ((|#2| |#2|) 84)) (-2936 (((-169 |#2|) |#2|) 28)) (-2907 ((|#2| |#2| (-1169)) 85) ((|#2| |#2|) 86)))
-(((-1197 |#1| |#2|) (-10 -7 (-15 -2898 (|#2| |#2|)) (-15 -2898 (|#2| |#2| (-1169))) (-15 -2907 (|#2| |#2|)) (-15 -2907 (|#2| |#2| (-1169))) (-15 -2917 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2927 ((-112) |#2|)) (-15 -2936 ((-169 |#2|) |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -1197))
-((-2936 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2907 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2898 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))))
-(-10 -7 (-15 -2898 (|#2| |#2|)) (-15 -2898 (|#2| |#2| (-1169))) (-15 -2907 (|#2| |#2|)) (-15 -2907 (|#2| |#2| (-1169))) (-15 -2917 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2927 ((-112) |#2|)) (-15 -2936 ((-169 |#2|) |#2|)))
-((-2946 ((|#4| |#4| |#1|) 27)) (-2956 ((|#4| |#4| |#1|) 28)))
-(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2946 (|#4| |#4| |#1|)) (-15 -2956 (|#4| |#4| |#1|))) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1198))
-((-2956 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2946 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(-10 -7 (-15 -2946 (|#4| |#4| |#1|)) (-15 -2956 (|#4| |#4| |#1|)))
-((-3143 ((|#2| |#2|) 133)) (-3161 ((|#2| |#2|) 130)) (-3133 ((|#2| |#2|) 121)) (-3152 ((|#2| |#2|) 118)) (-3122 ((|#2| |#2|) 126)) (-3111 ((|#2| |#2|) 114)) (-2995 ((|#2| |#2|) 41)) (-2985 ((|#2| |#2|) 91)) (-2966 ((|#2| |#2|) 72)) (-3099 ((|#2| |#2|) 128)) (-3087 ((|#2| |#2|) 116)) (-3215 ((|#2| |#2|) 138)) (-3194 ((|#2| |#2|) 136)) (-3205 ((|#2| |#2|) 137)) (-3187 ((|#2| |#2|) 135)) (-2976 ((|#2| |#2|) 148)) (-3226 ((|#2| |#2|) 30 (-12 (|has| |#2| (-611 (-888 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-611 (-888 |#1|))) (|has| |#1| (-882 |#1|))))) (-3006 ((|#2| |#2|) 73)) (-3017 ((|#2| |#2|) 139)) (-2212 ((|#2| |#2|) 140)) (-3077 ((|#2| |#2|) 127)) (-3068 ((|#2| |#2|) 115)) (-3059 ((|#2| |#2|) 134)) (-3178 ((|#2| |#2|) 132)) (-3048 ((|#2| |#2|) 122)) (-3168 ((|#2| |#2|) 120)) (-3037 ((|#2| |#2|) 124)) (-3027 ((|#2| |#2|) 112)))
-(((-1199 |#1| |#2|) (-10 -7 (-15 -2212 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2985 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3048 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3226 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-846) (-452)) (-13 (-430 |#1|) (-1193))) (T -1199))
-((-3226 (*1 *2 *2) (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3215 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3205 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3194 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3178 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3068 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3048 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3037 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3006 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2985 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))))
-(-10 -7 (-15 -2212 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2985 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3048 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3226 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2254 (((-112) |#5| $) 59) (((-112) $) 101)) (-2189 ((|#5| |#5| $) 74)) (-2255 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-2201 (((-640 |#5|) (-640 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-2130 (((-3 $ "failed") (-640 |#5|)) 125)) (-3793 (((-3 $ "failed") $) 111)) (-2151 ((|#5| |#5| $) 93)) (-2264 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-2131 ((|#5| |#5| $) 97)) (-2444 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-2284 (((-2 (|:| -1442 (-640 |#5|)) (|:| -3409 (-640 |#5|))) $) 54)) (-2274 (((-112) |#5| $) 57) (((-112) $) 102)) (-3354 ((|#4| $) 107)) (-1481 (((-3 |#5| "failed") $) 109)) (-2297 (((-640 |#5|) $) 48)) (-2225 (((-112) |#5| $) 66) (((-112) $) 106)) (-2163 ((|#5| |#5| $) 80)) (-2319 (((-112) $ $) 26)) (-2241 (((-112) |#5| $) 62) (((-112) $) 104)) (-2176 ((|#5| |#5| $) 77)) (-3782 (((-3 |#5| "failed") $) 108)) (-1751 (($ $ |#5|) 126)) (-3871 (((-767) $) 51)) (-1706 (($ (-640 |#5|)) 123)) (-3519 (($ $ |#4|) 121)) (-3542 (($ $ |#4|) 120)) (-2141 (($ $) 119)) (-1692 (((-858) $) NIL) (((-640 |#5|) $) 112)) (-3255 (((-767) $) 129)) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-2211 (((-112) $ (-1 (-112) |#5| (-640 |#5|))) 99)) (-2100 (((-640 |#4|) $) 114)) (-3772 (((-112) |#4| $) 117)) (-1718 (((-112) $ $) 19)))
-(((-1200 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3255 ((-767) |#1|)) (-15 -1751 (|#1| |#1| |#5|)) (-15 -2255 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3772 ((-112) |#4| |#1|)) (-15 -2100 ((-640 |#4|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1|)) (-15 -1481 ((-3 |#5| "failed") |#1|)) (-15 -3782 ((-3 |#5| "failed") |#1|)) (-15 -2131 (|#5| |#5| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2151 (|#5| |#5| |#1|)) (-15 -2163 (|#5| |#5| |#1|)) (-15 -2176 (|#5| |#5| |#1|)) (-15 -2189 (|#5| |#5| |#1|)) (-15 -2201 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2444 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2225 ((-112) |#1|)) (-15 -2241 ((-112) |#1|)) (-15 -2254 ((-112) |#1|)) (-15 -2211 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -2225 ((-112) |#5| |#1|)) (-15 -2241 ((-112) |#5| |#1|)) (-15 -2254 ((-112) |#5| |#1|)) (-15 -2264 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2274 ((-112) |#1|)) (-15 -2274 ((-112) |#5| |#1|)) (-15 -2284 ((-2 (|:| -1442 (-640 |#5|)) (|:| -3409 (-640 |#5|))) |#1|)) (-15 -3871 ((-767) |#1|)) (-15 -2297 ((-640 |#5|) |#1|)) (-15 -2307 ((-3 (-2 (|:| |bas| |#1|) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2307 ((-3 (-2 (|:| |bas| |#1|) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2319 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#4|)) (-15 -3354 (|#4| |#1|)) (-15 -2130 ((-3 |#1| "failed") (-640 |#5|))) (-15 -1692 ((-640 |#5|) |#1|)) (-15 -1706 (|#1| (-640 |#5|))) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2255 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-1201 |#2| |#3| |#4| |#5|) (-555) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1200))
-NIL
-(-10 -8 (-15 -3255 ((-767) |#1|)) (-15 -1751 (|#1| |#1| |#5|)) (-15 -2255 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3772 ((-112) |#4| |#1|)) (-15 -2100 ((-640 |#4|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1|)) (-15 -1481 ((-3 |#5| "failed") |#1|)) (-15 -3782 ((-3 |#5| "failed") |#1|)) (-15 -2131 (|#5| |#5| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2151 (|#5| |#5| |#1|)) (-15 -2163 (|#5| |#5| |#1|)) (-15 -2176 (|#5| |#5| |#1|)) (-15 -2189 (|#5| |#5| |#1|)) (-15 -2201 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2444 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2225 ((-112) |#1|)) (-15 -2241 ((-112) |#1|)) (-15 -2254 ((-112) |#1|)) (-15 -2211 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -2225 ((-112) |#5| |#1|)) (-15 -2241 ((-112) |#5| |#1|)) (-15 -2254 ((-112) |#5| |#1|)) (-15 -2264 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2274 ((-112) |#1|)) (-15 -2274 ((-112) |#5| |#1|)) (-15 -2284 ((-2 (|:| -1442 (-640 |#5|)) (|:| -3409 (-640 |#5|))) |#1|)) (-15 -3871 ((-767) |#1|)) (-15 -2297 ((-640 |#5|) |#1|)) (-15 -2307 ((-3 (-2 (|:| |bas| |#1|) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2307 ((-3 (-2 (|:| |bas| |#1|) (|:| -2635 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2319 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#4|)) (-15 -3354 (|#4| |#1|)) (-15 -2130 ((-3 |#1| "failed") (-640 |#5|))) (-15 -1692 ((-640 |#5|) |#1|)) (-15 -1706 (|#1| (-640 |#5|))) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2255 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1692 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)))
-((-1677 (((-112) $ $) 7)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) 85)) (-2119 (((-640 $) (-640 |#4|)) 86)) (-2605 (((-640 |#3|) $) 33)) (-3508 (((-112) $) 26)) (-3406 (((-112) $) 17 (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) 101) (((-112) $) 97)) (-2189 ((|#4| |#4| $) 92)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) 27)) (-3001 (((-112) $ (-767)) 44)) (-2255 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-2569 (($) 45 T CONST)) (-3466 (((-112) $) 22 (|has| |#1| (-555)))) (-3486 (((-112) $ $) 24 (|has| |#1| (-555)))) (-3476 (((-112) $ $) 23 (|has| |#1| (-555)))) (-3496 (((-112) $) 25 (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3418 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) 36)) (-2057 (($ (-640 |#4|)) 35)) (-3793 (((-3 $ "failed") $) 82)) (-2151 ((|#4| |#4| $) 89)) (-3814 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2131 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) 105)) (-2658 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) 104) (((-112) $) 103)) (-3354 ((|#3| $) 34)) (-2514 (((-112) $ (-767)) 43)) (-3523 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) 47)) (-3568 (((-640 |#3|) $) 32)) (-3553 (((-112) |#3| $) 31)) (-2481 (((-112) $ (-767)) 42)) (-3854 (((-1151) $) 9)) (-1481 (((-3 |#4| "failed") $) 83)) (-2297 (((-640 |#4|) $) 107)) (-2225 (((-112) |#4| $) 99) (((-112) $) 95)) (-2163 ((|#4| |#4| $) 90)) (-2319 (((-112) $ $) 110)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) 100) (((-112) $) 96)) (-2176 ((|#4| |#4| $) 91)) (-1693 (((-1113) $) 10)) (-3782 (((-3 |#4| "failed") $) 84)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2089 (((-3 $ "failed") $ |#4|) 78)) (-1751 (($ $ |#4|) 77)) (-1458 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) 38)) (-1665 (((-112) $) 41)) (-3445 (($) 40)) (-3871 (((-767) $) 106)) (-1708 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-1870 (($ $) 39)) (-2219 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) 60)) (-3519 (($ $ |#3|) 28)) (-3542 (($ $ |#3|) 30)) (-2141 (($ $) 88)) (-3529 (($ $ |#3|) 29)) (-1692 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3255 (((-767) $) 76 (|has| |#3| (-368)))) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-1471 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) 81)) (-3772 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3610 (((-767) $) 46 (|has| $ (-6 -4408)))))
-(((-1201 |#1| |#2| |#3| |#4|) (-140) (-555) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1201))
-((-2319 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2307 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2635 (-640 *8)))) (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8)))) (-2307 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2635 (-640 *9)))) (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -1442 (-640 *6)) (|:| -3409 (-640 *6)))))) (-2274 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2264 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-2254 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2241 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2225 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2444 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-2201 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-2189 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2176 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2163 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2151 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2141 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-2131 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| -1442 *1) (|:| -3409 (-640 *7))))) (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-3782 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1481 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3793 (*1 *1 *1) (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-3772 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-2255 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-2089 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1751 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767)))))
-(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -2319 ((-112) $ $)) (-15 -2307 ((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2307 ((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2297 ((-640 |t#4|) $)) (-15 -3871 ((-767) $)) (-15 -2284 ((-2 (|:| -1442 (-640 |t#4|)) (|:| -3409 (-640 |t#4|))) $)) (-15 -2274 ((-112) |t#4| $)) (-15 -2274 ((-112) $)) (-15 -2264 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2254 ((-112) |t#4| $)) (-15 -2241 ((-112) |t#4| $)) (-15 -2225 ((-112) |t#4| $)) (-15 -2211 ((-112) $ (-1 (-112) |t#4| (-640 |t#4|)))) (-15 -2254 ((-112) $)) (-15 -2241 ((-112) $)) (-15 -2225 ((-112) $)) (-15 -2444 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2201 ((-640 |t#4|) (-640 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2189 (|t#4| |t#4| $)) (-15 -2176 (|t#4| |t#4| $)) (-15 -2163 (|t#4| |t#4| $)) (-15 -2151 (|t#4| |t#4| $)) (-15 -2141 ($ $)) (-15 -2131 (|t#4| |t#4| $)) (-15 -2119 ((-640 $) (-640 |t#4|))) (-15 -2110 ((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |t#4|)))) (-640 |t#4|))) (-15 -3782 ((-3 |t#4| "failed") $)) (-15 -1481 ((-3 |t#4| "failed") $)) (-15 -3793 ((-3 $ "failed") $)) (-15 -2100 ((-640 |t#3|) $)) (-15 -3772 ((-112) |t#3| $)) (-15 -2255 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2089 ((-3 $ "failed") $ |t#4|)) (-15 -1751 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -3255 ((-767) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1208) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1169)) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3621 (((-948 |#1|) $ (-767)) 16) (((-948 |#1|) $ (-767) (-767)) NIL)) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $ (-1169)) NIL) (((-767) $ (-1169) (-767)) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3805 (((-112) $) NIL)) (-2587 (($ $ (-640 (-1169)) (-640 (-531 (-1169)))) NIL) (($ $ (-1169) (-531 (-1169))) NIL) (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-2062 (($ $ (-1169)) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-3234 (($ (-1 $) (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1751 (($ $ (-767)) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-4203 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-3871 (((-531 (-1169)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-1169)) NIL) (($ (-948 |#1|)) NIL)) (-3244 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (((-948 |#1|) $ (-767)) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) NIL T CONST)) (-2253 (($) NIL T CONST)) (-3213 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1202 |#1|) (-13 (-736 |#1| (-1169)) (-10 -8 (-15 -3244 ((-948 |#1|) $ (-767))) (-15 -1692 ($ (-1169))) (-15 -1692 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $ (-1169) |#1|)) (-15 -3234 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) (-1045)) (T -1202))
-((-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4)) (-4 *4 (-1045)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-3234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))))
-(-13 (-736 |#1| (-1169)) (-10 -8 (-15 -3244 ((-948 |#1|) $ (-767))) (-15 -1692 ($ (-1169))) (-15 -1692 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $ (-1169) |#1|)) (-15 -3234 ($ (-1 $) (-1169) |#1|))) |%noBranch|)))
-((-2381 (($ |#1| (-640 (-640 (-939 (-225)))) (-112)) 18)) (-2368 (((-112) $ (-112)) 17)) (-2359 (((-112) $) 16)) (-2338 (((-640 (-640 (-939 (-225)))) $) 13)) (-2328 ((|#1| $) 8)) (-2349 (((-112) $) 15)))
-(((-1203 |#1|) (-10 -8 (-15 -2328 (|#1| $)) (-15 -2338 ((-640 (-640 (-939 (-225)))) $)) (-15 -2349 ((-112) $)) (-15 -2359 ((-112) $)) (-15 -2368 ((-112) $ (-112))) (-15 -2381 ($ |#1| (-640 (-640 (-939 (-225)))) (-112)))) (-970)) (T -1203))
-((-2381 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1203 *2)) (-4 *2 (-970)))) (-2368 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-2328 (*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970)))))
-(-10 -8 (-15 -2328 (|#1| $)) (-15 -2338 ((-640 (-640 (-939 (-225)))) $)) (-15 -2349 ((-112) $)) (-15 -2359 ((-112) $)) (-15 -2368 ((-112) $ (-112))) (-15 -2381 ($ |#1| (-640 (-640 (-939 (-225)))) (-112))))
-((-2392 (((-939 (-225)) (-939 (-225))) 25)) (-3018 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2413 (((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225)))) 35)) (-4121 (((-225) (-939 (-225)) (-939 (-225))) 21)) (-4111 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 22)) (-2401 (((-640 (-640 (-225))) (-563)) 31)) (-1825 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 20)) (-1813 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 19)) (* (((-939 (-225)) (-225) (-939 (-225))) 18)))
-(((-1204) (-10 -7 (-15 -3018 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -1813 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1825 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4121 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -4111 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2392 ((-939 (-225)) (-939 (-225)))) (-15 -2401 ((-640 (-640 (-225))) (-563))) (-15 -2413 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225))))))) (T -1204))
-((-2413 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4111 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4121 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) (-1825 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) (-3018 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225)))))
-(-10 -7 (-15 -3018 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -1813 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1825 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4121 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -4111 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -2392 ((-939 (-225)) (-939 (-225)))) (-15 -2401 ((-640 (-640 (-225))) (-563))) (-15 -2413 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225))))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2255 ((|#1| $ (-767)) 13)) (-3419 (((-767) $) 12)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1692 (((-954 |#1|) $) 10) (($ (-954 |#1|)) 9) (((-858) $) 23 (|has| |#1| (-610 (-858))))) (-1718 (((-112) $ $) 16 (|has| |#1| (-1093)))))
-(((-1205 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2255 (|#1| $ (-767))) (-15 -3419 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1205))
-((-2255 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208)))))
-(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2255 (|#1| $ (-767))) (-15 -3419 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|)))
-((-2447 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)) 80)) (-2424 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 74)) (-2436 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 59)))
-(((-1206 |#1|) (-10 -7 (-15 -2424 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -2436 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -2447 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)))) (-349)) (T -1206))
-((-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5)))) (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5))))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))))
-(-10 -7 (-15 -2424 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -2436 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -2447 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 9) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1207) (-1076)) (T -1207))
+((-4054 (*1 *1 *1) (-4 *1 (-1196))) (-4053 (*1 *1 *1) (-4 *1 (-1196))) (-4052 (*1 *1 *1) (-4 *1 (-1196))) (-4051 (*1 *1 *1) (-4 *1 (-1196))) (-4050 (*1 *1 *1) (-4 *1 (-1196))) (-4049 (*1 *1 *1) (-4 *1 (-1196))))
+(-13 (-10 -8 (-15 -4049 ($ $)) (-15 -4050 ($ $)) (-15 -4051 ($ $)) (-15 -4052 ($ $)) (-15 -4053 ($ $)) (-15 -4054 ($ $))))
+((-4057 ((|#2| |#2|) 88)) (-4060 (((-112) |#2|) 26)) (-4058 ((|#2| |#2|) 30)) (-4059 ((|#2| |#2|) 32)) (-4055 ((|#2| |#2| (-1169)) 83) ((|#2| |#2|) 84)) (-4061 (((-168 |#2|) |#2|) 28)) (-4056 ((|#2| |#2| (-1169)) 85) ((|#2| |#2|) 86)))
+(((-1197 |#1| |#2|) (-10 -7 (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1169))) (-15 -4056 (|#2| |#2|)) (-15 -4056 (|#2| |#2| (-1169))) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -4061 ((-168 |#2|) |#2|))) (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))) (-13 (-27) (-1193) (-421 |#1|))) (T -1197))
+((-4061 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-168 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))) (-4056 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))) (-4055 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))) (-4055 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))))
+(-10 -7 (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1169))) (-15 -4056 (|#2| |#2|)) (-15 -4056 (|#2| |#2| (-1169))) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -4061 ((-168 |#2|) |#2|)))
+((-4062 ((|#4| |#4| |#1|) 27)) (-4063 ((|#4| |#4| |#1|) 28)))
+(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4062 (|#4| |#4| |#1|)) (-15 -4063 (|#4| |#4| |#1|))) (-556) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1198))
+((-4063 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-4062 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(-10 -7 (-15 -4062 (|#4| |#4| |#1|)) (-15 -4063 (|#4| |#4| |#1|)))
+((-4081 ((|#2| |#2|) 133)) (-4083 ((|#2| |#2|) 130)) (-4080 ((|#2| |#2|) 121)) (-4082 ((|#2| |#2|) 118)) (-4079 ((|#2| |#2|) 126)) (-4078 ((|#2| |#2|) 114)) (-4067 ((|#2| |#2|) 41)) (-4066 ((|#2| |#2|) 91)) (-4064 ((|#2| |#2|) 72)) (-4077 ((|#2| |#2|) 128)) (-4076 ((|#2| |#2|) 116)) (-4089 ((|#2| |#2|) 138)) (-4087 ((|#2| |#2|) 136)) (-4088 ((|#2| |#2|) 137)) (-4086 ((|#2| |#2|) 135)) (-4065 ((|#2| |#2|) 148)) (-4090 ((|#2| |#2|) 30 (-12 (|has| |#2| (-611 (-886 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-611 (-886 |#1|))) (|has| |#1| (-882 |#1|))))) (-4068 ((|#2| |#2|) 73)) (-4069 ((|#2| |#2|) 139)) (-4378 ((|#2| |#2|) 140)) (-4075 ((|#2| |#2|) 127)) (-4074 ((|#2| |#2|) 115)) (-4073 ((|#2| |#2|) 134)) (-4085 ((|#2| |#2|) 132)) (-4072 ((|#2| |#2|) 122)) (-4084 ((|#2| |#2|) 120)) (-4071 ((|#2| |#2|) 124)) (-4070 ((|#2| |#2|) 112)))
+(((-1199 |#1| |#2|) (-10 -7 (-15 -4378 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-886 |#1|))) (IF (|has| |#2| (-611 (-886 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -4090 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-846) (-452)) (-13 (-421 |#1|) (-1193))) (T -1199))
+((-4090 (*1 *2 *2) (-12 (-4 *3 (-611 (-886 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-611 (-886 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))) (-4378 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-421 *3) (-1193))))))
+(-10 -7 (-15 -4378 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-886 |#1|))) (IF (|has| |#2| (-611 (-886 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -4090 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1169)) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4229 (((-942 |#1|) $ (-767)) 16) (((-942 |#1|) $ (-767) (-767)) NIL)) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $ (-1169)) NIL) (((-767) $ (-1169) (-767)) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4352 (((-112) $) NIL)) (-3283 (($ $ (-637 (-1169)) (-637 (-531 (-1169)))) NIL) (($ $ (-1169) (-531 (-1169))) NIL) (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-4227 (($ $ (-1169)) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-4091 (($ (-1 $) (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4183 (($ $ (-767)) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (($ $ (-1169) $) NIL) (($ $ (-637 (-1169)) (-637 $)) NIL) (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL)) (-4225 (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-4363 (((-531 (-1169)) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-1169)) NIL) (($ (-942 |#1|)) NIL)) (-4092 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (((-942 |#1|) $ (-767)) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) NIL T CONST)) (-3053 (($) NIL T CONST)) (-3058 (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1200 |#1|) (-13 (-736 |#1| (-1169)) (-10 -8 (-15 -4092 ((-942 |#1|) $ (-767))) (-15 -4361 ($ (-1169))) (-15 -4361 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $ (-1169) |#1|)) (-15 -4091 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) (-1045)) (T -1200))
+((-4092 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-942 *4)) (-5 *1 (-1200 *4)) (-4 *4 (-1045)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1200 *3)) (-4 *3 (-1045)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1045)) (-5 *1 (-1200 *3)))) (-4227 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1200 *3)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)))) (-4091 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1200 *4))) (-5 *3 (-1169)) (-5 *1 (-1200 *4)) (-4 *4 (-38 (-407 (-546)))) (-4 *4 (-1045)))))
+(-13 (-736 |#1| (-1169)) (-10 -8 (-15 -4092 ((-942 |#1|) $ (-767))) (-15 -4361 ($ (-1169))) (-15 -4361 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $ (-1169) |#1|)) (-15 -4091 ($ (-1 $) (-1169) |#1|))) |%noBranch|)))
+((-4108 (((-112) |#5| $) 59) (((-112) $) 101)) (-4103 ((|#5| |#5| $) 74)) (-4125 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4104 (((-637 |#5|) (-637 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-3565 (((-3 $ "failed") (-637 |#5|)) 125)) (-4213 (((-3 $ "failed") $) 111)) (-4100 ((|#5| |#5| $) 93)) (-4109 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-4098 ((|#5| |#5| $) 97)) (-4257 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-4111 (((-2 (|:| -4276 (-637 |#5|)) (|:| -1853 (-637 |#5|))) $) 54)) (-4110 (((-112) |#5| $) 57) (((-112) $) 102)) (-3588 ((|#4| $) 107)) (-4212 (((-3 |#5| "failed") $) 109)) (-4112 (((-637 |#5|) $) 48)) (-4106 (((-112) |#5| $) 66) (((-112) $) 106)) (-4101 ((|#5| |#5| $) 80)) (-4114 (((-112) $ $) 26)) (-4107 (((-112) |#5| $) 62) (((-112) $) 104)) (-4102 ((|#5| |#5| $) 77)) (-4215 (((-3 |#5| "failed") $) 108)) (-4183 (($ $ |#5|) 126)) (-4363 (((-767) $) 51)) (-3936 (($ (-637 |#5|)) 123)) (-3300 (($ $ |#4|) 121)) (-3302 (($ $ |#4|) 120)) (-4099 (($ $) 119)) (-4361 (((-859) $) NIL) (((-637 |#5|) $) 112)) (-4093 (((-767) $) 129)) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-4105 (((-112) $ (-1 (-112) |#5| (-637 |#5|))) 99)) (-4095 (((-637 |#4|) $) 114)) (-4348 (((-112) |#4| $) 117)) (-3444 (((-112) $ $) 19)))
+(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4093 ((-767) |#1|)) (-15 -4183 (|#1| |#1| |#5|)) (-15 -4125 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4348 ((-112) |#4| |#1|)) (-15 -4095 ((-637 |#4|) |#1|)) (-15 -4213 ((-3 |#1| "failed") |#1|)) (-15 -4212 ((-3 |#5| "failed") |#1|)) (-15 -4215 ((-3 |#5| "failed") |#1|)) (-15 -4098 (|#5| |#5| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -4100 (|#5| |#5| |#1|)) (-15 -4101 (|#5| |#5| |#1|)) (-15 -4102 (|#5| |#5| |#1|)) (-15 -4103 (|#5| |#5| |#1|)) (-15 -4104 ((-637 |#5|) (-637 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4257 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -4108 ((-112) |#1|)) (-15 -4105 ((-112) |#1| (-1 (-112) |#5| (-637 |#5|)))) (-15 -4106 ((-112) |#5| |#1|)) (-15 -4107 ((-112) |#5| |#1|)) (-15 -4108 ((-112) |#5| |#1|)) (-15 -4109 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4110 ((-112) |#1|)) (-15 -4110 ((-112) |#5| |#1|)) (-15 -4111 ((-2 (|:| -4276 (-637 |#5|)) (|:| -1853 (-637 |#5|))) |#1|)) (-15 -4363 ((-767) |#1|)) (-15 -4112 ((-637 |#5|) |#1|)) (-15 -4113 ((-3 (-2 (|:| |bas| |#1|) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4113 ((-3 (-2 (|:| |bas| |#1|) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4114 ((-112) |#1| |#1|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#4|)) (-15 -3588 (|#4| |#1|)) (-15 -3565 ((-3 |#1| "failed") (-637 |#5|))) (-15 -4361 ((-637 |#5|) |#1|)) (-15 -3936 (|#1| (-637 |#5|))) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4125 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1201))
+NIL
+(-10 -8 (-15 -4093 ((-767) |#1|)) (-15 -4183 (|#1| |#1| |#5|)) (-15 -4125 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4348 ((-112) |#4| |#1|)) (-15 -4095 ((-637 |#4|) |#1|)) (-15 -4213 ((-3 |#1| "failed") |#1|)) (-15 -4212 ((-3 |#5| "failed") |#1|)) (-15 -4215 ((-3 |#5| "failed") |#1|)) (-15 -4098 (|#5| |#5| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -4100 (|#5| |#5| |#1|)) (-15 -4101 (|#5| |#5| |#1|)) (-15 -4102 (|#5| |#5| |#1|)) (-15 -4103 (|#5| |#5| |#1|)) (-15 -4104 ((-637 |#5|) (-637 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4257 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -4108 ((-112) |#1|)) (-15 -4105 ((-112) |#1| (-1 (-112) |#5| (-637 |#5|)))) (-15 -4106 ((-112) |#5| |#1|)) (-15 -4107 ((-112) |#5| |#1|)) (-15 -4108 ((-112) |#5| |#1|)) (-15 -4109 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4110 ((-112) |#1|)) (-15 -4110 ((-112) |#5| |#1|)) (-15 -4111 ((-2 (|:| -4276 (-637 |#5|)) (|:| -1853 (-637 |#5|))) |#1|)) (-15 -4363 ((-767) |#1|)) (-15 -4112 ((-637 |#5|) |#1|)) (-15 -4113 ((-3 (-2 (|:| |bas| |#1|) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4113 ((-3 (-2 (|:| |bas| |#1|) (|:| -3735 (-637 |#5|))) "failed") (-637 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4114 ((-112) |#1| |#1|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -3302 (|#1| |#1| |#4|)) (-15 -3588 (|#4| |#1|)) (-15 -3565 ((-3 |#1| "failed") (-637 |#5|))) (-15 -4361 ((-637 |#5|) |#1|)) (-15 -3936 (|#1| (-637 |#5|))) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4125 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4257 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4361 ((-859) |#1|)) (-15 -3444 ((-112) |#1| |#1|)))
+((-2953 (((-112) $ $) 7)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) 85)) (-4097 (((-637 $) (-637 |#4|)) 86)) (-3474 (((-637 |#3|) $) 33)) (-3298 (((-112) $) 26)) (-3289 (((-112) $) 17 (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) 101) (((-112) $) 97)) (-4103 ((|#4| |#4| $) 92)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) 27)) (-1296 (((-112) $ (-767)) 44)) (-4125 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-4139 (($) 45 T CONST)) (-3294 (((-112) $) 22 (|has| |#1| (-556)))) (-3296 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3295 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3297 (((-112) $) 25 (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3290 (((-637 |#4|) (-637 |#4|) $) 18 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) 19 (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) 36)) (-3564 (($ (-637 |#4|)) 35)) (-4213 (((-3 $ "failed") $) 82)) (-4100 ((|#4| |#4| $) 89)) (-1430 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4098 ((|#4| |#4| $) 87)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) 105)) (-2103 (((-637 |#4|) $) 52 (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) 104) (((-112) $) 103)) (-3588 ((|#3| $) 34)) (-4134 (((-112) $ (-767)) 43)) (-2993 (((-637 |#4|) $) 53 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) 47)) (-3304 (((-637 |#3|) $) 32)) (-3303 (((-112) |#3| $) 31)) (-4131 (((-112) $ (-767)) 42)) (-3650 (((-1151) $) 9)) (-4212 (((-3 |#4| "failed") $) 83)) (-4112 (((-637 |#4|) $) 107)) (-4106 (((-112) |#4| $) 99) (((-112) $) 95)) (-4101 ((|#4| |#4| $) 90)) (-4114 (((-112) $ $) 110)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) 100) (((-112) $) 96)) (-4102 ((|#4| |#4| $) 91)) (-3651 (((-1113) $) 10)) (-4215 (((-3 |#4| "failed") $) 84)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4094 (((-3 $ "failed") $ |#4|) 78)) (-4183 (($ $ |#4|) 77)) (-2105 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) 38)) (-3814 (((-112) $) 41)) (-3979 (($) 40)) (-4363 (((-767) $) 106)) (-2104 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-3811 (($ $) 39)) (-4385 (((-535) $) 69 (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) 60)) (-3300 (($ $ |#3|) 28)) (-3302 (($ $ |#3|) 30)) (-4099 (($ $) 88)) (-3301 (($ $ |#3|) 29)) (-4361 (((-859) $) 11) (((-637 |#4|) $) 37)) (-4093 (((-767) $) 76 (|has| |#3| (-368)))) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) "failed") (-637 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) "failed") (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) 98)) (-2106 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) 81)) (-4348 (((-112) |#3| $) 80)) (-3444 (((-112) $ $) 6)) (-4372 (((-767) $) 46 (|has| $ (-6 -4408)))))
+(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1202))
+((-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4113 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3735 (-637 *8)))) (-5 *3 (-637 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-4113 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3735 (-637 *9)))) (-5 *3 (-637 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *6)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -4276 (-637 *6)) (|:| -1853 (-637 *6)))))) (-4110 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4109 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-4108 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4107 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4106 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-637 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4106 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4257 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-4104 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-637 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-4103 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4102 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4101 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4100 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-4098 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-4096 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-637 (-2 (|:| -4276 *1) (|:| -1853 (-637 *7))))) (-5 *3 (-637 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-4215 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4212 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4213 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5)))) (-4348 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-4125 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-4094 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4183 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767)))))
+(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -4114 ((-112) $ $)) (-15 -4113 ((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |t#4|))) "failed") (-637 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4113 ((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |t#4|))) "failed") (-637 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4112 ((-637 |t#4|) $)) (-15 -4363 ((-767) $)) (-15 -4111 ((-2 (|:| -4276 (-637 |t#4|)) (|:| -1853 (-637 |t#4|))) $)) (-15 -4110 ((-112) |t#4| $)) (-15 -4110 ((-112) $)) (-15 -4109 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4108 ((-112) |t#4| $)) (-15 -4107 ((-112) |t#4| $)) (-15 -4106 ((-112) |t#4| $)) (-15 -4105 ((-112) $ (-1 (-112) |t#4| (-637 |t#4|)))) (-15 -4108 ((-112) $)) (-15 -4107 ((-112) $)) (-15 -4106 ((-112) $)) (-15 -4257 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4104 ((-637 |t#4|) (-637 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4103 (|t#4| |t#4| $)) (-15 -4102 (|t#4| |t#4| $)) (-15 -4101 (|t#4| |t#4| $)) (-15 -4100 (|t#4| |t#4| $)) (-15 -4099 ($ $)) (-15 -4098 (|t#4| |t#4| $)) (-15 -4097 ((-637 $) (-637 |t#4|))) (-15 -4096 ((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |t#4|)))) (-637 |t#4|))) (-15 -4215 ((-3 |t#4| "failed") $)) (-15 -4212 ((-3 |t#4| "failed") $)) (-15 -4213 ((-3 $ "failed") $)) (-15 -4095 ((-637 |t#3|) $)) (-15 -4348 ((-112) |t#3| $)) (-15 -4125 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4094 ((-3 $ "failed") $ |t#4|)) (-15 -4183 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -4093 ((-767) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-610 (-637 |#4|)) . T) ((-610 (-859)) . T) ((-151 |#4|) . T) ((-611 (-535)) |has| |#4| (-611 (-535))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1207) . T))
+((-4120 (($ |#1| (-637 (-637 (-939 (-225)))) (-112)) 18)) (-4119 (((-112) $ (-112)) 17)) (-4118 (((-112) $) 16)) (-4116 (((-637 (-637 (-939 (-225)))) $) 13)) (-4115 ((|#1| $) 8)) (-4117 (((-112) $) 15)))
+(((-1203 |#1|) (-10 -8 (-15 -4115 (|#1| $)) (-15 -4116 ((-637 (-637 (-939 (-225)))) $)) (-15 -4117 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -4119 ((-112) $ (-112))) (-15 -4120 ($ |#1| (-637 (-637 (-939 (-225)))) (-112)))) (-970)) (T -1203))
+((-4120 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1203 *2)) (-4 *2 (-970)))) (-4119 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-4115 (*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970)))))
+(-10 -8 (-15 -4115 (|#1| $)) (-15 -4116 ((-637 (-637 (-939 (-225)))) $)) (-15 -4117 ((-112) $)) (-15 -4118 ((-112) $)) (-15 -4119 ((-112) $ (-112))) (-15 -4120 ($ |#1| (-637 (-637 (-939 (-225)))) (-112))))
+((-4122 (((-939 (-225)) (-939 (-225))) 25)) (-4121 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-4124 (((-637 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-637 (-637 (-225)))) 35)) (-4251 (((-225) (-939 (-225)) (-939 (-225))) 21)) (-4249 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 22)) (-4123 (((-637 (-637 (-225))) (-546)) 31)) (-4252 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 20)) (-4254 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 19)) (* (((-939 (-225)) (-225) (-939 (-225))) 18)))
+(((-1204) (-10 -7 (-15 -4121 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -4254 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4252 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4251 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -4249 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4122 ((-939 (-225)) (-939 (-225)))) (-15 -4123 ((-637 (-637 (-225))) (-546))) (-15 -4124 ((-637 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-637 (-637 (-225))))))) (T -1204))
+((-4124 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-637 (-637 (-225)))) (-5 *4 (-225)) (-5 *2 (-637 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *2 (-637 (-637 (-225)))) (-5 *1 (-1204)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4249 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4251 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) (-4252 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4254 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) (-4121 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225)))))
+(-10 -7 (-15 -4121 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -4254 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4252 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4251 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -4249 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4122 ((-939 (-225)) (-939 (-225)))) (-15 -4123 ((-637 (-637 (-225))) (-546))) (-15 -4124 ((-637 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-637 (-637 (-225))))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4125 ((|#1| $ (-767)) 13)) (-4248 (((-767) $) 12)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4361 (((-954 |#1|) $) 10) (($ (-954 |#1|)) 9) (((-859) $) 23 (|has| |#1| (-610 (-859))))) (-3444 (((-112) $ $) 16 (|has| |#1| (-1094)))))
+(((-1205 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -4125 (|#1| $ (-767))) (-15 -4248 ((-767) $)) (IF (|has| |#1| (-610 (-859))) (-6 (-610 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1207)) (T -1205))
+((-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1207)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1207)))))
+(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -4125 (|#1| $ (-767))) (-15 -4248 ((-767) $)) (IF (|has| |#1| (-610 (-859))) (-6 (-610 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-4128 (((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)) (-546)) 80)) (-4126 (((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|))) 74)) (-4127 (((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|))) 59)))
+(((-1206 |#1|) (-10 -7 (-15 -4126 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)))) (-15 -4127 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)))) (-15 -4128 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)) (-546)))) (-350)) (T -1206))
+((-4128 (*1 *2 *3 *4) (-12 (-5 *4 (-546)) (-4 *5 (-350)) (-5 *2 (-405 (-1163 (-1163 *5)))) (-5 *1 (-1206 *5)) (-5 *3 (-1163 (-1163 *5))))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-405 (-1163 (-1163 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1163 (-1163 *4))))) (-4126 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-405 (-1163 (-1163 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1163 (-1163 *4))))))
+(-10 -7 (-15 -4126 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)))) (-15 -4127 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)))) (-15 -4128 ((-405 (-1163 (-1163 |#1|))) (-1163 (-1163 |#1|)) (-546))))
+NIL
+(((-1207) (-140)) (T -1207))
+NIL
+(-13 (-10 -7 (-6 -2414)))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 9) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1208) (-1076)) (T -1208))
NIL
(-1076)
-NIL
-(((-1208) (-140)) (T -1208))
-NIL
-(-13 (-10 -7 (-6 -1370)))
-((-2492 (((-112)) 14)) (-2457 (((-1262) (-640 |#1|) (-640 |#1|)) 18) (((-1262) (-640 |#1|)) 19)) (-2514 (((-112) |#1| |#1|) 31 (|has| |#1| (-846)))) (-2481 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-2502 ((|#1| (-640 |#1|)) 32 (|has| |#1| (-846))) ((|#1| (-640 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-2469 (((-2 (|:| -3792 (-640 |#1|)) (|:| -3781 (-640 |#1|)))) 16)))
-(((-1209 |#1|) (-10 -7 (-15 -2457 ((-1262) (-640 |#1|))) (-15 -2457 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -2469 ((-2 (|:| -3792 (-640 |#1|)) (|:| -3781 (-640 |#1|))))) (-15 -2481 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2481 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2502 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2492 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -2502 (|#1| (-640 |#1|))) (-15 -2514 ((-112) |#1| |#1|))) |%noBranch|)) (-1093)) (T -1209))
-((-2514 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-1209 *2)))) (-2492 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-1093)))) (-2481 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-1209 *3)))) (-2481 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-2469 (*1 *2) (-12 (-5 *2 (-2 (|:| -3792 (-640 *3)) (|:| -3781 (-640 *3)))) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))))
-(-10 -7 (-15 -2457 ((-1262) (-640 |#1|))) (-15 -2457 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -2469 ((-2 (|:| -3792 (-640 |#1|)) (|:| -3781 (-640 |#1|))))) (-15 -2481 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2481 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2502 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2492 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -2502 (|#1| (-640 |#1|))) (-15 -2514 ((-112) |#1| |#1|))) |%noBranch|))
-((-2527 (((-1262) (-640 (-1169)) (-640 (-1169))) 13) (((-1262) (-640 (-1169))) 11)) (-2549 (((-1262)) 14)) (-2539 (((-2 (|:| -3781 (-640 (-1169))) (|:| -3792 (-640 (-1169))))) 18)))
-(((-1210) (-10 -7 (-15 -2527 ((-1262) (-640 (-1169)))) (-15 -2527 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -2539 ((-2 (|:| -3781 (-640 (-1169))) (|:| -3792 (-640 (-1169)))))) (-15 -2549 ((-1262))))) (T -1210))
-((-2549 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))) (-2539 (*1 *2) (-12 (-5 *2 (-2 (|:| -3781 (-640 (-1169))) (|:| -3792 (-640 (-1169))))) (-5 *1 (-1210)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))))
-(-10 -7 (-15 -2527 ((-1262) (-640 (-1169)))) (-15 -2527 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -2539 ((-2 (|:| -3781 (-640 (-1169))) (|:| -3792 (-640 (-1169)))))) (-15 -2549 ((-1262))))
-((-1798 (($ $) 17)) (-2560 (((-112) $) 24)))
-(((-1211 |#1|) (-10 -8 (-15 -1798 (|#1| |#1|)) (-15 -2560 ((-112) |#1|))) (-1212)) (T -1211))
-NIL
-(-10 -8 (-15 -1798 (|#1| |#1|)) (-15 -2560 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 52)) (-2802 (((-418 $) $) 53)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-2560 (((-112) $) 54)) (-3401 (((-112) $) 31)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2173 (((-418 $) $) 51)) (-3012 (((-3 $ "failed") $ $) 43)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24)))
+((-4132 (((-112)) 14)) (-4129 (((-1262) (-637 |#1|) (-637 |#1|)) 18) (((-1262) (-637 |#1|)) 19)) (-4134 (((-112) |#1| |#1|) 31 (|has| |#1| (-846)))) (-4131 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-4133 ((|#1| (-637 |#1|)) 32 (|has| |#1| (-846))) ((|#1| (-637 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-4130 (((-2 (|:| -3637 (-637 |#1|)) (|:| -3636 (-637 |#1|)))) 16)))
+(((-1209 |#1|) (-10 -7 (-15 -4129 ((-1262) (-637 |#1|))) (-15 -4129 ((-1262) (-637 |#1|) (-637 |#1|))) (-15 -4130 ((-2 (|:| -3637 (-637 |#1|)) (|:| -3636 (-637 |#1|))))) (-15 -4131 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4133 (|#1| (-637 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4132 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -4133 (|#1| (-637 |#1|))) (-15 -4134 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1209))
+((-4134 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-1209 *2)))) (-4132 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1094)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-1094)))) (-4131 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1209 *3)))) (-4131 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1094)))) (-4130 (*1 *2) (-12 (-5 *2 (-2 (|:| -3637 (-637 *3)) (|:| -3636 (-637 *3)))) (-5 *1 (-1209 *3)) (-4 *3 (-1094)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))))
+(-10 -7 (-15 -4129 ((-1262) (-637 |#1|))) (-15 -4129 ((-1262) (-637 |#1|) (-637 |#1|))) (-15 -4130 ((-2 (|:| -3637 (-637 |#1|)) (|:| -3636 (-637 |#1|))))) (-15 -4131 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4133 (|#1| (-637 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4132 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -4133 (|#1| (-637 |#1|))) (-15 -4134 ((-112) |#1| |#1|))) |%noBranch|))
+((-4135 (((-1262) (-637 (-1169)) (-637 (-1169))) 13) (((-1262) (-637 (-1169))) 11)) (-4137 (((-1262)) 14)) (-4136 (((-2 (|:| -3636 (-637 (-1169))) (|:| -3637 (-637 (-1169))))) 18)))
+(((-1210) (-10 -7 (-15 -4135 ((-1262) (-637 (-1169)))) (-15 -4135 ((-1262) (-637 (-1169)) (-637 (-1169)))) (-15 -4136 ((-2 (|:| -3636 (-637 (-1169))) (|:| -3637 (-637 (-1169)))))) (-15 -4137 ((-1262))))) (T -1210))
+((-4137 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))) (-4136 (*1 *2) (-12 (-5 *2 (-2 (|:| -3636 (-637 (-1169))) (|:| -3637 (-637 (-1169))))) (-5 *1 (-1210)))) (-4135 (*1 *2 *3 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))))
+(-10 -7 (-15 -4135 ((-1262) (-637 (-1169)))) (-15 -4135 ((-1262) (-637 (-1169)) (-637 (-1169)))) (-15 -4136 ((-2 (|:| -3636 (-637 (-1169))) (|:| -3637 (-637 (-1169)))))) (-15 -4137 ((-1262))))
+((-4189 (($ $) 17)) (-4138 (((-112) $) 24)))
+(((-1211 |#1|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4138 ((-112) |#1|))) (-1212)) (T -1211))
+NIL
+(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4138 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 52)) (-4384 (((-405 $) $) 53)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-4138 (((-112) $) 54)) (-2552 (((-112) $) 31)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-4147 (((-405 $) $) 51)) (-3872 (((-3 $ "failed") $ $) 43)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44)) (-3518 (((-767)) 28 T CONST)) (-2219 (((-112) $ $) 40)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24)))
(((-1212) (-140)) (T -1212))
-((-2560 (*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) (-1798 (*1 *1 *1) (-4 *1 (-1212))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))))
-(-13 (-452) (-10 -8 (-15 -2560 ((-112) $)) (-15 -2802 ((-418 $) $)) (-15 -1798 ($ $)) (-15 -2173 ((-418 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-3123 (($ $ $) NIL)) (-3113 (($ $ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-1213) (-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))) (T -1213))
-((-3113 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3123 (*1 *1 *1 *1) (-5 *1 (-1213))) (-2569 (*1 *1) (-5 *1 (-1213))))
-(-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))
-((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-3123 (($ $ $) NIL)) (-3113 (($ $ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-1214) (-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))) (T -1214))
-((-3113 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3123 (*1 *1 *1 *1) (-5 *1 (-1214))) (-2569 (*1 *1) (-5 *1 (-1214))))
-(-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))
-((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1677 (((-112) $ $) NIL)) (-3750 (((-767)) NIL)) (-2569 (($) NIL)) (-1690 (($) NIL)) (-3088 (($ $ $) NIL) (($) NIL T CONST)) (-1776 (($ $ $) NIL) (($) NIL T CONST)) (-3990 (((-917) $) NIL)) (-3854 (((-1151) $) NIL)) (-2552 (($ (-917)) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) NIL)) (-3123 (($ $ $) NIL)) (-3113 (($ $ $) NIL)) (-1779 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL)) (-1743 (((-112) $ $) NIL)))
-(((-1215) (-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))) (T -1215))
-((-3113 (*1 *1 *1 *1) (-5 *1 (-1215))) (-3123 (*1 *1 *1 *1) (-5 *1 (-1215))) (-2569 (*1 *1) (-5 *1 (-1215))))
-(-13 (-840) (-10 -8 (-15 -3113 ($ $ $)) (-15 -3123 ($ $ $)) (-15 -2569 ($))))
-((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-2238 (((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)) 23)))
-(((-1216 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2238 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1216))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169)))))
-(-10 -7 (-15 -2238 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-1770 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 165 (|has| |#1| (-363)))) (-2802 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2185 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1747 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-1793 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-3094 (($ $ $) 160 (|has| |#1| (-363)))) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-2580 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-3054 (($ $ $) 159 (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2560 (((-112) $) 167 (|has| |#1| (-363)))) (-3381 (((-112) $) 76)) (-2179 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-563) $) 103) (((-563) $ (-563)) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) 104)) (-2072 (($ (-1 |#1| (-563)) $) 175)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3805 (((-112) $) 65)) (-2587 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-4372 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3517 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 168 (|has| |#1| (-363)))) (-2062 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4034 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3551 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2173 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 161 (|has| |#1| (-363)))) (-1751 (($ $ (-563)) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3372 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-1993 (((-767) $) 157 (|has| |#1| (-363)))) (-2308 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 158 (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-3871 (((-563) $) 67)) (-1805 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-3244 ((|#1| $ (-563)) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-1839 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1816 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
-(((-1217 |#1|) (-140) (-1045)) (T -1217))
-((-3049 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1217 *3)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045)))) (-2580 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-2580 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-2062 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-2062 (*1 *1 *1 *2) (-4034 (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2605 ((-640 *2) *3))) (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))))
-(-13 (-1235 |t#1| (-563)) (-10 -8 (-15 -3049 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |t#1|))))) (-15 -2072 ($ (-1 |t#1| (-563)) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -2580 ((-407 (-948 |t#1|)) $ (-563))) (-15 -2580 ((-407 (-948 |t#1|)) $ (-563) (-563)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $)) (IF (|has| |t#1| (-15 -2062 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2605 ((-640 (-1169)) |t#1|))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-563) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T))
-((-3439 (((-112) $) 12)) (-2130 (((-3 |#3| "failed") $) 17) (((-3 (-1169) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL)) (-2057 ((|#3| $) 14) (((-1169) $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL)))
-(((-1218 |#1| |#2| |#3|) (-10 -8 (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -3439 ((-112) |#1|))) (-1219 |#2| |#3|) (-1045) (-1248 |#2|)) (T -1218))
-NIL
-(-10 -8 (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2130 ((-3 (-1169) "failed") |#1|)) (-15 -2057 ((-1169) |#1|)) (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -3439 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3944 ((|#2| $) 231 (-2188 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-2609 ((|#2| $) 267)) (-2591 (((-3 |#2| "failed") $) 263)) (-2651 ((|#2| $) 264)) (-1770 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-2093 (((-418 (-1165 $)) (-1165 $)) 240 (-2188 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1798 (($ $) 165 (|has| |#1| (-363)))) (-2802 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2185 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 237 (-2188 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2003 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1747 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-2807 (((-563) $) 249 (-2188 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-1793 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#2| "failed") $) 270) (((-3 (-563) "failed") $) 260 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) 258 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) 242 (-2188 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2057 ((|#2| $) 271) (((-563) $) 259 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) 257 (-2188 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) 241 (-2188 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2600 (($ $) 266) (($ (-563) $) 265)) (-3094 (($ $ $) 160 (|has| |#1| (-363)))) (-2750 (($ $) 63)) (-1476 (((-684 |#2|) (-684 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 219 (-2188 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) 218 (-2188 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 33)) (-2580 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-1690 (($) 233 (-2188 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3054 (($ $ $) 159 (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2560 (((-112) $) 167 (|has| |#1| (-363)))) (-3414 (((-112) $) 247 (-2188 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3381 (((-112) $) 76)) (-2179 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 225 (-2188 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 224 (-2188 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-1775 (((-563) $) 103) (((-563) $ (-563)) 102)) (-3401 (((-112) $) 31)) (-2043 (($ $) 229 (|has| |#1| (-363)))) (-2143 ((|#2| $) 227 (|has| |#1| (-363)))) (-2172 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1983 (((-3 $ "failed") $) 261 (-2188 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-3426 (((-112) $) 248 (-2188 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1821 (($ $ (-917)) 104)) (-2072 (($ (-1 |#1| (-563)) $) 175)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3805 (((-112) $) 65)) (-2587 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-3088 (($ $ $) 251 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1776 (($ $ $) 252 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2238 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-4372 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3517 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2659 (($ (-563) |#2|) 268)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 168 (|has| |#1| (-363)))) (-2062 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4034 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-2522 (($) 262 (-2188 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3551 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3935 (($ $) 232 (-2188 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3954 ((|#2| $) 235 (-2188 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2075 (((-418 (-1165 $)) (-1165 $)) 238 (-2188 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2083 (((-418 (-1165 $)) (-1165 $)) 239 (-2188 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2173 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 161 (|has| |#1| (-363)))) (-1751 (($ $ (-563)) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3372 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) 212 (-2188 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) 211 (-2188 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) 210 (-2188 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-2188 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-2188 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) 207 (-2188 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-1993 (((-767) $) 157 (|has| |#1| (-363)))) (-2308 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105))) (($ $ |#2|) 206 (-2188 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 158 (|has| |#1| (-363)))) (-4203 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 216 (|has| |#1| (-363))) (($ $ (-767)) 87 (-4034 (-2188 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 85 (-4034 (-2188 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 92 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 91 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 90 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 89 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-2033 (($ $) 230 (|has| |#1| (-363)))) (-2153 ((|#2| $) 228 (|has| |#1| (-363)))) (-3871 (((-563) $) 67)) (-1805 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2219 (((-225) $) 246 (-2188 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) 245 (-2188 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) 244 (-2188 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) 223 (-2188 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) 222 (-2188 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 236 (-2188 (-2188 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#1| (-363))))) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1169)) 243 (-2188 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-3244 ((|#1| $ (-563)) 62)) (-2047 (((-3 $ "failed") $) 51 (-4034 (-2188 (-4034 (|has| |#2| (-145)) (-2188 (|has| $ (-145)) (|has| |#2| (-905)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-3965 ((|#2| $) 234 (-2188 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1839 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1816 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-1462 (($ $) 250 (-2188 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 214 (|has| |#1| (-363))) (($ $ (-767)) 88 (-4034 (-2188 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 86 (-4034 (-2188 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 96 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 95 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 94 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 93 (-4034 (-2188 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-1779 (((-112) $ $) 254 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1754 (((-112) $ $) 255 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 253 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1743 (((-112) $ $) 256 (-2188 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
-(((-1219 |#1| |#2|) (-140) (-1045) (-1248 |t#1|)) (T -1219))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)) (-5 *2 (-563)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3)) (-4 *3 (-1248 *4)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-2600 (*1 *1 *1) (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2)))) (-2600 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-2591 (*1 *2 *1) (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))))
-(-13 (-1217 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -2659 ($ (-563) |t#2|)) (-15 -3871 ((-563) $)) (-15 -2609 (|t#2| $)) (-15 -2600 ($ $)) (-15 -2600 ($ (-563) $)) (-15 -2651 (|t#2| $)) (-15 -2591 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-988 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-613 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 (-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-555) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 |#2|) |has| |#1| (-363)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((-636 |#2|) |has| |#1| (-363)) ((-713 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1169)) -4034 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) ((-882 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563)))) ((-880 |#2|) |has| |#1| (-363)) ((-905) -12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-988 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1018) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-1034 (-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-1034 |#2|) . T) ((-1051 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) -12 (|has| |#1| (-363)) (|has| |#2| (-1144))) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1208) |has| |#1| (-363)) ((-1212) |has| |#1| (-363)) ((-1217 |#1|) . T) ((-1235 |#1| #0#) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 70)) (-3944 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 88)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-563)) 97) (($ $ (-563) (-563)) 99)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 47)) (-2609 ((|#2| $) 11)) (-2591 (((-3 |#2| "failed") $) 30)) (-2651 ((|#2| $) 31)) (-1770 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-2807 (((-563) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 57)) (-1793 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) 144) (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2057 ((|#2| $) 143) (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2600 (($ $) 61) (($ (-563) $) 24)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-1476 (((-684 |#2|) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 77)) (-2580 (((-407 (-948 |#1|)) $ (-563)) 112 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 114 (|has| |#1| (-555)))) (-1690 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3414 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3381 (((-112) $) 64)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-1775 (((-563) $) 93) (((-563) $ (-563)) 95)) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL (|has| |#1| (-363)))) (-2143 ((|#2| $) 151 (|has| |#1| (-363)))) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1983 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-3426 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1821 (($ $ (-917)) 136)) (-2072 (($ (-1 |#1| (-563)) $) 132)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-563)) 19) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3088 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1776 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2238 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-4372 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2659 (($ (-563) |#2|) 10)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 145 (|has| |#1| (-363)))) (-2062 (($ $) 214 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 219 (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-2522 (($) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3935 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3954 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-563)) 126)) (-3012 (((-3 $ "failed") $ $) 116 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-563)) 91) (($ $ $) 79 (|has| (-563) (-1105))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4034 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 137 (-4034 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) 140 (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2033 (($ $) NIL (|has| |#1| (-363)))) (-2153 ((|#2| $) 152 (|has| |#1| (-363)))) (-3871 (((-563) $) 12)) (-1805 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-2219 (((-225) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3369 (($ $) 124)) (-1692 (((-858) $) 244) (($ (-563)) 23) (($ |#1|) 21 (|has| |#1| (-172))) (($ |#2|) 20) (($ (-1169)) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 155 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-563)) 74)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3914 (((-767)) 142)) (-3412 ((|#1| $) 90)) (-3965 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1839 (($ $) 204 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 208 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-563)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 210 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 206 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-1462 (($ $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2239 (($) 13 T CONST)) (-2253 (($) 17 T CONST)) (-3213 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4034 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4034 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1779 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1754 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1718 (((-112) $ $) 63)) (-1766 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1743 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363))) (($ |#2| |#2|) 150 (|has| |#1| (-363)))) (-1825 (($ $) 213) (($ $ $) 68)) (-1813 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) 73) (($ $ (-563)) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-363))) (($ |#2| $) 147 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1220 |#1| |#2|) (-1219 |#1| |#2|) (-1045) (-1248 |#1|)) (T -1220))
-NIL
-(-1219 |#1| |#2|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3944 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 10)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3231 (($ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3211 (((-112) $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1763 (($ $ (-563)) NIL) (($ $ (-563) (-563)) NIL)) (-1787 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-2609 (((-1249 |#1| |#2| |#3|) $) NIL)) (-2591 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL)) (-2651 (((-1249 |#1| |#2| |#3|) $) NIL)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2807 (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3049 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2057 (((-1249 |#1| |#2| |#3|) $) NIL) (((-1169) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2600 (($ $) NIL) (($ (-563) $) NIL)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-1249 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-1249 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1249 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) NIL)) (-2580 (((-407 (-948 |#1|)) $ (-563)) NIL (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) NIL (|has| |#1| (-555)))) (-1690 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3414 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-1775 (((-563) $) NIL) (((-563) $ (-563)) NIL)) (-3401 (((-112) $) NIL)) (-2043 (($ $) NIL (|has| |#1| (-363)))) (-2143 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1983 (((-3 $ "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-3426 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1821 (($ $ (-917)) NIL)) (-2072 (($ (-1 |#1| (-563)) $) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-563)) 17) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3088 (($ $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1776 (($ $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2659 (($ (-563) (-1249 |#1| |#2| |#3|)) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) 25 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 26 (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3935 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3954 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-563)) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1249 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1249 |#1| |#2| |#3|)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-563)) NIL) (($ $ $) NIL (|has| (-563) (-1105))) (($ $ (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 24) (($ $ (-767)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 23 (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2033 (($ $) NIL (|has| |#1| (-363)))) (-2153 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3871 (((-563) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2219 (((-536) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1249 |#1| |#2| |#3|)) NIL) (($ (-1253 |#2|)) 22) (($ (-1169)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-3244 ((|#1| $ (-563)) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 11)) (-3965 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1462 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2239 (($) 19 T CONST)) (-2253 (($) 15 T CONST)) (-3213 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1779 (((-112) $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1754 (((-112) $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1743 (((-112) $ $) NIL (-4034 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1221 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1221))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-2626 (((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112)) 12)) (-2619 (((-418 |#1|) |#1|) 22)) (-2173 (((-418 |#1|) |#1|) 21)))
-(((-1222 |#1|) (-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1|)) (-15 -2626 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112)))) (-1233 (-563))) (T -1222))
-((-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563))))))) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-2173 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))))
-(-10 -7 (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2619 ((-418 |#1|) |#1|)) (-15 -2626 ((-2 (|:| |contp| (-563)) (|:| -1337 (-640 (-2 (|:| |irr| |#1|) (|:| -3259 (-563)))))) |#1| (-112))))
-((-2238 (((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 23 (|has| |#1| (-844))) (((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 17)))
-(((-1223 |#1| |#2|) (-10 -7 (-15 -2238 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2238 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1223))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1223 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6)))))
-(-10 -7 (-15 -2238 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2238 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4260 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2238 (((-1149 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-844)))) (-3792 ((|#1| $) 14)) (-3289 ((|#1| $) 10)) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3302 (((-563) $) 18)) (-3781 ((|#1| $) 17)) (-3430 ((|#1| $) 11)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2637 (((-112) $) 16)) (-2212 (((-1149 |#1|) $) 38 (|has| |#1| (-844))) (((-1149 |#1|) (-640 $)) 37 (|has| |#1| (-844)))) (-2219 (($ |#1|) 25)) (-1692 (($ (-1087 |#1|)) 24) (((-858) $) 34 (|has| |#1| (-1093)))) (-2177 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1464 (($ $ (-563)) 13)) (-1718 (((-112) $ $) 27 (|has| |#1| (-1093)))))
-(((-1224 |#1|) (-13 (-1086 |#1|) (-10 -8 (-15 -2177 ($ |#1|)) (-15 -4260 ($ |#1|)) (-15 -1692 ($ (-1087 |#1|))) (-15 -2637 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|))) (-1208)) (T -1224))
-((-2177 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-4260 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208)))))
-(-13 (-1086 |#1|) (-10 -8 (-15 -2177 ($ |#1|)) (-15 -4260 ($ |#1|)) (-15 -1692 ($ (-1087 |#1|))) (-15 -2637 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|)))
-((-2238 (((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)) 15)))
-(((-1225 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)))) (-1169) (-1045) (-1169) (-1045)) (T -1225))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8)) (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169)))))
-(-10 -7 (-15 -2238 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|))))
-((-2674 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2655 ((|#1| |#3|) 13)) (-2663 ((|#3| |#3|) 19)))
-(((-1226 |#1| |#2| |#3|) (-10 -7 (-15 -2655 (|#1| |#3|)) (-15 -2663 (|#3| |#3|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-1233 |#2|)) (T -1226))
-((-2674 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-2663 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2)) (-4 *2 (-1233 *4)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -2655 (|#1| |#3|)) (-15 -2663 (|#3| |#3|)) (-15 -2674 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1456 (((-3 |#2| "failed") |#2| (-767) |#1|) 29)) (-2682 (((-3 |#2| "failed") |#2| (-767)) 30)) (-1479 (((-3 (-2 (|:| -1685 |#2|) (|:| -1700 |#2|)) "failed") |#2|) 42)) (-1490 (((-640 |#2|) |#2|) 44)) (-1469 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1227 |#1| |#2|) (-10 -7 (-15 -2682 ((-3 |#2| "failed") |#2| (-767))) (-15 -1456 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -1469 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1479 ((-3 (-2 (|:| -1685 |#2|) (|:| -1700 |#2|)) "failed") |#2|)) (-15 -1490 ((-640 |#2|) |#2|))) (-13 (-555) (-147)) (-1233 |#1|)) (T -1227))
-((-1490 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-1479 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-2 (|:| -1685 *3) (|:| -1700 *3))) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-1469 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1233 *3)))) (-1456 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))) (-2682 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))))
-(-10 -7 (-15 -2682 ((-3 |#2| "failed") |#2| (-767))) (-15 -1456 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -1469 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1479 ((-3 (-2 (|:| -1685 |#2|) (|:| -1700 |#2|)) "failed") |#2|)) (-15 -1490 ((-640 |#2|) |#2|)))
-((-1502 (((-3 (-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) "failed") |#2| |#2|) 29)))
-(((-1228 |#1| |#2|) (-10 -7 (-15 -1502 ((-3 (-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) "failed") |#2| |#2|))) (-555) (-1233 |#1|)) (T -1228))
-((-1502 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-1228 *4 *3)) (-4 *3 (-1233 *4)))))
-(-10 -7 (-15 -1502 ((-3 (-2 (|:| -1765 |#2|) (|:| -3443 |#2|)) "failed") |#2| |#2|)))
-((-1513 ((|#2| |#2| |#2|) 19)) (-1527 ((|#2| |#2| |#2|) 30)) (-1539 ((|#2| |#2| |#2| (-767) (-767)) 36)))
-(((-1229 |#1| |#2|) (-10 -7 (-15 -1513 (|#2| |#2| |#2|)) (-15 -1527 (|#2| |#2| |#2|)) (-15 -1539 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1233 |#1|)) (T -1229))
-((-1539 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1233 *4)))) (-1527 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))) (-1513 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))))
-(-10 -7 (-15 -1513 (|#2| |#2| |#2|)) (-15 -1527 (|#2| |#2| |#2|)) (-15 -1539 (|#2| |#2| |#2| (-767) (-767))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-1740 (((-1257 |#2|) $ (-767)) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-1714 (($ (-1165 |#2|)) NIL)) (-2138 (((-1165 $) $ (-1075)) NIL) (((-1165 |#2|) $) NIL)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-3231 (($ $) NIL (|has| |#2| (-555)))) (-3211 (((-112) $) NIL (|has| |#2| (-555)))) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-1601 (($ $ $) NIL (|has| |#2| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1798 (($ $) NIL (|has| |#2| (-452)))) (-2802 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2003 (((-112) $ $) NIL (|has| |#2| (-363)))) (-1660 (($ $ (-767)) NIL)) (-1647 (($ $ (-767)) NIL)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2057 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-1075) $) NIL)) (-1612 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-3094 (($ $ $) NIL (|has| |#2| (-363)))) (-2750 (($ $) NIL)) (-1476 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3054 (($ $ $) NIL (|has| |#2| (-363)))) (-1634 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#2| (-555)))) (-1564 (((-2 (|:| -2310 |#2|) (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-4151 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-2738 (((-640 $) $) NIL)) (-2560 (((-112) $) NIL (|has| |#2| (-905)))) (-2159 (($ $ |#2| (-767) $) NIL)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-1775 (((-767) $ $) NIL (|has| |#2| (-555)))) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-1983 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-2595 (($ (-1165 |#2|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1821 (($ $ (-767)) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-2587 (($ |#2| (-767)) 17) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1075)) NIL) (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL)) (-3908 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3088 (($ $ $) NIL (|has| |#2| (-846)))) (-1776 (($ $ $) NIL (|has| |#2| (-846)))) (-2170 (($ (-1 (-767) (-767)) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-1726 (((-1165 |#2|) $) NIL)) (-1698 (((-3 (-1075) "failed") $) NIL)) (-2715 (($ $) NIL)) (-2725 ((|#2| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3854 (((-1151) $) NIL)) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) NIL)) (-3939 (((-3 (-640 $) "failed") $) NIL)) (-3930 (((-3 (-640 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1075)) (|:| -3311 (-767))) "failed") $) NIL)) (-2062 (($ $) NIL (|has| |#2| (-38 (-407 (-563)))))) (-2522 (($) NIL (|has| |#2| (-1144)) CONST)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 ((|#2| $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3551 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2646 (($ $ (-767) |#2| $) NIL)) (-2075 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2173 (((-418 $) $) NIL (|has| |#2| (-905)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#2| (-363)))) (-3012 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1542 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-640 (-1075)) (-640 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-1993 (((-767) $) NIL (|has| |#2| (-363)))) (-2308 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-555))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-555)))) (-1699 (((-3 $ "failed") $ (-767)) NIL)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#2| (-363)))) (-1623 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4203 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3871 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2219 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3885 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1590 (((-3 $ "failed") $ $) NIL (|has| |#2| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-555)))) (-1692 (((-858) $) 13) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) NIL) (($ (-1253 |#1|)) 19) (($ (-407 (-563))) NIL (-4034 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2047 (((-3 $ "failed") $) NIL (-4034 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-3223 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2239 (($) NIL T CONST)) (-2253 (($) 14 T CONST)) (-3213 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1779 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1766 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1836 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1230 |#1| |#2|) (-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -2646 ($ $ (-767) |#2| $)))) (-1169) (-1045)) (T -1230))
-((-2646 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169)) (-4 *3 (-1045)))))
-(-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -2646 ($ $ (-767) |#2| $))))
-((-2238 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1231 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1233 |#1|) (-1045) (-1233 |#3|)) (T -1231))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1740 (((-1257 |#2|) $ (-767)) 114)) (-2605 (((-640 (-1075)) $) 15)) (-1714 (($ (-1165 |#2|)) 67)) (-3897 (((-767) $) NIL) (((-767) $ (-640 (-1075))) 18)) (-2093 (((-418 (-1165 $)) (-1165 $)) 184)) (-1798 (($ $) 174)) (-2802 (((-418 $) $) 172)) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 82)) (-1660 (($ $ (-767)) 71)) (-1647 (($ $ (-767)) 73)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2130 (((-3 |#2| "failed") $) 117) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL)) (-2057 ((|#2| $) 115) (((-407 (-563)) $) NIL) (((-563) $) NIL) (((-1075) $) NIL)) (-1577 (($ $ $) 151)) (-1564 (((-2 (|:| -2310 |#2|) (|:| -1765 $) (|:| -3443 $)) $ $) 153)) (-1775 (((-767) $ $) 169)) (-1983 (((-3 $ "failed") $) 123)) (-2587 (($ |#2| (-767)) NIL) (($ $ (-1075) (-767)) 47) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-3908 (((-767) $) NIL) (((-767) $ (-1075)) 42) (((-640 (-767)) $ (-640 (-1075))) 43)) (-1726 (((-1165 |#2|) $) 59)) (-1698 (((-3 (-1075) "failed") $) 40)) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) 70)) (-2062 (($ $) 196)) (-2522 (($) 119)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 181)) (-2075 (((-418 (-1165 $)) (-1165 $)) 88)) (-2083 (((-418 (-1165 $)) (-1165 $)) 86)) (-2173 (((-418 $) $) 107)) (-1542 (($ $ (-640 (-294 $))) 39) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) 31) (($ $ (-640 (-1075)) (-640 |#2|)) 28) (($ $ (-1075) $) 25) (($ $ (-640 (-1075)) (-640 $)) 23)) (-1993 (((-767) $) 187)) (-2308 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 147) ((|#2| (-407 $) |#2|) 186) (((-407 $) $ (-407 $)) 168)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 190)) (-4203 (($ $ (-1075)) 140) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 138) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3871 (((-767) $) NIL) (((-767) $ (-1075)) 16) (((-640 (-767)) $ (-640 (-1075))) 20)) (-3885 ((|#2| $) NIL) (($ $ (-1075)) 125)) (-1590 (((-3 $ "failed") $ $) 161) (((-3 (-407 $) "failed") (-407 $) $) 157)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) 51) (($ (-407 (-563))) NIL) (($ $) NIL)))
-(((-1232 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2308 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1993 ((-767) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2308 (|#2| (-407 |#1|) |#2|)) (-15 -1550 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1564 ((-2 (|:| -2310 |#2|) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1590 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1590 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 ((-767) |#1| |#1|)) (-15 -2308 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1647 (|#1| |#1| (-767))) (-15 -1660 (|#1| |#1| (-767))) (-15 -1671 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| (-767))) (-15 -1714 (|#1| (-1165 |#2|))) (-15 -1726 ((-1165 |#2|) |#1|)) (-15 -1740 ((-1257 |#2|) |#1| (-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2308 (|#2| |#1| |#2|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2093 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3885 (|#1| |#1| (-1075))) (-15 -2605 ((-640 (-1075)) |#1|)) (-15 -3897 ((-767) |#1| (-640 (-1075)))) (-15 -3897 ((-767) |#1|)) (-15 -2587 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2587 (|#1| |#1| (-1075) (-767))) (-15 -3908 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3908 ((-767) |#1| (-1075))) (-15 -1698 ((-3 (-1075) "failed") |#1|)) (-15 -3871 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3871 ((-767) |#1| (-1075))) (-15 -1692 (|#1| (-1075))) (-15 -2130 ((-3 (-1075) "failed") |#1|)) (-15 -2057 ((-1075) |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-1075) |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1542 (|#1| |#1| (-1075) |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -3871 ((-767) |#1|)) (-15 -2587 (|#1| |#2| (-767))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -3908 ((-767) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -4203 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1075) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1075)))) (-15 -4203 (|#1| |#1| (-1075))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|))) (-1233 |#2|) (-1045)) (T -1232))
-NIL
-(-10 -8 (-15 -1692 (|#1| |#1|)) (-15 -2103 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2802 ((-418 |#1|) |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -2522 (|#1|)) (-15 -1983 ((-3 |#1| "failed") |#1|)) (-15 -2308 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1993 ((-767) |#1|)) (-15 -3263 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2308 (|#2| (-407 |#1|) |#2|)) (-15 -1550 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1564 ((-2 (|:| -2310 |#2|) (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1590 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1590 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 ((-767) |#1| |#1|)) (-15 -2308 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1647 (|#1| |#1| (-767))) (-15 -1660 (|#1| |#1| (-767))) (-15 -1671 ((-2 (|:| -1765 |#1|) (|:| -3443 |#1|)) |#1| (-767))) (-15 -1714 (|#1| (-1165 |#2|))) (-15 -1726 ((-1165 |#2|) |#1|)) (-15 -1740 ((-1257 |#2|) |#1| (-767))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4203 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1169) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1169)))) (-15 -4203 (|#1| |#1| (-1169))) (-15 -4203 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2308 (|#2| |#1| |#2|)) (-15 -2173 ((-418 |#1|) |#1|)) (-15 -2093 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2083 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2075 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2066 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3885 (|#1| |#1| (-1075))) (-15 -2605 ((-640 (-1075)) |#1|)) (-15 -3897 ((-767) |#1| (-640 (-1075)))) (-15 -3897 ((-767) |#1|)) (-15 -2587 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2587 (|#1| |#1| (-1075) (-767))) (-15 -3908 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3908 ((-767) |#1| (-1075))) (-15 -1698 ((-3 (-1075) "failed") |#1|)) (-15 -3871 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3871 ((-767) |#1| (-1075))) (-15 -1692 (|#1| (-1075))) (-15 -2130 ((-3 (-1075) "failed") |#1|)) (-15 -2057 ((-1075) |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1542 (|#1| |#1| (-1075) |#1|)) (-15 -1542 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1542 (|#1| |#1| (-1075) |#2|)) (-15 -1542 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1542 (|#1| |#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| (-294 |#1|))) (-15 -1542 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -3871 ((-767) |#1|)) (-15 -2587 (|#1| |#2| (-767))) (-15 -2130 ((-3 (-563) "failed") |#1|)) (-15 -2057 ((-563) |#1|)) (-15 -2130 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2057 ((-407 (-563)) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -2130 ((-3 |#2| "failed") |#1|)) (-15 -1692 (|#1| |#2|)) (-15 -3908 ((-767) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -4203 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -4203 (|#1| |#1| (-1075) (-767))) (-15 -4203 (|#1| |#1| (-640 (-1075)))) (-15 -4203 (|#1| |#1| (-1075))) (-15 -1692 (|#1| (-563))) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-1740 (((-1257 |#1|) $ (-767)) 238)) (-2605 (((-640 (-1075)) $) 110)) (-1714 (($ (-1165 |#1|)) 236)) (-2138 (((-1165 $) $ (-1075)) 125) (((-1165 |#1|) $) 124)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-3231 (($ $) 88 (|has| |#1| (-555)))) (-3211 (((-112) $) 90 (|has| |#1| (-555)))) (-3897 (((-767) $) 112) (((-767) $ (-640 (-1075))) 111)) (-3905 (((-3 $ "failed") $ $) 19)) (-1601 (($ $ $) 223 (|has| |#1| (-555)))) (-2093 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-1798 (($ $) 98 (|has| |#1| (-452)))) (-2802 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2066 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-2003 (((-112) $ $) 208 (|has| |#1| (-363)))) (-1660 (($ $ (-767)) 231)) (-1647 (($ $ (-767)) 230)) (-1550 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) 136)) (-2057 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) (((-1075) $) 137)) (-1612 (($ $ $ (-1075)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-3094 (($ $ $) 212 (|has| |#1| (-363)))) (-2750 (($ $) 154)) (-1476 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -1957 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 211 (|has| |#1| (-363)))) (-1634 (($ $ $) 229)) (-1577 (($ $ $) 220 (|has| |#1| (-555)))) (-1564 (((-2 (|:| -2310 |#1|) (|:| -1765 $) (|:| -3443 $)) $ $) 219 (|has| |#1| (-555)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 206 (|has| |#1| (-363)))) (-4151 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1075)) 105 (|has| |#1| (-452)))) (-2738 (((-640 $) $) 109)) (-2560 (((-112) $) 96 (|has| |#1| (-905)))) (-2159 (($ $ |#1| (-767) $) 172)) (-1812 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-1775 (((-767) $ $) 224 (|has| |#1| (-555)))) (-3401 (((-112) $) 31)) (-3481 (((-767) $) 169)) (-1983 (((-3 $ "failed") $) 204 (|has| |#1| (-1144)))) (-2595 (($ (-1165 |#1|) (-1075)) 117) (($ (-1165 $) (-1075)) 116)) (-1821 (($ $ (-767)) 235)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 215 (|has| |#1| (-363)))) (-3919 (((-640 $) $) 126)) (-3805 (((-112) $) 152)) (-2587 (($ |#1| (-767)) 153) (($ $ (-1075) (-767)) 119) (($ $ (-640 (-1075)) (-640 (-767))) 118)) (-1684 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $ (-1075)) 120) (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 233)) (-3908 (((-767) $) 170) (((-767) $ (-1075)) 122) (((-640 (-767)) $ (-640 (-1075))) 121)) (-3088 (($ $ $) 79 (|has| |#1| (-846)))) (-1776 (($ $ $) 78 (|has| |#1| (-846)))) (-2170 (($ (-1 (-767) (-767)) $) 171)) (-2238 (($ (-1 |#1| |#1|) $) 151)) (-1726 (((-1165 |#1|) $) 237)) (-1698 (((-3 (-1075) "failed") $) 123)) (-2715 (($ $) 149)) (-2725 ((|#1| $) 148)) (-3517 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3854 (((-1151) $) 9)) (-1671 (((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767)) 232)) (-3939 (((-3 (-640 $) "failed") $) 114)) (-3930 (((-3 (-640 $) "failed") $) 115)) (-3949 (((-3 (-2 (|:| |var| (-1075)) (|:| -3311 (-767))) "failed") $) 113)) (-2062 (($ $) 216 (|has| |#1| (-38 (-407 (-563)))))) (-2522 (($) 203 (|has| |#1| (-1144)) CONST)) (-1693 (((-1113) $) 10)) (-2695 (((-112) $) 166)) (-2705 ((|#1| $) 167)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3551 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2075 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-2083 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2173 (((-418 $) $) 99 (|has| |#1| (-905)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 213 (|has| |#1| (-363)))) (-3012 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 207 (|has| |#1| (-363)))) (-1542 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ (-1075) |#1|) 141) (($ $ (-640 (-1075)) (-640 |#1|)) 140) (($ $ (-1075) $) 139) (($ $ (-640 (-1075)) (-640 $)) 138)) (-1993 (((-767) $) 209 (|has| |#1| (-363)))) (-2308 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-555)))) (-1699 (((-3 $ "failed") $ (-767)) 234)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 210 (|has| |#1| (-363)))) (-1623 (($ $ (-1075)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-4203 (($ $ (-1075)) 42) (($ $ (-640 (-1075))) 41) (($ $ (-1075) (-767)) 40) (($ $ (-640 (-1075)) (-640 (-767))) 39) (($ $ (-767)) 253) (($ $) 251) (($ $ (-1169)) 250 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 249 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 248 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 247 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3871 (((-767) $) 150) (((-767) $ (-1075)) 130) (((-640 (-767)) $ (-640 (-1075))) 129)) (-2219 (((-888 (-379)) $) 82 (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3885 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1075)) 106 (|has| |#1| (-452)))) (-2054 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2188 (|has| $ (-145)) (|has| |#1| (-905))))) (-1590 (((-3 $ "failed") $ $) 222 (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-555)))) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ (-1075)) 135) (($ (-407 (-563))) 72 (-4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3955 (((-640 |#1|) $) 168)) (-3244 ((|#1| $ (-767)) 155) (($ $ (-1075) (-767)) 128) (($ $ (-640 (-1075)) (-640 (-767))) 127)) (-2047 (((-3 $ "failed") $) 73 (-4034 (-2188 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3914 (((-767)) 28)) (-2148 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-3223 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-1075)) 38) (($ $ (-640 (-1075))) 37) (($ $ (-1075) (-767)) 36) (($ $ (-640 (-1075)) (-640 (-767))) 35) (($ $ (-767)) 254) (($ $) 252) (($ $ (-1169)) 246 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 245 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 244 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 243 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1779 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1766 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1836 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1233 |#1|) (-140) (-1045)) (T -1233))
-((-1740 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-1699 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-1684 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1233 *3)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1233 *4)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-1634 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)))) (-4203 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-1612 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-2308 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-1775 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)) (-5 *2 (-767)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-1590 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-1590 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-1564 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2310 *3) (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1233 *3)))) (-1550 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1233 *3)))) (-2308 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2062 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))))
-(-13 (-945 |t#1| (-767) (-1075)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -1740 ((-1257 |t#1|) $ (-767))) (-15 -1726 ((-1165 |t#1|) $)) (-15 -1714 ($ (-1165 |t#1|))) (-15 -1821 ($ $ (-767))) (-15 -1699 ((-3 $ "failed") $ (-767))) (-15 -1684 ((-2 (|:| -1765 $) (|:| -3443 $)) $ $)) (-15 -1671 ((-2 (|:| -1765 $) (|:| -3443 $)) $ (-767))) (-15 -1660 ($ $ (-767))) (-15 -1647 ($ $ (-767))) (-15 -1634 ($ $ $)) (-15 -4203 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1623 (|t#1| $)) (-15 -1612 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -2308 ((-407 $) (-407 $) (-407 $))) (-15 -1775 ((-767) $ $)) (-15 -1601 ($ $ $)) (-15 -1590 ((-3 $ "failed") $ $)) (-15 -1590 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -1577 ($ $ $)) (-15 -1564 ((-2 (|:| -2310 |t#1|) (|:| -1765 $) (|:| -3443 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -1550 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4404) (-15 -2308 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-15 -2062 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4034 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1075)) . T) ((-613 |#1|) . T) ((-613 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-555)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4034 (|has| |#1| (-905)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-555) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 #2#) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) -12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379)))) ((-882 (-563)) -12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))) ((-945 |#1| #0# #2#) . T) ((-905) |has| |#1| (-905)) ((-916) |has| |#1| (-363)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1212) |has| |#1| (-905)))
-((-2605 (((-640 (-1075)) $) 28)) (-2750 (($ $) 25)) (-2587 (($ |#2| |#3|) NIL) (($ $ (-1075) |#3|) 22) (($ $ (-640 (-1075)) (-640 |#3|)) 21)) (-2715 (($ $) 14)) (-2725 ((|#2| $) 12)) (-3871 ((|#3| $) 10)))
-(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -2605 ((-640 (-1075)) |#1|)) (-15 -2587 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2587 (|#1| |#1| (-1075) |#3|)) (-15 -2750 (|#1| |#1|)) (-15 -2587 (|#1| |#2| |#3|)) (-15 -3871 (|#3| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2725 (|#2| |#1|))) (-1235 |#2| |#3|) (-1045) (-788)) (T -1234))
-NIL
-(-10 -8 (-15 -2605 ((-640 (-1075)) |#1|)) (-15 -2587 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2587 (|#1| |#1| (-1075) |#3|)) (-15 -2750 (|#1| |#1|)) (-15 -2587 (|#1| |#2| |#3|)) (-15 -3871 (|#3| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2725 (|#2| |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-1787 (((-1149 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3381 (((-112) $) 76)) (-1775 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3401 (((-112) $) 31)) (-1821 (($ $ (-917)) 104)) (-3805 (((-112) $) 65)) (-2587 (($ |#1| |#2|) 64) (($ $ (-1075) |#2|) 79) (($ $ (-640 (-1075)) (-640 |#2|)) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1751 (($ $ |#2|) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2308 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1105)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3871 ((|#2| $) 67)) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3244 ((|#1| $ |#2|) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1402 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
+((-4138 (*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-405 *1)) (-4 *1 (-1212)))) (-4189 (*1 *1 *1) (-4 *1 (-1212))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-405 *1)) (-4 *1 (-1212)))))
+(-13 (-452) (-10 -8 (-15 -4138 ((-112) $)) (-15 -4384 ((-405 $) $)) (-15 -4189 ($ $)) (-15 -4147 ((-405 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-4140 (($ $ $) NIL)) (-4141 (($ $ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-1213) (-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))) (T -1213))
+((-4141 (*1 *1 *1 *1) (-5 *1 (-1213))) (-4140 (*1 *1 *1 *1) (-5 *1 (-1213))) (-4139 (*1 *1) (-5 *1 (-1213))))
+(-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))
+((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-4140 (($ $ $) NIL)) (-4141 (($ $ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-1214) (-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))) (T -1214))
+((-4141 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4140 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4139 (*1 *1) (-5 *1 (-1214))))
+(-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))
+((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3528 (((-767)) NIL)) (-4139 (($) NIL)) (-3384 (($) NIL)) (-2919 (($ $ $) NIL) (($) NIL T CONST)) (-3249 (($ $ $) NIL) (($) NIL T CONST)) (-2167 (((-915) $) NIL)) (-3650 (((-1151) $) NIL)) (-2542 (($ (-915)) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) NIL)) (-4140 (($ $ $) NIL)) (-4141 (($ $ $) NIL)) (-2951 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL)) (-3074 (((-112) $ $) NIL)))
+(((-1215) (-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))) (T -1215))
+((-4141 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4140 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4139 (*1 *1) (-5 *1 (-1215))))
+(-13 (-840) (-10 -8 (-15 -4141 ($ $ $)) (-15 -4140 ($ $ $)) (-15 -4139 ($))))
+((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3521 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 10)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2220 (($ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2218 (((-112) $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4185 (($ $ (-546)) NIL) (($ $ (-546) (-546)) NIL)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) NIL)) (-4146 (((-1246 |#1| |#2| |#3|) $) NIL)) (-4143 (((-3 (-1246 |#1| |#2| |#3|) "failed") $) NIL)) (-4144 (((-1246 |#1| |#2| |#3|) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4038 (((-546) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-1246 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1169) #2#) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-546)) #2#) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363)))) (((-3 (-546) #2#) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))))) (-3564 (((-1246 |#1| |#2| |#3|) $) NIL) (((-1169) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-546)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363)))) (((-546) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))))) (-4145 (($ $) NIL) (($ (-546) $) NIL)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-1246 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-1246 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1246 |#1| |#2| |#3|)))) (-684 $) (-1256 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-636 (-546))) (|has| |#1| (-363)))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-636 (-546))) (|has| |#1| (-363))))) (-3873 (((-3 $ "failed") $) NIL)) (-4142 (((-407 (-942 |#1|)) $ (-546)) NIL (|has| |#1| (-556))) (((-407 (-942 |#1|)) $ (-546) (-546)) NIL (|has| |#1| (-556)))) (-3384 (($) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3594 (((-112) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-882 (-378))) (|has| |#1| (-363)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-882 (-546))) (|has| |#1| (-363))))) (-4186 (((-546) $) NIL) (((-546) $ (-546)) NIL)) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL (|has| |#1| (-363)))) (-3388 (((-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3855 (((-3 $ "failed") $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-3595 (((-112) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4191 (($ $ (-915)) NIL)) (-4230 (($ (-1 |#1| (-546)) $) NIL)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-546)) 17) (($ $ (-1075) (-546)) NIL) (($ $ (-637 (-1075)) (-637 (-546))) NIL)) (-2919 (($ $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3249 (($ $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4193 (($ (-546) (-1246 |#1| |#2| |#3|)) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) 25 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 26 (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3520 (($ $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3522 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-546)) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-546))))) (($ $ (-1169) (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-514 (-1169) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-1169)) (-637 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-514 (-1169) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-293 (-1246 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-293 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-637 (-1246 |#1| |#2| |#3|)) (-637 (-1246 |#1| |#2| |#3|))) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-309 (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-546)) NIL) (($ $ $) NIL (|has| (-546) (-1105))) (($ $ (-1246 |#1| |#2| |#3|)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-286 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 24) (($ $ (-767)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) 23 (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-3385 (($ $) NIL (|has| |#1| (-363)))) (-3387 (((-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-4363 (((-546) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4385 (((-535) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-611 (-535))) (|has| |#1| (-363)))) (((-378) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1016)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1016)) (|has| |#1| (-363)))) (((-886 (-378)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-611 (-886 (-378)))) (|has| |#1| (-363)))) (((-886 (-546)) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-611 (-886 (-546)))) (|has| |#1| (-363))))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1246 |#1| |#2| |#3|)) NIL) (($ (-1253 |#2|)) 22) (($ (-1169)) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-546))) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-1034 (-546))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-546))))))) (-4092 ((|#1| $ (-546)) NIL)) (-3091 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| $ (-145)) (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 11)) (-3523 (((-1246 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-546)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3794 (($ $) NIL (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3047 (($) 19 T CONST)) (-3053 (($) 15 T CONST)) (-3058 (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-2951 (((-112) $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2952 (((-112) $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3074 (((-112) $ $) NIL (-3943 (-12 (|has| (-1246 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1246 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1246 |#1| |#2| |#3|) (-1246 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 20)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1246 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1246 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1216 |#1| |#2| |#3|) (-13 (-1220 |#1| (-1246 |#1| |#2| |#3|)) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1216))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1220 |#1| (-1246 |#1| |#2| |#3|)) (-10 -8 (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-4373 (((-1216 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1216 |#1| |#3| |#5|)) 23)))
+(((-1217 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4373 ((-1216 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1216 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1217))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1216 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1216 *6 *8 *10)) (-5 *1 (-1217 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169)))))
+(-10 -7 (-15 -4373 ((-1216 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1216 |#1| |#3| |#5|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ (-546)) 101) (($ $ (-546) (-546)) 100)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) 108)) (-3898 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 165 (|has| |#1| (-363)))) (-4384 (((-405 $) $) 166 (|has| |#1| (-363)))) (-3427 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3896 (($ $) 137 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) 176)) (-3900 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-2949 (($ $ $) 160 (|has| |#1| (-363)))) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-4142 (((-407 (-942 |#1|)) $ (-546)) 174 (|has| |#1| (-556))) (((-407 (-942 |#1|)) $ (-546) (-546)) 173 (|has| |#1| (-556)))) (-2948 (($ $ $) 159 (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 154 (|has| |#1| (-363)))) (-4138 (((-112) $) 167 (|has| |#1| (-363)))) (-3282 (((-112) $) 76)) (-4042 (($) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-546) $) 103) (((-546) $ (-546)) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 119 (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) 104)) (-4230 (($ (-1 |#1| (-546)) $) 175)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 163 (|has| |#1| (-363)))) (-4352 (((-112) $) 65)) (-3283 (($ |#1| (-546)) 64) (($ $ (-1075) (-546)) 79) (($ $ (-637 (-1075)) (-637 (-546))) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-4357 (($ $) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-2048 (($ (-637 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 168 (|has| |#1| (-363)))) (-4227 (($ $) 172 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 171 (-3943 (-12 (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-546))))) (-12 (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-546)))))))) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 153 (|has| |#1| (-363)))) (-3552 (($ (-637 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4147 (((-405 $) $) 164 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 161 (|has| |#1| (-363)))) (-4183 (($ $ (-546)) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 155 (|has| |#1| (-363)))) (-4358 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-546)))))) (-1739 (((-767) $) 157 (|has| |#1| (-363)))) (-4214 ((|#1| $ (-546)) 107) (($ $ $) 84 (|has| (-546) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 158 (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (-4363 (((-546) $) 67)) (-3901 (($ $) 135 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 133 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556)))) (-4092 ((|#1| $ (-546)) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28 T CONST)) (-4187 ((|#1| $) 105)) (-3904 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3902 (($ $) 143 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 131 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-546)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 141 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 139 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 127 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 118 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
+(((-1218 |#1|) (-140) (-1045)) (T -1218))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1218 *3)))) (-4230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-546))) (-4 *1 (-1218 *3)) (-4 *3 (-1045)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1218 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-942 *4))))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-4 *1 (-1218 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-942 *4))))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546)))))) (-4227 (*1 *1 *1 *2) (-3943 (-12 (-5 *2 (-1169)) (-4 *1 (-1218 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-546)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1218 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3474 ((-637 *2) *3))) (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546)))))))))
+(-13 (-1235 |t#1| (-546)) (-10 -8 (-15 -4233 ($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |t#1|))))) (-15 -4230 ($ (-1 |t#1| (-546)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -4142 ((-407 (-942 |t#1|)) $ (-546))) (-15 -4142 ((-407 (-942 |t#1|)) $ (-546) (-546)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $)) (IF (|has| |t#1| (-15 -4227 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -3474 ((-637 (-1169)) |t#1|))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-546))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-546)) . T) ((-25) . T) ((-38 #2=(-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-546) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-286 $ $) |has| (-546) (-1105)) ((-290) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-556) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-643 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) ((-969 |#1| #1# (-1075)) . T) ((-917) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1051 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #1#) . T))
+((-3596 (((-112) $) 12)) (-3565 (((-3 |#3| #1="failed") $) 17) (((-3 (-1169) #1#) $) NIL) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 (-546) #1#) $) NIL)) (-3564 ((|#3| $) 14) (((-1169) $) NIL) (((-407 (-546)) $) NIL) (((-546) $) NIL)))
+(((-1219 |#1| |#2| |#3|) (-10 -8 (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -3565 ((-3 |#3| #1#) |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3596 ((-112) |#1|))) (-1220 |#2| |#3|) (-1045) (-1249 |#2|)) (T -1219))
+NIL
+(-10 -8 (-15 -3565 ((-3 (-546) #1="failed") |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3565 ((-3 (-1169) #1#) |#1|)) (-15 -3564 ((-1169) |#1|)) (-15 -3565 ((-3 |#3| #1#) |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3596 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3521 ((|#2| $) 231 (-3247 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ (-546)) 101) (($ $ (-546) (-546)) 100)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) 108)) (-4146 ((|#2| $) 267)) (-4143 (((-3 |#2| "failed") $) 263)) (-4144 ((|#2| $) 264)) (-3898 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-3096 (((-405 (-1163 $)) (-1163 $)) 240 (-3247 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4189 (($ $) 165 (|has| |#1| (-363)))) (-4384 (((-405 $) $) 166 (|has| |#1| (-363)))) (-3427 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 237 (-3247 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1740 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3896 (($ $) 137 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-4038 (((-546) $) 249 (-3247 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) 176)) (-3900 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#2| #2="failed") $) 270) (((-3 (-546) #2#) $) 260 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#1| (-363)))) (((-3 (-407 (-546)) #2#) $) 258 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#1| (-363)))) (((-3 (-1169) #2#) $) 242 (-3247 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-3564 ((|#2| $) 271) (((-546) $) 259 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#1| (-363)))) (((-407 (-546)) $) 257 (-3247 (|has| |#2| (-1034 (-546))) (|has| |#1| (-363)))) (((-1169) $) 241 (-3247 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-4145 (($ $) 266) (($ (-546) $) 265)) (-2949 (($ $ $) 160 (|has| |#1| (-363)))) (-4374 (($ $) 63)) (-2408 (((-684 |#2|) (-684 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 219 (-3247 (|has| |#2| (-636 (-546))) (|has| |#1| (-363)))) (((-684 (-546)) (-684 $)) 218 (-3247 (|has| |#2| (-636 (-546))) (|has| |#1| (-363))))) (-3873 (((-3 $ "failed") $) 33)) (-4142 (((-407 (-942 |#1|)) $ (-546)) 174 (|has| |#1| (-556))) (((-407 (-942 |#1|)) $ (-546) (-546)) 173 (|has| |#1| (-556)))) (-3384 (($) 233 (-3247 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2948 (($ $ $) 159 (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 154 (|has| |#1| (-363)))) (-4138 (((-112) $) 167 (|has| |#1| (-363)))) (-3594 (((-112) $) 247 (-3247 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3282 (((-112) $) 76)) (-4042 (($) 148 (|has| |#1| (-38 (-407 (-546)))))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 225 (-3247 (|has| |#2| (-882 (-378))) (|has| |#1| (-363)))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 224 (-3247 (|has| |#2| (-882 (-546))) (|has| |#1| (-363))))) (-4186 (((-546) $) 103) (((-546) $ (-546)) 102)) (-2552 (((-112) $) 31)) (-3386 (($ $) 229 (|has| |#1| (-363)))) (-3388 ((|#2| $) 227 (|has| |#1| (-363)))) (-3401 (($ $ (-546)) 119 (|has| |#1| (-38 (-407 (-546)))))) (-3855 (((-3 $ "failed") $) 261 (-3247 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-3595 (((-112) $) 248 (-3247 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-4191 (($ $ (-915)) 104)) (-4230 (($ (-1 |#1| (-546)) $) 175)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) 163 (|has| |#1| (-363)))) (-4352 (((-112) $) 65)) (-3283 (($ |#1| (-546)) 64) (($ $ (-1075) (-546)) 79) (($ $ (-637 (-1075)) (-637 (-546))) 78)) (-2919 (($ $ $) 251 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3249 (($ $ $) 252 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4373 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-4357 (($ $) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-2048 (($ (-637 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4193 (($ (-546) |#2|) 268)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 168 (|has| |#1| (-363)))) (-4227 (($ $) 172 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 171 (-3943 (-12 (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-546))))) (-12 (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-546)))))))) (-3856 (($) 262 (-3247 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 153 (|has| |#1| (-363)))) (-3552 (($ (-637 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3520 (($ $) 232 (-3247 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3522 ((|#2| $) 235 (-3247 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3094 (((-405 (-1163 $)) (-1163 $)) 238 (-3247 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3095 (((-405 (-1163 $)) (-1163 $)) 239 (-3247 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4147 (((-405 $) $) 164 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 161 (|has| |#1| (-363)))) (-4183 (($ $ (-546)) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 155 (|has| |#1| (-363)))) (-4358 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-546))))) (($ $ (-1169) |#2|) 212 (-3247 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-637 (-1169)) (-637 |#2|)) 211 (-3247 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-637 (-293 |#2|))) 210 (-3247 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-293 |#2|)) 209 (-3247 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-3247 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-637 |#2|) (-637 |#2|)) 207 (-3247 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-1739 (((-767) $) 157 (|has| |#1| (-363)))) (-4214 ((|#1| $ (-546)) 107) (($ $ $) 84 (|has| (-546) (-1105))) (($ $ |#2|) 206 (-3247 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 158 (|has| |#1| (-363)))) (-4225 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 216 (|has| |#1| (-363))) (($ $ (-767)) 87 (-3943 (-3247 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) 85 (-3943 (-3247 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) 92 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) 91 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) 90 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) 89 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-3385 (($ $) 230 (|has| |#1| (-363)))) (-3387 ((|#2| $) 228 (|has| |#1| (-363)))) (-4363 (((-546) $) 67)) (-3901 (($ $) 135 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 133 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-4385 (((-225) $) 246 (-3247 (|has| |#2| (-1016)) (|has| |#1| (-363)))) (((-378) $) 245 (-3247 (|has| |#2| (-1016)) (|has| |#1| (-363)))) (((-535) $) 244 (-3247 (|has| |#2| (-611 (-535))) (|has| |#1| (-363)))) (((-886 (-378)) $) 223 (-3247 (|has| |#2| (-611 (-886 (-378)))) (|has| |#1| (-363)))) (((-886 (-546)) $) 222 (-3247 (|has| |#2| (-611 (-886 (-546)))) (|has| |#1| (-363))))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 236 (-3247 (-3247 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#1| (-363))))) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1169)) 243 (-3247 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556)))) (-4092 ((|#1| $ (-546)) 62)) (-3091 (((-3 $ "failed") $) 51 (-3943 (-3247 (-3943 (|has| |#2| (-145)) (-3247 (|has| $ (-145)) (|has| |#2| (-906)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3518 (((-767)) 28)) (-4187 ((|#1| $) 105)) (-3523 ((|#2| $) 234 (-3247 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3904 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3902 (($ $) 143 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 131 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-546)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 141 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 139 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 127 (|has| |#1| (-38 (-407 (-546)))))) (-3794 (($ $) 250 (-3247 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 214 (|has| |#1| (-363))) (($ $ (-767)) 88 (-3943 (-3247 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) 86 (-3943 (-3247 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) 96 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169) (-767)) 95 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-637 (-1169))) 94 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))))) (($ $ (-1169)) 93 (-3943 (-3247 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))))) (-2951 (((-112) $ $) 254 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2952 (((-112) $ $) 255 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 253 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3074 (((-112) $ $) 256 (-3247 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 118 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
+(((-1220 |#1| |#2|) (-140) (-1045) (-1249 |t#1|)) (T -1220))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1249 *3)) (-5 *2 (-546)))) (-4193 (*1 *1 *2 *3) (-12 (-5 *2 (-546)) (-4 *4 (-1045)) (-4 *1 (-1220 *4 *3)) (-4 *3 (-1249 *4)))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))) (-4145 (*1 *1 *1) (-12 (-4 *1 (-1220 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1249 *2)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1249 *3)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))) (-4143 (*1 *2 *1) (|partial| -12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))))
+(-13 (-1218 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -4193 ($ (-546) |t#2|)) (-15 -4363 ((-546) $)) (-15 -4146 (|t#2| $)) (-15 -4145 ($ $)) (-15 -4145 ($ (-546) $)) (-15 -4144 (|t#2| $)) (-15 -4143 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-987 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-546)) . T) ((-25) . T) ((-38 #2=(-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-613 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 #3=(-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1016))) ((-611 (-378)) -12 (|has| |#1| (-363)) (|has| |#2| (-1016))) ((-611 (-535)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-535)))) ((-611 (-886 (-378))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-378))))) ((-611 (-886 (-546))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-546))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -3943 (|has| |#1| (-15 * (|#1| (-546) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-546) (-1105)) ((-290) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-514 (-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-643 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-643 |#1|) . T) ((-643 |#2|) |has| |#1| (-363)) ((-643 $) . T) ((-636 (-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-546)))) ((-636 |#2|) |has| |#1| (-363)) ((-713 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-793) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1169)) -3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169))))) ((-882 (-378)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-378)))) ((-882 (-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-546)))) ((-880 |#2|) |has| |#1| (-363)) ((-906) -12 (|has| |#1| (-363)) (|has| |#2| (-906))) ((-969 |#1| #1# (-1075)) . T) ((-917) |has| |#1| (-363)) ((-987 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1016) -12 (|has| |#1| (-363)) (|has| |#2| (-1016))) ((-1034 (-407 (-546))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546)))) ((-1034 (-546)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546)))) ((-1034 #3#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-1034 |#2|) . T) ((-1051 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) -12 (|has| |#1| (-363)) (|has| |#2| (-1144))) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))) ((-1207) |has| |#1| (-363)) ((-1212) |has| |#1| (-363)) ((-1218 |#1|) . T) ((-1235 |#1| #1#) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 70)) (-3521 ((|#2| $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-307))))) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 88)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-546)) 97) (($ $ (-546) (-546)) 99)) (-4188 (((-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|))) $) 47)) (-4146 ((|#2| $) 11)) (-4143 (((-3 |#2| "failed") $) 30)) (-4144 ((|#2| $) 31)) (-3898 (($ $) 192 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 168 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-906))))) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-906))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) 188 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 164 (|has| |#1| (-38 (-407 (-546)))))) (-4038 (((-546) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-816))))) (-4233 (($ (-1146 (-2 (|:| |k| (-546)) (|:| |c| |#1|)))) 57)) (-3900 (($ $) 196 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 172 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) 144) (((-3 (-546) #2#) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546))))) (((-3 (-407 (-546)) #2#) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546))))) (((-3 (-1169) #2#) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))))) (-3564 ((|#2| $) 143) (((-546) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546))))) (((-407 (-546)) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-546))))) (((-1169) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))))) (-4145 (($ $) 61) (($ (-546) $) 24)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-2408 (((-684 |#2|) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-636 (-546))))) (((-684 (-546)) (-684 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-636 (-546)))))) (-3873 (((-3 $ "failed") $) 77)) (-4142 (((-407 (-942 |#1|)) $ (-546)) 112 (|has| |#1| (-556))) (((-407 (-942 |#1|)) $ (-546) (-546)) 114 (|has| |#1| (-556)))) (-3384 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-545))))) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3594 (((-112) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-816))))) (-3282 (((-112) $) 64)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-882 (-546)))))) (-4186 (((-546) $) 93) (((-546) $ (-546)) 95)) (-2552 (((-112) $) NIL)) (-3386 (($ $) NIL (|has| |#1| (-363)))) (-3388 ((|#2| $) 151 (|has| |#1| (-363)))) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3855 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1144))))) (-3595 (((-112) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-816))))) (-4191 (($ $ (-915)) 136)) (-4230 (($ (-1 |#1| (-546)) $) 132)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-546)) 19) (($ $ (-1075) (-546)) NIL) (($ $ (-637 (-1075)) (-637 (-546))) NIL)) (-2919 (($ $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-3249 (($ $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-4373 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-4357 (($ $) 162 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4193 (($ (-546) |#2|) 10)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 145 (|has| |#1| (-363)))) (-4227 (($ $) 214 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 219 (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))))))) (-3856 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1144))) CONST)) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3520 (($ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-307))))) (-3522 ((|#2| $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-545))))) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-906))))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-906))))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-546)) 126)) (-3872 (((-3 $ "failed") $ $) 116 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) 160 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-546))))) (($ $ (-1169) |#2|) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|)))) (($ $ (-637 (-1169)) (-637 |#2|)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|)))) (($ $ (-637 (-293 |#2|))) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) (($ $ (-637 |#2|) (-637 |#2|)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-546)) 91) (($ $ $) 79 (|has| (-546) (-1105))) (($ $ |#2|) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) 137 (-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-1169)) 140 (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169))))))) (-3385 (($ $) NIL (|has| |#1| (-363)))) (-3387 ((|#2| $) 152 (|has| |#1| (-363)))) (-4363 (((-546) $) 12)) (-3901 (($ $) 198 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 174 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 194 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 170 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 190 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 166 (|has| |#1| (-38 (-407 (-546)))))) (-4385 (((-225) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1016)))) (((-378) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1016)))) (((-535) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-611 (-535))))) (((-886 (-378)) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-611 (-886 (-546))))))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-363)) (|has| |#2| (-906))))) (-3281 (($ $) 124)) (-4361 (((-859) $) 244) (($ (-546)) 23) (($ |#1|) 21 (|has| |#1| (-172))) (($ |#2|) 20) (($ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169))))) (($ (-407 (-546))) 155 (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-546)) 74)) (-3091 (((-3 $ "failed") $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#1| (-363)) (|has| |#2| (-906))) (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))))) (-3518 (((-767)) 142)) (-4187 ((|#1| $) 90)) (-3523 ((|#2| $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-545))))) (-3904 (($ $) 204 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 180 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) 200 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 176 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 208 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 184 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-546)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-546)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 210 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 186 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 206 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 182 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 202 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 178 (|has| |#1| (-38 (-407 (-546)))))) (-3794 (($ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-816))))) (-3047 (($) 13 T CONST)) (-3053 (($) 17 T CONST)) (-3058 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $) NIL (-3943 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-546) |#1|))))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-637 (-1169))) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-546) |#1|)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169))))))) (-2951 (((-112) $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-2952 (((-112) $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-3444 (((-112) $ $) 63)) (-3073 (((-112) $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-3074 (((-112) $ $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363))) (($ |#2| |#2|) 150 (|has| |#1| (-363)))) (-4252 (($ $) 213) (($ $ $) 68)) (-4254 (($ $ $) 66)) (** (($ $ (-915)) NIL) (($ $ (-767)) 73) (($ $ (-546)) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 158 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-363))) (($ |#2| $) 147 (|has| |#1| (-363))) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1221 |#1| |#2|) (-1220 |#1| |#2|) (-1045) (-1249 |#1|)) (T -1221))
+NIL
+(-1220 |#1| |#2|)
+((-4149 (((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112)) 12)) (-4148 (((-405 |#1|) |#1|) 22)) (-4147 (((-405 |#1|) |#1|) 21)))
+(((-1222 |#1|) (-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1|)) (-15 -4149 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112)))) (-1232 (-546))) (T -1222))
+((-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546))))))) (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))) (-4148 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))))
+(-10 -7 (-15 -4147 ((-405 |#1|) |#1|)) (-15 -4148 ((-405 |#1|) |#1|)) (-15 -4149 ((-2 (|:| |contp| (-546)) (|:| -2818 (-637 (-2 (|:| |irr| |#1|) (|:| -2537 (-546)))))) |#1| (-112))))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4151 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4373 (((-1146 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-844)))) (-3637 ((|#1| $) 14)) (-3639 ((|#1| $) 10)) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-3635 (((-546) $) 18)) (-3636 ((|#1| $) 17)) (-3638 ((|#1| $) 11)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4150 (((-112) $) 16)) (-4378 (((-1146 |#1|) $) 38 (|has| |#1| (-844))) (((-1146 |#1|) (-637 $)) 37 (|has| |#1| (-844)))) (-4385 (($ |#1|) 25)) (-4361 (($ (-1082 |#1|)) 24) (((-859) $) 34 (|has| |#1| (-1094)))) (-4152 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3640 (($ $ (-546)) 13)) (-3444 (((-112) $ $) 27 (|has| |#1| (-1094)))))
+(((-1223 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -4152 ($ |#1|)) (-15 -4151 ($ |#1|)) (-15 -4361 ($ (-1082 |#1|))) (-15 -4150 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1146 |#1|))) |%noBranch|))) (-1207)) (T -1223))
+((-4152 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-4151 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1082 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207)))))
+(-13 (-1087 |#1|) (-10 -8 (-15 -4152 ($ |#1|)) (-15 -4151 ($ |#1|)) (-15 -4361 ($ (-1082 |#1|))) (-15 -4150 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1146 |#1|))) |%noBranch|)))
+((-4373 (((-1146 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 23 (|has| |#1| (-844))) (((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 17)))
+(((-1224 |#1| |#2|) (-10 -7 (-15 -4373 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-844)) (-15 -4373 ((-1146 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1224))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-844)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1146 *6)) (-5 *1 (-1224 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1223 *6)) (-5 *1 (-1224 *5 *6)))))
+(-10 -7 (-15 -4373 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-844)) (-15 -4373 ((-1146 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4181 (((-1256 |#2|) $ (-767)) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4179 (($ (-1163 |#2|)) NIL)) (-3476 (((-1163 $) $ (-1075)) NIL) (((-1163 |#2|) $) NIL)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-2220 (($ $) NIL (|has| |#2| (-556)))) (-2218 (((-112) $) NIL (|has| |#2| (-556)))) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1075))) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4170 (($ $ $) NIL (|has| |#2| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4189 (($ $) NIL (|has| |#2| (-452)))) (-4384 (((-405 $) $) NIL (|has| |#2| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-1740 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4175 (($ $ (-767)) NIL)) (-4174 (($ $ (-767)) NIL)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| #2="failed") $) NIL) (((-3 (-407 (-546)) #2#) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) NIL (|has| |#2| (-1034 (-546)))) (((-3 (-1075) #2#) $) NIL)) (-3564 ((|#2| $) NIL) (((-407 (-546)) $) NIL (|has| |#2| (-1034 (-407 (-546))))) (((-546) $) NIL (|has| |#2| (-1034 (-546)))) (((-1075) $) NIL)) (-4171 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2949 (($ $ $) NIL (|has| |#2| (-363)))) (-4374 (($ $) NIL)) (-2408 (((-684 (-546)) (-684 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) NIL (|has| |#2| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#2|)) (|:| |vec| (-1256 |#2|))) (-684 $) (-1256 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-2948 (($ $ $) NIL (|has| |#2| (-363)))) (-4173 (($ $ $) NIL)) (-4168 (($ $ $) NIL (|has| |#2| (-556)))) (-4167 (((-2 (|:| -4369 |#2|) (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#2| (-363)))) (-3909 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-3207 (((-637 $) $) NIL)) (-4138 (((-112) $) NIL (|has| |#2| (-906)))) (-1756 (($ $ |#2| (-767) $) NIL)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1075) (-882 (-378))) (|has| |#2| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) NIL (-12 (|has| (-1075) (-882 (-546))) (|has| |#2| (-882 (-546)))))) (-4186 (((-767) $ $) NIL (|has| |#2| (-556)))) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-3477 (($ (-1163 |#2|) (-1075)) NIL) (($ (-1163 $) (-1075)) NIL)) (-4191 (($ $ (-767)) NIL)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) NIL (|has| |#2| (-363)))) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-3283 (($ |#2| (-767)) 17) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1075)) NIL) (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL)) (-3209 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-2919 (($ $ $) NIL (|has| |#2| (-846)))) (-3249 (($ $ $) NIL (|has| |#2| (-846)))) (-1757 (($ (-1 (-767) (-767)) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-4180 (((-1163 |#2|) $) NIL)) (-3475 (((-3 (-1075) #4="failed") $) NIL)) (-3284 (($ $) NIL)) (-3582 ((|#2| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3650 (((-1151) $) NIL)) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) NIL)) (-3212 (((-3 (-637 $) #4#) $) NIL)) (-3211 (((-3 (-637 $) #4#) $) NIL)) (-3213 (((-3 (-2 (|:| |var| (-1075)) (|:| -2543 (-767))) #4#) $) NIL)) (-4227 (($ $) NIL (|has| |#2| (-38 (-407 (-546)))))) (-3856 (($) NIL (|has| |#2| (-1144)) CONST)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 ((|#2| $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#2| (-452)))) (-3552 (($ (-637 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4153 (($ $ (-767) |#2| $) NIL)) (-3094 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) NIL (|has| |#2| (-906)))) (-4147 (((-405 $) $) NIL (|has| |#2| (-906)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#2| (-363)))) (-3872 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#2| (-363)))) (-4182 (($ $ (-637 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-637 (-1075)) (-637 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-637 (-1075)) (-637 $)) NIL)) (-1739 (((-767) $) NIL (|has| |#2| (-363)))) (-4214 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-4178 (((-3 $ #5="failed") $ (-767)) NIL)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-363)))) (-4172 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4225 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4363 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-637 (-767)) $ (-637 (-1075))) NIL)) (-4385 (((-886 (-378)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-378)))) (|has| |#2| (-611 (-886 (-378)))))) (((-886 (-546)) $) NIL (-12 (|has| (-1075) (-611 (-886 (-546)))) (|has| |#2| (-611 (-886 (-546)))))) (((-535) $) NIL (-12 (|has| (-1075) (-611 (-535))) (|has| |#2| (-611 (-535)))))) (-3206 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-4169 (((-3 $ #5#) $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) #5#) (-407 $) $) NIL (|has| |#2| (-556)))) (-4361 (((-859) $) 13) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-1075)) NIL) (($ (-1253 |#1|)) 19) (($ (-407 (-546))) NIL (-3943 (|has| |#2| (-38 (-407 (-546)))) (|has| |#2| (-1034 (-407 (-546)))))) (($ $) NIL (|has| |#2| (-556)))) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3091 (((-3 $ #1#) $) NIL (-3943 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2219 (((-112) $ $) NIL (|has| |#2| (-556)))) (-3047 (($) NIL T CONST)) (-3053 (($) 14 T CONST)) (-3058 (($ $ (-1075)) NIL) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2951 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3444 (((-112) $ $) NIL)) (-3073 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#2| (-846)))) (-4364 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-407 (-546))) NIL (|has| |#2| (-38 (-407 (-546))))) (($ (-407 (-546)) $) NIL (|has| |#2| (-38 (-407 (-546))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1225 |#1| |#2|) (-13 (-1232 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -4153 ($ $ (-767) |#2| $)))) (-1169) (-1045)) (T -1225))
+((-4153 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1225 *4 *3)) (-14 *4 (-1169)) (-4 *3 (-1045)))))
+(-13 (-1232 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -4153 ($ $ (-767) |#2| $))))
+((-4373 (((-1225 |#3| |#4|) (-1 |#4| |#2|) (-1225 |#1| |#2|)) 15)))
+(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 ((-1225 |#3| |#4|) (-1 |#4| |#2|) (-1225 |#1| |#2|)))) (-1169) (-1045) (-1169) (-1045)) (T -1226))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1225 *5 *6)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1225 *7 *8)) (-5 *1 (-1226 *5 *6 *7 *8)) (-14 *7 (-1169)))))
+(-10 -7 (-15 -4373 ((-1225 |#3| |#4|) (-1 |#4| |#2|) (-1225 |#1| |#2|))))
+((-4156 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4154 ((|#1| |#3|) 13)) (-4155 ((|#3| |#3|) 19)))
+(((-1227 |#1| |#2| |#3|) (-10 -7 (-15 -4154 (|#1| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-987 |#1|) (-1232 |#2|)) (T -1227))
+((-4156 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1227 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-987 *3)) (-5 *1 (-1227 *3 *4 *2)) (-4 *2 (-1232 *4)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-1227 *2 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -4154 (|#1| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4156 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4158 (((-3 |#2| "failed") |#2| (-767) |#1|) 29)) (-4157 (((-3 |#2| "failed") |#2| (-767)) 30)) (-4160 (((-3 (-2 (|:| -3530 |#2|) (|:| -3529 |#2|)) "failed") |#2|) 42)) (-4161 (((-637 |#2|) |#2|) 44)) (-4159 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1228 |#1| |#2|) (-10 -7 (-15 -4157 ((-3 |#2| "failed") |#2| (-767))) (-15 -4158 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -4159 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4160 ((-3 (-2 (|:| -3530 |#2|) (|:| -3529 |#2|)) "failed") |#2|)) (-15 -4161 ((-637 |#2|) |#2|))) (-13 (-556) (-147)) (-1232 |#1|)) (T -1228))
+((-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-637 *3)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-1232 *4)))) (-4160 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -3530 *3) (|:| -3529 *3))) (-5 *1 (-1228 *4 *3)) (-4 *3 (-1232 *4)))) (-4159 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3)))) (-4158 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))) (-4157 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))))
+(-10 -7 (-15 -4157 ((-3 |#2| "failed") |#2| (-767))) (-15 -4158 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -4159 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4160 ((-3 (-2 (|:| -3530 |#2|) (|:| -3529 |#2|)) "failed") |#2|)) (-15 -4161 ((-637 |#2|) |#2|)))
+((-4162 (((-3 (-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|) 29)))
+(((-1229 |#1| |#2|) (-10 -7 (-15 -4162 ((-3 (-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|))) (-556) (-1232 |#1|)) (T -1229))
+((-4162 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1232 *4)))))
+(-10 -7 (-15 -4162 ((-3 (-2 (|:| -2131 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|)))
+((-4163 ((|#2| |#2| |#2|) 19)) (-4164 ((|#2| |#2| |#2|) 30)) (-4165 ((|#2| |#2| |#2| (-767) (-767)) 36)))
+(((-1230 |#1| |#2|) (-10 -7 (-15 -4163 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -4165 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1232 |#1|)) (T -1230))
+((-4165 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1230 *4 *2)) (-4 *2 (-1232 *4)))) (-4164 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-1232 *3)))) (-4163 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-1232 *3)))))
+(-10 -7 (-15 -4163 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -4165 (|#2| |#2| |#2| (-767) (-767))))
+((-4181 (((-1256 |#2|) $ (-767)) 114)) (-3474 (((-637 (-1075)) $) 15)) (-4179 (($ (-1163 |#2|)) 67)) (-3208 (((-767) $) NIL) (((-767) $ (-637 (-1075))) 18)) (-3096 (((-405 (-1163 $)) (-1163 $)) 184)) (-4189 (($ $) 174)) (-4384 (((-405 $) $) 172)) (-3093 (((-3 (-637 (-1163 $)) "failed") (-637 (-1163 $)) (-1163 $)) 82)) (-4175 (($ $ (-767)) 71)) (-4174 (($ $ (-767)) 73)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3565 (((-3 |#2| #1="failed") $) 117) (((-3 (-407 (-546)) #1#) $) NIL) (((-3 (-546) #1#) $) NIL) (((-3 (-1075) #1#) $) NIL)) (-3564 ((|#2| $) 115) (((-407 (-546)) $) NIL) (((-546) $) NIL) (((-1075) $) NIL)) (-4168 (($ $ $) 151)) (-4167 (((-2 (|:| -4369 |#2|) (|:| -2131 $) (|:| -3292 $)) $ $) 153)) (-4186 (((-767) $ $) 169)) (-3855 (((-3 $ "failed") $) 123)) (-3283 (($ |#2| (-767)) NIL) (($ $ (-1075) (-767)) 47) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-3209 (((-767) $) NIL) (((-767) $ (-1075)) 42) (((-637 (-767)) $ (-637 (-1075))) 43)) (-4180 (((-1163 |#2|) $) 59)) (-3475 (((-3 (-1075) "failed") $) 40)) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) 70)) (-4227 (($ $) 196)) (-3856 (($) 119)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 181)) (-3094 (((-405 (-1163 $)) (-1163 $)) 88)) (-3095 (((-405 (-1163 $)) (-1163 $)) 86)) (-4147 (((-405 $) $) 107)) (-4182 (($ $ (-637 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-637 $) (-637 $)) NIL) (($ $ (-1075) |#2|) 31) (($ $ (-637 (-1075)) (-637 |#2|)) 28) (($ $ (-1075) $) 25) (($ $ (-637 (-1075)) (-637 $)) 23)) (-1739 (((-767) $) 187)) (-4214 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 147) ((|#2| (-407 $) |#2|) 186) (((-407 $) $ (-407 $)) 168)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 190)) (-4225 (($ $ (-1075)) 140) (($ $ (-637 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 138) (($ $ (-1169)) NIL) (($ $ (-637 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-637 (-1169)) (-637 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4363 (((-767) $) NIL) (((-767) $ (-1075)) 16) (((-637 (-767)) $ (-637 (-1075))) 20)) (-3206 ((|#2| $) NIL) (($ $ (-1075)) 125)) (-4169 (((-3 $ "failed") $ $) 161) (((-3 (-407 $) "failed") (-407 $) $) 157)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#2|) NIL) (($ (-1075)) 51) (($ (-407 (-546))) NIL) (($ $) NIL)))
+(((-1231 |#1| |#2|) (-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -4214 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1739 ((-767) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4214 (|#2| (-407 |#1|) |#2|)) (-15 -4166 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4167 ((-2 (|:| -4369 |#2|) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -4168 (|#1| |#1| |#1|)) (-15 -4169 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4169 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4186 ((-767) |#1| |#1|)) (-15 -4214 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4174 (|#1| |#1| (-767))) (-15 -4175 (|#1| |#1| (-767))) (-15 -4176 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| (-767))) (-15 -4179 (|#1| (-1163 |#2|))) (-15 -4180 ((-1163 |#2|) |#1|)) (-15 -4181 ((-1256 |#2|) |#1| (-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4214 (|#2| |#1| |#2|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3096 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3206 (|#1| |#1| (-1075))) (-15 -3474 ((-637 (-1075)) |#1|)) (-15 -3208 ((-767) |#1| (-637 (-1075)))) (-15 -3208 ((-767) |#1|)) (-15 -3283 (|#1| |#1| (-637 (-1075)) (-637 (-767)))) (-15 -3283 (|#1| |#1| (-1075) (-767))) (-15 -3209 ((-637 (-767)) |#1| (-637 (-1075)))) (-15 -3209 ((-767) |#1| (-1075))) (-15 -3475 ((-3 (-1075) "failed") |#1|)) (-15 -4363 ((-637 (-767)) |#1| (-637 (-1075)))) (-15 -4363 ((-767) |#1| (-1075))) (-15 -4361 (|#1| (-1075))) (-15 -3565 ((-3 (-1075) #1="failed") |#1|)) (-15 -3564 ((-1075) |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1075)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-1075) |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1075)) (-637 |#2|))) (-15 -4182 (|#1| |#1| (-1075) |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4363 ((-767) |#1|)) (-15 -3283 (|#1| |#2| (-767))) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3209 ((-767) |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -4225 (|#1| |#1| (-637 (-1075)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1075) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1075)))) (-15 -4225 (|#1| |#1| (-1075))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|))) (-1232 |#2|) (-1045)) (T -1231))
+NIL
+(-10 -8 (-15 -4361 (|#1| |#1|)) (-15 -3097 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -4384 ((-405 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -3856 (|#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -4214 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1739 ((-767) |#1|)) (-15 -3271 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4214 (|#2| (-407 |#1|) |#2|)) (-15 -4166 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4167 ((-2 (|:| -4369 |#2|) (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -4168 (|#1| |#1| |#1|)) (-15 -4169 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4169 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4186 ((-767) |#1| |#1|)) (-15 -4214 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4174 (|#1| |#1| (-767))) (-15 -4175 (|#1| |#1| (-767))) (-15 -4176 ((-2 (|:| -2131 |#1|) (|:| -3292 |#1|)) |#1| (-767))) (-15 -4179 (|#1| (-1163 |#2|))) (-15 -4180 ((-1163 |#2|) |#1|)) (-15 -4181 ((-1256 |#2|) |#1| (-767))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4225 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1169) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1169)))) (-15 -4225 (|#1| |#1| (-1169))) (-15 -4225 (|#1| |#1|)) (-15 -4225 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4214 (|#2| |#1| |#2|)) (-15 -4147 ((-405 |#1|) |#1|)) (-15 -3096 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3095 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3094 ((-405 (-1163 |#1|)) (-1163 |#1|))) (-15 -3093 ((-3 (-637 (-1163 |#1|)) "failed") (-637 (-1163 |#1|)) (-1163 |#1|))) (-15 -3206 (|#1| |#1| (-1075))) (-15 -3474 ((-637 (-1075)) |#1|)) (-15 -3208 ((-767) |#1| (-637 (-1075)))) (-15 -3208 ((-767) |#1|)) (-15 -3283 (|#1| |#1| (-637 (-1075)) (-637 (-767)))) (-15 -3283 (|#1| |#1| (-1075) (-767))) (-15 -3209 ((-637 (-767)) |#1| (-637 (-1075)))) (-15 -3209 ((-767) |#1| (-1075))) (-15 -3475 ((-3 (-1075) "failed") |#1|)) (-15 -4363 ((-637 (-767)) |#1| (-637 (-1075)))) (-15 -4363 ((-767) |#1| (-1075))) (-15 -4361 (|#1| (-1075))) (-15 -3565 ((-3 (-1075) #1="failed") |#1|)) (-15 -3564 ((-1075) |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1075)) (-637 |#1|))) (-15 -4182 (|#1| |#1| (-1075) |#1|)) (-15 -4182 (|#1| |#1| (-637 (-1075)) (-637 |#2|))) (-15 -4182 (|#1| |#1| (-1075) |#2|)) (-15 -4182 (|#1| |#1| (-637 |#1|) (-637 |#1|))) (-15 -4182 (|#1| |#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-293 |#1|))) (-15 -4182 (|#1| |#1| (-637 (-293 |#1|)))) (-15 -4363 ((-767) |#1|)) (-15 -3283 (|#1| |#2| (-767))) (-15 -3565 ((-3 (-546) #1#) |#1|)) (-15 -3564 ((-546) |#1|)) (-15 -3565 ((-3 (-407 (-546)) #1#) |#1|)) (-15 -3564 ((-407 (-546)) |#1|)) (-15 -3564 (|#2| |#1|)) (-15 -3565 ((-3 |#2| #1#) |#1|)) (-15 -4361 (|#1| |#2|)) (-15 -3209 ((-767) |#1|)) (-15 -3206 (|#2| |#1|)) (-15 -4225 (|#1| |#1| (-637 (-1075)) (-637 (-767)))) (-15 -4225 (|#1| |#1| (-1075) (-767))) (-15 -4225 (|#1| |#1| (-637 (-1075)))) (-15 -4225 (|#1| |#1| (-1075))) (-15 -4361 (|#1| (-546))) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4181 (((-1256 |#1|) $ (-767)) 238)) (-3474 (((-637 (-1075)) $) 110)) (-4179 (($ (-1163 |#1|)) 236)) (-3476 (((-1163 $) $ (-1075)) 125) (((-1163 |#1|) $) 124)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-2220 (($ $) 88 (|has| |#1| (-556)))) (-2218 (((-112) $) 90 (|has| |#1| (-556)))) (-3208 (((-767) $) 112) (((-767) $ (-637 (-1075))) 111)) (-1397 (((-3 $ "failed") $ $) 19)) (-4170 (($ $ $) 223 (|has| |#1| (-556)))) (-3096 (((-405 (-1163 $)) (-1163 $)) 100 (|has| |#1| (-906)))) (-4189 (($ $) 98 (|has| |#1| (-452)))) (-4384 (((-405 $) $) 97 (|has| |#1| (-452)))) (-3093 (((-3 (-637 (-1163 $)) #1="failed") (-637 (-1163 $)) (-1163 $)) 103 (|has| |#1| (-906)))) (-1740 (((-112) $ $) 208 (|has| |#1| (-363)))) (-4175 (($ $ (-767)) 231)) (-4174 (($ $ (-767)) 230)) (-4166 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| #2="failed") $) 164) (((-3 (-407 (-546)) #2#) $) 161 (|has| |#1| (-1034 (-407 (-546))))) (((-3 (-546) #2#) $) 159 (|has| |#1| (-1034 (-546)))) (((-3 (-1075) #2#) $) 136)) (-3564 ((|#1| $) 163) (((-407 (-546)) $) 162 (|has| |#1| (-1034 (-407 (-546))))) (((-546) $) 160 (|has| |#1| (-1034 (-546)))) (((-1075) $) 137)) (-4171 (($ $ $ (-1075)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-2949 (($ $ $) 212 (|has| |#1| (-363)))) (-4374 (($ $) 154)) (-2408 (((-684 (-546)) (-684 $)) 134 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 (-546))) (|:| |vec| (-1256 (-546)))) (-684 $) (-1256 $)) 133 (|has| |#1| (-636 (-546)))) (((-2 (|:| -1735 (-684 |#1|)) (|:| |vec| (-1256 |#1|))) (-684 $) (-1256 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 211 (|has| |#1| (-363)))) (-4173 (($ $ $) 229)) (-4168 (($ $ $) 220 (|has| |#1| (-556)))) (-4167 (((-2 (|:| -4369 |#1|) (|:| -2131 $) (|:| -3292 $)) $ $) 219 (|has| |#1| (-556)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 206 (|has| |#1| (-363)))) (-3909 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1075)) 105 (|has| |#1| (-452)))) (-3207 (((-637 $) $) 109)) (-4138 (((-112) $) 96 (|has| |#1| (-906)))) (-1756 (($ $ |#1| (-767) $) 172)) (-3185 (((-884 (-378) $) $ (-886 (-378)) (-884 (-378) $)) 84 (-12 (|has| (-1075) (-882 (-378))) (|has| |#1| (-882 (-378))))) (((-884 (-546) $) $ (-886 (-546)) (-884 (-546) $)) 83 (-12 (|has| (-1075) (-882 (-546))) (|has| |#1| (-882 (-546)))))) (-4186 (((-767) $ $) 224 (|has| |#1| (-556)))) (-2552 (((-112) $) 31)) (-2560 (((-767) $) 169)) (-3855 (((-3 $ "failed") $) 204 (|has| |#1| (-1144)))) (-3477 (($ (-1163 |#1|) (-1075)) 117) (($ (-1163 $) (-1075)) 116)) (-4191 (($ $ (-767)) 235)) (-1737 (((-3 (-637 $) #3="failed") (-637 $) $) 215 (|has| |#1| (-363)))) (-3210 (((-637 $) $) 126)) (-4352 (((-112) $) 152)) (-3283 (($ |#1| (-767)) 153) (($ $ (-1075) (-767)) 119) (($ $ (-637 (-1075)) (-637 (-767))) 118)) (-4177 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $ (-1075)) 120) (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 233)) (-3209 (((-767) $) 170) (((-767) $ (-1075)) 122) (((-637 (-767)) $ (-637 (-1075))) 121)) (-2919 (($ $ $) 79 (|has| |#1| (-846)))) (-3249 (($ $ $) 78 (|has| |#1| (-846)))) (-1757 (($ (-1 (-767) (-767)) $) 171)) (-4373 (($ (-1 |#1| |#1|) $) 151)) (-4180 (((-1163 |#1|) $) 237)) (-3475 (((-3 (-1075) #4="failed") $) 123)) (-3284 (($ $) 149)) (-3582 ((|#1| $) 148)) (-2048 (($ (-637 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3650 (((-1151) $) 9)) (-4176 (((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767)) 232)) (-3212 (((-3 (-637 $) #4#) $) 114)) (-3211 (((-3 (-637 $) #4#) $) 115)) (-3213 (((-3 (-2 (|:| |var| (-1075)) (|:| -2543 (-767))) #4#) $) 113)) (-4227 (($ $) 216 (|has| |#1| (-38 (-407 (-546)))))) (-3856 (($) 203 (|has| |#1| (-1144)) CONST)) (-3651 (((-1113) $) 10)) (-1951 (((-112) $) 166)) (-1950 ((|#1| $) 167)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 95 (|has| |#1| (-452)))) (-3552 (($ (-637 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3094 (((-405 (-1163 $)) (-1163 $)) 102 (|has| |#1| (-906)))) (-3095 (((-405 (-1163 $)) (-1163 $)) 101 (|has| |#1| (-906)))) (-4147 (((-405 $) $) 99 (|has| |#1| (-906)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 213 (|has| |#1| (-363)))) (-3872 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 207 (|has| |#1| (-363)))) (-4182 (($ $ (-637 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-637 $) (-637 $)) 142) (($ $ (-1075) |#1|) 141) (($ $ (-637 (-1075)) (-637 |#1|)) 140) (($ $ (-1075) $) 139) (($ $ (-637 (-1075)) (-637 $)) 138)) (-1739 (((-767) $) 209 (|has| |#1| (-363)))) (-4214 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-4178 (((-3 $ "failed") $ (-767)) 234)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 210 (|has| |#1| (-363)))) (-4172 (($ $ (-1075)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-4225 (($ $ (-1075)) 42) (($ $ (-637 (-1075))) 41) (($ $ (-1075) (-767)) 40) (($ $ (-637 (-1075)) (-637 (-767))) 39) (($ $ (-767)) 253) (($ $) 251) (($ $ (-1169)) 250 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 249 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 248 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 247 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4363 (((-767) $) 150) (((-767) $ (-1075)) 130) (((-637 (-767)) $ (-637 (-1075))) 129)) (-4385 (((-886 (-378)) $) 82 (-12 (|has| (-1075) (-611 (-886 (-378)))) (|has| |#1| (-611 (-886 (-378)))))) (((-886 (-546)) $) 81 (-12 (|has| (-1075) (-611 (-886 (-546)))) (|has| |#1| (-611 (-886 (-546)))))) (((-535) $) 80 (-12 (|has| (-1075) (-611 (-535))) (|has| |#1| (-611 (-535)))))) (-3206 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1075)) 106 (|has| |#1| (-452)))) (-3092 (((-3 (-1256 $) #1#) (-684 $)) 104 (-3247 (|has| $ (-145)) (|has| |#1| (-906))))) (-4169 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 165) (($ (-1075)) 135) (($ (-407 (-546))) 72 (-3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546)))))) (($ $) 85 (|has| |#1| (-556)))) (-4232 (((-637 |#1|) $) 168)) (-4092 ((|#1| $ (-767)) 155) (($ $ (-1075) (-767)) 128) (($ $ (-637 (-1075)) (-637 (-767))) 127)) (-3091 (((-3 $ #1#) $) 73 (-3943 (-3247 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3518 (((-767)) 28 T CONST)) (-1755 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2219 (((-112) $ $) 89 (|has| |#1| (-556)))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-1075)) 38) (($ $ (-637 (-1075))) 37) (($ $ (-1075) (-767)) 36) (($ $ (-637 (-1075)) (-637 (-767))) 35) (($ $ (-767)) 254) (($ $) 252) (($ $ (-1169)) 246 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169))) 245 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 244 (|has| |#1| (-896 (-1169)))) (($ $ (-637 (-1169)) (-637 (-767))) 243 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2951 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 75 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 6)) (-3073 (((-112) $ $) 77 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 74 (|has| |#1| (-846)))) (-4364 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 158 (|has| |#1| (-38 (-407 (-546))))) (($ (-407 (-546)) $) 157 (|has| |#1| (-38 (-407 (-546))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1232 |#1|) (-140) (-1045)) (T -1232))
+((-4181 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1232 *4)) (-4 *4 (-1045)) (-5 *2 (-1256 *4)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-5 *2 (-1163 *3)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1045)) (-4 *1 (-1232 *3)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))) (-4178 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))) (-4177 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1232 *3)))) (-4176 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1232 *4)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))) (-4173 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)))) (-4225 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-4171 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-4214 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-4186 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-4 *3 (-556)) (-5 *2 (-767)))) (-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4169 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4169 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-4168 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4167 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -4369 *3) (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1232 *3)))) (-4166 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1232 *3)))) (-4214 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546)))))))
+(-13 (-946 |t#1| (-767) (-1075)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4181 ((-1256 |t#1|) $ (-767))) (-15 -4180 ((-1163 |t#1|) $)) (-15 -4179 ($ (-1163 |t#1|))) (-15 -4191 ($ $ (-767))) (-15 -4178 ((-3 $ "failed") $ (-767))) (-15 -4177 ((-2 (|:| -2131 $) (|:| -3292 $)) $ $)) (-15 -4176 ((-2 (|:| -2131 $) (|:| -3292 $)) $ (-767))) (-15 -4175 ($ $ (-767))) (-15 -4174 ($ $ (-767))) (-15 -4173 ($ $ $)) (-15 -4225 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4172 (|t#1| $)) (-15 -4171 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4214 ((-407 $) (-407 $) (-407 $))) (-15 -4186 ((-767) $ $)) (-15 -4170 ($ $ $)) (-15 -4169 ((-3 $ "failed") $ $)) (-15 -4169 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -4168 ($ $ $)) (-15 -4167 ((-2 (|:| -4369 |t#1|) (|:| -2131 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -4166 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4404) (-15 -4214 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-546)))) (-15 -4227 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-767)) . T) ((-25) . T) ((-38 #2=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) -3943 (|has| |#1| (-1034 (-407 (-546)))) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 #3=(-1075)) . T) ((-613 |#1|) . T) ((-613 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-535)) -12 (|has| |#1| (-611 (-535))) (|has| (-1075) (-611 (-535)))) ((-611 (-886 (-378))) -12 (|has| |#1| (-611 (-886 (-378)))) (|has| (-1075) (-611 (-886 (-378))))) ((-611 (-886 (-546))) -12 (|has| |#1| (-611 (-886 (-546)))) (|has| (-1075) (-611 (-886 (-546))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #1#) . T) ((-377 |#1|) . T) ((-412 |#1|) . T) ((-452) -3943 (|has| |#1| (-906)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #3# |#1|) . T) ((-514 #3# $) . T) ((-514 $ $) . T) ((-556) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-643 #2#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-546)) |has| |#1| (-636 (-546))) ((-636 |#1|) . T) ((-713 #2#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 #3#) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-378)) -12 (|has| |#1| (-882 (-378))) (|has| (-1075) (-882 (-378)))) ((-882 (-546)) -12 (|has| |#1| (-882 (-546))) (|has| (-1075) (-882 (-546)))) ((-946 |#1| #1# #3#) . T) ((-906) |has| |#1| (-906)) ((-917) |has| |#1| (-363)) ((-1034 (-407 (-546))) |has| |#1| (-1034 (-407 (-546)))) ((-1034 (-546)) |has| |#1| (-1034 (-546))) ((-1034 #3#) . T) ((-1034 |#1|) . T) ((-1051 #2#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1144) |has| |#1| (-1144)) ((-1212) |has| |#1| (-906)))
+((-4373 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1232 |#1|) (-1045) (-1232 |#3|)) (T -1233))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1232 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1232 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3474 (((-637 (-1075)) $) 28)) (-4374 (($ $) 25)) (-3283 (($ |#2| |#3|) NIL) (($ $ (-1075) |#3|) 22) (($ $ (-637 (-1075)) (-637 |#3|)) 21)) (-3284 (($ $) 14)) (-3582 ((|#2| $) 12)) (-4363 ((|#3| $) 10)))
+(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -3474 ((-637 (-1075)) |#1|)) (-15 -3283 (|#1| |#1| (-637 (-1075)) (-637 |#3|))) (-15 -3283 (|#1| |#1| (-1075) |#3|)) (-15 -4374 (|#1| |#1|)) (-15 -3283 (|#1| |#2| |#3|)) (-15 -4363 (|#3| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3582 (|#2| |#1|))) (-1235 |#2| |#3|) (-1045) (-788)) (T -1234))
+NIL
+(-10 -8 (-15 -3474 ((-637 (-1075)) |#1|)) (-15 -3283 (|#1| |#1| (-637 (-1075)) (-637 |#3|))) (-15 -3283 (|#1| |#1| (-1075) |#3|)) (-15 -4374 (|#1| |#1|)) (-15 -3283 (|#1| |#2| |#3|)) (-15 -4363 (|#3| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -3582 (|#2| |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4188 (((-1146 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-3282 (((-112) $) 76)) (-4186 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2552 (((-112) $) 31)) (-4191 (($ $ (-915)) 104)) (-4352 (((-112) $) 65)) (-3283 (($ |#1| |#2|) 64) (($ $ (-1075) |#2|) 79) (($ $ (-637 (-1075)) (-637 |#2|)) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4183 (($ $ |#2|) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4214 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1105)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-637 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4363 ((|#2| $) 67)) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4092 ((|#1| $ |#2|) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-4187 ((|#1| $) 105)) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4184 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-637 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
(((-1235 |#1| |#2|) (-140) (-1045) (-788)) (T -1235))
-((-1787 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2308 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1169)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1775 (*1 *2 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1763 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1763 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1402 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1692 (*2 (-1169)))) (-4 *2 (-1045)))) (-1751 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1542 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3)))))
-(-13 (-969 |t#1| |t#2| (-1075)) (-10 -8 (-15 -1787 ((-1149 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2308 (|t#1| $ |t#2|)) (-15 -2517 ((-1169) $)) (-15 -3412 (|t#1| $)) (-15 -1821 ($ $ (-917))) (-15 -1775 (|t#2| $)) (-15 -1775 (|t#2| $ |t#2|)) (-15 -1763 ($ $ |t#2|)) (-15 -1763 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1692 (|t#1| (-1169)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1402 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1751 ($ $ |t#2|)) (IF (|has| |t#2| (-1105)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1542 ((-1149 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1105)) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| |#2| (-1075)) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1798 ((|#2| |#2|) 12)) (-2802 (((-418 |#2|) |#2|) 14)) (-1809 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))) 30)))
-(((-1236 |#1| |#2|) (-10 -7 (-15 -2802 ((-418 |#2|) |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -1809 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))))) (-555) (-13 (-1233 |#1|) (-555) (-10 -8 (-15 -3551 ($ $ $))))) (T -1236))
-((-1809 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-563)))) (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3551 ($ $ $))))) (-4 *3 (-555)) (-5 *1 (-1236 *3 *4)))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3551 ($ $ $))))))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -3551 ($ $ $))))))))
-(-10 -7 (-15 -2802 ((-418 |#2|) |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -1809 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))))))
-((-2238 (((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)) 24)))
-(((-1237 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2238 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1237))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169)))))
-(-10 -7 (-15 -2238 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-1770 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 165 (|has| |#1| (-363)))) (-2802 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2185 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1747 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-3094 (($ $ $) 160 (|has| |#1| (-363)))) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 159 (|has| |#1| (-363)))) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2560 (((-112) $) 167 (|has| |#1| (-363)))) (-3381 (((-112) $) 76)) (-2179 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3805 (((-112) $) 65)) (-2587 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-4372 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3517 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3854 (((-1151) $) 9)) (-2687 (($ $) 168 (|has| |#1| (-363)))) (-2062 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4034 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3551 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2173 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 161 (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3372 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) 157 (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 158 (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-3871 (((-407 (-563)) $) 67)) (-1805 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-1839 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1816 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
-(((-1238 |#1|) (-140) (-1045)) (T -1238))
-((-3049 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1238 *4)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045)))) (-2062 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-2062 (*1 *1 *1 *2) (-4034 (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2605 ((-640 *2) *3))) (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))))
-(-13 (-1235 |t#1| (-407 (-563))) (-10 -8 (-15 -3049 ($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |t#1|))))) (-15 -1821 ($ $ (-407 (-563)))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $)) (IF (|has| |t#1| (-15 -2062 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2605 ((-640 (-1169)) |t#1|))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T))
-((-3439 (((-112) $) 12)) (-2130 (((-3 |#3| "failed") $) 17)) (-2057 ((|#3| $) 14)))
-(((-1239 |#1| |#2| |#3|) (-10 -8 (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -3439 ((-112) |#1|))) (-1240 |#2| |#3|) (-1045) (-1217 |#2|)) (T -1239))
-NIL
-(-10 -8 (-15 -2130 ((-3 |#3| "failed") |#1|)) (-15 -2057 (|#3| |#1|)) (-15 -3439 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-1770 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 165 (|has| |#1| (-363)))) (-2802 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2185 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1747 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#2| "failed") $) 185)) (-2057 ((|#2| $) 186)) (-3094 (($ $ $) 160 (|has| |#1| (-363)))) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1854 (((-407 (-563)) $) 182)) (-3054 (($ $ $) 159 (|has| |#1| (-363)))) (-2669 (($ (-407 (-563)) |#2|) 183)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2560 (((-112) $) 167 (|has| |#1| (-363)))) (-3381 (((-112) $) 76)) (-2179 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3805 (((-112) $) 65)) (-2587 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-4372 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3517 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1843 ((|#2| $) 181)) (-1832 (((-3 |#2| "failed") $) 179)) (-2659 ((|#2| $) 180)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 168 (|has| |#1| (-363)))) (-2062 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4034 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3551 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2173 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 161 (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3372 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) 157 (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 158 (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-3871 (((-407 (-563)) $) 67)) (-1805 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-1839 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1816 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
-(((-1240 |#1| |#2|) (-140) (-1045) (-1217 |t#1|)) (T -1240))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-2669 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3)) (-4 *3 (-1217 *4)))) (-1854 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-1832 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))))
-(-13 (-1238 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -2669 ($ (-407 (-563)) |t#2|)) (-15 -1854 ((-407 (-563)) $)) (-15 -1843 (|t#2| $)) (-15 -3871 ((-407 (-563)) $)) (-15 -2659 (|t#2| $)) (-15 -1832 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1034 |#2|) . T) ((-1051 #1#) -4034 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T) ((-1238 |#1|) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 96)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) 106) (($ $ (-407 (-563)) (-407 (-563))) 108)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 51)) (-1770 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 61)) (-1793 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL)) (-2057 ((|#2| $) NIL)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 79)) (-1854 (((-407 (-563)) $) 13)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2669 (($ (-407 (-563)) |#2|) 11)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3381 (((-112) $) 68)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 104)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) 120) (($ $ (-407 (-563))) 118)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-407 (-563))) 31) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) 115)) (-4372 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1843 ((|#2| $) 12)) (-1832 (((-3 |#2| "failed") $) 41)) (-2659 ((|#2| $) 42)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) 93 (|has| |#1| (-363)))) (-2062 (($ $) 135 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 140 (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) 112)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) 100) (($ $ $) 86 (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 127 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-3871 (((-407 (-563)) $) 16)) (-1805 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 110)) (-1692 (((-858) $) NIL) (($ (-563)) 35) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 32) (($ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) 99)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) 117)) (-3412 ((|#1| $) 98)) (-1839 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 21 T CONST)) (-2253 (($) 17 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 66)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (|has| |#1| (-363)))) (-1825 (($ $) 131) (($ $ $) 72)) (-1813 (($ $ $) 70)) (** (($ $ (-917)) NIL) (($ $ (-767)) 76) (($ $ (-563)) 145 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 146 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1241 |#1| |#2|) (-1240 |#1| |#2|) (-1045) (-1217 |#1|)) (T -1241))
-NIL
-(-1240 |#1| |#2|)
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 11)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) NIL (|has| |#1| (-555)))) (-1763 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1787 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $) NIL (|has| |#1| (-363)))) (-2802 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2003 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1249 |#1| |#2| |#3|) "failed") $) 22)) (-2057 (((-1221 |#1| |#2| |#3|) $) NIL) (((-1249 |#1| |#2| |#3|) $) NIL)) (-3094 (($ $ $) NIL (|has| |#1| (-363)))) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1854 (((-407 (-563)) $) 57)) (-3054 (($ $ $) NIL (|has| |#1| (-363)))) (-2669 (($ (-407 (-563)) (-1221 |#1| |#2| |#3|)) NIL)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2560 (((-112) $) NIL (|has| |#1| (-363)))) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3401 (((-112) $) NIL)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-407 (-563))) 30) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3517 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1843 (((-1221 |#1| |#2| |#3|) $) 60)) (-1832 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) NIL)) (-2659 (((-1221 |#1| |#2| |#3|) $) NIL)) (-3854 (((-1151) $) NIL)) (-2687 (($ $) NIL (|has| |#1| (-363)))) (-2062 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3551 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2173 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1984 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) NIL (|has| |#1| (-363)))) (-1751 (($ $ (-407 (-563))) NIL)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-2461 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-1993 (((-767) $) NIL (|has| |#1| (-363)))) (-2308 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) NIL (|has| |#1| (-363)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-3871 (((-407 (-563)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) NIL)) (-1692 (((-858) $) 88) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1221 |#1| |#2| |#3|)) 16) (($ (-1249 |#1| |#2| |#3|)) 17) (($ (-1253 |#2|)) 36) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-3244 ((|#1| $ (-407 (-563))) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-407 (-563))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 32 T CONST)) (-2253 (($) 26 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1242 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1242))
-((-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4203 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 34)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-3231 (($ $) NIL)) (-3211 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 (-563) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 20)) (-2057 (((-563) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-2750 (($ $) 35)) (-3951 (((-3 $ "failed") $) 25)) (-4151 (($ $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-2159 (($ $ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) 11)) (-3805 (((-112) $) NIL)) (-2587 (($ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 23)) (-3908 (((-319 |#2| |#3| |#4|) $) NIL)) (-2170 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2238 (($ (-1 (-1242 |#2| |#3| |#4|) (-1242 |#2| |#3| |#4|)) $) NIL)) (-1876 (((-3 (-839 |#2|) "failed") $) 74)) (-2715 (($ $) NIL)) (-2725 (((-1242 |#2| |#3| |#4|) $) 18)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2695 (((-112) $) NIL)) (-2705 (((-1242 |#2| |#3| |#4|) $) NIL)) (-3012 (((-3 $ "failed") $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-555))) (((-3 $ "failed") $ $) NIL)) (-1865 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $) 57)) (-3871 (((-319 |#2| |#3| |#4|) $) 14)) (-3885 (((-1242 |#2| |#3| |#4|) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ (-1242 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL (-4034 (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))))) (-3955 (((-640 (-1242 |#2| |#3| |#4|)) $) NIL)) (-3244 (((-1242 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2047 (((-3 $ "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-145)))) (-3914 (((-767)) NIL)) (-2148 (($ $ $ (-767)) NIL (|has| (-1242 |#2| |#3| |#4|) (-172)))) (-3223 (((-112) $ $) NIL)) (-2239 (($) 62 T CONST)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-1242 |#2| |#3| |#4|)) NIL) (($ (-1242 |#2| |#3| |#4|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))))))
-(((-1243 |#1| |#2| |#3| |#4|) (-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -1876 ((-3 (-839 |#2|) "failed") $)) (-15 -1865 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -1243))
-((-1876 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4))) (-1865 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))))) (|:| |%type| (-1151)))) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4))))
-(-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -1876 ((-3 (-839 |#2|) "failed") $)) (-15 -1865 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $))))
-((-2618 ((|#2| $) 28)) (-3446 ((|#2| $) 18)) (-4303 (($ $) 35)) (-1887 (($ $ (-563)) 63)) (-3001 (((-112) $ (-767)) 32)) (-2336 ((|#2| $ |#2|) 60)) (-1898 ((|#2| $ |#2|) 58)) (-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-2348 (($ $ (-640 $)) 59)) (-3435 ((|#2| $) 17)) (-3793 (($ $) NIL) (($ $ (-767)) 41)) (-2390 (((-640 $) $) 25)) (-2358 (((-112) $ $) 49)) (-2514 (((-112) $ (-767)) 31)) (-2481 (((-112) $ (-767)) 30)) (-1298 (((-112) $) 27)) (-1481 ((|#2| $) 23) (($ $ (-767)) 45)) (-2308 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2889 (((-112) $) 21)) (-1951 (($ $) 38)) (-1930 (($ $) 64)) (-1961 (((-767) $) 40)) (-1970 (($ $) 39)) (-2857 (($ $ $) 57) (($ |#2| $) NIL)) (-4345 (((-640 $) $) 26)) (-1718 (((-112) $ $) 47)) (-3610 (((-767) $) 34)))
-(((-1244 |#1| |#2|) (-10 -8 (-15 -1887 (|#1| |#1| (-563))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1898 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1930 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1961 ((-767) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3446 (|#2| |#1|)) (-15 -3435 (|#2| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -2308 (|#2| |#1| "first")) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2336 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2348 (|#1| |#1| (-640 |#1|))) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -2618 (|#2| |#1|)) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767)))) (-1245 |#2|) (-1208)) (T -1244))
-NIL
-(-10 -8 (-15 -1887 (|#1| |#1| (-563))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1898 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1930 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1961 ((-767) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3446 (|#2| |#1|)) (-15 -3435 (|#2| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2308 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-767))) (-15 -2308 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -2308 (|#2| |#1| "first")) (-15 -2857 (|#1| |#2| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2336 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2348 (|#1| |#1| (-640 |#1|))) (-15 -2358 ((-112) |#1| |#1|)) (-15 -2889 ((-112) |#1|)) (-15 -2308 (|#2| |#1| "value")) (-15 -2618 (|#2| |#1|)) (-15 -1298 ((-112) |#1|)) (-15 -2390 ((-640 |#1|) |#1|)) (-15 -4345 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3610 ((-767) |#1|)) (-15 -3001 ((-112) |#1| (-767))) (-15 -2514 ((-112) |#1| (-767))) (-15 -2481 ((-112) |#1| (-767))))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2618 ((|#1| $) 48)) (-3446 ((|#1| $) 65)) (-4303 (($ $) 67)) (-1887 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3001 (((-112) $ (-767)) 8)) (-2336 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-1909 (($ $ $) 56 (|has| $ (-6 -4409)))) (-1898 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-1919 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409)))) (-2348 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3435 ((|#1| $) 66)) (-2569 (($) 7 T CONST)) (-3793 (($ $) 73) (($ $ (-767)) 71)) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2390 (((-640 $) $) 50)) (-2358 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2514 (((-112) $ (-767)) 9)) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35)) (-2481 (((-112) $ (-767)) 10)) (-2511 (((-640 |#1|) $) 45)) (-1298 (((-112) $) 49)) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 76) (($ $ (-767)) 74)) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2379 (((-563) $ $) 44)) (-2889 (((-112) $) 46)) (-1951 (($ $) 62)) (-1930 (($ $) 59 (|has| $ (-6 -4409)))) (-1961 (((-767) $) 63)) (-1970 (($ $) 64)) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1870 (($ $) 13)) (-1941 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-2857 (($ $ $) 78) (($ |#1| $) 77)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4345 (((-640 $) $) 51)) (-2367 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1245 |#1|) (-140) (-1208)) (T -1245))
-((-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2857 (*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1481 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1970 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-1951 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1941 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1941 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1930 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1919 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1909 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1898 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -2857 ($ $ $)) (-15 -2857 ($ |t#1| $)) (-15 -3782 (|t#1| $)) (-15 -2308 (|t#1| $ "first")) (-15 -3782 ($ $ (-767))) (-15 -3793 ($ $)) (-15 -2308 ($ $ "rest")) (-15 -3793 ($ $ (-767))) (-15 -1481 (|t#1| $)) (-15 -2308 (|t#1| $ "last")) (-15 -1481 ($ $ (-767))) (-15 -4303 ($ $)) (-15 -3435 (|t#1| $)) (-15 -3446 (|t#1| $)) (-15 -1970 ($ $)) (-15 -1961 ((-767) $)) (-15 -1951 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -1941 ($ $ $)) (-15 -1941 ($ $ |t#1|)) (-15 -1930 ($ $)) (-15 -1919 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "first" |t#1|)) (-15 -1909 ($ $ $)) (-15 -1849 ($ $ "rest" $)) (-15 -1898 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "last" |t#1|)) (-15 -1887 ($ $ (-563)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T))
-((-2238 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1248 |#1|) (-1248 |#2|)) (T -1246))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5)))))
-(-10 -7 (-15 -2238 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3439 (((-112) $) 15)) (-1770 (($ $) 91)) (-1618 (($ $) 67)) (-1747 (($ $) 87)) (-1596 (($ $) 63)) (-1793 (($ $) 95)) (-1642 (($ $) 71)) (-4372 (($ $) 61)) (-3372 (($ $) 59)) (-1805 (($ $) 97)) (-1655 (($ $) 73)) (-1783 (($ $) 93)) (-1629 (($ $) 69)) (-1758 (($ $) 89)) (-1607 (($ $) 65)) (-1692 (((-858) $) 47) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1839 (($ $) 103)) (-1694 (($ $) 79)) (-1816 (($ $) 99)) (-1666 (($ $) 75)) (-1861 (($ $) 107)) (-1721 (($ $) 83)) (-1311 (($ $) 109)) (-1734 (($ $) 85)) (-1850 (($ $) 105)) (-1709 (($ $) 81)) (-1828 (($ $) 101)) (-1679 (($ $) 77)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-407 (-563))) 57)))
-(((-1247 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1618 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -1629 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3439 ((-112) |#1|)) (-15 -1692 ((-858) |#1|))) (-1248 |#2|) (-1045)) (T -1247))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1618 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -1629 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1666 (|#1| |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1692 (|#1| |#2|)) (-15 -1692 (|#1| |#1|)) (-15 -1692 (|#1| (-407 (-563)))) (-15 -1692 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3439 ((-112) |#1|)) (-15 -1692 ((-858) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-2605 (((-640 (-1075)) $) 77)) (-2517 (((-1169) $) 106)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-3231 (($ $) 55 (|has| |#1| (-555)))) (-3211 (((-112) $) 57 (|has| |#1| (-555)))) (-1763 (($ $ (-767)) 101) (($ $ (-767) (-767)) 100)) (-1787 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 108)) (-1770 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) 19)) (-2185 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 158) (($ (-1149 |#1|)) 156)) (-1793 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) 17 T CONST)) (-2750 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3945 (($ $) 155)) (-3621 (((-948 |#1|) $ (-767)) 153) (((-948 |#1|) $ (-767) (-767)) 152)) (-3381 (((-112) $) 76)) (-2179 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $) 103) (((-767) $ (-767)) 102)) (-3401 (((-112) $) 31)) (-2172 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1821 (($ $ (-917)) 104)) (-2072 (($ (-1 |#1| (-563)) $) 154)) (-3805 (((-112) $) 65)) (-2587 (($ |#1| (-767)) 64) (($ $ (-1075) (-767)) 79) (($ $ (-640 (-1075)) (-640 (-767))) 78)) (-2238 (($ (-1 |#1| |#1|) $) 66)) (-4372 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) 68)) (-2725 ((|#1| $) 69)) (-3854 (((-1151) $) 9)) (-2062 (($ $) 150 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 149 (-4034 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1693 (((-1113) $) 10)) (-1751 (($ $ (-767)) 98)) (-3012 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3372 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1542 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2308 ((|#1| $ (-767)) 107) (($ $ $) 84 (|has| (-767) (-1105)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-3871 (((-767) $) 67)) (-1805 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 75)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3955 (((-1149 |#1|) $) 157)) (-3244 ((|#1| $ (-767)) 62)) (-2047 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3914 (((-767)) 28)) (-3412 ((|#1| $) 105)) (-1839 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1816 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-767)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563)))))))
-(((-1248 |#1|) (-140) (-1045)) (T -1248))
-((-3049 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3)))) (-3049 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-3945 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045)))) (-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (-3621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2062 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-2062 (*1 *1 *1 *2) (-4034 (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2605 ((-640 *2) *3))) (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))))
-(-13 (-1235 |t#1| (-767)) (-10 -8 (-15 -3049 ($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -3955 ((-1149 |t#1|) $)) (-15 -3049 ($ (-1149 |t#1|))) (-15 -3945 ($ $)) (-15 -2072 ($ (-1 |t#1| (-563)) $)) (-15 -3621 ((-948 |t#1|) $ (-767))) (-15 -3621 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2062 ($ $)) (IF (|has| |t#1| (-15 -2062 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2605 ((-640 (-1169)) |t#1|))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -2062 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-767) (-1105)) ((-290) |has| |#1| (-555)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4034 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1235 |#1| #0#) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-2605 (((-640 (-1075)) $) NIL)) (-2517 (((-1169) $) 86)) (-2051 (((-1230 |#2| |#1|) $ (-767)) 73)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-3231 (($ $) NIL (|has| |#1| (-555)))) (-3211 (((-112) $) 136 (|has| |#1| (-555)))) (-1763 (($ $ (-767)) 121) (($ $ (-767) (-767)) 123)) (-1787 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 42)) (-1770 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3905 (((-3 $ "failed") $ $) NIL)) (-2185 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1747 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3049 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1149 |#1|)) NIL)) (-1793 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1642 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2569 (($) NIL T CONST)) (-1996 (($ $) 127)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3945 (($ $) 134)) (-3621 (((-948 |#1|) $ (-767)) 63) (((-948 |#1|) $ (-767) (-767)) 65)) (-3381 (((-112) $) NIL)) (-2179 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-3401 (((-112) $) NIL)) (-2024 (($ $) 111)) (-2172 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1987 (($ (-563) (-563) $) 129)) (-1821 (($ $ (-917)) 133)) (-2072 (($ (-1 |#1| (-563)) $) 105)) (-3805 (((-112) $) NIL)) (-2587 (($ |#1| (-767)) 15) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2238 (($ (-1 |#1| |#1|) $) 93)) (-4372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2715 (($ $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-2035 (($ $) 109)) (-2044 (($ $) 107)) (-1980 (($ (-563) (-563) $) 131)) (-2062 (($ $) 144 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 150 (-4034 (-12 (|has| |#1| (-15 -2062 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2605 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 145 (|has| |#1| (-38 (-407 (-563)))))) (-1693 (((-1113) $) NIL)) (-2006 (($ $ (-563) (-563)) 115)) (-1751 (($ $ (-767)) 117)) (-3012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3372 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2013 (($ $) 113)) (-1542 (((-1149 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2308 ((|#1| $ (-767)) 90) (($ $ $) 125 (|has| (-767) (-1105)))) (-4203 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 102 (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 98)) (-3871 (((-767) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1655 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1783 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1629 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1607 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3369 (($ $) 119)) (-1692 (((-858) $) NIL) (($ (-563)) 24) (($ (-407 (-563))) 142 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 23 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 79) (($ (-1253 |#2|)) 20)) (-3955 (((-1149 |#1|) $) NIL)) (-3244 ((|#1| $ (-767)) 89)) (-2047 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3914 (((-767)) NIL)) (-3412 ((|#1| $) 87)) (-1839 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3223 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1816 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1666 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1402 ((|#1| $ (-767)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1692 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1734 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1850 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1709 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1828 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1679 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2239 (($) 17 T CONST)) (-2253 (($) 13 T CONST)) (-3213 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1836 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) 101)) (-1813 (($ $ $) 18)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 139 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))))
-(((-1249 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -1692 ($ (-1230 |#2| |#1|))) (-15 -2051 ((-1230 |#2| |#1|) $ (-767))) (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (-15 -2044 ($ $)) (-15 -2035 ($ $)) (-15 -2024 ($ $)) (-15 -2013 ($ $)) (-15 -2006 ($ $ (-563) (-563))) (-15 -1996 ($ $)) (-15 -1987 ($ (-563) (-563) $)) (-15 -1980 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1249))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5)))) (-2051 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2044 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-2035 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-2024 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-2013 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-2006 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-1996 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-1987 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-1980 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1248 |#1|) (-10 -8 (-15 -1692 ($ (-1230 |#2| |#1|))) (-15 -2051 ((-1230 |#2| |#1|) $ (-767))) (-15 -1692 ($ (-1253 |#2|))) (-15 -4203 ($ $ (-1253 |#2|))) (-15 -2044 ($ $)) (-15 -2035 ($ $)) (-15 -2024 ($ $)) (-15 -2013 ($ $)) (-15 -2006 ($ $ (-563) (-563))) (-15 -1996 ($ $)) (-15 -1987 ($ (-563) (-563) $)) (-15 -1980 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -2062 ($ $ (-1253 |#2|))) |%noBranch|)))
-((-3987 (((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|))) 24)) (-3976 (((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3966 (((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|)) 13)) (-4020 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4010 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4031 ((|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|)) 54)) (-4043 (((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))) 61)) (-3999 ((|#2| |#2| |#2|) 43)))
-(((-1250 |#1| |#2|) (-10 -7 (-15 -3966 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3976 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3987 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -3999 (|#2| |#2| |#2|)) (-15 -4010 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4020 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4031 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -4043 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))))) (-38 (-407 (-563))) (-1248 |#1|)) (T -1250))
-((-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6)))) (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6)) (-5 *1 (-1250 *5 *6)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5)) (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5)) (-5 *1 (-1250 *5 *2)))) (-4020 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-3999 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1248 *3)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5)))))
-(-10 -7 (-15 -3966 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3976 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3987 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -3999 (|#2| |#2| |#2|)) (-15 -4010 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4020 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4031 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -4043 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|))))))
-((-4066 ((|#2| |#4| (-767)) 30)) (-4055 ((|#4| |#2|) 25)) (-4087 ((|#4| (-407 |#2|)) 52 (|has| |#1| (-555)))) (-4076 (((-1 |#4| (-640 |#4|)) |#3|) 46)))
-(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4055 (|#4| |#2|)) (-15 -4066 (|#2| |#4| (-767))) (-15 -4076 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -4087 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-651 |#2|) (-1248 |#1|)) (T -1251))
-((-4087 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555)) (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) (-4 *6 (-651 *5)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6))) (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5)))) (-4055 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3)))))
-(-10 -7 (-15 -4055 (|#4| |#2|)) (-15 -4066 (|#2| |#4| (-767))) (-15 -4076 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -4087 (|#4| (-407 |#2|))) |%noBranch|))
+((-4188 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4214 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1169)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4186 (*1 *2 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4185 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4185 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4361 (*2 (-1169)))) (-4 *2 (-1045)))) (-4183 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4182 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
+(-13 (-969 |t#1| |t#2| (-1075)) (-10 -8 (-15 -4188 ((-1146 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4214 (|t#1| $ |t#2|)) (-15 -4246 ((-1169) $)) (-15 -4187 (|t#1| $)) (-15 -4191 ($ $ (-915))) (-15 -4186 (|t#2| $)) (-15 -4186 (|t#2| $ |t#2|)) (-15 -4185 ($ $ |t#2|)) (-15 -4185 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4361 (|t#1| (-1169)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4184 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4183 ($ $ |t#2|)) (IF (|has| |t#2| (-1105)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4182 ((-1146 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1105)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-643 #1#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-969 |#1| |#2| (-1075)) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-4189 ((|#2| |#2|) 12)) (-4384 (((-405 |#2|) |#2|) 14)) (-4190 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-546))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-546)))) 30)))
+(((-1236 |#1| |#2|) (-10 -7 (-15 -4384 ((-405 |#2|) |#2|)) (-15 -4189 (|#2| |#2|)) (-15 -4190 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-546))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-546)))))) (-556) (-13 (-1232 |#1|) (-556) (-10 -8 (-15 -3552 ($ $ $))))) (T -1236))
+((-4190 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-546)))) (-4 *4 (-13 (-1232 *3) (-556) (-10 -8 (-15 -3552 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1236 *3 *4)))) (-4189 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-1232 *3) (-556) (-10 -8 (-15 -3552 ($ $ $))))))) (-4384 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-405 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-1232 *4) (-556) (-10 -8 (-15 -3552 ($ $ $))))))))
+(-10 -7 (-15 -4384 ((-405 |#2|) |#2|)) (-15 -4189 (|#2| |#2|)) (-15 -4190 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-546))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-546))))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 11)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) NIL) (($ $ (-407 (-546)) (-407 (-546))) NIL)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) NIL)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-1216 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1246 |#1| |#2| |#3|) #1#) $) 22)) (-3564 (((-1216 |#1| |#2| |#3|) $) NIL) (((-1246 |#1| |#2| |#3|) $) NIL)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4195 (((-407 (-546)) $) 57)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4196 (($ (-407 (-546)) (-1216 |#1| |#2| |#3|)) NIL)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) NIL) (((-407 (-546)) $ (-407 (-546))) NIL)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) NIL) (($ $ (-407 (-546))) NIL)) (-1737 (((-3 (-637 $) #2="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-407 (-546))) 30) (($ $ (-1075) (-407 (-546))) NIL) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4194 (((-1216 |#1| |#2| |#3|) $) 60)) (-4192 (((-3 (-1216 |#1| |#2| |#3|) "failed") $) NIL)) (-4193 (((-1216 |#1| |#2| |#3|) $) NIL)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) NIL (|has| |#1| (-363)))) (-4227 (($ $) 39 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) NIL (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) NIL)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) NIL) (($ $ $) NIL (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-4363 (((-407 (-546)) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) NIL)) (-4361 (((-859) $) 88) (($ (-546)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1216 |#1| |#2| |#3|)) 16) (($ (-1246 |#1| |#2| |#3|)) 17) (($ (-1253 |#2|)) 36) (($ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 12)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 32 T CONST)) (-3053 (($) 26 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 34)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ (-546)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1237 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1216 |#1| |#2| |#3|)) (-1034 (-1246 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1237))
+((-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1241 |#1| (-1216 |#1| |#2| |#3|)) (-1034 (-1246 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4225 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-4373 (((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)) 24)))
+(((-1238 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4373 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1238))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169)))))
+(-10 -7 (-15 -4373 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) 101) (($ $ (-407 (-546)) (-407 (-546))) 100)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) 108)) (-3898 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 165 (|has| |#1| (-363)))) (-4384 (((-405 $) $) 166 (|has| |#1| (-363)))) (-3427 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3896 (($ $) 137 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) 174)) (-3900 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-2949 (($ $ $) 160 (|has| |#1| (-363)))) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 159 (|has| |#1| (-363)))) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 154 (|has| |#1| (-363)))) (-4138 (((-112) $) 167 (|has| |#1| (-363)))) (-3282 (((-112) $) 76)) (-4042 (($) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) 103) (((-407 (-546)) $ (-407 (-546))) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 119 (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) 104) (($ $ (-407 (-546))) 173)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 163 (|has| |#1| (-363)))) (-4352 (((-112) $) 65)) (-3283 (($ |#1| (-407 (-546))) 64) (($ $ (-1075) (-407 (-546))) 79) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-4357 (($ $) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-2048 (($ (-637 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3650 (((-1151) $) 9)) (-2785 (($ $) 168 (|has| |#1| (-363)))) (-4227 (($ $) 172 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 171 (-3943 (-12 (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-546))))) (-12 (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-546)))))))) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 153 (|has| |#1| (-363)))) (-3552 (($ (-637 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4147 (((-405 $) $) 164 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 161 (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 155 (|has| |#1| (-363)))) (-4358 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) 157 (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) 107) (($ $ $) 84 (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 158 (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-4363 (((-407 (-546)) $) 67)) (-3901 (($ $) 135 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 133 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-4187 ((|#1| $) 105)) (-3904 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3902 (($ $) 143 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 131 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 141 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 139 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 127 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 118 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
+(((-1239 |#1|) (-140) (-1045)) (T -1239))
+((-4233 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1239 *4)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-4 *1 (-1239 *3)) (-4 *3 (-1045)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546)))))) (-4227 (*1 *1 *1 *2) (-3943 (-12 (-5 *2 (-1169)) (-4 *1 (-1239 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-546)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1239 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3474 ((-637 *2) *3))) (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546)))))))))
+(-13 (-1235 |t#1| (-407 (-546))) (-10 -8 (-15 -4233 ($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |t#1|))))) (-15 -4191 ($ $ (-407 (-546)))) (IF (|has| |t#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $)) (IF (|has| |t#1| (-15 -4227 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -3474 ((-637 (-1169)) |t#1|))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-546))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-407 (-546))) . T) ((-25) . T) ((-38 #2=(-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-286 $ $) |has| (-407 (-546)) (-1105)) ((-290) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-556) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-643 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) ((-969 |#1| #1# (-1075)) . T) ((-917) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1051 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #1#) . T))
+((-3596 (((-112) $) 12)) (-3565 (((-3 |#3| "failed") $) 17)) (-3564 ((|#3| $) 14)))
+(((-1240 |#1| |#2| |#3|) (-10 -8 (-15 -3565 ((-3 |#3| "failed") |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3596 ((-112) |#1|))) (-1241 |#2| |#3|) (-1045) (-1218 |#2|)) (T -1240))
+NIL
+(-10 -8 (-15 -3565 ((-3 |#3| "failed") |#1|)) (-15 -3564 (|#3| |#1|)) (-15 -3596 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) 101) (($ $ (-407 (-546)) (-407 (-546))) 100)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) 108)) (-3898 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 165 (|has| |#1| (-363)))) (-4384 (((-405 $) $) 166 (|has| |#1| (-363)))) (-3427 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3896 (($ $) 137 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) 174)) (-3900 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#2| "failed") $) 185)) (-3564 ((|#2| $) 186)) (-2949 (($ $ $) 160 (|has| |#1| (-363)))) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-4195 (((-407 (-546)) $) 182)) (-2948 (($ $ $) 159 (|has| |#1| (-363)))) (-4196 (($ (-407 (-546)) |#2|) 183)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 154 (|has| |#1| (-363)))) (-4138 (((-112) $) 167 (|has| |#1| (-363)))) (-3282 (((-112) $) 76)) (-4042 (($) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) 103) (((-407 (-546)) $ (-407 (-546))) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 119 (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) 104) (($ $ (-407 (-546))) 173)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 163 (|has| |#1| (-363)))) (-4352 (((-112) $) 65)) (-3283 (($ |#1| (-407 (-546))) 64) (($ $ (-1075) (-407 (-546))) 79) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-4357 (($ $) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-2048 (($ (-637 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4194 ((|#2| $) 181)) (-4192 (((-3 |#2| "failed") $) 179)) (-4193 ((|#2| $) 180)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 168 (|has| |#1| (-363)))) (-4227 (($ $) 172 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 171 (-3943 (-12 (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-546))))) (-12 (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-546)))))))) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 153 (|has| |#1| (-363)))) (-3552 (($ (-637 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4147 (((-405 $) $) 164 (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 161 (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 155 (|has| |#1| (-363)))) (-4358 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) 157 (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) 107) (($ $ $) 84 (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 158 (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-4363 (((-407 (-546)) $) 67)) (-3901 (($ $) 135 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 133 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-4187 ((|#1| $) 105)) (-3904 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3902 (($ $) 143 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 131 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 141 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 139 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 127 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 118 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
+(((-1241 |#1| |#2|) (-140) (-1045) (-1218 |t#1|)) (T -1241))
+((-4363 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1218 *3)) (-5 *2 (-407 (-546))))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-4 *4 (-1045)) (-4 *1 (-1241 *4 *3)) (-4 *3 (-1218 *4)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1218 *3)) (-5 *2 (-407 (-546))))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))) (-4192 (*1 *2 *1) (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))))
+(-13 (-1239 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -4196 ($ (-407 (-546)) |t#2|)) (-15 -4195 ((-407 (-546)) $)) (-15 -4194 (|t#2| $)) (-15 -4363 ((-407 (-546)) $)) (-15 -4193 (|t#2| $)) (-15 -4192 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-407 (-546))) . T) ((-25) . T) ((-38 #2=(-407 (-546))) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-286 $ $) |has| (-407 (-546)) (-1105)) ((-290) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-556) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-643 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) ((-969 |#1| #1# (-1075)) . T) ((-917) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1034 |#2|) . T) ((-1051 #2#) -3943 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-546))))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #1#) . T) ((-1239 |#1|) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 96)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) NIL (|has| |#1| (-556)))) (-4185 (($ $ (-407 (-546))) 106) (($ $ (-407 (-546)) (-407 (-546))) 108)) (-4188 (((-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|))) $) 51)) (-3898 (($ $) 180 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 156 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-363)))) (-4384 (((-405 $) $) NIL (|has| |#1| (-363)))) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1740 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3896 (($ $) 176 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 152 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-767) (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#1|)))) 61)) (-3900 (($ $) 184 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 160 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| "failed") $) NIL)) (-3564 ((|#2| $) NIL)) (-2949 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) 79)) (-4195 (((-407 (-546)) $) 13)) (-2948 (($ $ $) NIL (|has| |#1| (-363)))) (-4196 (($ (-407 (-546)) |#2|) 11)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) NIL (|has| |#1| (-363)))) (-4138 (((-112) $) NIL (|has| |#1| (-363)))) (-3282 (((-112) $) 68)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-407 (-546)) $) 103) (((-407 (-546)) $ (-407 (-546))) 104)) (-2552 (((-112) $) NIL)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) 120) (($ $ (-407 (-546))) 118)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-407 (-546))) 31) (($ $ (-1075) (-407 (-546))) NIL) (($ $ (-637 (-1075)) (-637 (-407 (-546)))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) 115)) (-4357 (($ $) 150 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-2048 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4194 ((|#2| $) 12)) (-4192 (((-3 |#2| "failed") $) 41)) (-4193 ((|#2| $) 42)) (-3650 (((-1151) $) NIL)) (-2785 (($ $) 93 (|has| |#1| (-363)))) (-4227 (($ $) 135 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 140 (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))))))) (-3651 (((-1113) $) NIL)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) NIL (|has| |#1| (-363)))) (-3552 (($ (-637 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (((-405 $) $) NIL (|has| |#1| (-363)))) (-1738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) NIL (|has| |#1| (-363)))) (-4183 (($ $ (-407 (-546))) 112)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3129 (((-3 (-637 $) "failed") (-637 $) $) NIL (|has| |#1| (-363)))) (-4358 (($ $) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))))) (-1739 (((-767) $) NIL (|has| |#1| (-363)))) (-4214 ((|#1| $ (-407 (-546))) 100) (($ $ $) 86 (|has| (-407 (-546)) (-1105)))) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-363)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) 127 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-4363 (((-407 (-546)) $) 16)) (-3901 (($ $) 186 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 162 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 182 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 158 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 178 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 154 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 110)) (-4361 (((-859) $) NIL) (($ (-546)) 35) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 32) (($ (-407 (-546))) 128 (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556)))) (-4092 ((|#1| $ (-407 (-546))) 99)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) 117)) (-4187 ((|#1| $) 98)) (-3904 (($ $) 192 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 168 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) 188 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 164 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 196 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 172 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-407 (-546))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-546))))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 198 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 174 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 194 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 170 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 190 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 166 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 21 T CONST)) (-3053 (($) 17 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-546)) |#1|))))) (-3444 (((-112) $ $) 66)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (|has| |#1| (-363)))) (-4252 (($ $) 131) (($ $ $) 72)) (-4254 (($ $ $) 70)) (** (($ $ (-915)) NIL) (($ $ (-767)) 76) (($ $ (-546)) 145 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 146 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1242 |#1| |#2|) (-1241 |#1| |#2|) (-1045) (-1218 |#1|)) (T -1242))
+NIL
+(-1241 |#1| |#2|)
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 34)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2220 (($ $) NIL)) (-2218 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 (-546) #1="failed") $) NIL (|has| (-1237 |#2| |#3| |#4|) (-1034 (-546)))) (((-3 (-407 (-546)) #1#) $) NIL (|has| (-1237 |#2| |#3| |#4|) (-1034 (-407 (-546))))) (((-3 (-1237 |#2| |#3| |#4|) #1#) $) 20)) (-3564 (((-546) $) NIL (|has| (-1237 |#2| |#3| |#4|) (-1034 (-546)))) (((-407 (-546)) $) NIL (|has| (-1237 |#2| |#3| |#4|) (-1034 (-407 (-546))))) (((-1237 |#2| |#3| |#4|) $) NIL)) (-4374 (($ $) 35)) (-3873 (((-3 $ "failed") $) 25)) (-3909 (($ $) NIL (|has| (-1237 |#2| |#3| |#4|) (-452)))) (-1756 (($ $ (-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) 11)) (-4352 (((-112) $) NIL)) (-3283 (($ (-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 23)) (-3209 (((-319 |#2| |#3| |#4|) $) NIL)) (-1757 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-4373 (($ (-1 (-1237 |#2| |#3| |#4|) (-1237 |#2| |#3| |#4|)) $) NIL)) (-4198 (((-3 (-838 |#2|) "failed") $) 74)) (-3284 (($ $) NIL)) (-3582 (((-1237 |#2| |#3| |#4|) $) 18)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-1951 (((-112) $) NIL)) (-1950 (((-1237 |#2| |#3| |#4|) $) NIL)) (-3872 (((-3 $ "failed") $ (-1237 |#2| |#3| |#4|)) NIL (|has| (-1237 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-4197 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1237 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-637 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $) 57)) (-4363 (((-319 |#2| |#3| |#4|) $) 14)) (-3206 (((-1237 |#2| |#3| |#4|) $) NIL (|has| (-1237 |#2| |#3| |#4|) (-452)))) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ (-1237 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-546))) NIL (-3943 (|has| (-1237 |#2| |#3| |#4|) (-1034 (-407 (-546)))) (|has| (-1237 |#2| |#3| |#4|) (-38 (-407 (-546))))))) (-4232 (((-637 (-1237 |#2| |#3| |#4|)) $) NIL)) (-4092 (((-1237 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-3091 (((-3 $ "failed") $) NIL (|has| (-1237 |#2| |#3| |#4|) (-145)))) (-3518 (((-767)) NIL)) (-1755 (($ $ $ (-767)) NIL (|has| (-1237 |#2| |#3| |#4|) (-172)))) (-2219 (((-112) $ $) NIL)) (-3047 (($) 62 T CONST)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ (-1237 |#2| |#3| |#4|)) NIL (|has| (-1237 |#2| |#3| |#4|) (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ (-1237 |#2| |#3| |#4|)) NIL) (($ (-1237 |#2| |#3| |#4|) $) NIL) (($ (-407 (-546)) $) NIL (|has| (-1237 |#2| |#3| |#4|) (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| (-1237 |#2| |#3| |#4|) (-38 (-407 (-546)))))))
+(((-1243 |#1| |#2| |#3| |#4|) (-13 (-326 (-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -4198 ((-3 (-838 |#2|) "failed") $)) (-15 -4197 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1237 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-637 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)) (-13 (-27) (-1193) (-421 |#1|)) (-1169) |#2|) (T -1243))
+((-4198 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452))) (-5 *2 (-838 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4))) (-4197 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1237 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-637 (-2 (|:| |k| (-407 (-546))) (|:| |c| *4)))))) (|:| |%type| (-1151)))) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4))))
+(-13 (-326 (-1237 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -4198 ((-3 (-838 |#2|) "failed") $)) (-15 -4197 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1237 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-637 (-2 (|:| |k| (-407 (-546))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $))))
+((-3813 ((|#2| $) 28)) (-4209 ((|#2| $) 18)) (-4211 (($ $) 35)) (-4199 (($ $ (-546)) 63)) (-1296 (((-112) $ (-767)) 32)) (-3415 ((|#2| $ |#2|) 60)) (-4200 ((|#2| $ |#2|) 58)) (-4202 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3416 (($ $ (-637 $)) 59)) (-4210 ((|#2| $) 17)) (-4213 (($ $) NIL) (($ $ (-767)) 41)) (-3421 (((-637 $) $) 25)) (-3417 (((-112) $ $) 49)) (-4134 (((-112) $ (-767)) 31)) (-4131 (((-112) $ (-767)) 30)) (-3933 (((-112) $) 27)) (-4212 ((|#2| $) 23) (($ $ (-767)) 45)) (-4214 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4048 (((-112) $) 21)) (-4206 (($ $) 38)) (-4204 (($ $) 64)) (-4207 (((-767) $) 40)) (-4208 (($ $) 39)) (-4216 (($ $ $) 57) (($ |#2| $) NIL)) (-3928 (((-637 $) $) 26)) (-3444 (((-112) $ $) 47)) (-4372 (((-767) $) 34)))
+(((-1244 |#1| |#2|) (-10 -8 (-15 -4199 (|#1| |#1| (-546))) (-15 -4202 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#2| |#1| |#2|)) (-15 -4202 (|#1| |#1| "rest" |#1|)) (-15 -4202 (|#2| |#1| "first" |#2|)) (-15 -4204 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4207 ((-767) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4210 (|#2| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -4212 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "last")) (-15 -4212 (|#2| |#1|)) (-15 -4213 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| "rest")) (-15 -4213 (|#1| |#1|)) (-15 -4214 (|#2| |#1| "first")) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#1|)) (-15 -3415 (|#2| |#1| |#2|)) (-15 -4202 (|#2| |#1| #1="value" |#2|)) (-15 -3416 (|#1| |#1| (-637 |#1|))) (-15 -3417 ((-112) |#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -3813 (|#2| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767)))) (-1245 |#2|) (-1207)) (T -1244))
+NIL
+(-10 -8 (-15 -4199 (|#1| |#1| (-546))) (-15 -4202 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#2| |#1| |#2|)) (-15 -4202 (|#1| |#1| "rest" |#1|)) (-15 -4202 (|#2| |#1| "first" |#2|)) (-15 -4204 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4207 ((-767) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4210 (|#2| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -4212 (|#1| |#1| (-767))) (-15 -4214 (|#2| |#1| "last")) (-15 -4212 (|#2| |#1|)) (-15 -4213 (|#1| |#1| (-767))) (-15 -4214 (|#1| |#1| "rest")) (-15 -4213 (|#1| |#1|)) (-15 -4214 (|#2| |#1| "first")) (-15 -4216 (|#1| |#2| |#1|)) (-15 -4216 (|#1| |#1| |#1|)) (-15 -3415 (|#2| |#1| |#2|)) (-15 -4202 (|#2| |#1| #1="value" |#2|)) (-15 -3416 (|#1| |#1| (-637 |#1|))) (-15 -3417 ((-112) |#1| |#1|)) (-15 -4048 ((-112) |#1|)) (-15 -4214 (|#2| |#1| #1#)) (-15 -3813 (|#2| |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -3421 ((-637 |#1|) |#1|)) (-15 -3928 ((-637 |#1|) |#1|)) (-15 -3444 ((-112) |#1| |#1|)) (-15 -4372 ((-767) |#1|)) (-15 -1296 ((-112) |#1| (-767))) (-15 -4134 ((-112) |#1| (-767))) (-15 -4131 ((-112) |#1| (-767))))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3813 ((|#1| $) 48)) (-4209 ((|#1| $) 65)) (-4211 (($ $) 67)) (-4199 (($ $ (-546)) 52 (|has| $ (-6 -4409)))) (-1296 (((-112) $ (-767)) 8)) (-3415 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-4201 (($ $ $) 56 (|has| $ (-6 -4409)))) (-4200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-4203 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-4202 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409)))) (-3416 (($ $ (-637 $)) 41 (|has| $ (-6 -4409)))) (-4210 ((|#1| $) 66)) (-4139 (($) 7 T CONST)) (-4213 (($ $) 73) (($ $ (-767)) 71)) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3421 (((-637 $) $) 50)) (-3417 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-4134 (((-112) $ (-767)) 9)) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35)) (-4131 (((-112) $ (-767)) 10)) (-3420 (((-637 |#1|) $) 45)) (-3933 (((-112) $) 49)) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-4212 ((|#1| $) 70) (($ $ (-767)) 68)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 76) (($ $ (-767)) 74)) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3419 (((-546) $ $) 44)) (-4048 (((-112) $) 46)) (-4206 (($ $) 62)) (-4204 (($ $) 59 (|has| $ (-6 -4409)))) (-4207 (((-767) $) 63)) (-4208 (($ $) 64)) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3811 (($ $) 13)) (-4205 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-4216 (($ $ $) 78) (($ |#1| $) 77)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-3928 (((-637 $) $) 51)) (-3418 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1245 |#1|) (-140) (-1207)) (T -1245))
+((-4216 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4216 (*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207)))) (-4213 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1207)))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4212 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4208 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))) (-4206 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4205 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4205 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4204 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4203 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4201 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4202 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1207)))) (-4200 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-546)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1207)))))
+(-13 (-1006 |t#1|) (-10 -8 (-15 -4216 ($ $ $)) (-15 -4216 ($ |t#1| $)) (-15 -4215 (|t#1| $)) (-15 -4214 (|t#1| $ "first")) (-15 -4215 ($ $ (-767))) (-15 -4213 ($ $)) (-15 -4214 ($ $ "rest")) (-15 -4213 ($ $ (-767))) (-15 -4212 (|t#1| $)) (-15 -4214 (|t#1| $ "last")) (-15 -4212 ($ $ (-767))) (-15 -4211 ($ $)) (-15 -4210 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -4208 ($ $)) (-15 -4207 ((-767) $)) (-15 -4206 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -4205 ($ $ $)) (-15 -4205 ($ $ |t#1|)) (-15 -4204 ($ $)) (-15 -4203 (|t#1| $ |t#1|)) (-15 -4202 (|t#1| $ "first" |t#1|)) (-15 -4201 ($ $ $)) (-15 -4202 ($ $ "rest" $)) (-15 -4200 (|t#1| $ |t#1|)) (-15 -4202 (|t#1| $ "last" |t#1|)) (-15 -4199 ($ $ (-546)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-610 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1207) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-3474 (((-637 (-1075)) $) NIL)) (-4246 (((-1169) $) 86)) (-4226 (((-1225 |#2| |#1|) $ (-767)) 73)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-2220 (($ $) NIL (|has| |#1| (-556)))) (-2218 (((-112) $) 136 (|has| |#1| (-556)))) (-4185 (($ $ (-767)) 121) (($ $ (-767) (-767)) 123)) (-4188 (((-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 42)) (-3898 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1146 |#1|)) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) NIL T CONST)) (-4219 (($ $) 127)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4231 (($ $) 134)) (-4229 (((-942 |#1|) $ (-767)) 63) (((-942 |#1|) $ (-767) (-767)) 65)) (-3282 (((-112) $) NIL)) (-4042 (($) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-2552 (((-112) $) NIL)) (-4222 (($ $) 111)) (-3401 (($ $ (-546)) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4218 (($ (-546) (-546) $) 129)) (-4191 (($ $ (-915)) 133)) (-4230 (($ (-1 |#1| (-546)) $) 105)) (-4352 (((-112) $) NIL)) (-3283 (($ |#1| (-767)) 15) (($ $ (-1075) (-767)) NIL) (($ $ (-637 (-1075)) (-637 (-767))) NIL)) (-4373 (($ (-1 |#1| |#1|) $) 93)) (-4357 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-4223 (($ $) 109)) (-4224 (($ $) 107)) (-4217 (($ (-546) (-546) $) 131)) (-4227 (($ $) 144 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 150 (-3943 (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193))) (-12 (|has| |#1| (-38 (-407 (-546)))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|)))))) (($ $ (-1253 |#2|)) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3651 (((-1113) $) NIL)) (-4220 (($ $ (-546) (-546)) 115)) (-4183 (($ $ (-767)) 117)) (-3872 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4358 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4221 (($ $) 113)) (-4182 (((-1146 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4214 ((|#1| $ (-767)) 90) (($ $ $) 125 (|has| (-767) (-1105)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 102 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 98)) (-4363 (((-767) $) NIL)) (-3901 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 119)) (-4361 (((-859) $) NIL) (($ (-546)) 24) (($ (-407 (-546))) 142 (|has| |#1| (-38 (-407 (-546))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 23 (|has| |#1| (-172))) (($ (-1225 |#2| |#1|)) 79) (($ (-1253 |#2|)) 20)) (-4232 (((-1146 |#1|) $) NIL)) (-4092 ((|#1| $ (-767)) 89)) (-3091 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3518 (((-767)) NIL)) (-4187 ((|#1| $) 87)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-767)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 17 T CONST)) (-3053 (($) 13 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-3444 (((-112) $ $) NIL)) (-4364 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) 101)) (-4254 (($ $ $) 18)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 139 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-407 (-546)) $) NIL (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) NIL (|has| |#1| (-38 (-407 (-546)))))))
+(((-1246 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-10 -8 (-15 -4361 ($ (-1225 |#2| |#1|))) (-15 -4226 ((-1225 |#2| |#1|) $ (-767))) (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (-15 -4224 ($ $)) (-15 -4223 ($ $)) (-15 -4222 ($ $)) (-15 -4221 ($ $)) (-15 -4220 ($ $ (-546) (-546))) (-15 -4219 ($ $)) (-15 -4218 ($ (-546) (-546) $)) (-15 -4217 ($ (-546) (-546) $)) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1246))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-1225 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1246 *3 *4 *5)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1225 *5 *4)) (-5 *1 (-1246 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4224 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4223 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4222 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4221 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4220 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4218 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-4217 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3))))
+(-13 (-1249 |#1|) (-10 -8 (-15 -4361 ($ (-1225 |#2| |#1|))) (-15 -4226 ((-1225 |#2| |#1|) $ (-767))) (-15 -4361 ($ (-1253 |#2|))) (-15 -4225 ($ $ (-1253 |#2|))) (-15 -4224 ($ $)) (-15 -4223 ($ $)) (-15 -4222 ($ $)) (-15 -4221 ($ $)) (-15 -4220 ($ $ (-546) (-546))) (-15 -4219 ($ $)) (-15 -4218 ($ (-546) (-546) $)) (-15 -4217 ($ (-546) (-546) $)) (IF (|has| |#1| (-38 (-407 (-546)))) (-15 -4227 ($ $ (-1253 |#2|))) |%noBranch|)))
+((-4373 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1249 |#1|) (-1249 |#2|)) (T -1247))
+((-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1249 *6)) (-5 *1 (-1247 *5 *6 *4 *2)) (-4 *4 (-1249 *5)))))
+(-10 -7 (-15 -4373 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3596 (((-112) $) 15)) (-3898 (($ $) 91)) (-4054 (($ $) 67)) (-3896 (($ $) 87)) (-4053 (($ $) 63)) (-3900 (($ $) 95)) (-4052 (($ $) 71)) (-4357 (($ $) 61)) (-4358 (($ $) 59)) (-3901 (($ $) 97)) (-4051 (($ $) 73)) (-3899 (($ $) 93)) (-4050 (($ $) 69)) (-3897 (($ $) 89)) (-4049 (($ $) 65)) (-4361 (((-859) $) 47) (($ (-546)) NIL) (($ (-407 (-546))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3904 (($ $) 103)) (-3892 (($ $) 79)) (-3902 (($ $) 99)) (-3890 (($ $) 75)) (-3906 (($ $) 107)) (-3894 (($ $) 83)) (-3907 (($ $) 109)) (-3895 (($ $) 85)) (-3905 (($ $) 105)) (-3893 (($ $) 81)) (-3903 (($ $) 101)) (-3891 (($ $) 77)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-407 (-546))) 57)))
+(((-1248 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -4054 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4051 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))) (-15 -3596 ((-112) |#1|)) (-15 -4361 ((-859) |#1|))) (-1249 |#2|) (-1045)) (T -1248))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-407 (-546)))) (-15 -4054 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4052 (|#1| |#1|)) (-15 -4051 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4357 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4361 (|#1| |#2|)) (-15 -4361 (|#1| |#1|)) (-15 -4361 (|#1| (-407 (-546)))) (-15 -4361 (|#1| (-546))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-915))) (-15 -3596 ((-112) |#1|)) (-15 -4361 ((-859) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-3474 (((-637 (-1075)) $) 77)) (-4246 (((-1169) $) 106)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-2220 (($ $) 55 (|has| |#1| (-556)))) (-2218 (((-112) $) 57 (|has| |#1| (-556)))) (-4185 (($ $ (-767)) 101) (($ $ (-767) (-767)) 100)) (-4188 (((-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 108)) (-3898 (($ $) 138 (|has| |#1| (-38 (-407 (-546)))))) (-4054 (($ $) 121 (|has| |#1| (-38 (-407 (-546)))))) (-1397 (((-3 $ "failed") $ $) 19)) (-3427 (($ $) 120 (|has| |#1| (-38 (-407 (-546)))))) (-3896 (($ $) 137 (|has| |#1| (-38 (-407 (-546)))))) (-4053 (($ $) 122 (|has| |#1| (-38 (-407 (-546)))))) (-4233 (($ (-1146 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 158) (($ (-1146 |#1|)) 156)) (-3900 (($ $) 136 (|has| |#1| (-38 (-407 (-546)))))) (-4052 (($ $) 123 (|has| |#1| (-38 (-407 (-546)))))) (-4139 (($) 17 T CONST)) (-4374 (($ $) 63)) (-3873 (((-3 $ "failed") $) 33)) (-4231 (($ $) 155)) (-4229 (((-942 |#1|) $ (-767)) 153) (((-942 |#1|) $ (-767) (-767)) 152)) (-3282 (((-112) $) 76)) (-4042 (($) 148 (|has| |#1| (-38 (-407 (-546)))))) (-4186 (((-767) $) 103) (((-767) $ (-767)) 102)) (-2552 (((-112) $) 31)) (-3401 (($ $ (-546)) 119 (|has| |#1| (-38 (-407 (-546)))))) (-4191 (($ $ (-915)) 104)) (-4230 (($ (-1 |#1| (-546)) $) 154)) (-4352 (((-112) $) 65)) (-3283 (($ |#1| (-767)) 64) (($ $ (-1075) (-767)) 79) (($ $ (-637 (-1075)) (-637 (-767))) 78)) (-4373 (($ (-1 |#1| |#1|) $) 66)) (-4357 (($ $) 145 (|has| |#1| (-38 (-407 (-546)))))) (-3284 (($ $) 68)) (-3582 ((|#1| $) 69)) (-3650 (((-1151) $) 9)) (-4227 (($ $) 150 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-1169)) 149 (-3943 (-12 (|has| |#1| (-29 (-546))) (|has| |#1| (-956)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-546))))) (-12 (|has| |#1| (-15 -3474 ((-637 (-1169)) |#1|))) (|has| |#1| (-15 -4227 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-546)))))))) (-3651 (((-1113) $) 10)) (-4183 (($ $ (-767)) 98)) (-3872 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4358 (($ $) 146 (|has| |#1| (-38 (-407 (-546)))))) (-4182 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4214 ((|#1| $ (-767)) 107) (($ $ $) 84 (|has| (-767) (-1105)))) (-4225 (($ $ (-637 (-1169)) (-637 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-4363 (((-767) $) 67)) (-3901 (($ $) 135 (|has| |#1| (-38 (-407 (-546)))))) (-4051 (($ $) 124 (|has| |#1| (-38 (-407 (-546)))))) (-3899 (($ $) 134 (|has| |#1| (-38 (-407 (-546)))))) (-4050 (($ $) 125 (|has| |#1| (-38 (-407 (-546)))))) (-3897 (($ $) 133 (|has| |#1| (-38 (-407 (-546)))))) (-4049 (($ $) 126 (|has| |#1| (-38 (-407 (-546)))))) (-3281 (($ $) 75)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ (-407 (-546))) 60 (|has| |#1| (-38 (-407 (-546))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4232 (((-1146 |#1|) $) 157)) (-4092 ((|#1| $ (-767)) 62)) (-3091 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3518 (((-767)) 28)) (-4187 ((|#1| $) 105)) (-3904 (($ $) 144 (|has| |#1| (-38 (-407 (-546)))))) (-3892 (($ $) 132 (|has| |#1| (-38 (-407 (-546)))))) (-2219 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3902 (($ $) 143 (|has| |#1| (-38 (-407 (-546)))))) (-3890 (($ $) 131 (|has| |#1| (-38 (-407 (-546)))))) (-3906 (($ $) 142 (|has| |#1| (-38 (-407 (-546)))))) (-3894 (($ $) 130 (|has| |#1| (-38 (-407 (-546)))))) (-4184 ((|#1| $ (-767)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -4361 (|#1| (-1169))))))) (-3907 (($ $) 141 (|has| |#1| (-38 (-407 (-546)))))) (-3895 (($ $) 129 (|has| |#1| (-38 (-407 (-546)))))) (-3905 (($ $) 140 (|has| |#1| (-38 (-407 (-546)))))) (-3893 (($ $) 128 (|has| |#1| (-38 (-407 (-546)))))) (-3903 (($ $) 139 (|has| |#1| (-38 (-407 (-546)))))) (-3891 (($ $) 127 (|has| |#1| (-38 (-407 (-546)))))) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3058 (($ $ (-637 (-1169)) (-637 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-637 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 118 (|has| |#1| (-38 (-407 (-546)))))) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-546)) $) 59 (|has| |#1| (-38 (-407 (-546))))) (($ $ (-407 (-546))) 58 (|has| |#1| (-38 (-407 (-546)))))))
+(((-1249 |#1|) (-140) (-1045)) (T -1249))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1249 *3)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1045)) (-5 *2 (-1146 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-4 *1 (-1249 *3)))) (-4231 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)))) (-4230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-546))) (-4 *1 (-1249 *3)) (-4 *3 (-1045)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1249 *4)) (-4 *4 (-1045)) (-5 *2 (-942 *4)))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1249 *4)) (-4 *4 (-1045)) (-5 *2 (-942 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546)))))) (-4227 (*1 *1 *1 *2) (-3943 (-12 (-5 *2 (-1169)) (-4 *1 (-1249 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-546)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1249 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3474 ((-637 *2) *3))) (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546)))))))))
+(-13 (-1235 |t#1| (-767)) (-10 -8 (-15 -4233 ($ (-1146 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -4232 ((-1146 |t#1|) $)) (-15 -4233 ($ (-1146 |t#1|))) (-15 -4231 ($ $)) (-15 -4230 ($ (-1 |t#1| (-546)) $)) (-15 -4229 ((-942 |t#1|) $ (-767))) (-15 -4229 ((-942 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-546)))) (PROGN (-15 -4227 ($ $)) (IF (|has| |t#1| (-15 -4227 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -3474 ((-637 (-1169)) |t#1|))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-546))) (-15 -4227 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-767)) . T) ((-25) . T) ((-38 #2=(-407 (-546))) |has| |#1| (-38 (-407 (-546)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-546)))) ((-95) |has| |#1| (-38 (-407 (-546)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-407 (-546)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #2#) |has| |#1| (-38 (-407 (-546)))) ((-613 (-546)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-556)) ((-610 (-859)) . T) ((-172) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-546)))) ((-286 $ $) |has| (-767) (-1105)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-546)))) ((-556) |has| |#1| (-556)) ((-643 #2#) |has| |#1| (-38 (-407 (-546)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #2#) |has| |#1| (-38 (-407 (-546)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|)))) ((-969 |#1| #1# (-1075)) . T) ((-998) |has| |#1| (-38 (-407 (-546)))) ((-1051 #2#) |has| |#1| (-38 (-407 (-546)))) ((-1051 |#1|) . T) ((-1051 $) -3943 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1193) |has| |#1| (-38 (-407 (-546)))) ((-1196) |has| |#1| (-38 (-407 (-546)))) ((-1235 |#1| #1#) . T))
+((-4236 (((-1 (-1146 |#1|) (-637 (-1146 |#1|))) (-1 |#2| (-637 |#2|))) 24)) (-4235 (((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4234 (((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|)) 13)) (-4239 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4238 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4240 ((|#2| (-1 |#2| (-637 |#2|)) (-637 |#1|)) 54)) (-4241 (((-637 |#2|) (-637 |#1|) (-637 (-1 |#2| (-637 |#2|)))) 61)) (-4237 ((|#2| |#2| |#2|) 43)))
+(((-1250 |#1| |#2|) (-10 -7 (-15 -4234 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -4235 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4236 ((-1 (-1146 |#1|) (-637 (-1146 |#1|))) (-1 |#2| (-637 |#2|)))) (-15 -4237 (|#2| |#2| |#2|)) (-15 -4238 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4240 (|#2| (-1 |#2| (-637 |#2|)) (-637 |#1|))) (-15 -4241 ((-637 |#2|) (-637 |#1|) (-637 (-1 |#2| (-637 |#2|)))))) (-38 (-407 (-546))) (-1249 |#1|)) (T -1250))
+((-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 (-1 *6 (-637 *6)))) (-4 *5 (-38 (-407 (-546)))) (-4 *6 (-1249 *5)) (-5 *2 (-637 *6)) (-5 *1 (-1250 *5 *6)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-637 *2))) (-5 *4 (-637 *5)) (-4 *5 (-38 (-407 (-546)))) (-4 *2 (-1249 *5)) (-5 *1 (-1250 *5 *2)))) (-4239 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-546)))))) (-4238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-546)))))) (-4237 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1249 *3)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-637 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546)))) (-5 *2 (-1 (-1146 *4) (-637 (-1146 *4)))) (-5 *1 (-1250 *4 *5)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546)))) (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1250 *4 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546)))) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1250 *4 *5)))))
+(-10 -7 (-15 -4234 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -4235 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4236 ((-1 (-1146 |#1|) (-637 (-1146 |#1|))) (-1 |#2| (-637 |#2|)))) (-15 -4237 (|#2| |#2| |#2|)) (-15 -4238 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4239 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4240 (|#2| (-1 |#2| (-637 |#2|)) (-637 |#1|))) (-15 -4241 ((-637 |#2|) (-637 |#1|) (-637 (-1 |#2| (-637 |#2|))))))
+((-4243 ((|#2| |#4| (-767)) 30)) (-4242 ((|#4| |#2|) 25)) (-4245 ((|#4| (-407 |#2|)) 52 (|has| |#1| (-556)))) (-4244 (((-1 |#4| (-637 |#4|)) |#3|) 46)))
+(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4242 (|#4| |#2|)) (-15 -4243 (|#2| |#4| (-767))) (-15 -4244 ((-1 |#4| (-637 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -4245 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1232 |#1|) (-653 |#2|) (-1249 |#1|)) (T -1251))
+((-4245 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-556)) (-4 *4 (-1045)) (-4 *2 (-1249 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) (-4 *6 (-653 *5)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-637 *6))) (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-653 *5)) (-4 *6 (-1249 *4)))) (-4243 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1232 *5)) (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-653 *2)) (-4 *3 (-1249 *5)))) (-4242 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1232 *4)) (-4 *2 (-1249 *4)) (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-653 *3)))))
+(-10 -7 (-15 -4242 (|#4| |#2|)) (-15 -4243 (|#2| |#4| (-767))) (-15 -4244 ((-1 |#4| (-637 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -4245 (|#4| (-407 |#2|))) |%noBranch|))
NIL
(((-1252) (-140)) (T -1252))
NIL
-(-13 (-10 -7 (-6 -1370)))
-((-1677 (((-112) $ $) NIL)) (-2517 (((-1169)) 12)) (-3854 (((-1151) $) 17)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 11) (((-1169) $) 8)) (-1718 (((-112) $ $) 14)))
-(((-1253 |#1|) (-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -1692 ((-1169) $)) (-15 -2517 ((-1169))))) (-1169)) (T -1253))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) (-2517 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))))
-(-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -1692 ((-1169) $)) (-15 -2517 ((-1169)))))
-((-3216 (($ (-767)) 18)) (-3983 (((-684 |#2|) $ $) 40)) (-4098 ((|#2| $) 48)) (-3419 ((|#2| $) 47)) (-4121 ((|#2| $ $) 35)) (-4111 (($ $ $) 44)) (-1825 (($ $) 22) (($ $ $) 28)) (-1813 (($ $ $) 15)) (* (($ (-563) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1254 |#1| |#2|) (-10 -8 (-15 -4098 (|#2| |#1|)) (-15 -3419 (|#2| |#1|)) (-15 -4111 (|#1| |#1| |#1|)) (-15 -3983 ((-684 |#2|) |#1| |#1|)) (-15 -4121 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3216 (|#1| (-767))) (-15 -1813 (|#1| |#1| |#1|))) (-1255 |#2|) (-1208)) (T -1254))
-NIL
-(-10 -8 (-15 -4098 (|#2| |#1|)) (-15 -3419 (|#2| |#1|)) (-15 -4111 (|#1| |#1| |#1|)) (-15 -3983 ((-684 |#2|) |#1| |#1|)) (-15 -4121 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3216 (|#1| (-767))) (-15 -1813 (|#1| |#1| |#1|)))
-((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3216 (($ (-767)) 112 (|has| |#1| (-23)))) (-2208 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-2569 (($) 7 T CONST)) (-1574 (($ $) 90 (|has| $ (-6 -4409)))) (-4383 (($ $) 100)) (-3814 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) 51)) (-4369 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3983 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-1565 (($ (-767) |#1|) 69)) (-2514 (((-112) $ (-767)) 9)) (-2236 (((-563) $) 43 (|has| (-563) (-846)))) (-3088 (($ $ $) 87 (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2251 (((-563) $) 44 (|has| (-563) (-846)))) (-1776 (($ $ $) 86 (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4098 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2481 (((-112) $ (-767)) 10)) (-3419 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3854 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-2272 (((-640 (-563)) $) 46)) (-2282 (((-112) (-563) $) 47)) (-1693 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3782 ((|#1| $) 42 (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2221 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) 14)) (-2262 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) 48)) (-1665 (((-112) $) 11)) (-3445 (($) 12)) (-2308 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4121 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-2967 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-4111 (($ $ $) 104 (|has| |#1| (-1045)))) (-1708 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4062 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-1870 (($ $) 13)) (-2219 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 70)) (-2857 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1692 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1754 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1766 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1743 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1825 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1813 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-3610 (((-767) $) 6 (|has| $ (-6 -4408)))))
-(((-1255 |#1|) (-140) (-1208)) (T -1255))
-((-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208)))) (-1825 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045)) (-5 *2 (-684 *3)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1813 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3216 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 * ($ (-563) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4121 (|t#1| $ $)) (-15 -3983 ((-684 |t#1|) $ $)) (-15 -4111 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3419 (|t#1| $)) (-15 -4098 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4034 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T))
-((-4132 (((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 13)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 15)) (-2238 (((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)) 28) (((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|)) 18)))
-(((-1256 |#1| |#2|) (-10 -7 (-15 -4132 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2238 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2238 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)))) (-1208) (-1208)) (T -1256))
-((-2238 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2)))) (-4132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5)))))
-(-10 -7 (-15 -4132 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2238 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2238 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|))))
-((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3216 (($ (-767)) NIL (|has| |#1| (-23)))) (-4105 (($ (-640 |#1|)) 9)) (-2208 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-4073 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-4052 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-1640 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3001 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-2255 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2569 (($) NIL T CONST)) (-1574 (($ $) NIL (|has| $ (-6 -4409)))) (-4383 (($ $) NIL)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4356 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4293 ((|#1| $ (-563)) NIL)) (-4369 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2658 (((-640 |#1|) $) 13 (|has| $ (-6 -4408)))) (-3983 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1565 (($ (-767) |#1|) NIL)) (-2514 (((-112) $ (-767)) NIL)) (-2236 (((-563) $) NIL (|has| (-563) (-846)))) (-3088 (($ $ $) NIL (|has| |#1| (-846)))) (-4300 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-3523 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2667 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2251 (((-563) $) NIL (|has| (-563) (-846)))) (-1776 (($ $ $) NIL (|has| |#1| (-846)))) (-4347 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4098 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2481 (((-112) $ (-767)) NIL)) (-3419 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3854 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3399 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2272 (((-640 (-563)) $) NIL)) (-2282 (((-112) (-563) $) NIL)) (-1693 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3782 ((|#1| $) NIL (|has| (-563) (-846)))) (-1971 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2221 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-1458 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2941 (((-112) $ $) NIL)) (-2262 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2295 (((-640 |#1|) $) NIL)) (-1665 (((-112) $) NIL)) (-3445 (($) NIL)) (-2308 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4121 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2967 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-1045)))) (-1708 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4062 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) 17 (|has| |#1| (-611 (-536))))) (-1706 (($ (-640 |#1|)) 8)) (-2857 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1692 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1471 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1779 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1743 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1825 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1257 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -4105 ($ (-640 |#1|))))) (-1208)) (T -1257))
-((-4105 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3)))))
-(-13 (-1255 |#1|) (-10 -8 (-15 -4105 ($ (-640 |#1|)))))
-((-1677 (((-112) $ $) NIL)) (-3808 (((-1151) $ (-1151)) 92) (((-1151) $ (-1151) (-1151)) 90) (((-1151) $ (-1151) (-640 (-1151))) 89)) (-4272 (($) 59)) (-4316 (((-1262) $ (-468) (-917)) 45)) (-3532 (((-1262) $ (-917) (-1151)) 75) (((-1262) $ (-917) (-870)) 76)) (-1943 (((-1262) $ (-917) (-379) (-379)) 48)) (-3695 (((-1262) $ (-1151)) 71)) (-1707 (((-1262) $ (-917) (-1151)) 80)) (-4165 (((-1262) $ (-917) (-379) (-379)) 49)) (-1381 (((-1262) $ (-917) (-917)) 46)) (-3786 (((-1262) $) 72)) (-4186 (((-1262) $ (-917) (-1151)) 79)) (-4217 (((-1262) $ (-468) (-917)) 31)) (-4196 (((-1262) $ (-917) (-1151)) 78)) (-3700 (((-640 (-263)) $) 23) (($ $ (-640 (-263))) 24)) (-1391 (((-1262) $ (-767) (-767)) 43)) (-4261 (($ $) 60) (($ (-468) (-640 (-263))) 61)) (-3854 (((-1151) $) NIL)) (-2387 (((-563) $) 38)) (-1693 (((-1113) $) NIL)) (-4227 (((-1257 (-3 (-468) "undefined")) $) 37)) (-4236 (((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4196 (-563)) (|:| -4174 (-563)) (|:| |spline| (-563)) (|:| -1342 (-563)) (|:| |axesColor| (-870)) (|:| -3532 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $) 36)) (-4248 (((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563)) 70)) (-4283 (((-640 (-939 (-225))) $) NIL)) (-4207 (((-468) $ (-917)) 33)) (-1371 (((-1262) $ (-767) (-767) (-917) (-917)) 40)) (-1352 (((-1262) $ (-1151)) 81)) (-4174 (((-1262) $ (-917) (-1151)) 77)) (-1692 (((-858) $) 87)) (-1442 (((-1262) $) 82)) (-1342 (((-1262) $ (-917) (-1151)) 73) (((-1262) $ (-917) (-870)) 74)) (-1718 (((-112) $ $) NIL)))
-(((-1258) (-13 (-1093) (-10 -8 (-15 -4283 ((-640 (-939 (-225))) $)) (-15 -4272 ($)) (-15 -4261 ($ $)) (-15 -3700 ((-640 (-263)) $)) (-15 -3700 ($ $ (-640 (-263)))) (-15 -4261 ($ (-468) (-640 (-263)))) (-15 -4248 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -4236 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4196 (-563)) (|:| -4174 (-563)) (|:| |spline| (-563)) (|:| -1342 (-563)) (|:| |axesColor| (-870)) (|:| -3532 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -4227 ((-1257 (-3 (-468) "undefined")) $)) (-15 -3695 ((-1262) $ (-1151))) (-15 -4217 ((-1262) $ (-468) (-917))) (-15 -4207 ((-468) $ (-917))) (-15 -1342 ((-1262) $ (-917) (-1151))) (-15 -1342 ((-1262) $ (-917) (-870))) (-15 -3532 ((-1262) $ (-917) (-1151))) (-15 -3532 ((-1262) $ (-917) (-870))) (-15 -4196 ((-1262) $ (-917) (-1151))) (-15 -4186 ((-1262) $ (-917) (-1151))) (-15 -4174 ((-1262) $ (-917) (-1151))) (-15 -1352 ((-1262) $ (-1151))) (-15 -1442 ((-1262) $)) (-15 -1371 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -4165 ((-1262) $ (-917) (-379) (-379))) (-15 -1943 ((-1262) $ (-917) (-379) (-379))) (-15 -1707 ((-1262) $ (-917) (-1151))) (-15 -1391 ((-1262) $ (-767) (-767))) (-15 -4316 ((-1262) $ (-468) (-917))) (-15 -1381 ((-1262) $ (-917) (-917))) (-15 -3808 ((-1151) $ (-1151))) (-15 -3808 ((-1151) $ (-1151) (-1151))) (-15 -3808 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3786 ((-1262) $)) (-15 -2387 ((-563) $)) (-15 -1692 ((-858) $))))) (T -1258))
-((-1692 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258)))) (-4272 (*1 *1) (-5 *1 (-1258))) (-4261 (*1 *1 *1) (-5 *1 (-1258))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258)))) (-4248 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4196 (-563)) (|:| -4174 (-563)) (|:| |spline| (-563)) (|:| -1342 (-563)) (|:| |axesColor| (-870)) (|:| -3532 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563))))) (-5 *1 (-1258)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4217 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4207 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258)))) (-1342 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1342 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3532 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3532 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4196 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4186 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4174 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1371 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4165 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1943 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1391 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4316 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3808 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3808 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3808 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258)))))
-(-13 (-1093) (-10 -8 (-15 -4283 ((-640 (-939 (-225))) $)) (-15 -4272 ($)) (-15 -4261 ($ $)) (-15 -3700 ((-640 (-263)) $)) (-15 -3700 ($ $ (-640 (-263)))) (-15 -4261 ($ (-468) (-640 (-263)))) (-15 -4248 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -4236 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4196 (-563)) (|:| -4174 (-563)) (|:| |spline| (-563)) (|:| -1342 (-563)) (|:| |axesColor| (-870)) (|:| -3532 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -4227 ((-1257 (-3 (-468) "undefined")) $)) (-15 -3695 ((-1262) $ (-1151))) (-15 -4217 ((-1262) $ (-468) (-917))) (-15 -4207 ((-468) $ (-917))) (-15 -1342 ((-1262) $ (-917) (-1151))) (-15 -1342 ((-1262) $ (-917) (-870))) (-15 -3532 ((-1262) $ (-917) (-1151))) (-15 -3532 ((-1262) $ (-917) (-870))) (-15 -4196 ((-1262) $ (-917) (-1151))) (-15 -4186 ((-1262) $ (-917) (-1151))) (-15 -4174 ((-1262) $ (-917) (-1151))) (-15 -1352 ((-1262) $ (-1151))) (-15 -1442 ((-1262) $)) (-15 -1371 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -4165 ((-1262) $ (-917) (-379) (-379))) (-15 -1943 ((-1262) $ (-917) (-379) (-379))) (-15 -1707 ((-1262) $ (-917) (-1151))) (-15 -1391 ((-1262) $ (-767) (-767))) (-15 -4316 ((-1262) $ (-468) (-917))) (-15 -1381 ((-1262) $ (-917) (-917))) (-15 -3808 ((-1151) $ (-1151))) (-15 -3808 ((-1151) $ (-1151) (-1151))) (-15 -3808 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3786 ((-1262) $)) (-15 -2387 ((-563) $)) (-15 -1692 ((-858) $))))
-((-1677 (((-112) $ $) NIL)) (-1292 (((-1262) $ (-379)) 142) (((-1262) $ (-379) (-379) (-379)) 143)) (-3808 (((-1151) $ (-1151)) 150) (((-1151) $ (-1151) (-1151)) 148) (((-1151) $ (-1151) (-640 (-1151))) 147)) (-1436 (($) 50)) (-1362 (((-1262) $ (-379) (-379) (-379) (-379) (-379)) 118) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 116) (((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 117) (((-1262) $ (-563) (-563) (-379) (-379) (-379)) 119) (((-1262) $ (-379) (-379)) 120) (((-1262) $ (-379) (-379) (-379)) 127)) (-3334 (((-379)) 99) (((-379) (-379)) 100)) (-3355 (((-379)) 94) (((-379) (-379)) 96)) (-3344 (((-379)) 97) (((-379) (-379)) 98)) (-3313 (((-379)) 103) (((-379) (-379)) 104)) (-3324 (((-379)) 101) (((-379) (-379)) 102)) (-1943 (((-1262) $ (-379) (-379)) 144)) (-3695 (((-1262) $ (-1151)) 128)) (-1414 (((-1126 (-225)) $) 51) (($ $ (-1126 (-225))) 52)) (-4350 (((-1262) $ (-1151)) 156)) (-4339 (((-1262) $ (-1151)) 157)) (-1301 (((-1262) $ (-379) (-379)) 126) (((-1262) $ (-563) (-563)) 141)) (-1381 (((-1262) $ (-917) (-917)) 134)) (-3786 (((-1262) $) 114)) (-4380 (((-1262) $ (-1151)) 155)) (-1323 (((-1262) $ (-1151)) 111)) (-3700 (((-640 (-263)) $) 53) (($ $ (-640 (-263))) 54)) (-1391 (((-1262) $ (-767) (-767)) 133)) (-1403 (((-1262) $ (-767) (-939 (-225))) 162)) (-1425 (($ $) 56) (($ (-1126 (-225)) (-1151)) 57) (($ (-1126 (-225)) (-640 (-263))) 58)) (-4317 (((-1262) $ (-379) (-379) (-379)) 108)) (-3854 (((-1151) $) NIL)) (-2387 (((-563) $) 105)) (-4306 (((-1262) $ (-379)) 145)) (-4360 (((-1262) $ (-379)) 160)) (-1693 (((-1113) $) NIL)) (-4370 (((-1262) $ (-379)) 159)) (-1313 (((-1262) $ (-1151)) 113)) (-1371 (((-1262) $ (-767) (-767) (-917) (-917)) 132)) (-1334 (((-1262) $ (-1151)) 110)) (-1352 (((-1262) $ (-1151)) 112)) (-4295 (((-1262) $ (-157) (-157)) 131)) (-1692 (((-858) $) 139)) (-1442 (((-1262) $) 115)) (-4327 (((-1262) $ (-1151)) 158)) (-1342 (((-1262) $ (-1151)) 109)) (-1718 (((-112) $ $) NIL)))
-(((-1259) (-13 (-1093) (-10 -8 (-15 -3355 ((-379))) (-15 -3355 ((-379) (-379))) (-15 -3344 ((-379))) (-15 -3344 ((-379) (-379))) (-15 -3334 ((-379))) (-15 -3334 ((-379) (-379))) (-15 -3324 ((-379))) (-15 -3324 ((-379) (-379))) (-15 -3313 ((-379))) (-15 -3313 ((-379) (-379))) (-15 -1436 ($)) (-15 -1425 ($ $)) (-15 -1425 ($ (-1126 (-225)) (-1151))) (-15 -1425 ($ (-1126 (-225)) (-640 (-263)))) (-15 -1414 ((-1126 (-225)) $)) (-15 -1414 ($ $ (-1126 (-225)))) (-15 -1403 ((-1262) $ (-767) (-939 (-225)))) (-15 -3700 ((-640 (-263)) $)) (-15 -3700 ($ $ (-640 (-263)))) (-15 -1391 ((-1262) $ (-767) (-767))) (-15 -1381 ((-1262) $ (-917) (-917))) (-15 -3695 ((-1262) $ (-1151))) (-15 -1371 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -1362 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1362 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1362 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1362 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -1362 ((-1262) $ (-379) (-379))) (-15 -1362 ((-1262) $ (-379) (-379) (-379))) (-15 -1352 ((-1262) $ (-1151))) (-15 -1342 ((-1262) $ (-1151))) (-15 -1334 ((-1262) $ (-1151))) (-15 -1323 ((-1262) $ (-1151))) (-15 -1313 ((-1262) $ (-1151))) (-15 -1301 ((-1262) $ (-379) (-379))) (-15 -1301 ((-1262) $ (-563) (-563))) (-15 -1292 ((-1262) $ (-379))) (-15 -1292 ((-1262) $ (-379) (-379) (-379))) (-15 -1943 ((-1262) $ (-379) (-379))) (-15 -4380 ((-1262) $ (-1151))) (-15 -4370 ((-1262) $ (-379))) (-15 -4360 ((-1262) $ (-379))) (-15 -4350 ((-1262) $ (-1151))) (-15 -4339 ((-1262) $ (-1151))) (-15 -4327 ((-1262) $ (-1151))) (-15 -4317 ((-1262) $ (-379) (-379) (-379))) (-15 -4306 ((-1262) $ (-379))) (-15 -3786 ((-1262) $)) (-15 -4295 ((-1262) $ (-157) (-157))) (-15 -3808 ((-1151) $ (-1151))) (-15 -3808 ((-1151) $ (-1151) (-1151))) (-15 -3808 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -1442 ((-1262) $)) (-15 -2387 ((-563) $))))) (T -1259))
-((-3355 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3344 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3334 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3324 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3313 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3313 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-1436 (*1 *1) (-5 *1 (-1259))) (-1425 (*1 *1 *1) (-5 *1 (-1259))) (-1425 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259)))) (-1425 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-1403 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-1391 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1371 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1362 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1259)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1362 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1362 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1362 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1342 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1323 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1301 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1301 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1292 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1943 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4370 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4360 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4350 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4339 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4317 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4295 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3808 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3808 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3808 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259)))))
-(-13 (-1093) (-10 -8 (-15 -3355 ((-379))) (-15 -3355 ((-379) (-379))) (-15 -3344 ((-379))) (-15 -3344 ((-379) (-379))) (-15 -3334 ((-379))) (-15 -3334 ((-379) (-379))) (-15 -3324 ((-379))) (-15 -3324 ((-379) (-379))) (-15 -3313 ((-379))) (-15 -3313 ((-379) (-379))) (-15 -1436 ($)) (-15 -1425 ($ $)) (-15 -1425 ($ (-1126 (-225)) (-1151))) (-15 -1425 ($ (-1126 (-225)) (-640 (-263)))) (-15 -1414 ((-1126 (-225)) $)) (-15 -1414 ($ $ (-1126 (-225)))) (-15 -1403 ((-1262) $ (-767) (-939 (-225)))) (-15 -3700 ((-640 (-263)) $)) (-15 -3700 ($ $ (-640 (-263)))) (-15 -1391 ((-1262) $ (-767) (-767))) (-15 -1381 ((-1262) $ (-917) (-917))) (-15 -3695 ((-1262) $ (-1151))) (-15 -1371 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -1362 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1362 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1362 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1362 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -1362 ((-1262) $ (-379) (-379))) (-15 -1362 ((-1262) $ (-379) (-379) (-379))) (-15 -1352 ((-1262) $ (-1151))) (-15 -1342 ((-1262) $ (-1151))) (-15 -1334 ((-1262) $ (-1151))) (-15 -1323 ((-1262) $ (-1151))) (-15 -1313 ((-1262) $ (-1151))) (-15 -1301 ((-1262) $ (-379) (-379))) (-15 -1301 ((-1262) $ (-563) (-563))) (-15 -1292 ((-1262) $ (-379))) (-15 -1292 ((-1262) $ (-379) (-379) (-379))) (-15 -1943 ((-1262) $ (-379) (-379))) (-15 -4380 ((-1262) $ (-1151))) (-15 -4370 ((-1262) $ (-379))) (-15 -4360 ((-1262) $ (-379))) (-15 -4350 ((-1262) $ (-1151))) (-15 -4339 ((-1262) $ (-1151))) (-15 -4327 ((-1262) $ (-1151))) (-15 -4317 ((-1262) $ (-379) (-379) (-379))) (-15 -4306 ((-1262) $ (-379))) (-15 -3786 ((-1262) $)) (-15 -4295 ((-1262) $ (-157) (-157))) (-15 -3808 ((-1151) $ (-1151))) (-15 -3808 ((-1151) $ (-1151) (-1151))) (-15 -3808 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -1442 ((-1262) $)) (-15 -2387 ((-563) $))))
-((-3463 (((-640 (-1151)) (-640 (-1151))) 94) (((-640 (-1151))) 90)) (-3473 (((-640 (-1151))) 88)) (-3440 (((-640 (-917)) (-640 (-917))) 63) (((-640 (-917))) 60)) (-3427 (((-640 (-767)) (-640 (-767))) 57) (((-640 (-767))) 53)) (-3451 (((-1262)) 65)) (-3493 (((-917) (-917)) 81) (((-917)) 80)) (-3483 (((-917) (-917)) 79) (((-917)) 78)) (-3403 (((-870) (-870)) 75) (((-870)) 74)) (-3515 (((-225)) 85) (((-225) (-379)) 87)) (-3504 (((-917)) 82) (((-917) (-917)) 83)) (-3415 (((-917) (-917)) 77) (((-917)) 76)) (-3366 (((-870) (-870)) 69) (((-870)) 67)) (-3378 (((-870) (-870)) 71) (((-870)) 70)) (-3390 (((-870) (-870)) 73) (((-870)) 72)))
-(((-1260) (-10 -7 (-15 -3366 ((-870))) (-15 -3366 ((-870) (-870))) (-15 -3378 ((-870))) (-15 -3378 ((-870) (-870))) (-15 -3390 ((-870))) (-15 -3390 ((-870) (-870))) (-15 -3403 ((-870))) (-15 -3403 ((-870) (-870))) (-15 -3415 ((-917))) (-15 -3415 ((-917) (-917))) (-15 -3427 ((-640 (-767)))) (-15 -3427 ((-640 (-767)) (-640 (-767)))) (-15 -3440 ((-640 (-917)))) (-15 -3440 ((-640 (-917)) (-640 (-917)))) (-15 -3451 ((-1262))) (-15 -3463 ((-640 (-1151)))) (-15 -3463 ((-640 (-1151)) (-640 (-1151)))) (-15 -3473 ((-640 (-1151)))) (-15 -3483 ((-917))) (-15 -3493 ((-917))) (-15 -3483 ((-917) (-917))) (-15 -3493 ((-917) (-917))) (-15 -3504 ((-917) (-917))) (-15 -3504 ((-917))) (-15 -3515 ((-225) (-379))) (-15 -3515 ((-225))))) (T -1260))
-((-3515 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260)))) (-3504 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3493 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3483 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3473 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-3463 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-3451 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-3440 (*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-3427 (*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-3415 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3415 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3403 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3390 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3378 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3366 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))))
-(-10 -7 (-15 -3366 ((-870))) (-15 -3366 ((-870) (-870))) (-15 -3378 ((-870))) (-15 -3378 ((-870) (-870))) (-15 -3390 ((-870))) (-15 -3390 ((-870) (-870))) (-15 -3403 ((-870))) (-15 -3403 ((-870) (-870))) (-15 -3415 ((-917))) (-15 -3415 ((-917) (-917))) (-15 -3427 ((-640 (-767)))) (-15 -3427 ((-640 (-767)) (-640 (-767)))) (-15 -3440 ((-640 (-917)))) (-15 -3440 ((-640 (-917)) (-640 (-917)))) (-15 -3451 ((-1262))) (-15 -3463 ((-640 (-1151)))) (-15 -3463 ((-640 (-1151)) (-640 (-1151)))) (-15 -3473 ((-640 (-1151)))) (-15 -3483 ((-917))) (-15 -3493 ((-917))) (-15 -3483 ((-917) (-917))) (-15 -3493 ((-917) (-917))) (-15 -3504 ((-917) (-917))) (-15 -3504 ((-917))) (-15 -3515 ((-225) (-379))) (-15 -3515 ((-225))))
-((-4144 (((-468) (-640 (-640 (-939 (-225)))) (-640 (-263))) 21) (((-468) (-640 (-640 (-939 (-225))))) 20) (((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 19)) (-4155 (((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263))) 27) (((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 26)) (-1692 (((-1258) (-468)) 38)))
-(((-1261) (-10 -7 (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -4155 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -4155 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -1692 ((-1258) (-468))))) (T -1261))
-((-1692 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-4155 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-4144 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))))
-(-10 -7 (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -4144 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -4155 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -4155 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -1692 ((-1258) (-468))))
-((-3785 (($) 7)) (-1692 (((-858) $) 10)))
-(((-1262) (-13 (-610 (-858)) (-10 -8 (-15 -3785 ($))))) (T -1262))
-((-3785 (*1 *1) (-5 *1 (-1262))))
-(-13 (-610 (-858)) (-10 -8 (-15 -3785 ($))))
-((-1836 (($ $ |#2|) 10)))
-(((-1263 |#1| |#2|) (-10 -8 (-15 -1836 (|#1| |#1| |#2|))) (-1264 |#2|) (-363)) (T -1263))
-NIL
-(-10 -8 (-15 -1836 (|#1| |#1| |#2|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3526 (((-134)) 28)) (-1692 (((-858) $) 11)) (-2239 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1836 (($ $ |#1|) 29)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(-13 (-10 -7 (-6 -2414)))
+((-2953 (((-112) $ $) NIL)) (-4246 (((-1169)) 12)) (-3650 (((-1151) $) 17)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 11) (((-1169) $) 8)) (-3444 (((-112) $ $) 14)))
+(((-1253 |#1|) (-13 (-1094) (-610 (-1169)) (-10 -8 (-15 -4361 ((-1169) $)) (-15 -4246 ((-1169))))) (-1169)) (T -1253))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) (-4246 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))))
+(-13 (-1094) (-610 (-1169)) (-10 -8 (-15 -4361 ((-1169) $)) (-15 -4246 ((-1169)))))
+((-4253 (($ (-767)) 18)) (-4250 (((-684 |#2|) $ $) 40)) (-4247 ((|#2| $) 48)) (-4248 ((|#2| $) 47)) (-4251 ((|#2| $ $) 35)) (-4249 (($ $ $) 44)) (-4252 (($ $) 22) (($ $ $) 28)) (-4254 (($ $ $) 15)) (* (($ (-546) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1254 |#1| |#2|) (-10 -8 (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#2| |#1|)) (-15 -4249 (|#1| |#1| |#1|)) (-15 -4250 ((-684 |#2|) |#1| |#1|)) (-15 -4251 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4253 (|#1| (-767))) (-15 -4254 (|#1| |#1| |#1|))) (-1255 |#2|) (-1207)) (T -1254))
+NIL
+(-10 -8 (-15 -4247 (|#2| |#1|)) (-15 -4248 (|#2| |#1|)) (-15 -4249 (|#1| |#1| |#1|)) (-15 -4250 ((-684 |#2|) |#1| |#1|)) (-15 -4251 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-546) |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4253 (|#1| (-767))) (-15 -4254 (|#1| |#1| |#1|)))
+((-2953 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4253 (($ (-767)) 112 (|has| |#1| (-23)))) (-2351 (((-1262) $ (-546) (-546)) 40 (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) 8)) (-4202 ((|#1| $ (-546) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) 58 (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-4139 (($) 7 T CONST)) (-2423 (($ $) 90 (|has| $ (-6 -4409)))) (-2424 (($ $) 100)) (-1430 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-3817 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) 53 (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) 51)) (-3830 (((-546) (-1 (-112) |#1|) $) 97) (((-546) |#1| $) 96 (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) 95 (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) 30 (|has| $ (-6 -4408)))) (-4250 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-4029 (($ (-767) |#1|) 69)) (-4134 (((-112) $ (-767)) 9)) (-2353 (((-546) $) 43 (|has| (-546) (-846)))) (-2919 (($ $ $) 87 (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) 29 (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-2354 (((-546) $) 44 (|has| (-546) (-846)))) (-3249 (($ $ $) 86 (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4247 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-4131 (((-112) $ (-767)) 10)) (-4248 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3650 (((-1151) $) 22 (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) 60) (($ $ $ (-546)) 59)) (-2356 (((-637 (-546)) $) 46)) (-2357 (((-112) (-546) $) 47)) (-3651 (((-1113) $) 21 (|has| |#1| (-1094)))) (-4215 ((|#1| $) 42 (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2352 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) 14)) (-2355 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) 48)) (-3814 (((-112) $) 11)) (-3979 (($) 12)) (-4214 ((|#1| $ (-546) |#1|) 50) ((|#1| $ (-546)) 49) (($ $ (-1223 (-546))) 63)) (-4251 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-2429 (($ $ (-546)) 62) (($ $ (-1223 (-546))) 61)) (-4249 (($ $ $) 104 (|has| |#1| (-1045)))) (-2104 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4408))))) (-1882 (($ $ $ (-546)) 91 (|has| $ (-6 -4409)))) (-3811 (($ $) 13)) (-4385 (((-535) $) 79 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 70)) (-4216 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-637 $)) 65)) (-4361 (((-859) $) 18 (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2952 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3444 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3073 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3074 (((-112) $ $) 82 (|has| |#1| (-846)))) (-4252 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4254 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-546) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-4372 (((-767) $) 6 (|has| $ (-6 -4408)))))
+(((-1255 |#1|) (-140) (-1207)) (T -1255))
+((-4254 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-25)))) (-4253 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1207)))) (-4252 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-4 *1 (-1255 *3)) (-4 *3 (-1207)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-722)))) (-4251 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-1045)))) (-4250 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1207)) (-4 *3 (-1045)) (-5 *2 (-684 *3)))) (-4249 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-1045)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-998)) (-4 *2 (-1045)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4254 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4253 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4252 ($ $)) (-15 -4252 ($ $ $)) (-15 * ($ (-546) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4251 (|t#1| $ $)) (-15 -4250 ((-684 |t#1|) $ $)) (-15 -4249 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4248 (|t#1| $)) (-15 -4247 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-610 (-859)) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-610 (-859)))) ((-151 |#1|) . T) ((-611 (-535)) |has| |#1| (-611 (-535))) ((-286 #1=(-546) |#1|) . T) ((-288 #1# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-372 |#1|) . T) ((-489 |#1|) . T) ((-601 #1# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -3943 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1207) . T))
+((-2953 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4253 (($ (-767)) NIL (|has| |#1| (-23)))) (-4255 (($ (-637 |#1|)) 9)) (-2351 (((-1262) $ (-546) (-546)) NIL (|has| $ (-6 -4409)))) (-1883 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-1881 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-3299 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1296 (((-112) $ (-767)) NIL)) (-4202 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1223 (-546)) |#1|) NIL (|has| $ (-6 -4409)))) (-4125 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4139 (($) NIL T CONST)) (-2423 (($ $) NIL (|has| $ (-6 -4409)))) (-2424 (($ $) NIL)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-3817 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4257 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1672 ((|#1| $ (-546) |#1|) NIL (|has| $ (-6 -4409)))) (-3505 ((|#1| $ (-546)) NIL)) (-3830 (((-546) (-1 (-112) |#1|) $) NIL) (((-546) |#1| $) NIL (|has| |#1| (-1094))) (((-546) |#1| $ (-546)) NIL (|has| |#1| (-1094)))) (-2103 (((-637 |#1|) $) 13 (|has| $ (-6 -4408)))) (-4250 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4029 (($ (-767) |#1|) NIL)) (-4134 (((-112) $ (-767)) NIL)) (-2353 (((-546) $) NIL (|has| (-546) (-846)))) (-2919 (($ $ $) NIL (|has| |#1| (-846)))) (-3924 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2993 (((-637 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2354 (((-546) $) NIL (|has| (-546) (-846)))) (-3249 (($ $ $) NIL (|has| |#1| (-846)))) (-2107 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4247 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-4131 (((-112) $ (-767)) NIL)) (-4248 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3650 (((-1151) $) NIL (|has| |#1| (-1094)))) (-2428 (($ |#1| $ (-546)) NIL) (($ $ $ (-546)) NIL)) (-2356 (((-637 (-546)) $) NIL)) (-2357 (((-112) (-546) $) NIL)) (-3651 (((-1113) $) NIL (|has| |#1| (-1094)))) (-4215 ((|#1| $) NIL (|has| (-546) (-846)))) (-1431 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2352 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2105 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 (-293 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-637 |#1|) (-637 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1297 (((-112) $ $) NIL)) (-2355 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-2358 (((-637 |#1|) $) NIL)) (-3814 (((-112) $) NIL)) (-3979 (($) NIL)) (-4214 ((|#1| $ (-546) |#1|) NIL) ((|#1| $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4251 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2429 (($ $ (-546)) NIL) (($ $ (-1223 (-546))) NIL)) (-4249 (($ $ $) NIL (|has| |#1| (-1045)))) (-2104 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1094))))) (-1882 (($ $ $ (-546)) NIL (|has| $ (-6 -4409)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) 17 (|has| |#1| (-611 (-535))))) (-3936 (($ (-637 |#1|)) 8)) (-4216 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-637 $)) NIL)) (-4361 (((-859) $) NIL (|has| |#1| (-610 (-859))))) (-2106 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2951 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3444 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3073 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3074 (((-112) $ $) NIL (|has| |#1| (-846)))) (-4252 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4254 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-546) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1256 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -4255 ($ (-637 |#1|))))) (-1207)) (T -1256))
+((-4255 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3)))))
+(-13 (-1255 |#1|) (-10 -8 (-15 -4255 ($ (-637 |#1|)))))
+((-4256 (((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 13)) (-4257 ((|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 15)) (-4373 (((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)) 28) (((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 18)))
+(((-1257 |#1| |#2|) (-10 -7 (-15 -4256 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4373 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4373 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)))) (-1207) (-1207)) (T -1257))
+((-4373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1257 *5 *6)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1257 *5 *6)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1257 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-1256 *5)) (-5 *1 (-1257 *6 *5)))))
+(-10 -7 (-15 -4256 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4257 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4373 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4373 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|))))
+((-4258 (((-468) (-637 (-637 (-939 (-225)))) (-637 (-261))) 21) (((-468) (-637 (-637 (-939 (-225))))) 20) (((-468) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261))) 19)) (-4259 (((-1259) (-637 (-637 (-939 (-225)))) (-637 (-261))) 27) (((-1259) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261))) 26)) (-4361 (((-1259) (-468)) 38)))
+(((-1258) (-10 -7 (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261)))) (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))))) (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))) (-637 (-261)))) (-15 -4259 ((-1259) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261)))) (-15 -4259 ((-1259) (-637 (-637 (-939 (-225)))) (-637 (-261)))) (-15 -4361 ((-1259) (-468))))) (T -1258))
+((-4361 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1259)) (-5 *1 (-1258)))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-1258)))) (-4259 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-915)) (-5 *6 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-1258)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-637 (-261))) (-5 *2 (-468)) (-5 *1 (-1258)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1258)))) (-4258 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-915)) (-5 *6 (-637 (-261))) (-5 *2 (-468)) (-5 *1 (-1258)))))
+(-10 -7 (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261)))) (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))))) (-15 -4258 ((-468) (-637 (-637 (-939 (-225)))) (-637 (-261)))) (-15 -4259 ((-1259) (-637 (-637 (-939 (-225)))) (-870) (-870) (-915) (-637 (-261)))) (-15 -4259 ((-1259) (-637 (-637 (-939 (-225)))) (-637 (-261)))) (-15 -4361 ((-1259) (-468))))
+((-2953 (((-112) $ $) NIL)) (-4277 (((-1151) $ (-1151)) 92) (((-1151) $ (-1151) (-1151)) 90) (((-1151) $ (-1151) (-637 (-1151))) 89)) (-4273 (($) 59)) (-4260 (((-1262) $ (-468) (-915)) 45)) (-4266 (((-1262) $ (-915) (-1151)) 75) (((-1262) $ (-915) (-870)) 76)) (-4288 (((-1262) $ (-915) (-378) (-378)) 48)) (-4298 (((-1262) $ (-1151)) 71)) (-4261 (((-1262) $ (-915) (-1151)) 80)) (-4262 (((-1262) $ (-915) (-378) (-378)) 49)) (-4299 (((-1262) $ (-915) (-915)) 46)) (-4279 (((-1262) $) 72)) (-4264 (((-1262) $ (-915) (-1151)) 79)) (-4268 (((-1262) $ (-468) (-915)) 31)) (-4265 (((-1262) $ (-915) (-1151)) 78)) (-4301 (((-637 (-261)) $) 23) (($ $ (-637 (-261))) 24)) (-4300 (((-1262) $ (-767) (-767)) 43)) (-4272 (($ $) 60) (($ (-468) (-637 (-261))) 61)) (-3650 (((-1151) $) NIL)) (-4275 (((-546) $) 38)) (-3651 (((-1113) $) NIL)) (-4269 (((-1256 (-3 (-468) "undefined")) $) 37)) (-4270 (((-1256 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4265 (-546)) (|:| -4263 (-546)) (|:| |spline| (-546)) (|:| -4294 (-546)) (|:| |axesColor| (-870)) (|:| -4266 (-546)) (|:| |unitsColor| (-870)) (|:| |showing| (-546)))) $) 36)) (-4271 (((-1262) $ (-915) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-870) (-546) (-870) (-546)) 70)) (-4274 (((-637 (-939 (-225))) $) NIL)) (-4267 (((-468) $ (-915)) 33)) (-4297 (((-1262) $ (-767) (-767) (-915) (-915)) 40)) (-4295 (((-1262) $ (-1151)) 81)) (-4263 (((-1262) $ (-915) (-1151)) 77)) (-4361 (((-859) $) 87)) (-4276 (((-1262) $) 82)) (-4294 (((-1262) $ (-915) (-1151)) 73) (((-1262) $ (-915) (-870)) 74)) (-3444 (((-112) $ $) NIL)))
+(((-1259) (-13 (-1094) (-10 -8 (-15 -4274 ((-637 (-939 (-225))) $)) (-15 -4273 ($)) (-15 -4272 ($ $)) (-15 -4301 ((-637 (-261)) $)) (-15 -4301 ($ $ (-637 (-261)))) (-15 -4272 ($ (-468) (-637 (-261)))) (-15 -4271 ((-1262) $ (-915) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-870) (-546) (-870) (-546))) (-15 -4270 ((-1256 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4265 (-546)) (|:| -4263 (-546)) (|:| |spline| (-546)) (|:| -4294 (-546)) (|:| |axesColor| (-870)) (|:| -4266 (-546)) (|:| |unitsColor| (-870)) (|:| |showing| (-546)))) $)) (-15 -4269 ((-1256 (-3 (-468) "undefined")) $)) (-15 -4298 ((-1262) $ (-1151))) (-15 -4268 ((-1262) $ (-468) (-915))) (-15 -4267 ((-468) $ (-915))) (-15 -4294 ((-1262) $ (-915) (-1151))) (-15 -4294 ((-1262) $ (-915) (-870))) (-15 -4266 ((-1262) $ (-915) (-1151))) (-15 -4266 ((-1262) $ (-915) (-870))) (-15 -4265 ((-1262) $ (-915) (-1151))) (-15 -4264 ((-1262) $ (-915) (-1151))) (-15 -4263 ((-1262) $ (-915) (-1151))) (-15 -4295 ((-1262) $ (-1151))) (-15 -4276 ((-1262) $)) (-15 -4297 ((-1262) $ (-767) (-767) (-915) (-915))) (-15 -4262 ((-1262) $ (-915) (-378) (-378))) (-15 -4288 ((-1262) $ (-915) (-378) (-378))) (-15 -4261 ((-1262) $ (-915) (-1151))) (-15 -4300 ((-1262) $ (-767) (-767))) (-15 -4260 ((-1262) $ (-468) (-915))) (-15 -4299 ((-1262) $ (-915) (-915))) (-15 -4277 ((-1151) $ (-1151))) (-15 -4277 ((-1151) $ (-1151) (-1151))) (-15 -4277 ((-1151) $ (-1151) (-637 (-1151)))) (-15 -4279 ((-1262) $)) (-15 -4275 ((-546) $)) (-15 -4361 ((-859) $))))) (T -1259))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1259)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-637 (-939 (-225)))) (-5 *1 (-1259)))) (-4273 (*1 *1) (-5 *1 (-1259))) (-4272 (*1 *1 *1) (-5 *1 (-1259))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1259)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1259)))) (-4272 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-637 (-261))) (-5 *1 (-1259)))) (-4271 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-915)) (-5 *4 (-225)) (-5 *5 (-546)) (-5 *6 (-870)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-1256 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4265 (-546)) (|:| -4263 (-546)) (|:| |spline| (-546)) (|:| -4294 (-546)) (|:| |axesColor| (-870)) (|:| -4266 (-546)) (|:| |unitsColor| (-870)) (|:| |showing| (-546))))) (-5 *1 (-1259)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-1256 (-3 (-468) "undefined"))) (-5 *1 (-1259)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4268 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-915)) (-5 *2 (-468)) (-5 *1 (-1259)))) (-4294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4266 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4266 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4265 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4264 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4263 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4297 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4262 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-915)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4288 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-915)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4300 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4260 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4299 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4277 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-4277 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-4277 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1259)))))
+(-13 (-1094) (-10 -8 (-15 -4274 ((-637 (-939 (-225))) $)) (-15 -4273 ($)) (-15 -4272 ($ $)) (-15 -4301 ((-637 (-261)) $)) (-15 -4301 ($ $ (-637 (-261)))) (-15 -4272 ($ (-468) (-637 (-261)))) (-15 -4271 ((-1262) $ (-915) (-225) (-225) (-225) (-225) (-546) (-546) (-546) (-546) (-870) (-546) (-870) (-546))) (-15 -4270 ((-1256 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4265 (-546)) (|:| -4263 (-546)) (|:| |spline| (-546)) (|:| -4294 (-546)) (|:| |axesColor| (-870)) (|:| -4266 (-546)) (|:| |unitsColor| (-870)) (|:| |showing| (-546)))) $)) (-15 -4269 ((-1256 (-3 (-468) "undefined")) $)) (-15 -4298 ((-1262) $ (-1151))) (-15 -4268 ((-1262) $ (-468) (-915))) (-15 -4267 ((-468) $ (-915))) (-15 -4294 ((-1262) $ (-915) (-1151))) (-15 -4294 ((-1262) $ (-915) (-870))) (-15 -4266 ((-1262) $ (-915) (-1151))) (-15 -4266 ((-1262) $ (-915) (-870))) (-15 -4265 ((-1262) $ (-915) (-1151))) (-15 -4264 ((-1262) $ (-915) (-1151))) (-15 -4263 ((-1262) $ (-915) (-1151))) (-15 -4295 ((-1262) $ (-1151))) (-15 -4276 ((-1262) $)) (-15 -4297 ((-1262) $ (-767) (-767) (-915) (-915))) (-15 -4262 ((-1262) $ (-915) (-378) (-378))) (-15 -4288 ((-1262) $ (-915) (-378) (-378))) (-15 -4261 ((-1262) $ (-915) (-1151))) (-15 -4300 ((-1262) $ (-767) (-767))) (-15 -4260 ((-1262) $ (-468) (-915))) (-15 -4299 ((-1262) $ (-915) (-915))) (-15 -4277 ((-1151) $ (-1151))) (-15 -4277 ((-1151) $ (-1151) (-1151))) (-15 -4277 ((-1151) $ (-1151) (-637 (-1151)))) (-15 -4279 ((-1262) $)) (-15 -4275 ((-546) $)) (-15 -4361 ((-859) $))))
+((-2953 (((-112) $ $) NIL)) (-4289 (((-1262) $ (-378)) 142) (((-1262) $ (-378) (-378) (-378)) 143)) (-4277 (((-1151) $ (-1151)) 150) (((-1151) $ (-1151) (-1151)) 148) (((-1151) $ (-1151) (-637 (-1151))) 147)) (-4305 (($) 50)) (-4296 (((-1262) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 116) (((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 117) (((-1262) $ (-546) (-546) (-378) (-378) (-378)) 119) (((-1262) $ (-378) (-378)) 120) (((-1262) $ (-378) (-378) (-378)) 127)) (-4308 (((-378)) 99) (((-378) (-378)) 100)) (-4310 (((-378)) 94) (((-378) (-378)) 96)) (-4309 (((-378)) 97) (((-378) (-378)) 98)) (-4306 (((-378)) 103) (((-378) (-378)) 104)) (-4307 (((-378)) 101) (((-378) (-378)) 102)) (-4288 (((-1262) $ (-378) (-378)) 144)) (-4298 (((-1262) $ (-1151)) 128)) (-4303 (((-1126 (-225)) $) 51) (($ $ (-1126 (-225))) 52)) (-4284 (((-1262) $ (-1151)) 156)) (-4283 (((-1262) $ (-1151)) 157)) (-4290 (((-1262) $ (-378) (-378)) 126) (((-1262) $ (-546) (-546)) 141)) (-4299 (((-1262) $ (-915) (-915)) 134)) (-4279 (((-1262) $) 114)) (-4287 (((-1262) $ (-1151)) 155)) (-4292 (((-1262) $ (-1151)) 111)) (-4301 (((-637 (-261)) $) 53) (($ $ (-637 (-261))) 54)) (-4300 (((-1262) $ (-767) (-767)) 133)) (-4302 (((-1262) $ (-767) (-939 (-225))) 162)) (-4304 (($ $) 56) (($ (-1126 (-225)) (-1151)) 57) (($ (-1126 (-225)) (-637 (-261))) 58)) (-4281 (((-1262) $ (-378) (-378) (-378)) 108)) (-3650 (((-1151) $) NIL)) (-4275 (((-546) $) 105)) (-4280 (((-1262) $ (-378)) 145)) (-4285 (((-1262) $ (-378)) 160)) (-3651 (((-1113) $) NIL)) (-4286 (((-1262) $ (-378)) 159)) (-4291 (((-1262) $ (-1151)) 113)) (-4297 (((-1262) $ (-767) (-767) (-915) (-915)) 132)) (-4293 (((-1262) $ (-1151)) 110)) (-4295 (((-1262) $ (-1151)) 112)) (-4278 (((-1262) $ (-157) (-157)) 131)) (-4361 (((-859) $) 139)) (-4276 (((-1262) $) 115)) (-4282 (((-1262) $ (-1151)) 158)) (-4294 (((-1262) $ (-1151)) 109)) (-3444 (((-112) $ $) NIL)))
+(((-1260) (-13 (-1094) (-10 -8 (-15 -4310 ((-378))) (-15 -4310 ((-378) (-378))) (-15 -4309 ((-378))) (-15 -4309 ((-378) (-378))) (-15 -4308 ((-378))) (-15 -4308 ((-378) (-378))) (-15 -4307 ((-378))) (-15 -4307 ((-378) (-378))) (-15 -4306 ((-378))) (-15 -4306 ((-378) (-378))) (-15 -4305 ($)) (-15 -4304 ($ $)) (-15 -4304 ($ (-1126 (-225)) (-1151))) (-15 -4304 ($ (-1126 (-225)) (-637 (-261)))) (-15 -4303 ((-1126 (-225)) $)) (-15 -4303 ($ $ (-1126 (-225)))) (-15 -4302 ((-1262) $ (-767) (-939 (-225)))) (-15 -4301 ((-637 (-261)) $)) (-15 -4301 ($ $ (-637 (-261)))) (-15 -4300 ((-1262) $ (-767) (-767))) (-15 -4299 ((-1262) $ (-915) (-915))) (-15 -4298 ((-1262) $ (-1151))) (-15 -4297 ((-1262) $ (-767) (-767) (-915) (-915))) (-15 -4296 ((-1262) $ (-378) (-378) (-378) (-378) (-378))) (-15 -4296 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4296 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4296 ((-1262) $ (-546) (-546) (-378) (-378) (-378))) (-15 -4296 ((-1262) $ (-378) (-378))) (-15 -4296 ((-1262) $ (-378) (-378) (-378))) (-15 -4295 ((-1262) $ (-1151))) (-15 -4294 ((-1262) $ (-1151))) (-15 -4293 ((-1262) $ (-1151))) (-15 -4292 ((-1262) $ (-1151))) (-15 -4291 ((-1262) $ (-1151))) (-15 -4290 ((-1262) $ (-378) (-378))) (-15 -4290 ((-1262) $ (-546) (-546))) (-15 -4289 ((-1262) $ (-378))) (-15 -4289 ((-1262) $ (-378) (-378) (-378))) (-15 -4288 ((-1262) $ (-378) (-378))) (-15 -4287 ((-1262) $ (-1151))) (-15 -4286 ((-1262) $ (-378))) (-15 -4285 ((-1262) $ (-378))) (-15 -4284 ((-1262) $ (-1151))) (-15 -4283 ((-1262) $ (-1151))) (-15 -4282 ((-1262) $ (-1151))) (-15 -4281 ((-1262) $ (-378) (-378) (-378))) (-15 -4280 ((-1262) $ (-378))) (-15 -4279 ((-1262) $)) (-15 -4278 ((-1262) $ (-157) (-157))) (-15 -4277 ((-1151) $ (-1151))) (-15 -4277 ((-1151) $ (-1151) (-1151))) (-15 -4277 ((-1151) $ (-1151) (-637 (-1151)))) (-15 -4276 ((-1262) $)) (-15 -4275 ((-546) $))))) (T -1260))
+((-4310 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4310 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4309 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4308 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4307 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4306 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))) (-4305 (*1 *1) (-5 *1 (-1260))) (-4304 (*1 *1 *1) (-5 *1 (-1260))) (-4304 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1260)))) (-4304 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-637 (-261))) (-5 *1 (-1260)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1260)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1260)))) (-4302 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1260)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1260)))) (-4300 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4299 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4297 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4296 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1260)))) (-4296 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4296 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-546)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4296 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4296 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4294 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4293 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4292 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4290 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4290 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4289 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4289 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4288 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4287 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4283 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4282 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4281 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4280 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4277 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1260)))) (-4277 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1260)))) (-4277 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1260)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1260)))))
+(-13 (-1094) (-10 -8 (-15 -4310 ((-378))) (-15 -4310 ((-378) (-378))) (-15 -4309 ((-378))) (-15 -4309 ((-378) (-378))) (-15 -4308 ((-378))) (-15 -4308 ((-378) (-378))) (-15 -4307 ((-378))) (-15 -4307 ((-378) (-378))) (-15 -4306 ((-378))) (-15 -4306 ((-378) (-378))) (-15 -4305 ($)) (-15 -4304 ($ $)) (-15 -4304 ($ (-1126 (-225)) (-1151))) (-15 -4304 ($ (-1126 (-225)) (-637 (-261)))) (-15 -4303 ((-1126 (-225)) $)) (-15 -4303 ($ $ (-1126 (-225)))) (-15 -4302 ((-1262) $ (-767) (-939 (-225)))) (-15 -4301 ((-637 (-261)) $)) (-15 -4301 ($ $ (-637 (-261)))) (-15 -4300 ((-1262) $ (-767) (-767))) (-15 -4299 ((-1262) $ (-915) (-915))) (-15 -4298 ((-1262) $ (-1151))) (-15 -4297 ((-1262) $ (-767) (-767) (-915) (-915))) (-15 -4296 ((-1262) $ (-378) (-378) (-378) (-378) (-378))) (-15 -4296 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4296 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4296 ((-1262) $ (-546) (-546) (-378) (-378) (-378))) (-15 -4296 ((-1262) $ (-378) (-378))) (-15 -4296 ((-1262) $ (-378) (-378) (-378))) (-15 -4295 ((-1262) $ (-1151))) (-15 -4294 ((-1262) $ (-1151))) (-15 -4293 ((-1262) $ (-1151))) (-15 -4292 ((-1262) $ (-1151))) (-15 -4291 ((-1262) $ (-1151))) (-15 -4290 ((-1262) $ (-378) (-378))) (-15 -4290 ((-1262) $ (-546) (-546))) (-15 -4289 ((-1262) $ (-378))) (-15 -4289 ((-1262) $ (-378) (-378) (-378))) (-15 -4288 ((-1262) $ (-378) (-378))) (-15 -4287 ((-1262) $ (-1151))) (-15 -4286 ((-1262) $ (-378))) (-15 -4285 ((-1262) $ (-378))) (-15 -4284 ((-1262) $ (-1151))) (-15 -4283 ((-1262) $ (-1151))) (-15 -4282 ((-1262) $ (-1151))) (-15 -4281 ((-1262) $ (-378) (-378) (-378))) (-15 -4280 ((-1262) $ (-378))) (-15 -4279 ((-1262) $)) (-15 -4278 ((-1262) $ (-157) (-157))) (-15 -4277 ((-1151) $ (-1151))) (-15 -4277 ((-1151) $ (-1151) (-1151))) (-15 -4277 ((-1151) $ (-1151) (-637 (-1151)))) (-15 -4276 ((-1262) $)) (-15 -4275 ((-546) $))))
+((-4319 (((-637 (-1151)) (-637 (-1151))) 94) (((-637 (-1151))) 90)) (-4320 (((-637 (-1151))) 88)) (-4317 (((-637 (-915)) (-637 (-915))) 63) (((-637 (-915))) 60)) (-4316 (((-637 (-767)) (-637 (-767))) 57) (((-637 (-767))) 53)) (-4318 (((-1262)) 65)) (-4322 (((-915) (-915)) 81) (((-915)) 80)) (-4321 (((-915) (-915)) 79) (((-915)) 78)) (-4314 (((-870) (-870)) 75) (((-870)) 74)) (-4324 (((-225)) 85) (((-225) (-378)) 87)) (-4323 (((-915)) 82) (((-915) (-915)) 83)) (-4315 (((-915) (-915)) 77) (((-915)) 76)) (-4311 (((-870) (-870)) 69) (((-870)) 67)) (-4312 (((-870) (-870)) 71) (((-870)) 70)) (-4313 (((-870) (-870)) 73) (((-870)) 72)))
+(((-1261) (-10 -7 (-15 -4311 ((-870))) (-15 -4311 ((-870) (-870))) (-15 -4312 ((-870))) (-15 -4312 ((-870) (-870))) (-15 -4313 ((-870))) (-15 -4313 ((-870) (-870))) (-15 -4314 ((-870))) (-15 -4314 ((-870) (-870))) (-15 -4315 ((-915))) (-15 -4315 ((-915) (-915))) (-15 -4316 ((-637 (-767)))) (-15 -4316 ((-637 (-767)) (-637 (-767)))) (-15 -4317 ((-637 (-915)))) (-15 -4317 ((-637 (-915)) (-637 (-915)))) (-15 -4318 ((-1262))) (-15 -4319 ((-637 (-1151)))) (-15 -4319 ((-637 (-1151)) (-637 (-1151)))) (-15 -4320 ((-637 (-1151)))) (-15 -4321 ((-915))) (-15 -4322 ((-915))) (-15 -4321 ((-915) (-915))) (-15 -4322 ((-915) (-915))) (-15 -4323 ((-915) (-915))) (-15 -4323 ((-915))) (-15 -4324 ((-225) (-378))) (-15 -4324 ((-225))))) (T -1261))
+((-4324 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1261)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-225)) (-5 *1 (-1261)))) (-4323 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4322 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4321 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4320 (*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261)))) (-4319 (*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261)))) (-4318 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1261)))) (-4317 (*1 *2 *2) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1261)))) (-4317 (*1 *2) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1261)))) (-4316 (*1 *2 *2) (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1261)))) (-4316 (*1 *2) (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1261)))) (-4315 (*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4315 (*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4314 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4313 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4312 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4312 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))) (-4311 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))))
+(-10 -7 (-15 -4311 ((-870))) (-15 -4311 ((-870) (-870))) (-15 -4312 ((-870))) (-15 -4312 ((-870) (-870))) (-15 -4313 ((-870))) (-15 -4313 ((-870) (-870))) (-15 -4314 ((-870))) (-15 -4314 ((-870) (-870))) (-15 -4315 ((-915))) (-15 -4315 ((-915) (-915))) (-15 -4316 ((-637 (-767)))) (-15 -4316 ((-637 (-767)) (-637 (-767)))) (-15 -4317 ((-637 (-915)))) (-15 -4317 ((-637 (-915)) (-637 (-915)))) (-15 -4318 ((-1262))) (-15 -4319 ((-637 (-1151)))) (-15 -4319 ((-637 (-1151)) (-637 (-1151)))) (-15 -4320 ((-637 (-1151)))) (-15 -4321 ((-915))) (-15 -4322 ((-915))) (-15 -4321 ((-915) (-915))) (-15 -4322 ((-915) (-915))) (-15 -4323 ((-915) (-915))) (-15 -4323 ((-915))) (-15 -4324 ((-225) (-378))) (-15 -4324 ((-225))))
+((-4325 (($) 7)) (-4361 (((-859) $) 10)))
+(((-1262) (-13 (-610 (-859)) (-10 -8 (-15 -4325 ($))))) (T -1262))
+((-4325 (*1 *1) (-5 *1 (-1262))))
+(-13 (-610 (-859)) (-10 -8 (-15 -4325 ($))))
+((-4364 (($ $ |#2|) 10)))
+(((-1263 |#1| |#2|) (-10 -8 (-15 -4364 (|#1| |#1| |#2|))) (-1264 |#2|) (-363)) (T -1263))
+NIL
+(-10 -8 (-15 -4364 (|#1| |#1| |#2|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4326 (((-134)) 28)) (-4361 (((-859) $) 11)) (-3047 (($) 18 T CONST)) (-3444 (((-112) $ $) 6)) (-4364 (($ $ |#1|) 29)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1264 |#1|) (-140) (-363)) (T -1264))
-((-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) (-3526 (*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(-13 (-713 |t#1|) (-10 -8 (-15 -1836 ($ $ |t#1|)) (-15 -3526 ((-134)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T))
-((-3586 (((-640 (-1202 |#1|)) (-1169) (-1202 |#1|)) 74)) (-3562 (((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|))) 53)) (-3597 (((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))) 64)) (-3537 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 55)) (-3575 (((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169)) 29)) (-3549 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 54)))
-(((-1265 |#1|) (-10 -7 (-15 -3537 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3549 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3562 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -3575 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -3586 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -3597 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))))) (-363)) (T -1265))
-((-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6)) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6)) (-5 *5 (-1149 *4)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5))) (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5)))) (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5))))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
-(-10 -7 (-15 -3537 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3549 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3562 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -3575 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -3586 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -3597 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|)))))
-((-3619 (((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 75)) (-3608 (((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 74)))
-(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) (-349) (-1233 |#1|) (-1233 |#2|) (-409 |#2| |#3|)) (T -1266))
-((-3619 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-3608 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -4013 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(-10 -7 (-15 -3608 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3619 ((-2 (|:| -4013 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)))
-((-1677 (((-112) $ $) NIL)) (-3631 (((-1128) $) 11)) (-3643 (((-1128) $) 9)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1267) (-13 (-1076) (-10 -8 (-15 -3643 ((-1128) $)) (-15 -3631 ((-1128) $))))) (T -1267))
-((-3643 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
-(-13 (-1076) (-10 -8 (-15 -3643 ((-1128) $)) (-15 -3631 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1394 (((-1128) $) 9)) (-1692 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL)))
-(((-1268) (-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $))))) (T -1268))
-((-1394 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268)))))
-(-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 42)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3401 (((-112) $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-1692 (((-858) $) 63) (($ (-563)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-172)))) (-3914 (((-767)) NIL)) (-3654 (((-1262) (-767)) 16)) (-2239 (($) 27 T CONST)) (-2253 (($) 66 T CONST)) (-1718 (((-112) $ $) 68)) (-1836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1825 (($ $) 70) (($ $ $) NIL)) (-1813 (($ $ $) 46)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-1269 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1836 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3654 ((-1262) (-767))))) (-1045) (-846) (-789) (-945 |#1| |#3| |#2|) (-640 |#2|) (-640 (-767)) (-767)) (T -1269))
-((-1836 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-640 *3)) (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) (-14 *7 (-640 (-767))) (-14 *8 (-767)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-640 *5)) (-5 *2 (-1262)) (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) (-14 *9 (-640 *3)) (-14 *10 *3))))
-(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1836 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3654 ((-1262) (-767)))))
-((-1677 (((-112) $ $) NIL)) (-2110 (((-640 (-2 (|:| -1442 $) (|:| -3409 (-640 |#4|)))) (-640 |#4|)) NIL)) (-2119 (((-640 $) (-640 |#4|)) 88)) (-2605 (((-640 |#3|) $) NIL)) (-3508 (((-112) $) NIL)) (-3406 (((-112) $) NIL (|has| |#1| (-555)))) (-2254 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2189 ((|#4| |#4| $) NIL)) (-1640 (((-2 (|:| |under| $) (|:| -3954 $) (|:| |upper| $)) $ |#3|) NIL)) (-3001 (((-112) $ (-767)) NIL)) (-2255 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2569 (($) NIL T CONST)) (-3466 (((-112) $) NIL (|has| |#1| (-555)))) (-3486 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3476 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3496 (((-112) $) NIL (|has| |#1| (-555)))) (-2201 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 27)) (-3418 (((-640 |#4|) (-640 |#4|) $) 25 (|has| |#1| (-555)))) (-3431 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2130 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2057 (($ (-640 |#4|)) NIL)) (-3793 (((-3 $ "failed") $) 70)) (-2151 ((|#4| |#4| $) 75)) (-3814 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3443 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2264 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2131 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2284 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3409 (-640 |#4|))) $) NIL)) (-2658 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-2274 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3354 ((|#3| $) 76)) (-2514 (((-112) $ (-767)) NIL)) (-3523 (((-640 |#4|) $) 28 (|has| $ (-6 -4408)))) (-2667 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-3689 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-640 |#4|)) 34)) (-4347 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-2238 (($ (-1 |#4| |#4|) $) NIL)) (-3568 (((-640 |#3|) $) NIL)) (-3553 (((-112) |#3| $) NIL)) (-2481 (((-112) $ (-767)) NIL)) (-3854 (((-1151) $) NIL)) (-1481 (((-3 |#4| "failed") $) NIL)) (-2297 (((-640 |#4|) $) 50)) (-2225 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2163 ((|#4| |#4| $) 74)) (-2319 (((-112) $ $) 85)) (-3454 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2241 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2176 ((|#4| |#4| $) NIL)) (-1693 (((-1113) $) NIL)) (-3782 (((-3 |#4| "failed") $) 69)) (-1971 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2089 (((-3 $ "failed") $ |#4|) NIL)) (-1751 (($ $ |#4|) NIL)) (-1458 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1542 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2941 (((-112) $ $) NIL)) (-1665 (((-112) $) 67)) (-3445 (($) 42)) (-3871 (((-767) $) NIL)) (-1708 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1870 (($ $) NIL)) (-2219 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1706 (($ (-640 |#4|)) NIL)) (-3519 (($ $ |#3|) NIL)) (-3542 (($ $ |#3|) NIL)) (-2141 (($ $) NIL)) (-3529 (($ $ |#3|) NIL)) (-1692 (((-858) $) NIL) (((-640 |#4|) $) 57)) (-3255 (((-767) $) NIL (|has| |#3| (-368)))) (-3677 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-640 |#4|)) 41)) (-3665 (((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-640 $) (-640 |#4|)) 66)) (-2307 (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2635 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2211 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-1471 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2100 (((-640 |#3|) $) NIL)) (-3772 (((-112) |#3| $) NIL)) (-1718 (((-112) $ $) NIL)) (-3610 (((-767) $) NIL (|has| $ (-6 -4408)))))
-(((-1270 |#1| |#2| |#3| |#4|) (-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3689 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3689 ((-3 $ "failed") (-640 |#4|))) (-15 -3677 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3677 ((-3 $ "failed") (-640 |#4|))) (-15 -3665 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3665 ((-640 $) (-640 |#4|))))) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1270))
-((-3689 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-3689 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-3677 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-3677 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-3665 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9))) (-5 *1 (-1270 *6 *7 *8 *9)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7))) (-5 *1 (-1270 *4 *5 *6 *7)))))
-(-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3689 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3689 ((-3 $ "failed") (-640 |#4|))) (-15 -3677 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3677 ((-3 $ "failed") (-640 |#4|))) (-15 -3665 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3665 ((-640 $) (-640 |#4|)))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3905 (((-3 $ "failed") $ $) 19)) (-2569 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3401 (((-112) $) 31)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
+((-4364 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) (-4326 (*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(-13 (-713 |t#1|) (-10 -8 (-15 -4364 ($ $ |t#1|)) (-15 -4326 ((-134)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
+((-4331 (((-637 (-1200 |#1|)) (-1169) (-1200 |#1|)) 74)) (-4329 (((-1146 (-1146 (-942 |#1|))) (-1169) (-1146 (-942 |#1|))) 53)) (-4332 (((-1 (-1146 (-1200 |#1|)) (-1146 (-1200 |#1|))) (-767) (-1200 |#1|) (-1146 (-1200 |#1|))) 64)) (-4327 (((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767)) 55)) (-4330 (((-1 (-1163 (-942 |#1|)) (-942 |#1|)) (-1169)) 29)) (-4328 (((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767)) 54)))
+(((-1265 |#1|) (-10 -7 (-15 -4327 ((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767))) (-15 -4328 ((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767))) (-15 -4329 ((-1146 (-1146 (-942 |#1|))) (-1169) (-1146 (-942 |#1|)))) (-15 -4330 ((-1 (-1163 (-942 |#1|)) (-942 |#1|)) (-1169))) (-15 -4331 ((-637 (-1200 |#1|)) (-1169) (-1200 |#1|))) (-15 -4332 ((-1 (-1146 (-1200 |#1|)) (-1146 (-1200 |#1|))) (-767) (-1200 |#1|) (-1146 (-1200 |#1|))))) (-363)) (T -1265))
+((-4332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1200 *6)) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1265 *6)) (-5 *5 (-1146 *4)))) (-4331 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-637 (-1200 *5))) (-5 *1 (-1265 *5)) (-5 *4 (-1200 *5)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1163 (-942 *4)) (-942 *4))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1146 (-1146 (-942 *5)))) (-5 *1 (-1265 *5)) (-5 *4 (-1146 (-942 *5))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1146 (-942 *4)) (-1146 (-942 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1146 (-942 *4)) (-1146 (-942 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
+(-10 -7 (-15 -4327 ((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767))) (-15 -4328 ((-1 (-1146 (-942 |#1|)) (-1146 (-942 |#1|))) (-767))) (-15 -4329 ((-1146 (-1146 (-942 |#1|))) (-1169) (-1146 (-942 |#1|)))) (-15 -4330 ((-1 (-1163 (-942 |#1|)) (-942 |#1|)) (-1169))) (-15 -4331 ((-637 (-1200 |#1|)) (-1169) (-1200 |#1|))) (-15 -4332 ((-1 (-1146 (-1200 |#1|)) (-1146 (-1200 |#1|))) (-767) (-1200 |#1|) (-1146 (-1200 |#1|)))))
+((-4334 (((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 75)) (-4333 (((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 74)))
+(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) (-350) (-1232 |#1|) (-1232 |#2|) (-410 |#2| |#3|)) (T -1266))
+((-4334 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-410 *3 *5)))) (-4333 (*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -2169 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-410 *4 *5)))))
+(-10 -7 (-15 -4333 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -4334 ((-2 (|:| -2169 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)))
+((-2953 (((-112) $ $) NIL)) (-4335 (((-1128) $) 11)) (-4336 (((-1128) $) 9)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1267) (-13 (-1076) (-10 -8 (-15 -4336 ((-1128) $)) (-15 -4335 ((-1128) $))))) (T -1267))
+((-4336 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))) (-4335 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
+(-13 (-1076) (-10 -8 (-15 -4336 ((-1128) $)) (-15 -4335 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4337 (((-1128) $) 9)) (-4361 (((-859) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3444 (((-112) $ $) NIL)))
+(((-1268) (-13 (-1076) (-10 -8 (-15 -4337 ((-1128) $))))) (T -1268))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268)))))
+(-13 (-1076) (-10 -8 (-15 -4337 ((-1128) $))))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 42)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) NIL)) (-2552 (((-112) $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4361 (((-859) $) 63) (($ (-546)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-172)))) (-3518 (((-767)) NIL)) (-4338 (((-1262) (-767)) 16)) (-3047 (($) 27 T CONST)) (-3053 (($) 66 T CONST)) (-3444 (((-112) $ $) 68)) (-4364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4252 (($ $) 70) (($ $ $) NIL)) (-4254 (($ $ $) 46)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-1269 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4338 ((-1262) (-767))))) (-1045) (-846) (-789) (-946 |#1| |#3| |#2|) (-637 |#2|) (-637 (-767)) (-767)) (T -1269))
+((-4364 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-637 *3)) (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-637 (-767))) (-14 *8 (-767)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-637 *5)) (-5 *2 (-1262)) (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-637 *3)) (-14 *10 *3))))
+(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4338 ((-1262) (-767)))))
+((-2953 (((-112) $ $) NIL)) (-4096 (((-637 (-2 (|:| -4276 $) (|:| -1853 (-637 |#4|)))) (-637 |#4|)) NIL)) (-4097 (((-637 $) (-637 |#4|)) 88)) (-3474 (((-637 |#3|) $) NIL)) (-3298 (((-112) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-556)))) (-4108 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4103 ((|#4| |#4| $) NIL)) (-3299 (((-2 (|:| |under| $) (|:| -3522 $) (|:| |upper| $)) $ |#3|) NIL)) (-1296 (((-112) $ (-767)) NIL)) (-4125 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4139 (($) NIL T CONST)) (-3294 (((-112) $) NIL (|has| |#1| (-556)))) (-3296 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3295 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3297 (((-112) $) NIL (|has| |#1| (-556)))) (-4104 (((-637 |#4|) (-637 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 27)) (-3290 (((-637 |#4|) (-637 |#4|) $) 25 (|has| |#1| (-556)))) (-3291 (((-637 |#4|) (-637 |#4|) $) NIL (|has| |#1| (-556)))) (-3565 (((-3 $ "failed") (-637 |#4|)) NIL)) (-3564 (($ (-637 |#4|)) NIL)) (-4213 (((-3 $ #1#) $) 70)) (-4100 ((|#4| |#4| $) 75)) (-1430 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-3817 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4109 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4098 ((|#4| |#4| $) NIL)) (-4257 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4111 (((-2 (|:| -4276 (-637 |#4|)) (|:| -1853 (-637 |#4|))) $) NIL)) (-2103 (((-637 |#4|) $) NIL (|has| $ (-6 -4408)))) (-4110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3588 ((|#3| $) 76)) (-4134 (((-112) $ (-767)) NIL)) (-2993 (((-637 |#4|) $) 28 (|has| $ (-6 -4408)))) (-3653 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094))))) (-4341 (((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-637 |#4|)) 34)) (-2107 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-4373 (($ (-1 |#4| |#4|) $) NIL)) (-3304 (((-637 |#3|) $) NIL)) (-3303 (((-112) |#3| $) NIL)) (-4131 (((-112) $ (-767)) NIL)) (-3650 (((-1151) $) NIL)) (-4212 (((-3 |#4| #1#) $) NIL)) (-4112 (((-637 |#4|) $) 50)) (-4106 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4101 ((|#4| |#4| $) 74)) (-4114 (((-112) $ $) 85)) (-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4107 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4102 ((|#4| |#4| $) NIL)) (-3651 (((-1113) $) NIL)) (-4215 (((-3 |#4| #1#) $) 69)) (-1431 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4094 (((-3 $ #1#) $ |#4|) NIL)) (-4183 (($ $ |#4|) NIL)) (-2105 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4182 (($ $ (-637 |#4|) (-637 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-637 (-293 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1297 (((-112) $ $) NIL)) (-3814 (((-112) $) 67)) (-3979 (($) 42)) (-4363 (((-767) $) NIL)) (-2104 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3811 (($ $) NIL)) (-4385 (((-535) $) NIL (|has| |#4| (-611 (-535))))) (-3936 (($ (-637 |#4|)) NIL)) (-3300 (($ $ |#3|) NIL)) (-3302 (($ $ |#3|) NIL)) (-4099 (($ $) NIL)) (-3301 (($ $ |#3|) NIL)) (-4361 (((-859) $) NIL) (((-637 |#4|) $) 57)) (-4093 (((-767) $) NIL (|has| |#3| (-368)))) (-4340 (((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-637 |#4|)) 41)) (-4339 (((-637 $) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-637 $) (-637 |#4|)) 66)) (-4113 (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3735 (-637 |#4|))) #1#) (-637 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4105 (((-112) $ (-1 (-112) |#4| (-637 |#4|))) NIL)) (-2106 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-4095 (((-637 |#3|) $) NIL)) (-4348 (((-112) |#3| $) NIL)) (-3444 (((-112) $ $) NIL)) (-4372 (((-767) $) NIL (|has| $ (-6 -4408)))))
+(((-1270 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4341 ((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4341 ((-3 $ "failed") (-637 |#4|))) (-15 -4340 ((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4340 ((-3 $ "failed") (-637 |#4|))) (-15 -4339 ((-637 $) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4339 ((-637 $) (-637 |#4|))))) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1270))
+((-4341 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-4341 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-4340 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-4340 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-4339 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-637 (-1270 *6 *7 *8 *9))) (-5 *1 (-1270 *6 *7 *8 *9)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 (-1270 *4 *5 *6 *7))) (-5 *1 (-1270 *4 *5 *6 *7)))))
+(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4341 ((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4341 ((-3 $ "failed") (-637 |#4|))) (-15 -4340 ((-3 $ "failed") (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4340 ((-3 $ "failed") (-637 |#4|))) (-15 -4339 ((-637 $) (-637 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4339 ((-637 $) (-637 |#4|)))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-1397 (((-3 $ "failed") $ $) 19)) (-4139 (($) 17 T CONST)) (-3873 (((-3 $ "failed") $) 33)) (-2552 (((-112) $) 31)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#1|) 39)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
(((-1271 |#1|) (-140) (-1045)) (T -1271))
NIL
(-13 (-1045) (-111 |t#1| |t#1|) (-613 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T))
-((-1677 (((-112) $ $) 59)) (-3439 (((-112) $) NIL)) (-3994 (((-640 |#1|) $) 45)) (-3862 (($ $ (-767)) 39)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3783 (($ $ (-767)) 18 (|has| |#2| (-172))) (($ $ $) 19 (|has| |#2| (-172)))) (-2569 (($) NIL T CONST)) (-3817 (($ $ $) 62) (($ $ (-815 |#1|)) 48) (($ $ |#1|) 52)) (-2130 (((-3 (-815 |#1|) "failed") $) NIL)) (-2057 (((-815 |#1|) $) NIL)) (-2750 (($ $) 32)) (-3951 (((-3 $ "failed") $) NIL)) (-3894 (((-112) $) NIL)) (-3882 (($ $) NIL)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ (-815 |#1|) |#2|) 31)) (-3794 (($ $) 33)) (-3836 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-3915 (((-815 |#1|) $) NIL)) (-3926 (((-815 |#1|) $) 34)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3828 (($ $ $) 61) (($ $ (-815 |#1|)) 50) (($ $ |#1|) 54)) (-4243 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2715 (((-815 |#1|) $) 28)) (-2725 ((|#2| $) 30)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3871 (((-767) $) 36)) (-3904 (((-112) $) 40)) (-2668 ((|#2| $) NIL)) (-1692 (((-858) $) NIL) (($ (-815 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-563)) NIL)) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-815 |#1|)) NIL)) (-2310 ((|#2| $ $) 64) ((|#2| $ (-815 |#1|)) NIL)) (-3914 (((-767)) NIL)) (-2239 (($) 13 T CONST)) (-2253 (($) 15 T CONST)) (-2891 (((-640 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1718 (((-112) $ $) 38)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 22)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1272 |#1| |#2|) (-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|)) (-846) (-1045)) (T -1272))
-NIL
-(-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|))
-((-4372 ((|#3| |#3| (-767)) 23)) (-3372 ((|#3| |#3| (-767)) 27)) (-3703 ((|#3| |#3| |#3| (-767)) 28)))
-(((-1273 |#1| |#2| |#3|) (-10 -7 (-15 -3372 (|#3| |#3| (-767))) (-15 -4372 (|#3| |#3| (-767))) (-15 -3703 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-563)))) (-846) (-1278 |#2| |#1|)) (T -1273))
-((-3703 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-3372 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))))
-(-10 -7 (-15 -3372 (|#3| |#3| (-767))) (-15 -4372 (|#3| |#3| (-767))) (-15 -3703 (|#3| |#3| |#3| (-767))))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3994 (((-640 |#1|) $) 41)) (-3905 (((-3 $ "failed") $ $) 19)) (-3783 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-2569 (($) 17 T CONST)) (-3817 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2130 (((-3 (-815 |#1|) "failed") $) 65)) (-2057 (((-815 |#1|) $) 66)) (-3951 (((-3 $ "failed") $) 33)) (-3894 (((-112) $) 46)) (-3882 (($ $) 45)) (-3401 (((-112) $) 31)) (-3805 (((-112) $) 51)) (-4223 (($ (-815 |#1|) |#2|) 52)) (-3794 (($ $) 50)) (-3836 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3915 (((-815 |#1|) $) 62)) (-2238 (($ (-1 |#2| |#2|) $) 42)) (-3828 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3904 (((-112) $) 48)) (-2668 ((|#2| $) 47)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2310 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1274 |#1| |#2|) (-140) (-846) (-1045)) (T -1274))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2310 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-3828 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3828 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3817 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3817 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4223 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3)) (-4 *3 (-1045)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1692 (*1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-3882 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3783 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-640 *3)))))
-(-13 (-1045) (-1271 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3915 ((-815 |t#1|) $)) (-15 -3836 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2310 (|t#2| $ (-815 |t#1|))) (-15 -2310 (|t#2| $ $)) (-15 -3828 ($ $ |t#1|)) (-15 -3828 ($ $ (-815 |t#1|))) (-15 -3828 ($ $ $)) (-15 -3817 ($ $ |t#1|)) (-15 -3817 ($ $ (-815 |t#1|))) (-15 -3817 ($ $ $)) (-15 -4223 ($ (-815 |t#1|) |t#2|)) (-15 -3805 ((-112) $)) (-15 -3794 ($ $)) (-15 -1692 ($ |t#1|)) (-15 -3904 ((-112) $)) (-15 -2668 (|t#2| $)) (-15 -3894 ((-112) $)) (-15 -3882 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -3783 ($ $ $)) (-15 -3783 ($ $ (-767)))) |%noBranch|) (-15 -2238 ($ (-1 |t#2| |t#2|) $)) (-15 -3994 ((-640 |t#1|) $)) (IF (|has| |t#2| (-6 -4401)) (-6 -4401) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T))
-((-3761 (((-112) $) 14)) (-3772 (((-112) $) 13)) (-3715 (($ $) 18) (($ $ (-767)) 19)))
-(((-1275 |#1| |#2|) (-10 -8 (-15 -3715 (|#1| |#1| (-767))) (-15 -3715 (|#1| |#1|)) (-15 -3761 ((-112) |#1|)) (-15 -3772 ((-112) |#1|))) (-1276 |#2|) (-363)) (T -1275))
-NIL
-(-10 -8 (-15 -3715 (|#1| |#1| (-767))) (-15 -3715 (|#1| |#1|)) (-15 -3761 ((-112) |#1|)) (-15 -3772 ((-112) |#1|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3241 (((-2 (|:| -3245 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-3231 (($ $) 41)) (-3211 (((-112) $) 39)) (-3761 (((-112) $) 95)) (-3728 (((-767)) 91)) (-3905 (((-3 $ "failed") $ $) 19)) (-1798 (($ $) 74)) (-2802 (((-418 $) $) 73)) (-2003 (((-112) $ $) 60)) (-2569 (($) 17 T CONST)) (-2130 (((-3 |#1| "failed") $) 102)) (-2057 ((|#1| $) 103)) (-3094 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-3054 (($ $ $) 57)) (-2474 (((-2 (|:| -2310 (-640 $)) (|:| -4334 $)) (-640 $)) 52)) (-3188 (($ $ (-767)) 88 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2560 (((-112) $) 72)) (-1775 (((-829 (-917)) $) 85 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3401 (((-112) $) 31)) (-1977 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3517 (($ $ $) 47) (($ (-640 $)) 46)) (-3854 (((-1151) $) 9)) (-2687 (($ $) 71)) (-3751 (((-112) $) 94)) (-1693 (((-1113) $) 10)) (-2103 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3551 (($ $ $) 49) (($ (-640 $)) 48)) (-2173 (((-418 $) $) 75)) (-3740 (((-829 (-917))) 92)) (-1984 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4334 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3012 (((-3 $ "failed") $ $) 43)) (-2461 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1993 (((-767) $) 59)) (-3263 (((-2 (|:| -1765 $) (|:| -3443 $)) $ $) 58)) (-3196 (((-3 (-767) "failed") $ $) 86 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3526 (((-134)) 100)) (-3871 (((-829 (-917)) $) 93)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-2047 (((-3 $ "failed") $) 84 (-4034 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3914 (((-767)) 28)) (-3223 (((-112) $ $) 40)) (-3772 (((-112) $) 96)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-3715 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-1718 (((-112) $ $) 6)) (-1836 (($ $ $) 66) (($ $ |#1|) 99)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-1276 |#1|) (-140) (-363)) (T -1276))
-((-3772 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-3740 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-3728 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-3715 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
-(-13 (-363) (-1034 |t#1|) (-1264 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -3772 ((-112) $)) (-15 -3761 ((-112) $)) (-15 -3751 ((-112) $)) (-15 -3871 ((-829 (-917)) $)) (-15 -3740 ((-829 (-917)))) (-15 -3728 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -3715 ($ $)) (-15 -3715 ($ $ (-767)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4034 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4034 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T) ((-1264 |#1|) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3994 (((-640 |#1|) $) 85)) (-3862 (($ $ (-767)) 88)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3783 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-2569 (($) NIL T CONST)) (-3817 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-2130 (((-3 (-815 |#1|) "failed") $) NIL) (((-3 (-889 |#1|) "failed") $) NIL)) (-2057 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-2750 (($ $) 87)) (-3951 (((-3 $ "failed") $) NIL)) (-3894 (((-112) $) 76)) (-3882 (($ $) 80)) (-3846 (($ $ $ (-767)) 89)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 25)) (-3794 (($ $) 102)) (-3836 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3915 (((-815 |#1|) $) NIL)) (-3926 (((-815 |#1|) $) NIL)) (-2238 (($ (-1 |#2| |#2|) $) NIL)) (-3828 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-4372 (($ $ (-767)) 96 (|has| |#2| (-713 (-407 (-563)))))) (-4243 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2715 (((-889 |#1|) $) 69)) (-2725 ((|#2| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3372 (($ $ (-767)) 93 (|has| |#2| (-713 (-407 (-563)))))) (-3871 (((-767) $) 86)) (-3904 (((-112) $) 70)) (-2668 ((|#2| $) 74)) (-1692 (((-858) $) 56) (($ (-563)) NIL) (($ |#2|) 50) (($ (-815 |#1|)) NIL) (($ |#1|) 58) (($ (-889 |#1|)) NIL) (($ (-659 |#1| |#2|)) 42) (((-1272 |#1| |#2|) $) 63) (((-1281 |#1| |#2|) $) 68)) (-3955 (((-640 |#2|) $) NIL)) (-3244 ((|#2| $ (-889 |#1|)) NIL)) (-2310 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-3914 (((-767)) NIL)) (-2239 (($) 21 T CONST)) (-2253 (($) 24 T CONST)) (-2891 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3855 (((-3 (-659 |#1| |#2|) "failed") $) 101)) (-1718 (((-112) $ $) 64)) (-1825 (($ $) 95) (($ $ $) 94)) (-1813 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL)))
-(((-1277 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -1692 ($ (-659 |#1| |#2|))) (-15 -1692 ((-1272 |#1| |#2|) $)) (-15 -1692 ((-1281 |#1| |#2|) $)) (-15 -3855 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -3846 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3372 ($ $ (-767))) (-15 -4372 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1277))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1277 *3 *4)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3855 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3846 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -1692 ($ (-659 |#1| |#2|))) (-15 -1692 ((-1272 |#1| |#2|) $)) (-15 -1692 ((-1281 |#1| |#2|) $)) (-15 -3855 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -3846 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3372 ($ $ (-767))) (-15 -4372 ($ $ (-767)))) |%noBranch|)))
-((-1677 (((-112) $ $) 7)) (-3439 (((-112) $) 16)) (-3994 (((-640 |#1|) $) 41)) (-3862 (($ $ (-767)) 74)) (-3905 (((-3 $ "failed") $ $) 19)) (-3783 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-2569 (($) 17 T CONST)) (-3817 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2130 (((-3 (-815 |#1|) "failed") $) 65)) (-2057 (((-815 |#1|) $) 66)) (-3951 (((-3 $ "failed") $) 33)) (-3894 (((-112) $) 46)) (-3882 (($ $) 45)) (-3401 (((-112) $) 31)) (-3805 (((-112) $) 51)) (-4223 (($ (-815 |#1|) |#2|) 52)) (-3794 (($ $) 50)) (-3836 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3915 (((-815 |#1|) $) 62)) (-3926 (((-815 |#1|) $) 76)) (-2238 (($ (-1 |#2| |#2|) $) 42)) (-3828 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3854 (((-1151) $) 9)) (-1693 (((-1113) $) 10)) (-3871 (((-767) $) 75)) (-3904 (((-112) $) 48)) (-2668 ((|#2| $) 47)) (-1692 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2310 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3914 (((-767)) 28)) (-2239 (($) 18 T CONST)) (-2253 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1825 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1278 |#1| |#2|) (-140) (-846) (-1045)) (T -1278))
-((-3926 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(-13 (-1274 |t#1| |t#2|) (-10 -8 (-15 -3926 ((-815 |t#1|) $)) (-15 -3871 ((-767) $)) (-15 -3862 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T) ((-1274 |#1| |#2|) . T))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3994 (((-640 (-1169)) $) NIL)) (-2749 (($ (-1272 (-1169) |#1|)) NIL)) (-3862 (($ $ (-767)) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3783 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-2569 (($) NIL T CONST)) (-3817 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-2130 (((-3 (-815 (-1169)) "failed") $) NIL)) (-2057 (((-815 (-1169)) $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3894 (((-112) $) NIL)) (-3882 (($ $) NIL)) (-3401 (((-112) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ (-815 (-1169)) |#1|) NIL)) (-3794 (($ $) NIL)) (-3836 (((-2 (|:| |k| (-815 (-1169))) (|:| |c| |#1|)) $) NIL)) (-3915 (((-815 (-1169)) $) NIL)) (-3926 (((-815 (-1169)) $) NIL)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-3828 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2212 (((-1272 (-1169) |#1|) $) NIL)) (-3871 (((-767) $) NIL)) (-3904 (((-112) $) NIL)) (-2668 ((|#1| $) NIL)) (-1692 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-815 (-1169))) NIL) (($ (-1169)) NIL)) (-2310 ((|#1| $ (-815 (-1169))) NIL) ((|#1| $ $) NIL)) (-3914 (((-767)) NIL)) (-2239 (($) NIL T CONST)) (-2737 (((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $) NIL)) (-2253 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1169) $) NIL)))
-(((-1279 |#1|) (-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -2212 ((-1272 (-1169) |#1|) $)) (-15 -2749 ($ (-1272 (-1169) |#1|))) (-15 -2737 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) (-1045)) (T -1279))
-((-2212 (*1 *2 *1) (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3))))) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))))
-(-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -2212 ((-1272 (-1169) |#1|) $)) (-15 -2749 ($ (-1272 (-1169) |#1|))) (-15 -2737 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $))))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) NIL)) (-3905 (((-3 $ "failed") $ $) NIL)) (-2569 (($) NIL T CONST)) (-2130 (((-3 |#2| "failed") $) NIL)) (-2057 ((|#2| $) NIL)) (-2750 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 35)) (-3894 (((-112) $) 30)) (-3882 (($ $) 31)) (-3401 (((-112) $) NIL)) (-3481 (((-767) $) NIL)) (-3919 (((-640 $) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ |#2| |#1|) NIL)) (-3915 ((|#2| $) 19)) (-3926 ((|#2| $) 16)) (-2238 (($ (-1 |#1| |#1|) $) NIL)) (-4243 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2715 ((|#2| $) NIL)) (-2725 ((|#1| $) NIL)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-3904 (((-112) $) 27)) (-2668 ((|#1| $) 28)) (-1692 (((-858) $) 54) (($ (-563)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3955 (((-640 |#1|) $) NIL)) (-3244 ((|#1| $ |#2|) NIL)) (-2310 ((|#1| $ |#2|) 24)) (-3914 (((-767)) 14)) (-2239 (($) 25 T CONST)) (-2253 (($) 11 T CONST)) (-2891 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1718 (((-112) $ $) 26)) (-1836 (($ $ |#1|) 56 (|has| |#1| (-363)))) (-1825 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 43)) (** (($ $ (-917)) NIL) (($ $ (-767)) 45)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3610 (((-767) $) 15)))
-(((-1280 |#1| |#2|) (-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3610 ((-767) $)) (-15 -3926 (|#2| $)) (-15 -3915 (|#2| $)) (-15 -2750 ($ $)) (-15 -2310 (|#1| $ |#2|)) (-15 -3904 ((-112) $)) (-15 -2668 (|#1| $)) (-15 -3894 ((-112) $)) (-15 -3882 ($ $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1836 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-842)) (T -1280))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) (-4 *4 (-842)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-3926 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-3915 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-2310 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2668 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-3882 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-1836 (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3610 ((-767) $)) (-15 -3926 (|#2| $)) (-15 -3915 (|#2| $)) (-15 -2750 ($ $)) (-15 -2310 (|#1| $ |#2|)) (-15 -3904 ((-112) $)) (-15 -2668 (|#1| $)) (-15 -3894 ((-112) $)) (-15 -3882 ($ $)) (-15 -2238 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1836 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
-((-1677 (((-112) $ $) 26)) (-3439 (((-112) $) NIL)) (-3994 (((-640 |#1|) $) 120)) (-2749 (($ (-1272 |#1| |#2|)) 44)) (-3862 (($ $ (-767)) 32)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3783 (($ $ $) 48 (|has| |#2| (-172))) (($ $ (-767)) 46 (|has| |#2| (-172)))) (-2569 (($) NIL T CONST)) (-3817 (($ $ |#1|) 102) (($ $ (-815 |#1|)) 103) (($ $ $) 25)) (-2130 (((-3 (-815 |#1|) "failed") $) NIL)) (-2057 (((-815 |#1|) $) NIL)) (-3951 (((-3 $ "failed") $) 110)) (-3894 (((-112) $) 105)) (-3882 (($ $) 106)) (-3401 (((-112) $) NIL)) (-3805 (((-112) $) NIL)) (-4223 (($ (-815 |#1|) |#2|) 19)) (-3794 (($ $) NIL)) (-3836 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3915 (((-815 |#1|) $) 111)) (-3926 (((-815 |#1|) $) 114)) (-2238 (($ (-1 |#2| |#2|) $) 119)) (-3828 (($ $ |#1|) 100) (($ $ (-815 |#1|)) 101) (($ $ $) 56)) (-3854 (((-1151) $) NIL)) (-1693 (((-1113) $) NIL)) (-2212 (((-1272 |#1| |#2|) $) 84)) (-3871 (((-767) $) 117)) (-3904 (((-112) $) 70)) (-2668 ((|#2| $) 28)) (-1692 (((-858) $) 63) (($ (-563)) 77) (($ |#2|) 74) (($ (-815 |#1|)) 17) (($ |#1|) 73)) (-2310 ((|#2| $ (-815 |#1|)) 104) ((|#2| $ $) 27)) (-3914 (((-767)) 108)) (-2239 (($) 14 T CONST)) (-2737 (((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2253 (($) 29 T CONST)) (-1718 (((-112) $ $) 13)) (-1825 (($ $) 88) (($ $ $) 91)) (-1813 (($ $ $) 55)) (** (($ $ (-917)) NIL) (($ $ (-767)) 49)) (* (($ (-917) $) NIL) (($ (-767) $) 47) (($ (-563) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1281 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-10 -8 (-15 -2212 ((-1272 |#1| |#2|) $)) (-15 -2749 ($ (-1272 |#1| |#2|))) (-15 -2737 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1281))
-((-2212 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1281 *3 *4)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(-13 (-1278 |#1| |#2|) (-10 -8 (-15 -2212 ((-1272 |#1| |#2|) $)) (-15 -2749 ($ (-1272 |#1| |#2|))) (-15 -2737 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3174 (((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)) 15) (((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|))) 11)))
-(((-1282 |#1|) (-10 -7 (-15 -3174 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -3174 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)))) (-1208)) (T -1282))
-((-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563)) (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1282 *4)) (-4 *4 (-1208)))))
-(-10 -7 (-15 -3174 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -3174 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563))))
-((-2770 (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 147) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 146) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 145) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 144) (((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-1042 |#1| |#2|)) 129)) (-2760 (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|))) 71) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112)) 70) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112)) 69)) (-2802 (((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 60)) (-2782 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 114) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 113) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 112) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 111) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 106)) (-2792 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 119) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 118) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 117) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 116)) (-2219 (((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 97) (((-1165 (-1020 (-407 |#1|))) (-1165 |#1|)) 88) (((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 95) (((-948 (-1020 (-407 |#1|))) (-948 |#1|)) 93) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 32)))
-(((-1283 |#1| |#2| |#3|) (-10 -7 (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2802 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2219 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2219 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2219 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2219 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2219 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1018)) (-640 (-1169)) (-640 (-1169))) (T -1283))
-((-2219 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2782 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2770 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2770 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2760 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))))
-(-10 -7 (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -2760 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2770 ((-640 (-2 (|:| -4224 (-1165 |#1|)) (|:| -3759 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2782 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2792 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2802 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2219 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2219 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2219 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2219 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2219 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|))))))
-((-2838 (((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|) 21)) (-2813 (((-112) (-1257 |#1|)) 12)) (-2826 (((-3 (-1257 (-563)) "failed") (-1257 |#1|)) 16)))
-(((-1284 |#1|) (-10 -7 (-15 -2813 ((-112) (-1257 |#1|))) (-15 -2826 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2838 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|))) (-636 (-563))) (T -1284))
-((-2838 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4)))) (-2826 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112)) (-5 *1 (-1284 *4)))))
-(-10 -7 (-15 -2813 ((-112) (-1257 |#1|))) (-15 -2826 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2838 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|)))
-((-1677 (((-112) $ $) NIL)) (-3439 (((-112) $) 11)) (-3905 (((-3 $ "failed") $ $) NIL)) (-3750 (((-767)) 8)) (-2569 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 44)) (-1690 (($) 36)) (-3401 (((-112) $) 43)) (-1983 (((-3 $ "failed") $) 29)) (-3990 (((-917) $) 15)) (-3854 (((-1151) $) NIL)) (-2522 (($) 25 T CONST)) (-2552 (($ (-917)) 37)) (-1693 (((-1113) $) NIL)) (-2219 (((-563) $) 13)) (-1692 (((-858) $) 22) (($ (-563)) 19)) (-3914 (((-767)) 9)) (-2239 (($) 23 T CONST)) (-2253 (($) 24 T CONST)) (-1718 (((-112) $ $) 27)) (-1825 (($ $) 38) (($ $ $) 35)) (-1813 (($ $ $) 26)) (** (($ $ (-917)) NIL) (($ $ (-767)) 40)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 32) (($ $ $) 31)))
-(((-1285 |#1|) (-13 (-172) (-368) (-611 (-563)) (-1144)) (-917)) (T -1285))
-NIL
-(-13 (-172) (-368) (-611 (-563)) (-1144))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3195589 3195594 3195599 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3195574 3195579 3195584 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3195559 3195564 3195569 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3195544 3195549 3195554 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1285 3194721 3195419 3195496 "ZMOD" 3195501 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1284 3193831 3193995 3194204 "ZLINDEP" 3194553 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1283 3183135 3184899 3186871 "ZDSOLVE" 3191961 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1282 3182381 3182522 3182711 "YSTREAM" 3182981 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1281 3180192 3181682 3181886 "XRPOLY" 3182224 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1280 3176780 3178063 3178638 "XPR" 3179664 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1279 3174536 3176111 3176315 "XPOLY" 3176611 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1278 3172327 3173661 3173716 "XPOLYC" 3174004 NIL XPOLYC (NIL T T) -9 NIL 3174117 NIL) (-1277 3168745 3170844 3171232 "XPBWPOLY" 3171985 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3164656 3166908 3166950 "XF" 3167571 NIL XF (NIL T) -9 NIL 3167971 NIL) (-1275 3164277 3164365 3164534 "XF-" 3164539 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1274 3159611 3160866 3160921 "XFALG" 3163093 NIL XFALG (NIL T T) -9 NIL 3163882 NIL) (-1273 3158744 3158848 3159053 "XEXPPKG" 3159503 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1272 3156888 3158594 3158690 "XDPOLY" 3158695 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1271 3155833 3156399 3156442 "XALG" 3156447 NIL XALG (NIL T) -9 NIL 3156558 NIL) (-1270 3149302 3153810 3154304 "WUTSET" 3155425 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1269 3147593 3148354 3148677 "WP" 3149113 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1268 3147222 3147415 3147485 "WHILEAST" 3147545 T WHILEAST (NIL) -8 NIL NIL NIL) (-1267 3146721 3146939 3147033 "WHEREAST" 3147150 T WHEREAST (NIL) -8 NIL NIL NIL) (-1266 3145607 3145805 3146100 "WFFINTBS" 3146518 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1265 3143511 3143938 3144400 "WEIER" 3145179 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1264 3142658 3143082 3143124 "VSPACE" 3143260 NIL VSPACE (NIL T) -9 NIL 3143334 NIL) (-1263 3142496 3142523 3142614 "VSPACE-" 3142619 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1262 3142304 3142347 3142415 "VOID" 3142450 T VOID (NIL) -8 NIL NIL NIL) (-1261 3140440 3140799 3141205 "VIEW" 3141920 T VIEW (NIL) -7 NIL NIL NIL) (-1260 3136865 3137503 3138240 "VIEWDEF" 3139725 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1259 3126201 3128413 3130586 "VIEW3D" 3134714 T VIEW3D (NIL) -8 NIL NIL NIL) (-1258 3118483 3120112 3121691 "VIEW2D" 3124644 T VIEW2D (NIL) -8 NIL NIL NIL) (-1257 3113887 3118253 3118345 "VECTOR" 3118426 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1256 3112464 3112723 3113041 "VECTOR2" 3113617 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1255 3105991 3110248 3110291 "VECTCAT" 3111284 NIL VECTCAT (NIL T) -9 NIL 3111870 NIL) (-1254 3105005 3105259 3105649 "VECTCAT-" 3105654 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3104486 3104656 3104776 "VARIABLE" 3104920 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1252 3104419 3104424 3104454 "UTYPE" 3104459 T UTYPE (NIL) -9 NIL NIL NIL) (-1251 3103249 3103403 3103665 "UTSODETL" 3104245 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1250 3100689 3101149 3101673 "UTSODE" 3102790 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1249 3092565 3098315 3098804 "UTS" 3100258 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3083808 3089132 3089175 "UTSCAT" 3090287 NIL UTSCAT (NIL T) -9 NIL 3091044 NIL) (-1247 3081163 3081878 3082867 "UTSCAT-" 3082872 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1246 3080790 3080833 3080966 "UTS2" 3081114 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1245 3075063 3077628 3077671 "URAGG" 3079741 NIL URAGG (NIL T) -9 NIL 3080464 NIL) (-1244 3072002 3072865 3073988 "URAGG-" 3073993 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1243 3067726 3070616 3071088 "UPXSSING" 3071666 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1242 3059828 3066973 3067246 "UPXS" 3067511 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1241 3052941 3059732 3059804 "UPXSCONS" 3059809 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1240 3043186 3049936 3049998 "UPXSCCA" 3050572 NIL UPXSCCA (NIL T T) -9 NIL 3050805 NIL) (-1239 3042824 3042909 3043083 "UPXSCCA-" 3043088 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1238 3032922 3039445 3039488 "UPXSCAT" 3040136 NIL UPXSCAT (NIL T) -9 NIL 3040744 NIL) (-1237 3032352 3032431 3032610 "UPXS2" 3032837 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1236 3031006 3031259 3031610 "UPSQFREE" 3032095 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1235 3024794 3027808 3027863 "UPSCAT" 3029024 NIL UPSCAT (NIL T T) -9 NIL 3029798 NIL) (-1234 3023998 3024205 3024532 "UPSCAT-" 3024537 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 3009848 3017846 3017889 "UPOLYC" 3019990 NIL UPOLYC (NIL T) -9 NIL 3021211 NIL) (-1232 3001177 3003602 3006749 "UPOLYC-" 3006754 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1231 3000804 3000847 3000980 "UPOLYC2" 3001128 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1230 2992378 3000487 3000616 "UP" 3000723 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1229 2991717 2991824 2991988 "UPMP" 2992267 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1228 2991270 2991351 2991490 "UPDIVP" 2991630 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1227 2989838 2990087 2990403 "UPDECOMP" 2991019 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1226 2989073 2989185 2989370 "UPCDEN" 2989722 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1225 2988592 2988661 2988810 "UP2" 2988998 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1224 2987109 2987796 2988073 "UNISEG" 2988350 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1223 2986324 2986451 2986656 "UNISEG2" 2986952 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1222 2985384 2985564 2985790 "UNIFACT" 2986140 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1221 2969351 2984561 2984812 "ULS" 2985191 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1220 2957391 2969255 2969327 "ULSCONS" 2969332 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1219 2940007 2951949 2952011 "ULSCCAT" 2952649 NIL ULSCCAT (NIL T T) -9 NIL 2952937 NIL) (-1218 2939057 2939302 2939690 "ULSCCAT-" 2939695 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1217 2928932 2935369 2935412 "ULSCAT" 2936275 NIL ULSCAT (NIL T) -9 NIL 2937005 NIL) (-1216 2928362 2928441 2928620 "ULS2" 2928847 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1215 2927499 2927974 2928075 "UINT8" 2928186 T UINT8 (NIL) -8 NIL NIL 2928265) (-1214 2926635 2927110 2927211 "UINT32" 2927322 T UINT32 (NIL) -8 NIL NIL 2927401) (-1213 2925771 2926246 2926347 "UINT16" 2926458 T UINT16 (NIL) -8 NIL NIL 2926537) (-1212 2924174 2925097 2925127 "UFD" 2925339 T UFD (NIL) -9 NIL 2925453 NIL) (-1211 2923968 2924014 2924109 "UFD-" 2924114 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1210 2923050 2923233 2923449 "UDVO" 2923774 T UDVO (NIL) -7 NIL NIL NIL) (-1209 2920866 2921275 2921746 "UDPO" 2922614 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1208 2920799 2920804 2920834 "TYPE" 2920839 T TYPE (NIL) -9 NIL NIL NIL) (-1207 2920586 2920754 2920785 "TYPEAST" 2920790 T TYPEAST (NIL) -8 NIL NIL NIL) (-1206 2919557 2919759 2919999 "TWOFACT" 2920380 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1205 2918629 2918966 2919201 "TUPLE" 2919357 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1204 2916320 2916839 2917378 "TUBETOOL" 2918112 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1203 2915169 2915374 2915615 "TUBE" 2916113 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1202 2909933 2914141 2914424 "TS" 2914921 NIL TS (NIL T) -8 NIL NIL NIL) (-1201 2898600 2902692 2902789 "TSETCAT" 2908058 NIL TSETCAT (NIL T T T T) -9 NIL 2909589 NIL) (-1200 2893335 2894932 2896823 "TSETCAT-" 2896828 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1199 2887598 2888444 2889386 "TRMANIP" 2892471 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1198 2887039 2887102 2887265 "TRIMAT" 2887530 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1197 2884835 2885072 2885436 "TRIGMNIP" 2886788 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1196 2884355 2884468 2884498 "TRIGCAT" 2884711 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1195 2884024 2884103 2884244 "TRIGCAT-" 2884249 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1194 2880921 2882882 2883163 "TREE" 2883778 NIL TREE (NIL T) -8 NIL NIL NIL) (-1193 2880195 2880723 2880753 "TRANFUN" 2880788 T TRANFUN (NIL) -9 NIL 2880854 NIL) (-1192 2879474 2879665 2879945 "TRANFUN-" 2879950 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1191 2879278 2879310 2879371 "TOPSP" 2879435 T TOPSP (NIL) -7 NIL NIL NIL) (-1190 2878626 2878741 2878895 "TOOLSIGN" 2879159 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1189 2877287 2877803 2878042 "TEXTFILE" 2878409 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1188 2875226 2875740 2876169 "TEX" 2876880 T TEX (NIL) -8 NIL NIL NIL) (-1187 2875007 2875038 2875110 "TEX1" 2875189 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1186 2874655 2874718 2874808 "TEMUTL" 2874939 T TEMUTL (NIL) -7 NIL NIL NIL) (-1185 2872809 2873089 2873414 "TBCMPPK" 2874378 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1184 2864697 2870969 2871025 "TBAGG" 2871425 NIL TBAGG (NIL T T) -9 NIL 2871636 NIL) (-1183 2859767 2861255 2863009 "TBAGG-" 2863014 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1182 2859151 2859258 2859403 "TANEXP" 2859656 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1181 2852652 2859008 2859101 "TABLE" 2859106 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1180 2852064 2852163 2852301 "TABLEAU" 2852549 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1179 2846672 2847892 2849140 "TABLBUMP" 2850850 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1178 2845894 2846041 2846222 "SYSTEM" 2846513 T SYSTEM (NIL) -8 NIL NIL NIL) (-1177 2842357 2843052 2843835 "SYSSOLP" 2845145 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1176 2841414 2841881 2841994 "SYSNNI" 2842180 NIL SYSNNI (NIL NIL) -8 NIL NIL 2842259) (-1175 2840867 2841272 2841314 "SYSINT" 2841319 NIL SYSINT (NIL NIL) -8 NIL NIL 2841327) (-1174 2837201 2838128 2838844 "SYNTAX" 2840173 T SYNTAX (NIL) -8 NIL NIL NIL) (-1173 2834359 2834961 2835593 "SYMTAB" 2836591 T SYMTAB (NIL) -8 NIL NIL NIL) (-1172 2829608 2830510 2831493 "SYMS" 2833398 T SYMS (NIL) -8 NIL NIL NIL) (-1171 2826879 2829066 2829296 "SYMPOLY" 2829413 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1170 2826396 2826471 2826594 "SYMFUNC" 2826791 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1169 2822448 2823708 2824521 "SYMBOL" 2825605 T SYMBOL (NIL) -8 NIL NIL NIL) (-1168 2815987 2817676 2819396 "SWITCH" 2820750 T SWITCH (NIL) -8 NIL NIL NIL) (-1167 2809257 2814808 2815111 "SUTS" 2815742 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2801358 2808504 2808777 "SUPXS" 2809042 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2792888 2800976 2801102 "SUP" 2801267 NIL SUP (NIL T) -8 NIL NIL NIL) (-1164 2792047 2792174 2792391 "SUPFRACF" 2792756 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1163 2791668 2791727 2791840 "SUP2" 2791982 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1162 2790081 2790355 2790718 "SUMRF" 2791367 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1161 2789395 2789461 2789660 "SUMFS" 2790002 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1160 2773402 2788572 2788823 "SULS" 2789202 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2773031 2773224 2773294 "SUCHTAST" 2773354 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1158 2772353 2772556 2772696 "SUCH" 2772939 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1157 2766247 2767259 2768218 "SUBSPACE" 2771441 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1156 2765677 2765767 2765931 "SUBRESP" 2766135 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1155 2759046 2760342 2761653 "STTF" 2764413 NIL STTF (NIL T) -7 NIL NIL NIL) (-1154 2753219 2754339 2755486 "STTFNC" 2757946 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1153 2744534 2746401 2748195 "STTAYLOR" 2751460 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1152 2737778 2744398 2744481 "STRTBL" 2744486 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1151 2733169 2737733 2737764 "STRING" 2737769 T STRING (NIL) -8 NIL NIL NIL) (-1150 2728057 2732542 2732572 "STRICAT" 2732631 T STRICAT (NIL) -9 NIL 2732693 NIL) (-1149 2720867 2725676 2726287 "STREAM" 2727481 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1148 2720377 2720454 2720598 "STREAM3" 2720784 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1147 2719359 2719542 2719777 "STREAM2" 2720190 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1146 2719047 2719099 2719192 "STREAM1" 2719301 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1145 2718063 2718244 2718475 "STINPROD" 2718863 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1144 2717641 2717825 2717855 "STEP" 2717935 T STEP (NIL) -9 NIL 2718013 NIL) (-1143 2711184 2717540 2717617 "STBL" 2717622 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1142 2706358 2710405 2710448 "STAGG" 2710601 NIL STAGG (NIL T) -9 NIL 2710690 NIL) (-1141 2704060 2704662 2705534 "STAGG-" 2705539 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1140 2702255 2703830 2703922 "STACK" 2704003 NIL STACK (NIL T) -8 NIL NIL NIL) (-1139 2694980 2700396 2700852 "SREGSET" 2701885 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1138 2687406 2688774 2690287 "SRDCMPK" 2693586 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2680373 2684846 2684876 "SRAGG" 2686179 T SRAGG (NIL) -9 NIL 2686787 NIL) (-1136 2679390 2679645 2680024 "SRAGG-" 2680029 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1135 2673885 2678337 2678758 "SQMATRIX" 2679016 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1134 2667634 2670603 2671330 "SPLTREE" 2673230 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1133 2663624 2664290 2664936 "SPLNODE" 2667060 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1132 2662671 2662904 2662934 "SPFCAT" 2663378 T SPFCAT (NIL) -9 NIL NIL NIL) (-1131 2661408 2661618 2661882 "SPECOUT" 2662429 T SPECOUT (NIL) -7 NIL NIL NIL) (-1130 2653060 2654804 2654834 "SPADXPT" 2659226 T SPADXPT (NIL) -9 NIL 2661260 NIL) (-1129 2652821 2652861 2652930 "SPADPRSR" 2653013 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1128 2651004 2652776 2652807 "SPADAST" 2652812 T SPADAST (NIL) -8 NIL NIL NIL) (-1127 2642975 2644722 2644765 "SPACEC" 2649138 NIL SPACEC (NIL T) -9 NIL 2650954 NIL) (-1126 2641146 2642907 2642956 "SPACE3" 2642961 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1125 2639898 2640069 2640360 "SORTPAK" 2640951 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1124 2637948 2638251 2638670 "SOLVETRA" 2639562 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1123 2636959 2637181 2637455 "SOLVESER" 2637721 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1122 2632179 2633060 2634062 "SOLVERAD" 2636011 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1121 2627994 2628603 2629332 "SOLVEFOR" 2631546 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1120 2622291 2627343 2627440 "SNTSCAT" 2627445 NIL SNTSCAT (NIL T T T T) -9 NIL 2627515 NIL) (-1119 2616434 2620614 2621005 "SMTS" 2621981 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1118 2610884 2616322 2616399 "SMP" 2616404 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1117 2609043 2609344 2609742 "SMITH" 2610581 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1116 2601938 2606094 2606197 "SMATCAT" 2607548 NIL SMATCAT (NIL NIL T T T) -9 NIL 2608098 NIL) (-1115 2598878 2599701 2600879 "SMATCAT-" 2600884 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1114 2596591 2598114 2598157 "SKAGG" 2598418 NIL SKAGG (NIL T) -9 NIL 2598553 NIL) (-1113 2592933 2596007 2596202 "SINT" 2596389 T SINT (NIL) -8 NIL NIL 2596562) (-1112 2592705 2592743 2592809 "SIMPAN" 2592889 T SIMPAN (NIL) -7 NIL NIL NIL) (-1111 2592012 2592240 2592380 "SIG" 2592587 T SIG (NIL) -8 NIL NIL NIL) (-1110 2590850 2591071 2591346 "SIGNRF" 2591771 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1109 2589655 2589806 2590097 "SIGNEF" 2590679 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1108 2588988 2589238 2589362 "SIGAST" 2589553 T SIGAST (NIL) -8 NIL NIL NIL) (-1107 2586678 2587132 2587638 "SHP" 2588529 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1106 2580584 2586579 2586655 "SHDP" 2586660 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1105 2580183 2580349 2580379 "SGROUP" 2580472 T SGROUP (NIL) -9 NIL 2580534 NIL) (-1104 2580041 2580067 2580140 "SGROUP-" 2580145 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1103 2576877 2577574 2578297 "SGCF" 2579340 T SGCF (NIL) -7 NIL NIL NIL) (-1102 2571272 2576324 2576421 "SFRTCAT" 2576426 NIL SFRTCAT (NIL T T T T) -9 NIL 2576465 NIL) (-1101 2564696 2565711 2566847 "SFRGCD" 2570255 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1100 2557824 2558895 2560081 "SFQCMPK" 2563629 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2557446 2557535 2557645 "SFORT" 2557765 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1098 2556591 2557286 2557407 "SEXOF" 2557412 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1097 2555725 2556472 2556540 "SEX" 2556545 T SEX (NIL) -8 NIL NIL NIL) (-1096 2551264 2551953 2552048 "SEXCAT" 2554985 NIL SEXCAT (NIL T T T T T) -9 NIL 2555563 NIL) (-1095 2548444 2551198 2551246 "SET" 2551251 NIL SET (NIL T) -8 NIL NIL NIL) (-1094 2546695 2547157 2547462 "SETMN" 2548185 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1093 2546301 2546427 2546457 "SETCAT" 2546574 T SETCAT (NIL) -9 NIL 2546659 NIL) (-1092 2546081 2546133 2546232 "SETCAT-" 2546237 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1091 2542468 2544542 2544585 "SETAGG" 2545455 NIL SETAGG (NIL T) -9 NIL 2545795 NIL) (-1090 2541926 2542042 2542279 "SETAGG-" 2542284 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1089 2541396 2541622 2541723 "SEQAST" 2541847 T SEQAST (NIL) -8 NIL NIL NIL) (-1088 2540595 2540889 2540950 "SEGXCAT" 2541236 NIL SEGXCAT (NIL T T) -9 NIL 2541356 NIL) (-1087 2539651 2540261 2540443 "SEG" 2540448 NIL SEG (NIL T) -8 NIL NIL NIL) (-1086 2538630 2538844 2538887 "SEGCAT" 2539409 NIL SEGCAT (NIL T) -9 NIL 2539630 NIL) (-1085 2537679 2538009 2538209 "SEGBIND" 2538465 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1084 2537300 2537359 2537472 "SEGBIND2" 2537614 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1083 2536901 2537101 2537178 "SEGAST" 2537245 T SEGAST (NIL) -8 NIL NIL NIL) (-1082 2536120 2536246 2536450 "SEG2" 2536745 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1081 2535557 2536055 2536102 "SDVAR" 2536107 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1080 2527847 2535327 2535457 "SDPOL" 2535462 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1079 2526440 2526706 2527025 "SCPKG" 2527562 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1078 2525576 2525756 2525956 "SCOPE" 2526262 T SCOPE (NIL) -8 NIL NIL NIL) (-1077 2524797 2524930 2525109 "SCACHE" 2525431 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1076 2524469 2524629 2524659 "SASTCAT" 2524664 T SASTCAT (NIL) -9 NIL 2524677 NIL) (-1075 2523983 2524304 2524380 "SAOS" 2524415 T SAOS (NIL) -8 NIL NIL NIL) (-1074 2523548 2523583 2523756 "SAERFFC" 2523942 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1073 2517522 2523445 2523525 "SAE" 2523530 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1072 2517115 2517150 2517309 "SAEFACT" 2517481 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1071 2515436 2515750 2516151 "RURPK" 2516781 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1070 2514072 2514351 2514663 "RULESET" 2515270 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1069 2511259 2511762 2512227 "RULE" 2513753 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1068 2510898 2511053 2511136 "RULECOLD" 2511211 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1067 2510396 2510615 2510709 "RSTRCAST" 2510826 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2505245 2506039 2506959 "RSETGCD" 2509595 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2494502 2499554 2499651 "RSETCAT" 2503770 NIL RSETCAT (NIL T T T T) -9 NIL 2504867 NIL) (-1064 2492429 2492968 2493792 "RSETCAT-" 2493797 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2484816 2486191 2487711 "RSDCMPK" 2491028 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2482821 2483262 2483336 "RRCC" 2484422 NIL RRCC (NIL T T) -9 NIL 2484766 NIL) (-1061 2482172 2482346 2482625 "RRCC-" 2482630 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2481642 2481868 2481969 "RPTAST" 2482093 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2455648 2465235 2465302 "RPOLCAT" 2475966 NIL RPOLCAT (NIL T T T) -9 NIL 2479125 NIL) (-1058 2447149 2449486 2452608 "RPOLCAT-" 2452613 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2438196 2445360 2445842 "ROUTINE" 2446689 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2435029 2437822 2437962 "ROMAN" 2438078 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2433304 2433889 2434149 "ROIRC" 2434834 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2429697 2431940 2431970 "RNS" 2432274 T RNS (NIL) -9 NIL 2432547 NIL) (-1053 2428206 2428589 2429123 "RNS-" 2429198 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2427655 2428037 2428067 "RNG" 2428072 T RNG (NIL) -9 NIL 2428093 NIL) (-1051 2427047 2427409 2427452 "RMODULE" 2427514 NIL RMODULE (NIL T) -9 NIL 2427556 NIL) (-1050 2425883 2425977 2426313 "RMCAT2" 2426948 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2422760 2425229 2425526 "RMATRIX" 2425645 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2415702 2417936 2418051 "RMATCAT" 2421410 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2422392 NIL) (-1047 2415077 2415224 2415531 "RMATCAT-" 2415536 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2414644 2414719 2414847 "RINTERP" 2414996 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2413777 2414297 2414327 "RING" 2414383 T RING (NIL) -9 NIL 2414469 NIL) (-1044 2413569 2413613 2413710 "RING-" 2413715 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2412410 2412647 2412905 "RIDIST" 2413333 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2403726 2411878 2412084 "RGCHAIN" 2412258 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2403102 2403482 2403523 "RGBCSPC" 2403581 NIL RGBCSPC (NIL T) -9 NIL 2403633 NIL) (-1040 2402286 2402641 2402682 "RGBCMDL" 2402914 NIL RGBCMDL (NIL T) -9 NIL 2403028 NIL) (-1039 2399280 2399894 2400564 "RF" 2401650 NIL RF (NIL T) -7 NIL NIL NIL) (-1038 2398926 2398989 2399092 "RFFACTOR" 2399211 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1037 2398651 2398686 2398783 "RFFACT" 2398885 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1036 2396768 2397132 2397514 "RFDIST" 2398291 T RFDIST (NIL) -7 NIL NIL NIL) (-1035 2396221 2396313 2396476 "RETSOL" 2396670 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2395857 2395937 2395980 "RETRACT" 2396113 NIL RETRACT (NIL T) -9 NIL 2396200 NIL) (-1033 2395706 2395731 2395818 "RETRACT-" 2395823 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2395335 2395528 2395598 "RETAST" 2395658 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2388189 2394988 2395115 "RESULT" 2395230 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2386815 2387458 2387657 "RESRING" 2388092 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2386451 2386500 2386598 "RESLATC" 2386752 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2386157 2386191 2386298 "REPSQ" 2386410 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2383579 2384159 2384761 "REP" 2385577 T REP (NIL) -7 NIL NIL NIL) (-1026 2383277 2383311 2383422 "REPDB" 2383538 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1025 2377187 2378566 2379789 "REP2" 2382089 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1024 2373564 2374245 2375053 "REP1" 2376414 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1023 2366290 2371705 2372161 "REGSET" 2373194 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2365103 2365438 2365688 "REF" 2366075 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2364480 2364583 2364750 "REDORDER" 2364987 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2360485 2363693 2363920 "RECLOS" 2364308 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2359537 2359718 2359933 "REALSOLV" 2360292 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2359383 2359424 2359454 "REAL" 2359459 T REAL (NIL) -9 NIL 2359494 NIL) (-1017 2355866 2356668 2357552 "REAL0Q" 2358548 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1016 2351467 2352455 2353516 "REAL0" 2354847 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1015 2350965 2351184 2351278 "RDUCEAST" 2351395 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2350370 2350442 2350649 "RDIV" 2350887 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2349438 2349612 2349825 "RDIST" 2350192 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2348035 2348322 2348694 "RDETRS" 2349146 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2345847 2346301 2346839 "RDETR" 2347577 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2344458 2344736 2345140 "RDEEFS" 2345563 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2342953 2343259 2343691 "RDEEF" 2344146 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2337214 2340089 2340119 "RCFIELD" 2341414 T RCFIELD (NIL) -9 NIL 2342144 NIL) (-1007 2335278 2335782 2336478 "RCFIELD-" 2336553 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2331594 2333379 2333422 "RCAGG" 2334506 NIL RCAGG (NIL T) -9 NIL 2334971 NIL) (-1005 2331222 2331316 2331479 "RCAGG-" 2331484 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2330557 2330669 2330834 "RATRET" 2331106 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2330110 2330177 2330298 "RATFACT" 2330485 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2329418 2329538 2329690 "RANDSRC" 2329980 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2329152 2329196 2329269 "RADUTIL" 2329367 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2322305 2327985 2328295 "RADIX" 2328876 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2313962 2322149 2322277 "RADFF" 2322282 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2313614 2313689 2313717 "RADCAT" 2313874 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2313399 2313447 2313544 "RADCAT-" 2313549 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2311550 2313174 2313263 "QUEUE" 2313343 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2308126 2311487 2311532 "QUAT" 2311537 NIL QUAT (NIL T) -8 NIL NIL NIL) (-994 2307764 2307807 2307934 "QUATCT2" 2308077 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-993 2301511 2304813 2304853 "QUATCAT" 2305633 NIL QUATCAT (NIL T) -9 NIL 2306399 NIL) (-992 2297655 2298692 2300079 "QUATCAT-" 2300173 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-991 2295175 2296739 2296780 "QUAGG" 2297155 NIL QUAGG (NIL T) -9 NIL 2297330 NIL) (-990 2294807 2295000 2295068 "QQUTAST" 2295127 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2293732 2294205 2294377 "QFORM" 2294679 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2284944 2290149 2290189 "QFCAT" 2290847 NIL QFCAT (NIL T) -9 NIL 2291848 NIL) (-987 2280516 2281717 2283308 "QFCAT-" 2283402 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-986 2280154 2280197 2280324 "QFCAT2" 2280467 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-985 2279614 2279724 2279854 "QEQUAT" 2280044 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2272762 2273833 2275017 "QCMPACK" 2278547 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2270338 2270759 2271187 "QALGSET" 2272417 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-982 2269583 2269757 2269989 "QALGSET2" 2270158 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-981 2268274 2268497 2268814 "PWFFINTB" 2269356 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2266456 2266624 2266978 "PUSHVAR" 2268088 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2262374 2263428 2263469 "PTRANFN" 2265353 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2260776 2261067 2261389 "PTPACK" 2262085 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2260408 2260465 2260574 "PTFUNC2" 2260713 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2254935 2259280 2259321 "PTCAT" 2259617 NIL PTCAT (NIL T) -9 NIL 2259770 NIL) (-975 2254593 2254628 2254752 "PSQFR" 2254894 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2253188 2253486 2253820 "PSEUDLIN" 2254291 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2239958 2242322 2244646 "PSETPK" 2250948 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2233002 2235716 2235812 "PSETCAT" 2238833 NIL PSETCAT (NIL T T T T) -9 NIL 2239647 NIL) (-971 2230838 2231472 2232293 "PSETCAT-" 2232298 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2230187 2230352 2230380 "PSCURVE" 2230648 T PSCURVE (NIL) -9 NIL 2230815 NIL) (-969 2226543 2228025 2228090 "PSCAT" 2228934 NIL PSCAT (NIL T T T) -9 NIL 2229174 NIL) (-968 2225606 2225822 2226222 "PSCAT-" 2226227 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2224338 2224971 2225176 "PRTITION" 2225421 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2223840 2224059 2224151 "PRTDAST" 2224266 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2212938 2215144 2217332 "PRS" 2221702 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2210796 2212288 2212328 "PRQAGG" 2212511 NIL PRQAGG (NIL T) -9 NIL 2212613 NIL) (-963 2210182 2210411 2210439 "PROPLOG" 2210624 T PROPLOG (NIL) -9 NIL 2210746 NIL) (-962 2207352 2207996 2208460 "PROPFRML" 2209750 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2206812 2206922 2207052 "PROPERTY" 2207242 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2200897 2204978 2205798 "PRODUCT" 2206038 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2198210 2200355 2200589 "PR" 2200708 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2198006 2198038 2198097 "PRINT" 2198171 T PRINT (NIL) -7 NIL NIL NIL) (-957 2197346 2197463 2197615 "PRIMES" 2197886 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-956 2195411 2195812 2196278 "PRIMELT" 2196925 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-955 2195140 2195189 2195217 "PRIMCAT" 2195341 T PRIMCAT (NIL) -9 NIL NIL NIL) (-954 2191301 2195078 2195123 "PRIMARR" 2195128 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2190308 2190486 2190714 "PRIMARR2" 2191119 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-952 2189951 2190007 2190118 "PREASSOC" 2190246 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-951 2189426 2189559 2189587 "PPCURVE" 2189792 T PPCURVE (NIL) -9 NIL 2189928 NIL) (-950 2189048 2189221 2189304 "PORTNUM" 2189363 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2186407 2186806 2187398 "POLYROOT" 2188629 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2180352 2186011 2186171 "POLY" 2186280 NIL POLY (NIL T) -8 NIL NIL NIL) (-947 2179735 2179793 2180027 "POLYLIFT" 2180288 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-946 2176010 2176459 2177088 "POLYCATQ" 2179280 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-945 2162827 2168185 2168250 "POLYCAT" 2171764 NIL POLYCAT (NIL T T T) -9 NIL 2173692 NIL) (-944 2156277 2158138 2160522 "POLYCAT-" 2160527 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-943 2155864 2155932 2156052 "POLY2UP" 2156203 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-942 2155496 2155553 2155662 "POLY2" 2155801 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-941 2154181 2154420 2154696 "POLUTIL" 2155270 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2152536 2152813 2153144 "POLTOPOL" 2153903 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2148054 2152472 2152518 "POINT" 2152523 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2146241 2146598 2146973 "PNTHEORY" 2147699 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2144660 2144957 2145369 "PMTOOLS" 2145939 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2144253 2144331 2144448 "PMSYM" 2144576 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2143763 2143832 2144006 "PMQFCAT" 2144178 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2143118 2143228 2143384 "PMPRED" 2143640 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-933 2142514 2142600 2142761 "PMPREDFS" 2143019 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-932 2141157 2141365 2141750 "PMPLCAT" 2142276 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2140689 2140768 2140920 "PMLSAGG" 2141072 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2140164 2140240 2140421 "PMKERNEL" 2140607 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2139781 2139856 2139969 "PMINS" 2140083 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2139209 2139278 2139494 "PMFS" 2139706 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2138437 2138555 2138760 "PMDOWN" 2139086 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2137600 2137759 2137941 "PMASS" 2138275 T PMASS (NIL) -7 NIL NIL NIL) (-925 2136874 2136985 2137148 "PMASSFS" 2137486 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-924 2136529 2136597 2136691 "PLOTTOOL" 2136800 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2131151 2132340 2133488 "PLOT" 2135401 T PLOT (NIL) -8 NIL NIL NIL) (-922 2126965 2127999 2128920 "PLOT3D" 2130250 T PLOT3D (NIL) -8 NIL NIL NIL) (-921 2125877 2126054 2126289 "PLOT1" 2126769 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-920 2101271 2105943 2110794 "PLEQN" 2121143 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2100589 2100711 2100891 "PINTERP" 2101136 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-918 2100282 2100329 2100432 "PINTERPA" 2100536 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-917 2099530 2100051 2100138 "PI" 2100178 T PI (NIL) -8 NIL NIL 2100245) (-916 2097927 2098868 2098896 "PID" 2099078 T PID (NIL) -9 NIL 2099212 NIL) (-915 2097652 2097689 2097777 "PICOERCE" 2097884 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-914 2096972 2097111 2097287 "PGROEB" 2097508 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2092559 2093373 2094278 "PGE" 2096087 T PGE (NIL) -7 NIL NIL NIL) (-912 2090683 2090929 2091295 "PGCD" 2092276 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2090021 2090124 2090285 "PFRPAC" 2090567 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2086701 2088569 2088922 "PFR" 2089700 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2085090 2085334 2085659 "PFOTOOLS" 2086448 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2083623 2083862 2084213 "PFOQ" 2084847 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2082096 2082308 2082671 "PFO" 2083407 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2078684 2081985 2082054 "PF" 2082059 NIL PF (NIL NIL) -8 NIL NIL NIL) (-905 2076118 2077355 2077383 "PFECAT" 2077968 T PFECAT (NIL) -9 NIL 2078352 NIL) (-904 2075563 2075717 2075931 "PFECAT-" 2075936 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-903 2074167 2074418 2074719 "PFBRU" 2075312 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-902 2072034 2072385 2072817 "PFBR" 2073818 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-901 2067950 2069410 2070086 "PERM" 2071391 NIL PERM (NIL T) -8 NIL NIL NIL) (-900 2063216 2064157 2065027 "PERMGRP" 2067113 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-899 2061348 2062279 2062320 "PERMCAT" 2062766 NIL PERMCAT (NIL T) -9 NIL 2063071 NIL) (-898 2061001 2061042 2061166 "PERMAN" 2061301 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-897 2058537 2060666 2060788 "PENDTREE" 2060912 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2056630 2057364 2057405 "PDRING" 2058062 NIL PDRING (NIL T) -9 NIL 2058348 NIL) (-895 2055733 2055951 2056313 "PDRING-" 2056318 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2052975 2053726 2054394 "PDEPROB" 2055085 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2050522 2051024 2051579 "PDEPACK" 2052440 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2049434 2049624 2049875 "PDECOMP" 2050321 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2047039 2047856 2047884 "PDECAT" 2048671 T PDECAT (NIL) -9 NIL 2049384 NIL) (-890 2046790 2046823 2046913 "PCOMP" 2047000 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2044995 2045591 2045888 "PBWLB" 2046519 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2037500 2039068 2040406 "PATTERN" 2043678 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-887 2037132 2037189 2037298 "PATTERN2" 2037437 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-886 2034889 2035277 2035734 "PATTERN1" 2036721 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-885 2032284 2032838 2033319 "PATRES" 2034454 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-884 2031848 2031915 2032047 "PATRES2" 2032211 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-883 2029731 2030136 2030543 "PATMATCH" 2031515 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2029267 2029450 2029491 "PATMAB" 2029598 NIL PATMAB (NIL T) -9 NIL 2029681 NIL) (-881 2027812 2028121 2028379 "PATLRES" 2029072 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2027358 2027481 2027522 "PATAB" 2027527 NIL PATAB (NIL T) -9 NIL 2027699 NIL) (-879 2024839 2025371 2025944 "PARTPERM" 2026805 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2024460 2024523 2024625 "PARSURF" 2024770 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2024092 2024149 2024258 "PARSU2" 2024397 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2023856 2023896 2023963 "PARSER" 2024045 T PARSER (NIL) -7 NIL NIL NIL) (-875 2023477 2023540 2023642 "PARSCURV" 2023787 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2023109 2023166 2023275 "PARSC2" 2023414 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2022748 2022806 2022903 "PARPCURV" 2023045 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2022380 2022437 2022546 "PARPC2" 2022685 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2021900 2021986 2022105 "PAN2EXPR" 2022281 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2020706 2021021 2021249 "PALETTE" 2021692 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2019174 2019711 2020071 "PAIR" 2020392 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2013080 2018433 2018627 "PADICRC" 2019029 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 2006344 2012426 2012610 "PADICRAT" 2012928 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 2004694 2006281 2006326 "PADIC" 2006331 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-865 2001904 2003434 2003474 "PADICCT" 2004055 NIL PADICCT (NIL NIL) -9 NIL 2004337 NIL) (-864 2000861 2001061 2001329 "PADEPAC" 2001691 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 2000073 2000206 2000412 "PADE" 2000723 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 1998495 1999281 1999561 "OWP" 1999877 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 1998015 1998201 1998298 "OVERSET" 1998418 T OVERSET (NIL) -8 NIL NIL NIL) (-860 1997088 1997620 1997792 "OVAR" 1997883 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 1996352 1996473 1996634 "OUT" 1996947 T OUT (NIL) -7 NIL NIL NIL) (-858 1985259 1987461 1989661 "OUTFORM" 1994172 T OUTFORM (NIL) -8 NIL NIL NIL) (-857 1984595 1984856 1984983 "OUTBFILE" 1985152 T OUTBFILE (NIL) -8 NIL NIL NIL) (-856 1983902 1984067 1984095 "OUTBCON" 1984413 T OUTBCON (NIL) -9 NIL 1984579 NIL) (-855 1983503 1983615 1983772 "OUTBCON-" 1983777 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-854 1982911 1983232 1983321 "OSI" 1983434 T OSI (NIL) -8 NIL NIL NIL) (-853 1982467 1982779 1982807 "OSGROUP" 1982812 T OSGROUP (NIL) -9 NIL 1982834 NIL) (-852 1981212 1981439 1981724 "ORTHPOL" 1982214 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1978798 1981047 1981168 "OREUP" 1981173 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976236 1978489 1978616 "ORESUP" 1978740 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1973764 1974264 1974825 "OREPCTO" 1975725 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1967588 1969755 1969796 "OREPCAT" 1972144 NIL OREPCAT (NIL T) -9 NIL 1973248 NIL) (-847 1964735 1965517 1966575 "OREPCAT-" 1966580 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1963912 1964184 1964212 "ORDSET" 1964521 T ORDSET (NIL) -9 NIL 1964685 NIL) (-845 1963431 1963553 1963746 "ORDSET-" 1963751 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1962065 1962822 1962850 "ORDRING" 1963052 T ORDRING (NIL) -9 NIL 1963177 NIL) (-843 1961710 1961804 1961948 "ORDRING-" 1961953 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1961116 1961553 1961581 "ORDMON" 1961586 T ORDMON (NIL) -9 NIL 1961607 NIL) (-841 1960278 1960425 1960620 "ORDFUNS" 1960965 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1959642 1960035 1960063 "ORDFIN" 1960128 T ORDFIN (NIL) -9 NIL 1960202 NIL) (-839 1956234 1958228 1958637 "ORDCOMP" 1959266 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-838 1955500 1955627 1955813 "ORDCOMP2" 1956094 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1952108 1952991 1953805 "OPTPROB" 1954706 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1948910 1949549 1950253 "OPTPACK" 1951424 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1946623 1947363 1947391 "OPTCAT" 1948210 T OPTCAT (NIL) -9 NIL 1948860 NIL) (-834 1946066 1946300 1946405 "OPSIG" 1946538 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1945834 1945873 1945939 "OPQUERY" 1946020 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1943000 1944145 1944649 "OP" 1945363 NIL OP (NIL T) -8 NIL NIL NIL) (-831 1942535 1942706 1942747 "OPERCAT" 1942882 NIL OPERCAT (NIL T) -9 NIL 1942950 NIL) (-830 1942381 1942408 1942494 "OPERCAT-" 1942499 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-829 1939226 1941178 1941547 "ONECOMP" 1942045 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-828 1938531 1938646 1938820 "ONECOMP2" 1939098 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-827 1937950 1938056 1938186 "OMSERVER" 1938421 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1934838 1937390 1937430 "OMSAGG" 1937491 NIL OMSAGG (NIL T) -9 NIL 1937555 NIL) (-825 1933461 1933724 1934006 "OMPKG" 1934576 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1932891 1932994 1933022 "OM" 1933321 T OM (NIL) -9 NIL NIL NIL) (-823 1931473 1932440 1932609 "OMLO" 1932772 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-822 1930398 1930545 1930772 "OMEXPR" 1931299 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-821 1929716 1929944 1930080 "OMERR" 1930282 T OMERR (NIL) -8 NIL NIL NIL) (-820 1928894 1929137 1929297 "OMERRK" 1929576 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1928372 1928571 1928679 "OMENC" 1928806 T OMENC (NIL) -8 NIL NIL NIL) (-818 1922267 1923452 1924623 "OMDEV" 1927221 T OMDEV (NIL) -8 NIL NIL NIL) (-817 1921336 1921507 1921701 "OMCONN" 1922093 T OMCONN (NIL) -8 NIL NIL NIL) (-816 1919957 1920899 1920927 "OINTDOM" 1920932 T OINTDOM (NIL) -9 NIL 1920953 NIL) (-815 1915763 1916947 1917663 "OFMONOID" 1919273 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1915201 1915700 1915745 "ODVAR" 1915750 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1912659 1914946 1915101 "ODR" 1915106 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1905003 1912435 1912561 "ODPOL" 1912566 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1898879 1904875 1904980 "ODP" 1904985 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1897645 1897860 1898135 "ODETOOLS" 1898653 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1894614 1895270 1895986 "ODESYS" 1896978 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1889496 1890404 1891429 "ODERTRIC" 1893689 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1888922 1889004 1889198 "ODERED" 1889408 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1885810 1886358 1887035 "ODERAT" 1888345 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1882770 1883234 1883831 "ODEPRRIC" 1885339 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1880740 1881309 1881795 "ODEPROB" 1882304 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1877262 1877745 1878392 "ODEPRIM" 1880219 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1876511 1876613 1876873 "ODEPAL" 1877154 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1872673 1873464 1874328 "ODEPACK" 1875667 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1871706 1871813 1872042 "ODEINT" 1872562 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1865807 1867232 1868679 "ODEIFTBL" 1870279 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1861142 1861928 1862887 "ODEEF" 1864966 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1860477 1860566 1860796 "ODECONST" 1861047 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1858628 1859263 1859291 "ODECAT" 1859896 T ODECAT (NIL) -9 NIL 1860427 NIL) (-795 1855535 1858340 1858459 "OCT" 1858541 NIL OCT (NIL T) -8 NIL NIL NIL) (-794 1855173 1855216 1855343 "OCTCT2" 1855486 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-793 1849947 1852347 1852387 "OC" 1853484 NIL OC (NIL T) -9 NIL 1854342 NIL) (-792 1847174 1847922 1848912 "OC-" 1849006 NIL OC- (NIL T T) -8 NIL NIL NIL) (-791 1846552 1846994 1847022 "OCAMON" 1847027 T OCAMON (NIL) -9 NIL 1847048 NIL) (-790 1846109 1846424 1846452 "OASGP" 1846457 T OASGP (NIL) -9 NIL 1846477 NIL) (-789 1845396 1845859 1845887 "OAMONS" 1845927 T OAMONS (NIL) -9 NIL 1845970 NIL) (-788 1844836 1845243 1845271 "OAMON" 1845276 T OAMON (NIL) -9 NIL 1845296 NIL) (-787 1844140 1844632 1844660 "OAGROUP" 1844665 T OAGROUP (NIL) -9 NIL 1844685 NIL) (-786 1843830 1843880 1843968 "NUMTUBE" 1844084 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1837403 1838921 1840457 "NUMQUAD" 1842314 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1833159 1834147 1835172 "NUMODE" 1836398 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1830540 1831394 1831422 "NUMINT" 1832345 T NUMINT (NIL) -9 NIL 1833109 NIL) (-782 1829488 1829685 1829903 "NUMFMT" 1830342 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1815847 1818792 1821324 "NUMERIC" 1826995 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1810244 1815296 1815391 "NTSCAT" 1815396 NIL NTSCAT (NIL T T T T) -9 NIL 1815435 NIL) (-779 1809438 1809603 1809796 "NTPOLFN" 1810083 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1797278 1806263 1807075 "NSUP" 1808659 NIL NSUP (NIL T) -8 NIL NIL NIL) (-777 1796910 1796967 1797076 "NSUP2" 1797215 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-776 1786907 1796684 1796817 "NSMP" 1796822 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1785339 1785640 1785997 "NREP" 1786595 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1783930 1784182 1784540 "NPCOEF" 1785082 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1782996 1783111 1783327 "NORMRETR" 1783811 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1781037 1781327 1781736 "NORMPK" 1782704 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1780722 1780750 1780874 "NORMMA" 1781003 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1780549 1780679 1780708 "NONE" 1780713 T NONE (NIL) -8 NIL NIL NIL) (-769 1780338 1780367 1780436 "NONE1" 1780513 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-768 1779821 1779883 1780069 "NODE1" 1780270 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1778092 1778915 1779170 "NNI" 1779517 T NNI (NIL) -8 NIL NIL 1779752) (-766 1776512 1776825 1777189 "NLINSOL" 1777760 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1772780 1773748 1774647 "NIPROB" 1775633 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1771537 1771771 1772073 "NFINTBAS" 1772542 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1770711 1771187 1771228 "NETCLT" 1771400 NIL NETCLT (NIL T) -9 NIL 1771482 NIL) (-762 1769419 1769650 1769931 "NCODIV" 1770479 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1769181 1769218 1769293 "NCNTFRAC" 1769376 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1767361 1767725 1768145 "NCEP" 1768806 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1766272 1767011 1767039 "NASRING" 1767149 T NASRING (NIL) -9 NIL 1767223 NIL) (-758 1766067 1766111 1766205 "NASRING-" 1766210 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1765220 1765719 1765747 "NARNG" 1765864 T NARNG (NIL) -9 NIL 1765955 NIL) (-756 1764912 1764979 1765113 "NARNG-" 1765118 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1763791 1763998 1764233 "NAGSP" 1764697 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1755063 1756747 1758420 "NAGS" 1762138 T NAGS (NIL) -7 NIL NIL NIL) (-753 1753611 1753919 1754250 "NAGF07" 1754752 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1748149 1749440 1750747 "NAGF04" 1752324 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1741117 1742731 1744364 "NAGF02" 1746536 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1736341 1737441 1738558 "NAGF01" 1740020 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1729969 1731535 1733120 "NAGE04" 1734776 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1721138 1723259 1725389 "NAGE02" 1727859 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1717091 1718038 1719002 "NAGE01" 1720194 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1714886 1715420 1715978 "NAGD03" 1716553 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1706636 1708564 1710518 "NAGD02" 1712952 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1700447 1701872 1703312 "NAGD01" 1705216 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1696656 1697478 1698315 "NAGC06" 1699630 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1695121 1695453 1695809 "NAGC05" 1696320 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1694497 1694616 1694760 "NAGC02" 1694997 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1693557 1694114 1694154 "NAALG" 1694233 NIL NAALG (NIL T) -9 NIL 1694294 NIL) (-739 1693392 1693421 1693511 "NAALG-" 1693516 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1687342 1688450 1689637 "MULTSQFR" 1692288 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1686661 1686736 1686920 "MULTFACT" 1687254 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1679754 1683624 1683677 "MTSCAT" 1684747 NIL MTSCAT (NIL T T) -9 NIL 1685261 NIL) (-735 1679466 1679520 1679612 "MTHING" 1679694 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1679258 1679291 1679351 "MSYSCMD" 1679426 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1675370 1678013 1678333 "MSET" 1678971 NIL MSET (NIL T) -8 NIL NIL NIL) (-732 1672465 1674931 1674972 "MSETAGG" 1674977 NIL MSETAGG (NIL T) -9 NIL 1675011 NIL) (-731 1668348 1669844 1670589 "MRING" 1671765 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1667914 1667981 1668112 "MRF2" 1668275 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1667532 1667567 1667711 "MRATFAC" 1667873 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1665144 1665439 1665870 "MPRFF" 1667237 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1659204 1664998 1665095 "MPOLY" 1665100 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1658694 1658729 1658937 "MPCPF" 1659163 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1658208 1658251 1658435 "MPC3" 1658645 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1657403 1657484 1657705 "MPC2" 1658123 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1655704 1656041 1656431 "MONOTOOL" 1657063 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1654955 1655246 1655274 "MONOID" 1655493 T MONOID (NIL) -9 NIL 1655640 NIL) (-721 1654501 1654620 1654801 "MONOID-" 1654806 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1645360 1651268 1651327 "MONOGEN" 1652001 NIL MONOGEN (NIL T T) -9 NIL 1652457 NIL) (-719 1642578 1643313 1644313 "MONOGEN-" 1644432 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1641437 1641857 1641885 "MONADWU" 1642277 T MONADWU (NIL) -9 NIL 1642515 NIL) (-717 1640809 1640968 1641216 "MONADWU-" 1641221 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1640194 1640412 1640440 "MONAD" 1640647 T MONAD (NIL) -9 NIL 1640759 NIL) (-715 1639879 1639957 1640089 "MONAD-" 1640094 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1638195 1638792 1639071 "MOEBIUS" 1639632 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1637587 1637965 1638005 "MODULE" 1638010 NIL MODULE (NIL T) -9 NIL 1638036 NIL) (-712 1637155 1637251 1637441 "MODULE-" 1637446 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1634870 1635519 1635846 "MODRING" 1636979 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1631856 1632975 1633496 "MODOP" 1634399 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1630471 1630923 1631200 "MODMONOM" 1631719 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1620278 1628762 1629176 "MODMON" 1630108 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1617469 1619122 1619398 "MODFIELD" 1620153 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1616473 1616750 1616940 "MMLFORM" 1617299 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1615999 1616042 1616221 "MMAP" 1616424 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1614216 1614949 1614990 "MLO" 1615413 NIL MLO (NIL T) -9 NIL 1615655 NIL) (-703 1611583 1612098 1612700 "MLIFT" 1613697 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1610974 1611058 1611212 "MKUCFUNC" 1611494 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1610573 1610643 1610766 "MKRECORD" 1610897 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1609621 1609782 1610010 "MKFUNC" 1610384 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1609009 1609113 1609269 "MKFLCFN" 1609504 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1608552 1608919 1608978 "MKCHSET" 1608983 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-697 1607829 1607931 1608116 "MKBCFUNC" 1608445 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-696 1604571 1607383 1607519 "MINT" 1607713 T MINT (NIL) -8 NIL NIL NIL) (-695 1603383 1603626 1603903 "MHROWRED" 1604326 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-694 1598809 1601918 1602323 "MFLOAT" 1602998 T MFLOAT (NIL) -8 NIL NIL NIL) (-693 1598166 1598242 1598413 "MFINFACT" 1598721 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-692 1594481 1595329 1596213 "MESH" 1597302 T MESH (NIL) -7 NIL NIL NIL) (-691 1592871 1593183 1593536 "MDDFACT" 1594168 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-690 1589713 1592030 1592071 "MDAGG" 1592326 NIL MDAGG (NIL T) -9 NIL 1592469 NIL) (-689 1579491 1589006 1589213 "MCMPLX" 1589526 T MCMPLX (NIL) -8 NIL NIL NIL) (-688 1578632 1578778 1578978 "MCDEN" 1579340 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-687 1576522 1576792 1577172 "MCALCFN" 1578362 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-686 1575447 1575687 1575920 "MAYBE" 1576328 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-685 1573059 1573582 1574144 "MATSTOR" 1574918 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-684 1569065 1572431 1572679 "MATRIX" 1572844 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-683 1564834 1565538 1566274 "MATLIN" 1568422 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-682 1554988 1558126 1558203 "MATCAT" 1563083 NIL MATCAT (NIL T T T) -9 NIL 1564500 NIL) (-681 1551352 1552365 1553721 "MATCAT-" 1553726 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-680 1549946 1550099 1550432 "MATCAT2" 1551187 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-679 1548058 1548382 1548766 "MAPPKG3" 1549621 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-678 1547039 1547212 1547434 "MAPPKG2" 1547882 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-677 1545538 1545822 1546149 "MAPPKG1" 1546745 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-676 1544644 1544944 1545121 "MAPPAST" 1545381 T MAPPAST (NIL) -8 NIL NIL NIL) (-675 1544255 1544313 1544436 "MAPHACK3" 1544580 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-674 1543847 1543908 1544022 "MAPHACK2" 1544187 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-673 1543285 1543388 1543530 "MAPHACK1" 1543738 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-672 1541391 1541985 1542289 "MAGMA" 1543013 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-671 1540897 1541115 1541206 "MACROAST" 1541320 T MACROAST (NIL) -8 NIL NIL NIL) (-670 1537364 1539136 1539597 "M3D" 1540469 NIL M3D (NIL T) -8 NIL NIL NIL) (-669 1531518 1535733 1535774 "LZSTAGG" 1536556 NIL LZSTAGG (NIL T) -9 NIL 1536851 NIL) (-668 1527492 1528649 1530106 "LZSTAGG-" 1530111 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-667 1524606 1525383 1525870 "LWORD" 1527037 NIL LWORD (NIL T) -8 NIL NIL NIL) (-666 1524209 1524410 1524485 "LSTAST" 1524551 T LSTAST (NIL) -8 NIL NIL NIL) (-665 1517410 1523980 1524114 "LSQM" 1524119 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-664 1516634 1516773 1517001 "LSPP" 1517265 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-663 1514446 1514747 1515203 "LSMP" 1516323 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-662 1511225 1511899 1512629 "LSMP1" 1513748 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-661 1505150 1510392 1510433 "LSAGG" 1510495 NIL LSAGG (NIL T) -9 NIL 1510573 NIL) (-660 1501845 1502769 1503982 "LSAGG-" 1503987 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-659 1499471 1500989 1501238 "LPOLY" 1501640 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-658 1499053 1499138 1499261 "LPEFRAC" 1499380 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-657 1497400 1498147 1498400 "LO" 1498885 NIL LO (NIL T T T) -8 NIL NIL NIL) (-656 1497052 1497164 1497192 "LOGIC" 1497303 T LOGIC (NIL) -9 NIL 1497384 NIL) (-655 1496914 1496937 1497008 "LOGIC-" 1497013 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-654 1496107 1496247 1496440 "LODOOPS" 1496770 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-653 1493565 1496023 1496089 "LODO" 1496094 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-652 1492103 1492338 1492691 "LODOF" 1493312 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-651 1488459 1490856 1490897 "LODOCAT" 1491335 NIL LODOCAT (NIL T) -9 NIL 1491546 NIL) (-650 1488192 1488250 1488377 "LODOCAT-" 1488382 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-649 1485547 1488033 1488151 "LODO2" 1488156 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-648 1483017 1485484 1485529 "LODO1" 1485534 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-647 1481877 1482042 1482354 "LODEEF" 1482840 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-646 1477163 1480007 1480048 "LNAGG" 1480995 NIL LNAGG (NIL T) -9 NIL 1481439 NIL) (-645 1476310 1476524 1476866 "LNAGG-" 1476871 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-644 1472473 1473235 1473874 "LMOPS" 1475725 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-643 1471868 1472230 1472271 "LMODULE" 1472332 NIL LMODULE (NIL T) -9 NIL 1472374 NIL) (-642 1469114 1471513 1471636 "LMDICT" 1471778 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-641 1468840 1469022 1469082 "LITERAL" 1469087 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-640 1462067 1467786 1468084 "LIST" 1468575 NIL LIST (NIL T) -8 NIL NIL NIL) (-639 1461592 1461666 1461805 "LIST3" 1461987 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-638 1460599 1460777 1461005 "LIST2" 1461410 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-637 1458733 1459045 1459444 "LIST2MAP" 1460246 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-636 1457463 1458099 1458140 "LINEXP" 1458395 NIL LINEXP (NIL T) -9 NIL 1458544 NIL) (-635 1456110 1456370 1456667 "LINDEP" 1457215 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-634 1452877 1453596 1454373 "LIMITRF" 1455365 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-633 1451153 1451448 1451864 "LIMITPS" 1452572 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-632 1445608 1450664 1450892 "LIE" 1450974 NIL LIE (NIL T T) -8 NIL NIL NIL) (-631 1444657 1445100 1445140 "LIECAT" 1445280 NIL LIECAT (NIL T) -9 NIL 1445431 NIL) (-630 1444498 1444525 1444613 "LIECAT-" 1444618 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-629 1437110 1443947 1444112 "LIB" 1444353 T LIB (NIL) -8 NIL NIL NIL) (-628 1432747 1433628 1434563 "LGROBP" 1436227 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-627 1430613 1430887 1431249 "LF" 1432468 NIL LF (NIL T T) -7 NIL NIL NIL) (-626 1429453 1430145 1430173 "LFCAT" 1430380 T LFCAT (NIL) -9 NIL 1430519 NIL) (-625 1426357 1426985 1427673 "LEXTRIPK" 1428817 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-624 1423128 1423927 1424430 "LEXP" 1425937 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-623 1422631 1422849 1422941 "LETAST" 1423056 T LETAST (NIL) -8 NIL NIL NIL) (-622 1421029 1421342 1421743 "LEADCDET" 1422313 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-621 1420219 1420293 1420522 "LAZM3PK" 1420950 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-620 1415173 1418296 1418834 "LAUPOL" 1419731 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-619 1414738 1414782 1414950 "LAPLACE" 1415123 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-618 1412712 1413839 1414090 "LA" 1414571 NIL LA (NIL T T T) -8 NIL NIL NIL) (-617 1411793 1412343 1412384 "LALG" 1412446 NIL LALG (NIL T) -9 NIL 1412505 NIL) (-616 1411507 1411566 1411702 "LALG-" 1411707 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-615 1411342 1411366 1411407 "KVTFROM" 1411469 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-614 1410145 1410559 1410788 "KTVLOGIC" 1411133 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-613 1409980 1410004 1410045 "KRCFROM" 1410107 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-612 1408884 1409071 1409370 "KOVACIC" 1409780 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-611 1408719 1408743 1408784 "KONVERT" 1408846 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-610 1408554 1408578 1408619 "KOERCE" 1408681 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-609 1406288 1407048 1407441 "KERNEL" 1408193 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-608 1405790 1405871 1406001 "KERNEL2" 1406202 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-607 1399641 1404329 1404383 "KDAGG" 1404760 NIL KDAGG (NIL T T) -9 NIL 1404966 NIL) (-606 1399170 1399294 1399499 "KDAGG-" 1399504 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-605 1392345 1398831 1398986 "KAFILE" 1399048 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-604 1386800 1391856 1392084 "JORDAN" 1392166 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-603 1386206 1386449 1386570 "JOINAST" 1386699 T JOINAST (NIL) -8 NIL NIL NIL) (-602 1386052 1386111 1386166 "JAVACODE" 1386171 T JAVACODE (NIL) -8 NIL NIL NIL) (-601 1382351 1384257 1384311 "IXAGG" 1385240 NIL IXAGG (NIL T T) -9 NIL 1385699 NIL) (-600 1381270 1381576 1381995 "IXAGG-" 1382000 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-599 1376850 1381192 1381251 "IVECTOR" 1381256 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-598 1375616 1375853 1376119 "ITUPLE" 1376617 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-597 1374052 1374229 1374535 "ITRIGMNP" 1375438 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-596 1372797 1373001 1373284 "ITFUN3" 1373828 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-595 1372429 1372486 1372595 "ITFUN2" 1372734 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-594 1370266 1371291 1371590 "ITAYLOR" 1372163 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-593 1359249 1364403 1365566 "ISUPS" 1369136 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-592 1358353 1358493 1358729 "ISUMP" 1359096 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-591 1353617 1358154 1358233 "ISTRING" 1358306 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-590 1353120 1353338 1353430 "ISAST" 1353545 T ISAST (NIL) -8 NIL NIL NIL) (-589 1352330 1352411 1352627 "IRURPK" 1353034 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-588 1351266 1351467 1351707 "IRSN" 1352110 T IRSN (NIL) -7 NIL NIL NIL) (-587 1349295 1349650 1350086 "IRRF2F" 1350904 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-586 1349042 1349080 1349156 "IRREDFFX" 1349251 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-585 1347657 1347916 1348215 "IROOT" 1348775 NIL IROOT (NIL T) -7 NIL NIL NIL) (-584 1344289 1345341 1346033 "IR" 1346997 NIL IR (NIL T) -8 NIL NIL NIL) (-583 1341902 1342397 1342963 "IR2" 1343767 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-582 1340974 1341087 1341308 "IR2F" 1341785 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-581 1340765 1340799 1340859 "IPRNTPK" 1340934 T IPRNTPK (NIL) -7 NIL NIL NIL) (-580 1337384 1340654 1340723 "IPF" 1340728 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-579 1335747 1337309 1337366 "IPADIC" 1337371 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-578 1335087 1335307 1335437 "IP4ADDR" 1335637 T IP4ADDR (NIL) -8 NIL NIL NIL) (-577 1334587 1334791 1334901 "IOMODE" 1334997 T IOMODE (NIL) -8 NIL NIL NIL) (-576 1333660 1334184 1334311 "IOBFILE" 1334480 T IOBFILE (NIL) -8 NIL NIL NIL) (-575 1333148 1333564 1333592 "IOBCON" 1333597 T IOBCON (NIL) -9 NIL 1333618 NIL) (-574 1332645 1332703 1332893 "INVLAPLA" 1333084 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-573 1322294 1324647 1327033 "INTTR" 1330309 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-572 1318638 1319380 1320244 "INTTOOLS" 1321479 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-571 1318224 1318315 1318432 "INTSLPE" 1318541 T INTSLPE (NIL) -7 NIL NIL NIL) (-570 1316219 1318147 1318206 "INTRVL" 1318211 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-569 1313821 1314333 1314908 "INTRF" 1315704 NIL INTRF (NIL T) -7 NIL NIL NIL) (-568 1313232 1313329 1313471 "INTRET" 1313719 NIL INTRET (NIL T) -7 NIL NIL NIL) (-567 1311229 1311618 1312088 "INTRAT" 1312840 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-566 1308457 1309040 1309666 "INTPM" 1310714 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-565 1305160 1305759 1306504 "INTPAF" 1307843 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-564 1300339 1301301 1302352 "INTPACK" 1304129 T INTPACK (NIL) -7 NIL NIL NIL) (-563 1297250 1300068 1300195 "INT" 1300232 T INT (NIL) -8 NIL NIL NIL) (-562 1296502 1296654 1296862 "INTHERTR" 1297092 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-561 1295941 1296021 1296209 "INTHERAL" 1296416 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-560 1293787 1294230 1294687 "INTHEORY" 1295504 T INTHEORY (NIL) -7 NIL NIL NIL) (-559 1285095 1286716 1288495 "INTG0" 1292139 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-558 1265668 1270458 1275268 "INTFTBL" 1280305 T INTFTBL (NIL) -8 NIL NIL NIL) (-557 1264917 1265055 1265228 "INTFACT" 1265527 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-556 1262302 1262748 1263312 "INTEF" 1264471 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-555 1260769 1261474 1261502 "INTDOM" 1261803 T INTDOM (NIL) -9 NIL 1262010 NIL) (-554 1260138 1260312 1260554 "INTDOM-" 1260559 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-553 1256633 1258522 1258576 "INTCAT" 1259375 NIL INTCAT (NIL T) -9 NIL 1259695 NIL) (-552 1256106 1256208 1256336 "INTBIT" 1256525 T INTBIT (NIL) -7 NIL NIL NIL) (-551 1254777 1254931 1255245 "INTALG" 1255951 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-550 1254234 1254324 1254494 "INTAF" 1254681 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-549 1247688 1254044 1254184 "INTABL" 1254189 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-548 1247148 1247561 1247589 "INT8" 1247594 T INT8 (NIL) -8 NIL NIL 1247602) (-547 1246607 1247020 1247048 "INT32" 1247053 T INT32 (NIL) -8 NIL NIL 1247061) (-546 1246066 1246479 1246507 "INT16" 1246512 T INT16 (NIL) -8 NIL NIL 1246520) (-545 1241081 1243755 1243783 "INS" 1244717 T INS (NIL) -9 NIL 1245382 NIL) (-544 1238321 1239092 1240066 "INS-" 1240139 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1237096 1237323 1237621 "INPSIGN" 1238074 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1236214 1236331 1236528 "INPRODPF" 1236976 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1235108 1235225 1235462 "INPRODFF" 1236094 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1234108 1234260 1234520 "INNMFACT" 1234944 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1233305 1233402 1233590 "INMODGCD" 1234007 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1231814 1232058 1232382 "INFSP" 1233050 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1230998 1231115 1231298 "INFPROD0" 1231694 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1227880 1229063 1229578 "INFORM" 1230491 T INFORM (NIL) -8 NIL NIL NIL) (-535 1227490 1227550 1227648 "INFORM1" 1227815 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1227013 1227102 1227216 "INFINITY" 1227396 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1226189 1226733 1226834 "INETCLTS" 1226932 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1224806 1225055 1225376 "INEP" 1225937 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1224082 1224703 1224768 "INDE" 1224773 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1223646 1223714 1223831 "INCRMAPS" 1224009 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1222464 1222915 1223121 "INBFILE" 1223460 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1217775 1218700 1219644 "INBFF" 1221552 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1216683 1216952 1216980 "INBCON" 1217493 T INBCON (NIL) -9 NIL 1217759 NIL) (-526 1215935 1216158 1216434 "INBCON-" 1216439 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1215437 1215656 1215748 "INAST" 1215863 T INAST (NIL) -8 NIL NIL NIL) (-524 1214891 1215116 1215222 "IMPTAST" 1215351 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1211385 1214735 1214839 "IMATRIX" 1214844 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1210097 1210220 1210535 "IMATQF" 1211241 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1208317 1208544 1208881 "IMATLIN" 1209853 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1202943 1208241 1208299 "ILIST" 1208304 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1200896 1202803 1202916 "IIARRAY2" 1202921 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1196329 1200807 1200871 "IFF" 1200876 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1195703 1195946 1196062 "IFAST" 1196233 T IFAST (NIL) -8 NIL NIL NIL) (-516 1190746 1194995 1195183 "IFARRAY" 1195560 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1189953 1190650 1190723 "IFAMON" 1190728 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1189537 1189602 1189656 "IEVALAB" 1189863 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1189212 1189280 1189440 "IEVALAB-" 1189445 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1188870 1189126 1189189 "IDPO" 1189194 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1188147 1188759 1188834 "IDPOAMS" 1188839 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1187481 1188036 1188111 "IDPOAM" 1188116 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1186566 1186816 1186869 "IDPC" 1187282 NIL IDPC (NIL T T) -9 NIL 1187431 NIL) (-508 1186062 1186458 1186531 "IDPAM" 1186536 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1185465 1185954 1186027 "IDPAG" 1186032 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1185233 1185380 1185430 "IDENT" 1185435 T IDENT (NIL) -8 NIL NIL NIL) (-505 1181488 1182336 1183231 "IDECOMP" 1184390 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1174362 1175411 1176458 "IDEAL" 1180524 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1173526 1173638 1173837 "ICDEN" 1174246 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1172625 1173006 1173153 "ICARD" 1173399 T ICARD (NIL) -8 NIL NIL NIL) (-501 1170685 1170998 1171403 "IBPTOOLS" 1172302 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1166319 1170305 1170418 "IBITS" 1170604 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1163042 1163618 1164313 "IBATOOL" 1165736 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1160822 1161283 1161816 "IBACHIN" 1162577 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1158699 1160668 1160771 "IARRAY2" 1160776 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1154852 1158625 1158682 "IARRAY1" 1158687 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1148846 1153264 1153745 "IAN" 1154391 T IAN (NIL) -8 NIL NIL NIL) (-494 1148357 1148414 1148587 "IALGFACT" 1148783 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1147885 1147998 1148026 "HYPCAT" 1148233 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1147423 1147540 1147726 "HYPCAT-" 1147731 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1147045 1147218 1147301 "HOSTNAME" 1147360 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1146890 1146927 1146968 "HOMOTOP" 1146973 NIL HOMOTOP (NIL T) -9 NIL 1147006 NIL) (-489 1143569 1144900 1144941 "HOAGG" 1145922 NIL HOAGG (NIL T) -9 NIL 1146601 NIL) (-488 1142163 1142562 1143088 "HOAGG-" 1143093 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1136202 1141758 1141907 "HEXADEC" 1142034 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1134950 1135172 1135435 "HEUGCD" 1135979 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1134053 1134787 1134917 "HELLFDIV" 1134922 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1132281 1133830 1133918 "HEAP" 1133997 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1131572 1131833 1131967 "HEADAST" 1132167 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1125492 1131487 1131549 "HDP" 1131554 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1119243 1125127 1125279 "HDMP" 1125393 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1118568 1118707 1118871 "HB" 1119099 T HB (NIL) -7 NIL NIL NIL) (-479 1112065 1118414 1118518 "HASHTBL" 1118523 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1111568 1111786 1111878 "HASAST" 1111993 T HASAST (NIL) -8 NIL NIL NIL) (-477 1109381 1111190 1111372 "HACKPI" 1111406 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1105076 1109234 1109347 "GTSET" 1109352 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1098602 1104954 1105052 "GSTBL" 1105057 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1090915 1097633 1097898 "GSERIES" 1098393 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1090082 1090473 1090501 "GROUP" 1090704 T GROUP (NIL) -9 NIL 1090838 NIL) (-472 1089448 1089607 1089858 "GROUP-" 1089863 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1087817 1088136 1088523 "GROEBSOL" 1089125 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1086757 1087019 1087070 "GRMOD" 1087599 NIL GRMOD (NIL T T) -9 NIL 1087767 NIL) (-469 1086525 1086561 1086689 "GRMOD-" 1086694 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1081851 1082879 1083879 "GRIMAGE" 1085545 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1080318 1080578 1080902 "GRDEF" 1081547 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1079762 1079878 1080019 "GRAY" 1080197 T GRAY (NIL) -7 NIL NIL NIL) (-465 1078975 1079355 1079406 "GRALG" 1079559 NIL GRALG (NIL T T) -9 NIL 1079652 NIL) (-464 1078636 1078709 1078872 "GRALG-" 1078877 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1075440 1078221 1078399 "GPOLSET" 1078543 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1074794 1074851 1075109 "GOSPER" 1075377 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1070553 1071232 1071758 "GMODPOL" 1074493 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1069558 1069742 1069980 "GHENSEL" 1070365 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1063609 1064452 1065479 "GENUPS" 1068642 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1063306 1063357 1063446 "GENUFACT" 1063552 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1062718 1062795 1062960 "GENPGCD" 1063224 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1062192 1062227 1062440 "GENMFACT" 1062677 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1060760 1061015 1061322 "GENEEZ" 1061935 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1054673 1060371 1060533 "GDMP" 1060683 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1044050 1048444 1049550 "GCNAALG" 1053656 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1042477 1043305 1043333 "GCDDOM" 1043588 T GCDDOM (NIL) -9 NIL 1043745 NIL) (-451 1041947 1042074 1042289 "GCDDOM-" 1042294 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1040619 1040804 1041108 "GB" 1041726 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1029239 1031565 1033957 "GBINTERN" 1038310 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1027076 1027368 1027789 "GBF" 1028914 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1025857 1026022 1026289 "GBEUCLID" 1026892 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1025206 1025331 1025480 "GAUSSFAC" 1025728 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1023573 1023875 1024189 "GALUTIL" 1024925 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1021881 1022155 1022479 "GALPOLYU" 1023300 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1019246 1019536 1019943 "GALFACTU" 1021578 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1011052 1012551 1014159 "GALFACT" 1017678 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1008440 1009098 1009126 "FVFUN" 1010282 T FVFUN (NIL) -9 NIL 1011002 NIL) (-440 1007706 1007888 1007916 "FVC" 1008207 T FVC (NIL) -9 NIL 1008390 NIL) (-439 1007376 1007531 1007599 "FUNDESC" 1007658 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1007018 1007173 1007254 "FUNCTION" 1007328 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1004789 1005340 1005806 "FT" 1006572 T FT (NIL) -8 NIL NIL NIL) (-436 1003607 1004090 1004293 "FTEM" 1004606 T FTEM (NIL) -8 NIL NIL NIL) (-435 1001863 1002152 1002556 "FSUPFACT" 1003298 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1000260 1000549 1000881 "FST" 1001551 T FST (NIL) -8 NIL NIL NIL) (-433 999431 999537 999732 "FSRED" 1000142 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 998110 998365 998719 "FSPRMELT" 999146 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 995195 995633 996132 "FSPECF" 997673 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 977255 985698 985738 "FS" 989586 NIL FS (NIL T) -9 NIL 991875 NIL) (-429 965905 968895 972951 "FS-" 973248 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 965419 965473 965650 "FSINT" 965846 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 963746 964412 964715 "FSERIES" 965198 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 962760 962876 963107 "FSCINT" 963626 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 958994 961704 961745 "FSAGG" 962115 NIL FSAGG (NIL T) -9 NIL 962374 NIL) (-424 956756 957357 958153 "FSAGG-" 958248 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 955798 955941 956168 "FSAGG2" 956609 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 953453 953732 954286 "FS2UPS" 955516 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 953035 953078 953233 "FS2" 953404 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 951892 952063 952372 "FS2EXPXP" 952860 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 951318 951433 951585 "FRUTIL" 951772 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 942772 946813 948171 "FR" 949992 NIL FR (NIL T) -8 NIL NIL NIL) (-417 937847 940490 940530 "FRNAALG" 941926 NIL FRNAALG (NIL T) -9 NIL 942533 NIL) (-416 933525 934596 935871 "FRNAALG-" 936621 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 933163 933206 933333 "FRNAAF2" 933476 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 931570 932017 932312 "FRMOD" 932975 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 929349 929953 930270 "FRIDEAL" 931361 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 928544 928631 928920 "FRIDEAL2" 929256 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 927677 928091 928132 "FRETRCT" 928137 NIL FRETRCT (NIL T) -9 NIL 928313 NIL) (-410 926789 927020 927371 "FRETRCT-" 927376 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 924001 925177 925236 "FRAMALG" 926118 NIL FRAMALG (NIL T T) -9 NIL 926410 NIL) (-408 922135 922590 923220 "FRAMALG-" 923443 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 916092 921610 921886 "FRAC" 921891 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 915728 915785 915892 "FRAC2" 916029 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 915364 915421 915528 "FR2" 915665 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 910037 912889 912917 "FPS" 914036 T FPS (NIL) -9 NIL 914593 NIL) (-403 909486 909595 909759 "FPS-" 909905 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 906940 908575 908603 "FPC" 908828 T FPC (NIL) -9 NIL 908970 NIL) (-401 906733 906773 906870 "FPC-" 906875 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 905611 906221 906262 "FPATMAB" 906267 NIL FPATMAB (NIL T) -9 NIL 906419 NIL) (-399 903311 903787 904213 "FPARFRAC" 905248 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 898705 899203 899885 "FORTRAN" 902743 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 896421 896921 897460 "FORT" 898186 T FORT (NIL) -7 NIL NIL NIL) (-396 894097 894659 894687 "FORTFN" 895747 T FORTFN (NIL) -9 NIL 896371 NIL) (-395 893861 893911 893939 "FORTCAT" 893998 T FORTCAT (NIL) -9 NIL 894060 NIL) (-394 891994 892477 892867 "FORMULA" 893491 T FORMULA (NIL) -8 NIL NIL NIL) (-393 891782 891812 891881 "FORMULA1" 891958 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 891305 891357 891530 "FORDER" 891724 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 890401 890565 890758 "FOP" 891132 T FOP (NIL) -7 NIL NIL NIL) (-390 889009 889681 889855 "FNLA" 890283 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 887764 888153 888181 "FNCAT" 888641 T FNCAT (NIL) -9 NIL 888901 NIL) (-388 887330 887723 887751 "FNAME" 887756 T FNAME (NIL) -8 NIL NIL NIL) (-387 885993 886922 886950 "FMTC" 886955 T FMTC (NIL) -9 NIL 886991 NIL) (-386 882354 883516 884145 "FMONOID" 885397 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 881573 882096 882245 "FM" 882250 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 878997 879643 879671 "FMFUN" 880815 T FMFUN (NIL) -9 NIL 881523 NIL) (-383 878266 878447 878475 "FMC" 878765 T FMC (NIL) -9 NIL 878947 NIL) (-382 875460 876294 876348 "FMCAT" 877543 NIL FMCAT (NIL T T) -9 NIL 878038 NIL) (-381 874353 875226 875326 "FM1" 875405 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 872127 872543 873037 "FLOATRP" 873904 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 865751 869856 870477 "FLOAT" 871526 T FLOAT (NIL) -8 NIL NIL NIL) (-378 863189 863689 864267 "FLOATCP" 865218 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 861998 862802 862843 "FLINEXP" 862848 NIL FLINEXP (NIL T) -9 NIL 862941 NIL) (-376 861152 861387 861715 "FLINEXP-" 861720 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 860228 860372 860596 "FLASORT" 861004 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 857445 858287 858339 "FLALG" 859566 NIL FLALG (NIL T T) -9 NIL 860033 NIL) (-373 851229 854931 854972 "FLAGG" 856234 NIL FLAGG (NIL T) -9 NIL 856886 NIL) (-372 849955 850294 850784 "FLAGG-" 850789 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 848997 849140 849367 "FLAGG2" 849808 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 845972 846946 847005 "FINRALG" 848133 NIL FINRALG (NIL T T) -9 NIL 848641 NIL) (-369 845132 845361 845700 "FINRALG-" 845705 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 844538 844751 844779 "FINITE" 844975 T FINITE (NIL) -9 NIL 845082 NIL) (-367 836996 839157 839197 "FINAALG" 842864 NIL FINAALG (NIL T) -9 NIL 844317 NIL) (-366 832337 833378 834522 "FINAALG-" 835901 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 831732 832092 832195 "FILE" 832267 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 830416 830728 830782 "FILECAT" 831466 NIL FILECAT (NIL T T) -9 NIL 831682 NIL) (-363 828284 829778 829806 "FIELD" 829846 T FIELD (NIL) -9 NIL 829926 NIL) (-362 826904 827289 827800 "FIELD-" 827805 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 824782 825539 825886 "FGROUP" 826590 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 823872 824036 824256 "FGLMICPK" 824614 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 819739 823797 823854 "FFX" 823859 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 819340 819401 819536 "FFSLPE" 819672 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 815333 816112 816908 "FFPOLY" 818576 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 814837 814873 815082 "FFPOLY2" 815291 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 810723 814756 814819 "FFP" 814824 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 806156 810634 810698 "FF" 810703 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 801317 805499 805689 "FFNBX" 806010 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 796291 800452 800710 "FFNBP" 801171 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 790959 795575 795786 "FFNB" 796124 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 789791 789989 790304 "FFINTBAS" 790756 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786019 788198 788226 "FFIELDC" 788846 T FFIELDC (NIL) -9 NIL 789222 NIL) (-348 784682 785052 785549 "FFIELDC-" 785554 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 784252 784297 784421 "FFHOM" 784624 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 781950 782434 782951 "FFF" 783767 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 777603 781692 781793 "FFCGX" 781893 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 773271 777335 777442 "FFCGP" 777546 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 768489 772998 773106 "FFCG" 773207 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 750322 759360 759446 "FFCAT" 764611 NIL FFCAT (NIL T T T) -9 NIL 766062 NIL) (-341 745520 746567 747881 "FFCAT-" 749111 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 744931 744974 745209 "FFCAT2" 745471 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734142 737903 739123 "FEXPR" 743783 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 733142 733577 733618 "FEVALAB" 733702 NIL FEVALAB (NIL T) -9 NIL 733963 NIL) (-337 732301 732511 732849 "FEVALAB-" 732854 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 730894 731684 731887 "FDIV" 732200 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 727960 728675 728790 "FDIVCAT" 730358 NIL FDIVCAT (NIL T T T T) -9 NIL 730795 NIL) (-334 727722 727749 727919 "FDIVCAT-" 727924 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 726942 727029 727306 "FDIV2" 727629 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 725628 725887 726176 "FCPAK1" 726673 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 724756 725128 725269 "FCOMP" 725519 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 708493 711906 715444 "FC" 721238 T FC (NIL) -8 NIL NIL NIL) (-329 701072 705057 705097 "FAXF" 706899 NIL FAXF (NIL T) -9 NIL 707591 NIL) (-328 698351 699006 699831 "FAXF-" 700296 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 693451 697727 697903 "FARRAY" 698208 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 688704 690736 690789 "FAMR" 691812 NIL FAMR (NIL T T) -9 NIL 692272 NIL) (-325 687594 687896 688331 "FAMR-" 688336 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 686790 687516 687569 "FAMONOID" 687574 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 684602 685286 685339 "FAMONC" 686280 NIL FAMONC (NIL T T) -9 NIL 686666 NIL) (-322 683294 684356 684493 "FAGROUP" 684498 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681089 681408 681811 "FACUTIL" 682975 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 680188 680373 680595 "FACTFUNC" 680899 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 672593 679439 679651 "EXPUPXS" 680044 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670076 670616 671202 "EXPRTUBE" 672027 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 666270 666862 667599 "EXPRODE" 669415 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 651644 664925 665353 "EXPR" 665874 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646051 646638 647451 "EXPR2UPS" 650942 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 645687 645744 645851 "EXPR2" 645988 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637092 644819 645116 "EXPEXPAN" 645524 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 636919 637049 637078 "EXIT" 637083 T EXIT (NIL) -8 NIL NIL NIL) (-311 636426 636643 636734 "EXITAST" 636848 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636053 636115 636228 "EVALCYC" 636358 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 635594 635712 635753 "EVALAB" 635923 NIL EVALAB (NIL T) -9 NIL 636027 NIL) (-308 635075 635197 635418 "EVALAB-" 635423 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 632543 633811 633839 "EUCDOM" 634394 T EUCDOM (NIL) -9 NIL 634744 NIL) (-306 630948 631390 631980 "EUCDOM-" 631985 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 618488 621246 623996 "ESTOOLS" 628218 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618120 618177 618286 "ESTOOLS2" 618425 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 617871 617913 617993 "ESTOOLS1" 618072 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 611776 613504 613532 "ES" 616300 T ES (NIL) -9 NIL 617709 NIL) (-301 606724 608010 609827 "ES-" 609991 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603099 603859 604639 "ESCONT" 605964 T ESCONT (NIL) -7 NIL NIL NIL) (-299 602844 602876 602958 "ESCONT1" 603061 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 602519 602569 602669 "ES2" 602788 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602149 602207 602316 "ES1" 602455 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 601365 601494 601670 "ERROR" 601993 T ERROR (NIL) -7 NIL NIL NIL) (-295 594868 601224 601315 "EQTBL" 601320 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 587425 590182 591631 "EQ" 593452 NIL -3303 (NIL T) -8 NIL NIL NIL) (-293 587057 587114 587223 "EQ2" 587362 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 582349 583395 584488 "EP" 585996 NIL EP (NIL T) -7 NIL NIL NIL) (-291 580931 581232 581549 "ENV" 582052 T ENV (NIL) -8 NIL NIL NIL) (-290 580110 580630 580658 "ENTIRER" 580663 T ENTIRER (NIL) -9 NIL 580709 NIL) (-289 576612 578065 578435 "EMR" 579909 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 575756 575941 575995 "ELTAGG" 576375 NIL ELTAGG (NIL T T) -9 NIL 576586 NIL) (-287 575475 575537 575678 "ELTAGG-" 575683 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 575264 575293 575347 "ELTAB" 575431 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 574390 574536 574735 "ELFUTS" 575115 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574132 574188 574216 "ELEMFUN" 574321 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574002 574023 574091 "ELEMFUN-" 574096 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 568893 572102 572143 "ELAGG" 573083 NIL ELAGG (NIL T) -9 NIL 573546 NIL) (-281 567178 567612 568275 "ELAGG-" 568280 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 565835 566115 566410 "ELABEXPR" 566903 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 558701 560502 561329 "EFUPXS" 565111 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552151 553952 554762 "EFULS" 557977 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 549573 549931 550410 "EFSTRUC" 551783 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 538645 540210 541770 "EF" 548088 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 537746 538130 538279 "EAB" 538516 T EAB (NIL) -8 NIL NIL NIL) (-274 536955 537705 537733 "E04UCFA" 537738 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536164 536914 536942 "E04NAFA" 536947 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 535373 536123 536151 "E04MBFA" 536156 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 534582 535332 535360 "E04JAFA" 535365 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 533793 534541 534569 "E04GCFA" 534574 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533004 533752 533780 "E04FDFA" 533785 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532213 532963 532991 "E04DGFA" 532996 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 526391 527738 529102 "E04AGNT" 530869 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525097 525577 525617 "DVARCAT" 526092 NIL DVARCAT (NIL T) -9 NIL 526291 NIL) (-265 524301 524513 524827 "DVARCAT-" 524832 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517201 524100 524229 "DSMP" 524234 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512011 513146 514214 "DROPT" 516153 T DROPT (NIL) -8 NIL NIL NIL) (-262 511676 511735 511833 "DROPT1" 511946 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 506791 507917 509054 "DROPT0" 510559 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505136 505461 505847 "DRAWPT" 506425 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 499723 500646 501725 "DRAW" 504110 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 499356 499409 499527 "DRAWHACK" 499664 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498087 498356 498647 "DRAWCX" 499085 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 497603 497671 497822 "DRAWCURV" 498013 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488074 490033 492148 "DRAWCFUN" 495508 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 484887 486769 486810 "DQAGG" 487439 NIL DQAGG (NIL T) -9 NIL 487712 NIL) (-253 473166 479865 479948 "DPOLCAT" 481800 NIL DPOLCAT (NIL T T T T) -9 NIL 482345 NIL) (-252 468005 469351 471309 "DPOLCAT-" 471314 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461160 467866 467964 "DPMO" 467969 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454218 460940 461107 "DPMM" 461112 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 453850 454137 454185 "DOMCTOR" 454190 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453145 453372 453509 "DOMAIN" 453733 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 446896 452780 452932 "DMP" 453046 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 446496 446552 446696 "DLP" 446834 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 440366 445823 446013 "DLIST" 446338 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437210 439219 439260 "DLAGG" 439810 NIL DLAGG (NIL T) -9 NIL 440040 NIL) (-243 436023 436653 436681 "DIVRING" 436773 T DIVRING (NIL) -9 NIL 436856 NIL) (-242 435260 435450 435750 "DIVRING-" 435755 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 433362 433719 434125 "DISPLAY" 434874 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 427304 433276 433339 "DIRPROD" 433344 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426152 426355 426620 "DIRPROD2" 427097 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 415415 421367 421420 "DIRPCAT" 421830 NIL DIRPCAT (NIL NIL T) -9 NIL 422670 NIL) (-237 412741 413383 414264 "DIRPCAT-" 414601 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412028 412188 412374 "DIOSP" 412575 T DIOSP (NIL) -7 NIL NIL NIL) (-235 408730 410940 410981 "DIOPS" 411415 NIL DIOPS (NIL T) -9 NIL 411644 NIL) (-234 408279 408393 408584 "DIOPS-" 408589 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407171 407765 407793 "DIFRING" 407980 T DIFRING (NIL) -9 NIL 408090 NIL) (-232 406817 406894 407046 "DIFRING-" 407051 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 404622 405860 405901 "DIFEXT" 406264 NIL DIFEXT (NIL T) -9 NIL 406558 NIL) (-230 402907 403335 404001 "DIFEXT-" 404006 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400229 402439 402480 "DIAGG" 402485 NIL DIAGG (NIL T) -9 NIL 402505 NIL) (-228 399613 399770 400022 "DIAGG-" 400027 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395078 398572 398849 "DHMATRIX" 399382 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 390690 391599 392609 "DFSFUN" 394088 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 385806 389621 389933 "DFLOAT" 390398 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384034 384315 384711 "DFINTTLS" 385514 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381098 382055 382455 "DERHAM" 383700 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 378947 380873 380962 "DEQUEUE" 381042 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378162 378295 378491 "DEGRED" 378809 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 374557 375302 376155 "DEFINTRF" 377390 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372084 372553 373152 "DEFINTEF" 374076 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 371461 371704 371819 "DEFAST" 371989 T DEFAST (NIL) -8 NIL NIL NIL) (-217 365500 371056 371205 "DECIMAL" 371332 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363012 363470 363976 "DDFACT" 365044 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 362608 362651 362802 "DBLRESP" 362963 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 360507 360841 361201 "DBASE" 362375 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 359776 359987 360133 "DATAARY" 360406 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 358909 359735 359763 "D03FAFA" 359768 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358043 358868 358896 "D03EEFA" 358901 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 355993 356459 356948 "D03AGNT" 357574 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355309 355952 355980 "D02EJFA" 355985 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 354625 355268 355296 "D02CJFA" 355301 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 353941 354584 354612 "D02BHFA" 354617 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353257 353900 353928 "D02BBFA" 353933 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 346455 348043 349649 "D02AGNT" 351671 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344224 344746 345292 "D01WGTS" 345929 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343319 344183 344211 "D01TRNS" 344216 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 342414 343278 343306 "D01GBFA" 343311 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 341509 342373 342401 "D01FCFA" 342406 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 340604 341468 341496 "D01ASFA" 341501 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339699 340563 340591 "D01AQFA" 340596 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 338794 339658 339686 "D01APFA" 339691 T D01APFA (NIL) -8 NIL NIL NIL) (-197 337889 338753 338781 "D01ANFA" 338786 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 336984 337848 337876 "D01AMFA" 337881 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336079 336943 336971 "D01ALFA" 336976 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335174 336038 336066 "D01AKFA" 336071 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334269 335133 335161 "D01AJFA" 335166 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 327566 329117 330678 "D01AGNT" 332728 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 326903 327031 327183 "CYCLOTOM" 327434 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 323638 324351 325078 "CYCLES" 326196 T CYCLES (NIL) -7 NIL NIL NIL) (-189 322950 323084 323255 "CVMP" 323499 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320721 320979 321355 "CTRIGMNP" 322678 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320212 320512 320586 "CTOR" 320667 T CTOR (NIL) -8 NIL NIL NIL) (-186 319748 319943 320044 "CTORKIND" 320131 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319096 319355 319383 "CTORCAT" 319565 T CTORCAT (NIL) -9 NIL 319678 NIL) (-184 318694 318805 318964 "CTORCAT-" 318969 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318210 318397 318495 "CTORCALL" 318616 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 317584 317683 317836 "CSTTOOLS" 318107 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 313383 314040 314798 "CRFP" 316896 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 312885 313104 313196 "CRCEAST" 313311 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 311932 312117 312345 "CRAPACK" 312689 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311316 311417 311621 "CPMATCH" 311808 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311041 311069 311175 "CPIMA" 311282 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 307405 308077 308795 "COORDSYS" 310376 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 306789 306918 307068 "CONTOUR" 307275 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302715 304792 305284 "CONTFRAC" 306329 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 302595 302616 302644 "CONDUIT" 302681 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301768 302288 302316 "COMRING" 302321 T COMRING (NIL) -9 NIL 302373 NIL) (-171 300849 301126 301310 "COMPPROP" 301604 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 300510 300545 300673 "COMPLPAT" 300808 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 290567 300319 300428 "COMPLEX" 300433 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290203 290260 290367 "COMPLEX2" 290504 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 289921 289956 290054 "COMPFACT" 290162 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274083 284303 284343 "COMPCAT" 285347 NIL COMPCAT (NIL T) -9 NIL 286743 NIL) (-165 263599 266522 270149 "COMPCAT-" 270505 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263328 263356 263459 "COMMUPC" 263565 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263123 263156 263215 "COMMONOP" 263289 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262706 262874 262961 "COMM" 263056 T COMM (NIL) -8 NIL NIL NIL) (-161 262310 262510 262585 "COMMAAST" 262651 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261559 261753 261781 "COMBOPC" 262119 T COMBOPC (NIL) -9 NIL 262294 NIL) (-159 260455 260665 260907 "COMBINAT" 261349 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256653 257226 257866 "COMBF" 259877 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 255439 255769 256004 "COLOR" 256438 T COLOR (NIL) -8 NIL NIL NIL) (-156 254942 255160 255252 "COLONAST" 255367 T COLONAST (NIL) -8 NIL NIL NIL) (-155 254582 254629 254754 "CMPLXRT" 254889 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254057 254282 254381 "CLLCTAST" 254503 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 249559 250587 251667 "CLIP" 252997 T CLIP (NIL) -7 NIL NIL NIL) (-152 247941 248665 248904 "CLIF" 249386 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244163 246087 246128 "CLAGG" 247057 NIL CLAGG (NIL T) -9 NIL 247593 NIL) (-150 242585 243042 243625 "CLAGG-" 243630 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242129 242214 242354 "CINTSLPE" 242494 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239630 240101 240649 "CHVAR" 241657 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 238873 239393 239421 "CHARZ" 239426 T CHARZ (NIL) -9 NIL 239441 NIL) (-146 238627 238667 238745 "CHARPOL" 238827 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237754 238307 238335 "CHARNZ" 238382 T CHARNZ (NIL) -9 NIL 238438 NIL) (-144 235743 236444 236779 "CHAR" 237439 T CHAR (NIL) -8 NIL NIL NIL) (-143 235469 235530 235558 "CFCAT" 235669 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234714 234825 235007 "CDEN" 235353 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230706 233867 234147 "CCLASS" 234454 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230013 230156 230319 "CATEGORY" 230563 T -10 (NIL) -8 NIL NIL NIL) (-139 229645 229932 229980 "CATCTOR" 229985 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229119 229345 229444 "CATAST" 229566 T CATAST (NIL) -8 NIL NIL NIL) (-137 228622 228840 228932 "CASEAST" 229047 T CASEAST (NIL) -8 NIL NIL NIL) (-136 223674 224651 225404 "CARTEN" 227925 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 222782 222930 223151 "CARTEN2" 223521 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221124 221932 222189 "CARD" 222545 T CARD (NIL) -8 NIL NIL NIL) (-133 220727 220928 221003 "CAPSLAST" 221069 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220099 220427 220455 "CACHSET" 220587 T CACHSET (NIL) -9 NIL 220664 NIL) (-131 219595 219891 219919 "CABMON" 219969 T CABMON (NIL) -9 NIL 220025 NIL) (-130 219095 219299 219409 "BYTEORD" 219505 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218118 218641 218777 "BYTE" 218940 T BYTE (NIL) -8 NIL NIL 219056) (-128 213519 217623 217795 "BYTEBUF" 217966 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211076 213211 213318 "BTREE" 213445 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208574 210724 210846 "BTOURN" 210986 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205991 208044 208085 "BTCAT" 208153 NIL BTCAT (NIL T) -9 NIL 208230 NIL) (-124 205658 205738 205887 "BTCAT-" 205892 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200950 204801 204829 "BTAGG" 205051 T BTAGG (NIL) -9 NIL 205212 NIL) (-122 200440 200565 200771 "BTAGG-" 200776 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197484 199718 199933 "BSTREE" 200257 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196622 196748 196932 "BRILL" 197340 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193321 195348 195389 "BRAGG" 196038 NIL BRAGG (NIL T) -9 NIL 196296 NIL) (-118 191850 192256 192811 "BRAGG-" 192816 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185114 191196 191380 "BPADICRT" 191698 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183464 185051 185096 "BPADIC" 185101 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183162 183192 183306 "BOUNDZRO" 183428 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178677 179768 180635 "BOP" 182315 T BOP (NIL) -8 NIL NIL NIL) (-113 176298 176742 177262 "BOP1" 178190 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175000 175722 175915 "BOOLEAN" 176125 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174362 174740 174794 "BMODULE" 174799 NIL BMODULE (NIL T T) -9 NIL 174864 NIL) (-110 170192 174160 174233 "BITS" 174309 T BITS (NIL) -8 NIL NIL NIL) (-109 169604 169726 169868 "BINDING" 170070 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169201 169349 "BINARY" 169476 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-610 (-859)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T))
+((-2953 (((-112) $ $) 59)) (-3596 (((-112) $) NIL)) (-4349 (((-637 |#1|) $) 45)) (-4362 (($ $ (-767)) 39)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4350 (($ $ (-767)) 18 (|has| |#2| (-172))) (($ $ $) 19 (|has| |#2| (-172)))) (-4139 (($) NIL T CONST)) (-4354 (($ $ $) 62) (($ $ (-815 |#1|)) 48) (($ $ |#1|) 52)) (-3565 (((-3 (-815 |#1|) "failed") $) NIL)) (-3564 (((-815 |#1|) $) NIL)) (-4374 (($ $) 32)) (-3873 (((-3 $ "failed") $) NIL)) (-4366 (((-112) $) NIL)) (-4365 (($ $) NIL)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ (-815 |#1|) |#2|) 31)) (-4351 (($ $) 33)) (-4356 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-4370 (((-815 |#1|) $) NIL)) (-4371 (((-815 |#1|) $) 34)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-4355 (($ $ $) 61) (($ $ (-815 |#1|)) 50) (($ $ |#1|) 54)) (-1900 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3284 (((-815 |#1|) $) 28)) (-3582 ((|#2| $) 30)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4363 (((-767) $) 36)) (-4368 (((-112) $) 40)) (-4367 ((|#2| $) NIL)) (-4361 (((-859) $) NIL) (($ (-815 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-546)) NIL)) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-815 |#1|)) NIL)) (-4369 ((|#2| $ $) 64) ((|#2| $ (-815 |#1|)) NIL)) (-3518 (((-767)) NIL)) (-3047 (($) 13 T CONST)) (-3053 (($) 15 T CONST)) (-3052 (((-637 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3444 (((-112) $ $) 38)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 22)) (** (($ $ (-767)) NIL) (($ $ (-915)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1272 |#1| |#2|) (-13 (-384 |#2| (-815 |#1|)) (-1279 |#1| |#2|)) (-846) (-1045)) (T -1272))
+NIL
+(-13 (-384 |#2| (-815 |#1|)) (-1279 |#1| |#2|))
+((-4357 ((|#3| |#3| (-767)) 23)) (-4358 ((|#3| |#3| (-767)) 27)) (-4342 ((|#3| |#3| |#3| (-767)) 28)))
+(((-1273 |#1| |#2| |#3|) (-10 -7 (-15 -4358 (|#3| |#3| (-767))) (-15 -4357 (|#3| |#3| (-767))) (-15 -4342 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-546)))) (-846) (-1279 |#2| |#1|)) (T -1273))
+((-4342 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4)))) (-4357 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4)))) (-4358 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4)))))
+(-10 -7 (-15 -4358 (|#3| |#3| (-767))) (-15 -4357 (|#3| |#3| (-767))) (-15 -4342 (|#3| |#3| |#3| (-767))))
+((-4347 (((-112) $) 14)) (-4348 (((-112) $) 13)) (-4343 (($ $) 18) (($ $ (-767)) 19)))
+(((-1274 |#1| |#2|) (-10 -8 (-15 -4343 (|#1| |#1| (-767))) (-15 -4343 (|#1| |#1|)) (-15 -4347 ((-112) |#1|)) (-15 -4348 ((-112) |#1|))) (-1275 |#2|) (-363)) (T -1274))
+NIL
+(-10 -8 (-15 -4343 (|#1| |#1| (-767))) (-15 -4343 (|#1| |#1|)) (-15 -4347 ((-112) |#1|)) (-15 -4348 ((-112) |#1|)))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-2221 (((-2 (|:| -1927 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2220 (($ $) 41)) (-2218 (((-112) $) 39)) (-4347 (((-112) $) 95)) (-4344 (((-767)) 91)) (-1397 (((-3 $ "failed") $ $) 19)) (-4189 (($ $) 74)) (-4384 (((-405 $) $) 73)) (-1740 (((-112) $ $) 60)) (-4139 (($) 17 T CONST)) (-3565 (((-3 |#1| "failed") $) 102)) (-3564 ((|#1| $) 103)) (-2949 (($ $ $) 56)) (-3873 (((-3 $ "failed") $) 33)) (-2948 (($ $ $) 57)) (-3130 (((-2 (|:| -4369 (-637 $)) (|:| -2551 $)) (-637 $)) 52)) (-1921 (($ $ (-767)) 88 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4138 (((-112) $) 72)) (-4186 (((-828 (-915)) $) 85 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2552 (((-112) $) 31)) (-1737 (((-3 (-637 $) #1="failed") (-637 $) $) 53)) (-2048 (($ $ $) 47) (($ (-637 $)) 46)) (-3650 (((-1151) $) 9)) (-2785 (($ $) 71)) (-4346 (((-112) $) 94)) (-3651 (((-1113) $) 10)) (-3097 (((-1163 $) (-1163 $) (-1163 $)) 45)) (-3552 (($ $ $) 49) (($ (-637 $)) 48)) (-4147 (((-405 $) $) 75)) (-4345 (((-828 (-915))) 92)) (-1738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2551 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3872 (((-3 $ "failed") $ $) 43)) (-3129 (((-3 (-637 $) "failed") (-637 $) $) 51)) (-1739 (((-767) $) 59)) (-3271 (((-2 (|:| -2131 $) (|:| -3292 $)) $ $) 58)) (-1922 (((-3 (-767) "failed") $ $) 86 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4326 (((-134)) 100)) (-4363 (((-828 (-915)) $) 93)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ $) 44) (($ (-407 (-546))) 67) (($ |#1|) 101)) (-3091 (((-3 $ "failed") $) 84 (-3943 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3518 (((-767)) 28)) (-2219 (((-112) $ $) 40)) (-4348 (((-112) $) 96)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-4343 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-3444 (((-112) $ $) 6)) (-4364 (($ $ $) 66) (($ $ |#1|) 99)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32) (($ $ (-546)) 70)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ $ (-407 (-546))) 69) (($ (-407 (-546)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(((-1275 |#1|) (-140) (-363)) (T -1275))
+((-4348 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-828 (-915))))) (-4345 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-828 (-915))))) (-4344 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-4343 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
+(-13 (-363) (-1034 |t#1|) (-1264 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -4348 ((-112) $)) (-15 -4347 ((-112) $)) (-15 -4346 ((-112) $)) (-15 -4363 ((-828 (-915)) $)) (-15 -4345 ((-828 (-915)))) (-15 -4344 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -4343 ($ $)) (-15 -4343 ($ $ (-767)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-407 (-546))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3943 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #1#) . T) ((-613 (-546)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -3943 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-917) . T) ((-1034 |#1|) . T) ((-1051 #1#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1212) . T) ((-1264 |#1|) . T))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4349 (((-637 |#1|) $) 41)) (-1397 (((-3 $ "failed") $ $) 19)) (-4350 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4139 (($) 17 T CONST)) (-4354 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-3565 (((-3 (-815 |#1|) "failed") $) 65)) (-3564 (((-815 |#1|) $) 66)) (-3873 (((-3 $ "failed") $) 33)) (-4366 (((-112) $) 46)) (-4365 (($ $) 45)) (-2552 (((-112) $) 31)) (-4352 (((-112) $) 51)) (-4353 (($ (-815 |#1|) |#2|) 52)) (-4351 (($ $) 50)) (-4356 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-4370 (((-815 |#1|) $) 62)) (-4373 (($ (-1 |#2| |#2|) $) 42)) (-4355 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4368 (((-112) $) 48)) (-4367 ((|#2| $) 47)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-4369 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1276 |#1| |#2|) (-140) (-846) (-1045)) (T -1276))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-4369 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-4355 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4355 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-4355 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4354 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4354 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-4354 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1045)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4351 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4361 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4365 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4350 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-4350 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-637 *3)))))
+(-13 (-1045) (-1271 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4370 ((-815 |t#1|) $)) (-15 -4356 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4369 (|t#2| $ (-815 |t#1|))) (-15 -4369 (|t#2| $ $)) (-15 -4355 ($ $ |t#1|)) (-15 -4355 ($ $ (-815 |t#1|))) (-15 -4355 ($ $ $)) (-15 -4354 ($ $ |t#1|)) (-15 -4354 ($ $ (-815 |t#1|))) (-15 -4354 ($ $ $)) (-15 -4353 ($ (-815 |t#1|) |t#2|)) (-15 -4352 ((-112) $)) (-15 -4351 ($ $)) (-15 -4361 ($ |t#1|)) (-15 -4368 ((-112) $)) (-15 -4367 (|t#2| $)) (-15 -4366 ((-112) $)) (-15 -4365 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4350 ($ $ $)) (-15 -4350 ($ $ (-767)))) |%noBranch|) (-15 -4373 ($ (-1 |t#2| |t#2|) $)) (-15 -4349 ((-637 |t#1|) $)) (IF (|has| |t#2| (-6 -4401)) (-6 -4401) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 #1=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-859)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #1#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1271 |#2|) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4349 (((-637 |#1|) $) 85)) (-4362 (($ $ (-767)) 88)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4350 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-4139 (($) NIL T CONST)) (-4354 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-3565 (((-3 (-815 |#1|) #1="failed") $) NIL) (((-3 (-889 |#1|) #1#) $) NIL)) (-3564 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-4374 (($ $) 87)) (-3873 (((-3 $ "failed") $) NIL)) (-4366 (((-112) $) 76)) (-4365 (($ $) 80)) (-4359 (($ $ $ (-767)) 89)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 25)) (-4351 (($ $) 102)) (-4356 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4370 (((-815 |#1|) $) NIL)) (-4371 (((-815 |#1|) $) NIL)) (-4373 (($ (-1 |#2| |#2|) $) NIL)) (-4355 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-4357 (($ $ (-767)) 96 (|has| |#2| (-713 (-407 (-546)))))) (-1900 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3284 (((-889 |#1|) $) 69)) (-3582 ((|#2| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4358 (($ $ (-767)) 93 (|has| |#2| (-713 (-407 (-546)))))) (-4363 (((-767) $) 86)) (-4368 (((-112) $) 70)) (-4367 ((|#2| $) 74)) (-4361 (((-859) $) 56) (($ (-546)) NIL) (($ |#2|) 50) (($ (-815 |#1|)) NIL) (($ |#1|) 58) (($ (-889 |#1|)) NIL) (($ (-659 |#1| |#2|)) 42) (((-1272 |#1| |#2|) $) 63) (((-1281 |#1| |#2|) $) 68)) (-4232 (((-637 |#2|) $) NIL)) (-4092 ((|#2| $ (-889 |#1|)) NIL)) (-4369 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-3518 (((-767)) NIL)) (-3047 (($) 21 T CONST)) (-3053 (($) 24 T CONST)) (-3052 (((-637 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4360 (((-3 (-659 |#1| |#2|) "failed") $) 101)) (-3444 (((-112) $ $) 64)) (-4252 (($ $) 95) (($ $ $) 94)) (-4254 (($ $ $) 20)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL)))
+(((-1277 |#1| |#2|) (-13 (-1279 |#1| |#2|) (-384 |#2| (-889 |#1|)) (-10 -8 (-15 -4361 ($ (-659 |#1| |#2|))) (-15 -4361 ((-1272 |#1| |#2|) $)) (-15 -4361 ((-1281 |#1| |#2|) $)) (-15 -4360 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -4359 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-546)))) (PROGN (-15 -4358 ($ $ (-767))) (-15 -4357 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1277))
+((-4361 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1277 *3 *4)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4360 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4359 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-546)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-4357 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-546)))) (-4 *3 (-846)) (-4 *4 (-172)))))
+(-13 (-1279 |#1| |#2|) (-384 |#2| (-889 |#1|)) (-10 -8 (-15 -4361 ($ (-659 |#1| |#2|))) (-15 -4361 ((-1272 |#1| |#2|) $)) (-15 -4361 ((-1281 |#1| |#2|) $)) (-15 -4360 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -4359 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-546)))) (PROGN (-15 -4358 ($ $ (-767))) (-15 -4357 ($ $ (-767)))) |%noBranch|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-4349 (((-637 (-1169)) $) NIL)) (-4377 (($ (-1272 (-1169) |#1|)) NIL)) (-4362 (($ $ (-767)) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4350 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-4139 (($) NIL T CONST)) (-4354 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-3565 (((-3 (-815 (-1169)) "failed") $) NIL)) (-3564 (((-815 (-1169)) $) NIL)) (-3873 (((-3 $ "failed") $) NIL)) (-4366 (((-112) $) NIL)) (-4365 (($ $) NIL)) (-2552 (((-112) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ (-815 (-1169)) |#1|) NIL)) (-4351 (($ $) NIL)) (-4356 (((-2 (|:| |k| (-815 (-1169))) (|:| |c| |#1|)) $) NIL)) (-4370 (((-815 (-1169)) $) NIL)) (-4371 (((-815 (-1169)) $) NIL)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-4355 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4378 (((-1272 (-1169) |#1|) $) NIL)) (-4363 (((-767) $) NIL)) (-4368 (((-112) $) NIL)) (-4367 ((|#1| $) NIL)) (-4361 (((-859) $) NIL) (($ (-546)) NIL) (($ |#1|) NIL) (($ (-815 (-1169))) NIL) (($ (-1169)) NIL)) (-4369 ((|#1| $ (-815 (-1169))) NIL) ((|#1| $ $) NIL)) (-3518 (((-767)) NIL)) (-3047 (($) NIL T CONST)) (-4376 (((-637 (-2 (|:| |k| (-1169)) (|:| |c| $))) $) NIL)) (-3053 (($) NIL T CONST)) (-3444 (((-112) $ $) NIL)) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) NIL)) (** (($ $ (-915)) NIL) (($ $ (-767)) NIL)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1169) $) NIL)))
+(((-1278 |#1|) (-13 (-1279 (-1169) |#1|) (-10 -8 (-15 -4378 ((-1272 (-1169) |#1|) $)) (-15 -4377 ($ (-1272 (-1169) |#1|))) (-15 -4376 ((-637 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) (-1045)) (T -1278))
+((-4378 (*1 *2 *1) (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1045)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1278 *3)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |k| (-1169)) (|:| |c| (-1278 *3))))) (-5 *1 (-1278 *3)) (-4 *3 (-1045)))))
+(-13 (-1279 #1=(-1169) |#1|) (-10 -8 (-15 -4378 ((-1272 #1# |#1|) $)) (-15 -4377 ($ (-1272 #1# |#1|))) (-15 -4376 ((-637 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
+((-2953 (((-112) $ $) 7)) (-3596 (((-112) $) 16)) (-4349 (((-637 |#1|) $) 41)) (-4362 (($ $ (-767)) 74)) (-1397 (((-3 $ "failed") $ $) 19)) (-4350 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4139 (($) 17 T CONST)) (-4354 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-3565 (((-3 (-815 |#1|) "failed") $) 65)) (-3564 (((-815 |#1|) $) 66)) (-3873 (((-3 $ "failed") $) 33)) (-4366 (((-112) $) 46)) (-4365 (($ $) 45)) (-2552 (((-112) $) 31)) (-4352 (((-112) $) 51)) (-4353 (($ (-815 |#1|) |#2|) 52)) (-4351 (($ $) 50)) (-4356 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-4370 (((-815 |#1|) $) 62)) (-4371 (((-815 |#1|) $) 76)) (-4373 (($ (-1 |#2| |#2|) $) 42)) (-4355 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3650 (((-1151) $) 9)) (-3651 (((-1113) $) 10)) (-4363 (((-767) $) 75)) (-4368 (((-112) $) 48)) (-4367 ((|#2| $) 47)) (-4361 (((-859) $) 11) (($ (-546)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-4369 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3518 (((-767)) 28)) (-3047 (($) 18 T CONST)) (-3053 (($) 30 T CONST)) (-3444 (((-112) $ $) 6)) (-4252 (($ $) 22) (($ $ $) 21)) (-4254 (($ $ $) 14)) (** (($ $ (-915)) 25) (($ $ (-767)) 32)) (* (($ (-915) $) 13) (($ (-767) $) 15) (($ (-546) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1279 |#1| |#2|) (-140) (-846) (-1045)) (T -1279))
+((-4371 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-4362 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
+(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -4371 ((-815 |t#1|) $)) (-15 -4363 ((-767) $)) (-15 -4362 ($ $ (-767)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-546)) . T) ((-613 #1=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-859)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #1#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1094) . T) ((-1271 |#2|) . T) ((-1276 |#1| |#2|) . T))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) NIL)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4139 (($) NIL T CONST)) (-3565 (((-3 |#2| "failed") $) NIL)) (-3564 ((|#2| $) NIL)) (-4374 (($ $) NIL)) (-3873 (((-3 $ "failed") $) 35)) (-4366 (((-112) $) 30)) (-4365 (($ $) 31)) (-2552 (((-112) $) NIL)) (-2560 (((-767) $) NIL)) (-3210 (((-637 $) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ |#2| |#1|) NIL)) (-4370 ((|#2| $) 19)) (-4371 ((|#2| $) 16)) (-4373 (($ (-1 |#1| |#1|) $) NIL)) (-1900 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3284 ((|#2| $) NIL)) (-3582 ((|#1| $) NIL)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4368 (((-112) $) 27)) (-4367 ((|#1| $) 28)) (-4361 (((-859) $) 54) (($ (-546)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-4232 (((-637 |#1|) $) NIL)) (-4092 ((|#1| $ |#2|) NIL)) (-4369 ((|#1| $ |#2|) 24)) (-3518 (((-767)) 14)) (-3047 (($) 25 T CONST)) (-3053 (($) 11 T CONST)) (-3052 (((-637 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3444 (((-112) $ $) 26)) (-4364 (($ $ |#1|) 56 (|has| |#1| (-363)))) (-4252 (($ $) NIL) (($ $ $) NIL)) (-4254 (($ $ $) 43)) (** (($ $ (-915)) NIL) (($ $ (-767)) 45)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4372 (((-767) $) 15)))
+(((-1280 |#1| |#2|) (-13 (-1045) (-1271 |#1|) (-384 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4372 ((-767) $)) (-15 -4371 (|#2| $)) (-15 -4370 (|#2| $)) (-15 -4374 ($ $)) (-15 -4369 (|#1| $ |#2|)) (-15 -4368 ((-112) $)) (-15 -4367 (|#1| $)) (-15 -4366 ((-112) $)) (-15 -4365 ($ $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -4364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-842)) (T -1280))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) (-4 *4 (-842)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-4371 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-4370 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-4369 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-4367 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842)))))
+(-13 (-1045) (-1271 |#1|) (-384 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4372 ((-767) $)) (-15 -4371 (|#2| $)) (-15 -4370 (|#2| $)) (-15 -4374 ($ $)) (-15 -4369 (|#1| $ |#2|)) (-15 -4368 ((-112) $)) (-15 -4367 (|#1| $)) (-15 -4366 ((-112) $)) (-15 -4365 ($ $)) (-15 -4373 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -4364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|)))
+((-2953 (((-112) $ $) 26)) (-3596 (((-112) $) NIL)) (-4349 (((-637 |#1|) $) 120)) (-4377 (($ (-1272 |#1| |#2|)) 44)) (-4362 (($ $ (-767)) 32)) (-1397 (((-3 $ "failed") $ $) NIL)) (-4350 (($ $ $) 48 (|has| |#2| (-172))) (($ $ (-767)) 46 (|has| |#2| (-172)))) (-4139 (($) NIL T CONST)) (-4354 (($ $ |#1|) 102) (($ $ (-815 |#1|)) 103) (($ $ $) 25)) (-3565 (((-3 (-815 |#1|) "failed") $) NIL)) (-3564 (((-815 |#1|) $) NIL)) (-3873 (((-3 $ "failed") $) 110)) (-4366 (((-112) $) 105)) (-4365 (($ $) 106)) (-2552 (((-112) $) NIL)) (-4352 (((-112) $) NIL)) (-4353 (($ (-815 |#1|) |#2|) 19)) (-4351 (($ $) NIL)) (-4356 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4370 (((-815 |#1|) $) 111)) (-4371 (((-815 |#1|) $) 114)) (-4373 (($ (-1 |#2| |#2|) $) 119)) (-4355 (($ $ |#1|) 100) (($ $ (-815 |#1|)) 101) (($ $ $) 56)) (-3650 (((-1151) $) NIL)) (-3651 (((-1113) $) NIL)) (-4378 (((-1272 |#1| |#2|) $) 84)) (-4363 (((-767) $) 117)) (-4368 (((-112) $) 70)) (-4367 ((|#2| $) 28)) (-4361 (((-859) $) 63) (($ (-546)) 77) (($ |#2|) 74) (($ (-815 |#1|)) 17) (($ |#1|) 73)) (-4369 ((|#2| $ (-815 |#1|)) 104) ((|#2| $ $) 27)) (-3518 (((-767)) 108)) (-3047 (($) 14 T CONST)) (-4376 (((-637 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3053 (($) 29 T CONST)) (-3444 (((-112) $ $) 13)) (-4252 (($ $) 88) (($ $ $) 91)) (-4254 (($ $ $) 55)) (** (($ $ (-915)) NIL) (($ $ (-767)) 49)) (* (($ (-915) $) NIL) (($ (-767) $) 47) (($ (-546) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1281 |#1| |#2|) (-13 (-1279 |#1| |#2|) (-10 -8 (-15 -4378 ((-1272 |#1| |#2|) $)) (-15 -4377 ($ (-1272 |#1| |#2|))) (-15 -4376 ((-637 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1281))
+((-4378 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1281 *3 *4)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-637 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
+(-13 (-1279 |#1| |#2|) (-10 -8 (-15 -4378 ((-1272 |#1| |#2|) $)) (-15 -4377 ($ (-1272 |#1| |#2|))) (-15 -4376 ((-637 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4379 (((-637 (-1146 |#1|)) (-1 (-637 (-1146 |#1|)) (-637 (-1146 |#1|))) (-546)) 15) (((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|))) 11)))
+(((-1282 |#1|) (-10 -7 (-15 -4379 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -4379 ((-637 (-1146 |#1|)) (-1 (-637 (-1146 |#1|)) (-637 (-1146 |#1|))) (-546)))) (-1207)) (T -1282))
+((-4379 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-637 (-1146 *5)) (-637 (-1146 *5)))) (-5 *4 (-546)) (-5 *2 (-637 (-1146 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1207)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1282 *4)) (-4 *4 (-1207)))))
+(-10 -7 (-15 -4379 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -4379 ((-637 (-1146 |#1|)) (-1 (-637 (-1146 |#1|)) (-637 (-1146 |#1|))) (-546))))
+((-4381 (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|))) 147) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112)) 146) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112)) 145) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112) (-112)) 144) (((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-1042 |#1| |#2|)) 129)) (-4380 (((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|))) 71) (((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112)) 70) (((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112) (-112)) 69)) (-4384 (((-637 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 60)) (-4382 (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|))) 114) (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112)) 113) (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112)) 112) (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112) (-112)) 111) (((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 106)) (-4383 (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|))) 119) (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112)) 118) (((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112)) 117) (((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 116)) (-4385 (((-637 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 97) (((-1163 (-1020 (-407 |#1|))) (-1163 |#1|)) 88) (((-942 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 95) (((-942 (-1020 (-407 |#1|))) (-942 |#1|)) 93) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 32)))
+(((-1283 |#1| |#2| |#3|) (-10 -7 (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112))) (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-1042 |#1| |#2|))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)))) (-15 -4384 ((-637 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -4385 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -4385 ((-942 (-1020 (-407 |#1|))) (-942 |#1|))) (-15 -4385 ((-942 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -4385 ((-1163 (-1020 (-407 |#1|))) (-1163 |#1|))) (-15 -4385 ((-637 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1016)) (-637 (-1169)) (-637 (-1169))) (T -1283))
+((-4385 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-1163 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *6 (-637 (-1169))) (-5 *2 (-942 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-942 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *5 (-637 (-1169))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4382 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4382 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4382 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-637 (-942 *4))) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4381 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4381 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4381 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))) (-4380 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))) (-4380 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169))))))
+(-10 -7 (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)) (-112))) (-15 -4380 ((-637 (-1042 |#1| |#2|)) (-637 (-942 |#1|)))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-1042 |#1| |#2|))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)) (-112))) (-15 -4381 ((-637 (-2 (|:| -1898 (-1163 |#1|)) (|:| -3632 (-637 (-942 |#1|))))) (-637 (-942 |#1|)))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112))) (-15 -4382 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112) (-112))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)) (-112))) (-15 -4383 ((-637 (-637 (-1020 (-407 |#1|)))) (-637 (-942 |#1|)))) (-15 -4384 ((-637 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -4385 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -4385 ((-942 (-1020 (-407 |#1|))) (-942 |#1|))) (-15 -4385 ((-942 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -4385 ((-1163 (-1020 (-407 |#1|))) (-1163 |#1|))) (-15 -4385 ((-637 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|))))))
+((-4388 (((-3 (-1256 (-407 (-546))) "failed") (-1256 |#1|) |#1|) 21)) (-4386 (((-112) (-1256 |#1|)) 12)) (-4387 (((-3 (-1256 (-546)) "failed") (-1256 |#1|)) 16)))
+(((-1284 |#1|) (-10 -7 (-15 -4386 ((-112) (-1256 |#1|))) (-15 -4387 ((-3 (-1256 (-546)) "failed") (-1256 |#1|))) (-15 -4388 ((-3 (-1256 (-407 (-546))) "failed") (-1256 |#1|) |#1|))) (-636 (-546))) (T -1284))
+((-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546))) (-5 *2 (-1256 (-407 (-546)))) (-5 *1 (-1284 *4)))) (-4387 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546))) (-5 *2 (-1256 (-546))) (-5 *1 (-1284 *4)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546))) (-5 *2 (-112)) (-5 *1 (-1284 *4)))))
+(-10 -7 (-15 -4386 ((-112) (-1256 |#1|))) (-15 -4387 ((-3 (-1256 (-546)) "failed") (-1256 |#1|))) (-15 -4388 ((-3 (-1256 (-407 (-546))) "failed") (-1256 |#1|) |#1|)))
+((-2953 (((-112) $ $) NIL)) (-3596 (((-112) $) 11)) (-1397 (((-3 $ "failed") $ $) NIL)) (-3528 (((-767)) 8)) (-4139 (($) NIL T CONST)) (-3873 (((-3 $ "failed") $) 44)) (-3384 (($) 36)) (-2552 (((-112) $) 43)) (-3855 (((-3 $ "failed") $) 29)) (-2167 (((-915) $) 15)) (-3650 (((-1151) $) NIL)) (-3856 (($) 25 T CONST)) (-2542 (($ (-915)) 37)) (-3651 (((-1113) $) NIL)) (-4385 (((-546) $) 13)) (-4361 (((-859) $) 22) (($ (-546)) 19)) (-3518 (((-767)) 9)) (-3047 (($) 23 T CONST)) (-3053 (($) 24 T CONST)) (-3444 (((-112) $ $) 27)) (-4252 (($ $) 38) (($ $ $) 35)) (-4254 (($ $ $) 26)) (** (($ $ (-915)) NIL) (($ $ (-767)) 40)) (* (($ (-915) $) NIL) (($ (-767) $) NIL) (($ (-546) $) 32) (($ $ $) 31)))
+(((-1285 |#1|) (-13 (-172) (-368) (-611 (-546)) (-1144)) (-915)) (T -1285))
+NIL
+(-13 (-172) (-368) (-611 (-546)) (-1144))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3185685 3185690 3185695 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3185670 3185675 3185680 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3185655 3185660 3185665 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3185640 3185645 3185650 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1285 3184817 3185515 3185592 "ZMOD" 3185597 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1284 3183927 3184091 3184300 "ZLINDEP" 3184649 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1283 3173231 3174995 3176967 "ZDSOLVE" 3182057 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1282 3172477 3172618 3172807 "YSTREAM" 3173077 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1281 3170288 3171778 3171982 "XRPOLY" 3172320 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1280 3166876 3168159 3168734 "XPR" 3169760 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1279 3164667 3166001 3166056 "XPOLYC" 3166344 NIL XPOLYC (NIL T T) -9 NIL 3166457 NIL) (-1278 3162432 3164007 3164211 "XPOLY" 3164507 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1277 3158852 3160949 3161337 "XPBWPOLY" 3162090 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3154186 3155441 3155496 "XFALG" 3157668 NIL XFALG (NIL T T) -9 NIL 3158457 NIL) (-1275 3150099 3152349 3152391 "XF" 3153012 NIL XF (NIL T) -9 NIL 3153412 NIL) (-1274 3149720 3149808 3149977 "XF-" 3149982 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1273 3148853 3148957 3149162 "XEXPPKG" 3149612 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1272 3146997 3148703 3148799 "XDPOLY" 3148804 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1271 3145942 3146508 3146551 "XALG" 3146556 NIL XALG (NIL T) -9 NIL 3146667 NIL) (-1270 3139438 3143919 3144413 "WUTSET" 3145534 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1269 3137729 3138490 3138813 "WP" 3139249 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1268 3137358 3137551 3137621 "WHILEAST" 3137681 T WHILEAST (NIL) -8 NIL NIL NIL) (-1267 3136857 3137075 3137169 "WHEREAST" 3137286 T WHEREAST (NIL) -8 NIL NIL NIL) (-1266 3135743 3135941 3136236 "WFFINTBS" 3136654 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1265 3133647 3134074 3134536 "WEIER" 3135315 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1264 3132794 3133218 3133260 "VSPACE" 3133396 NIL VSPACE (NIL T) -9 NIL 3133470 NIL) (-1263 3132632 3132659 3132750 "VSPACE-" 3132755 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1262 3132440 3132483 3132551 "VOID" 3132586 T VOID (NIL) -8 NIL NIL NIL) (-1261 3128865 3129503 3130240 "VIEWDEF" 3131725 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1260 3118201 3120413 3122586 "VIEW3D" 3126714 T VIEW3D (NIL) -8 NIL NIL NIL) (-1259 3110483 3112112 3113691 "VIEW2D" 3116644 T VIEW2D (NIL) -8 NIL NIL NIL) (-1258 3108619 3108978 3109384 "VIEW" 3110099 T VIEW (NIL) -7 NIL NIL NIL) (-1257 3107196 3107455 3107773 "VECTOR2" 3108349 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1256 3102600 3106966 3107058 "VECTOR" 3107139 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1255 3096127 3100384 3100427 "VECTCAT" 3101420 NIL VECTCAT (NIL T) -9 NIL 3102006 NIL) (-1254 3095141 3095395 3095785 "VECTCAT-" 3095790 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3094622 3094792 3094912 "VARIABLE" 3095056 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1252 3094555 3094560 3094590 "UTYPE" 3094595 T UTYPE (NIL) -9 NIL NIL NIL) (-1251 3093385 3093539 3093801 "UTSODETL" 3094381 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1250 3090825 3091285 3091809 "UTSODE" 3092926 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1249 3082068 3087392 3087435 "UTSCAT" 3088547 NIL UTSCAT (NIL T) -9 NIL 3089304 NIL) (-1248 3079423 3080138 3081127 "UTSCAT-" 3081132 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1247 3079050 3079093 3079226 "UTS2" 3079374 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1246 3070926 3076676 3077165 "UTS" 3078619 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1245 3065200 3067764 3067807 "URAGG" 3069877 NIL URAGG (NIL T) -9 NIL 3070600 NIL) (-1244 3062142 3063004 3064126 "URAGG-" 3064131 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1243 3057873 3060756 3061228 "UPXSSING" 3061806 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1242 3050988 3057777 3057849 "UPXSCONS" 3057854 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1241 3041235 3047983 3048045 "UPXSCCA" 3048619 NIL UPXSCCA (NIL T T) -9 NIL 3048852 NIL) (-1240 3040873 3040958 3041132 "UPXSCCA-" 3041137 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1239 3030973 3037494 3037537 "UPXSCAT" 3038185 NIL UPXSCAT (NIL T) -9 NIL 3038793 NIL) (-1238 3030403 3030482 3030661 "UPXS2" 3030888 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1237 3022509 3029650 3029923 "UPXS" 3030188 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1236 3021166 3021418 3021768 "UPSQFREE" 3022253 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1235 3014954 3017968 3018023 "UPSCAT" 3019184 NIL UPSCAT (NIL T T) -9 NIL 3019958 NIL) (-1234 3014158 3014365 3014692 "UPSCAT-" 3014697 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 3013785 3013828 3013961 "UPOLYC2" 3014109 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2999660 3007633 3007676 "UPOLYC" 3009777 NIL UPOLYC (NIL T) -9 NIL 3010998 NIL) (-1231 2991025 2993438 2996573 "UPOLYC-" 2996578 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1230 2990364 2990471 2990635 "UPMP" 2990914 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1229 2989917 2989998 2990137 "UPDIVP" 2990277 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1228 2988485 2988734 2989050 "UPDECOMP" 2989666 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1227 2987720 2987832 2988017 "UPCDEN" 2988369 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1226 2987239 2987308 2987457 "UP2" 2987645 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1225 2978853 2986922 2987051 "UP" 2987158 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1224 2978068 2978195 2978400 "UNISEG2" 2978696 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1223 2976585 2977272 2977549 "UNISEG" 2977826 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1222 2975645 2975825 2976051 "UNIFACT" 2976401 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1221 2963701 2975549 2975621 "ULSCONS" 2975626 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1220 2946333 2958259 2958321 "ULSCCAT" 2958959 NIL ULSCCAT (NIL T T) -9 NIL 2959247 NIL) (-1219 2945419 2945652 2946028 "ULSCCAT-" 2946033 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1218 2935288 2941731 2941774 "ULSCAT" 2942637 NIL ULSCAT (NIL T) -9 NIL 2943367 NIL) (-1217 2934718 2934797 2934976 "ULS2" 2935203 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1216 2918701 2933895 2934146 "ULS" 2934525 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1215 2917841 2918316 2918417 "UINT8" 2918528 T UINT8 (NIL) -8 NIL NIL 2918607) (-1214 2916980 2917455 2917556 "UINT32" 2917667 T UINT32 (NIL) -8 NIL NIL 2917746) (-1213 2916119 2916594 2916695 "UINT16" 2916806 T UINT16 (NIL) -8 NIL NIL 2916885) (-1212 2914514 2915445 2915475 "UFD" 2915687 T UFD (NIL) -9 NIL 2915801 NIL) (-1211 2914308 2914354 2914449 "UFD-" 2914454 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1210 2913390 2913573 2913789 "UDVO" 2914114 T UDVO (NIL) -7 NIL NIL NIL) (-1209 2911206 2911615 2912086 "UDPO" 2912954 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1208 2910993 2911161 2911192 "TYPEAST" 2911197 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2910926 2910931 2910961 "TYPE" 2910966 T TYPE (NIL) -9 NIL NIL NIL) (-1206 2909897 2910099 2910339 "TWOFACT" 2910720 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1205 2908969 2909306 2909541 "TUPLE" 2909697 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1204 2906660 2907179 2907718 "TUBETOOL" 2908452 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1203 2905509 2905714 2905955 "TUBE" 2906453 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1202 2894176 2898268 2898365 "TSETCAT" 2903634 NIL TSETCAT (NIL T T T T) -9 NIL 2905165 NIL) (-1201 2888911 2890508 2892399 "TSETCAT-" 2892404 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2883675 2887883 2888166 "TS" 2888663 NIL TS (NIL T) -8 NIL NIL NIL) (-1199 2877938 2878784 2879726 "TRMANIP" 2882811 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1198 2877379 2877442 2877605 "TRIMAT" 2877870 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1197 2875175 2875412 2875776 "TRIGMNIP" 2877128 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1196 2874695 2874808 2874838 "TRIGCAT" 2875051 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1195 2874364 2874443 2874584 "TRIGCAT-" 2874589 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1194 2871262 2873222 2873503 "TREE" 2874118 NIL TREE (NIL T) -8 NIL NIL NIL) (-1193 2870536 2871064 2871094 "TRANFUN" 2871129 T TRANFUN (NIL) -9 NIL 2871195 NIL) (-1192 2869815 2870006 2870286 "TRANFUN-" 2870291 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1191 2869619 2869651 2869712 "TOPSP" 2869776 T TOPSP (NIL) -7 NIL NIL NIL) (-1190 2868967 2869082 2869236 "TOOLSIGN" 2869500 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1189 2867628 2868144 2868383 "TEXTFILE" 2868750 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1188 2867409 2867440 2867512 "TEX1" 2867591 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2865348 2865862 2866291 "TEX" 2867002 T TEX (NIL) -8 NIL NIL NIL) (-1186 2864996 2865059 2865149 "TEMUTL" 2865280 T TEMUTL (NIL) -7 NIL NIL NIL) (-1185 2863150 2863430 2863755 "TBCMPPK" 2864719 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1184 2855040 2861310 2861366 "TBAGG" 2861766 NIL TBAGG (NIL T T) -9 NIL 2861977 NIL) (-1183 2850110 2851598 2853352 "TBAGG-" 2853357 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1182 2849494 2849601 2849746 "TANEXP" 2849999 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1181 2848906 2849005 2849143 "TABLEAU" 2849391 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2842409 2848763 2848856 "TABLE" 2848861 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1179 2837017 2838237 2839485 "TABLBUMP" 2841195 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1178 2836239 2836386 2836567 "SYSTEM" 2836858 T SYSTEM (NIL) -8 NIL NIL NIL) (-1177 2832702 2833397 2834180 "SYSSOLP" 2835490 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1176 2831742 2832217 2832336 "SYSNNI" 2832522 NIL SYSNNI (NIL NIL) -8 NIL NIL 2832607) (-1175 2831045 2831474 2831553 "SYSINT" 2831613 NIL SYSINT (NIL NIL) -8 NIL NIL 2831658) (-1174 2827391 2828306 2829022 "SYNTAX" 2830351 T SYNTAX (NIL) -8 NIL NIL NIL) (-1173 2824549 2825151 2825783 "SYMTAB" 2826781 T SYMTAB (NIL) -8 NIL NIL NIL) (-1172 2819822 2820718 2821695 "SYMS" 2823594 T SYMS (NIL) -8 NIL NIL NIL) (-1171 2817103 2819283 2819513 "SYMPOLY" 2819630 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1170 2816620 2816695 2816818 "SYMFUNC" 2817015 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1169 2812672 2813932 2814745 "SYMBOL" 2815829 T SYMBOL (NIL) -8 NIL NIL NIL) (-1168 2806211 2807900 2809620 "SWITCH" 2810974 T SWITCH (NIL) -8 NIL NIL NIL) (-1167 2799481 2805032 2805335 "SUTS" 2805966 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2791586 2798728 2799001 "SUPXS" 2799266 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2790745 2790872 2791089 "SUPFRACF" 2791454 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2790366 2790425 2790538 "SUP2" 2790680 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2781936 2789984 2790110 "SUP" 2790275 NIL SUP (NIL T) -8 NIL NIL NIL) (-1162 2780349 2780623 2780986 "SUMRF" 2781635 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1161 2779663 2779729 2779928 "SUMFS" 2780270 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1160 2763686 2778840 2779091 "SULS" 2779470 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2763315 2763508 2763578 "SUCHTAST" 2763638 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1158 2762637 2762840 2762980 "SUCH" 2763223 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1157 2756531 2757543 2758502 "SUBSPACE" 2761725 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1156 2755961 2756051 2756215 "SUBRESP" 2756419 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1155 2750134 2751254 2752401 "STTFNC" 2754861 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2743503 2744799 2746110 "STTF" 2748870 NIL STTF (NIL T) -7 NIL NIL NIL) (-1153 2734818 2736685 2738479 "STTAYLOR" 2741744 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1152 2728064 2734682 2734765 "STRTBL" 2734770 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1151 2723455 2728019 2728050 "STRING" 2728055 T STRING (NIL) -8 NIL NIL NIL) (-1150 2718343 2722828 2722858 "STRICAT" 2722917 T STRICAT (NIL) -9 NIL 2722979 NIL) (-1149 2717853 2717930 2718074 "STREAM3" 2718260 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2716835 2717018 2717253 "STREAM2" 2717666 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2716523 2716575 2716668 "STREAM1" 2716777 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2709335 2714142 2714753 "STREAM" 2715947 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1145 2708351 2708532 2708763 "STINPROD" 2709151 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1144 2707929 2708113 2708143 "STEP" 2708223 T STEP (NIL) -9 NIL 2708301 NIL) (-1143 2701474 2707828 2707905 "STBL" 2707910 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1142 2696650 2700695 2700738 "STAGG" 2700891 NIL STAGG (NIL T) -9 NIL 2700980 NIL) (-1141 2694358 2694958 2695828 "STAGG-" 2695833 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1140 2692553 2694128 2694220 "STACK" 2694301 NIL STACK (NIL T) -8 NIL NIL NIL) (-1139 2685305 2690694 2691150 "SREGSET" 2692183 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1138 2677731 2679099 2680612 "SRDCMPK" 2683911 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2670698 2675171 2675201 "SRAGG" 2676504 T SRAGG (NIL) -9 NIL 2677112 NIL) (-1136 2669715 2669970 2670349 "SRAGG-" 2670354 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1135 2664214 2668662 2669083 "SQMATRIX" 2669341 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1134 2657964 2660932 2661659 "SPLTREE" 2663559 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1133 2653954 2654620 2655266 "SPLNODE" 2657390 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1132 2653001 2653234 2653264 "SPFCAT" 2653708 T SPFCAT (NIL) -9 NIL NIL NIL) (-1131 2651738 2651948 2652212 "SPECOUT" 2652759 T SPECOUT (NIL) -7 NIL NIL NIL) (-1130 2643390 2645134 2645164 "SPADXPT" 2649556 T SPADXPT (NIL) -9 NIL 2651590 NIL) (-1129 2643151 2643191 2643260 "SPADPRSR" 2643343 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1128 2641334 2643106 2643137 "SPADAST" 2643142 T SPADAST (NIL) -8 NIL NIL NIL) (-1127 2633305 2635052 2635095 "SPACEC" 2639468 NIL SPACEC (NIL T) -9 NIL 2641284 NIL) (-1126 2631476 2633237 2633286 "SPACE3" 2633291 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1125 2630228 2630399 2630690 "SORTPAK" 2631281 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1124 2628278 2628581 2629000 "SOLVETRA" 2629892 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1123 2627289 2627511 2627785 "SOLVESER" 2628051 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1122 2622509 2623390 2624392 "SOLVERAD" 2626341 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1121 2618324 2618933 2619662 "SOLVEFOR" 2621876 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1120 2612648 2617673 2617770 "SNTSCAT" 2617775 NIL SNTSCAT (NIL T T T T) -9 NIL 2617845 NIL) (-1119 2606791 2610971 2611362 "SMTS" 2612338 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1118 2601267 2606679 2606756 "SMP" 2606761 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1117 2599426 2599727 2600125 "SMITH" 2600964 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1116 2592319 2596471 2596574 "SMATCAT" 2597928 NIL SMATCAT (NIL NIL T T T) -9 NIL 2598478 NIL) (-1115 2589280 2590096 2591267 "SMATCAT-" 2591272 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1114 2586993 2588516 2588559 "SKAGG" 2588820 NIL SKAGG (NIL T) -9 NIL 2588955 NIL) (-1113 2583329 2586409 2586604 "SINT" 2586791 T SINT (NIL) -8 NIL NIL 2586964) (-1112 2583101 2583139 2583205 "SIMPAN" 2583285 T SIMPAN (NIL) -7 NIL NIL NIL) (-1111 2581960 2582174 2582442 "SIGNRF" 2582867 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2580786 2580930 2581214 "SIGNEF" 2581796 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2580119 2580369 2580493 "SIGAST" 2580684 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2579426 2579654 2579794 "SIG" 2580001 T SIG (NIL) -8 NIL NIL NIL) (-1107 2577116 2577570 2578076 "SHP" 2578967 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1106 2571029 2577017 2577093 "SHDP" 2577098 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1105 2570628 2570794 2570824 "SGROUP" 2570917 T SGROUP (NIL) -9 NIL 2570979 NIL) (-1104 2570486 2570512 2570585 "SGROUP-" 2570590 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1103 2567322 2568019 2568742 "SGCF" 2569785 T SGCF (NIL) -7 NIL NIL NIL) (-1102 2561744 2566769 2566866 "SFRTCAT" 2566871 NIL SFRTCAT (NIL T T T T) -9 NIL 2566910 NIL) (-1101 2555168 2556183 2557319 "SFRGCD" 2560727 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1100 2548296 2549367 2550553 "SFQCMPK" 2554101 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2547918 2548007 2548117 "SFORT" 2548237 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1098 2547063 2547758 2547879 "SEXOF" 2547884 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1097 2542602 2543291 2543386 "SEXCAT" 2546323 NIL SEXCAT (NIL T T T T T) -9 NIL 2546901 NIL) (-1096 2541736 2542483 2542551 "SEX" 2542556 T SEX (NIL) -8 NIL NIL NIL) (-1095 2539993 2540453 2540756 "SETMN" 2541479 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2539599 2539725 2539755 "SETCAT" 2539872 T SETCAT (NIL) -9 NIL 2539957 NIL) (-1093 2539379 2539431 2539530 "SETCAT-" 2539535 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2535766 2537840 2537883 "SETAGG" 2538753 NIL SETAGG (NIL T) -9 NIL 2539093 NIL) (-1091 2535224 2535340 2535577 "SETAGG-" 2535582 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2532404 2535158 2535206 "SET" 2535211 NIL SET (NIL T) -8 NIL NIL NIL) (-1089 2531874 2532100 2532201 "SEQAST" 2532325 T SEQAST (NIL) -8 NIL NIL NIL) (-1088 2531073 2531367 2531428 "SEGXCAT" 2531714 NIL SEGXCAT (NIL T T) -9 NIL 2531834 NIL) (-1087 2530052 2530266 2530309 "SEGCAT" 2530831 NIL SEGCAT (NIL T) -9 NIL 2531052 NIL) (-1086 2529673 2529732 2529845 "SEGBIND2" 2529987 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1085 2528722 2529052 2529252 "SEGBIND" 2529508 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1084 2528323 2528523 2528600 "SEGAST" 2528667 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2527542 2527668 2527872 "SEG2" 2528167 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2526598 2527208 2527390 "SEG" 2527395 NIL SEG (NIL T) -8 NIL NIL NIL) (-1081 2526035 2526533 2526580 "SDVAR" 2526585 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1080 2518366 2525805 2525935 "SDPOL" 2525940 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1079 2516959 2517225 2517544 "SCPKG" 2518081 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1078 2516095 2516275 2516475 "SCOPE" 2516781 T SCOPE (NIL) -8 NIL NIL NIL) (-1077 2515316 2515449 2515628 "SCACHE" 2515950 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1076 2514988 2515148 2515178 "SASTCAT" 2515183 T SASTCAT (NIL) -9 NIL 2515196 NIL) (-1075 2514502 2514823 2514899 "SAOS" 2514934 T SAOS (NIL) -8 NIL NIL NIL) (-1074 2514067 2514102 2514275 "SAERFFC" 2514461 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1073 2513660 2513695 2513854 "SAEFACT" 2514026 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2507643 2513557 2513637 "SAE" 2513642 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1071 2505964 2506278 2506679 "RURPK" 2507309 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1070 2504600 2504879 2505191 "RULESET" 2505798 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1069 2504239 2504394 2504477 "RULECOLD" 2504552 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2501426 2501929 2502394 "RULE" 2503920 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1067 2500924 2501143 2501237 "RSTRCAST" 2501354 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2495773 2496567 2497487 "RSETGCD" 2500123 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2485057 2490082 2490179 "RSETCAT" 2494298 NIL RSETCAT (NIL T T T T) -9 NIL 2495395 NIL) (-1064 2482984 2483523 2484347 "RSETCAT-" 2484352 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2475371 2476746 2478266 "RSDCMPK" 2481583 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2473376 2473817 2473891 "RRCC" 2474977 NIL RRCC (NIL T T) -9 NIL 2475321 NIL) (-1061 2472727 2472901 2473180 "RRCC-" 2473185 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2472197 2472423 2472524 "RPTAST" 2472648 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2446234 2455790 2455857 "RPOLCAT" 2466521 NIL RPOLCAT (NIL T T T) -9 NIL 2469680 NIL) (-1058 2437771 2440096 2443206 "RPOLCAT-" 2443211 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2428820 2435982 2436464 "ROUTINE" 2437311 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2425655 2428446 2428586 "ROMAN" 2428702 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2423932 2424515 2424775 "ROIRC" 2425460 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2420321 2422568 2422598 "RNS" 2422902 T RNS (NIL) -9 NIL 2423175 NIL) (-1053 2418830 2419213 2419747 "RNS-" 2419822 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2418279 2418661 2418691 "RNG" 2418696 T RNG (NIL) -9 NIL 2418717 NIL) (-1051 2417671 2418033 2418076 "RMODULE" 2418138 NIL RMODULE (NIL T) -9 NIL 2418180 NIL) (-1050 2416507 2416601 2416937 "RMCAT2" 2417572 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2413384 2415853 2416150 "RMATRIX" 2416269 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2406326 2408560 2408675 "RMATCAT" 2412034 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2413016 NIL) (-1047 2405701 2405848 2406155 "RMATCAT-" 2406160 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2405268 2405343 2405471 "RINTERP" 2405620 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2404387 2404915 2404945 "RING" 2405001 T RING (NIL) -9 NIL 2405093 NIL) (-1044 2404179 2404223 2404320 "RING-" 2404325 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2403020 2403257 2403515 "RIDIST" 2403943 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2394363 2402488 2402694 "RGCHAIN" 2402868 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2393739 2394119 2394160 "RGBCSPC" 2394218 NIL RGBCSPC (NIL T) -9 NIL 2394270 NIL) (-1040 2392923 2393278 2393319 "RGBCMDL" 2393551 NIL RGBCMDL (NIL T) -9 NIL 2393665 NIL) (-1039 2392569 2392632 2392735 "RFFACTOR" 2392854 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1038 2392294 2392329 2392426 "RFFACT" 2392528 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1037 2390411 2390775 2391157 "RFDIST" 2391934 T RFDIST (NIL) -7 NIL NIL NIL) (-1036 2387405 2388019 2388689 "RF" 2389775 NIL RF (NIL T) -7 NIL NIL NIL) (-1035 2386858 2386950 2387113 "RETSOL" 2387307 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2386494 2386574 2386617 "RETRACT" 2386750 NIL RETRACT (NIL T) -9 NIL 2386837 NIL) (-1033 2386343 2386368 2386455 "RETRACT-" 2386460 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2385972 2386165 2386235 "RETAST" 2386295 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2378828 2385625 2385752 "RESULT" 2385867 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2377454 2378097 2378296 "RESRING" 2378731 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2377090 2377139 2377237 "RESLATC" 2377391 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2376796 2376830 2376937 "REPSQ" 2377049 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2376494 2376528 2376639 "REPDB" 2376755 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1026 2370404 2371783 2373006 "REP2" 2375306 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1025 2366781 2367462 2368270 "REP1" 2369631 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1024 2364203 2364783 2365385 "REP" 2366201 T REP (NIL) -7 NIL NIL NIL) (-1023 2356956 2362344 2362800 "REGSET" 2363833 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2355769 2356104 2356354 "REF" 2356741 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2355146 2355249 2355416 "REDORDER" 2355653 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2351182 2354359 2354586 "RECLOS" 2354974 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2350234 2350415 2350630 "REALSOLV" 2350989 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2346717 2347519 2348403 "REAL0Q" 2349399 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1017 2342318 2343306 2344367 "REAL0" 2345698 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1016 2342164 2342205 2342235 "REAL" 2342240 T REAL (NIL) -9 NIL 2342275 NIL) (-1015 2341662 2341881 2341975 "RDUCEAST" 2342092 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2341067 2341139 2341346 "RDIV" 2341584 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2340135 2340309 2340522 "RDIST" 2340889 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2338732 2339019 2339391 "RDETRS" 2339843 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2336544 2336998 2337536 "RDETR" 2338274 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2335155 2335433 2335837 "RDEEFS" 2336260 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2333650 2333956 2334388 "RDEEF" 2334843 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2327920 2330786 2330816 "RCFIELD" 2332111 T RCFIELD (NIL) -9 NIL 2332841 NIL) (-1007 2325984 2326488 2327184 "RCFIELD-" 2327259 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2322300 2324085 2324128 "RCAGG" 2325212 NIL RCAGG (NIL T) -9 NIL 2325677 NIL) (-1005 2321928 2322022 2322185 "RCAGG-" 2322190 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2321263 2321375 2321540 "RATRET" 2321812 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2320816 2320883 2321004 "RATFACT" 2321191 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2320124 2320244 2320396 "RANDSRC" 2320686 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2319858 2319902 2319975 "RADUTIL" 2320073 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2313032 2318691 2319001 "RADIX" 2319582 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2304700 2312876 2313004 "RADFF" 2313009 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2304352 2304427 2304455 "RADCAT" 2304612 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2304137 2304185 2304282 "RADCAT-" 2304287 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2302288 2303912 2304001 "QUEUE" 2304081 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2301926 2301969 2302096 "QUATCT2" 2302239 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2295680 2298975 2299015 "QUATCAT" 2299795 NIL QUATCAT (NIL T) -9 NIL 2300561 NIL) (-993 2291845 2292875 2294255 "QUATCAT-" 2294349 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-992 2288428 2291782 2291827 "QUAT" 2291832 NIL QUAT (NIL T) -8 NIL NIL NIL) (-991 2285948 2287512 2287553 "QUAGG" 2287928 NIL QUAGG (NIL T) -9 NIL 2288103 NIL) (-990 2285580 2285773 2285841 "QQUTAST" 2285900 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2284505 2284978 2285150 "QFORM" 2285452 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2284143 2284186 2284313 "QFCAT2" 2284456 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-987 2275371 2280560 2280600 "QFCAT" 2281258 NIL QFCAT (NIL T) -9 NIL 2282259 NIL) (-986 2270979 2272168 2273747 "QFCAT-" 2273841 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-985 2270439 2270549 2270679 "QEQUAT" 2270869 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2263587 2264658 2265842 "QCMPACK" 2269372 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2262832 2263006 2263238 "QALGSET2" 2263407 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-982 2260414 2260833 2261259 "QALGSET" 2262489 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-981 2259105 2259328 2259645 "PWFFINTB" 2260187 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2257304 2257472 2257826 "PUSHVAR" 2258919 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2253222 2254276 2254317 "PTRANFN" 2256201 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2251624 2251915 2252237 "PTPACK" 2252933 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2251256 2251313 2251422 "PTFUNC2" 2251561 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2245783 2250128 2250169 "PTCAT" 2250465 NIL PTCAT (NIL T) -9 NIL 2250618 NIL) (-975 2245441 2245476 2245600 "PSQFR" 2245742 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2244036 2244334 2244668 "PSEUDLIN" 2245139 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2230806 2233170 2235494 "PSETPK" 2241796 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2223850 2226564 2226660 "PSETCAT" 2229681 NIL PSETCAT (NIL T T T T) -9 NIL 2230495 NIL) (-971 2221686 2222320 2223141 "PSETCAT-" 2223146 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2221035 2221200 2221228 "PSCURVE" 2221496 T PSCURVE (NIL) -9 NIL 2221663 NIL) (-969 2217391 2218873 2218938 "PSCAT" 2219782 NIL PSCAT (NIL T T T) -9 NIL 2220022 NIL) (-968 2216454 2216670 2217070 "PSCAT-" 2217075 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2215186 2215819 2216024 "PRTITION" 2216269 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2214688 2214907 2214999 "PRTDAST" 2215114 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2203786 2205992 2208180 "PRS" 2212550 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2201644 2203136 2203176 "PRQAGG" 2203359 NIL PRQAGG (NIL T) -9 NIL 2203461 NIL) (-963 2201030 2201259 2201287 "PROPLOG" 2201472 T PROPLOG (NIL) -9 NIL 2201594 NIL) (-962 2198200 2198844 2199308 "PROPFRML" 2200598 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2197660 2197770 2197900 "PROPERTY" 2198090 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2191745 2195826 2196646 "PRODUCT" 2196886 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2191541 2191573 2191632 "PRINT" 2191706 T PRINT (NIL) -7 NIL NIL NIL) (-958 2190881 2190998 2191150 "PRIMES" 2191421 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-957 2188946 2189347 2189813 "PRIMELT" 2190460 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-956 2188675 2188724 2188752 "PRIMCAT" 2188876 T PRIMCAT (NIL) -9 NIL NIL NIL) (-955 2187682 2187860 2188088 "PRIMARR2" 2188493 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-954 2183843 2187620 2187665 "PRIMARR" 2187670 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2183486 2183542 2183653 "PREASSOC" 2183781 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-952 2180806 2182944 2183178 "PR" 2183297 NIL PR (NIL T T) -8 NIL NIL NIL) (-951 2180281 2180414 2180442 "PPCURVE" 2180647 T PPCURVE (NIL) -9 NIL 2180783 NIL) (-950 2179903 2180076 2180159 "PORTNUM" 2180218 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2177262 2177661 2178253 "POLYROOT" 2179484 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2176645 2176703 2176937 "POLYLIFT" 2177198 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-947 2172920 2173369 2173998 "POLYCATQ" 2176190 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-946 2159751 2165095 2165160 "POLYCAT" 2168674 NIL POLYCAT (NIL T T T) -9 NIL 2170602 NIL) (-945 2153258 2155100 2157465 "POLYCAT-" 2157470 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-944 2152845 2152913 2153033 "POLY2UP" 2153184 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-943 2152477 2152534 2152643 "POLY2" 2152782 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-942 2146453 2152081 2152241 "POLY" 2152350 NIL POLY (NIL T) -8 NIL NIL NIL) (-941 2145138 2145377 2145653 "POLUTIL" 2146227 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2143493 2143770 2144101 "POLTOPOL" 2144860 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2139011 2143429 2143475 "POINT" 2143480 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2137198 2137555 2137930 "PNTHEORY" 2138656 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2135617 2135914 2136326 "PMTOOLS" 2136896 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2135210 2135288 2135405 "PMSYM" 2135533 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2134720 2134789 2134963 "PMQFCAT" 2135135 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2134116 2134202 2134363 "PMPREDFS" 2134621 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-933 2133471 2133581 2133737 "PMPRED" 2133993 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-932 2132114 2132322 2132707 "PMPLCAT" 2133233 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2131646 2131725 2131877 "PMLSAGG" 2132029 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2131121 2131197 2131378 "PMKERNEL" 2131564 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2130738 2130813 2130926 "PMINS" 2131040 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2130166 2130235 2130451 "PMFS" 2130663 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2129394 2129512 2129717 "PMDOWN" 2130043 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2128668 2128779 2128942 "PMASSFS" 2129280 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-925 2127831 2127990 2128172 "PMASS" 2128506 T PMASS (NIL) -7 NIL NIL NIL) (-924 2127486 2127554 2127648 "PLOTTOOL" 2127757 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2123300 2124334 2125255 "PLOT3D" 2126585 T PLOT3D (NIL) -8 NIL NIL NIL) (-922 2122212 2122389 2122624 "PLOT1" 2123104 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-921 2116834 2118023 2119171 "PLOT" 2121084 T PLOT (NIL) -8 NIL NIL NIL) (-920 2092228 2096900 2101751 "PLEQN" 2112100 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2091921 2091968 2092071 "PINTERPA" 2092175 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-918 2091239 2091361 2091541 "PINTERP" 2091786 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-917 2089636 2090577 2090605 "PID" 2090787 T PID (NIL) -9 NIL 2090921 NIL) (-916 2089361 2089398 2089486 "PICOERCE" 2089593 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-915 2088609 2089130 2089217 "PI" 2089257 T PI (NIL) -8 NIL NIL 2089324) (-914 2087929 2088068 2088244 "PGROEB" 2088465 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2083516 2084330 2085235 "PGE" 2087044 T PGE (NIL) -7 NIL NIL NIL) (-912 2081640 2081886 2082252 "PGCD" 2083233 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2080978 2081081 2081242 "PFRPAC" 2081524 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2077660 2079526 2079879 "PFR" 2080657 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2076049 2076293 2076618 "PFOTOOLS" 2077407 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2074582 2074821 2075172 "PFOQ" 2075806 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2073055 2073267 2073630 "PFO" 2074366 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2070489 2071726 2071754 "PFECAT" 2072339 T PFECAT (NIL) -9 NIL 2072723 NIL) (-905 2069934 2070088 2070302 "PFECAT-" 2070307 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-904 2068538 2068789 2069090 "PFBRU" 2069683 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-903 2066405 2066756 2067188 "PFBR" 2068189 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-902 2062995 2066294 2066363 "PF" 2066368 NIL PF (NIL NIL) -8 NIL NIL NIL) (-901 2058261 2059202 2060072 "PERMGRP" 2062158 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-900 2056393 2057324 2057365 "PERMCAT" 2057811 NIL PERMCAT (NIL T) -9 NIL 2058116 NIL) (-899 2056046 2056087 2056211 "PERMAN" 2056346 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-898 2051962 2053422 2054098 "PERM" 2055403 NIL PERM (NIL T) -8 NIL NIL NIL) (-897 2049500 2051627 2051749 "PENDTREE" 2051873 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2047593 2048327 2048368 "PDRING" 2049025 NIL PDRING (NIL T) -9 NIL 2049311 NIL) (-895 2046696 2046914 2047276 "PDRING-" 2047281 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2043938 2044689 2045357 "PDEPROB" 2046048 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2041485 2041987 2042542 "PDEPACK" 2043403 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2040397 2040587 2040838 "PDECOMP" 2041284 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2038002 2038819 2038847 "PDECAT" 2039634 T PDECAT (NIL) -9 NIL 2040347 NIL) (-890 2037753 2037786 2037876 "PCOMP" 2037963 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2035958 2036554 2036851 "PBWLB" 2037482 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2035590 2035647 2035756 "PATTERN2" 2035895 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-887 2033347 2033735 2034192 "PATTERN1" 2035179 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-886 2025854 2027420 2028758 "PATTERN" 2032030 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-885 2025418 2025485 2025617 "PATRES2" 2025781 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-884 2022813 2023367 2023848 "PATRES" 2024983 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-883 2020696 2021101 2021508 "PATMATCH" 2022480 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2020232 2020415 2020456 "PATMAB" 2020563 NIL PATMAB (NIL T) -9 NIL 2020646 NIL) (-881 2018777 2019086 2019344 "PATLRES" 2020037 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2018323 2018446 2018487 "PATAB" 2018492 NIL PATAB (NIL T) -9 NIL 2018664 NIL) (-879 2015804 2016336 2016909 "PARTPERM" 2017770 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2015425 2015488 2015590 "PARSURF" 2015735 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2015057 2015114 2015223 "PARSU2" 2015362 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2014821 2014861 2014928 "PARSER" 2015010 T PARSER (NIL) -7 NIL NIL NIL) (-875 2014442 2014505 2014607 "PARSCURV" 2014752 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2014074 2014131 2014240 "PARSC2" 2014379 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2013713 2013771 2013868 "PARPCURV" 2014010 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2013345 2013402 2013511 "PARPC2" 2013650 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2012865 2012951 2013070 "PAN2EXPR" 2013246 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2011671 2011986 2012214 "PALETTE" 2012657 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2010139 2010676 2011036 "PAIR" 2011357 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2004066 2009398 2009592 "PADICRC" 2009994 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 1997351 2003412 2003596 "PADICRAT" 2003914 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 1994563 1996091 1996131 "PADICCT" 1996712 NIL PADICCT (NIL NIL) -9 NIL 1996994 NIL) (-865 1992915 1994500 1994545 "PADIC" 1994550 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-864 1991872 1992072 1992340 "PADEPAC" 1992702 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 1991084 1991217 1991423 "PADE" 1991734 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 1989506 1990292 1990572 "OWP" 1990888 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 1989026 1989212 1989309 "OVERSET" 1989429 T OVERSET (NIL) -8 NIL NIL NIL) (-860 1988099 1988631 1988803 "OVAR" 1988894 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 1977006 1979208 1981408 "OUTFORM" 1985919 T OUTFORM (NIL) -8 NIL NIL NIL) (-858 1976342 1976603 1976730 "OUTBFILE" 1976899 T OUTBFILE (NIL) -8 NIL NIL NIL) (-857 1975649 1975814 1975842 "OUTBCON" 1976160 T OUTBCON (NIL) -9 NIL 1976326 NIL) (-856 1975250 1975362 1975519 "OUTBCON-" 1975524 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-855 1974514 1974635 1974796 "OUT" 1975109 T OUT (NIL) -7 NIL NIL NIL) (-854 1973922 1974243 1974332 "OSI" 1974445 T OSI (NIL) -8 NIL NIL NIL) (-853 1973478 1973790 1973818 "OSGROUP" 1973823 T OSGROUP (NIL) -9 NIL 1973845 NIL) (-852 1972223 1972450 1972735 "ORTHPOL" 1973225 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1969823 1972058 1972179 "OREUP" 1972184 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1967275 1969514 1969641 "ORESUP" 1969765 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1964803 1965303 1965864 "OREPCTO" 1966764 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1958634 1960794 1960835 "OREPCAT" 1963183 NIL OREPCAT (NIL T) -9 NIL 1964287 NIL) (-847 1955802 1956577 1957628 "OREPCAT-" 1957633 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1954979 1955251 1955279 "ORDSET" 1955588 T ORDSET (NIL) -9 NIL 1955752 NIL) (-845 1954498 1954620 1954813 "ORDSET-" 1954818 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1953132 1953889 1953917 "ORDRING" 1954119 T ORDRING (NIL) -9 NIL 1954244 NIL) (-843 1952777 1952871 1953015 "ORDRING-" 1953020 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1952183 1952620 1952648 "ORDMON" 1952653 T ORDMON (NIL) -9 NIL 1952674 NIL) (-841 1951345 1951492 1951687 "ORDFUNS" 1952032 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1950709 1951102 1951130 "ORDFIN" 1951195 T ORDFIN (NIL) -9 NIL 1951269 NIL) (-839 1949975 1950102 1950288 "ORDCOMP2" 1950569 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-838 1946574 1948561 1948970 "ORDCOMP" 1949599 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-837 1943182 1944065 1944879 "OPTPROB" 1945780 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1939984 1940623 1941327 "OPTPACK" 1942498 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1937697 1938437 1938465 "OPTCAT" 1939284 T OPTCAT (NIL) -9 NIL 1939934 NIL) (-834 1937140 1937374 1937479 "OPSIG" 1937612 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1936908 1936947 1937013 "OPQUERY" 1937094 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1936443 1936614 1936655 "OPERCAT" 1936790 NIL OPERCAT (NIL T) -9 NIL 1936858 NIL) (-831 1936289 1936316 1936402 "OPERCAT-" 1936407 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-830 1933457 1934600 1935104 "OP" 1935818 NIL OP (NIL T) -8 NIL NIL NIL) (-829 1932762 1932877 1933051 "ONECOMP2" 1933329 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-828 1929614 1931559 1931928 "ONECOMP" 1932426 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-827 1929033 1929139 1929269 "OMSERVER" 1929504 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1925921 1928473 1928513 "OMSAGG" 1928574 NIL OMSAGG (NIL T) -9 NIL 1928638 NIL) (-825 1924544 1924807 1925089 "OMPKG" 1925659 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1923126 1924093 1924262 "OMLO" 1924425 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-823 1922051 1922198 1922425 "OMEXPR" 1922952 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-822 1921229 1921472 1921632 "OMERRK" 1921911 T OMERRK (NIL) -8 NIL NIL NIL) (-821 1920547 1920775 1920911 "OMERR" 1921113 T OMERR (NIL) -8 NIL NIL NIL) (-820 1920025 1920224 1920332 "OMENC" 1920459 T OMENC (NIL) -8 NIL NIL NIL) (-819 1913920 1915105 1916276 "OMDEV" 1918874 T OMDEV (NIL) -8 NIL NIL NIL) (-818 1912989 1913160 1913354 "OMCONN" 1913746 T OMCONN (NIL) -8 NIL NIL NIL) (-817 1912419 1912522 1912550 "OM" 1912849 T OM (NIL) -9 NIL NIL NIL) (-816 1911040 1911982 1912010 "OINTDOM" 1912015 T OINTDOM (NIL) -9 NIL 1912036 NIL) (-815 1906846 1908030 1908746 "OFMONOID" 1910356 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1906284 1906783 1906828 "ODVAR" 1906833 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1903744 1906029 1906184 "ODR" 1906189 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1896129 1903520 1903646 "ODPOL" 1903651 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1890012 1896001 1896106 "ODP" 1896111 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1888778 1888993 1889268 "ODETOOLS" 1889786 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1885747 1886403 1887119 "ODESYS" 1888111 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1880629 1881537 1882562 "ODERTRIC" 1884822 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1880055 1880137 1880331 "ODERED" 1880541 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1876951 1877497 1878172 "ODERAT" 1879480 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1873911 1874375 1874972 "ODEPRRIC" 1876480 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1871881 1872450 1872936 "ODEPROB" 1873445 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1868403 1868886 1869533 "ODEPRIM" 1871360 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1867652 1867754 1868014 "ODEPAL" 1868295 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1863814 1864605 1865469 "ODEPACK" 1866808 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1862847 1862954 1863183 "ODEINT" 1863703 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1856948 1858373 1859820 "ODEIFTBL" 1861420 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1852297 1853079 1854034 "ODEEF" 1856111 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1851632 1851721 1851951 "ODECONST" 1852202 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1849783 1850418 1850446 "ODECAT" 1851051 T ODECAT (NIL) -9 NIL 1851582 NIL) (-795 1849421 1849464 1849591 "OCTCT2" 1849734 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-794 1846340 1849133 1849252 "OCT" 1849334 NIL OCT (NIL T) -8 NIL NIL NIL) (-793 1845718 1846160 1846188 "OCAMON" 1846193 T OCAMON (NIL) -9 NIL 1846214 NIL) (-792 1840499 1842892 1842932 "OC" 1844029 NIL OC (NIL T) -9 NIL 1844887 NIL) (-791 1837747 1838488 1839471 "OC-" 1839565 NIL OC- (NIL T T) -8 NIL NIL NIL) (-790 1837304 1837619 1837647 "OASGP" 1837652 T OASGP (NIL) -9 NIL 1837672 NIL) (-789 1836591 1837054 1837082 "OAMONS" 1837122 T OAMONS (NIL) -9 NIL 1837165 NIL) (-788 1836031 1836438 1836466 "OAMON" 1836471 T OAMON (NIL) -9 NIL 1836491 NIL) (-787 1835335 1835827 1835855 "OAGROUP" 1835860 T OAGROUP (NIL) -9 NIL 1835880 NIL) (-786 1835025 1835075 1835163 "NUMTUBE" 1835279 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1828598 1830116 1831652 "NUMQUAD" 1833509 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1824354 1825342 1826367 "NUMODE" 1827593 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1821735 1822589 1822617 "NUMINT" 1823540 T NUMINT (NIL) -9 NIL 1824304 NIL) (-782 1820683 1820880 1821098 "NUMFMT" 1821537 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1807042 1809987 1812519 "NUMERIC" 1818190 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1801466 1806491 1806586 "NTSCAT" 1806591 NIL NTSCAT (NIL T T T T) -9 NIL 1806630 NIL) (-779 1800660 1800825 1801018 "NTPOLFN" 1801305 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1800292 1800349 1800458 "NSUP2" 1800597 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-777 1788177 1797117 1797929 "NSUP" 1799513 NIL NSUP (NIL T) -8 NIL NIL NIL) (-776 1778222 1787951 1788084 "NSMP" 1788089 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1776654 1776955 1777312 "NREP" 1777910 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1775245 1775497 1775855 "NPCOEF" 1776397 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1774311 1774426 1774642 "NORMRETR" 1775126 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1772352 1772642 1773051 "NORMPK" 1774019 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1772037 1772065 1772189 "NORMMA" 1772318 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1771826 1771855 1771924 "NONE1" 1772001 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-769 1771653 1771783 1771812 "NONE" 1771817 T NONE (NIL) -8 NIL NIL NIL) (-768 1771136 1771198 1771384 "NODE1" 1771585 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1769410 1770233 1770488 "NNI" 1770835 T NNI (NIL) -8 NIL NIL 1771070) (-766 1767830 1768143 1768507 "NLINSOL" 1769078 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1764098 1765066 1765965 "NIPROB" 1766951 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1762855 1763089 1763391 "NFINTBAS" 1763860 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1762029 1762505 1762546 "NETCLT" 1762718 NIL NETCLT (NIL T) -9 NIL 1762800 NIL) (-762 1760737 1760968 1761249 "NCODIV" 1761797 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1760499 1760536 1760611 "NCNTFRAC" 1760694 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1758679 1759043 1759463 "NCEP" 1760124 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1757583 1758323 1758351 "NASRING" 1758461 T NASRING (NIL) -9 NIL 1758541 NIL) (-758 1757378 1757422 1757516 "NASRING-" 1757521 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1756531 1757030 1757058 "NARNG" 1757175 T NARNG (NIL) -9 NIL 1757266 NIL) (-756 1756223 1756290 1756424 "NARNG-" 1756429 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1755102 1755309 1755544 "NAGSP" 1756008 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1746374 1748058 1749731 "NAGS" 1753449 T NAGS (NIL) -7 NIL NIL NIL) (-753 1744922 1745230 1745561 "NAGF07" 1746063 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1739460 1740751 1742058 "NAGF04" 1743635 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1732428 1734042 1735675 "NAGF02" 1737847 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1727652 1728752 1729869 "NAGF01" 1731331 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1721280 1722846 1724431 "NAGE04" 1726087 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1712449 1714570 1716700 "NAGE02" 1719170 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1708402 1709349 1710313 "NAGE01" 1711505 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1706197 1706731 1707289 "NAGD03" 1707864 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1697947 1699875 1701829 "NAGD02" 1704263 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1691758 1693183 1694623 "NAGD01" 1696527 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1687967 1688789 1689626 "NAGC06" 1690941 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1686432 1686764 1687120 "NAGC05" 1687631 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1685808 1685927 1686071 "NAGC02" 1686308 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1684868 1685425 1685465 "NAALG" 1685544 NIL NAALG (NIL T) -9 NIL 1685605 NIL) (-739 1684703 1684732 1684822 "NAALG-" 1684827 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1678653 1679761 1680948 "MULTSQFR" 1683599 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1677972 1678047 1678231 "MULTFACT" 1678565 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1671065 1674935 1674988 "MTSCAT" 1676058 NIL MTSCAT (NIL T T) -9 NIL 1676572 NIL) (-735 1670777 1670831 1670923 "MTHING" 1671005 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1670569 1670602 1670662 "MSYSCMD" 1670737 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1667664 1670130 1670171 "MSETAGG" 1670176 NIL MSETAGG (NIL T) -9 NIL 1670210 NIL) (-732 1663776 1666419 1666739 "MSET" 1667377 NIL MSET (NIL T) -8 NIL NIL NIL) (-731 1659661 1661155 1661900 "MRING" 1663076 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1659227 1659294 1659425 "MRF2" 1659588 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1658845 1658880 1659024 "MRATFAC" 1659186 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1656457 1656752 1657183 "MPRFF" 1658550 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1650543 1656311 1656408 "MPOLY" 1656413 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1650033 1650068 1650276 "MPCPF" 1650502 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1649547 1649590 1649774 "MPC3" 1649984 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1648742 1648823 1649044 "MPC2" 1649462 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1647043 1647380 1647770 "MONOTOOL" 1648402 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1646294 1646585 1646613 "MONOID" 1646832 T MONOID (NIL) -9 NIL 1646979 NIL) (-721 1645840 1645959 1646140 "MONOID-" 1646145 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1636708 1642607 1642666 "MONOGEN" 1643340 NIL MONOGEN (NIL T T) -9 NIL 1643796 NIL) (-719 1633947 1634675 1635668 "MONOGEN-" 1635787 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1632806 1633226 1633254 "MONADWU" 1633646 T MONADWU (NIL) -9 NIL 1633884 NIL) (-717 1632178 1632337 1632585 "MONADWU-" 1632590 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1631563 1631781 1631809 "MONAD" 1632016 T MONAD (NIL) -9 NIL 1632128 NIL) (-715 1631248 1631326 1631458 "MONAD-" 1631463 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1629564 1630161 1630440 "MOEBIUS" 1631001 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1628956 1629334 1629374 "MODULE" 1629379 NIL MODULE (NIL T) -9 NIL 1629405 NIL) (-712 1628524 1628620 1628810 "MODULE-" 1628815 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1626283 1626932 1627259 "MODRING" 1628348 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1623271 1624388 1624909 "MODOP" 1625812 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1621886 1622338 1622615 "MODMONOM" 1623134 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1611733 1620177 1620591 "MODMON" 1621523 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1608950 1610601 1610877 "MODFIELD" 1611608 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1607954 1608231 1608421 "MMLFORM" 1608780 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1607480 1607523 1607702 "MMAP" 1607905 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1605697 1606430 1606471 "MLO" 1606894 NIL MLO (NIL T) -9 NIL 1607136 NIL) (-703 1603064 1603579 1604181 "MLIFT" 1605178 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1602455 1602539 1602693 "MKUCFUNC" 1602975 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1602054 1602124 1602247 "MKRECORD" 1602378 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1601102 1601263 1601491 "MKFUNC" 1601865 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1600490 1600594 1600750 "MKFLCFN" 1600985 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1600033 1600400 1600459 "MKCHSET" 1600464 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-697 1599310 1599412 1599597 "MKBCFUNC" 1599926 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-696 1596054 1598864 1599000 "MINT" 1599194 T MINT (NIL) -8 NIL NIL NIL) (-695 1594866 1595109 1595386 "MHROWRED" 1595809 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-694 1590301 1593401 1593806 "MFLOAT" 1594481 T MFLOAT (NIL) -8 NIL NIL NIL) (-693 1589658 1589734 1589905 "MFINFACT" 1590213 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-692 1585993 1586836 1587715 "MESH" 1588799 T MESH (NIL) -7 NIL NIL NIL) (-691 1584383 1584695 1585048 "MDDFACT" 1585680 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-690 1581225 1583542 1583583 "MDAGG" 1583838 NIL MDAGG (NIL T) -9 NIL 1583981 NIL) (-689 1571021 1580518 1580725 "MCMPLX" 1581038 T MCMPLX (NIL) -8 NIL NIL NIL) (-688 1570162 1570308 1570508 "MCDEN" 1570870 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-687 1568052 1568322 1568702 "MCALCFN" 1569892 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-686 1566977 1567217 1567450 "MAYBE" 1567858 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-685 1564589 1565112 1565674 "MATSTOR" 1566448 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-684 1560594 1563961 1564209 "MATRIX" 1564374 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-683 1556363 1557067 1557803 "MATLIN" 1559951 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-682 1554957 1555110 1555443 "MATCAT2" 1556198 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-681 1545105 1548246 1548323 "MATCAT" 1553206 NIL MATCAT (NIL T T T) -9 NIL 1554623 NIL) (-680 1541469 1542482 1543838 "MATCAT-" 1543843 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-679 1539581 1539905 1540289 "MAPPKG3" 1541144 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-678 1538562 1538735 1538957 "MAPPKG2" 1539405 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-677 1537061 1537345 1537672 "MAPPKG1" 1538268 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-676 1536167 1536467 1536644 "MAPPAST" 1536904 T MAPPAST (NIL) -8 NIL NIL NIL) (-675 1535778 1535836 1535959 "MAPHACK3" 1536103 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-674 1535370 1535431 1535545 "MAPHACK2" 1535710 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-673 1534808 1534911 1535053 "MAPHACK1" 1535261 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-672 1532914 1533508 1533812 "MAGMA" 1534536 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-671 1532420 1532638 1532729 "MACROAST" 1532843 T MACROAST (NIL) -8 NIL NIL NIL) (-670 1528887 1530659 1531120 "M3D" 1531992 NIL M3D (NIL T) -8 NIL NIL NIL) (-669 1523043 1527256 1527297 "LZSTAGG" 1528079 NIL LZSTAGG (NIL T) -9 NIL 1528374 NIL) (-668 1519017 1520174 1521631 "LZSTAGG-" 1521636 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-667 1516131 1516908 1517395 "LWORD" 1518562 NIL LWORD (NIL T) -8 NIL NIL NIL) (-666 1515734 1515935 1516010 "LSTAST" 1516076 T LSTAST (NIL) -8 NIL NIL NIL) (-665 1508966 1515505 1515639 "LSQM" 1515644 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-664 1508190 1508329 1508557 "LSPP" 1508821 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-663 1505032 1505689 1506402 "LSMP1" 1507509 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1502867 1503161 1503610 "LSMP" 1504728 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-661 1496794 1502034 1502075 "LSAGG" 1502137 NIL LSAGG (NIL T) -9 NIL 1502215 NIL) (-660 1493489 1494413 1495626 "LSAGG-" 1495631 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-659 1491115 1492633 1492882 "LPOLY" 1493284 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-658 1490697 1490782 1490905 "LPEFRAC" 1491024 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-657 1490349 1490461 1490489 "LOGIC" 1490600 T LOGIC (NIL) -9 NIL 1490681 NIL) (-656 1490211 1490234 1490305 "LOGIC-" 1490310 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1489404 1489544 1489737 "LODOOPS" 1490067 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1487942 1488177 1488530 "LODOF" 1489151 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-653 1484312 1486695 1486736 "LODOCAT" 1487174 NIL LODOCAT (NIL T) -9 NIL 1487385 NIL) (-652 1484045 1484103 1484230 "LODOCAT-" 1484235 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-651 1481414 1483886 1484004 "LODO2" 1484009 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-650 1478898 1481351 1481396 "LODO1" 1481401 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-649 1476370 1478814 1478880 "LODO" 1478885 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-648 1475230 1475395 1475707 "LODEEF" 1476193 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1473577 1474324 1474577 "LO" 1475062 NIL LO (NIL T T T) -8 NIL NIL NIL) (-646 1468863 1471707 1471748 "LNAGG" 1472695 NIL LNAGG (NIL T) -9 NIL 1473139 NIL) (-645 1468010 1468224 1468566 "LNAGG-" 1468571 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-644 1464173 1464935 1465574 "LMOPS" 1467425 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-643 1463568 1463930 1463971 "LMODULE" 1464032 NIL LMODULE (NIL T) -9 NIL 1464074 NIL) (-642 1460814 1463213 1463336 "LMDICT" 1463478 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-641 1460540 1460722 1460782 "LITERAL" 1460787 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-640 1460065 1460139 1460278 "LIST3" 1460460 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1458199 1458511 1458910 "LIST2MAP" 1459712 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-638 1457206 1457384 1457612 "LIST2" 1458017 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-637 1450435 1456152 1456450 "LIST" 1456941 NIL LIST (NIL T) -8 NIL NIL NIL) (-636 1449165 1449801 1449842 "LINEXP" 1450097 NIL LINEXP (NIL T) -9 NIL 1450246 NIL) (-635 1447812 1448072 1448369 "LINDEP" 1448917 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-634 1444650 1445350 1446108 "LIMITRF" 1447086 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-633 1442949 1443237 1443646 "LIMITPS" 1444352 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-632 1441998 1442441 1442481 "LIECAT" 1442621 NIL LIECAT (NIL T) -9 NIL 1442772 NIL) (-631 1441839 1441866 1441954 "LIECAT-" 1441959 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1436326 1441350 1441578 "LIE" 1441660 NIL LIE (NIL T T) -8 NIL NIL NIL) (-629 1428940 1435775 1435940 "LIB" 1436181 T LIB (NIL) -8 NIL NIL NIL) (-628 1424577 1425458 1426393 "LGROBP" 1428057 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-627 1423417 1424109 1424137 "LFCAT" 1424344 T LFCAT (NIL) -9 NIL 1424483 NIL) (-626 1421283 1421557 1421919 "LF" 1423138 NIL LF (NIL T T) -7 NIL NIL NIL) (-625 1418187 1418815 1419503 "LEXTRIPK" 1420647 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-624 1414958 1415757 1416260 "LEXP" 1417767 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-623 1414461 1414679 1414771 "LETAST" 1414886 T LETAST (NIL) -8 NIL NIL NIL) (-622 1412859 1413172 1413573 "LEADCDET" 1414143 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-621 1412049 1412123 1412352 "LAZM3PK" 1412780 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-620 1407017 1410126 1410664 "LAUPOL" 1411561 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-619 1406582 1406626 1406794 "LAPLACE" 1406967 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-618 1405663 1406213 1406254 "LALG" 1406316 NIL LALG (NIL T) -9 NIL 1406375 NIL) (-617 1405377 1405436 1405572 "LALG-" 1405577 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1403351 1404478 1404729 "LA" 1405210 NIL LA (NIL T T T) -8 NIL NIL NIL) (-615 1403186 1403210 1403251 "KVTFROM" 1403313 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-614 1401989 1402403 1402632 "KTVLOGIC" 1402977 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-613 1401824 1401848 1401889 "KRCFROM" 1401951 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-612 1400728 1400915 1401214 "KOVACIC" 1401624 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-611 1400563 1400587 1400628 "KONVERT" 1400690 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-610 1400398 1400422 1400463 "KOERCE" 1400525 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-609 1399900 1399981 1400111 "KERNEL2" 1400312 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1397634 1398394 1398787 "KERNEL" 1399539 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-607 1391485 1396173 1396227 "KDAGG" 1396604 NIL KDAGG (NIL T T) -9 NIL 1396810 NIL) (-606 1391014 1391138 1391343 "KDAGG-" 1391348 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-605 1384191 1390675 1390830 "KAFILE" 1390892 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-604 1378678 1383702 1383930 "JORDAN" 1384012 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-603 1378084 1378327 1378448 "JOINAST" 1378577 T JOINAST (NIL) -8 NIL NIL NIL) (-602 1377930 1377989 1378044 "JAVACODE" 1378049 T JAVACODE (NIL) -8 NIL NIL NIL) (-601 1374229 1376135 1376189 "IXAGG" 1377118 NIL IXAGG (NIL T T) -9 NIL 1377577 NIL) (-600 1373148 1373454 1373873 "IXAGG-" 1373878 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-599 1368728 1373070 1373129 "IVECTOR" 1373134 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-598 1367494 1367731 1367997 "ITUPLE" 1368495 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-597 1365930 1366107 1366413 "ITRIGMNP" 1367316 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-596 1364675 1364879 1365162 "ITFUN3" 1365706 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-595 1364307 1364364 1364473 "ITFUN2" 1364612 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-594 1362144 1363169 1363468 "ITAYLOR" 1364041 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-593 1351127 1356281 1357444 "ISUPS" 1361014 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-592 1350231 1350371 1350607 "ISUMP" 1350974 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-591 1345495 1350032 1350111 "ISTRING" 1350184 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-590 1344998 1345216 1345308 "ISAST" 1345423 T ISAST (NIL) -8 NIL NIL NIL) (-589 1344208 1344289 1344505 "IRURPK" 1344912 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-588 1343144 1343345 1343585 "IRSN" 1343988 T IRSN (NIL) -7 NIL NIL NIL) (-587 1341173 1341528 1341964 "IRRF2F" 1342782 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-586 1340920 1340958 1341034 "IRREDFFX" 1341129 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-585 1339535 1339794 1340093 "IROOT" 1340653 NIL IROOT (NIL T) -7 NIL NIL NIL) (-584 1338607 1338720 1338941 "IR2F" 1339418 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-583 1336220 1336715 1337281 "IR2" 1338085 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-582 1332852 1333904 1334596 "IR" 1335560 NIL IR (NIL T) -8 NIL NIL NIL) (-581 1332643 1332677 1332737 "IPRNTPK" 1332812 T IPRNTPK (NIL) -7 NIL NIL NIL) (-580 1329264 1332532 1332601 "IPF" 1332606 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-579 1327629 1329189 1329246 "IPADIC" 1329251 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-578 1326969 1327189 1327319 "IP4ADDR" 1327519 T IP4ADDR (NIL) -8 NIL NIL NIL) (-577 1326469 1326673 1326783 "IOMODE" 1326879 T IOMODE (NIL) -8 NIL NIL NIL) (-576 1325542 1326066 1326193 "IOBFILE" 1326362 T IOBFILE (NIL) -8 NIL NIL NIL) (-575 1325030 1325446 1325474 "IOBCON" 1325479 T IOBCON (NIL) -9 NIL 1325500 NIL) (-574 1324527 1324585 1324775 "INVLAPLA" 1324966 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-573 1314224 1316565 1318939 "INTTR" 1322203 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-572 1310568 1311310 1312174 "INTTOOLS" 1313409 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-571 1310154 1310245 1310362 "INTSLPE" 1310471 T INTSLPE (NIL) -7 NIL NIL NIL) (-570 1308149 1310077 1310136 "INTRVL" 1310141 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-569 1305751 1306263 1306838 "INTRF" 1307634 NIL INTRF (NIL T) -7 NIL NIL NIL) (-568 1305162 1305259 1305401 "INTRET" 1305649 NIL INTRET (NIL T) -7 NIL NIL NIL) (-567 1303159 1303548 1304018 "INTRAT" 1304770 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-566 1300387 1300970 1301596 "INTPM" 1302644 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-565 1297113 1297705 1298443 "INTPAF" 1299780 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-564 1292292 1293254 1294305 "INTPACK" 1296082 T INTPACK (NIL) -7 NIL NIL NIL) (-563 1291544 1291696 1291904 "INTHERTR" 1292134 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1290983 1291063 1291251 "INTHERAL" 1291458 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1288829 1289272 1289729 "INTHEORY" 1290546 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1280195 1281798 1283559 "INTG0" 1287199 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1266468 1269833 1273218 "INTFTBL" 1276830 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1265717 1265855 1266028 "INTFACT" 1266327 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1263108 1263552 1264114 "INTEF" 1265273 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1261575 1262280 1262308 "INTDOM" 1262609 T INTDOM (NIL) -9 NIL 1262816 NIL) (-555 1260944 1261118 1261360 "INTDOM-" 1261365 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1257439 1259328 1259382 "INTCAT" 1260181 NIL INTCAT (NIL T) -9 NIL 1260501 NIL) (-553 1256912 1257014 1257142 "INTBIT" 1257331 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1255583 1255737 1256051 "INTALG" 1256757 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1255040 1255130 1255300 "INTAF" 1255487 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1248496 1254850 1254990 "INTABL" 1254995 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1247959 1248372 1248400 "INT8" 1248405 T INT8 (NIL) -8 NIL NIL 1248413) (-548 1247421 1247834 1247862 "INT32" 1247867 T INT32 (NIL) -8 NIL NIL 1247875) (-547 1246883 1247296 1247324 "INT16" 1247329 T INT16 (NIL) -8 NIL NIL 1247337) (-546 1243796 1246612 1246739 "INT" 1246776 T INT (NIL) -8 NIL NIL NIL) (-545 1238813 1241485 1241513 "INS" 1242447 T INS (NIL) -9 NIL 1243112 NIL) (-544 1236053 1236824 1237798 "INS-" 1237871 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1234901 1235106 1235382 "INPSIGN" 1235828 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1234019 1234136 1234333 "INPRODPF" 1234781 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1232913 1233030 1233267 "INPRODFF" 1233899 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1231913 1232065 1232325 "INNMFACT" 1232749 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1231110 1231207 1231395 "INMODGCD" 1231812 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1229619 1229863 1230187 "INFSP" 1230855 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1228803 1228920 1229103 "INFPROD0" 1229499 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1228413 1228473 1228571 "INFORM1" 1228738 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-535 1225295 1226478 1226993 "INFORM" 1227906 T INFORM (NIL) -8 NIL NIL NIL) (-534 1224818 1224907 1225021 "INFINITY" 1225201 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1223994 1224538 1224639 "INETCLTS" 1224737 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1222611 1222860 1223181 "INEP" 1223742 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1221887 1222508 1222573 "INDE" 1222578 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1221451 1221519 1221636 "INCRMAPS" 1221814 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1220269 1220720 1220926 "INBFILE" 1221265 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1215580 1216505 1217449 "INBFF" 1219357 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1214488 1214757 1214785 "INBCON" 1215298 T INBCON (NIL) -9 NIL 1215564 NIL) (-526 1213740 1213963 1214239 "INBCON-" 1214244 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1213242 1213461 1213553 "INAST" 1213668 T INAST (NIL) -8 NIL NIL NIL) (-524 1212696 1212921 1213027 "IMPTAST" 1213156 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1209189 1212540 1212644 "IMATRIX" 1212649 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1207901 1208024 1208339 "IMATQF" 1209045 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1206121 1206348 1206685 "IMATLIN" 1207657 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1200749 1206045 1206103 "ILIST" 1206108 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1198702 1200609 1200722 "IIARRAY2" 1200727 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1194137 1198613 1198677 "IFF" 1198682 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1193511 1193754 1193870 "IFAST" 1194041 T IFAST (NIL) -8 NIL NIL NIL) (-516 1188554 1192803 1192991 "IFARRAY" 1193368 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1187761 1188458 1188531 "IFAMON" 1188536 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1187345 1187410 1187464 "IEVALAB" 1187671 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1187020 1187088 1187248 "IEVALAB-" 1187253 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1186297 1186909 1186984 "IDPOAMS" 1186989 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-511 1185631 1186186 1186261 "IDPOAM" 1186266 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-510 1185289 1185545 1185608 "IDPO" 1185613 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-509 1184374 1184624 1184677 "IDPC" 1185090 NIL IDPC (NIL T T) -9 NIL 1185239 NIL) (-508 1183870 1184266 1184339 "IDPAM" 1184344 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1183273 1183762 1183835 "IDPAG" 1183840 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1183041 1183188 1183238 "IDENT" 1183243 T IDENT (NIL) -8 NIL NIL NIL) (-505 1179296 1180144 1181039 "IDECOMP" 1182198 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1172170 1173219 1174266 "IDEAL" 1178332 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1171334 1171446 1171645 "ICDEN" 1172054 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1170433 1170814 1170961 "ICARD" 1171207 T ICARD (NIL) -8 NIL NIL NIL) (-501 1168493 1168806 1169211 "IBPTOOLS" 1170110 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1164127 1168113 1168226 "IBITS" 1168412 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1160850 1161426 1162121 "IBATOOL" 1163544 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1158630 1159091 1159624 "IBACHIN" 1160385 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1156507 1158476 1158579 "IARRAY2" 1158584 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1152660 1156433 1156490 "IARRAY1" 1156495 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1146663 1151072 1151553 "IAN" 1152199 T IAN (NIL) -8 NIL NIL NIL) (-494 1146174 1146231 1146404 "IALGFACT" 1146600 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1145702 1145815 1145843 "HYPCAT" 1146050 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1145240 1145357 1145543 "HYPCAT-" 1145548 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1144862 1145035 1145118 "HOSTNAME" 1145177 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1144707 1144744 1144785 "HOMOTOP" 1144790 NIL HOMOTOP (NIL T) -9 NIL 1144823 NIL) (-489 1141386 1142717 1142758 "HOAGG" 1143739 NIL HOAGG (NIL T) -9 NIL 1144418 NIL) (-488 1139980 1140379 1140905 "HOAGG-" 1140910 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1134040 1139575 1139724 "HEXADEC" 1139851 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1132788 1133010 1133273 "HEUGCD" 1133817 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1131891 1132625 1132755 "HELLFDIV" 1132760 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1130119 1131668 1131756 "HEAP" 1131835 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1129410 1129671 1129805 "HEADAST" 1130005 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1123337 1129325 1129387 "HDP" 1129392 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1117119 1122972 1123124 "HDMP" 1123238 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1116444 1116583 1116747 "HB" 1116975 T HB (NIL) -7 NIL NIL NIL) (-479 1109943 1116290 1116394 "HASHTBL" 1116399 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1109446 1109664 1109756 "HASAST" 1109871 T HASAST (NIL) -8 NIL NIL NIL) (-477 1107263 1109068 1109250 "HACKPI" 1109284 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1102985 1107116 1107229 "GTSET" 1107234 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1096513 1102863 1102961 "GSTBL" 1102966 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1088828 1095544 1095809 "GSERIES" 1096304 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1087995 1088386 1088414 "GROUP" 1088617 T GROUP (NIL) -9 NIL 1088751 NIL) (-472 1087361 1087520 1087771 "GROUP-" 1087776 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1085730 1086049 1086436 "GROEBSOL" 1087038 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1084670 1084932 1084983 "GRMOD" 1085512 NIL GRMOD (NIL T T) -9 NIL 1085680 NIL) (-469 1084438 1084474 1084602 "GRMOD-" 1084607 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1079764 1080792 1081792 "GRIMAGE" 1083458 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1078231 1078491 1078815 "GRDEF" 1079460 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1077675 1077791 1077932 "GRAY" 1078110 T GRAY (NIL) -7 NIL NIL NIL) (-465 1076888 1077268 1077319 "GRALG" 1077472 NIL GRALG (NIL T T) -9 NIL 1077565 NIL) (-464 1076549 1076622 1076785 "GRALG-" 1076790 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1073353 1076134 1076312 "GPOLSET" 1076456 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1072707 1072764 1073022 "GOSPER" 1073290 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1068466 1069145 1069671 "GMODPOL" 1072406 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1067471 1067655 1067893 "GHENSEL" 1068278 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1061522 1062365 1063392 "GENUPS" 1066555 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1061219 1061270 1061359 "GENUFACT" 1061465 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1060631 1060708 1060873 "GENPGCD" 1061137 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1060105 1060140 1060353 "GENMFACT" 1060590 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1058673 1058928 1059235 "GENEEZ" 1059848 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1052617 1058284 1058446 "GDMP" 1058596 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1042016 1046388 1047494 "GCNAALG" 1051600 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1040443 1041271 1041299 "GCDDOM" 1041554 T GCDDOM (NIL) -9 NIL 1041711 NIL) (-451 1039913 1040040 1040255 "GCDDOM-" 1040260 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1028533 1030859 1033251 "GBINTERN" 1037604 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-449 1026370 1026662 1027083 "GBF" 1028208 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-448 1025151 1025316 1025583 "GBEUCLID" 1026186 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-447 1023823 1024008 1024312 "GB" 1024930 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-446 1023172 1023297 1023446 "GAUSSFAC" 1023694 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1021539 1021841 1022155 "GALUTIL" 1022891 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1019847 1020121 1020445 "GALPOLYU" 1021266 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1017212 1017502 1017909 "GALFACTU" 1019544 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1009018 1010517 1012125 "GALFACT" 1015644 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1006406 1007064 1007092 "FVFUN" 1008248 T FVFUN (NIL) -9 NIL 1008968 NIL) (-440 1005672 1005854 1005882 "FVC" 1006173 T FVC (NIL) -9 NIL 1006356 NIL) (-439 1005342 1005497 1005565 "FUNDESC" 1005624 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1004984 1005139 1005220 "FUNCTION" 1005294 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1003802 1004285 1004488 "FTEM" 1004801 T FTEM (NIL) -8 NIL NIL NIL) (-436 1001585 1002133 1002596 "FT" 1003359 T FT (NIL) -8 NIL NIL NIL) (-435 999841 1000130 1000534 "FSUPFACT" 1001276 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 998238 998527 998859 "FST" 999529 T FST (NIL) -8 NIL NIL NIL) (-433 997409 997515 997710 "FSRED" 998120 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 996088 996343 996697 "FSPRMELT" 997124 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 993173 993611 994110 "FSPECF" 995651 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 992687 992741 992918 "FSINT" 993114 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-429 991014 991680 991983 "FSERIES" 992466 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-428 990028 990144 990375 "FSCINT" 990894 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-427 989070 989213 989440 "FSAGG2" 989881 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-426 985304 988014 988055 "FSAGG" 988425 NIL FSAGG (NIL T) -9 NIL 988684 NIL) (-425 983066 983667 984463 "FSAGG-" 984558 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-424 980721 981000 981554 "FS2UPS" 982784 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-423 979578 979749 980058 "FS2EXPXP" 980546 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 979160 979203 979358 "FS2" 979529 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-421 961249 969663 969703 "FS" 973551 NIL FS (NIL T) -9 NIL 975840 NIL) (-420 949980 952943 956972 "FS-" 957269 NIL FS- (NIL T T) -8 NIL NIL NIL) (-419 949406 949521 949673 "FRUTIL" 949860 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 944513 947124 947164 "FRNAALG" 948560 NIL FRNAALG (NIL T) -9 NIL 949167 NIL) (-417 940242 941296 942554 "FRNAALG-" 943304 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-416 939880 939923 940050 "FRNAAF2" 940193 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-415 938287 938734 939029 "FRMOD" 939692 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-414 937482 937569 937858 "FRIDEAL2" 938194 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-413 935261 935865 936182 "FRIDEAL" 937273 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 934401 934808 934849 "FRETRCT" 934854 NIL FRETRCT (NIL T) -9 NIL 935030 NIL) (-411 933534 933758 934102 "FRETRCT-" 934107 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-410 930746 931922 931981 "FRAMALG" 932863 NIL FRAMALG (NIL T T) -9 NIL 933155 NIL) (-409 928880 929335 929965 "FRAMALG-" 930188 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-408 928516 928573 928680 "FRAC2" 928817 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-407 922494 927991 928267 "FRAC" 928272 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 922130 922187 922294 "FR2" 922431 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-405 913699 917706 919037 "FR" 920831 NIL FR (NIL T) -8 NIL NIL NIL) (-404 908376 911224 911252 "FPS" 912371 T FPS (NIL) -9 NIL 912928 NIL) (-403 907825 907934 908098 "FPS-" 908244 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 905281 906914 906942 "FPC" 907167 T FPC (NIL) -9 NIL 907309 NIL) (-401 905074 905114 905211 "FPC-" 905216 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 903952 904562 904603 "FPATMAB" 904608 NIL FPATMAB (NIL T) -9 NIL 904760 NIL) (-399 901652 902128 902554 "FPARFRAC" 903589 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 897085 897583 898265 "FORTRAN" 901084 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 894761 895323 895351 "FORTFN" 896411 T FORTFN (NIL) -9 NIL 897035 NIL) (-396 894525 894575 894603 "FORTCAT" 894662 T FORTCAT (NIL) -9 NIL 894724 NIL) (-395 892241 892741 893280 "FORT" 894006 T FORT (NIL) -7 NIL NIL NIL) (-394 892029 892059 892128 "FORMULA1" 892205 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-393 890162 890645 891035 "FORMULA" 891659 T FORMULA (NIL) -8 NIL NIL NIL) (-392 889685 889737 889910 "FORDER" 890104 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 888781 888945 889138 "FOP" 889512 T FOP (NIL) -7 NIL NIL NIL) (-390 887389 888061 888235 "FNLA" 888663 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 886144 886533 886561 "FNCAT" 887021 T FNCAT (NIL) -9 NIL 887281 NIL) (-388 885710 886103 886131 "FNAME" 886136 T FNAME (NIL) -8 NIL NIL NIL) (-387 884373 885302 885330 "FMTC" 885335 T FMTC (NIL) -9 NIL 885371 NIL) (-386 880734 881896 882525 "FMONOID" 883777 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 878158 878804 878832 "FMFUN" 879976 T FMFUN (NIL) -9 NIL 880684 NIL) (-384 875352 876186 876240 "FMCAT" 877435 NIL FMCAT (NIL T T) -9 NIL 877930 NIL) (-383 874621 874802 874830 "FMC" 875120 T FMC (NIL) -9 NIL 875302 NIL) (-382 873514 874387 874487 "FM1" 874566 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-381 872733 873256 873405 "FM" 873410 NIL FM (NIL T T) -8 NIL NIL NIL) (-380 870507 870923 871417 "FLOATRP" 872284 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 867945 868445 869023 "FLOATCP" 869974 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-378 861573 865674 866295 "FLOAT" 867344 T FLOAT (NIL) -8 NIL NIL NIL) (-377 860382 861186 861227 "FLINEXP" 861232 NIL FLINEXP (NIL T) -9 NIL 861325 NIL) (-376 859536 859771 860099 "FLINEXP-" 860104 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 858612 858756 858980 "FLASORT" 859388 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 855829 856671 856723 "FLALG" 857950 NIL FLALG (NIL T T) -9 NIL 858417 NIL) (-373 854871 855014 855241 "FLAGG2" 855682 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 848655 852357 852398 "FLAGG" 853660 NIL FLAGG (NIL T) -9 NIL 854312 NIL) (-371 847381 847720 848210 "FLAGG-" 848215 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 844356 845330 845389 "FINRALG" 846517 NIL FINRALG (NIL T T) -9 NIL 847025 NIL) (-369 843516 843745 844084 "FINRALG-" 844089 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 842922 843135 843163 "FINITE" 843359 T FINITE (NIL) -9 NIL 843466 NIL) (-367 835380 837541 837581 "FINAALG" 841248 NIL FINAALG (NIL T) -9 NIL 842701 NIL) (-366 830721 831762 832906 "FINAALG-" 834285 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 829405 829717 829771 "FILECAT" 830455 NIL FILECAT (NIL T T) -9 NIL 830671 NIL) (-364 828800 829160 829263 "FILE" 829335 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 826670 828162 828190 "FIELD" 828230 T FIELD (NIL) -9 NIL 828310 NIL) (-362 825290 825675 826186 "FIELD-" 826191 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 823168 823925 824272 "FGROUP" 824976 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 822258 822422 822642 "FGLMICPK" 823000 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 818127 822183 822240 "FFX" 822245 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 817728 817789 817924 "FFSLPE" 818060 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 817232 817268 817477 "FFPOLY2" 817686 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-356 813225 814004 814800 "FFPOLY" 816468 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 809113 813144 813207 "FFP" 813212 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 804276 808456 808646 "FFNBX" 808967 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-353 799252 803411 803669 "FFNBP" 804130 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-352 793922 798536 798747 "FFNB" 799085 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-351 792754 792952 793267 "FFINTBAS" 793719 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-350 788984 791161 791189 "FFIELDC" 791809 T FFIELDC (NIL) -9 NIL 792185 NIL) (-349 787647 788017 788514 "FFIELDC-" 788519 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-348 787217 787262 787386 "FFHOM" 787589 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-347 784915 785399 785916 "FFF" 786732 NIL FFF (NIL T) -7 NIL NIL NIL) (-346 780570 784657 784758 "FFCGX" 784858 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-345 776240 780302 780409 "FFCGP" 780513 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-344 771460 775967 776075 "FFCG" 776176 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-343 770871 770914 771149 "FFCAT2" 771411 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-342 752713 761742 761828 "FFCAT" 766993 NIL FFCAT (NIL T T T) -9 NIL 768444 NIL) (-341 747911 748958 750272 "FFCAT-" 751502 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 743346 747822 747886 "FF" 747891 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-339 732559 736318 737538 "FEXPR" 742198 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 731559 731994 732035 "FEVALAB" 732119 NIL FEVALAB (NIL T) -9 NIL 732380 NIL) (-337 730718 730928 731266 "FEVALAB-" 731271 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 727784 728499 728614 "FDIVCAT" 730182 NIL FDIVCAT (NIL T T T T) -9 NIL 730619 NIL) (-335 727546 727573 727743 "FDIVCAT-" 727748 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-334 726766 726853 727130 "FDIV2" 727453 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-333 725359 726149 726352 "FDIV" 726665 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-332 724045 724304 724593 "FCPAK1" 725090 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 723173 723545 723686 "FCOMP" 723936 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 706910 710323 713861 "FC" 719655 T FC (NIL) -8 NIL NIL NIL) (-329 699491 703474 703514 "FAXF" 705316 NIL FAXF (NIL T) -9 NIL 706008 NIL) (-328 696770 697425 698250 "FAXF-" 698715 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 691870 696146 696322 "FARRAY" 696627 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 687130 689155 689208 "FAMR" 690231 NIL FAMR (NIL T T) -9 NIL 690691 NIL) (-325 686020 686322 686757 "FAMR-" 686762 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 685216 685942 685995 "FAMONOID" 686000 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 683028 683712 683765 "FAMONC" 684706 NIL FAMONC (NIL T T) -9 NIL 685092 NIL) (-322 681720 682782 682919 "FAGROUP" 682924 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 679515 679834 680237 "FACUTIL" 681401 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 678614 678799 679021 "FACTFUNC" 679325 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 671021 677865 678077 "EXPUPXS" 678470 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 668504 669044 669630 "EXPRTUBE" 670455 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 664698 665290 666027 "EXPRODE" 667843 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 659105 659692 660505 "EXPR2UPS" 663996 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 658741 658798 658905 "EXPR2" 659042 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 644176 657396 657824 "EXPR" 658345 NIL EXPR (NIL T) -8 NIL NIL NIL) (-313 635607 643308 643605 "EXPEXPAN" 644013 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 635114 635331 635422 "EXITAST" 635536 T EXITAST (NIL) -8 NIL NIL NIL) (-311 634941 635071 635100 "EXIT" 635105 T EXIT (NIL) -8 NIL NIL NIL) (-310 634568 634630 634743 "EVALCYC" 634873 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 634109 634227 634268 "EVALAB" 634438 NIL EVALAB (NIL T) -9 NIL 634542 NIL) (-308 633590 633712 633933 "EVALAB-" 633938 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 631058 632326 632354 "EUCDOM" 632909 T EUCDOM (NIL) -9 NIL 633259 NIL) (-306 629463 629905 630495 "EUCDOM-" 630500 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 629095 629152 629261 "ESTOOLS2" 629400 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 628846 628888 628968 "ESTOOLS1" 629047 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 616386 619144 621894 "ESTOOLS" 626116 T ESTOOLS (NIL) -7 NIL NIL NIL) (-302 616131 616163 616245 "ESCONT1" 616348 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-301 612506 613266 614046 "ESCONT" 615371 T ESCONT (NIL) -7 NIL NIL NIL) (-300 612181 612231 612331 "ES2" 612450 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-299 611811 611869 611978 "ES1" 612117 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-298 605716 607444 607472 "ES" 610240 T ES (NIL) -9 NIL 611649 NIL) (-297 600664 601950 603767 "ES-" 603931 NIL ES- (NIL T) -8 NIL NIL NIL) (-296 599880 600009 600185 "ERROR" 600508 T ERROR (NIL) -7 NIL NIL NIL) (-295 593385 599739 599830 "EQTBL" 599835 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 593017 593074 593183 "EQ2" 593322 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 585574 588331 589780 "EQ" 591601 NIL -3942 (NIL T) -8 NIL NIL NIL) (-292 580866 581912 583005 "EP" 584513 NIL EP (NIL T) -7 NIL NIL NIL) (-291 579448 579749 580066 "ENV" 580569 T ENV (NIL) -8 NIL NIL NIL) (-290 578627 579147 579175 "ENTIRER" 579180 T ENTIRER (NIL) -9 NIL 579226 NIL) (-289 575185 576636 577006 "EMR" 578426 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 574329 574514 574568 "ELTAGG" 574948 NIL ELTAGG (NIL T T) -9 NIL 575159 NIL) (-287 574048 574110 574251 "ELTAGG-" 574256 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 573837 573866 573920 "ELTAB" 574004 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 572963 573109 573308 "ELFUTS" 573688 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 572705 572761 572789 "ELEMFUN" 572894 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 572575 572596 572664 "ELEMFUN-" 572669 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 567466 570675 570716 "ELAGG" 571656 NIL ELAGG (NIL T) -9 NIL 572119 NIL) (-281 565751 566185 566848 "ELAGG-" 566853 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 564408 564688 564983 "ELABEXPR" 565476 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 557401 559075 559902 "EFUPXS" 563684 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 550978 552652 553462 "EFULS" 556677 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 548400 548758 549237 "EFSTRUC" 550610 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 537472 539037 540597 "EF" 546915 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 536573 536957 537106 "EAB" 537343 T EAB (NIL) -8 NIL NIL NIL) (-274 535782 536532 536560 "E04UCFA" 536565 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 534991 535741 535769 "E04NAFA" 535774 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 534200 534950 534978 "E04MBFA" 534983 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 533409 534159 534187 "E04JAFA" 534192 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 532620 533368 533396 "E04GCFA" 533401 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 531831 532579 532607 "E04FDFA" 532612 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 531040 531790 531818 "E04DGFA" 531823 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 525218 526565 527929 "E04AGNT" 529696 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 523924 524404 524444 "DVARCAT" 524919 NIL DVARCAT (NIL T) -9 NIL 525118 NIL) (-265 523128 523340 523654 "DVARCAT-" 523659 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 516069 522927 523056 "DSMP" 523061 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 515734 515793 515891 "DROPT1" 516004 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 510849 511975 513112 "DROPT0" 514617 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 505659 506794 507862 "DROPT" 509801 T DROPT (NIL) -8 NIL NIL NIL) (-260 504004 504329 504715 "DRAWPT" 505293 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 503637 503690 503808 "DRAWHACK" 503945 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502368 502637 502928 "DRAWCX" 503366 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 501884 501952 502103 "DRAWCURV" 502294 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492355 494314 496429 "DRAWCFUN" 499789 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 486942 487865 488944 "DRAW" 491329 NIL DRAW (NIL T) -7 NIL NIL NIL) (-254 483755 485637 485678 "DQAGG" 486307 NIL DQAGG (NIL T) -9 NIL 486580 NIL) (-253 472070 478733 478816 "DPOLCAT" 480668 NIL DPOLCAT (NIL T T T T) -9 NIL 481213 NIL) (-252 466960 468289 470230 "DPOLCAT-" 470235 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 460122 466821 466919 "DPMO" 466924 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 453187 459902 460069 "DPMM" 460074 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 452819 453106 453154 "DOMCTOR" 453159 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 452114 452341 452478 "DOMAIN" 452702 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 445896 451749 451901 "DMP" 452015 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 445496 445552 445696 "DLP" 445834 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 439368 444823 445013 "DLIST" 445338 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 436213 438221 438262 "DLAGG" 438812 NIL DLAGG (NIL T) -9 NIL 439042 NIL) (-243 435026 435656 435684 "DIVRING" 435776 T DIVRING (NIL) -9 NIL 435859 NIL) (-242 434263 434453 434753 "DIVRING-" 434758 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 432365 432722 433128 "DISPLAY" 433877 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 431213 431416 431681 "DIRPROD2" 432158 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 425162 431127 431190 "DIRPROD" 431195 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 414432 420377 420430 "DIRPCAT" 420840 NIL DIRPCAT (NIL NIL T) -9 NIL 421680 NIL) (-237 411758 412400 413281 "DIRPCAT-" 413618 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 411045 411205 411391 "DIOSP" 411592 T DIOSP (NIL) -7 NIL NIL NIL) (-235 407747 409957 409998 "DIOPS" 410432 NIL DIOPS (NIL T) -9 NIL 410661 NIL) (-234 407296 407410 407601 "DIOPS-" 407606 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 406188 406782 406810 "DIFRING" 406997 T DIFRING (NIL) -9 NIL 407107 NIL) (-232 405834 405911 406063 "DIFRING-" 406068 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 403639 404877 404918 "DIFEXT" 405281 NIL DIFEXT (NIL T) -9 NIL 405575 NIL) (-230 401924 402352 403018 "DIFEXT-" 403023 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 399246 401456 401497 "DIAGG" 401502 NIL DIAGG (NIL T) -9 NIL 401522 NIL) (-228 398630 398787 399039 "DIAGG-" 399044 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 394094 397589 397866 "DHMATRIX" 398399 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 389706 390615 391625 "DFSFUN" 393104 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 384826 388637 388949 "DFLOAT" 389414 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 383054 383335 383731 "DFINTTLS" 384534 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 380118 381075 381475 "DERHAM" 382720 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 377967 379893 379982 "DEQUEUE" 380062 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 377182 377315 377511 "DEGRED" 377829 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 373757 374457 375265 "DEFINTRF" 376455 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 371396 371837 372408 "DEFINTEF" 373304 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 370773 371016 371131 "DEFAST" 371301 T DEFAST (NIL) -8 NIL NIL NIL) (-217 364833 370368 370517 "DECIMAL" 370644 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 362345 362803 363309 "DDFACT" 364377 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 361941 361984 362135 "DBLRESP" 362296 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 359840 360174 360534 "DBASE" 361708 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 359109 359320 359466 "DATAARY" 359739 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 358242 359068 359096 "D03FAFA" 359101 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 357376 358201 358229 "D03EEFA" 358234 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 355326 355792 356281 "D03AGNT" 356907 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 354642 355285 355313 "D02EJFA" 355318 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 353958 354601 354629 "D02CJFA" 354634 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 353274 353917 353945 "D02BHFA" 353950 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 352590 353233 353261 "D02BBFA" 353266 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 345788 347376 348982 "D02AGNT" 351004 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 343557 344079 344625 "D01WGTS" 345262 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 342652 343516 343544 "D01TRNS" 343549 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 341747 342611 342639 "D01GBFA" 342644 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 340842 341706 341734 "D01FCFA" 341739 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 339937 340801 340829 "D01ASFA" 340834 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339032 339896 339924 "D01AQFA" 339929 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 338127 338991 339019 "D01APFA" 339024 T D01APFA (NIL) -8 NIL NIL NIL) (-197 337222 338086 338114 "D01ANFA" 338119 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 336317 337181 337209 "D01AMFA" 337214 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 335412 336276 336304 "D01ALFA" 336309 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 334507 335371 335399 "D01AKFA" 335404 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 333602 334466 334494 "D01AJFA" 334499 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 326899 328450 330011 "D01AGNT" 332061 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 326236 326364 326516 "CYCLOTOM" 326767 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 322971 323684 324411 "CYCLES" 325529 T CYCLES (NIL) -7 NIL NIL NIL) (-189 322283 322417 322588 "CVMP" 322832 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320054 320312 320688 "CTRIGMNP" 322011 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 319590 319785 319886 "CTORKIND" 319973 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 318938 319197 319225 "CTORCAT" 319407 T CTORCAT (NIL) -9 NIL 319520 NIL) (-185 318536 318647 318806 "CTORCAT-" 318811 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 318052 318239 318337 "CTORCALL" 318458 T CTORCALL (NIL) -8 NIL NIL NIL) (-183 317543 317843 317917 "CTOR" 317998 T CTOR (NIL) -8 NIL NIL NIL) (-182 316917 317016 317169 "CSTTOOLS" 317440 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 312716 313373 314131 "CRFP" 316229 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 312218 312437 312529 "CRCEAST" 312644 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 311265 311450 311678 "CRAPACK" 312022 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 310649 310750 310954 "CPMATCH" 311141 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 310374 310402 310508 "CPIMA" 310615 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 306738 307410 308128 "COORDSYS" 309709 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 306122 306251 306401 "CONTOUR" 306608 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302050 304125 304617 "CONTFRAC" 305662 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 301930 301951 301979 "CONDUIT" 302016 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301103 301623 301651 "COMRING" 301656 T COMRING (NIL) -9 NIL 301708 NIL) (-171 300184 300461 300645 "COMPPROP" 300939 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 299845 299880 300008 "COMPLPAT" 300143 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 299481 299538 299645 "COMPLEX2" 299782 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 289556 299290 299399 "COMPLEX" 299404 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289274 289309 289407 "COMPFACT" 289515 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 273445 283656 283696 "COMPCAT" 284700 NIL COMPCAT (NIL T) -9 NIL 286096 NIL) (-165 262982 265898 269518 "COMPCAT-" 269874 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 262711 262739 262842 "COMMUPC" 262948 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 262506 262539 262598 "COMMONOP" 262672 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262110 262310 262385 "COMMAAST" 262451 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 261693 261861 261948 "COMM" 262043 T COMM (NIL) -8 NIL NIL NIL) (-160 260942 261136 261164 "COMBOPC" 261502 T COMBOPC (NIL) -9 NIL 261677 NIL) (-159 259838 260048 260290 "COMBINAT" 260732 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256036 256609 257249 "COMBF" 259260 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 254822 255152 255387 "COLOR" 255821 T COLOR (NIL) -8 NIL NIL NIL) (-156 254325 254543 254635 "COLONAST" 254750 T COLONAST (NIL) -8 NIL NIL NIL) (-155 253965 254012 254137 "CMPLXRT" 254272 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 253440 253665 253764 "CLLCTAST" 253886 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 248942 249970 251050 "CLIP" 252380 T CLIP (NIL) -7 NIL NIL NIL) (-152 247324 248048 248287 "CLIF" 248769 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 243546 245470 245511 "CLAGG" 246440 NIL CLAGG (NIL T) -9 NIL 246976 NIL) (-150 241968 242425 243008 "CLAGG-" 243013 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 241512 241597 241737 "CINTSLPE" 241877 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239013 239484 240032 "CHVAR" 241040 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 238256 238776 238804 "CHARZ" 238809 T CHARZ (NIL) -9 NIL 238824 NIL) (-146 238010 238050 238128 "CHARPOL" 238210 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237137 237690 237718 "CHARNZ" 237765 T CHARNZ (NIL) -9 NIL 237821 NIL) (-144 235126 235827 236162 "CHAR" 236822 T CHAR (NIL) -8 NIL NIL NIL) (-143 234852 234913 234941 "CFCAT" 235052 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234097 234208 234390 "CDEN" 234736 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230089 233250 233530 "CCLASS" 233837 T CCLASS (NIL) -8 NIL NIL NIL) (-140 229396 229539 229702 "CATEGORY" 229946 T -10 (NIL) -8 NIL NIL NIL) (-139 229028 229315 229363 "CATCTOR" 229368 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 228502 228728 228827 "CATAST" 228949 T CATAST (NIL) -8 NIL NIL NIL) (-137 228005 228223 228315 "CASEAST" 228430 T CASEAST (NIL) -8 NIL NIL NIL) (-136 227113 227261 227482 "CARTEN2" 227852 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 222165 223142 223895 "CARTEN" 226416 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 220507 221315 221572 "CARD" 221928 T CARD (NIL) -8 NIL NIL NIL) (-133 220110 220311 220386 "CAPSLAST" 220452 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 219482 219810 219838 "CACHSET" 219970 T CACHSET (NIL) -9 NIL 220047 NIL) (-131 218978 219274 219302 "CABMON" 219352 T CABMON (NIL) -9 NIL 219408 NIL) (-130 218478 218682 218792 "BYTEORD" 218888 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 213879 217983 218155 "BYTEBUF" 218326 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212883 213413 213555 "BYTE" 213718 T BYTE (NIL) -8 NIL NIL 213840) (-127 210442 212575 212682 "BTREE" 212809 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 207942 210090 210212 "BTOURN" 210352 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205361 207412 207453 "BTCAT" 207521 NIL BTCAT (NIL T) -9 NIL 207598 NIL) (-124 205028 205108 205257 "BTCAT-" 205262 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200320 204171 204199 "BTAGG" 204421 T BTAGG (NIL) -9 NIL 204582 NIL) (-122 199810 199935 200141 "BTAGG-" 200146 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 196856 199088 199303 "BSTREE" 199627 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 195994 196120 196304 "BRILL" 196712 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 192694 194720 194761 "BRAGG" 195410 NIL BRAGG (NIL T) -9 NIL 195668 NIL) (-118 191226 191631 192185 "BRAGG-" 192190 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 184511 190572 190756 "BPADICRT" 191074 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 182863 184448 184493 "BPADIC" 184498 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 182561 182591 182705 "BOUNDZRO" 182827 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 180182 180626 181146 "BOP1" 182074 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 175697 176788 177655 "BOP" 179335 T BOP (NIL) -8 NIL NIL NIL) (-112 174399 175121 175314 "BOOLEAN" 175524 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 173761 174139 174193 "BMODULE" 174198 NIL BMODULE (NIL T T) -9 NIL 174263 NIL) (-110 169591 173559 173632 "BITS" 173708 T BITS (NIL) -8 NIL NIL NIL) (-109 169003 169125 169267 "BINDING" 169469 T BINDING (NIL) -8 NIL NIL NIL) (-108 163066 168600 168748 "BINARY" 168875 T BINARY (NIL) -8 NIL NIL NIL) (-107 160893 162321 162362 "BGAGG" 162622 NIL BGAGG (NIL T) -9 NIL 162759 NIL) (-106 160724 160756 160847 "BGAGG-" 160852 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 159822 160108 160313 "BFUNCT" 160539 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 158506 158687 158975 "BEZOUT" 159646 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155025 157358 157688 "BBTREE" 158209 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 154759 154812 154840 "BASTYPE" 154959 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 154612 154640 154713 "BASTYPE-" 154718 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154046 154122 154274 "BALFACT" 154523 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 152929 153461 153647 "AUTOMOR" 153891 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 152655 152660 152686 "ATTREG" 152691 T ATTREG (NIL) -9 NIL NIL NIL) (-97 150934 151352 151704 "ATTRBUT" 152321 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 150569 150762 150828 "ATTRAST" 150886 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150105 150218 150244 "ATRIG" 150445 T ATRIG (NIL) -9 NIL NIL NIL) (-94 149914 149955 150042 "ATRIG-" 150047 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 149585 149745 149771 "ASTCAT" 149776 T ASTCAT (NIL) -9 NIL 149806 NIL) (-92 149312 149371 149490 "ASTCAT-" 149495 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 147509 149088 149176 "ASTACK" 149255 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146014 146311 146676 "ASSOCEQ" 147191 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145068 145673 145797 "ASP9" 145921 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 143959 144673 144815 "ASP80" 144957 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 143723 143907 143946 "ASP8" 143951 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 142699 143400 143518 "ASP78" 143636 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 141690 142379 142496 "ASP77" 142613 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 140624 141328 141459 "ASP74" 141590 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 139546 140259 140391 "ASP73" 140523 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 138467 139181 139313 "ASP7" 139445 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 137593 138293 138393 "ASP6" 138398 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136563 137270 137388 "ASP55" 137506 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135535 136237 136356 "ASP50" 136475 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134645 135236 135346 "ASP49" 135456 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 133452 134184 134352 "ASP42" 134534 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132251 132985 133155 "ASP41" 133339 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131361 131952 132062 "ASP4" 132172 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130333 131038 131156 "ASP35" 131274 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130098 130281 130320 "ASP34" 130325 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 129835 129902 129978 "ASP33" 130053 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128752 129470 129602 "ASP31" 129734 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128517 128700 128739 "ASP30" 128744 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128252 128321 128397 "ASP29" 128472 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128017 128200 128239 "ASP28" 128244 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 127782 127965 128004 "ASP27" 128009 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 126888 127480 127591 "ASP24" 127702 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 125987 126690 126802 "ASP20" 126807 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 124953 125661 125780 "ASP19" 125899 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 124690 124757 124833 "ASP12" 124908 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 123564 124289 124433 "ASP10" 124577 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 122674 123265 123375 "ASP1" 123485 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 120573 122518 122609 "ARRAY2" 122614 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119605 119778 119999 "ARRAY12" 120396 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115421 119253 119367 "ARRAY1" 119522 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 109780 111651 111726 "ARR2CAT" 114356 NIL ARR2CAT (NIL T T T) -9 NIL 115114 NIL) (-56 107214 107958 108912 "ARR2CAT-" 108917 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106808 107041 107120 "ARITY" 107153 T ARITY (NIL) -8 NIL NIL NIL) (-54 105556 105708 106014 "APPRULE" 106644 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105207 105255 105374 "APPLYORE" 105502 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104485 104608 104765 "ANY1" 105081 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 103459 103750 103945 "ANY" 104308 T ANY (NIL) -8 NIL NIL NIL) (-50 101024 101896 102223 "ANTISYM" 103183 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100539 100728 100825 "ANON" 100945 T ANON (NIL) -8 NIL NIL NIL) (-48 94680 99078 99532 "AN" 100103 T AN (NIL) -8 NIL NIL NIL) (-47 90936 92290 92341 "AMR" 93089 NIL AMR (NIL T T) -9 NIL 93689 NIL) (-46 90048 90269 90632 "AMR-" 90637 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74604 89965 90026 "ALIST" 90031 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71473 74198 74367 "ALGSC" 74522 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68029 68583 69190 "ALGPKG" 70913 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67306 67407 67591 "ALGMFACT" 67915 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63045 63730 64385 "ALGMANIP" 66829 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54462 62671 62821 "ALGFF" 62978 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53658 53789 53968 "ALGFACT" 54320 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52723 53289 53327 "ALGEBRA" 53332 NIL ALGEBRA (NIL T) -9 NIL 53373 NIL) (-37 52441 52500 52632 "ALGEBRA-" 52637 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34706 50443 50495 "ALAGG" 50631 NIL ALAGG (NIL T T) -9 NIL 50792 NIL) (-35 34242 34355 34381 "AHYP" 34582 T AHYP (NIL) -9 NIL NIL NIL) (-34 33173 33421 33447 "AGG" 33946 T AGG (NIL) -9 NIL 34225 NIL) (-33 32607 32769 32983 "AGG-" 32988 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30284 30706 31124 "AF" 32249 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29791 30009 30099 "ADDAST" 30212 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29060 29318 29474 "ACPLOT" 29653 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18408 26273 26324 "ACFS" 27035 NIL ACFS (NIL T) -9 NIL 27274 NIL) (-28 16422 16912 17687 "ACFS-" 17692 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 2e62d387..efc90bfc 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,1226 +1,305 @@
-(735720 . 3443721769)
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-363) (-147)))
- (-5 *2 (-640 (-2 (|:| -3311 (-767)) (|:| -3412 *4) (|:| |num| *4))))
- (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
+(727719 . 3444026016)
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1233 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1233 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546)))
+ (-5 *2 (-1256 (-407 (-546)))) (-5 *1 (-1284 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844)))
- (-5 *2 (-640 (-2 (|:| -1337 (-640 *3)) (|:| -4079 *5))))
- (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-844)))
- (-5 *2 (-640 (-2 (|:| -1337 (-640 *3)) (|:| -4079 *4))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3))
- (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225)))
- (-5 *1 (-699 *3)) (-4 *3 (-611 (-536))))))
-(((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5))
- (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 *3))))
- (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6))
- (-4 *7 (-651 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5))
- (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 (-649 *6 (-407 *6))))))
- (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 *4)) (-4 *4 (-555))
- (-5 *2 (-640 (-2 (|:| -2310 (-767)) (|:| |logand| *4))))
- (-5 *1 (-320 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563)))))
- (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4))
- (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208))
- (-4 *3 (-1093))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093))
- (-5 *2 (-563))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208))
- (-5 *2 (-563))))
- ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -4104 (-767))))
- (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4104 (-767))))
- (-4 *1 (-1059 *3 *4 *5)))))
+ (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546)))
+ (-5 *2 (-1256 (-546))) (-5 *1 (-1284 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7))
- (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))
- (-4 *7 (-1208)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169)))))
- (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169)))))
- (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169))
- (-5 *2 (-1097)) (-5 *1 (-397)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7))
- (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -1420 *3))))
- (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7))
- (-4 *8 (-651 (-407 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2
- (-640 (-2 (|:| |frac| (-407 *6)) (|:| -1420 (-649 *6 (-407 *6))))))
- (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-555))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-27) (-430 *4)))
- (-4 *4 (-13 (-846) (-555) (-1034 (-563))))
- (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2))
- (-4 *2 (-342 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208))
- (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093))
- (-4 *2 (-1208)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7))
- (-5 *2 (-2 (|:| -1957 (-684 *6)) (|:| |vec| (-1257 *5))))
- (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-555))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6))
- (-4 *6 (-13 (-27) (-430 *5)))
- (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7)))
- (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3))
- (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4))
- (-5 *1 (-267)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3)))
- (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-695 *3))
- (-4 *3 (-307)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3))
- (-4 *3 (-1208)))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045)))))
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-636 (-546))) (-5 *2 (-112))
+ (-5 *1 (-1284 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))))
+ (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-886 *4)) (-5 *1 (-170 *4 *5 *3))
+ (-4 *4 (-1094)) (-4 *3 (-166 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4))
- (-5 *1 (-806 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2))
- (-4 *2 (-1233 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6))
- (-4 *6 (-13 (-27) (-430 *5)))
- (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7)))
- (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3))
- (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4))
- (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789))
- (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555)))))
-(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-640 (-1169)))))
+ (-12 (-5 *3 (-637 (-1082 (-838 (-378)))))
+ (-5 *2 (-637 (-1082 (-838 (-225))))) (-5 *1 (-303))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-393))))
((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-640 (-1169)))))
- ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-410 *3 *4))
+ (-4 *4 (-1232 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363))
- (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-4 *2 (-342 *3 *4 *5))))
+ (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3))
+ (-5 *2 (-1256 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-418 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-2 (|:| -4013 (-640 (-407 *6))) (|:| -1957 (-684 *5))))
- (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-2 (|:| -4013 (-640 (-407 *6))) (|:| -1957 (-684 *5))))
- (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-555))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3)))
- (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555)))
- (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3))
- (-4 *5 (-651 (-407 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4))
- (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-555))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3551 (-778 *3)) (|:| |coef1| (-778 *3))
- (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -3551 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))))
-(((*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5))
- (-5 *2 (-640 (-2 (|:| -2668 *5) (|:| -1420 *3))))
- (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6))
- (-4 *7 (-651 (-407 *6))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2))
- (-4 *2 (-1233 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3551 (-778 *3)) (|:| |coef1| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -3551 *1) (|:| |coef1| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917))
- (-4 *2 (-1093)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *2 (-405 *1)) (-4 *1 (-421 *3)) (-4 *3 (-556)) (-4 *3 (-846))))
((*1 *1 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535))))
+ ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
((*1 *1 *2)
- (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4))
- (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1420 *5))))
- (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5))
- (-4 *6 (-651 (-407 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1612 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3551 (-778 *3)) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -3551 *1) (|:| |coef2| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
- (-4 *5 (-373 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2))
- (-14 *4 (-917))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767))
- (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2))
- (-4 *5 (-651 (-407 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1612 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555)))
- (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-1 (-225) (-225) (-225) (-225)))
- (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4))
- (-14 *3 (-917)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2))
- (-4 *5 (-651 (-407 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2))
- (-4 *3 (-651 (-407 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1612 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1) (-5 *1 (-1258))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093))))
+ (-12 (-5 *2 (-942 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5))
+ (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846))))
((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045))
- (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3412 *5) (|:| -2377 *5))))
- (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5))
- (-4 *6 (-651 (-407 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3412 *4) (|:| -2377 *4))))
- (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4))
- (-4 *6 (-651 (-407 *4)))))
+ (-3943
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546)))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3412 *5) (|:| -2377 *5))))
- (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5))
- (-4 *3 (-651 (-407 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3412 *4) (|:| -2377 *4))))
- (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4))
- (-4 *3 (-651 (-407 *4))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169))
- (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258))))
- ((*1 *1 *1) (-5 *1 (-1258))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563))
- (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172))
- (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5))
- (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789))
- (-4 *4 (-945 *8 *6 *5)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5))
- (-5 *1 (-803 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *3 (-651 *2)) (-4 *6 (-651 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5))
- (-5 *1 (-803 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2))
- (-4 *6 (-651 (-407 *2))))))
-(((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27))
- (-5 *2 (-640 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8)))
+ (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151))
+ (-5 *1 (-1063 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8)))
+ (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1174))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-1187))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-546)) (-5 *1 (-1187))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *5 (-637 (-1169))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-942 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *6 (-637 (-1169))) (-5 *2 (-942 (-1020 (-407 *4))))
+ (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-1163 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))
+ (-4 *4 (-13 (-844) (-307) (-147) (-1016))) (-14 *6 (-637 (-1169)))
+ (-5 *2 (-637 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))))))
+(((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3))
+ (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-405 (-1163 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1163 *7))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870))
- (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555)))))
-(((*1 *1)
- (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093))
- (-4 *4 (-661 *3))))
- ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-692))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225)))
- (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-802 *5 *6 *7 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-405 *1)) (-4 *1 (-946 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1257
- (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4196 (-563))
- (|:| -4174 (-563)) (|:| |spline| (-563)) (|:| -1342 (-563))
- (|:| |axesColor| (-870)) (|:| -3532 (-563))
- (|:| |unitsColor| (-870)) (|:| |showing| (-563)))))
- (-5 *1 (-1258)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1233 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))))
+ (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-405 *3))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-405 (-1163 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7))
+ (-5 *3 (-1163 (-407 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-405 *1)) (-4 *1 (-1212))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-405 *3)) (-5 *1 (-1236 *4 *3))
+ (-4 *3 (-13 (-1232 *4) (-556) (-10 -8 (-15 -3552 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *5 (-637 (-1169)))
+ (-5 *2 (-637 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))))
+ (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-637 (-1020 (-407 *4)))))
+ (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169)))
- (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5))
- (-4 *5 (-13 (-844) (-363)))))
+ (-12 (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-637 (-1169)))
+ (-5 *2 (-637 (-637 (-378)))) (-5 *1 (-1019)) (-5 *5 (-378))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *5 (-637 (-1169))) (-5 *2 (-637 (-637 (-1020 (-407 *4)))))
+ (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-637 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-14 *5 (-637 (-1169)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4))))))
+ (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-637 (-1169)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5))))))
+ (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169)))
+ (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5))))))
+ (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169)))
+ (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5))))))
+ (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169)))
+ (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4))))))
+ (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-637 (-942 *4))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-637 (-1169))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-1042 *5 *6)))
+ (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1193) (-955))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045))
- (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045))
- (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045))
- (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-844) (-307) (-147) (-1016))) (-5 *2 (-637 (-1042 *5 *6)))
+ (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-637 (-1169))) (-14 *7 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1016)))
+ (-5 *2 (-637 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-637 (-1169))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -3248 *5))))
- (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5))
- (-5 *1 (-216 *4 *5))))
+ (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1282 *4))
+ (-4 *4 (-1207))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-2 (|:| -2173 *5) (|:| -3871 (-563)))))
- (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5))
- (-5 *1 (-691 *5)))))
+ (-12 (-5 *3 (-1 (-637 (-1146 *5)) (-637 (-1146 *5)))) (-5 *4 (-546))
+ (-5 *2 (-637 (-1146 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1207)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4)))
- (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563))))))
- (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5))))
- (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3))
- (-4 *3 (-1045))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3))
- (-4 *3 (-1045)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))))
-(((*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767)))
- (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2173 *3) (|:| -3871 *4))))
- (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563))))))
- (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563)))))))
- (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 (-563)))))
- (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563))))))
- (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-545)))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
- (-5 *1 (-799)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923))
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563)))
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153))))
+ (-12 (-5 *4 (-915)) (-4 *6 (-13 (-556) (-846))) (-5 *2 (-637 (-314 *6)))
+ (-5 *1 (-221 *5 *6)) (-5 *3 (-314 *6)) (-4 *5 (-1045))))
+ ((*1 *2 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225))))))
+ (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1193)))
+ (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-637 *5))
+ (-5 *1 (-584 *4 *5))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4))
- (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
- ((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))
- ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
- (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1233 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1233 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2))
- (-5 *3 (-1169))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4))
- (-4 *4 (-1093))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
- (-5 *2
- (-2 (|:| -4196 (-767)) (|:| |curves| (-767))
- (|:| |polygons| (-767)) (|:| |constructs| (-767)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-640
- (-2
- (|:| -2387
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225))))
- (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225)))
- (|:| |g| (-316 (-225))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2556
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379)))))))
- (-5 *1 (-799)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *1) (-5 *1 (-1057))))
-(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093))))
- ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363))
- (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7))
- (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305))))
+ (-12 (-5 *3 (-582 (-407 (-942 *4))))
+ (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546))))
+ (-5 *2 (-637 (-314 *4))) (-5 *1 (-587 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844))
+ (-4 *2 (-1142 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193)))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3))))
- (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169))
- (-5 *1 (-1172))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067))))
- ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093))
- (-5 *2 (-640 (-2 (|:| -2556 *3) (|:| -1708 (-767))))))))
-(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379)))
- ((*1 *1) (-5 *1 (-379))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045))
- (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
+ (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846))
(-4 *4 (-1045)))))
-(((*1 *1) (-5 *1 (-799))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452))
- (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
- (-4 *5 (-13 (-363) (-844))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6))
- (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))))
-(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1169))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1193) (-955)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-640 *4))))
- (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169)))
- (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6))
- (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-796))
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-1031)))))
+ (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1278 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
+ (-5 *1 (-1281 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4))
- (-4 *4 (-1208)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112))
- (-5 *1 (-263)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870))
- (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258))
- (-5 *1 (-1261))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263)))
- (-5 *2 (-1258)) (-5 *1 (-1261)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6))
- (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *2 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2))
- (-4 *4 (-1233 (-407 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2))
- (-4 *2 (-1233 *3)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563))))
+ (-12 (-5 *2 (-637 (-2 (|:| |k| (-1169)) (|:| |c| (-1278 *3)))))
+ (-5 *1 (-1278 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4)))))
+ (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-546))))
((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-915))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172))))
((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-157))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193)))
- (-5 *1 (-227 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) (-5 *1 (-227 *3))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-722))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-722))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1105)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1105)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172))
- (-4 *6 (-238 (-3610 *3) (-767)))
+ (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-4372 *3) (-767)))
(-14 *7
- (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6))
- (-2 (|:| -2552 *5) (|:| -3311 *6))))
+ (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6))
+ (-2 (|:| -2542 *5) (|:| -2543 *6))))
(-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846))
- (-4 *2 (-945 *4 *6 (-860 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ (-4 *2 (-946 *4 *6 (-860 *3)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-536)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-535)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
((*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045))))
((*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045))))
((*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052))))
((*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-679 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-679 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3))
- (-4 *4 (-373 *3))))
+ (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-372 *3))
+ (-4 *4 (-372 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *2 (-373 *3))))
+ (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *2 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *1 *1) (-4 *1 (-716)))
((*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
((*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555))
+ (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-556))
(-5 *1 (-965 *3 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052))))
((*1 *1 *1 *1) (-4 *1 (-1105)))
@@ -1232,17138 +311,16180 @@
(-4 *2 (-238 *3 *4))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2))
- (-4 *2 (-945 *3 (-531 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204))))
+ (-4 *2 (-946 *3 (-531 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-722))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-722))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-546)) (-4 *1 (-1255 *3)) (-4 *3 (-1207)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-637 (-1169)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
+ (-14 *3 (-637 (-1169)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-637 (-1169))) (-4 *3 (-172)) (-4 *5 (-238 (-4372 *2) (-767)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *4) (|:| -2543 *5))
+ (-2 (|:| -2542 *4) (|:| -2543 *5))))
+ (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846))
+ (-4 *7 (-946 *3 *5 (-860 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846))))
+ ((*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722))))
+ ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-546))
+ (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8))
+ (-5 *1 (-136 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172))
+ (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870))
- (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468))
- (-5 *1 (-1261))))
+ (-12 (-5 *2 (-1 (-314 *3) (-314 *3))) (-4 *3 (-13 (-1045) (-846)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-637 (-1169)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263)))
- (-5 *2 (-468)) (-5 *1 (-1261)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3))
- (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208))
- (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767))
- (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-239 *6 *7 *5))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1207))
+ (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-293 *6)) (-5 *1 (-294 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-298))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208))
- (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-608 *6)) (-4 *6 (-298))
+ (-4 *2 (-1207)) (-5 *1 (-299 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-298)) (-4 *2 (-298))
+ (-5 *1 (-300 *5 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-5 *2 (-684 *6)) (-5 *1 (-305 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-314 *5)) (-4 *5 (-846)) (-4 *6 (-846))
+ (-5 *2 (-314 *6)) (-5 *1 (-315 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-333 *5 *6 *7 *8)) (-4 *5 (-363))
+ (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *9 (-363)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-407 *10)))
+ (-5 *2 (-333 *9 *10 *11 *12)) (-5 *1 (-334 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-342 *9 *10 *11))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) (-4 *6 (-1232 *5))
+ (-4 *7 (-1232 (-407 *6))) (-4 *9 (-1232 *8)) (-4 *2 (-342 *8 *9 *10))
+ (-5 *1 (-343 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7))
+ (-4 *10 (-1232 (-407 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *2 (-372 *6))
+ (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-372 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1045))
+ (-4 *4 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-405 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-405 *5)) (-4 *5 (-556)) (-4 *6 (-556))
+ (-5 *2 (-405 *6)) (-5 *1 (-406 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556))
+ (-5 *2 (-407 *6)) (-5 *1 (-408 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307))
+ (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) (-4 *8 (-13 (-410 *6 *7) (-1034 *6)))
+ (-4 *9 (-307)) (-4 *10 (-987 *9)) (-4 *11 (-1232 *10))
+ (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-410 *10 *11) (-1034 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-418 *6))
+ (-5 *1 (-416 *4 *5 *2 *6)) (-4 *4 (-418 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846)))
+ (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-421 *6)) (-5 *1 (-422 *5 *4 *6 *2))
+ (-4 *4 (-421 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-426 *6))
+ (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-426 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-846))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-363)) (-4 *6 (-363))
+ (-5 *2 (-582 *6)) (-5 *1 (-583 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -2297 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363))
+ (-4 *6 (-363)) (-5 *2 (-2 (|:| -2297 *6) (|:| |coeff| *6)))
+ (-5 *1 (-583 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363))
+ (-4 *2 (-363)) (-5 *1 (-583 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-363)) (-4 *6 (-363))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-583 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093))
- (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7))
+ (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-598 *8))
+ (-5 *1 (-596 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208))
- (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-598 *7))
+ (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8))
+ (-5 *1 (-596 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208))
- (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1146 *7))
+ (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8))
+ (-5 *1 (-596 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-637 *6)) (-5 *1 (-638 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208))
- (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-637 *6)) (-5 *5 (-637 *7))
+ (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-637 *8))
+ (-5 *1 (-640 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-372 *5))
+ (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10))
+ (-5 *1 (-682 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7))
+ (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045))
+ (-4 *8 (-1045)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10))
+ (-5 *1 (-682 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7))
+ (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1232 *5))
+ (-4 *2 (-1232 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1232 (-407 *6))) (-4 *8 (-1232 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846))
+ (-4 *6 (-789)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-789)) (-4 *4 (-946 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789))
+ (-4 *9 (-1045)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-789)) (-4 *4 (-946 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-5 *2 (-777 *6)) (-5 *1 (-778 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-792 *6))
+ (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-792 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-828 *6)) (-5 *1 (-829 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-5 *1 (-829 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-838 *6)) (-5 *1 (-839 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-5 *1 (-839 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-4 *7 (-1094)) (-5 *2 (-884 *5 *7)) (-5 *1 (-885 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-886 *6)) (-5 *1 (-888 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-5 *2 (-942 *6)) (-5 *1 (-943 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208))
- (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-563))))
- (-5 *2 (-2 (|:| -1747 (-1149 *4)) (|:| -1758 (-1149 *4))))
- (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4))
- (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-563))))
- (-5 *2 (-2 (|:| -1596 (-1149 *4)) (|:| -1607 (-1149 *4))))
- (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3))
- (-4 *3 (-963)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6)))
- (-4 *6 (-363))
- (-5 *2
- (-640
- (-2 (|:| |outval| *7) (|:| |outmult| (-563))
- (|:| |outvect| (-640 (-684 *7))))))
- (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225)))
- (-5 *2 (-1259)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2))
- (-4 *2 (-13 (-1093) (-10 -8 (-15 -1813 ($ $ $))))))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3))
- (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-846))
- (-5 *2
- (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4))))
- (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4))))))
- (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *1 (-1153 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6))
- (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225)))
- (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998))
- (-4 *2 (-1045)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))))
-(((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363))
- (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))
- ((*1 *1 *1 *1) (-4 *1 (-789))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4))
- (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225)))
- (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555))
- (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2))
- (-4 *6 (-651 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *1 (-685 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4))
- (-4 *4 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *1 (-1153 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312))
- (-5 *1 (-296)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3))))
- ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6)))
- (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045))
- (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5))
- (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3))
- (-4 *3 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4))
- (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4))
- (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208))
- (-4 *2 (-846))))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045))
+ (-4 *6 (-789))
+ (-4 *2
+ (-13 (-1094)
+ (-10 -8 (-15 -4254 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))))))
+ (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-954 *6)) (-5 *1 (-955 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1045)) (-4 *2 (-946 (-942 *4) *5 *6))
+ (-4 *5 (-789))
+ (-4 *6
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))))
+ (-5 *1 (-980 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-987 *6))
+ (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-987 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6))
+ (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409))
- (-4 *1 (-373 *3)) (-4 *3 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6))))
- (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6))
- (-5 *1 (-1250 *5 *6)))))
-(((*1 *1) (-5 *1 (-1057))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-363))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045))
- (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
- (-4 *7 (-238 *3 *5)))))
-(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *1) (-4 *1 (-349)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4))
- (-4 *4 (-13 (-555) (-846) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5)))
- (|:| |prim| (-1165 *5))))
- (-5 *1 (-432 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3))
- (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3))))
- (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563))
- (|:| |prim| (-1165 *5))))
- (-5 *1 (-956 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 *5)))
- (|:| |prim| (-1165 *5))))
- (-5 *1 (-956 *5))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767))
+ (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7))
+ (-4 *2 (-1048 *5 *6 *10 *11 *12))
+ (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
+ (-4 *12 (-238 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-844)) (-4 *5 (-1207))
+ (-4 *6 (-1207)) (-5 *2 (-637 *6)) (-5 *1 (-1083 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844))
+ (-4 *2 (-1142 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-1146 *6)) (-5 *1 (-1148 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169))
- (-4 *6 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| -2310 (-640 (-563))) (|:| |poly| (-640 (-1165 *6)))
- (|:| |prim| (-1165 *6))))
- (-5 *1 (-956 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363))
- (-4 *2 (-1233 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5))
- (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5))
- (-5 *1 (-1250 *5 *2)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3))
- (-4 *2 (-363))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2))
- (-4 *2 (-13 (-430 *4) (-998) (-1193)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193)))
- (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955)))))
-(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *1 *1) (-5 *1 (-1168)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2))
- (-4 *4 (-38 (-407 (-563)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045))
- (-5 *1 (-1153 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5))
- (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307))
- (-4 *3 (-555)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1))
- (-4 *1 (-409 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4))
- (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6))
- (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4))
- (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2))
- (-4 *4 (-38 (-407 (-563)))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2))
- (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555))
- (-4 *3 (-945 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| (-640 *3))))
- (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *3)) (-15 -2143 (*3 $)) (-15 -2153 (*3 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2))
- (-4 *2 (-1248 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4))
- (-5 *1 (-419 *4))))
- ((*1 *1 *1) (-5 *1 (-922)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922))))
- ((*1 *1 *1) (-5 *1 (-923)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))
- (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))
- (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2))
- (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210))
- (-5 *3 (-1169))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7))
+ (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1146 *8))
+ (-5 *1 (-1149 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169)))
- (-5 *1 (-267))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-640 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-640 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2618 *4) (|:| -4079 *4) (|:| |totalpts| (-563))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555))
- (-4 *8 (-945 *7 *5 *6))
- (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| *3)))
- (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *8)) (-15 -2143 (*8 $)) (-15 -2153 (*8 $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4))
- (-4 *4 (-38 (-407 (-563))))
- (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2))
- (-4 *2 (-682 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045))
- (-5 *2 (-684 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6))
- (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *9) (|:| |radicand| *9)))
- (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767))
- (-4 *9
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *8)) (-15 -2143 (*8 $)) (-15 -2153 (*8 $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4))
- (-4 *4 (-38 (-407 (-563))))
- (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1233 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5))
- (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3))
- (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4))
- (-14 *6 (-1257 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-5 *2 (-1163 *6)) (-5 *1 (-1164 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495))))
- (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4))
- (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2))
- (-4 *2 (-682 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045))
- (-5 *3 (-563)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-563))
- (-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))))
- (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-563))
- (-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))))
- (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555))
- (-4 *7 (-945 *3 *5 *6))
- (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *8) (|:| |radicand| *8)))
- (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $))))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-266 *3)) (-4 *5 (-789)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-563)) (-14 *4 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4))
- (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4)))
- (-5 *1 (-1250 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2))
- (-4 *2 (-682 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045))
- (-5 *3 (-563)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2)))
- (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3311 (-563)))) (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3311 (-888 *3))))
- (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3311 (-563))))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $))
- (-15 -2153 (*7 $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-640 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093))
- (-5 *2 (-640 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363))
- (-14 *4 (-989 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *1) (|partial| -4 *1 (-718)))
- ((*1 *1 *1) (|partial| -4 *1 (-722)))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1216 *5 *7 *9)) (-4 *5 (-1045))
+ (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1216 *6 *8 *10)) (-5 *1 (-1217 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1169))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363)))
- (-4 *2 (-1233 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379)))
- (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262))
- (-5 *1 (-784)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846))
- (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846))
- (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -3311 (-563))))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -3311 (-767))))
- (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -3311 (-767))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3311 (-563))))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $))
- (-15 -2153 (*7 $))))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349))
- (-5 *1 (-528 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-783)) (-5 *2 (-1031))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-783)) (-5 *2 (-1031))
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-430 *3))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-1223 *6)) (-5 *1 (-1224 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-844)) (-4 *5 (-1207))
+ (-4 *6 (-1207)) (-5 *2 (-1146 *6)) (-5 *1 (-1224 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1225 *5 *6)) (-14 *5 (-1169))
+ (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1225 *7 *8))
+ (-5 *1 (-1226 *5 *6 *7 *8)) (-14 *7 (-1169))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1232 *6))
+ (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1232 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1045))
+ (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1169))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1249 *6))
+ (-5 *1 (-1247 *5 *6 *4 *2)) (-4 *4 (-1249 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207))
+ (-5 *2 (-1256 *6)) (-5 *1 (-1257 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5))
+ (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1257 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846))
+ (-4 *4 (-1045))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4))
+ (-4 *4 (-842)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1093))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-546))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $))
- (-15 -2153 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-767))
- (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563))))))
- (-5 *1 (-246 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112))
- (-5 *1 (-1149 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1093))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $))
- (-15 -2153 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-815 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))))
-(((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))))
(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -3250 (-767)) (|:| |period| (-767))))
- (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1))
- (-4 *1 (-382 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-945 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))
- (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-815 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
- ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4))
- (-4 *3 (-793 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4))
- (-4 *3 (-988 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4))
- (-4 *3 (-993 *4))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))
- ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767)))))
+ (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846))
+ (-4 *2 (-172))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+ (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5))
- (-14 *3 (-767)) (-14 *4 (-767)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5))
+ (-4 *4 (-1094))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925))))
+ ((*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))))
-(((*1 *1 *1) (-5 *1 (-536))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))
- (-4 *2 (-452))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563)))
- (-5 *1 (-486 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-225))))
+ ((*1 *1 *1 *1)
+ (-3943 (-12 (-5 *1 (-293 *2)) (-4 *2 (-363)) (-4 *2 (-1207)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-473)) (-4 *2 (-1207)))))
+ ((*1 *1 *1 *1) (-4 *1 (-363)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-378))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1118 *3 (-608 *1))) (-4 *3 (-556)) (-4 *3 (-846))
+ (-4 *1 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-473)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-535)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-722) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-452)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))))
-(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363))
- (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546))))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-948 (-563))))
- (-5 *2
- (-2 (|:| |varOrder| (-640 (-1169)))
- (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed"))
- (|:| |hom| (-640 (-1257 (-767))))))
- (-5 *1 (-236)))))
+ (-12 (-4 *4 (-172)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-722) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-647 *2 *4 *3)) (-4 *2 (-713 *4))
+ (-4 *3 (|SubsetCategory| (-722) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-172)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-713 *4))
+ (-4 *2 (|SubsetCategory| (-722) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-767))) (-14 *5 (-767))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2))
+ (-4 *6 (-238 *3 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789))
+ (-14 *6 (-637 *3)) (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-637 (-767))) (-14 *8 (-767))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
((*1 *2 *1)
(-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-640 (-1169)))))
+ (-14 *4 (-637 (-1169)))))
((*1 *2 *1)
- (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-640 (-1169)))))
+ (-12 (-5 *2 (-546)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169)))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
(-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846))
- (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045))
- (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917))))
+ (-12 (-5 *3 (-1163 *8)) (-5 *4 (-637 *6)) (-4 *6 (-846))
+ (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-637 (-767)))
+ (-5 *1 (-321 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-915))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-767))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767))))
((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4))
- (-4 *4 (-1233 *3))))
+ (-12 (-4 *3 (-556)) (-5 *2 (-546)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3))))
((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767)))))
+ (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 (-767)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-5 *2 (-767))))
+ (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-5 *2 (-767))))
((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *2 (-788))))
+ (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788))))
((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767))))
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767))))
((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3))
- (-5 *2 (-563))))
+ (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1249 *3))
+ (-5 *2 (-546))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1218 *3))
+ (-5 *2 (-407 (-546)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-828 (-915)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-363)) (-14 *6 (-1256 (-684 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3936 'X) (-3936) (-694))) (-5 *1 (-61 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'JINT 'X 'ELAM) (-3936) (-694))))
+ (-5 *1 (-62 *3)) (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 'XC) (-694)))) (-5 *1 (-64 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3936) (-3936 'XC) (-694))) (-5 *1 (-66 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'X) (-3936 '-4379) (-694)))) (-5 *1 (-71 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 'X) (-694)))) (-5 *1 (-74 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3936) (-3936 'X) (-694))) (-5 *1 (-75 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'X 'EPS) (-3936 '-4379) (-694))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'EPS) (-3936 'YA 'YB) (-694))))
+ (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3936) (-3936 'X) (-694))) (-5 *1 (-78 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 'XC) (-694)))) (-5 *1 (-79 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936) (-3936 'X) (-694)))) (-5 *1 (-80 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'X) (-3936 '-4379) (-694)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'X '-4379) (-3936) (-694)))) (-5 *1 (-83 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-684 (-339 (-3936 'X '-4379) (-3936) (-694)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-684 (-339 (-3936 'X) (-3936) (-694)))) (-5 *1 (-85 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-339 (-3936 'X) (-3936) (-694)))) (-5 *1 (-86 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-684 (-339 (-3936 'XL 'XR 'ELAM) (-3936) (-694))))
+ (-5 *1 (-88 *3)) (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3936 'X) (-3936 '-4379) (-694))) (-5 *1 (-89 *3))
+ (-14 *3 (-1169))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))
+ (-14 *4 (-767)) (-4 *5 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))
+ (-14 *4 (-767))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 (-684 *4))) (-4 *4 (-172))
+ (-5 *2 (-1256 (-684 (-407 (-942 *4))))) (-5 *1 (-189 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085 (-314 *4))) (-4 *4 (-13 (-846) (-556) (-611 (-378))))
+ (-5 *2 (-1085 (-378))) (-5 *1 (-259 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-275))))
((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3))
- (-5 *2 (-407 (-563)))))
+ (-12 (-4 *2 (-1232 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1237 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3)))
+ (-14 *5 (-1169)) (-14 *6 *4)
+ (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)))
+ (-5 *1 (-313 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917)))))
+ (-12 (-5 *2 (-314 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169)))
+ (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-4 *2 (-329 *4)) (-5 *1 (-348 *3 *4 *2))
+ (-4 *3 (-329 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-4 *2 (-329 *4)) (-5 *1 (-348 *2 *4 *3))
+ (-4 *3 (-329 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
+ (-5 *2 (-1281 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
+ (-5 *2 (-1272 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-385))))
+ ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-394 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-397))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-168 (-378))))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void")))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-378)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-546)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-168 (-378)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-378))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-546))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-293 (-314 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1173))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-942 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-846))
+ (-4 *1 (-421 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-846))
+ (-4 *1 (-421 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-846)) (-4 *1 (-421 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1118 *3 (-608 *1))) (-4 *3 (-1045)) (-4 *3 (-846))
+ (-4 *1 (-421 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-13 (-172) (-38 (-407 (-546)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-546)))))
+ (-4 *3 (-13 (-846) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-434))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-436))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-694))) (-4 *1 (-440))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1765 (-637 (-330)))))
+ (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-4 *1 (-441))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-407 (-942 *3)))) (-4 *3 (-172))
+ (-14 *6 (-1256 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-915))
+ (-14 *5 (-637 (-1169)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1237 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3)
+ (-5 *1 (-474 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-524))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-603))))
+ ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915))))
+ ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-630 *3 *2)) (-4 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094)) (-5 *1 (-670 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-676))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3))
+ (-4 *2 (-372 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-689))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-696))) (-5 *1 (-689))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-689))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-546))) (-5 *1 (-689))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-689))))
+ ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-694))))
+ ((*1 *2 *3) (-12 (-5 *3 (-314 (-546))) (-5 *2 (-314 (-696))) (-5 *1 (-696))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| -4369 *3) (|:| -4353 *4)))) (-4 *3 (-1045))
+ (-4 *4 (-722)) (-5 *1 (-731 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-759))))
((*1 *1 *2)
(-12
(-5 *2
- (-2
- (|:| -2387
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (|:| -2556
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-558))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ (-5 *1 (-765))))
((*1 *1 *2)
(-12
(-5 *2
- (-2
- (|:| -2387
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (|:| -2556
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))))
- (-5 *1 (-799))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767))
- (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
+ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-765))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *1 (-765))))
+ ((*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-770 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-822))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))
+ (-5 *1 (-837))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))
+ (-5 *1 (-837))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (-5 *1 (-837))))
+ ((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-854))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 (-48))) (-5 *2 (-314 (-546))) (-5 *1 (-871))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 (-48)))) (-5 *2 (-314 (-546))) (-5 *1 (-871))))
+ ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-637 (-314 (-225))))
+ (|:| |constraints|
+ (-637
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767))
+ (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225)))
+ (|:| |dFinish| (-684 (-225))))))
+ (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151))
+ (|:| |tol| (-225))))
+ (-5 *1 (-894))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-898 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-898 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-405 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-477)) (-5 *2 (-314 *4)) (-5 *1 (-916 *4))
+ (-4 *4 (-13 (-846) (-556)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963))))
+ ((*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1029 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-637 *2))))
+ ((*1 *2 *3) (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-556))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2))
+ (-4 *2 (-946 *3 (-531 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4))
+ (-4 *4 (-946 *3 (-531 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1225 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3)
+ (-5 *1 (-1167 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1180 (-1169) (-436))) (-5 *1 (-1173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1045)) (-5 *1 (-1200 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1200 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1225 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3)
+ (-5 *1 (-1246 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1259)) (-5 *1 (-1258))))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1259))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
(-4 *4 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))))
-(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
+ (-4 *4 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
+ (-5 *1 (-1277 *3 *4)))))
(((*1 *1 *2)
(|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *1 (-659 *3 *4))))
+ (-5 *1 (-659 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4))
- (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+ (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
+ (-4 *4 (-172)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-421 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555)))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556)))
(-5 *1 (-158 *4 *2))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160))))
((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-5 *1 (-624 *3 *4 *5))
+ (-14 *5 (-915))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846))
+ (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-546))))
+ (-4 *3 (-846)) (-4 *4 (-172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-405 *4)) (-4 *4 (-556))
+ (-5 *2 (-637 (-2 (|:| -4369 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846))
+ (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-546))))
+ (-4 *3 (-846)) (-4 *4 (-172)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
(-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
(((*1 *2 *2 *1)
(-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
(-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789))
- (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1700 *6) (|:| |sol?| (-112))) (-563)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1233 *6))
- (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3)
- (-247 *3 (-407 (-563)))))
- (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))))
-(((*1 *1) (-5 *1 (-330))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+ (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
(((*1 *2 *2 *1)
(-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
(-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208))
- (-4 *2 (-1093)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555))
- (-5 *2 (-640 (-1257 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3352 (-1151))))
- (-5 *1 (-818)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2840 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-363)) (-4 *7 (-1233 *6))
- (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))))
-(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2))))
+ (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3))
- (-4 *3 (-611 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846))
- (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+ (-12 (-5 *4 (-546)) (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-112))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045))))
((*1 *2 *1)
- (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4))
- (-4 *4 (-1233 *3))))
+ (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722))))
((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555))
- (-5 *2 (-1165 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5))
- (-4 *4 (-1093)) (-4 *5 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2635 (-640 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-584 *3) *3 (-1169)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1169)))
- (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7))
- (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452))
- (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3))
- (-5 *1 (-572 *7 *3)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169))
- (-5 *5 (-839 *7))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6))
- (-4 *6 (-13 (-1193) (-29 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-224 *5 *6)))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))))
(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
((*1 *1 *1)
(-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846))
- (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917))))
+ (-4 *3 (-13 (-172) (-713 (-407 (-546))))) (-14 *4 (-915))))
((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
-(((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555))
- (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5))
- (-4 *4 (-1093)) (-4 *5 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846))
- (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1) (-5 *1 (-1262))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1193) (-29 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-224 *6 *4)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)) (-4 *4 (-172))))
+ (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
+ (-4 *4 (-172))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))
- (-4 *3 (-172)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846))
- (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-767)) (-5 *2 (-637 (-1169))) (-5 *1 (-210)) (-5 *3 (-1169))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-314 (-225))) (-5 *4 (-767)) (-5 *2 (-637 (-1169)))
+ (-5 *1 (-267))))
((*1 *2 *1)
- (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-637 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2)
- (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846))
- (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4))))))
+ (-12 (-5 *2 (-637 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-637 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1093)) (-4 *5 (-661 *4)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6))
- (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5))
- (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
- ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183))))
- ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-640 (-1169))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-789)) (-4 *2 (-266 *4)))))
+ (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-915)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-828 (-915))) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-915))))
+ ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-828 (-915))))))
+(((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-5 *2 (-767)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-350)) (-4 *4 (-329 *3)) (-4 *5 (-1232 *4))
+ (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-915))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-1275 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-546))))) (-4 *5 (-846))
+ (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1279 *5 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363))
- (-5 *2 (-684 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1257 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1233 *4)) (-5 *2 (-684 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4))))
+ (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789))
+ (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789))
+ (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 (-1270 *4 *5 *6 *7)))
+ (-5 *1 (-1270 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-5 *2 (-637 (-1270 *6 *7 *8 *9))) (-5 *1 (-1270 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7))
+ (-4 *4 (-1045)) (-14 *5 (-637 (-1169))) (-14 *6 (-637 *3)) (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1233 *4)) (-5 *2 (-684 *4))))
+ (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
+ (-14 *8 (-637 *5)) (-5 *2 (-1262)) (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-637 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))
((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3))
- (-5 *2 (-1257 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363))
- (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3))
- (-4 *3 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1133 *3 *2))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6))
- (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-410 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-1232 *3))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-5 *1 (-764 *4 *5)) (-4 *5 (-410 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-410 *3 *5)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131))
- (-5 *2 (-767))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093))))
- ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093))))
+ (-12 (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093))
- (-4 *4 (-23)) (-14 *5 *4)))
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-410 *3 *4))))
((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767))
- (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1257 (-684 *4)))))
+ (-12 (-4 *3 (-1232 (-546)))
+ (-5 *2
+ (-2 (|:| -2169 (-684 (-546))) (|:| |basisDen| (-546))
+ (|:| |basisInv| (-684 (-546)))))
+ (-5 *1 (-764 *3 *4)) (-4 *4 (-410 (-546) *3))))
((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
+ (-12 (-4 *3 (-350)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4))))
+ (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363))
- (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5))
- (-5 *4 (-684 (-407 (-948 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363))
- (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5))
- (-5 *4 (-684 (-948 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363))
- (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879))
- (-5 *3 (-640 (-563)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879))
- (-5 *3 (-640 (-563))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
+ (-12 (-4 *3 (-350)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4))
+ (-5 *2
+ (-2 (|:| -2169 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4))))
+ (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-410 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1200 *6))
+ (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1265 *6)) (-5 *5 (-1146 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-637 (-1200 *5)))
+ (-5 *1 (-1265 *5)) (-5 *4 (-1200 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1034 (-48)))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3))
- (-4 *3 (-1233 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1163 (-942 *4)) (-942 *4)))
+ (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1146 (-1146 (-942 *5))))
+ (-5 *1 (-1265 *5)) (-5 *4 (-1146 (-942 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+ (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1146 (-942 *4)) (-1146 (-942 *4))))
+ (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5))
- (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4)))))
-(((*1 *1) (-5 *1 (-291))))
+ (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1146 (-942 *4)) (-1146 (-942 *4))))
+ (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
+ (-12 (-14 *4 (-767)) (-4 *5 (-1207)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5))
+ (-4 *3 (-238 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))
((*1 *2)
- (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *1 *1) (-5 *1 (-858)))
+ (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
((*1 *2 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563)))
- (-5 *1 (-879)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4))
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-546))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
+ (-5 *2 (-546)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-915))))
+ ((*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(((*1 *1) (-5 *1 (-1262))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-225)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1261)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261))))
+ ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1261)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1260)))))
+(((*1 *1) (-5 *1 (-1260))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-637 (-261))) (-5 *1 (-1260))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1260))))
+ ((*1 *1 *1) (-5 *1 (-1260))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1260)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) (-4 *4 (-1045))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1259))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-261))) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-637 (-261))) (-5 *1 (-262))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-261))))
+ ((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *3 (-637 (-261))) (-5 *1 (-262))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-546)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-3 (|:| |overq| (-1165 (-407 (-563))))
- (|:| |overan| (-1165 (-48))) (|:| -4245 (-112))))
- (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))))
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4262 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1260)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1260)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-939 (-225)))) (-5 *1 (-1259)))))
+(((*1 *1) (-5 *1 (-1259))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-637 (-261))) (-5 *1 (-1259))))
+ ((*1 *1 *1) (-5 *1 (-1259))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-915)) (-5 *4 (-225)) (-5 *5 (-546)) (-5 *6 (-870))
+ (-5 *2 (-1262)) (-5 *1 (-1259)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3)))))
+ (-12
+ (-5 *2
+ (-1256
+ (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225))
+ (|:| |deltaY| (-225)) (|:| -4265 (-546)) (|:| -4263 (-546))
+ (|:| |spline| (-546)) (|:| -4294 (-546)) (|:| |axesColor| (-870))
+ (|:| -4266 (-546)) (|:| |unitsColor| (-870)) (|:| |showing| (-546)))))
+ (-5 *1 (-1259)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1256 (-3 (-468) "undefined"))) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-468)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-915)) (-5 *2 (-468)) (-5 *1 (-1259)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 (-378))) (-5 *3 (-637 (-261))) (-5 *1 (-262))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-468))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-378)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-468)) (-5 *4 (-915)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-915))
+ (-5 *6 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-1258))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-637 (-261)))
+ (-5 *2 (-1259)) (-5 *1 (-1258)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-915))
+ (-5 *6 (-637 (-261))) (-5 *2 (-468)) (-5 *1 (-1258))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1258))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-637 (-261))) (-5 *2 (-468))
+ (-5 *1 (-1258)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-59 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4408))
+ (-4 *1 (-151 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2))
+ (-4 *2 (-1207))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2))
+ (-4 *2 (-1207))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2161 (-1163 *4)) (|:| |deg| (-915))))
+ (-5 *1 (-221 *4 *5)) (-5 *3 (-1163 *4)) (-4 *5 (-13 (-556) (-846)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-767))
+ (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-240 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1232 *4))
+ (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-314 *2)) (-4 *2 (-556)) (-4 *2 (-846))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-336 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1232 *2))
+ (-4 *4 (-1232 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094))
+ (-5 *1 (-427 *5 *4 *2 *6)) (-4 *4 (-426 *5)) (-4 *6 (-426 *2))))
+ ((*1 *1 *1) (-5 *1 (-495)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-637 *5)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-638 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-372 *5))
+ (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2))
+ (-5 *1 (-682 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-681 *5 *6 *7))
+ (-4 *10 (-681 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-363))
+ (-4 *3 (-172)) (-4 *1 (-720 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-955 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-637 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767))
+ (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7))
+ (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
+ (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-1148 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *2 (-1059 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *2 (-1207))
+ (-5 *1 (-1257 *5 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1207)) (-4 *5 (-1207))
+ (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-767))
+ (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5))
+ (-5 *1 (-240 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-4 *2 (-372 *5))
+ (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-372 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-426 *5))
+ (-5 *1 (-427 *6 *4 *5 *2)) (-4 *4 (-426 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-637 *6)) (-4 *6 (-1207)) (-4 *5 (-1207))
+ (-5 *2 (-637 *5)) (-5 *1 (-638 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1207)) (-4 *5 (-1207))
+ (-5 *2 (-954 *5)) (-5 *1 (-955 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1207)) (-4 *3 (-1207))
+ (-5 *2 (-1146 *3)) (-5 *1 (-1148 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) (-4 *5 (-1207))
+ (-5 *2 (-1256 *5)) (-5 *1 (-1257 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-214 *2))
+ (-4 *2
+ (-13 (-846)
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $))
+ (-15 -2122 ((-1262) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-535)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-25)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1207)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-214 *2))
+ (-4 *2
+ (-13 (-846)
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $))
+ (-15 -2122 ((-1262) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-1045)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1207)) (-4 *3 (-1045)) (-5 *2 (-684 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-1045)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4))))
+ ((*1 *1 *1) (-4 *1 (-545)))
+ ((*1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-915)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1207)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1207))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5)))))
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-998)) (-4 *2 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1207)) (-4 *2 (-998)) (-4 *2 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-637 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1207))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4))
- (-4 *4 (-846)) (-5 *1 (-572 *4 *5)))))
+ (-12 (-5 *3 (-407 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-556)) (-4 *4 (-1045))
+ (-4 *2 (-1249 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) (-4 *6 (-653 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-637 *6)))
+ (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-653 *5)) (-4 *6 (-1249 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5))
- (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045))
- (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879))
- (-5 *3 (-640 (-563))))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
+ (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1232 *5))
+ (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-653 *2)) (-4 *3 (-1249 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563))))
- (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563)))))
- (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-4 *4 (-1045)) (-4 *3 (-1232 *4)) (-4 *2 (-1249 *4))
+ (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-653 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 (-1 *6 (-637 *6))))
+ (-4 *5 (-38 (-407 (-546)))) (-4 *6 (-1249 *5)) (-5 *2 (-637 *6))
+ (-5 *1 (-1250 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-637 *2))) (-5 *4 (-637 *5)) (-4 *5 (-38 (-407 (-546))))
+ (-4 *2 (-1249 *5)) (-5 *1 (-1250 *5 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-1250 *4 *2))
+ (-4 *4 (-38 (-407 (-546)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-1250 *4 *2))
+ (-4 *4 (-38 (-407 (-546)))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-637 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546))))
+ (-5 *2 (-1 (-1146 *4) (-637 (-1146 *4)))) (-5 *1 (-1250 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546))))
+ (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1250 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
- ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-38 (-407 (-546))))
+ (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1250 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1169))
- (-4 *5 (-13 (-555) (-1034 (-563)) (-147)))
- (-5 *2
- (-2 (|:| -2840 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5)))))
- (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5))))))
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-407 (-546)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-407 (-546)))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-546))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-546)))
+ (-4 *7 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-546)))
+ (-4 *3 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-407 (-546)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1223 (-407 (-546)))) (-5 *6 (-407 (-546)))
+ (-4 *8 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-407 (-546))))
+ (-5 *7 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *8)))
+ (-4 *8 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-4 *3 (-1045))
+ (-5 *1 (-593 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-4 *3 (-1045))
+ (-4 *1 (-1218 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-767)) (-5 *3 (-1146 (-2 (|:| |k| (-407 (-546))) (|:| |c| *4))))
+ (-4 *4 (-1045)) (-4 *1 (-1239 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-4 *1 (-1249 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045))
+ (-4 *1 (-1249 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-637 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-637 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722))))
+ ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-637 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1045)) (-5 *2 (-1146 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-546))) (-4 *3 (-1045)) (-5 *1 (-593 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-546))) (-4 *1 (-1218 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-546))) (-4 *1 (-1249 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846))
+ (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846))
+ (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-1249 *4)) (-4 *4 (-1045)) (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-1249 *4)) (-4 *4 (-1045)) (-5 *2 (-942 *4)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4))
- (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917))))
+ (-12 (-5 *3 (-407 (-546))) (-4 *4 (-1034 (-546))) (-4 *4 (-13 (-846) (-556)))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-134)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-546))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-407 (-546))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4))
+ (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1220 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-407 (-546))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1218 *4))
+ (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1241 *4 *5)) (-4 *6 (-979 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-284)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-5 *1 (-378)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-5 *1 (-1069 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1093))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))
- (-5 *1 (-1069 *3 *4 *2))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3))
+ (-12 (-5 *2 (-767)) (-4 *1 (-421 *3)) (-4 *3 (-846)) (-4 *3 (-1105))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-546))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-546)) (-4 *4 (-350)) (-5 *1 (-528 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-535))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-535))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094)) (-5 *1 (-677 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-363))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-643 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5))
+ (-4 *5 (-643 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-830 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-546)) (-5 *1 (-830 *4)) (-4 *4 (-1045))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-546)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-915))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085 (-838 *3))) (-4 *3 (-13 (-1193) (-956) (-29 *5)))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5)
- (|:| |f4| (-640 *5))))
- (-5 *1 (-1179 *6)) (-5 *4 (-640 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6))))
- (-5 *3 (-407 (-948 *6)))
- (-4 *6 (-13 (-555) (-1034 (-563)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-569 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563)))))
- (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))))
-(((*1 *1) (-5 *1 (-1078))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))
+ (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3)))
+ (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
+ (-5 *1 (-219 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1085 (-838 *3))) (-5 *5 (-1151))
+ (-4 *3 (-13 (-1193) (-956) (-29 *6)))
+ (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3))) (|:| |fail| #1#)
+ (|:| |pole| #2#)))
+ (-5 *1 (-219 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1085 (-838 (-314 *5))))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-3 (|:| |f1| (-838 (-314 *5))) (|:| |f2| (-637 (-838 (-314 *5))))
+ (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-407 (-942 *6))) (-5 *4 (-1085 (-838 (-314 *6))))
+ (-5 *5 (-1151))
+ (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-3 (|:| |f1| (-838 (-314 *6))) (|:| |f2| (-637 (-838 (-314 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085 (-838 (-407 (-942 *5))))) (-5 *3 (-407 (-942 *5)))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-3 (|:| |f1| (-838 (-314 *5))) (|:| |f2| (-637 (-838 (-314 *5))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1085 (-838 (-407 (-942 *6))))) (-5 *5 (-1151))
+ (-5 *3 (-407 (-942 *6)))
+ (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-3 (|:| |f1| (-838 (-314 *6))) (|:| |f2| (-637 (-838 (-314 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-3 *3 (-637 *3))) (-5 *1 (-430 *5 *3))
+ (-4 *3 (-13 (-1193) (-956) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378))
+ (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378))
+ (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *5 (-378))
+ (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-1082 (-838 (-378)))) (-5 *2 (-1031))
+ (-5 *1 (-564))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378)))))
+ (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-1082 (-838 (-378)))))
+ (-5 *5 (-378)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-314 (-378))) (-5 *4 (-1085 (-838 (-378))))
+ (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-314 (-378))) (-5 *4 (-1085 (-838 (-378))))
+ (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4))
+ (-5 *2 (-582 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-147))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546))))
+ (-5 *2 (-3 (-314 *5) (-637 (-314 *5)))) (-5 *1 (-587 *5))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045))
- (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2))
- (-4 *2 (-682 *3 *4 *5))))
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))
+ (-4 *3 (-38 (-407 (-546))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-407 (-546))))
+ (-4 *3 (-1045))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-4 *2 (-846))
+ (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045))
+ (-5 *1 (-1153 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-1200 *3)) (-4 *3 (-38 (-407 (-546))))
+ (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3943
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1218 *3)) (-4 *3 (-1045))
+ (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193))
+ (-4 *3 (-38 (-407 (-546))))))
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1218 *3)) (-4 *3 (-1045))
+ (-12 (|has| *3 (-15 -3474 ((-637 *2) *3)))
+ (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546))))))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546))))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169))
- (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4)))))
+ (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1237 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3943
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1239 *3)) (-4 *3 (-1045))
+ (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193))
+ (-4 *3 (-38 (-407 (-546))))))
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1239 *3)) (-4 *3 (-1045))
+ (-12 (|has| *3 (-15 -3474 ((-637 *2) *3)))
+ (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3943
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1249 *3)) (-4 *3 (-1045))
+ (-12 (-4 *3 (-29 (-546))) (-4 *3 (-956)) (-4 *3 (-1193))
+ (-4 *3 (-38 (-407 (-546))))))
+ (-12 (-5 *2 (-1169)) (-4 *1 (-1249 *3)) (-4 *3 (-1045))
+ (-12 (|has| *3 (-15 -3474 ((-637 *2) *3)))
+ (|has| *3 (-15 -4227 (*3 *3 *2))) (-4 *3 (-38 (-407 (-546))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-546)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-1225 *5 *4)) (-5 *1 (-1167 *4 *5 *6))
+ (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-1225 *5 *4)) (-5 *1 (-1246 *4 *5 *6))
+ (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))
+ ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
+ (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1232 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-582 *2)) (-5 *3 (-1169))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 (-767))) (-4 *1 (-896 *4))
+ (-4 *4 (-1094))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1216 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1237 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1246 *3 *4 *5))
+ (-4 *3 (-1045)) (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169))
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1246 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169))
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-1045)) (-5 *1 (-1153 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-546)) (-5 *1 (-1246 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169))
+ (-14 *5 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-303))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-1031))) (-5 *2 (-1031)) (-5 *1 (-303))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *1) (-5 *1 (-1057)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1147 *4))
+ (-4 *4 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
+ ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 (-546))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 (-546)) (-14 *5 (-767))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-767))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-767))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-767))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-767))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-546)) (-14 *4 (-767))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-846)
+ (-10 -8 (-15 -4214 ((-1151) $ *3)) (-15 -4032 ((-1262) $))
+ (-15 -2122 ((-1262) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-985)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-846)
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 ((-1262) $))
+ (-15 -2122 ((-1262) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1232 *3))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 *1)) (-4 *1 (-298))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1232 *2))
+ (-4 *4 (-1232 (-407 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-418 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-51)) (-5 *1 (-629))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-637 (-546))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-637 (-886 *4))) (-5 *1 (-886 *4))
+ (-4 *4 (-1094))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-898 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-915)) (-4 *2 (-363))
+ (-5 *1 (-989 *4 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2))
+ (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-915)) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-5 *1 (-1068 *4 *5 *2))
+ (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-915)) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-5 *1 (-1070 *4 *5 *2))
+ (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))
+ ((*1 *1 *1 *1) (-4 *1 (-1137)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-407 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-407 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-4 *3 (-556))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789))
+ (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1207))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3))
+ (-4 *3 (-1207))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1207))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1169)) (-5 *1 (-629))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1223 (-546))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2))
+ (-4 *2 (-1207))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-637 (-546))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2))
+ (-4 *2 (-1207))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2))
+ (-4 *2 (-1207))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3))
+ (-4 *3 (-1207))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2))
+ (-4 *2 (-1207)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1146 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1207)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1270 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-1078))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4))
- (-5 *3 (-640 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-5 *2 (-546)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3))
+ (-4 *3 (-1207)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)))
+ (-5 *2 (-838 *4)) (-5 *1 (-313 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)))
+ (-5 *2 (-838 *4)) (-5 *1 (-1243 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1193) (-421 *3))) (-14 *5 (-1169)) (-14 *6 *4))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-546)) (-636 (-546)) (-452)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1237 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6))
+ (|:| |%expTerms| (-637 (-2 (|:| |k| (-407 (-546))) (|:| |c| *4))))))
+ (|:| |%type| (-1151))))
+ (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-421 *3)))
+ (-14 *5 (-1169)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-407 (-546)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-407 (-546)))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-407 (-546)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1223 (-407 (-546)))) (-5 *6 (-407 (-546)))
+ (-4 *8 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-407 (-546))))
+ (-5 *7 (-407 (-546))) (-4 *3 (-13 (-27) (-1193) (-421 *8)))
+ (-4 *8 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-407 (-546))) (-4 *4 (-1045)) (-4 *1 (-1241 *4 *3))
+ (-4 *3 (-1218 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1218 *3))
+ (-5 *2 (-407 (-546))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1193) (-29 *5)))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147)))
- (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5))
- (-5 *3 (-407 (-948 *5))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3))
- (-4 *3 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1270 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))))
+ (-12 (-5 *4 (-546)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4)))
+ (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-546))
+ (-5 *2 (-51)) (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-546)))
+ (-4 *7 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-546)))
+ (-4 *3 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-546)) (-4 *4 (-1045)) (-4 *1 (-1220 *4 *3))
+ (-4 *3 (-1249 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093))
- (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+ (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1218 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-915)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-4 *1 (-1239 *3)) (-4 *3 (-1045)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-546))))
+ (-4 *4 (-13 (-1232 *3) (-556) (-10 -8 (-15 -3552 ($ $ $))))) (-4 *3 (-556))
+ (-5 *1 (-1236 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *1))))
+ (-4 *1 (-1065 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1212)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-1236 *3 *2))
+ (-4 *2 (-13 (-1232 *3) (-556) (-10 -8 (-15 -3552 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
+ (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| -4369 *3) (|:| -4353 *4)))) (-5 *1 (-731 *3 *4))
+ (-4 *3 (-1045)) (-4 *4 (-722))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
+ (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-241))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-1151))) (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *1 (-241))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
+ (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
+ (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-915))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-333 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
+ (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
+ (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-828 (-915)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-546)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1232 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4))
+ (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-767))
+ (-5 *1 (-907 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6))
+ (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-1232 (-407 *4)))
+ (-4 *6 (-342 (-407 (-546)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-333 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
+ (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
+ (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-4 *3 (-556)) (-5 *2 (-767))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
+(((*1 *1 *1) (-4 *1 (-1054)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-546))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-546))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-407 (-546))) (-5 *1 (-868 *4 *5)) (-5 *3 (-546))
+ (-4 *5 (-866 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-546)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1232 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -4361 (*2 (-1169)))) (-4 *2 (-1045)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-174 *3)) (-4 *3 (-307))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-669 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1232 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1171 (-407 (-546)))) (-5 *2 (-407 (-546))) (-5 *1 (-190))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-684 (-314 (-225)))) (-5 *3 (-637 (-1169)))
+ (-5 *4 (-1256 (-314 (-225)))) (-5 *1 (-205))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-293 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094))
+ (-4 *3 (-1207)) (-5 *1 (-293 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)) (-5 *1 (-293 *2))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-637 *1))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 (-1 *1 *1))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-637 *1))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-1 *1 *1))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-293 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-546))) (-5 *4 (-1171 (-407 (-546)))) (-5 *1 (-310 *2))
+ (-4 *2 (-38 (-407 (-546))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846))
+ (-4 *5 (-172))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-421 *5))
+ (-4 *5 (-846)) (-4 *5 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-637 *1)))
+ (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-767)))
+ (-5 *4 (-637 (-1 *1 (-637 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-846))
+ (-4 *5 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-637 (-767))) (-5 *4 (-637 (-1 *1 *1)))
+ (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-113))) (-5 *3 (-637 *1)) (-5 *4 (-1169))
+ (-4 *1 (-421 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-535)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1169)) (-4 *1 (-421 *4)) (-4 *4 (-846))
+ (-4 *4 (-611 (-535)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-535)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-1169))) (-4 *1 (-421 *3)) (-4 *3 (-846))
+ (-4 *3 (-611 (-535)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-535)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094))
+ (-4 *5 (-1207))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-407 (-942 *4))) (-5 *3 (-1169)) (-4 *4 (-556))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1169))) (-5 *4 (-637 (-407 (-942 *5))))
+ (-5 *2 (-407 (-942 *5))) (-4 *5 (-556)) (-5 *1 (-1036 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-293 (-407 (-942 *4)))) (-5 *2 (-407 (-942 *4))) (-4 *4 (-556))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-293 (-407 (-942 *4))))) (-5 *2 (-407 (-942 *4)))
+ (-4 *4 (-556)) (-5 *1 (-1036 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-1232 *4)) (-4 *4 (-1045)) (-5 *2 (-1256 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1045)) (-5 *2 (-1163 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1045)) (-4 *1 (-1232 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-946 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1)))
+ (-4 *1 (-1232 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-1045))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1232 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1232 *3)) (-4 *3 (-1045)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)))))
+(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1232 *2))
+ (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1232 *2)) (-4 *2 (-172)) (-5 *1 (-409 *3 *2 *4))
+ (-4 *3 (-410 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1232 *2)) (-5 *2 (-546)) (-5 *1 (-764 *3 *4))
+ (-4 *4 (-410 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *3 (-172))))
+ ((*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *3 (-172))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1045))
+ (-4 *3 (-556))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4369 *4) (|:| -2131 *3) (|:| -3292 *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-1059 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| -4369 *3) (|:| -2131 *1) (|:| -3292 *1)))
+ (-4 *1 (-1232 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280)))))
+ (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1232 *4))
+ (-5 *2 (-2 (|:| -1919 (-620 *4 *5)) (|:| -1918 (-407 *5))))
+ (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-452)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1232 *3)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1230 *4 *2))
+ (-4 *2 (-1232 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3)))
+ (-5 *1 (-1229 *4 *3)) (-4 *3 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7)))
- (-5 *1 (-1270 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555))
- (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9)))
- (-5 *1 (-1270 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-1075))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093))
- (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))))
+ (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-637 *3)) (-5 *1 (-1228 *4 *3))
+ (-4 *3 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+ (|partial| -12 (-4 *4 (-13 (-556) (-147)))
+ (-5 *2 (-2 (|:| -3530 *3) (|:| -3529 *3))) (-5 *1 (-1228 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-1232 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4))
- (-5 *3 (-640 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6))
- (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-567 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-987 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-987 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3))
+ (-4 *6 (-372 *4)) (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 *5)) (-4 *5 (-987 *4)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) (-5 *1 (-688 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5))
+ (-5 *2 (-2 (|:| -3674 *7) (|:| |rh| (-637 (-407 *6)))))
+ (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-637 (-407 *6))) (-4 *7 (-653 *6))
+ (-4 *3 (-653 (-407 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-987 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1227 *4 *5 *3))
+ (-4 *3 (-1232 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *4 (-987 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-372 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4))
+ (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 *5)) (-4 *5 (-987 *4)) (-4 *4 (-556)) (-5 *2 (-684 *4))
+ (-5 *1 (-688 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *4 (-987 *3)) (-5 *1 (-1227 *3 *4 *2))
+ (-4 *2 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7))
- (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3))
- (-14 *7 *3)))
+ (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-372 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
- (-14 *8 (-640 *5)) (-5 *2 (-1262))
- (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5))
- (-14 *9 (-640 *3)) (-14 *10 *3))))
+ (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 *4)) (-4 *4 (-987 *2)) (-4 *2 (-556))
+ (-5 *1 (-688 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-987 *2)) (-4 *2 (-556)) (-5 *1 (-1227 *2 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-777 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-952 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1045))
+ (-4 *2 (-788))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1163 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-556))
+ (-4 *3 (-1045))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-767)) (-5 *1 (-1225 *4 *3)) (-14 *4 (-1169)) (-4 *3 (-1045)))))
+(((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3))
- (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-546))
+ (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5))))))
- (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5)))
- (-14 *6 (-640 (-1169)))))
+ (-2 (|:| |contp| (-546))
+ (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546)))))))
+ (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-5 *2 (-405 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1232 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-767))) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4))))))
- (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4)))
- (-14 *5 (-640 (-1169)))))
+ (-12 (-5 *2 (-405 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1232 (-407 (-546))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-48))) (-5 *2 (-405 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1232 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-405 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-48))) (-4 *5 (-846)) (-4 *6 (-789))
+ (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1163 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-167 *4 *3))
+ (-4 *3 (-1232 (-168 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-1232 (-168 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-1232 (-168 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-5 *2 (-405 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1232 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-767))) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-637 (-767))) (-5 *5 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5))))))
- (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5)))
- (-14 *6 (-640 (-1169))))))
-(((*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3195))))
- (-5 *2 (-1031)) (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+ (-12 (-5 *4 (-767)) (-5 *2 (-405 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-405 (-168 (-546)))) (-5 *1 (-446)) (-5 *3 (-168 (-546)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))))
+ (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-405 *3))
+ (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-307)) (-5 *2 (-405 (-1163 *4))) (-5 *1 (-458 *4))
+ (-5 *3 (-1163 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
+ (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-405 *3))
+ (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1232 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-405 (-1163 *7)) (-1163 *7))) (-4 *7 (-13 (-307) (-147)))
+ (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-405 *3)) (-5 *1 (-540 *5 *6 *7 *3))
+ (-4 *3 (-946 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-405 (-1163 *7)) (-1163 *7))) (-4 *7 (-13 (-307) (-147)))
+ (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-946 *7 *6 *5))
+ (-5 *2 (-405 (-1163 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1163 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *6 (-1232 *5)) (-5 *2 (-637 (-650 (-407 *6)))) (-5 *1 (-654 *5 *6))
+ (-5 *3 (-650 (-407 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *5 (-1232 *4)) (-5 *2 (-637 (-650 (-407 *5)))) (-5 *1 (-654 *4 *5))
+ (-5 *3 (-650 (-407 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-637 (-667 *4)))
+ (-5 *1 (-667 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-546)) (-5 *2 (-637 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-350)) (-5 *2 (-405 *3))
+ (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-350)) (-4 *7 (-946 *6 *5 *4))
+ (-5 *2 (-405 (-1163 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1163 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789))
+ (-4 *5
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ "failed") (-1169))))))
+ (-4 *6 (-307)) (-5 *2 (-405 *3)) (-5 *1 (-726 *4 *5 *6 *3))
+ (-4 *3 (-946 (-942 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)))))
+ (-4 *6 (-556)) (-5 *2 (-405 *3)) (-5 *1 (-728 *4 *5 *6 *3))
+ (-4 *3 (-946 (-407 (-942 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147)))
+ (-5 *2 (-405 *3)) (-5 *1 (-729 *4 *5 *6 *3))
+ (-4 *3 (-946 (-407 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
+ (-5 *2 (-405 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-405 (-1163 *7))) (-5 *1 (-737 *4 *5 *6 *7))
+ (-5 *3 (-1163 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-405 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1232 (-407 (-546))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-405 *3)) (-5 *1 (-1038 *3))
+ (-4 *3 (-1232 (-407 (-942 (-546)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1232 (-407 (-546))))
+ (-4 *5 (-13 (-363) (-147) (-720 (-407 (-546)) *4))) (-5 *2 (-405 *3))
+ (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1232 (-407 (-942 (-546)))))
+ (-4 *5 (-13 (-363) (-147) (-720 (-407 (-942 (-546))) *4))) (-5 *2 (-405 *3))
+ (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1232 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-405 (-1163 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7))
+ (-5 *3 (-1163 (-407 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-405 *1)) (-4 *1 (-1212))))
+ ((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-546))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-867 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-546))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-546)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-866 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-546)) (-5 *1 (-868 *2 *3)) (-4 *3 (-866 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-546)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-1045))
+ (-4 *4 (-1249 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1220 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1249 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4))))
- (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555))
- (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563))))
- (-4 *5 (-1233 *4))
- (-5 *2 (-2 (|:| -2840 (-407 *5)) (|:| |coeff| (-407 *5))))
- (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-51)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-51)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-546))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-546))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-767)))
+ (-4 *7 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-767)))
+ (-4 *3 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-51))
+ (-5 *1 (-459 *7 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1093))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))
- (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-741)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+ (|partial| -12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1218 *4)) (-4 *4 (-1045)) (-4 *4 (-556))
+ (-5 *2 (-407 (-942 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1218 *4)) (-4 *4 (-1045)) (-4 *4 (-556))
+ (-5 *2 (-407 (-942 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915))))
+ ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214)))
+ ((*1 *1 *1 *1) (-5 *1 (-1215))))
+(((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915))))
+ ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214)))
+ ((*1 *1 *1 *1) (-5 *1 (-1215))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128)))
+ ((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172))))
+ ((*1 *1) (-4 *1 (-722))) ((*1 *1) (-5 *1 (-1169)))
+ ((*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-915))))
+ ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-915)))) ((*1 *1) (-5 *1 (-1213)))
+ ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215))))
+(((*1 *2 *3) (-12 (-5 *3 (-168 (-546))) (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546)))))
+ (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262))
- (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))))
-(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846))
- (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-5 *2 (-2 (|:| -3636 (-637 (-1169))) (|:| -3637 (-637 (-1169)))))
+ (-5 *1 (-1210)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2))
+ (-4 *2 (-1094))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-1209 *2)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112))
+ (-5 *1 (-1209 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3637 (-637 *3)) (|:| -3636 (-637 *3))))
+ (-5 *1 (-1209 *3)) (-4 *3 (-1094)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3))
- (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-407 (-563)))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-5 *2 (-1262)) (-5 *1 (-1209 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-741)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+ (-12 (-5 *4 (-546)) (-4 *5 (-350)) (-5 *2 (-405 (-1163 (-1163 *5))))
+ (-5 *1 (-1206 *5)) (-5 *3 (-1163 (-1163 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563)))
- (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5))
- (-4 *5 (-13 (-846) (-555) (-1034 (-563))))
- (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3)))))
-(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))))
+ (-12 (-4 *4 (-350)) (-5 *2 (-405 (-1163 (-1163 *4)))) (-5 *1 (-1206 *4))
+ (-5 *3 (-1163 (-1163 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4)))
- (-5 *1 (-1179 *4)) (-4 *4 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))))
+ (-12 (-4 *4 (-350)) (-5 *2 (-405 (-1163 (-1163 *4)))) (-5 *1 (-1206 *4))
+ (-5 *3 (-1163 (-1163 *4))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3))
+ (-4 *3 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-637 (-637 (-225)))) (-5 *4 (-225)) (-5 *2 (-637 (-939 *4)))
+ (-5 *1 (-1204)) (-5 *3 (-939 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *2 (-637 (-637 (-225)))) (-5 *1 (-1204)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-915)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-4372 *3) (-767)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *5))
+ (-2 (|:| -2542 *2) (|:| -2543 *5))))
+ (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846))
+ (-4 *7 (-946 *4 *5 (-860 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-225)) (-5 *5 (-546)) (-5 *2 (-1203 *3)) (-5 *1 (-786 *3))
+ (-4 *3 (-970))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1203 *2))
+ (-4 *2 (-970)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3735 (-637 *9)))) (-5 *3 (-637 *9))
+ (-4 *1 (-1202 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3735 (-637 *8)))) (-5 *3 (-637 *8))
+ (-4 *1 (-1202 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4276 (-637 *6)) (|:| -1853 (-637 *6)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-637 *7))) (-4 *1 (-1202 *4 *5 *6 *7))
+ (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-637 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8))
+ (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-1059 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *5 (-1059 *2 *3 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563))))
- (-4 *5 (-882 (-563)))
- (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-566 *5 *3)) (-4 *3 (-626))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132))
- (-4 *2 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563)))
- (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))))
- (-5 *1 (-566 *5 *2)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-846)) (-5 *2 (-948 *4))))
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 *10))
+ (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8))
+ (-4 *10 (-1102 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-625 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-637 (-1169)))
+ (-5 *2 (-637 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
+ (-5 *1 (-625 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8)))
+ (-5 *1 (-1023 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8)))
+ (-5 *1 (-1023 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-1065 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8)))
+ (-5 *1 (-1139 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8)))
+ (-5 *1 (-1139 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-637 (-2 (|:| -4276 *1) (|:| -1853 (-637 *7))))) (-5 *3 (-637 *7))
+ (-4 *1 (-1202 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-637 (-1169)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-846)) (-5 *2 (-948 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045))
- (-5 *2 (-948 *4))))
+ (-12 (-5 *3 (-637 (-915))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-915)) (-14 *5 (-989 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-314 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-556)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1232 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *5)) (-5 *3 (-637 (-767))) (-4 *1 (-736 *4 *5))
+ (-4 *4 (-1045)) (-4 *5 (-846))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 (-767))) (-4 *1 (-946 *4 *5 *6))
+ (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *2 (-846))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045))
- (-5 *2 (-948 *4)))))
+ (-12 (-5 *3 (-767)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1119 *4 *5 *2))
+ (-4 *4 (-1045)) (-4 *5 (-846))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-942 *4)) (-5 *1 (-1200 *4)) (-4 *4 (-1045)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-546))))
+ (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5))
+ (-4 *5 (-946 *4 (-531 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1200 *4))) (-5 *3 (-1169)) (-5 *1 (-1200 *4))
+ (-4 *4 (-38 (-407 (-546)))) (-4 *4 (-1045)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-611 (-886 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452)))
+ (-5 *1 (-1199 *3 *2)) (-4 *2 (-611 (-886 *3))) (-4 *2 (-882 *3))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846))
+ (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-314 (-546))) (-5 *1 (-1112))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-1193))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *4 *2)))))
+ (-12 (-4 *3 (-556)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3))
- (-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-168 (-314 *4)))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3))
- (-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4))))
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-168 *3)) (-5 *1 (-1197 *4 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-112))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3))
- (-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5))))
+ (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-112))
+ (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3))
- (-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-314 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563))))
- (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4)))
- (-4 *4 (-846)) (-5 *1 (-1179 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563))))
- (-4 *5 (-882 (-563)))
- (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-566 *5 *3)) (-4 *3 (-626))
- (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169))
- (-4 *2 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *5 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3))
- (-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1233 (-563)))
- (-5 *2
- (-2 (|:| -4013 (-684 (-563))) (|:| |basisDen| (-563))
- (|:| |basisInv| (-684 (-563)))))
- (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4))
- (-5 *2
- (-2 (|:| -4013 (-684 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-684 *4))))
- (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4))
- (-5 *2
- (-2 (|:| -4013 (-684 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-684 *4))))
- (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))
- ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563))))))
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-314 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846))
- (-5 *1 (-1179 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))))
- (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))
+ (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1193) (-421 (-168 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6))
- (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6))
- (-5 *5 (-1149 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846))
- (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307))
- (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3))))
+ ((*1 *1 *1) (-4 *1 (-1196))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-1194 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-637 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1094)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-637 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1094)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-13 (-846) (-556)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1193))))
+(((*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1151)) (-5 *2 (-546)) (-5 *1 (-1190 *4)) (-4 *4 (-1045)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-546)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-546))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-898 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4))
+ (-5 *2 (-546))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452)))
+ (-5 *2 (-546)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-838 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-546))
+ (-5 *1 (-1110 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151))
+ (-4 *6 (-13 (-556) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-546))
+ (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-452)) (-5 *2 (-546))
+ (-5 *1 (-1111 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-838 (-407 (-942 *6))))
+ (-5 *3 (-407 (-942 *6))) (-4 *6 (-452)) (-5 *2 (-546)) (-5 *1 (-1111 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-407 (-942 *6))) (-5 *4 (-1169)) (-5 *5 (-1151))
+ (-4 *6 (-452)) (-5 *2 (-546)) (-5 *1 (-1111 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-546)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-637 (-859)))) (-5 *1 (-113))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-637 (-859)))) (-5 *1 (-113))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563)))))
- (-4 *2 (-13 (-846) (-21))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169))
- (-4 *4 (-13 (-430 *7) (-27) (-1193)))
- (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
+ (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-846)
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $))
+ (-15 -2122 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-393))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1187))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-767)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3))))
+ ((*1 *1) (-5 *1 (-171)))
+ ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))
+ ((*1 *1) (-5 *1 (-393)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094))
+ (-4 *4 (-661 *3))))
+ ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045))))
+ ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045))))
+ ((*1 *1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1169)))
+ ((*1 *1) (-5 *1 (-1187))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1187)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-1186)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-282 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-282 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
+ (-2
+ (|:| -4275
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2233
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-559))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3)))
- (|:| |vals| (-640 *3))))
- (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5)))
- (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6))
- (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-307)))))
-(((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563)))))
- (-4 *2 (-13 (-846) (-21))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4))))
- (-5 *1 (-1179 *6)) (-5 *5 (-640 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-609 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169)))
- (-4 *2 (-13 (-430 *5) (-27) (-1193)))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093)))))
+ (-2
+ (|:| -4275
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (|:| -2233
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))))
+ (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
- (-4 *3 (-13 (-430 *4) (-998))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+ (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4)))
- (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9))))
- (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846))
- (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2058 *9))))
- (-5 *1 (-1066 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8)))
- (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8))
- (|:| |Lfact|
- (-640 (-2 (|:| -2173 (-1165 *8)) (|:| -3311 (-563)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-738 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-4 *1 (-865 *2))))
+ (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1094))
+ (-4 *5 (-1094)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1094))
+ (-4 *5 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| -4275 *3) (|:| -2233 *4)))) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *1 (-1184 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1193) (-29 *5))))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818)))))
+ (-12 (-5 *4 (-915)) (-5 *2 (-1163 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-363)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555)))
- (-5 *1 (-276 *4 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-266 *3)) (-4 *5 (-789)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5))))
- (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846))
- (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7))
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-637 (-637 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-637 (-637 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-637 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-846))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-640 (-2 (|:| -2173 (-1165 *9)) (|:| -3311 (-563)))))))
- (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)))))
-(((*1 *1 *1 *2)
- (-12
+ (-2 (|:| |f1| (-637 *4)) (|:| |f2| (-637 (-637 (-637 *4))))
+ (|:| |f3| (-637 (-637 *4))) (|:| |f4| (-637 (-637 (-637 *4))))))
+ (-5 *1 (-1179 *4)) (-5 *3 (-637 (-637 (-637 *4)))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-846)) (-5 *3 (-637 *6)) (-5 *5 (-637 *3))
(-5 *2
- (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858)))
- (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858)))
- (|:| |args| (-640 (-858)))))
- (-5 *1 (-1169))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767)))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-609 *3))
- (-4 *3 (-13 (-430 *5) (-27) (-1193)))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3)))
- (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452))))
- ((*1 *1 *1 *1) (-4 *1 (-452)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-767)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307))
- (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5))
- (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-307))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7))
- (-4 *7 (-945 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-917)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2))
- (-4 *2 (-1233 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-637 *5)) (|:| |f3| *5) (|:| |f4| (-637 *5))))
+ (-5 *1 (-1179 *6)) (-5 *4 (-637 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
+ (|partial| -12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6))
+ (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4))))
- (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307))
- (-4 *9 (-945 *8 *6 *7))
- (-5 *2 (-2 (|:| -3929 (-1165 *9)) (|:| |polval| (-1165 *8))))
- (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6))
- (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5)))
- (-5 *1 (-864 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5)))
- (-5 *1 (-864 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368)))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193)))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3)))))
+ (-12 (-4 *4 (-846)) (-5 *2 (-637 (-637 *4))) (-5 *1 (-1179 *4))
+ (-5 *3 (-637 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4))))
- (-5 *1 (-1265 *4)) (-4 *4 (-363)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6))
- (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))))
-(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
- (-4 *7 (-1233 (-407 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2829 *3)))
- (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |answer| (-407 *6)) (|:| -2829 (-407 *6))
- (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
- (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2)
- (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917))))
- ((*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1179 *4))
+ (-5 *3 (-637 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| -2173 (-1165 *6)) (|:| -3311 (-563)))))
- (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563))
- (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208))
- (-5 *2 (-640 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))
- (-14 *4 (-1169)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -1692 ($ *4)))))
- (-4 *4 (-844))
- (-4 *5
- (-13 (-1235 *2 *4) (-363) (-1193)
- (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $)))))
- (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452))))
- ((*1 *1 *1 *1) (-4 *1 (-452))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260))))
- ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-846)) (-5 *2 (-637 (-637 (-637 *4)))) (-5 *1 (-1179 *4))
+ (-5 *3 (-637 (-637 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-846)) (-5 *2 (-637 (-637 *4)))
+ (-5 *1 (-1179 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858)))))
+ (-12 (-5 *3 (-637 (-637 (-637 *4)))) (-5 *2 (-637 (-637 *4)))
+ (-5 *1 (-1179 *4)) (-4 *4 (-846)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-637 (-637 *4)))) (-5 *2 (-637 (-637 *4))) (-4 *4 (-846))
+ (-5 *1 (-1179 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 (-637 (-637 *4)))) (-5 *3 (-637 *4)) (-4 *4 (-846))
+ (-5 *1 (-1179 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-637 (-637 (-637 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-637 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1692 ($ *7)))))
- (-4 *7 (-844))
- (-4 *8
- (-13 (-1235 *3 *7) (-363) (-1193)
- (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8))
- (-14 *10 (-1169)))))
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-637 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-637 *4))))
+ (-5 *1 (-1179 *6)) (-5 *5 (-637 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 (-563)))))
- (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4))
+ (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-942 *5)))) (-5 *1 (-1177 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-407 (-942 (-546)))))
+ (-5 *2 (-637 (-637 (-293 (-942 *4))))) (-5 *1 (-380 *4))
(-4 *4 (-13 (-844) (-363)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563))))))
- (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4))
+ (-12 (-5 *3 (-637 (-293 (-407 (-942 (-546))))))
+ (-5 *2 (-637 (-637 (-293 (-942 *4))))) (-5 *1 (-380 *4))
(-4 *4 (-13 (-844) (-363)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4))))
+ (-12 (-5 *3 (-407 (-942 (-546)))) (-5 *2 (-637 (-293 (-942 *4))))
(-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 (-563)))))
- (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363)))))
+ (-12 (-5 *3 (-293 (-407 (-942 (-546))))) (-5 *2 (-637 (-293 (-942 *4))))
+ (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *5 (-1169))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1193) (-955)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-640 *4))))
- (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4))))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1193) (-956)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2169 (-637 *4))))
+ (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-653 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2))
- (-4 *2 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2))))
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 *2))
+ (-4 *2 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-653 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1257 *5) "failed"))
- (|:| -4013 (-640 (-1257 *5)))))
- (-5 *1 (-662 *5)) (-5 *4 (-1257 *5))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1257 *5) "failed"))
- (|:| -4013 (-640 (-1257 *5)))))
- (-5 *1 (-662 *5)) (-5 *4 (-1257 *5))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-5 *2 (-637 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2169 (-637 *7)))))
+ (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-637 *7)) (-4 *3 (-681 *5 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-684 *5)) (-4 *5 (-363))
(-5 *2
- (-640
- (-2 (|:| |particular| (-3 (-1257 *5) "failed"))
- (|:| -4013 (-640 (-1257 *5))))))
- (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5)))))
+ (-2 (|:| |particular| (-3 (-1256 *5) #2="failed"))
+ (|:| -2169 (-637 (-1256 *5)))))
+ (-5 *1 (-663 *5)) (-5 *4 (-1256 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363))
+ (-12 (-5 *3 (-637 (-637 *5))) (-4 *5 (-363))
(-5 *2
- (-640
- (-2 (|:| |particular| (-3 (-1257 *5) "failed"))
- (|:| -4013 (-640 (-1257 *5))))))
- (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5)))))
+ (-2 (|:| |particular| (-3 (-1256 *5) #2#)) (|:| -2169 (-637 (-1256 *5)))))
+ (-5 *1 (-663 *5)) (-5 *4 (-1256 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409))))
+ (-12 (-5 *3 (-684 *5)) (-4 *5 (-363))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))
+ (-637
+ (-2 (|:| |particular| (-3 (-1256 *5) #2#))
+ (|:| -2169 (-637 (-1256 *5))))))
+ (-5 *1 (-663 *5)) (-5 *4 (-637 (-1256 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409))))
- (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4409))))
+ (-12 (-5 *3 (-637 (-637 *5))) (-4 *5 (-363))
(-5 *2
- (-640
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4013 (-640 *7)))))
- (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7))
- (-4 *3 (-682 *5 *6 *7))))
+ (-637
+ (-2 (|:| |particular| (-3 (-1256 *5) #2#))
+ (|:| -2169 (-637 (-1256 *5))))))
+ (-5 *1 (-663 *5)) (-5 *4 (-637 (-1256 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-766 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4))))
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-766 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169))
- (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955)))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1169))
+ (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-956)))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169))
- (-4 *7 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7)))))
- (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7))))
+ (-4 *7 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7)))))
+ (-5 *1 (-798 *6 *7)) (-5 *4 (-1256 *7))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169))
- (-4 *6 (-13 (-29 *5) (-1193) (-955)))
- (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6))))
+ (-4 *6 (-13 (-29 *5) (-1193) (-956)))
+ (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-1256 *6))) (-5 *1 (-798 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114)))
- (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7)))))
- (-5 *1 (-798 *6 *7))))
+ (|partial| -12 (-5 *3 (-637 (-293 *7))) (-5 *4 (-637 (-113))) (-5 *5 (-1169))
+ (-4 *7 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7)))))
+ (-5 *1 (-798 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114)))
- (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1257 *7)) (|:| -4013 (-640 (-1257 *7)))))
- (-5 *1 (-798 *6 *7))))
+ (|partial| -12 (-5 *3 (-637 *7)) (-5 *4 (-637 (-113))) (-5 *5 (-1169))
+ (-4 *7 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -2169 (-637 (-1256 *7)))))
+ (-5 *1 (-798 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169))
- (-4 *7 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -4013 (-640 *7))) *7 "failed"))
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-113)) (-5 *5 (-1169))
+ (-4 *7 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2169 (-637 *7))) *7 #3="failed"))
(-5 *1 (-798 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1169))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -4013 (-640 *3))) *3 "failed"))
- (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955)))))
+ (-12 (-5 *4 (-113)) (-5 *5 (-1169))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2169 (-637 *3))) *3 #3#))
+ (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-956)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2))
- (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))))
+ (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-113)) (-5 *5 (-637 *2))
+ (-4 *2 (-13 (-29 *6) (-1193) (-956))) (-5 *1 (-798 *6 *2))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2))
- (-4 *2 (-13 (-29 *6) (-1193) (-955)))
- (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *1 (-798 *6 *2))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-293 *2)) (-5 *5 (-637 *2))
+ (-4 *2 (-13 (-29 *6) (-1193) (-956)))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *1 (-798 *6 *2))))
((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4))
+ (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4))
(-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4))
+ (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4))
(-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
+ (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378)))
+ (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4))
+ (-12 (-5 *3 (-1256 (-314 (-378)))) (-5 *4 (-378)) (-5 *5 (-637 *4))
(-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
+ (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378)))
+ (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
+ (-12 (-5 *3 (-1256 (-314 *4))) (-5 *5 (-637 (-378))) (-5 *6 (-314 (-378)))
+ (-5 *4 (-378)) (-5 *2 (-1031)) (-5 *1 (-801))))
((*1 *2 *3 *4 *5)
(|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -4013 (-640 *6))) "failed")
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-651 *6))
- (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -4013 (-684 *6))))
- (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6))))
+ (-5 *5
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2169 (-637 *6))) "failed") *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-653 *6))
+ (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -2169 (-684 *6))))
+ (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1256 *6))))
((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151))
- (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379))
- (-5 *2 (-1031)) (-5 *1 (-893))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151))
- (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031))
+ (-12 (-5 *4 (-767)) (-5 *6 (-637 (-637 (-314 *3)))) (-5 *7 (-1151))
+ (-5 *8 (-225)) (-5 *5 (-637 (-314 (-378)))) (-5 *3 (-378)) (-5 *2 (-1031))
(-5 *1 (-893))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-767)) (-5 *6 (-637 (-637 (-314 *3)))) (-5 *7 (-1151))
+ (-5 *5 (-637 (-314 (-378)))) (-5 *3 (-378)) (-5 *2 (-1031)) (-5 *1 (-893))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379)))
- (-5 *1 (-1019)) (-5 *4 (-379))))
+ (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *2 (-637 (-378))) (-5 *1 (-1019))
+ (-5 *4 (-378))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019))
- (-5 *4 (-379))))
+ (-12 (-5 *3 (-942 (-546))) (-5 *2 (-637 (-378))) (-5 *1 (-1019))
+ (-5 *4 (-378))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4))
- (-5 *3 (-316 *4))))
+ (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-314 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4))
- (-5 *3 (-294 (-316 *4)))))
+ (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1124 *4))
+ (-5 *3 (-293 (-314 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5))
- (-5 *3 (-294 (-316 *5)))))
+ (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1124 *5))
+ (-5 *3 (-293 (-314 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5))
- (-5 *3 (-316 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1169)))
- (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)))
- (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5))
- (-5 *3 (-640 (-294 (-316 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5))))))
- (-5 *1 (-1177 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5))
- (-5 *3 (-640 (-294 (-407 (-948 *5)))))))
+ (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-293 (-314 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-314 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1169)))
+ (-4 *5 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-637 (-637 (-293 (-314 *5))))) (-5 *1 (-1124 *5))
+ (-5 *3 (-637 (-293 (-314 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-1177 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1169))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-1177 *5))
+ (-5 *3 (-637 (-293 (-407 (-942 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4))))
+ (-12 (-5 *3 (-637 (-407 (-942 *4)))) (-4 *4 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-1177 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4))))))
- (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4)))))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 (-637 (-293 (-407 (-942 *4))))))
+ (-5 *1 (-1177 *4)) (-5 *3 (-637 (-293 (-407 (-942 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-555))
- (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5))
- (-5 *3 (-407 (-948 *5)))))
+ (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *5)))))
+ (-5 *1 (-1177 *5)) (-5 *3 (-407 (-942 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-555))
- (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5))
- (-5 *3 (-294 (-407 (-948 *5))))))
+ (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *5)))))
+ (-5 *1 (-1177 *5)) (-5 *3 (-293 (-407 (-942 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4)))))
- (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *4))))) (-5 *1 (-1177 *4))
+ (-5 *3 (-407 (-942 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4)))))
- (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1)))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1692 ($ *7)))))
- (-4 *7 (-844))
- (-4 *8
- (-13 (-1235 *3 *7) (-363) (-1193)
- (-10 -8 (-15 -4203 ($ $)) (-15 -2062 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8))
- (-14 *10 (-1169)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093))))
- ((*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
- (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-14 *6 (-1169)) (-14 *7 *3))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 (-293 (-407 (-942 *4))))) (-5 *1 (-1177 *4))
+ (-5 *3 (-293 (-407 (-942 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-546))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1084))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-312))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-1174)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1174))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-1174))) (-5 *1 (-1174)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093))
- (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| -2310 (-563)) (|:| |var| (-609 *1))))
- (-4 *1 (-430 *3)))))
(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174)))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1)))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4))
- (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379))))
- ((*1 *1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555))
- (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2))
- (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172))
- (-4 *1 (-367 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172))
- (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
- (-4 *4 (-1233 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861))))))
+ (-12 (-5 *2 (-3 (-546) (-225) (-1169) (-1151) (-1174))) (-5 *1 (-1174)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-637 (-280))) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1174)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4))
- (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $)))))
- (-4 *6 (-555)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
- ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291)))
- ((*1 *1) (-5 *1 (-858)))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2368)) (-5 *2 (-112)) (-5 *1 (-614))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2369)) (-5 *2 (-112)) (-5 *1 (-614))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2370)) (-5 *2 (-112)) (-5 *1 (-614))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2495)) (-5 *2 (-112)) (-5 *1 (-686 *4))
+ (-4 *4 (-610 (-859)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-859))) (-5 *2 (-112))
+ (-5 *1 (-686 *4))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-546))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-546))) (-5 *2 (-112)) (-5 *1 (-1174)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) ((*1 *1) (-5 *1 (-859)))
((*1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789))
- (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))
+ (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *4 *3))))
((*1 *1) (-5 *1 (-1078)))
((*1 *1)
- (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34)))))
+ (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
((*1 *1) (-5 *1 (-1172))) ((*1 *1) (-5 *1 (-1173))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1233 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *5 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *6 (-555))
- (-5 *2 (-2 (|:| -4092 (-948 *6)) (|:| -1315 (-948 *6))))
- (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
- ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208))))
- ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3331 (-640 (-858))) (|:| -4092 (-640 (-858)))
- (|:| |presup| (-640 (-858))) (|:| -3321 (-640 (-858)))
- (|:| |args| (-640 (-858)))))
- (-5 *1 (-1169)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-555)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1233 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5))
- (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846))
- (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))
- ((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998))
- (-4 *2 (-1045)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-555)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307))
- (-5 *1 (-179 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 *8))
- (-5 *4
- (-640
- (-2 (|:| -4013 (-684 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-684 *7)))))
- (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349))
- (-5 *2
- (-2 (|:| -4013 (-684 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-684 *7))))
- (-5 *1 (-498 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1233 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -2376 (-418 *3)) (|:| |special| (-418 *3))))
- (-5 *1 (-723 *5 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151))
- (-5 *1 (-241))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093))
- (-4 *4 (-1093))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-436)) (-5 *3 (-637 (-1169))) (-5 *4 (-1169)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1169)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-637 (-1169))) (-5 *1 (-1173)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-436)) (-5 *1 (-1173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1173)))))
(((*1 *2 *3 *1)
(-12 (-5 *3 (-434))
(-5 *2
- (-640
- (-3 (|:| -3352 (-1169))
- (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))
+ (-637
+ (-3 (|:| -3956 (-1169))
+ (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546)))))))))
(-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4))
- (-4 *4 (-13 (-430 *7) (-27) (-1193)))
- (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4)))
- (-4 *4 (-13 (-430 *7) (-27) (-1193)))
- (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3))))
- ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363)))
- (-4 *2 (-1233 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225))))))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-609 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2))
- (-4 *2 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-609 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169)))
- (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1))
- (-4 *1 (-1062 *4 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5))
- (-5 *2 (-684 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-684 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *1 *1) (-4 *1 (-656))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1173)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-640
- (-640
- (-3 (|:| -3352 (-1169))
- (|:| -3771 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))))
+ (-637
+ (-637
+ (-3 (|:| -3956 (-1169))
+ (|:| -3633 (-637 (-3 (|:| S (-1169)) (|:| P (-942 (-546))))))))))
(-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3))
- (-4 *3 (-13 (-430 *7) (-27) (-1193)))
- (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3))
- (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193)))
- (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858))
- (-4 *1 (-1008))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363)))
- (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307))
- (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5))
- (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3))
- (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-640 (-1169)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5))
- (-14 *5 (-917))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563)))))
- (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4))
- (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))
- ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1) (-4 *1 (-865 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *4 (-846)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3)))
- (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3)))
- (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3)))
- (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3))
- (-4 *3 (-13 (-844) (-363) (-1018)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363)))
- (-4 *3 (-1233 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3))
- (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))))
(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3)))
- (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555))))
- ((*1 *1 *1) (|partial| -4 *1 (-718))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 (-436)))))
+ (-5 *1 (-1173)))))
+(((*1 *1) (-5 *1 (-1172))))
+(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))))
+(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))))
+(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void"))) (-5 *2 (-1262))
+ (-5 *1 (-1172))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))
+ (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4325 #1#)))
+ (-5 *2 (-1262)) (-5 *1 (-1172)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1169)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 "void")))
+ (-5 *1 (-1172)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-1045)) (-5 *2 (-1256 *4))
+ (-5 *1 (-1170 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-915)) (-5 *2 (-1256 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1045)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))))
(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094))))
((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151))))
((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094))))
((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861))))
((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108))))
- ((*1 *1 *1) (-5 *1 (-1169))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-563))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-689))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-694))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563))))
- (-5 *4 (-316 (-696))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307))
- (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6)))
- (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6)))))
-(((*1 *1) (-5 *1 (-1172))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967))
- (-5 *3 (-640 (-563))))))
-(((*1 *1 *2)
+ ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1069 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) ((*1 *1 *1) (-5 *1 (-1169))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-640
- (-2
- (|:| -2387
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2556
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-558)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-767)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555))))
- ((*1 *1 *1) (|partial| -4 *1 (-718))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1233 *4)) (-5 *2 (-684 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4))
- (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3))
- (-5 *2 (-684 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
- ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1233 *4)) (-5 *2 (-684 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3))
- (-5 *2 (-684 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1612 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1) (-5 *1 (-558))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1612 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5))
- (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694))))
+ (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859)))
+ (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859)))
+ (|:| |args| (-637 (-859)))))
+ (-5 *1 (-1169)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2969 (-637 (-859))) (|:| -2784 (-637 (-859)))
+ (|:| |presup| (-637 (-859))) (|:| -2967 (-637 (-859)))
+ (|:| |args| (-637 (-859)))))
+ (-5 *1 (-1169))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-637 (-859)))) (-5 *1 (-1169)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-1169)))))
+(((*1 *1 *1) (-5 *1 (-859)))
((*1 *2 *1)
- (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846))
- (-14 *4
- (-1 (-112) (-2 (|:| -2552 *3) (|:| -3311 *2))
- (-2 (|:| -2552 *3) (|:| -3311 *2)))))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))))
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1150))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))))
+(((*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-1169)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
(-5 *1 (-1168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262))
- (-5 *1 (-1172))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262))
- (-5 *1 (-1172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3)))
- (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3)))
- (-5 *1 (-556 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3))
- (-4 *3 (-1233 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1233 *3)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *4)) (-4 *4 (-555)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-5 *2 (-1262)) (-5 *1 (-1172))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *1 *1) (-5 *1 (-1168)))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-314 (-546))) (|:| -3485 (-314 (-378)))
+ (|:| CF (-314 (-168 (-378)))) (|:| |switch| (-1168))))
+ (-5 *1 (-1168)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-546)) (-5 *2 (-859))
+ (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-859)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3))
+ (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1163 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1082 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846))
+ (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-546))))
+ (-5 *1 (-592 *6 *4 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *2 (-1262))
- (-5 *1 (-1172))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1169))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *2 (-1262))
- (-5 *1 (-1172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2))
- (-4 *2 (-1233 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1233 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563)))
- (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-134)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563))))
+ (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-546)))) (-5 *1 (-592 *5 *4 *6 *3))
+ (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3))
- (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-421 *4) (-160) (-27) (-1193)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3))
- (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5))
- (-4 *6 (-979 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *1) (-5 *1 (-379)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093))
- (-5 *1 (-677 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *1 (-685 *4))))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-421 *4) (-160) (-27) (-1193)))
+ (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-1161 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546))))
+ (-5 *2 (-407 (-942 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-942 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546))))
+ (-5 *2 (-3 (-407 (-942 *5)) (-314 *5))) (-5 *1 (-1162 *5))
+ (-5 *3 (-407 (-942 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085 (-942 *5))) (-5 *3 (-942 *5))
+ (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-407 *3))
+ (-5 *1 (-1162 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5)))
+ (-4 *5 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-3 *3 (-314 *5)))
+ (-5 *1 (-1162 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-887 *4 *5)) (-4 *5 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-151 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| -2543 (-767)) (|:| -4187 *4) (|:| |num| *4))))
+ (-4 *4 (-1232 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1="void")))
+ (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-112)) (-5 *1 (-436))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 #1#))) (-5 *3 (-637 (-1169)))
+ (-5 *4 (-112)) (-5 *1 (-436))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4))
- (-4 *4 (-643 *3))))
+ (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 (-637 *3)))) (-4 *3 (-1094)) (-5 *1 (-670 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045))
- (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *3))
+ (-2 (|:| -2542 *2) (|:| -2543 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1108)) (-5 *1 (-834))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 *4)))) (-4 *4 (-1094))
+ (-5 *1 (-884 *3 *4)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 *5)) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *2 (-637 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| |val| *4) (|:| -1695 *5))))
+ (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *2 (-637 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1695 *4))) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1133 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172))))
- ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4))
- (-4 *4 (-1233 *2)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+ (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3))
+ (-4 *2 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1133 *2 *3))) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3))
+ (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3))))
+ (-5 *1 (-1068 *3 *4 *2))
+ (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3))))
+ (-5 *1 (-1068 *3 *4 *2))
+ (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1233 *3)))))
-(((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1765 (-767)) (|:| -3443 (-767))))
- (-5 *1 (-767))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-556 *6 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-13 (-846) (-555))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2)
- (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1233 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563))))
- ((*1 *1 *1) (-5 *1 (-1113))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368))
- (-5 *2 (-767)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3232 *4))) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1169))
- (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-2 (|:| -2840 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-13 (-846) (-555))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-637 *1)) (-4 *1 (-1006 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2)
- (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1233 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563))))
- ((*1 *1 *1 *1) (-5 *1 (-1113))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-1045))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-917)) (-14 *5 (-989 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4))
- (-4 *4 (-1233 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722))))
+ (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5))
- (-4 *4 (-1045)) (-4 *5 (-846))))
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915)) (-4 *5 (-1045))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045))
- (-4 *2 (-846))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
+ (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4))
+ (-14 *3 (-915)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))))
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915)) (-4 *5 (-1045))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *2 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5))
- (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4))
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
+ (-5 *1 (-1157 *4 *5)) (-14 *4 (-915)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915)) (-4 *5 (-1045)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5))
+ (-14 *4 (-915)) (-4 *5 (-1045)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
(-4 *4 (-1045)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3232 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3245 *1) (|:| -4395 *1) (|:| |associate| *1)))
- (-4 *1 (-555)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))))
+ (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-312))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915)) (-4 *4 (-1045)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-915)) (-4 *3 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-1045)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563))))
- ((*1 *1 *1 *1) (-5 *1 (-1113))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563))))
- (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5))
- (-4 *5 (-945 *4 (-531 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4))
- (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *1 *1) (-4 *1 (-555))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302)))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3))
- (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225))))
- (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-640 (-316 (-225))))
- (|:| -2522 (-640 (-225)))))))
- (-5 *2 (-640 (-1151))) (-5 *1 (-267)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225)))
- (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404))
- (-5 *2 (-917)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563))))
- (-4 *2 (-172)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4))
- (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
- ((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1233 *3))))
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1233 *2))))
- ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4))
- (-4 *4 (-1093))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093))))
+ (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1232 *2))
+ (-4 *4 (-1232 (-407 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404))
- (-5 *2 (-917)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1623 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3))
- (-4 *3 (-13 (-404) (-1193)))))
- ((*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
- (-5 *7 (-684 (-563)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))))
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *3 (-452))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1232 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))
- ((*1 *1 *1) (-4 *1 (-402))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452))
- (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563))
- (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147)))
- (-5 *1 (-399 *3 *4)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3)))
- (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846))
- (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4))
- (-5 *1 (-1282 *4)) (-4 *4 (-1208))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563))
- (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767))
- (-5 *2 (-684 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2))
- (-4 *3 (-13 (-363) (-147))))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6))
- (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2))
- (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-449 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789))
- (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1 *1) (-5 *1 (-378)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1249 *3)) (-5 *1 (-278 *3 *4 *2))
+ (-4 *2 (-1220 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *4 (-1218 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1241 *3 *4)) (-4 *5 (-979 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-407 (-546)))) (-5 *1 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563))))
- (-5 *1 (-1103)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
+ (-12 (-4 *4 (-38 (-407 (-546))))
+ (-5 *2 (-2 (|:| -3896 (-1146 *4)) (|:| -3897 (-1146 *4))))
+ (-5 *1 (-1154 *4)) (-5 *3 (-1146 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-407 (-546))))
+ (-5 *2 (-2 (|:| -4053 (-1146 *4)) (|:| -4049 (-1146 *4))))
+ (-5 *1 (-1154 *4)) (-5 *3 (-1146 *4)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-640
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *4 *3 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-546))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-363))
+ (-4 *4 (-1045)) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045))
+ (-5 *3 (-407 (-546))) (-5 *1 (-1153 *4)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5))
- (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))))
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4))
+ (-4 *4 (-38 (-407 (-546)))) (-4 *4 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *3 (-1045)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1153 *4))
+ (-4 *4 (-1045)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-546))) (-4 *4 (-1045))
+ (-5 *1 (-1153 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-956)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1153 *4)) (-4 *4 (-1045))
+ (-5 *3 (-546)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1153 *4)) (-4 *4 (-1045))
+ (-5 *3 (-546)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *2)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-915)) (-4 *3 (-363))
+ (-14 *4 (-989 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1) (|partial| -4 *1 (-718))) ((*1 *1 *1) (|partial| -4 *1 (-722)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4))
+ (-4 *4 (-1065 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363)))
+ (-4 *2 (-1232 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
+ (-4 *2 (-556))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-556)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-556))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-767)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-556))
+ (-5 *1 (-965 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045))
+ (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-1094)) (-4 *4 (-1207)) (-5 *2 (-112))
+ (-5 *1 (-1146 *4)))))
+(((*1 *2 *3 *1)
(-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (-5 *1 (-267)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
+ (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2980 (-767)) (|:| |period| (-767))))
+ (-5 *1 (-1146 *4)) (-4 *4 (-1207)) (-5 *3 (-767)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1207)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1207)))))
+(((*1 *1) (-5 *1 (-577)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-855))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-855))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-859)) (-5 *2 (-1262)) (-5 *1 (-855))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1146 *4)) (-4 *4 (-1094))
+ (-4 *4 (-1207)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *2 (-859)) (-5 *1 (-1146 *3)) (-4 *3 (-1094)) (-4 *3 (-1207)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1094)) (-4 *3 (-1207)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-1256 (-637 (-546)))) (-5 *1 (-480))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-598 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1146 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2))
+ (-4 *2 (-1249 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-4 *5 (-1232 *4))
+ (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1249 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-13 (-363) (-368) (-611 *3)))
+ (-5 *1 (-542 *4 *2)) (-4 *2 (-1249 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-546)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1145 *4)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-640
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3))
+ (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *5 (-555))
- (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *6))
- (-4 *6
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
- (-4 *2 (-945 (-948 *4) *5 *6)))))
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3))
+ (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-4 *4 (-1232 *3))
+ (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1249 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-611 (-546)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1249 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1145 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))))
-(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))))
+ ((*1 *1) (-4 *1 (-1144))))
+(((*1 *1 *1) (|partial| -4 *1 (-1144))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-1140 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-637 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3))
+ (-4 *3 (-1059 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-637 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *2 (-1059 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-637 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3))
+ (-4 *3 (-1059 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1023 *5 *6 *7 *8)))
+ (-5 *1 (-1023 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-637 (-1139 *5 *6 *7 *8)))
+ (-5 *1 (-1139 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-1059 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-637 *8)) (|:| |towers| (-637 (-1023 *5 *6 *7 *8)))))
+ (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-637 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-1059 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-637 *8)) (|:| |towers| (-637 (-1139 *5 *6 *7 *8)))))
+ (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-637 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *4 (-767))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262))
+ (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *4 (-767))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262))
+ (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-637 *11))
+ (|:| |todo| (-637 (-2 (|:| |val| *3) (|:| -1695 *11))))))
+ (-5 *6 (-767)) (-5 *2 (-637 (-2 (|:| |val| (-637 *10)) (|:| -1695 *11))))
+ (-5 *3 (-637 *10)) (-5 *4 (-637 *11)) (-4 *10 (-1059 *7 *8 *9))
+ (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846))
+ (-5 *1 (-1063 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
(-12
+ (-5 *5
+ (-2 (|:| |done| (-637 *11))
+ (|:| |todo| (-637 (-2 (|:| |val| *3) (|:| -1695 *11))))))
+ (-5 *6 (-767)) (-5 *2 (-637 (-2 (|:| |val| (-637 *10)) (|:| -1695 *11))))
+ (-5 *3 (-637 *10)) (-5 *4 (-637 *11)) (-4 *10 (-1059 *7 *8 *9))
+ (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846))
+ (-5 *1 (-1138 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
(-5 *2
- (-640
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *1 (-449 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))
- ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214)))
- ((*1 *1 *1 *1) (-5 *1 (-1215))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *3 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *5 (-555))
- (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *6))
- (-4 *6
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
- (-4 *2 (-945 (-948 *4) *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (-2 (|:| -2466 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3482 (-407 *6)) (|:| |special| (-407 *6))))
+ (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-892 *3 *4))
+ (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -3530 *3) (|:| -3529 *3))) (-5 *1 (-892 *3 *5))
+ (-4 *3 (-1232 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-637 *9)) (-5 *3 (-637 *8)) (-5 *4 (-112))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
+ (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
+ (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-637 *4))
+ (|:| |todo| (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))))
+ (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4))
- (-5 *3 (-640 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4))
- (-5 *3 (-1095 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
-(((*1 *1 *1) (-4 *1 (-626)))
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *9)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1137))))
+(((*1 *1 *1) (-4 *1 (-1137))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1137))))
+(((*1 *1 *1) (-4 *1 (-1137))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-546)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *6)) (-4 *5 (-1094)) (-4 *6 (-1207))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-4 *5 (-1094)) (-4 *2 (-1207))
+ (-5 *1 (-639 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 *5)) (-4 *6 (-1094)) (-4 *5 (-1207))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-4 *5 (-1094)) (-4 *2 (-1207))
+ (-5 *1 (-639 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-637 *5)) (-5 *4 (-637 *6)) (-4 *5 (-1094))
+ (-4 *6 (-1207)) (-5 *1 (-639 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-637 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094))
+ (-4 *2 (-1207)) (-5 *1 (-639 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1223 (-546))))))
+(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-546))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207))
+ (-5 *2 (-546))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-546)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-846))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))
- ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214)))
- ((*1 *1 *1 *1) (-5 *1 (-1215))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1)))
- (-4 *1 (-848 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+ (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1193)))
+ (-4 *3 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546))))
+ (-5 *1 (-584 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-582 (-407 (-942 *3))))
+ (-4 *3 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *1 (-587 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -3482 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
+ (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-637 (-684 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-363)) (-4 *5 (-1045))
+ (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-637 (-684 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-637 *1)) (-4 *1 (-1137))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-637 *1)) (-4 *1 (-1137)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767))
+ (-4 *5 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1045)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3))
+ (-4 *4 (-372 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4))
+ (-14 *3 (-767)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
+ (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))))
-(((*1 *1 *1) (-5 *1 (-225)))
+ (-12 (-5 *2 (-637 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4)))) (-5 *1 (-1134 *3 *4))
+ (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1094) (-34)))
+ (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1134 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207))
+ (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3))
+ (-4 *3 (-1207))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-546)) (-4 *4 (-1094))
+ (-5 *1 (-732 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-732 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3))
+ (-4 *3 (-1094))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-546)) (-4 *4 (-1094))
+ (-5 *1 (-732 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-732 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *1 (-1134 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-1133 *3 *4))) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112))
+ (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-854))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-961))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1133 *2 *3))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112))
+ (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113)))
+ ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545)))
+ ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379))))
+ (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *2 (-13 (-1094) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1133 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1) (-4 *1 (-1132))) ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-767)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *1 *1) (-4 *1 (-1132))))
+(((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037))))
+ ((*1 *1 *1 *1) (-4 *1 (-1132))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
+ ((*1 *1 *1) (-4 *1 (-844)))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
+ ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1132))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-63 *3)) (-14 *3 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169))))
+ ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-395))))
+ ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-1262))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-1131))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-859))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-637 (-1174))) (-5 *1 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))))
(((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-637 *1)) (-4 *1 (-1127 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045))
+ (-5 *2 (-767)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-939 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-637 (-637 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045))
+ (-4 *1 (-1127 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-637 (-637 (-637 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4))
+ (-4 *4 (-1045))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-637 (-637 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4))
+ (-4 *4 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-637 (-637 *5)))) (-5 *3 (-637 (-171))) (-5 *4 (-171))
+ (-4 *1 (-1127 *5)) (-4 *5 (-1045))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-637 (-939 *5)))) (-5 *3 (-637 (-171))) (-5 *4 (-171))
+ (-4 *1 (-1127 *5)) (-4 *5 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-939 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-637 (-767))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
+ (-5 *2 (-637 (-637 (-637 (-939 *3))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-637 (-171)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-637 (-171))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
+ (-5 *2
+ (-2 (|:| -4265 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767))
+ (|:| |constructs| (-767)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| -4147 (-1163 *6)) (|:| -2543 (-546)))))
+ (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
+ (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1125 *4 *2))
+ (-4 *2 (-13 (-601 (-546) *4) (-10 -7 (-6 -4408) (-6 -4409))))))
((*1 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-4 *3 (-846)) (-4 *3 (-1207)) (-5 *1 (-1125 *3 *2))
+ (-4 *2 (-13 (-601 (-546) *3) (-10 -7 (-6 -4408) (-6 -4409)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1125 *4 *2))
+ (-4 *2 (-13 (-601 (-546) *4) (-10 -7 (-6 -4408) (-6 -4409))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-846)) (-4 *3 (-1207)) (-5 *1 (-1125 *3 *2))
+ (-4 *2 (-13 (-601 (-546) *3) (-10 -7 (-6 -4408) (-6 -4409)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1045)) (-4 *2 (-1232 *4))
+ (-5 *1 (-444 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-407 (-1163 (-314 *5)))) (-5 *3 (-1256 (-314 *5)))
+ (-5 *4 (-546)) (-4 *5 (-13 (-556) (-846))) (-5 *1 (-1123 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-407 (-1163 (-314 *3)))) (-4 *3 (-13 (-556) (-846)))
+ (-5 *1 (-1123 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ (-12 (-5 *3 (-293 (-407 (-942 *5)))) (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147)))
+ (-5 *2 (-1158 (-637 (-314 *5)) (-637 (-293 (-314 *5)))))
+ (-5 *1 (-1122 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767)))
- (-5 *1 (-900 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147)))
+ (-5 *2 (-1158 (-637 (-314 *5)) (-637 (-293 (-314 *5)))))
+ (-5 *1 (-1122 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-314 *5)))
+ (-5 *1 (-1122 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169)))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-314 *5))))
+ (-5 *1 (-1122 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *5))))
+ (-5 *1 (-1122 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-13 (-307) (-846) (-147)))
+ (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1122 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-407 (-942 *5)))) (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-293 (-314 *5))))
+ (-5 *1 (-1122 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-293 (-407 (-942 *4)))) (-4 *4 (-13 (-307) (-846) (-147)))
+ (-5 *2 (-637 (-293 (-314 *4)))) (-5 *1 (-1122 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-407 (-942 *5)))) (-5 *4 (-637 (-1169)))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *5)))))
+ (-5 *1 (-1122 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-407 (-942 *4)))) (-4 *4 (-13 (-307) (-846) (-147)))
+ (-5 *2 (-637 (-637 (-293 (-314 *4))))) (-5 *1 (-1122 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-293 (-407 (-942 *5))))) (-5 *4 (-637 (-1169)))
+ (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *5)))))
+ (-5 *1 (-1122 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-293 (-407 (-942 *4)))))
+ (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-637 (-637 (-293 (-314 *4)))))
+ (-5 *1 (-1122 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *1)
- (-12 (-4 *1 (-404)) (-2174 (|has| *1 (-6 -4399)))
- (-2174 (|has| *1 (-6 -4391)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846))))
- ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-858))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225))
- (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767)))
- (-5 *1 (-900 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225))
- (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2 (-637 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1232 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225))
- (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4))
- (-4 *4 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *2 (-1031)) (-5 *1 (-305))))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-637 *5))
+ (|:| |maps| (-637 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1121 *3 *5)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4409))))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))) (-5 *1 (-662 *4 *5 *2 *3))
+ (-4 *3 (-681 *4 *5 *2))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363))
+ (-5 *1 (-663 *4))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-637 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
+ (-5 *1 (-810 *2 *3)) (-4 *3 (-653 *2))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-546)))))))
+ (-5 *1 (-1121 *3 *2)) (-4 *3 (-1232 *2)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))))
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-1146 *7))) (-4 *6 (-846))
+ (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1146 *7) *7))
+ (-5 *1 (-1119 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-307)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-563)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563)))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563)))
- (-4 *7 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563)))
- (-4 *3 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8))
- (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563)))
- (-4 *8 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563))))
- (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8)))
- (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-5 *1 (-593 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3))))
+ (-12 (-4 *4 (-307)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-307)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3))
+ (-4 *3 (-681 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-4 *1 (-1217 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-767))
- (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4))))
- (-4 *4 (-1045)) (-4 *1 (-1238 *4))))
+ (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *1)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3))))
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-4 *1 (-1248 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1)))
- (-4 *1 (-848 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3)))))
+ (-12 (-5 *2 (-637 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-915)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-915)) (-4 *4 (-350)) (-5 *1 (-528 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2))
+ (-4 *2 (-1045)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-684 *2)) (-4 *4 (-1232 *2))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-410 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2))
+ (-4 *2 (-1045)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-363))
+ (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))
((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-172))
+ (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2))
+ (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))
((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-172))
+ (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2))
+ (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1113))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1113))))
+(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546))))
+ ((*1 *1 *1) (-5 *1 (-1113))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546))))
+ ((*1 *1 *1 *1) (-5 *1 (-1113))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-546))))
+ ((*1 *1 *1 *1) (-5 *1 (-1113))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1108)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-834))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-637 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-676))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-676))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169))
+ (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169))
+ (-5 *2 (-546)) (-5 *1 (-1107 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917))
- (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*")))))
- (-5 *1 (-898 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-447 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
+ (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546))
+ (-5 *1 (-1107 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-546))
+ (-5 *1 (-1107 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1225 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 *4))
+ (-5 *1 (-1107 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 (-1225 *5 *4)))
+ (-5 *1 (-1107 *4 *5)) (-5 *3 (-1225 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-637 (-1225 *5 *4)))
+ (-5 *1 (-1107 *4 *5)) (-5 *3 (-1225 *5 *4)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1103)) (-5 *3 (-546)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1103)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1256 (-546))) (-5 *3 (-546)) (-5 *1 (-1103))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1256 (-546))) (-5 *3 (-637 (-546))) (-5 *4 (-546))
+ (-5 *1 (-1103)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *3 (-112)) (-5 *1 (-1103)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-684 (-546))) (-5 *3 (-637 (-546))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1103)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-1103)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-546))) (-5 *3 (-684 (-546))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4))
+ (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4))
+ (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4))
+ (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
(-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
+ (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
(-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9))))
- (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846))
- (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2058 *9))))
+ (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452))
+ (-4 *7 (-789)) (-4 *4 (-846))
+ (-5 *2 (-637 (-2 (|:| |val| *8) (|:| -1695 *9))))
(-5 *1 (-1101 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3))))
- (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262))
- (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *2 (-555))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-555)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045))
- (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-767)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555))
- (-5 *1 (-965 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045))
- (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))
(-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555))))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305)))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379))))
- (-5 *1 (-305)))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846))
- (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193))))))
-(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379)))
- (-5 *2 (-1031)) (-5 *1 (-836)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-589 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789))
- (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1420 (-640 *9)) (|:| -2058 *4) (|:| |ineq| (-640 *9))))
- (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9))
- (-4 *4 (-1065 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *9 (-1059 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *4) (|:| |ineq| (-637 *9))))
+ (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-637 *9))
+ (-4 *4 (-1065 *6 *7 *8 *9))))
((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789))
- (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1420 (-640 *9)) (|:| -2058 *4) (|:| |ineq| (-640 *9))))
- (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9))
- (-4 *4 (-1065 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))))
-(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-835))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (-5 *2 (-1031))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-835))
- (-5 *3
- (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))
- (-5 *2 (-1031)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563)))
- (-5 *2 (-684 (-563))) (-5 *1 (-588))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563))))
- (-5 *1 (-588))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563))))
- (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
(-4 *9 (-1059 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *4) (|:| |ineq| (-637 *9))))
+ (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-637 *9))
+ (-4 *4 (-1065 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-637 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
(-5 *2
- (-640
- (-2 (|:| -1420 (-640 *9)) (|:| -2058 *10) (|:| |ineq| (-640 *9)))))
- (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9))))
+ (-637 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *10) (|:| |ineq| (-637 *9)))))
+ (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-637 *9))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *9 (-1059 *6 *7 *8))
+ (-12 (-5 *4 (-637 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
(-5 *2
- (-640
- (-2 (|:| -1420 (-640 *9)) (|:| -2058 *10) (|:| |ineq| (-640 *9)))))
- (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368))
- (-4 *3 (-1093)))))
-(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+ (-637 (-2 (|:| -3674 (-637 *9)) (|:| -1695 *10) (|:| |ineq| (-637 *9)))))
+ (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-637 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2058 *7))))
+ (-12 (-5 *2 (-637 (-2 (|:| |val| (-637 *6)) (|:| -1695 *7))))
(-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2058 *7))))
+ (-12 (-5 *2 (-637 (-2 (|:| |val| (-637 *6)) (|:| -1695 *7))))
(-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *2 (-316 *5)) (-5 *1 (-587 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *2 (-640 (-225))) (-5 *1 (-305)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8)))
(-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8))))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-637 *7)) (|:| -1695 *8)))
(-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
(-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
(-5 *1 (-1100 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225))
- (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))
- (-5 *1 (-564))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))
- (-5 *1 (-564))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-783)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))
- (|:| |extra| (-1031))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-783)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))
- (|:| |extra| (-1031))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-796)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-804))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-801))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-804)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-801))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-835)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))
- (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-835)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-837))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-891)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |pde| (-640 (-316 (-225))))
- (|:| |constraints|
- (-640
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-563))
- (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225))))))
- (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151))
- (|:| |tol| (-225))))
- (-5 *2 (-2 (|:| -2929 (-379)) (|:| |explanations| (-1151))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-894))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-893))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-894)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -2929 (-379)) (|:| -3352 (-1151))
- (|:| |explanations| (-640 (-1151)))))
- (-5 *1 (-893)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-112)) (-5 *1 (-1197 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-643 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-643 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))
- ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193)))
- (-5 *1 (-582 *4 *2))
- (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-407 (-948 *4))))
- (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *2 (-316 *4)) (-5 *1 (-587 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439))))
- ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834))))
- ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
(-5 *1 (-984 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
(-5 *1 (-1100 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4))
- (-4 *2 (-1233 *4)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2))
- (-4 *2 (-1233 (-563)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2))
- (-4 *2 (-1233 (-563)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2))
- (-4 *2 (-1233 (-563)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767))
- (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767))
- (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5))
- (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-643 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563))))
- (-5 *1 (-305)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-984 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836))))
- ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379))))
- (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379)))
- (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379)))
- (-5 *2 (-1031)) (-5 *1 (-836)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3))
- (-4 *2 (-1233 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| -2173 *4) (|:| -3871 (-563)))))
- (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045))
- (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1093))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045))
- (-5 *1 (-710 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-316 (-225))))
- (-5 *2
- (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563))
- (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))))
- (-5 *1 (-305)))))
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1100 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *3)
(|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3))
+ (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
(|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-891))
- (-5 *3
- (-2 (|:| |pde| (-640 (-316 (-225))))
- (|:| |constraints|
- (-640
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-563))
- (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225))))))
- (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151))
- (|:| |tol| (-225))))
- (-5 *2 (-1031)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045))
- (-5 *1 (-710 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))
- (-5 *2 (-379)) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3))
+ (-4 *3 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093))
- (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4))))
- (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2))
- (-4 *2 (-643 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-640 (-1169)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4))
- (-4 *4 (-643 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4212 *3) (|:| -3311 (-767)))) (-5 *1 (-585 *3))
- (-4 *3 (-545)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1208))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563))
- (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5))
- (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1233 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225))))
- (-5 *1 (-305)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *1) (-5 *1 (-1057)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4))
- (-4 *4 (-1208))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112))
- (-5 *1 (-885 *4 *5)) (-4 *5 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112))
- (-5 *1 (-886 *5 *3)) (-4 *3 (-1208))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093))
- (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225)))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1233 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-640
- (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2))
- (|:| |logand| (-1165 *2)))))
- (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-363)) (-5 *1 (-584 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
(-5 *1 (-984 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-12 (-5 *2 (-637 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
(-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
(-5 *1 (-1100 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031))
- (-5 *1 (-746)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2516 (-114)) (|:| |arg| (-640 (-888 *3)))))
- (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4)))
- (-5 *1 (-888 *4)) (-4 *4 (-1093)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563)))
- (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-746)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1093)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1233 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-640
- (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3))
- (|:| |logand| (-1165 *3)))))
- (-5 *1 (-584 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563)))
- (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262))
- (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767))
- (-5 *2
- (-2 (|:| |contp| (-563))
- (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-584 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112))
- (-5 *1 (-1284 *4)))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *2 (-1262)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262))
- (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1031)) (-5 *1 (-745))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1233 *4)) (-5 *2 (-563))))
- ((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452)))
- (-5 *2 (-563)) (-5 *1 (-1109 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452)))
- (-5 *2 (-563)) (-5 *1 (-1109 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151))
- (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452)))
- (-5 *2 (-563)) (-5 *1 (-1109 *6 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563))
- (-5 *1 (-1110 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6))))
- (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563))
- (-5 *1 (-1110 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169))
- (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-1149 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169)))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169)))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7))))
+ (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1100 *4 *5 *6 *7 *8))
+ (-4 *8 (-1065 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1099 *5 *4))
+ (-4 *4 (-421 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3))
- (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7))))
- (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3))
- (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -3551 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-640 (-1169)))
- (-5 *2
- (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))))
- (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-546)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| -4275 (-1169)) (|:| -2233 *4))))
+ (-5 *1 (-884 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-4 *7 (-1094)) (-5 *2 (-637 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *2 (-546)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-915)) (-4 *1 (-404))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-546)) (-4 *1 (-404))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-915)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-915)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-666))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915))
+ (-14 *4 (-915)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-915))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915))
+ (-14 *4 (-915)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
-(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27))
- (-5 *2 (-640 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1))))
+ (-12 (-5 *2 (-1256 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-915))
+ (-14 *4 (-915)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-4 *3 (-1094))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-915)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-591 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1151)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 (-608 *4))) (-4 *4 (-421 *3)) (-4 *3 (-846))
+ (-5 *1 (-572 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1089)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1087 *3)) (-4 *3 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1207)) (-5 *2 (-546)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1082 *4)) (-4 *4 (-1207)) (-5 *1 (-1085 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1084)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-261))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1256 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1256 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1232 *4)) (-5 *2 (-684 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-410 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1232 *4)) (-5 *2 (-684 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169)))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4)))))
- (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
+ (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3))
+ (-5 *2 (-1256 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-418 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363))
+ (-5 *2 (-1256 *5)) (-5 *1 (-1079 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169))
- (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169)))
- (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379))))
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-1256 (-684 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1256 (-684 *4))) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
+ ((*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-1256 (-684 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1169))) (-4 *5 (-363))
+ (-5 *2 (-1256 (-684 (-407 (-942 *5))))) (-5 *1 (-1079 *5))
+ (-5 *4 (-684 (-407 (-942 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1169))) (-4 *5 (-363)) (-5 *2 (-1256 (-684 (-942 *5))))
+ (-5 *1 (-1079 *5)) (-5 *4 (-684 (-942 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-684 *4))) (-4 *4 (-363)) (-5 *2 (-1256 (-684 *4)))
+ (-5 *1 (-1079 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-175))) (-5 *1 (-1078)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175))))
+ ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))))
+(((*1 *1) (-5 *1 (-1078))))
+(((*1 *1) (-5 *1 (-1078))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-546) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))))
+(((*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
+(((*1 *1) (-5 *1 (-1075))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-637 *3)) (-5 *1 (-589 *5 *6 *7 *8 *3))
+ (-4 *3 (-1102 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5))))))
+ (-5 *1 (-1071 *5 *6)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4)))))
- (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
+ (-12 (-4 *4 (-13 (-307) (-147)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *4)) (|:| -3632 (-637 (-942 *4))))))
+ (-5 *1 (-1071 *4 *5)) (-5 *3 (-637 (-942 *4))) (-14 *5 (-637 (-1169)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2 (-637 (-2 (|:| -1898 (-1163 *5)) (|:| -3632 (-637 (-942 *5))))))
+ (-5 *1 (-1071 *5 *6)) (-5 *3 (-637 (-942 *5))) (-14 *6 (-637 (-1169))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 (-437)))))
- (-5 *1 (-1173)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578)))))
-(((*1 *1 *1) (-4 *1 (-626)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-112)) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-640 (-1169)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4))))))
- (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5))))))
- (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5)))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5))))))
- (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5)))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *5)) (|:| -3759 (-640 (-948 *5))))))
- (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5)))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2
- (-640 (-2 (|:| -4224 (-1165 *4)) (|:| -3759 (-640 (-948 *4))))))
- (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4)))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))))
-(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *1) (-5 *1 (-577))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7))
- (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))))
+ (-12 (-5 *2 (-637 (-1068 *3 *4 *5))) (-4 *3 (-1094))
+ (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))
+ (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3))))
+ (-5 *1 (-1070 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-745)))))
+ (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))
+ (-5 *2 (-637 (-1068 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5))
+ (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-5 *1 (-1068 *4 *5 *2))
+ (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))
+ (-5 *1 (-1068 *3 *4 *2))
+ (-4 *2 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-886 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1207))
+ (-5 *1 (-887 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-886 *4)) (-5 *3 (-637 (-1 (-112) *5))) (-4 *4 (-1094))
+ (-4 *5 (-1207)) (-5 *1 (-887 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-886 *5)) (-5 *3 (-637 (-1169))) (-5 *4 (-1 (-112) (-637 *6)))
+ (-4 *5 (-1094)) (-4 *6 (-1207)) (-5 *1 (-887 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207))
+ (-5 *2 (-314 (-546))) (-5 *1 (-933 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-637 (-1 (-112) *5))) (-4 *5 (-1207))
+ (-5 *2 (-314 (-546))) (-5 *1 (-933 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-846))
+ (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-421 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-846))
+ (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-421 *4))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-1 (-112) (-637 *6)))
+ (-4 *6 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-5 *1 (-1068 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))))
+ (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2)))
+ (-5 *2 (-886 *3)) (-5 *1 (-1068 *3 *4 *5))
+ (-4 *5 (-13 (-421 *4) (-882 *3) (-611 *2))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-640 (-1169)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172))
- (-4 *5 (-238 (-3610 *2) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *4) (|:| -3311 *5))
- (-2 (|:| -2552 *4) (|:| -3311 *5))))
- (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846))
- (-4 *7 (-945 *3 *5 (-860 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045))
- (-4 *3 (-722))))
- ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *1 (-1281 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045)))
- (-5 *2 (-1151)) (-5 *1 (-822 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151))
- (-5 *1 (-822 *5))))
+ (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-886 *3))))
+ (-5 *2 (-637 (-1169))) (-5 *1 (-1068 *3 *4 *5))
+ (-4 *5 (-13 (-421 *4) (-882 *3) (-611 (-886 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-312))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4))
+ (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-316 *5))
- (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262))
- (-5 *1 (-822 *5))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262))
- (-5 *1 (-822 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
- (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)))))
- (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1169))
- (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-574 *4 *2))
- (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114))))))
+ (-12 (-5 *3 (-637 (-2 (|:| |val| (-637 *8)) (|:| -1695 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452))
+ (-4 *7 (-789)) (-4 *4 (-846))
+ (-5 *2 (-637 (-2 (|:| |val| *8) (|:| -1695 *9))))
+ (-5 *1 (-1066 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-637 *3)) (|:| -1695 *4))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-3 (-112) (-637 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *1))))
+ (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-3 *3 (-637 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-556)) (-4 *2 (-1045))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *1))))
+ (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-5 *3 (-637 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))
+ (-5 *2 (-637 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-945 *3 *4 *5)))))
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3)))))
- (-5 *1 (-1279 *3)) (-4 *3 (-1045))))
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1034 (-546))) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-421 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1163 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-298))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1163 *3))))
+ ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4)))))
- (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1232 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-942 (-546))) (-5 *2 (-637 *1)) (-4 *1 (-1008))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *2 (-637 *1)) (-4 *1 (-1008))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1008)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163 (-546))) (-5 *2 (-637 *1)) (-4 *1 (-1008))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 (-407 (-546)))) (-5 *2 (-637 *1)) (-4 *1 (-1008))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-1008)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1232 *4)) (-5 *2 (-637 *1))
+ (-4 *1 (-1062 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1163 *1)) (-5 *3 (-1169)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 *2)) (-5 *4 (-1169)) (-4 *2 (-421 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-13 (-846) (-556)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1163 *1)) (-5 *3 (-915)) (-4 *1 (-1008))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1163 *1)) (-5 *3 (-915)) (-5 *4 (-859))
+ (-4 *1 (-1008))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-915)) (-4 *4 (-13 (-844) (-363)))
+ (-4 *1 (-1062 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1020 *3))
+ (-4 *3 (-13 (-844) (-363) (-1016)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1232 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1128))) (-5 *1 (-1060)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789))
- (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6))
- (-4 *6 (-945 *3 *5 *4))))
+ (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3275 (-563)) (|:| -1337 (-640 *3))))
- (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-363)) (-5 *1 (-974 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-573 *5 *3)))))
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-767)))))
+(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
+ ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1093))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))
- (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-637 (-1169)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045))))
+ (-12 (-5 *2 (-314 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045))))
((*1 *2 *1)
- (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-3610 *3) (-767)))
+ (-12 (-14 *3 (-637 (-1169))) (-4 *5 (-238 (-4372 *3) (-767)))
(-14 *6
- (-1 (-112) (-2 (|:| -2552 *4) (|:| -3311 *5))
- (-2 (|:| -2552 *4) (|:| -3311 *5))))
+ (-1 (-112) (-2 (|:| -2542 *4) (|:| -2543 *5))
+ (-2 (|:| -2542 *4) (|:| -2543 *5))))
(-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846))
- (-4 *7 (-945 *2 *5 (-860 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2))))
+ (-4 *7 (-946 *2 *5 (-860 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094))))
+ ((*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2))))
((*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846))
- (-4 *3 (-722))))
+ (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722))))
((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
((*1 *2 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846))
- (-4 *2 (-1045))))
+ (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)))))
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4))
- (-4 *4 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| -2173 *4) (|:| -3871 (-563)))))
- (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -3292 *1)))
+ (-4 *1 (-1059 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -3292 *1)))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6))))
- (-5 *1 (-974 *6)) (-5 *3 (-684 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
+ (-2 (|:| -4369 *3) (|:| |gap| (-767)) (|:| -2131 (-777 *3))
+ (|:| -3292 (-777 *3))))
+ (-5 *1 (-777 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -2131 *1) (|:| -3292 *1)))
+ (-4 *1 (-1059 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -4369 *1) (|:| |gap| (-767)) (|:| -2131 *1) (|:| -3292 *1)))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3887 (-767))))
+ (-5 *1 (-777 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3887 (-767))))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-407 (-942 (-378)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-314 (-378))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-942 (-546))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-407 (-942 (-546)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-314 (-546))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 *2))
+ (-14 *4 (-637 *2)) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-314 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-684 (-407 (-942 (-546))))) (-4 *1 (-385))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-684 (-407 (-942 (-378))))) (-4 *1 (-385))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-942 (-546)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-942 (-378)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-314 (-546)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-314 (-378)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-546)))) (-4 *1 (-397))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-942 (-378)))) (-4 *1 (-397))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-546))) (-4 *1 (-397))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-397))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-546))) (-4 *1 (-397))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-314 (-378))) (-4 *1 (-397))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1256 (-407 (-942 (-546))))) (-4 *1 (-441))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1256 (-407 (-942 (-378))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-942 (-546)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-942 (-378)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-314 (-546)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-314 (-378)))) (-4 *1 (-441))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-350)) (-4 *5 (-329 *4)) (-4 *6 (-1232 *5))
+ (-5 *2 (-1163 (-1163 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6))
+ (-14 *7 (-915))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (|partial| -3943
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-3733 (-4 *3 (-38 (-546))))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-545))) (-3733 (-4 *3 (-38 (-407 (-546)))))
+ (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-987 (-546)))) (-4 *3 (-38 (-407 (-546))))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))))
+ ((*1 *1 *2)
+ (|partial| -3943
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546)))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378)))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-942 (-378)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-378))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-378))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-378)))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546)))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-942 (-546)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1034 (-546))) (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 (-546))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-546)))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 *2))
+ (-14 *4 (-637 *2)) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-314 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-637 (-1169)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-942 (-546))))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-942 (-378))))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-942 (-546)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-942 (-378)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-314 (-546)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-684 (-314 (-378)))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-546)))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-942 (-378)))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 (-546))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-4 *1 (-397))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-407 (-942 (-546))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-407 (-942 (-378))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-942 (-546)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-942 (-378)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-314 (-546)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 (-314 (-378)))) (-4 *1 (-441))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563)))
- (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5))))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ (-5 *1 (-765))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-804))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))
+ (-5 *1 (-837))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-637 (-314 (-225))))
+ (|:| |constraints|
+ (-637
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767))
+ (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225)))
+ (|:| |dFinish| (-684 (-225))))))
+ (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151))
+ (|:| |tol| (-225))))
+ (-5 *1 (-894))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *2)
+ (-3943
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-3733 (-4 *3 (-38 (-546))))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-545))) (-3733 (-4 *3 (-38 (-407 (-546)))))
+ (-4 *3 (-38 (-546))) (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3733 (-4 *3 (-987 (-546)))) (-4 *3 (-38 (-407 (-546))))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)))))
+ ((*1 *1 *2)
+ (-3943
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-3733 (-4 *3 (-38 (-407 (-546))))) (-4 *3 (-38 (-546)))
+ (-4 *5 (-611 (-1169))))
+ (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
+ (-12 (-5 *2 (-942 (-546))) (-4 *1 (-1059 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-407 (-546)))) (-4 *1 (-1059 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-546)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3552 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3))))
+ (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -3552 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3552 (-777 *3)) (|:| |coef1| (-777 *3))))
+ (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -3552 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3552 (-777 *3)) (|:| |coef2| (-777 *3))))
+ (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-2 (|:| -3552 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-637 *1)) (-4 *1 (-1059 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *3 (-556)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *3 (-556)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-556)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-452))))
+ ((*1 *1 *1 *1) (-4 *1 (-452)))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1232 (-546)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-767)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2))
+ (-4 *2 (-946 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302))
- (-5 *2 (-1165 *1)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-1163 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))
+ (-5 *2 (-1163 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-915)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *2 (-452)))))
+(((*1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1) (-5 *1 (-1057))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-378)) (-5 *1 (-1057)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-378)) (-5 *1 (-1057)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-378)) (-5 *1 (-1057)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))))
+(((*1 *1) (-5 *1 (-1057))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1056))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093))))
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
((*1 *2 *1)
- (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172))
- (-4 *6 (-238 (-3610 *3) (-767)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6))
- (-2 (|:| -2552 *5) (|:| -3311 *6))))
- (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3)))))
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5))
+ (-4 *3 (-238 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2))
- (-4 *3 (-1045))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-767))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
+ ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5))
+ (-4 *3 (-720 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-405 *4) *4)) (-4 *4 (-556)) (-5 *2 (-405 *4))
+ (-5 *1 (-419 *4))))
+ ((*1 *1 *1) (-5 *1 (-921)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *1) (-5 *1 (-923)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))
+ (-5 *4 (-407 (-546))) (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))
+ (-5 *4 (-407 (-546))) (-5 *1 (-1018 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546))))))
((*1 *1 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *4 (-846)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4))
- (-4 *4 (-1093)))))
+ (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-608 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 (-48))) (-5 *3 (-637 (-608 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1232 (-168 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-915)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-413 *3 *2 *4 *5))
+ (-4 *3 (-307)) (-4 *5 (-13 (-410 *2 *4) (-1034 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-415 *3 *2 *4 *5 *6))
+ (-4 *3 (-307)) (-4 *5 (-410 *2 *4)) (-14 *6 (-1256 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-915)) (-4 *5 (-1045))
+ (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1232 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-608 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 (-495))) (-5 *3 (-637 (-608 (-495)))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 (-495))) (-5 *3 (-608 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-915)) (-4 *4 (-350)) (-5 *1 (-528 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1232 *4))
+ (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1232 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-546)))))
+(((*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-487))))
+ ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546))))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *1 *1) (-4 *1 (-1054))))
(((*1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-620 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1700 *4) (|:| |sol?| (-112)))
- (-563) *4))
- (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1233 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5))
+ (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))
+ ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
+ ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))
+ ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))
+ ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))
+ ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5))
+ (-14 *3 (-767)) (-14 *4 (-767)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1045)) (-4 *1 (-681 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-859)))) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-915))
+ (-4 *4 (-363))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-637 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))))
- (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))))
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666))))
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-640
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-563)))))
- (-4 *2 (-555)) (-5 *1 (-418 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-563))
- (|:| -1337 (-640 (-2 (|:| |irr| *4) (|:| -3259 (-563)))))))
- (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-546))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-546))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-546))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-546))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-546)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-767))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-767))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-915))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2))
+ (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) (-4 *5 (-372 *4))
+ (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045))
+ (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) (-4 *5 (-372 *4))
+ (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045))
+ (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7)))
- (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-573 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))))
-(((*1 *1 *1) (-4 *1 (-243)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4))
+ (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
((*1 *1 *1)
- (-4034 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208)))
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208)))))
- ((*1 *1 *1) (-4 *1 (-473)))
- ((*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-307))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147)))
- (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -2840 (-407 *6)) (|:| |coeff| (-407 *6))))
- (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))))
-(((*1 *2)
- (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4))
- (-14 *3 (-917)) (-14 *4 (-917)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
+ (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4))
+ (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-373 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546)) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-915)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-915))))
+ ((*1 *2)
+ (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-915))))
((*1 *2 *3)
- (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555))
- (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4)))
- (-5 *1 (-688 *4 *5))))
+ (-12 (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767))
+ (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5))
- (-5 *2 (-2 (|:| -1420 *7) (|:| |rh| (-640 (-407 *6)))))
- (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6)))
- (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3))
- (-4 *3 (-1233 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1700 *7) (|:| |sol?| (-112)))
- (-563) *7))
- (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-573 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9))))
- (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262))
- (-5 *1 (-1063 *5 *6 *7 *8 *9))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767))
+ (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2058 *9))))
- (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262))
- (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1193) (-430 *4)))))
+ (-12 (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-5 *2 (-767))
+ (-5 *1 (-663 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-767))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-563)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563)))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8))
- (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563)))
- (-4 *8 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563))))
- (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8)))
- (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3))
- (-4 *3 (-1217 *4)))))
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-678 *4 *5)) (-4 *4 (-1093))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))
+ (-12 (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-767))
+ (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-767))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208))
- (-4 *3 (-1093)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112))
- (-5 *1 (-900 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-563))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-373 *4))))
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-637 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4))
- (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5))))
+ (-12 (|has| *9 (-6 -4409)) (-4 *4 (-556)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-637 *6))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6))
+ (-4 *10 (-681 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-556)) (-5 *2 (-637 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555))
- (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2))
- (-4 *2 (-1233 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2840 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-573 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555))
- (-4 *3 (-1208)))))
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-637 *6)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-637 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1225 *4 *5)) (-5 *3 (-637 *5)) (-14 *4 (-1169)) (-4 *5 (-363))
+ (-5 *1 (-918 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-363)) (-5 *2 (-1163 *5)) (-5 *1 (-918 *4 *5))
+ (-14 *4 (-1169))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-942 *6)))
+ (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1043)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4)))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563)))
- (-4 *7 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563)))
- (-4 *3 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-546))) (-5 *1 (-1043))
+ (-5 *3 (-546)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1090 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082 (-546))) (-5 *2 (-1 (-546))) (-5 *1 (-1043)))))
+(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-405 (-942 *4))))
+ (-5 *1 (-1039 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-378))) (-5 *1 (-1037)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1237 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169))
+ (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1037)) (-5 *3 (-378)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-378)) (-5 *1 (-1037)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1037)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1163 (-407 (-1163 *2)))) (-5 *4 (-608 *2))
+ (-4 *2 (-13 (-421 *5) (-27) (-1193)))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3))
- (-4 *3 (-1248 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-640 *3))))
+ (-12 (-5 *2 (-1163 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045))
+ (-4 *5 (-789)) (-4 *3 (-846))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1045)) (-4 *1 (-946 *4 *5 *3))
+ (-4 *5 (-789)) (-4 *3 (-846))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-1163 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045))
+ (-4 *2
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $)))))
+ (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-1163 (-407 (-942 *5))))) (-5 *4 (-1169))
+ (-5 *2 (-407 (-942 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-556)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-608 *1)) (-4 *1 (-421 *4)) (-4 *4 (-846)) (-4 *4 (-556))
+ (-5 *2 (-407 (-1163 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-1163 (-407 (-1163 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1163 *3))
+ (-4 *7 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045))
+ (-5 *2 (-1225 *5 (-942 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-942 *6))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208))
- (-5 *2 (-640 *3)))))
+ (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-1163 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1163 *1))
+ (-4 *1 (-946 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *5 *4))
+ (-5 *2 (-407 (-1163 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1163 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $)))))
+ (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045))
+ (-5 *1 (-947 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-4 *5 (-556)) (-5 *2 (-407 (-1163 (-407 (-942 *5)))))
+ (-5 *1 (-1036 *5)) (-5 *3 (-407 (-942 *5))))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1093)) (-4 *5 (-661 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))
+ (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *2 (-846))))
((*1 *2 *3)
- (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555))
- (-5 *1 (-688 *2 *4))))
+ (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-946 *5 *4 *2))
+ (-4 *2 (-846)) (-5 *1 (-947 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *6)) (-15 -3388 (*6 $)) (-15 -3387 (*6 $)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6))
- (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1700 *6) (|:| |sol?| (-112))) (-563)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1233 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2840 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
- (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452))
- (-5 *2
- (-640
- (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))
- (|:| |eigmult| (-767))
- (|:| |eigvec| (-640 (-684 (-407 (-948 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))))
+ (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-1169))
+ (-5 *1 (-1036 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1193) (-430 *4)))))
+ (-12 (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))
+ (-5 *2 (-637 (-1169))) (-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-767))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-767))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767)))
- (-4 *7 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767)))
- (-4 *3 (-13 (-27) (-1193) (-430 *7)))
- (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
+ (-12 (-5 *3 (-1163 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1045)) (-5 *2 (-637 *5)) (-5 *1 (-321 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
+ (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-387))))
+ ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-846)) (-5 *2 (-637 (-1169)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-637 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-637 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846))
+ (-5 *2 (-637 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-5 *2 (-637 (-1169)))
+ (-5 *1 (-1036 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093))
- (-5 *1 (-885 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-5 *1 (-437)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555))
- (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169))
- (-4 *3 (-1045)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3))
- (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2840 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-363)) (-4 *7 (-1233 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2840 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
- (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452))
- (-5 *2
- (-640
- (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))
- (|:| |geneigvec| (-640 (-684 (-407 (-948 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))))
+ (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169)))
+ (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *6)))))) (-5 *1 (-1035 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363))
- (-4 *7 (-1233 *6))
- (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+ (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1193)))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-1163 (-407 (-1163 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1163 *6))
+ (-4 *7 (-1094))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1163 *11)) (-5 *6 (-637 *10)) (-5 *7 (-637 (-767)))
+ (-5 *8 (-637 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789))
+ (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-637 (-1163 *5)))
+ (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1163 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-637 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *1 (-1028 *2))
+ (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-915)) (-5 *1 (-1027 *2))
+ (-4 *2 (-13 (-1094) (-10 -8 (-15 -4254 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1256 *5))) (-5 *4 (-546)) (-5 *2 (-1256 *5))
+ (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6))))
- (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6)))))
- (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6))))))
+ (-12 (-5 *4 (-112)) (-5 *5 (-546)) (-4 *6 (-363)) (-4 *6 (-368))
+ (-4 *6 (-1045)) (-5 *2 (-637 (-637 (-684 *6)))) (-5 *1 (-1026 *6))
+ (-5 *3 (-637 (-684 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045))
+ (-5 *2 (-637 (-637 (-684 *4)))) (-5 *1 (-1026 *4))
+ (-5 *3 (-637 (-684 *4)))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5))))
- (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4))))
- (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1093)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-563))
- (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
+ (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-637 (-684 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-563))
- (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563)))))))
- (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))))
+ (-12 (-5 *4 (-915)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
+ (-5 *2 (-637 (-637 (-684 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-637 (-684 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5))))
- (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045))
- (-5 *2 (-767)))))
+ (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-546)) (-4 *5 (-363)) (-4 *5 (-1045))
+ (-5 *2 (-112)) (-5 *1 (-1026 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112))
+ (-5 *1 (-1026 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-637 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-546)) (-5 *2 (-684 *6))
+ (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1045))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1026 *4))
+ (-4 *4 (-363)) (-4 *4 (-1045))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-546)) (-5 *2 (-684 *5))
+ (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1093)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105)))))
+ (-12 (-5 *3 (-637 (-684 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-307))
+ (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1026 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045))
+ (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1256 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-637 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045))
+ (-5 *1 (-1026 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1233 *4))))
+ (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4))
+ (-5 *1 (-1026 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-898 (-546))) (-5 *4 (-546)) (-5 *2 (-684 *4))
+ (-5 *1 (-1025 *5)) (-4 *5 (-1045))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-684 (-546))) (-5 *1 (-1025 *4))
+ (-4 *4 (-1045))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3))
- (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
+ (-12 (-5 *3 (-637 (-898 (-546)))) (-5 *4 (-546)) (-5 *2 (-637 (-684 *4)))
+ (-5 *1 (-1025 *5)) (-4 *5 (-1045))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3))
- (-4 *3 (-1233 (-407 (-563))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854))))
- ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3))
- (-4 *3 (-13 (-1093) (-34))))))
+ (-12 (-5 *3 (-637 (-637 (-546)))) (-5 *2 (-637 (-684 (-546))))
+ (-5 *1 (-1025 *4)) (-4 *4 (-1045)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1025 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -2516 (-640 *5))))
- (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452))
- (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169))))
- ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262))))
- ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
+ (-12 (-5 *2 (-684 *4)) (-5 *3 (-915)) (-4 *4 (-1045)) (-5 *1 (-1025 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-684 *4))) (-5 *3 (-915)) (-4 *4 (-1045))
+ (-5 *1 (-1025 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452))
- (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))))
- (-5 *1 (-292 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-767)) (-5 *2 (-684 (-942 *4))) (-5 *1 (-1025 *4))
+ (-4 *4 (-1045)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-684 *4)) (-5 *3 (-915)) (|has| *4 (-6 (-4410 "*")))
+ (-4 *4 (-1045)) (-5 *1 (-1025 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-684 *4))) (-5 *3 (-915)) (|has| *4 (-6 (-4410 "*")))
+ (-4 *4 (-1045)) (-5 *1 (-1025 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-684 (-314 (-546)))))
+ (-5 *1 (-1024)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-684 (-314 (-546))))) (-5 *1 (-1024)))))
+(((*1 *2 *2) (-12 (-5 *2 (-684 (-314 (-546)))) (-5 *1 (-1024)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-684 (-407 (-942 (-546)))))
+ (-5 *2 (-684 (-314 (-546)))) (-5 *1 (-1024)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-314 (-546))))
+ (-5 *1 (-1024)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6)))
- (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5)))))
+ (-12 (-5 *4 (-684 (-407 (-942 (-546))))) (-5 *2 (-637 (-684 (-314 (-546)))))
+ (-5 *1 (-1024)) (-5 *3 (-314 (-546))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-942 (-546)))))
+ (-5 *2
+ (-637
+ (-2 (|:| |radval| (-314 (-546))) (|:| |radmult| (-546))
+ (|:| |radvect| (-637 (-684 (-314 (-546))))))))
+ (-5 *1 (-1024)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1207)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-653 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3674 *3) (|:| -2887 (-637 *5))))
+ (-5 *1 (-1021 *5 *3)) (-5 *4 (-637 *5)) (-4 *3 (-653 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1055 (-1020 *4) (-1163 (-1020 *4)))) (-5 *3 (-859))
+ (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1016))))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1163 (-1020 *3))))
+ (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1016))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4))
- (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))
+ (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546)))
+ (-5 *4 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3))))
- (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045))
- (-2174 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5))
- (-4 *4 (-611 (-888 *5)))))
+ (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546))) (-5 *4 (-407 (-546)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *5) (|:| -3529 *5))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1232 (-546)))
+ (-5 *4 (-2 (|:| -3530 *5) (|:| -3529 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546))))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4))
- (-2174 (-4 *3 (-1034 (-1169)))) (-2174 (-4 *3 (-1045)))
- (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858))
- (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263))))
+ (-12 (-5 *2 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1232 (-407 (-546))))
+ (-5 *4 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6))
- (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6))
- (-5 *1 (-628 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291)))))
+ (-12 (-5 *4 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *4) (|:| -3529 *4))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-546))) (-5 *2 (-637 (-2 (|:| -3530 *5) (|:| -3529 *5))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1232 *5))
+ (-5 *4 (-2 (|:| -3530 *5) (|:| -3529 *5))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))
- (-5 *2 (-640 (-1169))) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5))
- (-5 *1 (-321 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *2 (-637 (-407 (-546)))) (-5 *1 (-1017 *4)) (-4 *4 (-1232 (-546))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546)))))
+ (-5 *2 (-407 (-546))) (-5 *1 (-1017 *4)) (-4 *4 (-1232 (-546))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-421 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-113))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *4))
+ (-4 *4 (-421 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-113)) (-5 *1 (-163))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *4))
+ (-4 *4 (-13 (-421 *3) (-998)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-297 *3)) (-4 *3 (-298))))
+ ((*1 *2 *2) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *4 (-846)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *4))
+ (-4 *4 (-421 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-608 *3)) (-4 *3 (-846))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *4))
+ (-4 *4 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-546))) (-5 *5 (-546)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| -3813 *4) (|:| -1612 (-546))))) (-4 *4 (-1094))
+ (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4))
+ (-5 *2 (-637 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6))
+ (|:| |c2| (-407 *6)) (|:| -3486 *6)))
+ (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6))
+ (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-546))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3674
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1011 *6 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4))
+ (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -3486 *6)))
+ (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1169))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-637 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1193) (-27) (-421 *8)))
+ (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-546))
+ (-5 *2 (-637 *4)) (-5 *1 (-1010 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1169))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-637 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1193) (-27) (-421 *8)))
+ (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-546))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3529 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1009 *8 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546))))
+ ((*1 *1 *1) (-4 *1 (-998))) ((*1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-1008))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-4 *1 (-1008))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-915))))
+ ((*1 *1 *1) (-4 *1 (-1008))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-859)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163 *1)) (-4 *1 (-1008)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163 *1)) (-4 *1 (-1008)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-859)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-859)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-637 *1)) (-4 *1 (-1006 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-637 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-5 *2 (-546)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3))
+ (-4 *3 (-1207)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-546)))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-405 *3)) (-4 *3 (-545))
+ (-4 *3 (-556))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-546)))))
((*1 *2 *1)
- (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169)))))
+ (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-546)))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
+ (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-828 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-640 *5))))
+ (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-838 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-546)))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $)))))))
+ (|partial| -12 (-5 *2 (-407 (-546))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-405 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-4 *5 (-846)) (-5 *2 (-640 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5))))
+ (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169)))
- (-5 *1 (-1039 *4)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-546)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-405 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-546)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-828 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-838 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-546)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))))
+(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-1002)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-1002)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846))))
+ (-12 (-5 *3 (-407 (-546))) (-5 *4 (-546)) (-5 *2 (-51)) (-5 *1 (-1001)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-1000 *3)) (-14 *3 (-546)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-405 *5)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *5) (|:| |radicand| (-637 *5))))
+ (-5 *1 (-320 *5)) (-5 *4 (-767))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-546)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *1) (-4 *1 (-473)))
+ ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-879))))
+ ((*1 *1 *1) (-5 *1 (-967)))
+ ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-915)) (-4 *4 (-363))
+ (-5 *1 (-989 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6))
+ (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-608 *1)))
+ (-4 *1 (-421 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-722) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-647 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-722) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-307))
+ (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-410 *3 *4) (-1034 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-608 *1)))
+ (-4 *1 (-421 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1118 (-546) (-608 (-495)))) (-5 *1 (-495))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
+ (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
+ (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-713 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-1045))))
+ ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)) (-4 *2 (-556))))
+ ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350))))
+ ((*1 *1) (-4 *1 (-368)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350))))
+ ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545)))
+ ((*1 *1 *1) (-5 *1 (-546))) ((*1 *1 *1) (-5 *1 (-767)))
+ ((*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4))
- (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093))
- (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5))))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4))
- (-4 *4 (-865 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-1248 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3))))
- (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))))
-(((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))))
+ (-12 (-5 *3 (-546)) (-5 *2 (-898 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094))))
+ ((*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-545)) (-4 *2 (-556)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169)))
- (-4 *4 (-452)) (-5 *1 (-628 *3 *4)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2))
- (-4 *2 (-13 (-430 *5) (-27) (-1193)))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *3 (-846))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3))
- (-4 *5 (-789)) (-4 *3 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846))
- (-4 *6 (-1045))
- (-4 *2
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $)))))
- (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169))
- (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555)))))
+ (-12
+ (-5 *2
+ (-982 (-407 (-546)) (-860 *3) (-239 *4 (-767)) (-247 *3 (-407 (-546)))))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-767)) (-5 *1 (-983 *3 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846))
+ (-4 *6 (-789)) (-5 *1 (-982 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846))
+ (-4 *5 (-789)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1093)) (-4 *5 (-661 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-637 *6))
+ (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045))
- (-4 *2 (-1248 *3)))))
+ (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-452))
+ (-4 *4 (-846)) (-4 *5 (-789)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-982 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *4 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *2
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))
- (-5 *4 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563)))))
+ (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-981 *4 *2 *3 *5))
+ (-4 *4 (-350)) (-4 *5 (-720 *2 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)))))
+ (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2))
+ (-4 *2 (-946 (-407 (-942 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *3
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $))
+ (-15 -4246 ((-3 $ #1="failed") (-1169))))))
+ (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-946 (-942 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *6))
+ (-4 *6
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169))))))
+ (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
+ (-4 *2 (-946 (-942 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)))))
+ (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2))
+ (-4 *2 (-946 (-407 (-942 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *3
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $))
+ (-15 -4246 ((-3 $ #1="failed") (-1169))))))
+ (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-946 (-942 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *6))
+ (-4 *6
+ (-13 (-846)
+ (-10 -8 (-15 -4385 ((-1169) $)) (-15 -4246 ((-3 $ #1#) (-1169))))))
+ (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
+ (-4 *2 (-946 (-942 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-870))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363))
+ (-5 *2 (-637 (-2 (|:| C (-684 *5)) (|:| |g| (-1256 *5))))) (-5 *1 (-974 *5))
+ (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-915)) (-5 *1 (-694))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-5 *1 (-974 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-563)))
- (-5 *2 (-640 (-2 (|:| -1685 *5) (|:| -1700 *5)))) (-5 *1 (-1016 *3))
- (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1685 *5) (|:| -1700 *5)))))
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
+ (-5 *2 (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6))))
+ (-5 *1 (-974 *6)) (-5 *3 (-684 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307))
+ (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307))
+ (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307))
+ (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-5 *2 (-637 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-637 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *1 (-973 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-637 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789))
+ (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3735 (-637 *7))))
+ (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7))))
+ (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
+ (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7))))
+ (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563))))
- (-5 *4 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-563)))
- (-5 *2 (-640 (-2 (|:| -1685 *4) (|:| -1700 *4)))) (-5 *1 (-1017 *3))
- (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-563)))
- (-5 *2 (-640 (-2 (|:| -1685 *5) (|:| -1700 *5)))) (-5 *1 (-1017 *3))
- (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -1685 *5) (|:| -1700 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5))
- (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6))
- (-4 *6 (-452))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5))
- (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6))
- (-4 *6 (-452)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
+ (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7))))
+ (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
+ (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *7)) (|:| |badPols| (-637 *7))))
+ (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8))))
+ (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8))))
+ (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *2 (-2 (|:| |goodPols| (-637 *8)) (|:| |badPols| (-637 *8))))
+ (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-637 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-637 *8))) (-5 *3 (-637 *8)) (-4 *8 (-1059 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112))
+ (-5 *1 (-973 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *3))
+ (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-637 *7) (-637 *7))) (-5 *2 (-637 *7))
+ (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-5 *1 (-973 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-637 *3))
+ (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-637 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *5 (-1059 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *5 (-1059 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *5 (-1059 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3522 *1) (|:| |upper| *1)))
+ (-4 *1 (-972 *4 *5 *3 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-637 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-637 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-637 (-637 (-939 (-225)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-637 (-637 (-939 (-225))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1082 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))))
+(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1082 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))))
+(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1082 (-225))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ ((*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-4372 *3) (-767)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6))
+ (-2 (|:| -2542 *5) (|:| -2543 *6))))
+ (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846))
+ (-4 *8 (-946 *4 *6 (-860 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917))
+ (-12 (-5 *3 (-637 (-915))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-915))
(-4 *2 (-363)) (-14 *5 (-989 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846))
- (-4 *6 (-238 (-3610 *4) (-767)))
+ (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-4372 *4) (-767)))
(-14 *7
- (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *6))
- (-2 (|:| -2552 *5) (|:| -3311 *6))))
- (-14 *4 (-640 (-1169))) (-4 *2 (-172))
- (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846))))
+ (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *6))
+ (-2 (|:| -2542 *5) (|:| -2543 *6))))
+ (-14 *4 (-637 (-1169))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-946 *2 *6 (-860 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4))
- (-4 *4 (-1233 *2))))
+ (-12 (-5 *3 (-546)) (-4 *2 (-556)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1232 *2))))
((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5))
+ (-12 (-5 *2 (-637 *5)) (-5 *3 (-637 (-767))) (-4 *1 (-736 *4 *5))
(-4 *4 (-1045)) (-4 *5 (-846))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045))
- (-4 *2 (-846))))
+ (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846))))
((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6))
+ (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 (-767))) (-4 *1 (-946 *4 *5 *6))
(-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *2 (-846))))
+ (-12 (-5 *3 (-767)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *2 (-846))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6))
+ (-12 (-5 *2 (-637 *6)) (-5 *3 (-637 *5)) (-4 *1 (-969 *4 *5 *6))
(-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788))
- (-4 *2 (-846)))))
+ (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546))))
+ ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1) (-4 *1 (-866 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-967)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-637 (-637 (-546)))) (-5 *1 (-967)) (-5 *3 (-637 (-546))))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-967)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1232 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2131 (-767)) (|:| -3292 (-767)))) (-5 *1 (-767))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3268 *4))) (-5 *1 (-965 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3268 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 (-767))) (-5 *1 (-965 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-965 *4 *3))
+ (-4 *3 (-1232 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4172 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4172 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3552 *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3552 *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3552 *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3))
+ (-4 *3 (-1232 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3))
+ (-4 *3 (-1232 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-965 *5 *3)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4171 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4)))
+ (-5 *1 (-965 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *1)
+ (-12 (-4 *1 (-404)) (-3733 (|has| *1 (-6 -4399)))
+ (-3733 (|has| *1 (-6 -4391)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-846))))
+ ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))
+ ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-846))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-4 *1 (-963))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-4 *1 (-963))))
+(((*1 *1 *1 *1) (-4 *1 (-963))))
+(((*1 *1 *1 *1) (-4 *1 (-963))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-769)) (-5 *1 (-113))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1096)) (-5 *1 (-961)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-859))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1262)) (-5 *1 (-959)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
+(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
+(((*1 *1) (-4 *1 (-350)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-556) (-846) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-637 (-1163 *5)))
+ (|:| |prim| (-1163 *5))))
+ (-5 *1 (-432 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-556) (-846) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1163 *3)) (|:| |pol2| (-1163 *3))
+ (|:| |prim| (-1163 *3))))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| |coef1| (-546)) (|:| |coef2| (-546)) (|:| |prim| (-1163 *5))))
+ (-5 *1 (-957 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169)))
+ (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 *5)))
+ (|:| |prim| (-1163 *5))))
+ (-5 *1 (-957 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169))) (-5 *5 (-1169))
+ (-4 *6 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -4369 (-637 (-546))) (|:| |poly| (-637 (-1163 *6)))
+ (|:| |prim| (-1163 *6))))
+ (-5 *1 (-957 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))))
+ (-12 (-5 *3 (-1169)) (-5 *1 (-582 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-626 *4 *2))
+ (-4 *2 (-13 (-421 *4) (-998) (-1193)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-421 *4) (-998) (-1193)))
+ (-4 *4 (-13 (-846) (-556))) (-5 *1 (-626 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1169))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-956)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
- (-4 *7 (-789))
- (-5 *2
- (-640
- (-2 (|:| -2521 (-767))
- (|:| |eqns|
- (-640
- (-2 (|:| |det| *8) (|:| |rows| (-640 (-563)))
- (|:| |cols| (-640 (-563))))))
- (|:| |fgb| (-640 *8)))))
- (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))))
+ (|partial| -12 (-5 *4 (-915)) (-4 *5 (-556)) (-5 *2 (-684 *5))
+ (-5 *1 (-953 *5 *3)) (-4 *3 (-653 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846))
- (-5 *1 (-572 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
- (-4 *6 (-452)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555))
- (-5 *2 (-407 (-948 *4)))))
+ (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| (-637 *3))))
+ (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *3)) (-15 -3388 (*3 $)) (-15 -3387 (*3 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556))
+ (-4 *8 (-946 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| *3)))
+ (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *8)) (-15 -3388 (*8 $)) (-15 -3387 (*8 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-546))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556))
+ (-4 *8 (-946 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *9) (|:| |radicand| *9)))
+ (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767))
+ (-4 *9
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *8)) (-15 -3388 (*8 $)) (-15 -3387 (*8 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *8) (|:| |radicand| *8)))
+ (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2543 (-546)))) (-4 *1 (-421 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-886 *3)) (|:| -2543 (-886 *3))))
+ (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2543 (-546))))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846))
+ (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1045)) (-4 *4 (-846))
+ (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -2543 (-546)))) (-4 *1 (-421 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-886 *3)) (|:| -2543 (-767))))
+ (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -2543 (-767))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2543 (-546))))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-421 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-637 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-421 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-637 *1)) (-4 *1 (-946 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-637 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-637 *1)) (-4 *1 (-384 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
+ (-4 *4 (-722))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-946 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
+ ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555))
- (-5 *2 (-407 (-948 *4))))))
+ (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-637 (-767)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-5 *2 (-767)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-637 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-767))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-767)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *1))
+ (-4 *1 (-946 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-1232 (-546))) (-5 *2 (-637 (-546)))
+ (-5 *1 (-486 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846))
+ (-4 *3 (-452)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-546)) (-4 *5 (-844)) (-4 *5 (-363))
+ (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1232 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-640 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563))))))
- (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4))
- (-4 *4 (-1233 (-563))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767))
+ (-5 *1 (-941 *4 *5)) (-4 *5 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169)))
- (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291)))))
-(((*1 *1) (-5 *1 (-291))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-941 *4 *3))
+ (-4 *3 (-1232 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452))
- (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
- (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172))))
- ((*1 *1) (-4 *1 (-722))) ((*1 *1) (-5 *1 (-1169)))
- ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))
- ((*1 *1) (-5 *1 (-1213))) ((*1 *1) (-5 *1 (-1214)))
- ((*1 *1) (-5 *1 (-1215))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-637 *3)) (-5 *1 (-941 *4 *3))
+ (-4 *3 (-1232 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1685 (-407 (-563))) (|:| -1700 (-407 (-563)))))
- (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))))
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5))
+ (-5 *1 (-940 *4 *5)) (-14 *4 (-637 (-1169))))))
(((*1 *2 *3)
- (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452))
- (-5 *2
- (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563)))))
- (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045))
+ (-5 *2 (-942 *5)) (-5 *1 (-940 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147)))
- (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2))
- (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)))))
-(((*1 *1) (-5 *1 (-468))))
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045))
+ (-5 *2 (-942 *5)) (-5 *1 (-940 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5))
+ (-5 *1 (-940 *4 *5)) (-14 *4 (-637 (-1169))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045))
+ (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-1045))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1163 (-546))) (-5 *2 (-546)) (-5 *1 (-938)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-191)) (-5 *3 (-546))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-561)) (-5 *3 (-546))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1163 (-407 (-546)))) (-5 *1 (-938)) (-5 *3 (-546)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 (-886 *6)))
+ (-5 *5 (-1 (-884 *6 *8) *8 (-886 *6) (-884 *6 *8))) (-4 *6 (-1094))
+ (-4 *8 (-13 (-1045) (-611 (-886 *6)) (-1034 *7))) (-5 *2 (-884 *6 *8))
+ (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6))
+ (-4 (-942 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172)))
+ (-5 *1 (-178 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-886 *4)) (-4 *1 (-882 *4))
+ (-4 *4 (-1094))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-886 *5)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094))
+ (-4 *3 (-13 (-421 *6) (-611 *4) (-882 *5) (-1034 (-608 $))))
+ (-5 *4 (-886 *5)) (-4 *6 (-13 (-556) (-846) (-882 *5)))
+ (-5 *1 (-928 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 (-546) *3)) (-5 *4 (-886 (-546))) (-4 *3 (-545))
+ (-5 *1 (-929 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-846) (-1034 (-608 $)) (-611 *4) (-882 *5))) (-5 *4 (-886 *5))
+ (-5 *1 (-930 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-886 *5)) (-4 *5 (-1094))
+ (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-886 *6) (-884 *6 *3))) (-4 *8 (-846))
+ (-5 *2 (-884 *6 *3)) (-5 *4 (-886 *6)) (-4 *6 (-1094))
+ (-4 *3 (-13 (-946 *9 *7 *8) (-611 *4))) (-4 *7 (-789))
+ (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094))
+ (-4 *3 (-13 (-946 *8 *6 *7) (-611 *4))) (-5 *4 (-886 *5)) (-4 *7 (-882 *5))
+ (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5)))
+ (-5 *1 (-932 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-987 *6))
+ (-4 *6 (-13 (-556) (-882 *5) (-611 *4))) (-5 *4 (-886 *5))
+ (-5 *1 (-935 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-884 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-886 *5))
+ (-4 *5 (-1094)) (-5 *1 (-936 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-637 (-886 *7))) (-5 *5 (-1 *9 (-637 *9)))
+ (-5 *6 (-1 (-884 *7 *9) *9 (-886 *7) (-884 *7 *9))) (-4 *7 (-1094))
+ (-4 *9 (-13 (-1045) (-611 (-886 *7)) (-1034 *8))) (-5 *2 (-884 *7 *9))
+ (-5 *3 (-637 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5)))
+ (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-927 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925))))
+ ((*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-314 (-546))) (-5 *1 (-925))))
+ ((*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-926 *3 *2)) (-4 *2 (-421 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-314 (-546))) (-5 *1 (-925))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-926 *4 *2)) (-4 *2 (-421 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-637 (-1082 (-225))))
+ (-5 *1 (-924)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-921))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-921))))
+ ((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-923))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-923)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-637 (-1 (-225) (-225)))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-921))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1 (-225) (-225)))) (-5 *3 (-1082 (-225)))
+ (-5 *1 (-921))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3))
+ (-4 *3 (-611 (-535)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3))
+ (-4 *3 (-611 (-535)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1082 (-225))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-225)))) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-923)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-921))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1082 (-225))) (-5 *1 (-921))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1169)) (-5 *5 (-1082 (-225))) (-5 *2 (-921)) (-5 *1 (-922 *3))
+ (-4 *3 (-611 (-535)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-5 *2 (-921)) (-5 *1 (-922 *3)) (-4 *3 (-611 (-535))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-921)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112))
+ (-5 *1 (-920 *4 *5 *6 *7))))
((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112))
+ (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169))))
+ (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563)))))
- (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))))
+ (-2 (|:| |det| *12) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))
+ (-5 *4 (-684 *12)) (-5 *5 (-637 (-407 (-942 *9)))) (-5 *6 (-637 (-637 *12)))
+ (-5 *7 (-767)) (-5 *8 (-546)) (-4 *9 (-13 (-307) (-147)))
+ (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-846) (-611 (-1169))))
+ (-4 *11 (-789))
+ (-5 *2
+ (-2 (|:| |eqzro| (-637 *12)) (|:| |neqzro| (-637 *12))
+ (|:| |wcond| (-637 (-942 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *9))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *9)))))))))
+ (-5 *1 (-920 *9 *10 *11 *12)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-684 *7)) (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-946 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
+ (-4 *7 (-789))
+ (-5 *2
+ (-637
+ (-2 (|:| |det| *8) (|:| |rows| (-637 (-546)))
+ (|:| |cols| (-637 (-546))))))
+ (-5 *1 (-920 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-637 *8))) (-5 *3 (-637 *8)) (-4 *8 (-946 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
+ (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789)) (-5 *2 (-637 (-637 (-546)))) (-5 *1 (-920 *4 *5 *6 *7))
+ (-5 *3 (-546)) (-4 *7 (-946 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4))
- (-4 *4 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302))))
- ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4))
- (-4 *4 (-13 (-430 *3) (-998) (-1193)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-637 (-637 *6))) (-4 *6 (-946 *3 *5 *4))
+ (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169))))
+ (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169)))
- (-4 *5 (-452))
- (-5 *2
- (-2 (|:| |gblist| (-640 (-247 *4 *5)))
- (|:| |gvlist| (-640 (-563)))))
- (-5 *1 (-628 *4 *5)))))
+ (-12
+ (-5 *3
+ (-637
+ (-2 (|:| -3501 (-767))
+ (|:| |eqns|
+ (-637
+ (-2 (|:| |det| *7) (|:| |rows| (-637 (-546)))
+ (|:| |cols| (-637 (-546))))))
+ (|:| |fgb| (-637 *7)))))
+ (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767))
+ (-5 *1 (-920 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-558)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-637
+ (-2 (|:| -3501 (-767))
+ (|:| |eqns|
+ (-637
+ (-2 (|:| |det| *7) (|:| |rows| (-637 (-546)))
+ (|:| |cols| (-637 (-546))))))
+ (|:| |fgb| (-637 *7)))))
+ (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767))
+ (-5 *1 (-920 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147)))
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789)) (-5 *2 (-637 *3)) (-5 *1 (-920 *4 *5 *6 *3))
+ (-4 *3 (-946 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1735 (-684 (-407 (-942 *4)))) (|:| |vec| (-637 (-407 (-942 *4))))
+ (|:| -3501 (-767)) (|:| |rows| (-637 (-546))) (|:| |cols| (-637 (-546)))))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789))
+ (-5 *2
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *4))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *4)))))))
+ (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *4))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *4)))))))
+ (-5 *3 (-637 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5))
(-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
- (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7))
- (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093))
- (-14 *4
- (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *3))
- (-2 (|:| -2552 *2) (|:| -3311 *3)))))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870)))
- (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870)))
- (-5 *4 (-640 (-917))) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468))))
- ((*1 *1 *1) (-5 *1 (-468))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563))
- (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))))
-(((*1 *1 *1) (-4 *1 (-626)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 *4))))
- (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))
- (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
- (-5 *2 (-640 (-640 (-939 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045))
- (-4 *1 (-1127 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045))
- (-4 *1 (-1127 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112))
- (-4 *1 (-1127 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112))
- (-4 *1 (-1127 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))))
+ (-5 *1 (-920 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-684 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
+ (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789))
+ (-5 *2
+ (-637
+ (-2 (|:| -3501 (-767))
+ (|:| |eqns|
+ (-637
+ (-2 (|:| |det| *8) (|:| |rows| (-637 (-546)))
+ (|:| |cols| (-637 (-546))))))
+ (|:| |fgb| (-637 *8)))))
+ (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789)) (-4 *7 (-946 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-637 *7)) (|:| |n0| (-637 *7))))
+ (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-637 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5))
+ (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-611 (-1169))))
+ (-4 *6 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
+ (-5 *2 (-637 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7))
+ (-4 *7 (-946 *4 *6 *5)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3))
- (-4 *3 (-945 *4 *6 *5))))
+ (-4 *6 (-789)) (-5 *2 (-407 (-942 *4))) (-5 *1 (-920 *4 *5 *6 *3))
+ (-4 *3 (-946 *4 *6 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4))))
- (-5 *1 (-920 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-684 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
+ (-5 *2 (-684 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4))))
- (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3781 (-640 (-1169))) (|:| -3792 (-640 (-1169)))))
- (-5 *1 (-1210)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| -2618 *4) (|:| -4329 (-563)))))
- (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-626)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1169))
- (-5 *2
- (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225)))
- (|:| |singularities| (-1149 (-225)))))
- (-5 *1 (-105)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3))))
- ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
+ (-5 *2 (-637 (-407 (-942 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8))))
- (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147)))
- (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169))))
- (-4 *10 (-789))
+ (-12 (-5 *3 (-684 *11)) (-5 *4 (-637 (-407 (-942 *8)))) (-5 *5 (-767))
+ (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9))
+ (-4 *9 (-13 (-846) (-611 (-1169)))) (-4 *10 (-789))
(-5 *2
(-2
(|:| |rgl|
- (-640
- (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11))
- (|:| |wcond| (-640 (-948 *8)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *11)) (|:| |neqzro| (-637 *11))
+ (|:| |wcond| (-637 (-942 *8)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *8))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *8))))))))))
- (|:| |rgsz| (-563))))
- (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563))))
- (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5))
- (-5 *3 (-407 *5)))))
-(((*1 *1 *1) (-4 *1 (-626)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2))
- (-4 *4 (-682 *2 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *1) (-4 *1 (-1144))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563))
- (-14 *4 *2) (-4 *5 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917))))
- ((*1 *2)
- (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3))
- (-5 *2 (-917))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363))
- (-5 *2 (-767)) (-5 *1 (-662 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767))
- (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3))
- (-4 *3 (-682 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555))
- (-5 *2 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
- (-5 *2 (-640 (-640 (-640 (-767))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *8))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *8))))))))))
+ (|:| |rgsz| (-546))))
+ (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-546)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147)))
(-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7))
- (|:| |wcond| (-640 (-948 *4)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *7)) (|:| |neqzro| (-637 *7))
+ (|:| |wcond| (-637 (-942 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *4))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *4))))))))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-1169))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917))
- (-5 *2 (-1262)) (-5 *1 (-468))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917))
- (-5 *2 (-1262)) (-5 *1 (-468)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846))
- (-4 *3 (-1093)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6)
- (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2287 *6)))
- (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112))
- (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))
- ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112))
- (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112))
- (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045))
- (-5 *2 (-640 (-640 (-640 (-939 *3))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *4))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *4))))))))))
+ (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
(((*1 *2 *3 *4)
(-12
(-5 *3
- (-640
- (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8))
- (|:| |wcond| (-640 (-948 *5)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8))
+ (|:| |wcond| (-637 (-942 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *5))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *5))))))))))
- (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6))
- (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *5))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *5))))))))))
+ (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6))
+ (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-546))
(-5 *1 (-920 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2))
- (-4 *2 (-1093))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846))
- (-5 *1 (-1209 *2)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6))
- (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -1420
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1011 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-640 (-1169)))
+ (-12 (-5 *3 (-684 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
+ (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789))
(-5 *2
- (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
- (-5 *1 (-625 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212))
- (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5)))
- (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
- (-4 *7 (-789))
- (-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8))
- (|:| |wcond| (-640 (-948 *5)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8))
+ (|:| |wcond| (-637 (-942 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *5))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *5))))))))))
- (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *5))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *5))))))))))
+ (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-637 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6))
+ (-12 (-5 *3 (-684 *8)) (-5 *4 (-637 (-1169))) (-4 *8 (-946 *5 *7 *6))
(-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
(-4 *7 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8))
- (|:| |wcond| (-640 (-948 *5)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8))
+ (|:| |wcond| (-637 (-942 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *5))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *5))))))))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *5))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *5))))))))))
(-5 *1 (-920 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789))
+ (-12 (-5 *3 (-684 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7))
- (|:| |wcond| (-640 (-948 *4)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *7)) (|:| |neqzro| (-637 *7))
+ (|:| |wcond| (-637 (-942 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *4))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *4))))))))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *4))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *4))))))))))
(-5 *1 (-920 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7))
+ (-12 (-5 *3 (-684 *9)) (-5 *5 (-915)) (-4 *9 (-946 *6 *8 *7))
(-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169))))
(-4 *8 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9))
- (|:| |wcond| (-640 (-948 *6)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *9)) (|:| |neqzro| (-637 *9))
+ (|:| |wcond| (-637 (-942 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *6))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *6))))))))))
- (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *6))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *6))))))))))
+ (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-637 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 (-1169))) (-5 *5 (-915))
+ (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
(-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9))
- (|:| |wcond| (-640 (-948 *6)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *9)) (|:| |neqzro| (-637 *9))
+ (|:| |wcond| (-637 (-942 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *6))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *6))))))))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *6))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *6))))))))))
(-5 *1 (-920 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6))
+ (-12 (-5 *3 (-684 *8)) (-5 *4 (-915)) (-4 *8 (-946 *5 *7 *6))
(-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
(-4 *7 (-789))
(-5 *2
- (-640
- (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8))
- (|:| |wcond| (-640 (-948 *5)))
+ (-637
+ (-2 (|:| |eqzro| (-637 *8)) (|:| |neqzro| (-637 *8))
+ (|:| |wcond| (-637 (-942 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *5))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *5))))))))))
+ (-2 (|:| |partsol| (-1256 (-407 (-942 *5))))
+ (|:| -2169 (-637 (-1256 (-407 (-942 *5))))))))))
(-5 *1 (-920 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563))
+ (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 *9)) (-5 *5 (-1151))
+ (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-546))
(-5 *1 (-920 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563))
+ (-12 (-5 *3 (-684 *9)) (-5 *4 (-637 (-1169))) (-5 *5 (-1151))
+ (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-546))
(-5 *1 (-920 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6))
+ (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-946 *5 *7 *6))
(-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
- (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8))))
+ (-4 *7 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917))
- (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
- (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563))
+ (-12 (-5 *3 (-684 *10)) (-5 *4 (-637 *10)) (-5 *5 (-915)) (-5 *6 (-1151))
+ (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
+ (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-546))
(-5 *1 (-920 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917))
- (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
- (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563))
+ (-12 (-5 *3 (-684 *10)) (-5 *4 (-637 (-1169))) (-5 *5 (-915)) (-5 *6 (-1151))
+ (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
+ (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-546))
(-5 *1 (-920 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563))
- (-5 *1 (-920 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870)))
- (-5 *1 (-468)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *3 (-684 *9)) (-5 *4 (-915)) (-5 *5 (-1151)) (-4 *9 (-946 *6 *8 *7))
+ (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169))))
+ (-4 *8 (-789)) (-5 *2 (-546)) (-5 *1 (-920 *6 *7 *8 *9)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4))
- (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6)))
- (-5 *1 (-625 *5 *6)))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-363)) (-4 *2 (-1232 *4))
+ (-5 *1 (-919 *4 *2)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2)))
- (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5))
- (-4 *3 (-342 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212))
- (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -4369 (-637 *1)) (|:| -2551 *1)))
+ (-5 *3 (-637 *1)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-637 *1)) (-4 *1 (-917)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-942 *4))) (-5 *3 (-637 (-1169))) (-4 *4 (-452))
+ (-5 *1 (-914 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-942 *4))) (-5 *3 (-637 (-1169))) (-4 *4 (-452))
+ (-5 *1 (-914 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-915))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-901 (-546))) (-5 *1 (-913))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-901 (-546))) (-5 *1 (-913)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2))
+ (-4 *2 (-946 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4))
- (-5 *1 (-918 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225)))
- (-5 *1 (-468)))))
-(((*1 *1) (-5 *1 (-614))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112))
- (-5 *1 (-1209 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6))
- (|:| -2287 *6)))
- (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2))
+ (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-405 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2 (-51)) (-5 *1 (-911 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-405 (-942 *6))) (-5 *5 (-1169)) (-5 *3 (-942 *6))
+ (-4 *6 (-13 (-307) (-147))) (-5 *2 (-51)) (-5 *1 (-911 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-405 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
+(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
- (-14 *4 (-640 (-1169)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452))
- (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2)))
- (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5))
- (-4 *3 (-342 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212))
- (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-2 (|:| -2173 (-1165 *6)) (|:| -3311 (-563)))))
- (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-753)))))
+ (-12 (-4 *3 (-1232 (-407 (-546)))) (-5 *1 (-909 *3 *2))
+ (-4 *2 (-1232 (-407 *3))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2310 (-640 *1)) (|:| -4334 *1)))
- (-5 *3 (-640 *1)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+ (-12 (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *3))
+ (-4 *3 (-1232 (-407 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
+ (-12 (-5 *3 (-637 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546)))))
+ (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *5))
+ (-4 *5 (-1232 (-407 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3792 (-640 *3)) (|:| -3781 (-640 *3))))
- (-5 *1 (-1209 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093))
- (-5 *1 (-113 *4))))
+ (-12 (-4 *3 (-1232 (-407 (-546))))
+ (-5 *2 (-2 (|:| |den| (-546)) (|:| |gcdnum| (-546)))) (-5 *1 (-909 *3 *4))
+ (-4 *4 (-1232 (-407 *3)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1093)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1169))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-640 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1193) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3)))
- (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452))
- (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452))
- (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212))
- (-4 *6 (-1233 (-407 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-342 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2))
- (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2))
- (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-753)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+ (-12 (-4 *4 (-1232 (-407 *2))) (-5 *2 (-546)) (-5 *1 (-909 *4 *3))
+ (-4 *3 (-1232 (-407 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846))
- (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-430 *5))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *5 (-609 $)) $))
- (-15 -2153 ((-1118 *5 (-609 $)) $))
- (-15 -1692 ($ (-1118 *5 (-609 $))))))))))
+ (-12 (-5 *3 (-546)) (-4 *4 (-1232 (-407 *3))) (-5 *2 (-915))
+ (-5 *1 (-909 *4 *5)) (-4 *5 (-1232 (-407 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262))
- (-5 *1 (-1209 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262))
- (-5 *1 (-1209 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1169))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-640 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2840 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1193) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3)))
- (-5 *3 (-563))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1700 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1009 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112))
- (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169)))))
+ (|partial| -12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4))
+ (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-846) (-556) (-1034 (-546))))
+ (-5 *2 (-2 (|:| -4186 (-767)) (|:| -2525 *8)))
+ (-5 *1 (-907 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452))
- (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)))))
+ (|partial| -12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6))
+ (-4 *4 (-1232 (-407 (-546)))) (-4 *5 (-1232 (-407 *4)))
+ (-4 *6 (-342 (-407 (-546)) *4 *5))
+ (-5 *2 (-2 (|:| -4186 (-767)) (|:| -2525 *6))) (-5 *1 (-908 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5))
- (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5)))
- (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
+ (-12 (-5 *3 (-333 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1232 *5))
+ (-4 *7 (-1232 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-112))
+ (-5 *1 (-907 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212))
- (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363))
- (-5 *2 (-640 (-948 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2))
- (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2))
- (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563)))
- (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753)))))
+ (-12 (-5 *3 (-333 (-407 (-546)) *4 *5 *6)) (-4 *4 (-1232 (-407 (-546))))
+ (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 (-407 (-546)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-908 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-452))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1163 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846))
+ (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-906)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-405 (-1163 *1))) (-5 *1 (-314 *4)) (-5 *3 (-1163 *1))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846))))
+ ((*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-405 (-1163 *1))) (-5 *1 (-314 *4)) (-5 *3 (-1163 *1))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-846))))
+ ((*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-405 (-1163 *1))) (-5 *3 (-1163 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452))
- (-5 *1 (-914 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+ (|partial| -12 (-5 *2 (-637 (-1163 *5))) (-5 *3 (-1163 *5)) (-4 *5 (-166 *4))
+ (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-1232 *4))
+ (-4 *4 (-350)) (-5 *1 (-358 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-637 (-1163 (-546)))) (-5 *3 (-1163 (-546)))
+ (-5 *1 (-571))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-637 (-1163 *1))) (-5 *3 (-1163 *1)) (-4 *1 (-906)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563)))
- (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $))))))))))
+ (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-350)) (-5 *2 (-1256 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-906))
+ (-5 *2 (-1256 *1)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-350)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5))))
- (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5)))
- (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563)))))
- (-14 *6 (-917)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208))
- (-4 *2 (-1208)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4408))
- (-4 *1 (-151 *2)) (-4 *2 (-1208))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2))
- (-4 *2 (-1208))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2))
- (-4 *2 (-1208))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-846)) (-4 *5 (-906)) (-4 *6 (-789))
+ (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-405 (-1163 *8))) (-5 *1 (-903 *5 *6 *7 *8))
+ (-5 *4 (-1163 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-5 *2 (-2 (|:| -3929 (-1165 *4)) (|:| |deg| (-917))))
- (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767))
- (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2))
- (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208))
- (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093))
- (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2))))
- ((*1 *1 *1) (-5 *1 (-495)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208))
- (-4 *2 (-1208)) (-5 *1 (-638 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045))
- (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2))
- (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363))
- (-4 *3 (-172)) (-4 *1 (-720 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208))
- (-4 *2 (-1208)) (-5 *1 (-953 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5))
- (-14 *6 (-640 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045))
- (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
- (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208))
- (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208))
- (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2)))))
+ (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5)))
- (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6))
- (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4))
- (-5 *1 (-444 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5)))
- (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-753)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452))
- (-5 *1 (-914 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563)))
- (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $))))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4))))
- (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4))))
- (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193)))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7))
- (-5 *3 (-1165 *6)) (-4 *7 (-1093))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10))
- (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846))
- (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10))
- (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5))
- (-5 *3 (-1165 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6))
- (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
+ (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5))
+ (-4 *5 (-946 *2 *3 *4))))
((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387)))))
+ (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1232 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846)))
- (-5 *1 (-1123 *3)))))
+ (-12 (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6))
+ (-5 *2 (-405 (-1163 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1163 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
+ (-12 (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-946 *4 *5 *6))
+ (-5 *2 (-405 (-1163 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1163 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-906)) (-4 *5 (-1232 *4)) (-5 *2 (-405 (-1163 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1163 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563)))
- (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $))))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4))))
- (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3)))
- (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2))
- (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6))
- (-4 *6 (-342 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3)))
- (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
- (-4 *1 (-335 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147)))
- (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5)))))
- (-5 *1 (-1122 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147)))
- (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5)))))
- (-5 *1 (-1122 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))))
-(((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
+ (|partial| -12 (-5 *2 (-637 (-1163 *7))) (-5 *3 (-1163 *7))
+ (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-5 *1 (-903 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-637 (-1163 *5))) (-5 *3 (-1163 *5))
+ (-4 *5 (-1232 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789))
- (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3))
- (-5 *1 (-462 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1034 (-407 (-563))) (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $))
- (-15 -2153 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1193) (-998))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $))
- (-15 -2153 ((-1118 *4 (-609 $)) $))
- (-15 -1692 ($ (-1118 *4 (-609 $))))))))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225))
- (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1337 (-640 (-2 (|:| |irr| *10) (|:| -3259 (-563)))))))
- (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307))
- (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789))
- (-5 *2
- (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-640 (-1165 *3)))))
- (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3))))))
+ (|partial| -12 (-5 *2 (-637 (-1163 *7))) (-5 *3 (-1163 *7))
+ (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-789)) (-4 *4 (-846))
+ (-5 *1 (-903 *5 *6 *4 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-637 *6))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))) ((*1 *1) (-4 *1 (-545)))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-898 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1169))
- (|:| |arrayIndex| (-640 (-948 (-563))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1169)) (|:| |rand| (-858))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330))
- (|:| |elseClause| (-330))))
- (|:| |returnBranch|
- (-2 (|:| -1665 (-112))
- (|:| -2618
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2473 (-858))))))
- (|:| |blockBranch| (-640 (-330)))
- (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151))
- (|:| |forBranch|
- (-2 (|:| -4166 (-1085 (-948 (-563))))
- (|:| |span| (-948 (-563))) (|:| -3363 (-330))))
- (|:| |labelBranch| (-1113))
- (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3363 (-330))))
- (|:| |commonBranch|
- (-2 (|:| -3352 (-1169)) (|:| |contents| (-640 (-1169)))))
- (|:| |printBranch| (-640 (-858)))))
- (-5 *1 (-330)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5)))
- (-5 *1 (-1122 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5))))
- (-5 *1 (-1122 *5)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112))
- (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
+ (-12 (-5 *2 (-637 (-637 (-767)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-898 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1090 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-1090 (-637 *4))) (-5 *1 (-901 *4))
+ (-5 *3 (-637 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-1090 (-1090 *4))) (-5 *1 (-901 *4))
+ (-5 *3 (-1090 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1090 (-1090 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-637 (-767)))
+ (-5 *1 (-901 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1094)) (-5 *2 (-637 (-767)))
+ (-5 *1 (-901 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-901 *4)) (-4 *4 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
+ (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-915))
+ (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (-5 *1 (-899 *4 *2)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *2))
- (-2 (|:| -2552 *5) (|:| -3311 *2))))
- (-4 *2 (-238 (-3610 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $))
- (-15 -2153 ((-1118 *4 (-609 $)) $))
- (-15 -1692 ($ (-1118 *4 (-609 $)))))))
- (-4 *4 (-555)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-609 *2)))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $))
- (-15 -2153 ((-1118 *4 (-609 $)) $))
- (-15 -1692 ($ (-1118 *4 (-609 $)))))))
- (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846))
- (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8))
- (-4 *8 (-945 *3 *7 *6)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-637 *3)) (|:| |image| (-637 *3))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-637 *3))) (-4 *3 (-1094)) (-5 *1 (-898 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 (-546))) (-4 *1 (-298)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 (-546))) (-4 *1 (-298)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1094)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5))))
- (-5 *1 (-1122 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147)))
- (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4))))
+ (-12 (-5 *2 (-1090 *3)) (-5 *1 (-898 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-898 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1232 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1232 *2))))
+ ((*1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-637 (-767))) (-4 *1 (-896 *4))
+ (-4 *4 (-1094))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))))
+ (-5 *1 (-564))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5))))
- (-5 *1 (-1122 *5))))
+ (-12 (-5 *3 (-765)) (-5 *4 (-1057))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))))
+ (-5 *1 (-564))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-783)) (-5 *3 (-1057))
+ (-5 *4
+ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))
+ (|:| |extra| (-1031))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-783)) (-5 *3 (-1057))
+ (-5 *4
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))
+ (|:| |extra| (-1031))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-796)) (-5 *3 (-1057))
+ (-5 *4
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))))))
((*1 *2 *3)
- (-12 (-5 *3 (-294 (-407 (-948 *4))))
- (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4))))
- (-5 *1 (-1122 *4))))
+ (-12 (-5 *3 (-804))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-801))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-13 (-307) (-846) (-147)))
- (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5))))
+ (-12 (-5 *3 (-804)) (-5 *4 (-1057))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-801))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-835)) (-5 *3 (-1057))
+ (-5 *4 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))
+ (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-835)) (-5 *3 (-1057))
+ (-5 *4
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-407 (-948 *4))))
- (-4 *4 (-13 (-307) (-846) (-147)))
- (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4))))
+ (-12 (-5 *3 (-837))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-836))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169)))
- (-4 *5 (-13 (-307) (-846) (-147)))
- (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5))))
+ (-12 (-5 *3 (-837)) (-5 *4 (-1057))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-836))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-891)) (-5 *3 (-1057))
+ (-5 *4
+ (-2 (|:| |pde| (-637 (-314 (-225))))
+ (|:| |constraints|
+ (-637
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767))
+ (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225)))
+ (|:| |dFinish| (-684 (-225))))))
+ (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151))
+ (|:| |tol| (-225))))
+ (-5 *2 (-2 (|:| -3057 (-378)) (|:| |explanations| (-1151))))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-294 (-407 (-948 *4)))))
- (-4 *4 (-13 (-307) (-846) (-147)))
- (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-894))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-893))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-894)) (-5 *4 (-1057))
+ (-5 *2
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *1 (-893)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1232 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172))
- (-4 *5 (-238 (-3610 *3) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *5))
- (-2 (|:| -2552 *2) (|:| -3311 *5))))
- (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-945 *4 *5 (-860 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045))
- (-4 *4 (-1208))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172))
- (-4 *5 (-238 (-3610 *3) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *5))
- (-2 (|:| -2552 *2) (|:| -3311 *5))))
- (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846))
- (-4 *7 (-945 *4 *5 (-860 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))))
+ (-12 (-4 *1 (-891))
+ (-5 *3
+ (-2 (|:| |pde| (-637 (-314 (-225))))
+ (|:| |constraints|
+ (-637
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767))
+ (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225)))
+ (|:| |dFinish| (-684 (-225))))))
+ (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151))
+ (|:| |tol| (-225))))
+ (-5 *2 (-1031)))))
+(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-535))) ((*1 *1) (-4 *1 (-718))) ((*1 *1) (-4 *1 (-722)))
+ ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094))))
+ ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-767))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
+ (-5 *2 (-637 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-637 (-2 (|:| |k| (-889 *3)) (|:| |c| *4))))
+ (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1207))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172))
- (-4 *4 (-238 (-3610 *5) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *3) (|:| -3311 *4))
- (-2 (|:| -2552 *3) (|:| -3311 *4))))
- (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846))
- (-4 *7 (-945 *2 *4 (-860 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3))
- (-5 *1 (-786 *3)) (-4 *3 (-970))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112))
- (-5 *1 (-1203 *2)) (-4 *2 (-970)))))
+ (-12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-637 *5)) (-5 *1 (-887 *4 *5))
+ (-4 *5 (-1207)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1207)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
+ (-5 *1 (-884 *4 *5)) (-4 *5 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3))
+ (-4 *3 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-886 *5)) (-4 *5 (-1094)) (-4 *6 (-1207))
+ (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-535))) ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-767))))
+ (|partial| -12 (-5 *2 (-2 (|:| -2887 (-113)) (|:| |arg| (-637 (-886 *3)))))
+ (-5 *1 (-886 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-637 (-886 *4))) (-5 *1 (-886 *4))
+ (-4 *4 (-1094)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-314 (-225))) (-5 *1 (-303))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-886 *3)) (|:| |den| (-886 *3))))
+ (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208))
- (-5 *1 (-1085 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172))
- (-4 *3 (-238 (-3610 *4) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2552 *5) (|:| -3311 *3))
- (-2 (|:| -2552 *5) (|:| -3311 *3))))
- (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846))
- (-4 *7 (-945 *2 *3 (-860 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4))
- (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5))
- (-5 *3 (-407 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5))
- (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5))
- (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5)))
- (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3)))))
+ (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-886 *4)) (-4 *4 (-1094)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-51)) (-5 *1 (-886 *4)) (-4 *4 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-637 (-1169))) (|:| |pred| (-51))))
+ (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-51))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1093))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))
- (-5 *1 (-1069 *3 *4 *2))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))))
+ (|partial| -12 (-5 *2 (-637 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094))
+ (-4 *5 (-661 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3))
- (-4 *3 (-1208)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846))
- (-5 *1 (-608 *2 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094))
+ (-4 *4 (-661 *3))))
+ ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-1094)) (-4 *2 (-1094))
+ (-5 *1 (-884 *4 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-886 *4)) (-4 *4 (-1094)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1094)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307))
- (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1093))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))
- (-5 *1 (-1069 *3 *4 *2))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093)))))
+ (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-637 *6)))
+ (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-637 *6)) (-4 *4 (-611 (-886 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-637 (-293 *3))) (-5 *1 (-883 *5 *3 *4))
+ (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-886 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-637 (-293 (-942 *3)))) (-5 *1 (-883 *5 *3 *4))
+ (-4 *3 (-1045)) (-3733 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5))
+ (-4 *4 (-611 (-886 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-884 *5 *3)) (-5 *1 (-883 *5 *3 *4))
+ (-3733 (-4 *3 (-1034 (-1169)))) (-3733 (-4 *3 (-1045))) (-4 *3 (-882 *5))
+ (-4 *4 (-611 (-886 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-113))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-1169)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-113)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-846))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-846))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5))
+ (-4 *4 (-611 (-886 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094)) (-5 *2 (-112))
+ (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-886 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3))
- (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-846)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563)))
- (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307))
- (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970)))))
+ (-12 (-4 *4 (-1094)) (-5 *2 (-884 *3 *4)) (-5 *1 (-881 *3 *4 *5))
+ (-4 *3 (-1094)) (-4 *5 (-661 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-555))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545))
- (-4 *3 (-1093))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545))
- (-4 *3 (-1093))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
+ (-12 (-4 *4 (-1094)) (-5 *2 (-884 *3 *5)) (-5 *1 (-881 *3 *4 *5))
+ (-4 *3 (-1094)) (-4 *5 (-661 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546)))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3))
- (-4 *3 (-1034 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193))))
- ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4))
- (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *3 (-637 (-546))) (-5 *1 (-879)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-637 (-546))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208)))))
+ (-12 (-5 *2 (-1146 (-637 (-546)))) (-5 *1 (-879)) (-5 *3 (-546)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-637 (-1174))) (-5 *1 (-876)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(((*1 *2 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-241))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-117 *3)) (-14 *3 (-546))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-174 (-546))) (-5 *1 (-761 *3)) (-4 *3 (-404))))
((*1 *2 *1)
- (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-867 *3)) (-14 *3 (-546))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))
+ (-12 (-14 *3 (-546)) (-5 *2 (-174 (-407 (-546)))) (-5 *1 (-868 *3 *4))
+ (-4 *4 (-866 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915))))
+ ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1146 (-546))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
((*1 *2 *1)
- (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563)))))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))))
+(((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-546)))))
+(((*1 *1 *1) (-4 *1 (-866 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-546))) (-5 *3 (-546)) (-4 *1 (-866 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6))
+ (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1249 *5)) (-4 *6 (-1232 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1225 *6 *5)))
+ (-5 *1 (-864 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1246 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1225 *6 *5)))
+ (-5 *1 (-864 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6))
+ (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1249 *5)) (-4 *6 (-1232 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207))
+ (-5 *2 (-637 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-439))) (-5 *1 (-861)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193)))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1207)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-767))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-608 *3)) (-4 *3 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-298))))
+ ((*1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546))))
+ (-5 *4 (-314 (-168 (-378)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-378)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-546)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-168 (-378))))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-378)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-546)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-168 (-378))))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-378)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-546)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-168 (-378)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-378))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-546))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-689)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-694)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-942 (-546)))) (-5 *4 (-314 (-696)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-689)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-694)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-314 (-696)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-689)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-694)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-314 (-696)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-689))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-694))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-696))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-689))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-694))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-314 (-696))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-298))))
+ ((*1 *1 *1) (-4 *1 (-298)))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-859)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3))))
+ (-5 *1 (-815 *3)) (-4 *3 (-846))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-128))) (-5 *3 (-128)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-549))) (-5 *3 (-549)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-129)) (-5 *2 (-767)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-51))) (-5 *2 (-1262)) (-5 *1 (-855)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-546))))
+ (-4 *2 (-172)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
+ (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3))
+ (-4 *3 (-848 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3)))
+ (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
+ (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3))
+ (-4 *3 (-848 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045))
+ (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3))
+ (-4 *3 (-848 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| -2131 *1) (|:| -3292 *1))) (-4 *1 (-848 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045))
+ (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-849 *5 *3))
+ (-4 *3 (-848 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *1 (-418 *3)) (-4 *3 (-172))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3))
+ (-4 *3 (-848 *2)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2))
+ (-4 *2 (-848 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1)))
+ (-4 *1 (-848 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1045))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1)))
+ (-4 *1 (-848 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1)
+ (-12 (-4 *1 (-404)) (-3733 (|has| *1 (-6 -4399)))
+ (-3733 (|has| *1 (-6 -4391)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-846))))
+ ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))) ((*1 *1) (-4 *1 (-840)))
+ ((*1 *1 *1 *1) (-4 *1 (-846))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5))
+ (-14 *4 (-767)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5))
+ (-14 *4 (-767)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1256 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5))
+ (-14 *4 (-767)))))
+(((*1 *2) (-12 (-5 *2 (-838 (-546))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-5 *2 (-838 (-546))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-838 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-314 (-378)))) (-5 *4 (-637 (-378))) (-5 *2 (-1031))
+ (-5 *1 (-836)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *2
- (-2 (|:| |solns| (-640 *5))
- (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
+ (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836))))
+ ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-637 (-378))) (-5 *5 (-637 (-838 (-378))))
+ (-5 *6 (-637 (-314 (-378)))) (-5 *3 (-314 (-378))) (-5 *2 (-1031))
+ (-5 *1 (-836))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-378))) (-5 *5 (-637 (-838 (-378))))
+ (-5 *2 (-1031)) (-5 *1 (-836))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-314 (-378))) (-5 *4 (-637 (-378))) (-5 *2 (-1031))
+ (-5 *1 (-836))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-314 (-378)))) (-5 *4 (-637 (-378))) (-5 *2 (-1031))
+ (-5 *1 (-836)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-835))
+ (-5 *3
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (-5 *2 (-1031))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
+ (-12 (-4 *1 (-835))
+ (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))
+ (-5 *2 (-1031)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
+(((*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-683 *4 *5 *6 *3))
+ (-4 *3 (-681 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))
+ ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307))
- (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846))
- (-4 *2 (-172))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846))
- (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208))
- (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
- (-4 *5 (-373 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 (-563)) (-14 *5 (-767))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563))
- (-14 *4 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ *3)) (-15 -1463 ((-1262) $))
- (-15 -1651 ((-1262) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-985)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $))
- (-15 -1651 ((-1262) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2))
- (-4 *4 (-1233 (-407 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-637 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1094))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-637 *4))) (-4 *4 (-1094))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-637 *4))) (-5 *1 (-114 *4))
+ (-4 *4 (-1094))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4))
- (-4 *4 (-1093))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4))
- (-4 *4 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363))
- (-5 *1 (-989 *4 *2))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045))
+ (-5 *1 (-710 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-830 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045))
+ (-5 *1 (-710 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-830 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-113)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-643 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-830 *2)) (-4 *2 (-1045)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-361 (-113))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4))
+ (-4 *4 (-643 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-361 (-113))) (-5 *1 (-830 *2)) (-4 *2 (-1045)))))
+(((*1 *2) (-12 (-5 *2 (-828 (-546))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-818)) (-5 *4 (-51)) (-5 *2 (-1262)) (-5 *1 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-51)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-825)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-51)) (-5 *1 (-825)))))
+(((*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-824 *2 *3)) (-4 *2 (-704 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-817)) (-5 *2 (-1151))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-817)) (-5 *3 (-112)) (-5 *2 (-1151))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-817)) (-5 *3 (-819)) (-5 *2 (-1262))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-817)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1262))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4)) (-4 *4 (-13 (-817) (-846) (-1045))) (-5 *2 (-1151))
+ (-5 *1 (-823 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-314 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-817) (-846) (-1045)))
+ (-5 *2 (-1151)) (-5 *1 (-823 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-819)) (-5 *4 (-314 *5)) (-4 *5 (-13 (-817) (-846) (-1045)))
+ (-5 *2 (-1262)) (-5 *1 (-823 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-819)) (-5 *4 (-314 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-817) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-823 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-821)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-822)) (-5 *3 (-637 (-1169))) (-5 *1 (-821)))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-819)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3956 (-1151)))) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-819)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-818)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-818)))))
+(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
+(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-818)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3))))
+ (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-5 *1 (-1069 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-5 *1 (-1070 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7))
- (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))
- (-4 *7 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093))
- (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093))))
- ((*1 *1 *1 *1) (-4 *1 (-1137)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045))
- (-4 *2 (-363))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))
- (-4 *3 (-555))))
+ (-12 (-5 *3 (-546)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ (-12 (-5 *3 (-546)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) (-4 *4 (-1094))
+ (-14 *5 *2)))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208))))
+ (-12 (-5 *3 (-546)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789))
- (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2635 (-640 *9))))
- (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2635 (-640 *8))))
- (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-546)) (-4 *2 (-1094)) (-5 *1 (-644 *2 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-546)) (-5 *1 (-815 *2)) (-4 *2 (-846)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
+ (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-546))))) (-5 *1 (-361 *3))
+ (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-555))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563)))))
+ (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-767))))) (-5 *1 (-386 *3))
+ (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
+ (-12 (-5 *2 (-637 (-2 (|:| -4147 *3) (|:| -2543 (-546))))) (-5 *1 (-405 *3))
+ (-4 *3 (-556))))
((*1 *2 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545))
- (-4 *3 (-1093))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545))
- (-4 *3 (-1093))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-563)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363))
- (-5 *1 (-662 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-363))
- (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4409))))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409))))
- (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
- (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563)))))))
- (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-640 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -4013 (-640 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-640
- (-2
- (|:| -2387
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2556
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-558))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208))
- (-5 *2 (-640 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563)))
- (-5 *1 (-926)))))
-(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330))))
- ((*1 *1) (-5 *1 (-330))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846))
- (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045))
- (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-751))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307))
- (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5))
- (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-307)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-640 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -4013 (-640 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
+ (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 (-767))))) (-5 *1 (-815 *3))
+ (-4 *3 (-846)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-259 *6))))
+ (|partial| -12 (-5 *5 (-637 *4)) (-4 *4 (-363)) (-5 *2 (-1256 *4))
+ (-5 *1 (-810 *4 *3)) (-4 *3 (-653 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) (-5 *1 (-810 *4 *5))
+ (-4 *5 (-653 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379)))
- (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-259 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-611 (-536)) (-1093)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-611 (-536)) (-1093)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-259 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379)))
- (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225)))
- (-5 *1 (-259 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *2 (-2 (|:| -1442 (-640 *6)) (|:| -3409 (-640 *6)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330)))))
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-684 *5))
+ (-5 *1 (-810 *5 *6)) (-4 *6 (-653 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-640 *4))))
- (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225)))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5))))
+ (-12 (-5 *3 (-637 (-942 *5))) (-5 *4 (-637 (-1169))) (-4 *5 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *5)))))) (-5 *1 (-766 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-556))
+ (-5 *2 (-637 (-637 (-293 (-407 (-942 *4)))))) (-5 *1 (-766 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6))
- (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917))
- (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917))
- (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169)))
- (-14 *6 (-1257 (-684 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169)))
- (-14 *6 (-1257 (-684 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917))
- (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208))
- (-5 *2 (-640 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-12 (-5 *3 (-684 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2169 (-637 *6))) *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-653 *6))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1165 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3))
- (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))))
+ (-2 (|:| |particular| (-3 (-1256 *6) "failed"))
+ (|:| -2169 (-637 (-1256 *6)))))
+ (-5 *1 (-809 *6 *7)) (-5 *4 (-1256 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52))
- (-5 *1 (-1001)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093))
- (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3))
- (-4 *3 (-1208))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-718)))
- ((*1 *1) (-4 *1 (-722)))
- ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
- ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093))
- (-4 *2 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2))
- (-4 *4 (-682 *2 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255))))
+ (-12 (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| A (-684 *5))
+ (|:| |eqs|
+ (-637
+ (-2 (|:| C (-684 *5)) (|:| |g| (-1256 *5)) (|:| -3674 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1256 *5))
+ (-4 *6 (-653 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1258)) (-5 *1 (-255))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-653 *5))
+ (-5 *2 (-2 (|:| -1735 (-684 *6)) (|:| |vec| (-1256 *5))))
+ (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1256 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *6 (-1232 *5)) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1258)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-650 (-407 *7))) (-5 *4 (-1 (-637 *6) *7))
+ (-5 *5 (-1 (-405 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *7 (-1232 *6)) (-5 *2 (-637 (-407 *7))) (-5 *1 (-808 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *6 (-1232 *5)) (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-651 *7 (-407 *7))) (-5 *4 (-1 (-637 *6) *7))
+ (-5 *5 (-1 (-405 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *7 (-1232 *6)) (-5 *2 (-637 (-407 *7))) (-5 *1 (-808 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-650 (-407 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-407 *5))) (-5 *1 (-808 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-651 *5 (-407 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-407 *5))) (-5 *1 (-808 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-407 *6))) (-5 *1 (-808 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5))
+ (-5 *2 (-637 (-2 (|:| |poly| *6) (|:| -3674 *3))))
+ (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-653 *6)) (-4 *7 (-653 (-407 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *6 (-1232 *5))
+ (-5 *2 (-637 (-2 (|:| |poly| *6) (|:| -3674 (-651 *6 (-407 *6))))))
+ (-5 *1 (-808 *5 *6)) (-5 *3 (-651 *6 (-407 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-637 *7) *7 (-1163 *7))) (-5 *5 (-1 (-405 *7) *7))
+ (-4 *7 (-1232 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-2 (|:| |frac| (-407 *7)) (|:| -3674 *3))))
+ (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-653 *7)) (-4 *8 (-653 (-407 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-637 (-2 (|:| |frac| (-407 *6)) (|:| -3674 (-651 *6 (-407 *6))))))
+ (-5 *1 (-808 *5 *6)) (-5 *3 (-651 *6 (-407 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *7 (-1232 *5)) (-4 *4 (-720 *5 *7))
+ (-5 *2 (-2 (|:| -1735 (-684 *6)) (|:| |vec| (-1256 *5))))
+ (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-653 *5)) (-4 *3 (-653 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-650 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-806 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-651 *2 (-407 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-806 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-806 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-650 (-407 *6))) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-2 (|:| -2169 (-637 (-407 *6))) (|:| -1735 (-684 *5))))
+ (-5 *1 (-806 *5 *6)) (-5 *4 (-637 (-407 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379)))
- (-5 *2 (-1259)) (-5 *1 (-255))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263)))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *2 (-1258)) (-5 *1 (-256 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258))
- (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093)))))
+ (-12 (-5 *3 (-651 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2169 (-637 *4))))
+ (-5 *1 (-806 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-611 (-536)) (-1093)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258))
- (-5 *1 (-259 *6))))
+ (-12 (-5 *3 (-651 *6 (-407 *6))) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-2 (|:| -2169 (-637 (-407 *6))) (|:| -1735 (-684 *5))))
+ (-5 *1 (-806 *5 *6)) (-5 *4 (-637 (-407 *6))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-1232 *4))
+ (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-653 *3)) (-4 *5 (-653 (-407 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546)))))
+ (-4 *5 (-1232 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-653 *5))
+ (-4 *6 (-653 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-637 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *6 (-1232 *5))
+ (-5 *2 (-637 (-2 (|:| -4367 *5) (|:| -3674 *3)))) (-5 *1 (-805 *5 *6 *3 *7))
+ (-4 *3 (-653 *6)) (-4 *7 (-653 (-407 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4))
+ (-5 *2 (-637 (-2 (|:| |deg| (-767)) (|:| -3674 *5))))
+ (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-653 *5)) (-4 *6 (-653 (-407 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2))
+ (-4 *5 (-653 (-407 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1232 *4)) (-5 *1 (-803 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2))
+ (-4 *5 (-653 (-407 *2)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379)))
- (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258))
- (-5 *1 (-259 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259))
- (-5 *1 (-259 *6))))
+ (-12 (-4 *2 (-1232 *4)) (-5 *1 (-803 *4 *2 *5 *3))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-653 *2))
+ (-4 *3 (-653 (-407 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4))
+ (-5 *2 (-637 (-2 (|:| -4187 *5) (|:| -3634 *5)))) (-5 *1 (-803 *4 *5 *3 *6))
+ (-4 *3 (-653 *5)) (-4 *6 (-653 (-407 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379)))
- (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259))
- (-5 *1 (-259 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259))
- (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-611 (-536)) (-1093)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263)))
- (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259))
- (-5 *1 (-259 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379)))
- (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259))
- (-5 *1 (-259 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258))
- (-5 *1 (-260))))
+ (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *4 (-1232 *5))
+ (-5 *2 (-637 (-2 (|:| -4187 *4) (|:| -3634 *4)))) (-5 *1 (-803 *5 *4 *3 *6))
+ (-4 *3 (-653 *4)) (-4 *6 (-653 (-407 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260))))
+ (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *5 (-1232 *4))
+ (-5 *2 (-637 (-2 (|:| -4187 *5) (|:| -3634 *5)))) (-5 *1 (-803 *4 *5 *6 *3))
+ (-4 *6 (-653 *5)) (-4 *3 (-653 (-407 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263)))
- (-5 *2 (-1258)) (-5 *1 (-260))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259))
- (-5 *1 (-260)))))
+ (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *4 (-1232 *5))
+ (-5 *2 (-637 (-2 (|:| -4187 *4) (|:| -3634 *4)))) (-5 *1 (-803 *5 *4 *6 *3))
+ (-4 *6 (-653 *4)) (-4 *3 (-653 (-407 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1232 *5))
+ (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546)))))
+ (-4 *3 (-653 *2)) (-4 *6 (-653 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-407 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-803 *5 *2 *3 *6))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-546))))) (-4 *3 (-653 *2))
+ (-4 *6 (-653 (-407 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 *4)) (-4 *4 (-342 *5 *6 *7))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-407 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-802 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1193) (-956))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-956))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *1 (-799)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-637
+ (-2
+ (|:| -4275
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (|:| -2233
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378)))))))
+ (-5 *1 (-799)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
+ (-12
+ (-5 *2
+ (-637
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))
+ (-5 *1 (-559))))
((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-536)))
- ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-640 (-1169)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563))
- (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172))
- (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172))
- (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7))
- (-5 *1 (-239 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6))
- (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302))
- (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846))
- (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363))
- (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
- (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10)))
- (-5 *2 (-336 *9 *10 *11 *12))
- (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-342 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212))
- (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8))
- (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208))
- (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555))
- (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555))
- (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307))
- (-4 *6 (-988 *5)) (-4 *7 (-1233 *6))
- (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307))
- (-4 *10 (-988 *9)) (-4 *11 (-1233 *10))
- (-5 *2 (-413 *9 *10 *11 *12))
- (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-409 *10 *11) (-1034 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846)))
- (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6))
- (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093))
- (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363))
- (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2840 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-363)) (-4 *6 (-363))
- (-5 *2 (-2 (|:| -2840 *6) (|:| |coeff| *6)))
- (-5 *1 (-583 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-363)) (-4 *6 (-363))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-583 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8))
- (-5 *1 (-596 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8))
- (-5 *1 (-596 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8))
- (-5 *1 (-596 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8))
- (-5 *1 (-639 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045))
- (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10))
- (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7))
- (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045))
- (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5))
- (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555))
- (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8)))
- (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6)))
- (-4 *8 (-1233 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045))
- (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5))
- (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789))
- (-4 *4 (-945 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789))
- (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6))
- (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789))
- (-4 *4 (-945 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7))
- (-5 *1 (-730 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4))
- (-4 *4 (-722))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))
+ (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-637 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-637
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
+ (-5 *1 (-799)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))))
+(((*1 *1) (-5 *1 (-799))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1169))
+ (-4 *6 (-13 (-846) (-307) (-1034 (-546)) (-636 (-546)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1193) (-956)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2169 (-637 *4))))
+ (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-653 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-796))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-1031)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-172)) (-5 *1 (-794 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1) (-4 *1 (-243)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2))
+ (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3943 (-12 (-5 *1 (-293 *2)) (-4 *2 (-363)) (-4 *2 (-1207)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-473)) (-4 *2 (-1207)))))
+ ((*1 *1 *1) (-4 *1 (-473)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-350)) (-5 *1 (-528 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193)))))
+ ((*1 *1 *1 *1) (-4 *1 (-789))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -3813 *4) (|:| -1691 *4) (|:| |totalpts| (-546))
+ (|:| |success| (-112))))
+ (-5 *1 (-785)) (-5 *5 (-546)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378)))
+ (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-546))
+ (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))))
+ (-5 *7 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378)))
+ (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-546))
+ (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1566 (-378))))
+ (-5 *7 (-1 (-1262) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378)))
+ (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378)))
+ (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378)))
+ (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-546)) (-5 *6 (-1 (-1262) (-1256 *5) (-1256 *5) (-378)))
+ (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1262)) (-5 *1 (-784)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-783)) (-5 *2 (-1031))
+ (-5 *3
+ (-2 (|:| |fn| (-314 (-225))) (|:| -1596 (-637 (-1082 (-838 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-783)) (-5 *2 (-1031))
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-782)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-782)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-915)) (-5 *1 (-782)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1151)) (-5 *1 (-782)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-915)) (-5 *1 (-782)))))
+(((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1151)) (-5 *1 (-782)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
+ (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-172))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))
+ (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7))
- (-5 *1 (-884 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-942 (-168 *4)))) (-4 *4 (-556))
+ (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ (|partial| -12 (-5 *3 (-407 (-942 (-168 *5)))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846))
+ (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846))
- (-4 *8 (-1045)) (-4 *6 (-789))
- (-4 *2
- (-13 (-1093)
- (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))))))
- (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7))))
+ (|partial| -12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-168 *4))) (-4 *4 (-556)) (-4 *4 (-846))
+ (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6))))
+ (|partial| -12 (-5 *3 (-314 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-846)) (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-781 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2))
+ (-5 *2 (-378)) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045))
- (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789))
- (-4 *6
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-5 *1 (-980 *4 *5 *6 *2))))
+ (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045))
+ (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 *2))
+ (-5 *2 (-378)) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555))
- (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5))))
+ (|partial| -12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846))
+ (-4 *4 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7))
- (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7))
- (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
+ (|partial| -12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846))
+ (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-168 (-378))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-378)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045))
- (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12))
- (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
- (-4 *12 (-238 *5 *10))))
+ (-12 (-5 *4 (-915)) (-5 *2 (-168 (-378))) (-5 *1 (-781 *3))
+ (-4 *3 (-611 (-378)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6))))
+ (-12 (-5 *3 (-168 *5)) (-5 *4 (-915)) (-4 *5 (-172)) (-4 *5 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844))
- (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6))
- (-5 *1 (-1082 *5 *6))))
+ (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-172))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-1142 *4))))
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7))
- (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8))
- (-5 *1 (-1148 *6 *7 *8))))
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 (-168 *4)))) (-4 *4 (-556)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093))))
+ (-12 (-5 *3 (-407 (-942 (-168 *5)))) (-5 *4 (-915)) (-4 *5 (-556))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1169))))
+ (-12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 (-168 *4))) (-4 *4 (-556)) (-4 *4 (-846))
+ (-4 *4 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6))))
+ (-12 (-5 *3 (-314 (-168 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846))
+ (-4 *5 (-611 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-781 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844))
- (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6))
- (-5 *1 (-1223 *5 *6))))
+ (-12 (-5 *4 (-915)) (-5 *2 (-378)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-378))
+ (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169))
- (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8))
- (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169))))
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-915)) (-4 *5 (-1045)) (-4 *5 (-611 *2))
+ (-5 *2 (-378)) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-942 *4))) (-4 *4 (-556)) (-4 *4 (-611 *2)) (-5 *2 (-378))
+ (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
- (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5))))
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-611 *2))
+ (-5 *2 (-378)) (-5 *1 (-781 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-611 *2))
+ (-5 *2 (-378)) (-5 *1 (-781 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1169))))
+ (-12 (-5 *3 (-314 *5)) (-5 *4 (-915)) (-4 *5 (-556)) (-4 *5 (-846))
+ (-4 *5 (-611 *2)) (-5 *2 (-378)) (-5 *1 (-781 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-546))))
+ (-4 *2 (-172)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-546))))
+ (-4 *2 (-172)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-637 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-556))
+ (-4 *3 (-1045)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3))))
+ (-5 *1 (-777 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3))
+ (-4 *3 (-556)) (-4 *3 (-1045)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3))
+ (-4 *3 (-556)) (-4 *3 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 (-407 (-546))))
+ (-5 *2
+ (-637
+ (-2 (|:| |outval| *4) (|:| |outmult| (-546))
+ (|:| |outvect| (-637 (-684 *4))))))
+ (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *2 (-637 *4)) (-5 *1 (-775 *4))
+ (-4 *4 (-13 (-363) (-844))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-172)) (-4 *2 (-1232 *4)) (-5 *1 (-177 *4 *2 *3))
+ (-4 *3 (-720 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
- (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5))))
+ (-12 (-5 *3 (-684 (-407 (-942 *5)))) (-5 *4 (-1169)) (-5 *2 (-942 *5))
+ (-5 *1 (-292 *5)) (-4 *5 (-452))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-942 *4)))) (-5 *2 (-942 *4)) (-5 *1 (-292 *4))
+ (-4 *4 (-452))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *2 (-942 (-168 (-407 (-546)))))
+ (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208))
- (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6))))
+ (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *4 (-1169))
+ (-5 *2 (-942 (-168 (-407 (-546))))) (-5 *1 (-760 *5))
+ (-4 *5 (-13 (-363) (-844)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *2 (-942 (-407 (-546))))
+ (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5))
- (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6))
- (-5 *1 (-1256 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4))
- (-4 *4 (-842)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093))
- (-4 *2 (-846)))))
+ (-12 (-5 *3 (-684 (-407 (-546)))) (-5 *4 (-1169))
+ (-5 *2 (-942 (-407 (-546)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-637 (-767)))
+ (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *6)) (-4 *7 (-946 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789))
- (-4 *4 (-846)) (-4 *7 (-555))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563))))
- (-5 *1 (-592 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563))))
- (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193)))))
+ (-12 (-4 *6 (-1232 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307))
+ (-4 *10 (-946 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-637 (-1163 *10)))
+ (|:| |dterm| (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-637 *6)) (|:| |nlead| (-637 *10))))
+ (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1163 *10)) (-5 *4 (-637 *6))
+ (-5 *5 (-637 *10)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-4 *5 (-329 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-637 *3))
+ (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-915)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| (-112)) (|:| -1695 *4))))
+ (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) (-5 *1 (-772 *6 *7 *8 *4 *5))
+ (-4 *5 (-1065 *6 *7 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193)))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-1161 *4 *2))))
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4)))))
+ ((*1 *1 *1) (-5 *1 (-378)))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7))
+ (-5 *2 (-637 (-2 (|:| |val| *3) (|:| -1695 *4))))
+ (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6))
+ (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-378))))
+ ((*1 *1 *1 *1) (-4 *1 (-545)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-767)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) (-5 *1 (-533))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563))))
- (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5))
- (-5 *3 (-407 (-948 *5)))))
+ (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-686 *1)) (-4 *1 (-763 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 (-168 (-407 (-546)))))
+ (-5 *2
+ (-637
+ (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-546))
+ (|:| |outvect| (-637 (-684 (-168 *4)))))))
+ (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 (-168 (-407 (-546))))) (-5 *2 (-637 (-168 *4)))
+ (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-757))))
+(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757))))
+(((*1 *1 *1 *1) (-4 *1 (-757))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-942 (-546)))) (-5 *1 (-436))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3))
- (-5 *1 (-1162 *5))))
+ (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1096)) (-5 *1 (-755))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5)))
- (-5 *1 (-1162 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
+ (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-546))) (-5 *2 (-1096)) (-5 *1 (-755)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-168 (-225))) (-5 *6 (-1151)) (-5 *4 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *2 (-1031))
+ (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *2 (-1031))
+ (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-225))) (-5 *5 (-546)) (-5 *6 (-1151)) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-168 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546)))
+ (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546))
+ (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546))
+ (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546))
+ (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-168 (-225)))) (-5 *2 (-1031))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-112)) (-5 *5 (-684 (-168 (-225))))
+ (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
(-5 *1 (-751)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846))
- (-5 *1 (-609 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1674)) (-5 *2 (-112)) (-5 *1 (-614))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2483)) (-5 *2 (-112)) (-5 *1 (-614))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3566)) (-5 *2 (-112)) (-5 *1 (-614))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-112)) (-5 *1 (-686 *4))
- (-4 *4 (-610 (-858)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112))
- (-5 *1 (-686 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093))
- (-4 *2 (-1208)))))
-(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4))
- (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-1087 (-839 (-379)))))
- (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
- (-4 *4 (-1233 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3))
- (-5 *2 (-1257 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555))
- (-4 *3 (-846))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536))))
- ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5))
- (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846))))
- ((*1 *1 *2)
- (-4034
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563)))
- (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151))
- (-5 *1 (-1063 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2058 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151))
- (-5 *1 (-1138 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-776 *4 (-860 *5)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169)))
- (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-776 *4 (-860 *6)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169)))
- (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))
- ((*1 *2 *3)
- (-12
- (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169)))
- (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6))
- (-14 *5 (-640 (-1169))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-751))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
+ (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
(-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1165 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846)))
- (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6))
- (-4 *5 (-1045))))
- ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193)))
- (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-407 (-948 *4))))
- (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-1142 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1193)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7))
- (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1113))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1208)) (-5 *2 (-1262)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3))
- (-4 *3 (-363)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169)))
- (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193)))
- (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2))
- (-4 *6 (-13 (-430 *5) (-998) (-1193))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1165 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4)))))
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5))
- (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))
- (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))
- ((*1 *1 *1) (-4 *1 (-998)))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917))))
- ((*1 *1 *1) (-4 *1 (-1008))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1165 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1165 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2))
- (-4 *2 (-1233 (-407 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-13 (-846) (-555)))))
- ((*1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1193))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1113))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1233 (-48)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789))
- (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1233 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3))
- (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1233 (-563)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446))
- (-5 *3 (-169 (-563)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3))
- (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555))
- (-4 *3 (-945 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4))
- (-5 *3 (-1165 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
- (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3))
- (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7)))
- (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789))
- (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3))
- (-4 *3 (-945 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7)))
- (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8)))
- (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-640 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6))))
- (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5))))
- (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4)))
- (-5 *1 (-667 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3))
- (-4 *3 (-1233 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3))
- (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *5
- (-13 (-846)
- (-10 -8 (-15 -2219 ((-1169) $))
- (-15 -2517 ((-3 $ "failed") (-1169))))))
- (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3))
- (-4 *3 (-945 (-948 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *5 (-13 (-846) (-10 -8 (-15 -2219 ((-1169) $))))) (-4 *6 (-555))
- (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3))
- (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3))
- (-4 *3 (-945 (-407 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3))
- (-4 *3 (-945 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3))
- (-4 *3 (-1233 (-407 (-563))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3))
- (-4 *3 (-1233 (-407 (-948 (-563)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1233 (-407 (-563))))
- (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4)))
- (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1233 (-407 (-948 (-563)))))
- (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4)))
- (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7))))
- (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))))
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-168 (-225))))
+ (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-168 (-225))))
+ (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-168 (-225)))) (-5 *2 (-1031))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *3 (-546))
+ (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-637 (-112))) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546)))
+ (-5 *7 (-225)) (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-684 (-546))) (-5 *5 (-112)) (-5 *7 (-684 (-225)))
+ (-5 *3 (-546)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-637 (-112))) (-5 *7 (-684 (-225))) (-5 *8 (-684 (-546)))
+ (-5 *3 (-546)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
+ *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-684 (-546))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-546))
+ (-5 *2 (-1031)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
+ *8)
+ (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-546)))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-546))
+ (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *2 (-1031))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1031))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-546)) (-5 *5 (-112)) (-5 *6 (-684 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1151)) (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225))
+ (-5 *7 (-684 (-546))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *6 (-225))
+ (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225))
+ (-5 *7 (-684 (-546))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-546))) (-5 *3 (-546))
+ (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-546))) (-5 *6 (-225))
+ (-5 *3 (-546)) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
+ *4)
+ (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225)))
+ (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *5 (-1151))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1031))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 G JACOBG JACGEP))))
+ (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1031))
+ (-5 *1 (-745))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-388))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1031))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-546)) (-5 *5 (-1151)) (-5 *6 (-684 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-546)) (-5 *5 (-1151)) (-5 *6 (-684 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-744)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546)) (-5 *2 (-1031)) (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 G)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-546)) (-5 *5 (-684 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *3 (-225))
+ (-5 *2 (-1031)) (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-546)) (-5 *4 (-684 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-546))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 -3485)))) (-5 *2 (-1031))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-112)) (-5 *2 (-1031))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-684 (-225))) (-5 *4 (-546)) (-5 *5 (-112)) (-5 *2 (-1031))
+ (-5 *1 (-741)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163 *6)) (-5 *3 (-546)) (-4 *6 (-307)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-4 *7 (-846))
+ (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-637 (-767)))
+ (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-555))
+ (-12 (-5 *3 (-546)) (-5 *4 (-405 *2)) (-4 *2 (-946 *7 *5 *6))
+ (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-5 *5 (-637 (-637 *8)))
+ (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789))
(-5 *2
- (-2 (|:| -3311 (-767)) (|:| -2310 *5) (|:| |radicand| (-640 *5))))
- (-5 *1 (-320 *5)) (-5 *4 (-767))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563)))))
+ (-2 (|:| |upol| (-1163 *8)) (|:| |Lval| (-637 *8))
+ (|:| |Lfact| (-637 (-2 (|:| -4147 (-1163 *8)) (|:| -2543 (-546)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-738 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-637 *7)) (-5 *5 (-637 (-637 *8))) (-4 *7 (-846)) (-4 *8 (-307))
+ (-4 *6 (-789)) (-4 *9 (-946 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart| (-637 (-2 (|:| -4147 (-1163 *9)) (|:| -2543 (-546)))))))
+ (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1163 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-546)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307))
+ (-4 *9 (-946 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2161 (-1163 *9)) (|:| |polval| (-1163 *8))))
+ (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1163 *9)) (-5 *4 (-1163 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3))
+ (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846)))
- (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193)))
- (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12 (-5 *3 (-637 (-2 (|:| -4147 (-1163 *6)) (|:| -2543 (-546)))))
+ (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-546))
+ (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363))
- (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5))))
+ (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-405 *3))
+ (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-732 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1094))))
+ ((*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767))))
((*1 *2 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
- (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-767))))
((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
+ (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2))
+ (-5 *3 (-407 (-942 *6))) (-4 *5 (-789))
+ (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 (-942 *6))) (-4 *6 (-556))
+ (-4 *2 (-946 (-407 (-942 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2))
+ (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 *2)) (-4 *2 (-946 (-407 (-942 *6)) *5 *4))
+ (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789))
+ (-4 *4 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $))))) (-4 *6 (-556)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3))
- (-4 *3 (-1233 (-407 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
+ (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -4385 ((-1169) $)))))
+ (-4 *6 (-556)) (-5 *2 (-2 (|:| -2784 (-942 *6)) (|:| -2215 (-942 *6))))
+ (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-942 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-546))
+ (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8))
+ (-5 *1 (-136 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
+ (-4 *8 (-1045)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-789)) (-4 *4 (-946 *8 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5))
+ (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -3482 (-405 *3)) (|:| |special| (-405 *3))))
+ (-5 *1 (-723 *5 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-336 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *2 (-342 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1232 *5)) (-5 *2 (-684 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-915))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-718))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-718))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-846)))
- (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3))
- (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
- (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))
- (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5))
- (-4 *5 (-1233 (-407 *4))))))
-(((*1 *2)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307))
- (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1)))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
- (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
- (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *1) (-4 *1 (-473)))
- ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879))))
- ((*1 *1 *1) (-5 *1 (-967)))
- ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))
- (-4 *4 (-13 (-555) (-846)))
- (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193)))
- (-5 *1 (-597 *4 *5 *2)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788)) (-4 *3 (-172)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1233 (-407 (-563))))
- (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))
- (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3))
- (-4 *3 (-1233 (-407 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4))
- (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6))
- (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1)))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495))))
+ (-12 (-5 *2 (-1237 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5))
+ (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-405 *3)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-694))))
((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-722) *3))))
+ (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2542 *3) (|:| -2543 *2))
+ (-2 (|:| -2542 *3) (|:| -2543 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-915)) (-4 *1 (-368))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350))))
((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-722) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169))))
- ((*1 *1 *1) (-4 *1 (-160))))
+ (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *3))
+ (-2 (|:| -2542 *2) (|:| -2543 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-5 *2 (-1256 *3)) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-1232 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-1232 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1045)) (-5 *2 (-1256 *3)) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-1232 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-1232 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-1232 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1022 (-839 (-563))))
- (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045))
- (-5 *1 (-593 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846))
- (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193)))
- (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))))
- (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7))
- (-5 *5 (-1165 *3)) (-4 *7 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045))
- (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-1165 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1))
- (-4 *1 (-945 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3)))
- (-5 *1 (-946 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1165 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *7)) (-15 -2143 (*7 $)) (-15 -2153 (*7 $)))))
- (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846))
- (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3))))
+ (-12 (-4 *2 (-350)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1151)) (-5 *1 (-706)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-637 (-1163 *13))) (-5 *3 (-1163 *13))
+ (-5 *4 (-637 *12)) (-5 *5 (-637 *10)) (-5 *6 (-637 *13))
+ (-5 *7 (-637 (-637 (-2 (|:| -3469 (-767)) (|:| |pcoef| *13)))))
+ (-5 *8 (-637 (-767))) (-5 *9 (-1256 (-637 (-1163 *10)))) (-4 *12 (-846))
+ (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-789))
+ (-5 *1 (-703 *11 *12 *10 *13)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-637 *11)) (-5 *5 (-637 (-1163 *9))) (-5 *6 (-637 *9))
+ (-5 *7 (-637 *12)) (-5 *8 (-637 (-767))) (-4 *11 (-846)) (-4 *9 (-307))
+ (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-637 (-1163 *12)))
+ (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1163 *12)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-637 (-1163 *11))) (-5 *3 (-1163 *11))
+ (-5 *4 (-637 *10)) (-5 *5 (-637 *8)) (-5 *6 (-637 (-767)))
+ (-5 *7 (-1256 (-637 (-1163 *8)))) (-4 *10 (-846)) (-4 *8 (-307))
+ (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7))
+ (-4 *3 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-4 *5 (-555))
- (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5))
- (-5 *3 (-407 (-948 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093))
- (-4 *2 (-131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917))
- (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4))))))
-(((*1 *2)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555)))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387))
- (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5))
- (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7))
- (-4 *3 (-1233 *6)) (-14 *7 (-917))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *1 (-972 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (|partial| -4034
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-38 (-407 (-563)))))
- (-2174 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-545))) (-2174 (-4 *3 (-38 (-407 (-563)))))
- (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563))))
- (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))))
- ((*1 *1 *2)
- (|partial| -4034
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563)))
- (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
+ (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6))
+ (-4 *3 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-846) (-555) (-1034 (-563))))
- (-5 *2 (-2 (|:| -1775 (-767)) (|:| -1518 *8)))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6))
- (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4)))
- (-4 *6 (-342 (-407 (-563)) *4 *5))
- (-5 *2 (-2 (|:| -1775 (-767)) (|:| -1518 *6)))
- (-5 *1 (-908 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-640 (-948 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172))
- (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+ (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6))
+ (-4 *4 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10))
- (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8))
- (-4 *10 (-1102 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6)))
- (-5 *1 (-625 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-640 (-1169)))
- (-5 *2
- (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
- (-5 *1 (-625 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4))
+ (-4 *3 (-1207)) (-4 *4 (-1207)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-637 (-1169))) (-5 *3 (-1169)) (-5 *1 (-535))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-535)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-637 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3))
+ (-4 *3 (-611 (-535))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3))
+ (-4 *3 (-611 (-535)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6)))
- (-5 *1 (-1042 *5 *6))))
+ (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3))
+ (-4 *3 (-611 (-535))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7))
+ (-4 *4 (-611 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207)))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-696))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-683 *3 *4 *5 *6))
+ (-4 *6 (-681 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2131 *3) (|:| -3292 *3))) (-5 *1 (-695 *3))
+ (-4 *3 (-307)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-546))))
+ ((*1 *2 *1) (-12 (-5 *2 (-546)) (-5 *1 (-694)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694))))
+ ((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-694)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))))
+(((*1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694))))
+ ((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-694)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-1 (-225) (-225) (-225) (-225)))
+ (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225)))
+ (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1082 (-225))) (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-692)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1082 (-225))) (-5 *6 (-637 (-261))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-692))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-225)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-692))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225)))
+ (-5 *4 (-1082 (-225))) (-5 *5 (-637 (-261))) (-5 *1 (-692)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| |deg| (-767)) (|:| -2960 *5)))) (-4 *5 (-1232 *4))
+ (-4 *4 (-350)) (-5 *2 (-637 *5)) (-5 *1 (-216 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1201 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-637 (-2 (|:| -4147 *5) (|:| -4363 (-546))))) (-5 *4 (-546))
+ (-4 *5 (-1232 *4)) (-5 *2 (-637 *5)) (-5 *1 (-691 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-546)) (-5 *2 (-637 (-2 (|:| -4147 *3) (|:| -4363 *4))))
+ (-5 *1 (-691 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-691 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1207)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1094)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3))))
- (-5 *1 (-593 *3)) (-4 *3 (-1045)))))
+ (-12 (-4 *1 (-690 *3)) (-4 *3 (-1094))
+ (-5 *2 (-637 (-2 (|:| -2233 *3) (|:| -2104 (-767))))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6)) (-5 *2 (-684 *7))
+ (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-372 *7))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *4 (-637 (-1169)))
+ (-5 *2 (-684 (-314 (-225)))) (-5 *1 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6))
+ (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-372 *6))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6)) (-5 *2 (-684 *3))
+ (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-372 *3))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3))
+ (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4))
+ (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1256 *3))
+ (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4408)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859))))))
+(((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-859))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-546)) (-4 *3 (-172)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3))
+ (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-546)) (-4 *3 (-172)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3))
+ (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-172)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *1 (-683 *4 *5 *6 *2)) (-4 *2 (-681 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131))
- (-4 *3 (-788)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816))
- (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031))
- (-5 *1 (-750)))))
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-546)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5))
- (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6))
- (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4)))
- (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-908 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1094)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-640 (-2 (|:| -1442 *1) (|:| -3409 (-640 *7)))))
- (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3))
- (-4 *3 (-611 (-379)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-678 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5))
+ (-5 *1 (-678 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045))
- (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816))
- (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1094))
+ (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094))
+ (-5 *1 (-673 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-677 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-637 *5) (-637 *5))) (-5 *4 (-546)) (-5 *2 (-637 *5))
+ (-5 *1 (-677 *5)) (-4 *5 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-637 (-1208))) (-5 *3 (-1208)) (-5 *1 (-676)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3929 *4))) (-5 *5 (-767))
- (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-4 *2 (-1094)) (-5 *1 (-675 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-673 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-942 (-546)))) (-5 *2 (-330))
+ (-5 *1 (-332))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1094)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1256 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1207)) (-5 *2 (-767)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-667 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-915)) (-4 *5 (-846))
+ (-5 *2 (-58 (-637 (-667 *5)))) (-5 *1 (-667 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-915)) (-4 *5 (-846)) (-5 *2 (-637 (-667 *5)))
+ (-5 *1 (-667 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 *7)) (-4 *7 (-846))
+ (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789))
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-449 *6 *7 *8 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169))
- (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1))
- (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))))
+ (-2 (|:| |particular| (-3 (-1256 (-407 *8)) "failed"))
+ (|:| -2169 (-637 (-1256 (-407 *8))))))
+ (-5 *1 (-664 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4409))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112))
+ (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-363)) (-5 *2 (-112))
+ (-5 *1 (-663 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
+ (|partial| -12 (-5 *2 (-637 (-1163 *4))) (-5 *3 (-1163 *4)) (-4 *4 (-906))
+ (-5 *1 (-658 *4)))))
+(((*1 *1 *1) (-4 *1 (-657))))
+(((*1 *1 *1 *1) (-4 *1 (-657))))
+(((*1 *1 *1 *1) (-4 *1 (-657))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
+ (-4 *2 (-653 *4)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7))
- (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169))
- (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031))
- (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1))
- (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6))))
- (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563)))
- (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169))
- (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262))
- (-5 *1 (-449 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-767)) (-4 *1 (-653 *3)) (-4 *3 (-1045)) (-4 *3 (-363))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2))
+ (-4 *2 (-653 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
+ (-4 *2 (-653 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *5 (-1232 *4)) (-5 *2 (-637 (-650 (-407 *5)))) (-5 *1 (-654 *4 *5))
+ (-5 *3 (-650 (-407 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-646 *3)) (-4 *3 (-1207)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-646 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-546)) (-4 *1 (-646 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4))))
+ (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| |gen| *3) (|:| -4358 *4)))) (-4 *3 (-1094))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-372 *2)) (-4 *2 (-1207))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23))
+ (-14 *5 *4))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3))))
+ (-12 (-5 *2 (-1 (-546) (-546))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8))
- (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7))
- (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4)))
- (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225)))
- (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031))
- (-5 *1 (-750)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5))
- (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563)))
- (-5 *1 (-571))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1))
- (-4 *1 (-905)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-563))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
- (-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *1) (-5 *1 (-330))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5))
+ (-4 *3 (-1094)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-644 *3 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1094)))))
+(((*1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1207)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1094)) (-4 *2 (-1207)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-684 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-636 *5)) (-4 *5 (-1045))
+ (-5 *2 (-2 (|:| -1735 (-684 *5)) (|:| |vec| (-1256 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) (-5 *2 (-684 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363))
+ (-4 *5 (-556)) (-5 *2 (-1256 *5)) (-5 *1 (-635 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-636 *5)) (-3733 (-4 *5 (-363)))
+ (-4 *5 (-556)) (-5 *2 (-1256 (-407 *5))) (-5 *1 (-635 *5 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-636 *4)) (-4 *4 (-556))
+ (-5 *2 (-1256 *4)) (-5 *1 (-635 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
+ (-12 (-5 *3 (-1256 *5)) (-4 *5 (-636 *4)) (-4 *4 (-556)) (-5 *2 (-112))
+ (-5 *1 (-635 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5)))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
+ (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
(-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5 *3))))
+ (-3 (-838 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-838 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-838 *3) #1#)))
+ "failed"))
+ (-5 *1 (-633 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151))
- (-4 *3 (-13 (-1193) (-955) (-29 *6)))
- (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6 *3))))
+ (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1151))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-838 *3))
+ (-5 *1 (-633 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5))))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6))))
- (-5 *5 (-1151))
- (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
+ (-12 (-5 *4 (-293 (-838 (-942 *5)))) (-4 *5 (-452))
(-5 *2
- (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
+ (-3 (-838 (-407 (-942 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-838 (-407 (-942 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-838 (-407 (-942 *5))) #2#)))
+ #3="failed"))
+ (-5 *1 (-634 *5)) (-5 *3 (-407 (-942 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151))
- (-5 *3 (-407 (-948 *6)))
- (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
+ (-12 (-5 *4 (-293 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-452))
(-5 *2
- (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169))
- (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3))
- (-4 *3 (-13 (-1193) (-955) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379))))
- (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564))))
+ (-3 (-838 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-838 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-838 *3) #2#)))
+ #3#))
+ (-5 *1 (-634 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379))))
- (-5 *2 (-1031)) (-5 *1 (-564))))
+ (|partial| -12 (-5 *4 (-293 (-407 (-942 *6)))) (-5 *5 (-1151))
+ (-5 *3 (-407 (-942 *6))) (-4 *6 (-452)) (-5 *2 (-838 *3))
+ (-5 *1 (-634 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-293 (-828 *3)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546)))) (-5 *2 (-828 *3))
+ (-5 *1 (-633 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379)))))
- (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379))))
- (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379))))
- (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4))
- (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))
+ (-12 (-5 *4 (-293 (-828 (-942 *5)))) (-4 *5 (-452))
+ (-5 *2 (-828 (-407 (-942 *5)))) (-5 *1 (-634 *5)) (-5 *3 (-407 (-942 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147))
- (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))
- (-4 *3 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563))))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846))
- (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045))
- (-5 *1 (-1153 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563))))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-4034
- (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193))
- (-4 *3 (-38 (-407 (-563))))))
- (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -2605 ((-640 *2) *3)))
- (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2)
- (-4034
- (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193))
- (-4 *3 (-38 (-407 (-563))))))
- (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -2605 ((-640 *2) *3)))
- (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-4034
- (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193))
- (-4 *3 (-38 (-407 (-563))))))
- (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -2605 ((-640 *2) *3)))
- (|has| *3 (-15 -2062 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5))
- (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169)))
- (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2))
- (-14 *4 (-640 *2)) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169)))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -4166 (-640 (-1087 (-839 (-225)))))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-765))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-804))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225))))
- (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-640 (-316 (-225))))
- (|:| -2522 (-640 (-225)))))))
- (-5 *1 (-837))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-640 (-316 (-225))))
- (|:| |constraints|
- (-640
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-563))
- (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225))))))
- (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151))
- (|:| |tol| (-225))))
- (-5 *1 (-894))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (-4034
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-38 (-407 (-563)))))
- (-2174 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-545))) (-2174 (-4 *3 (-38 (-407 (-563)))))
- (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2174 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563))))
- (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))))
- ((*1 *1 *2)
- (-4034
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2174 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563)))
- (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4)))
- (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225)))
- (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905))
- (-5 *2 (-1257 *1)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-563))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
- (-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6))
- (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6))
- (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363))
- (-5 *1 (-989 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922)))
- (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151))
- (-5 *2 (-1203 (-922))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563))
- (-5 *2 (-1203 (-922))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151))
- (-5 *2 (-1203 (-922))) (-5 *1 (-318)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
+ (-12 (-5 *4 (-293 (-407 (-942 *5)))) (-5 *3 (-407 (-942 *5))) (-4 *5 (-452))
+ (-5 *2 (-828 *3)) (-5 *1 (-634 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))))
+(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-5 *1 (-629))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-637 (-1169))) (-4 *5 (-452))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-637 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-637 (-1169)))
+ (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-247 *5 *6))) (-4 *6 (-452))
+ (-5 *2 (-247 *5 *6)) (-14 *5 (-637 (-1169))) (-5 *1 (-628 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-261))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-637 (-261)))
+ (-5 *1 (-262))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-637 (-1169)))
+ (-4 *6 (-452)) (-5 *2 (-1256 *6)) (-5 *1 (-628 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169))
- (-14 *4 *2))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
+ (-12 (-5 *2 (-637 (-481 *3 *4))) (-14 *3 (-637 (-1169))) (-4 *4 (-452))
+ (-5 *1 (-628 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-637 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-637 (-1169)))
+ (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-637 (-1169)))
+ (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093))
- (-4 *3 (-1208)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789))
- (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8)))
- (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))))
+ (-12 (-5 *3 (-637 (-481 *4 *5))) (-14 *4 (-637 (-1169))) (-4 *5 (-452))
+ (-5 *2 (-637 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
+ (-12 (-14 *4 (-637 (-1169))) (-4 *5 (-452))
+ (-5 *2 (-2 (|:| |glbase| (-637 (-247 *4 *5))) (|:| |glval| (-637 (-546)))))
+ (-5 *1 (-628 *4 *5)) (-5 *3 (-637 (-247 *4 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
+ (-12 (-5 *3 (-637 (-481 *4 *5))) (-14 *4 (-637 (-1169))) (-4 *5 (-452))
+ (-5 *2 (-2 (|:| |gblist| (-637 (-247 *4 *5))) (|:| |gvlist| (-637 (-546)))))
+ (-5 *1 (-628 *4 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169))
- (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5))
- (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8))
- (-5 *6 (-640 *8)) (-4 *8 (-430 *7))
- (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8)))
- (-4 *8 (-430 *7)) (-5 *5 (-294 *8))
- (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6))
- (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3))
- (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093))
- (-4 *3 (-1208)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))))
-(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))))
-(((*1 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905))
- (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905))
- (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-846) (-555))))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169))
- (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767))
- (-247 *3 (-407 (-563)))))
- (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2))
- (-4 *2 (-1248 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3)))
- (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2))
- (-4 *2 (-1248 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3)))
- (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147)))
- (-5 *1 (-1145 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-640
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169))
- (-14 *4 *2))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147)))
- (-5 *1 (-1145 *3)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-626 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998) (-1193)))))
+ ((*1 *1 *1) (-4 *1 (-627))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-421 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112))
+ (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-421 *4) (-998)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917))
- (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-297 *4)) (-4 *4 (-298))))
+ ((*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-113)) (-5 *2 (-112))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-113)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-420 *4 *5))
+ (-4 *4 (-421 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7)))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112))
+ (-5 *1 (-431 *4 *5)) (-4 *5 (-421 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2))
- (-4 *4 (-452)) (-4 *6 (-846)))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045))
- (-5 *1 (-1153 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1169)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112))
+ (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-421 *4) (-998) (-1193))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-637 (-1169)))
+ (-5 *2 (-637 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
+ (-5 *1 (-625 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-637 (-1169))) (-5 *2 (-637 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5))))
+ (-12 (-5 *2 (-637 (-942 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
+ (-14 *4 (-637 (-1169)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147)))
- (-5 *1 (-1145 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555))
- (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846))
- (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555))
- (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379))
- (-5 *1 (-781 *5)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7))
- (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789))
- (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5))
- (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -3929 *3))))
- (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-563))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1248 *3))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1248 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147)))
- (-5 *1 (-1145 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563))))
- (-4 *2 (-172)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7))
- (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789))
- (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))))
+ (-12 (-5 *2 (-637 (-776 *3 (-860 *4)))) (-4 *3 (-452))
+ (-14 *4 (-637 (-1169))) (-5 *1 (-625 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-225))
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 *4))))
- (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4))))
- (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4)))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045))
- (-5 *1 (-1153 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1169)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-563))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093))
- (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4334 *1)))
- (-4 *1 (-307)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1144))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563))))
- (-4 *2 (-172)))))
+ (|partial| -12 (-5 *2 (-637 (-942 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
+ (-14 *4 (-637 (-1169)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-637 (-776 *3 (-860 *4)))) (-4 *3 (-452))
+ (-14 *4 (-637 (-1169))) (-5 *1 (-625 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923))
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563)))
- (-5 *2
- (-2 (|:| |brans| (-640 (-640 (-939 (-225)))))
- (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))))
- (-5 *1 (-153)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045))
- (-5 *1 (-1153 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1169)) (-14 *5 *3))))
+ (-12 (-5 *3 (-637 (-942 *4))) (-4 *4 (-452)) (-5 *2 (-112))
+ (-5 *1 (-360 *4 *5)) (-14 *5 (-637 (-1169)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-776 *4 (-860 *5)))) (-4 *4 (-452))
+ (-14 *5 (-637 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-846)) (-5 *2 (-637 (-659 *4 *5)))
+ (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-546)))))
+ (-14 *6 (-915)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-563))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))))
+ (-12 (-5 *2 (-637 (-2 (|:| |k| (-667 *3)) (|:| |c| *4))))
+ (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-637 (-293 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
+ (-4 *4 (-13 (-172) (-713 (-407 (-546))))) (-14 *5 (-915)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2818 (-637 (-2 (|:| |irr| *10) (|:| -2537 (-546)))))))
+ (-5 *6 (-637 *3)) (-5 *7 (-637 *8)) (-4 *8 (-846)) (-4 *3 (-307))
+ (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-789))
+ (-5 *2
+ (-2 (|:| |polfac| (-637 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-637 (-1163 *3)))))
+ (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-637 (-1163 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-767)) (-5 *5 (-637 *3)) (-4 *3 (-307)) (-4 *6 (-846))
+ (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8))
+ (-4 *8 (-946 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
+ (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6))
+ (-4 *2 (-1102 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1232 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-956) (-29 *4))))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614))))
+(((*1 *1) (-5 *1 (-614))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-4 *5 (-1232 *4)) (-5 *2 (-1163 (-407 *5))) (-5 *1 (-612 *4 *5))
+ (-5 *3 (-407 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-405 *6) *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-147) (-27) (-1034 (-546)) (-1034 (-407 (-546)))))
+ (-5 *2 (-1163 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))))
+ (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-846)) (-4 *2 (-846))
+ (-5 *1 (-609 *2 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5))
- (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169))
- (-5 *1 (-262 *2)) (-4 *2 (-1208))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52))
- (-5 *1 (-263)))))
+ (-12 (-5 *2 (-608 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-608 *3)) (-4 *3 (-846)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-637 *1)) (-4 *1 (-298))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-113)) (-5 *3 (-637 *5)) (-5 *4 (-767)) (-4 *5 (-846))
+ (-5 *1 (-608 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-608 *3)) (-4 *3 (-846)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1208)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
+ (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-603)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-563))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093))
- (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045))
- (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4))
+ (-12
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
- (|:| |c2| (-407 *5)) (|:| |deg| (-767))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045))
- (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+ (-637
+ (-2
+ (|:| -4275
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2233
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-637 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1207)) (-5 *2 (-637 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1094))
+ (-4 *3 (-1207)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1094)) (-4 *2 (-846)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1094)) (-4 *2 (-846)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1207)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1207)) (-5 *2 (-1262)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-608 *2))) (-5 *4 (-637 (-1169)))
+ (-4 *2 (-13 (-421 (-168 *5)) (-998) (-1193))) (-4 *5 (-13 (-556) (-846)))
+ (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-421 *5) (-998) (-1193))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093))
- (-4 *3 (-1093)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093))
- (-4 *5 (-1208)) (-5 *1 (-886 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093))
- (-4 *5 (-1208)) (-5 *1 (-886 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169)))
- (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208))
- (-5 *1 (-886 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846))
- (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846))
- (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208))
- (-5 *2 (-316 (-563))) (-5 *1 (-934 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208))
- (-5 *2 (-316 (-563))) (-5 *1 (-934 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6)))
- (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-5 *1 (-1069 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225)))
- (-5 *1 (-305)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3))
- (-4 *3 (-1059 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3))
- (-4 *3 (-1059 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555))
- (-4 *3 (-1045)))))
+ (-12 (-4 *4 (-13 (-556) (-846))) (-5 *2 (-168 *5)) (-5 *1 (-597 *4 *5 *3))
+ (-4 *5 (-13 (-421 *4) (-998) (-1193)))
+ (-4 *3 (-13 (-421 (-168 *4)) (-998) (-1193))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045))
- (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1233 (-407 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045))
- (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093))
- (-5 *1 (-673 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1612 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))))
+ (-12 (-4 *4 (-13 (-556) (-846)))
+ (-4 *2 (-13 (-421 (-168 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *3 *2))
+ (-4 *3 (-13 (-421 *4) (-998) (-1193))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5))
- (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5))
- (-5 *2 (-2 (|:| -3311 (-767)) (|:| -2310 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)) (-4 *2 (-307))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2))
- (-4 *2 (-682 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
+ (-12 (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-421 *4) (-998) (-1193)))
+ (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-421 (-168 *4)) (-998) (-1193))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563))
- (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093)))))
+ (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-421 *4) (-998) (-1193)))
+ (-4 *4 (-13 (-556) (-846))) (-4 *2 (-13 (-421 (-168 *4)) (-998) (-1193)))
+ (-5 *1 (-597 *4 *5 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1022 (-838 (-546))))
+ (-5 *3 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *4)))) (-4 *4 (-1045))
+ (-5 *1 (-593 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555))
- (-5 *2 (-1165 *3)))))
+ (-12 (-5 *2 (-1022 (-838 (-546)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *3)))) (-5 *1 (-593 *3))
+ (-4 *3 (-1045)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-640 *8))
- (|:| |towers| (-640 (-1023 *5 *6 *7 *8)))))
- (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-640 *8))
- (|:| |towers| (-640 (-1139 *5 *6 *7 *8)))))
- (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1612 *3) (|:| |coef1| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045))
- (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4))
- (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))))
+(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1146 (-2 (|:| |k| (-546)) (|:| |c| *6))))
+ (-5 *4 (-1022 (-838 (-546)))) (-5 *5 (-1169)) (-5 *7 (-407 (-546)))
+ (-4 *6 (-1045)) (-5 *2 (-859)) (-5 *1 (-593 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1045)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767))))
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-546)))) (-4 *2 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-1102 *5 *6 *7 *8))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-589 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-546))) (-5 *4 (-898 (-546))) (-5 *2 (-684 (-546)))
+ (-5 *1 (-588))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3))
- (-4 *3 (-682 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555))
- (-5 *2 (-767)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093))
- (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3))))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))
- (-5 *1 (-1070 *3 *4 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-640 *11))
- (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2058 *11))))))
- (-5 *6 (-767))
- (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2058 *11))))
- (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9))
- (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-640 *11))
- (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2058 *11))))))
- (-5 *6 (-767))
- (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2058 *11))))
- (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9))
- (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1612 *3) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-588))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-546))) (-5 *4 (-637 (-898 (-546))))
+ (-5 *2 (-637 (-684 (-546)))) (-5 *1 (-588)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-546))) (-5 *2 (-767)) (-5 *1 (-588)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 *5))) (-5 *4 (-1169)) (-4 *5 (-147))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-314 *5))
+ (-5 *1 (-587 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4))
- (-5 *2 (-2 (|:| -2310 (-407 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3))
- (-4 *3 (-682 *4 *5 *6))))
+ (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1193))) (-5 *1 (-584 *4 *2))
+ (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546))))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -4409)) (-4 *4 (-555)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7))
- (-4 *9 (-373 *7)) (-5 *2 (-640 *6))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6))
- (-4 *10 (-682 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5))))
+ (-12 (-5 *3 (-582 (-407 (-942 *4))))
+ (-4 *4 (-13 (-452) (-1034 (-546)) (-846) (-636 (-546)))) (-5 *2 (-314 *4))
+ (-5 *1 (-587 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-586 *4)) (-4 *4 (-350)))))
+(((*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545))))
((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3))
- (-4 *3 (-682 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555))
- (-5 *2 (-640 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676)))))
+ (-12 (-5 *2 (-2 (|:| -3083 *3) (|:| -2543 (-767)))) (-5 *1 (-585 *3))
+ (-4 *3 (-545)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093))
- (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093))
- (-4 *2 (-1208)) (-5 *1 (-637 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093))
- (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093))
- (-4 *2 (-1208)) (-5 *1 (-637 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6))
- (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))))
+ (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-637
+ (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 *2))
+ (|:| |logand| (-1163 *2)))))
+ (-5 *4 (-637 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363))
+ (-5 *1 (-582 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-363)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1526 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363))
+ (-12
(-5 *2
- (-2 (|:| |poly| *6) (|:| -2376 (-407 *6))
- (|:| |special| (-407 *6))))
- (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4))
- (-4 *3 (-1233 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -1685 *3) (|:| -1700 *3))) (-5 *1 (-892 *3 *5))
- (-4 *3 (-1233 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+ (-637
+ (-2 (|:| |scalar| (-407 (-546))) (|:| |coeff| (-1163 *3))
+ (|:| |logand| (-1163 *3)))))
+ (-5 *1 (-582 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-582 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-363)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))))
+(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-578)))))
+(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-535) (-637 (-535)))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-637 (-535)))) (-5 *1 (-113))))
+ ((*1 *1) (-5 *1 (-577))))
+(((*1 *1) (-5 *1 (-577))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-1193) (-956) (-1132) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-407 (-563))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-573 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
(-5 *2
- (-640
- (-2 (|:| |outval| *4) (|:| |outmult| (-563))
- (|:| |outvect| (-640 (-684 *4))))))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4))
- (-14 *4 (-563)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169))
- (-4 *5 (-363)) (-5 *1 (-919 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5))
- (-5 *1 (-919 *4 *5)) (-14 *4 (-1169))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363))
- (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045))
- (-4 *3 (-1093)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4))
- (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))))
+ (-2 (|:| |ir| (-582 (-407 *6))) (|:| |specpart| (-407 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-620 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3529 *4) (|:| |sol?| (-112))) (-546) *4))
+ (-4 *4 (-363)) (-4 *5 (-1232 *4)) (-5 *1 (-573 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3 (-1 (-3 (-2 (|:| -2297 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-637 (-407 *7))) (-4 *7 (-1232 *6))
+ (-5 *3 (-407 *7)) (-4 *6 (-363))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-573 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -2297 (-407 *6)) (|:| |coeff| (-407 *6))))
+ (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3529 *7) (|:| |sol?| (-112))) (-546) *7))
+ (-5 *6 (-637 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1232 *7)) (-5 *3 (-407 *8))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-573 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2297 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-637 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1232 *7)) (-5 *3 (-407 *8))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-573 *7 *8)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3529 *6) (|:| |sol?| (-112))) (-546) *6))
+ (-4 *6 (-363)) (-4 *7 (-1232 *6))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
+ (-2 (|:| -2297 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2297 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-363)) (-4 *7 (-1232 *6))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
+ (-2 (|:| -2297 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-637 *6) "failed") (-546) *6 *6))
+ (-4 *6 (-363)) (-4 *7 (-1232 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3529 *6) (|:| |sol?| (-112))) (-546) *6))
+ (-4 *6 (-363)) (-4 *7 (-1232 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2297 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-363)) (-4 *7 (-1232 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-582 *3) *3 (-1169)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1169)))
+ (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-421 *7))
+ (-5 *4 (-1169)) (-4 *7 (-611 (-886 (-546)))) (-4 *7 (-452))
+ (-4 *7 (-882 (-546))) (-4 *7 (-846)) (-5 *2 (-582 *3))
+ (-5 *1 (-572 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2))
+ (-4 *2 (-284)) (-4 *2 (-421 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-556)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2))
+ (-4 *2 (-421 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-1169)) (-4 *6 (-421 *5)) (-4 *5 (-846))
+ (-5 *2 (-637 (-608 *6))) (-5 *1 (-572 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-608 *6))) (-5 *4 (-1169)) (-5 *2 (-608 *6))
+ (-4 *6 (-421 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-608 *5))) (-4 *4 (-846)) (-5 *2 (-608 *5))
+ (-5 *1 (-572 *4 *5)) (-4 *5 (-421 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-608 *5))) (-5 *3 (-1169)) (-4 *5 (-421 *4))
+ (-4 *4 (-846)) (-5 *1 (-572 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-1034 (-546)) (-147)))
+ (-5 *2 (-2 (|:| -2297 (-407 (-942 *5))) (|:| |coeff| (-407 (-942 *5)))))
+ (-5 *1 (-569 *5)) (-5 *3 (-407 (-942 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 (-407 (-942 *6))))
+ (-5 *3 (-407 (-942 *6))) (-4 *6 (-13 (-556) (-1034 (-546)) (-147)))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-569 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-407 (-942 *4))) (-5 *3 (-1169))
+ (-4 *4 (-13 (-556) (-1034 (-546)) (-147))) (-5 *1 (-569 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-1034 (-546)) (-147)))
+ (-5 *2 (-582 (-407 (-942 *5)))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-942 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))))
+ (|partial| -12 (-5 *2 (-546)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4))
- (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208))
- (-14 *4 (-563)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-640 (-1169)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-640 (-1169))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045))
- (-4 *3 (-1093)))))
-(((*1 *1 *1) (-4 *1 (-173)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4))
- (-4 *4 (-846))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (|partial| -12 (-5 *4 (-637 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-363) (-147) (-1034 (-546))))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-567 *5 *6)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-546)))) (-4 *5 (-1232 *4))
+ (-5 *2 (-2 (|:| -2297 (-407 *5)) (|:| |coeff| (-407 *5))))
+ (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3))
+ (-4 *3 (-13 (-363) (-147) (-1034 (-546)))) (-5 *1 (-567 *3 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-886 (-546))))
+ (-4 *5 (-882 (-546)))
+ (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3))
+ (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-838 *2)) (-4 *2 (-1132))
+ (-4 *2 (-13 (-27) (-1193) (-421 *5))) (-4 *5 (-611 (-886 (-546))))
+ (-4 *5 (-882 (-546)))
+ (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546))))
+ (-5 *1 (-566 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-886 (-546))))
+ (-4 *5 (-882 (-546)))
+ (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3))
+ (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-1034 (-546)) (-452) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2468 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-608 *4)) (-5 *6 (-1169)) (-4 *4 (-13 (-421 *7) (-27) (-1193)))
+ (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169)))
+ (-4 *2 (-13 (-421 *5) (-27) (-1193)))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1094)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3))
+ (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1193)))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3 *6))
+ (-4 *6 (-1094)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1193)))
+ (-4 *5 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
+ (-4 *7 (-1232 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2296 *3)))
+ (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-363))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ (-2 (|:| |answer| (-407 *6)) (|:| -2296 (-407 *6))
+ (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-546)) (-5 *3 (-767)) (-5 *1 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-561)) (-5 *3 (-546)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-561)) (-5 *3 (-546)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-637 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-307))
+ (-5 *1 (-179 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-12 (-5 *3 (-637 *8))
+ (-5 *4
+ (-637
+ (-2 (|:| -2169 (-684 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-684 *7)))))
+ (-5 *5 (-767)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-350))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-2 (|:| -2169 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7))))
+ (-5 *1 (-498 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-561)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-608 *4)) (-5 *6 (-1163 *4))
+ (-4 *4 (-13 (-421 *7) (-27) (-1193)))
+ (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2169 (-637 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-608 *4)) (-5 *6 (-407 (-1163 *4)))
+ (-4 *4 (-13 (-421 *7) (-27) (-1193)))
+ (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2169 (-637 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-653 *4)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-608 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1169))) (-5 *5 (-1163 *2))
+ (-4 *2 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1169)))
+ (-5 *5 (-407 (-1163 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3)) (-5 *6 (-1163 *3))
+ (-4 *3 (-13 (-421 *7) (-27) (-1193)))
+ (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3))
- (-4 *3 (-720 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169))
- (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4))
- (-5 *1 (-292 *4)) (-4 *4 (-452))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-684 (-169 (-407 (-563)))))
- (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4))
- (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169))
- (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5))
- (-4 *5 (-13 (-363) (-844)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563))))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169))
- (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5))
- (-4 *5 (-13 (-363) (-844))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3))
- (-4 *3 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-5 *2 (-1151)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-637 *3)) (-5 *6 (-407 (-1163 *3)))
+ (-4 *3 (-13 (-421 *7) (-27) (-1193)))
+ (-4 *7 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1163 *3))
+ (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7))
+ (-4 *7 (-1094))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-407 (-1163 *3)))
+ (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7))
+ (-4 *7 (-1094)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-608 *3)) (-5 *5 (-1163 *3))
+ (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-608 *3)) (-5 *5 (-407 (-1163 *3)))
+ (-4 *3 (-13 (-421 *6) (-27) (-1193)))
+ (-4 *6 (-13 (-452) (-1034 (-546)) (-846) (-147) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
(-5 *2
- (-2 (|:| |done| (-640 *4))
- (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2058 *4))))))
- (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-559)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))
- (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7))
- (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208))
- (-14 *4 (-563)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-640 (-1169))))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)))
- (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169))
- (-14 *6 *4)))
- ((*1 *2 *1)
(|partial| -12
- (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)))
- (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169))
- (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093)))))
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-559)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-637
+ (-2
+ (|:| -4275
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2233
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-559)))))
+(((*1 *1) (-5 *1 (-559))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))))
+(((*1 *2 *3) (-12 (-5 *2 (-405 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-637 (-608 *3))) (-5 *5 (-608 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *7)))
+ (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169))
+ (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-557 *5 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
+ (|partial| -12 (-5 *3 (-1169))
+ (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-637 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6)))
+ (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-637 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-557 *6 *3)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1169))
+ (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-2 (|:| -2297 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3))
+ (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
+ (-12 (-5 *2 (-2 (|:| -1927 *1) (|:| -4395 *1) (|:| |associate| *1)))
+ (-4 *1 (-556)))))
+(((*1 *1 *1) (-4 *1 (-556))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-546))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1193))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-553)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-553)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-553)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5))
+ (-4 *5 (-13 (-27) (-421 *4))) (-4 *4 (-13 (-846) (-556) (-1034 (-546))))
+ (-4 *7 (-1232 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2))
+ (-4 *2 (-342 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-421 *5)))
+ (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-4 *8 (-1232 (-407 *7)))
+ (-5 *2 (-582 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-421 *5)))
+ (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-4 *8 (-1232 (-407 *7)))
+ (-5 *2 (-582 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1163 *3) (-1163 *3)))
+ (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-846) (-556))) (-5 *2 (-582 *3))
+ (-5 *1 (-551 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-546) #1="failed") *5)) (-4 *5 (-1045))
+ (-5 *2 (-546)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1232 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-546) #1#) *4)) (-4 *4 (-1045)) (-5 *2 (-546))
+ (-5 *1 (-543 *4 *3)) (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-546) #1#) *4)) (-4 *4 (-1045)) (-5 *2 (-546))
+ (-5 *1 (-543 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1232 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767)))
+ (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1232 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))))
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *6)) (-5 *4 (-637 (-1169))) (-4 *6 (-363))
+ (-5 *2 (-637 (-293 (-942 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *7 (-13 (-363) (-844))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-637 (-942 *6))) (-5 *4 (-637 (-1169))) (-4 *6 (-452))
+ (-5 *2 (-637 (-637 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
+ (-4 *5 (-13 (-363) (-844))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 *5)) (-4 *5 (-452)) (-5 *2 (-637 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-452)) (-5 *2 (-637 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-535))))
+ ((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-536 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169)) (-5 *2 (-535)) (-5 *1 (-536 *4)) (-4 *4 (-1207)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-535))) (-5 *1 (-535)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-535)))))
+(((*1 *1 *1) (-5 *1 (-535))))
+(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-535))) (-5 *2 (-1169)) (-5 *1 (-535)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-535))) (-5 *1 (-535)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307))
- (-4 *10 (-945 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-640 (-1165 *10)))
- (|:| |dterm|
- (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10))))
- (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6))
- (-5 *5 (-640 *10)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1169)) (-5 *6 (-112))
- (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))))
- (-4 *3 (-13 (-1193) (-955) (-29 *7)))
+ (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-405 (-1163 *6)) (-1163 *6)))
+ (-4 *6 (-363))
(-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1242 *4 *5 *6))
- (|:| |%expon| (-319 *4 *5 *6))
- (|:| |%expTerms|
- (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4))))))
- (|:| |%type| (-1151))))
- (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3)))
- (-14 *5 (-1169)) (-14 *6 *4))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043))
- (-5 *3 (-563)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
+ (-637
+ (-2 (|:| |outval| *7) (|:| |outmult| (-546))
+ (|:| |outvect| (-637 (-684 *7))))))
+ (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-1163 *5)) (-4 *5 (-363)) (-5 *2 (-637 *6))
+ (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5))
- (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6))
- (-14 *7 (-917)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
+ (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1163 *4))
+ (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-915)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1163 *1))
+ (-4 *1 (-329 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1163 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1232 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))))
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)))))
+(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1256 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1256 *4)) (-4 *4 (-418 *3)) (-4 *3 (-307)) (-4 *3 (-556))
+ (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-4 *4 (-363)) (-5 *2 (-1256 *1)) (-4 *1 (-329 *4))))
+ ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1256 *1)) (-4 *1 (-329 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-172)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1))
+ (-4 *1 (-410 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6))
+ (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6))
+ (-5 *1 (-415 *3 *4 *5 *6 *7)) (-4 *6 (-410 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1256 *1)) (-4 *1 (-418 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-528 *4))
+ (-4 *4 (-350)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-356 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-528 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-915))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-915)) (-5 *1 (-528 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-546)) (-4 *4 (-350)) (-5 *1 (-528 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1113)) (-4 *4 (-350)) (-5 *1 (-528 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-528 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1256 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-350))
+ (-5 *1 (-528 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-767)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)) (-4 *4 (-350)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *4)) (-4 *4 (-350)) (-5 *2 (-1163 *4)) (-5 *1 (-528 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))
+ (-4 *4 (-350)) (-5 *2 (-1262)) (-5 *1 (-528 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-128))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-549))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-129)) (-5 *2 (-767)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1208))) (-5 *1 (-524)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-327 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-516 *3 *4)) (-14 *4 (-546)))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-546)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-327 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1207))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-546)))))
+(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767))
+ (-4 *5 (-172))))
((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-546)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767))
+ (-4 *5 (-172))))
((*1 *2 *2 *3)
(-12
(-5 *2
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563)))))
- (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767))
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546)))))
+ (-5 *3 (-637 (-860 *4))) (-14 *4 (-637 (-1169))) (-14 *5 (-767))
(-5 *1 (-505 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3))
- (-5 *2 (-407 (-563))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4))
- (-5 *1 (-1013 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))))
-(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349))
- (-4 *2
- (-13 (-402)
- (-10 -7 (-15 -1692 (*2 *4)) (-15 -3990 ((-917) *2))
- (-15 -4013 ((-1257 *2) (-917))) (-15 -3715 (*2 *2)))))
- (-5 *1 (-356 *2 *4)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208))
- (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3))
- (-4 *3 (-1208))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3))
- (-4 *3 (-1208))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093))
- (-4 *2 (-1208))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2))
- (-4 *2 (-1208))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2))
- (-4 *2 (-1208))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2))
- (-4 *2 (-1208))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3))
- (-4 *3 (-1208))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2))
- (-4 *2 (-1208)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1137))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2058 *4))))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767))
+ (-12 (-14 *4 (-637 (-1169))) (-14 *5 (-767))
(-5 *2
- (-640
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563))))))
+ (-637
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))))
(-5 *1 (-505 *4 *5))
(-5 *3
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))))
-(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4))
- (-5 *3 (-1165 *4)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1) (-4 *1 (-1137))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262))
- (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225))))
- ((*1 *1 *1 *1)
- (-4034 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208)))
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208)))))
- ((*1 *1 *1 *1) (-4 *1 (-363)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846))
- (-4 *1 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-473)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-536)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-722) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-722) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4))
- (-4 *3 (|SubsetCategory| (-722) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4))
- (-4 *2 (|SubsetCategory| (-722) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363))
- (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767)))
- (-14 *5 (-767))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045))
- (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-789)) (-14 *6 (-640 *3))
- (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3))
- (-14 *7 (-640 (-767))) (-14 *8 (-767))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045))
- (-4 *3 (-842)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))))
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546))))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-504 (-407 (-546)) (-239 *4 (-767)) (-860 *3) (-247 *3 (-407 (-546)))))
+ (-14 *3 (-637 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563)))))
- (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546)))))
+ (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
(-5 *1 (-505 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1233 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045))
- (-4 *2 (-1217 *3)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1137))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1169))
- (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))
- ((*1 *1 *1) (-5 *1 (-379)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *4))))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-214 *2))
- (-4 *2
- (-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $))
- (-15 -1651 ((-1262) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6)))
- (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093))
- (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7)))
- (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846)))
- (-5 *1 (-937 *6 *7 *8)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-563)))))
- (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
+ (-504 (-407 (-546)) (-239 *5 (-767)) (-860 *4) (-247 *4 (-407 (-546)))))
+ (-14 *4 (-637 (-1169))) (-14 *5 (-767)) (-5 *2 (-112))
(-5 *1 (-505 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1233 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1149 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4166
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-558)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1) (-4 *1 (-1137))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3))
- (-4 *3 (-1065 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-214 *2))
- (-4 *2
- (-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $))
- (-15 -1651 ((-1262) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2))
- (-4 *2 (-1233 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-536)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093))
- (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5))
- (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4))
- (-4 *4 (-1093))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093))
- (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5))
- (-5 *1 (-927 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093))
- (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $))))
- (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5)))
- (-5 *1 (-928 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545))
- (-5 *1 (-929 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093))
- (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5)))
- (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093))
- (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3)))
- (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6))
- (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4)))
- (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6)))
- (-5 *1 (-932 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093))
- (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5))
- (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-13 (-1045) (-846) (-882 *5)))
- (-5 *1 (-932 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6))
- (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5))
- (-5 *1 (-935 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5))
- (-4 *5 (-1093)) (-5 *1 (-936 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9)))
- (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093))
- (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8)))
- (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846)))
- (-5 *1 (-937 *7 *8 *9)))))
(((*1 *2 *3 *1)
(-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349))
- (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -3248 *3))))
- (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-563))))
- (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3551 ($ $ $)))))
- (-4 *3 (-555)) (-5 *1 (-1236 *3 *4)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533)))
- (-5 *1 (-533))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1))
- (-4 *1 (-763 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5)))
- (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-927 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3)
(-14 *5 *3)))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-305))))
+ (-12 (-5 *4 (-1082 (-838 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-303))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-349))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1337 (-640 (-2 (|:| |irr| *3) (|:| -3259 (-563)))))))
- (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2058 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1212)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2))
- (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3551 ($ $ $))))))))
-(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-846))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193)))
- (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *1 (-582 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-584 (-407 (-948 *3))))
- (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))))
- (-5 *1 (-587 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -2376 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-640 (-684 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-640 (-684 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))))
-(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-939 (-225)))))
- (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924)))))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
(((*1 *2 *3 *1)
(-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2)))
- (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3))
- (-4 *3 (-342 *5 *2 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131))
- (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| -2310 *3) (|:| -4223 *4))))
- (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307))
- (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-169 (-407 (-563)))))
- (-5 *2
- (-640
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563))
- (|:| |outvect| (-640 (-684 (-169 *4)))))))
- (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
(((*1 *2 *1)
(-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-640 (-316 (-225))))
- (|:| |constraints|
- (-640
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-563))
- (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225))))))
- (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151))
- (|:| |tol| (-225))))
- (-5 *2 (-112)) (-5 *1 (-210)))))
-(((*1 *1)
- (-12 (-4 *1 (-404)) (-2174 (|has| *1 (-6 -4399)))
- (-2174 (|has| *1 (-6 -4391)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846))))
- ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))
- ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
- (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
- (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917)))))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4))
- (-4 *4 (-1233 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045))
- (-4 *3 (-846))))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6))
- (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4)))
- (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767))
- (-5 *1 (-908 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
- (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
- (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767))
- (-5 *1 (-1014 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555))
- (-5 *2 (-767))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112))
- (-5 *1 (-667 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767))
- (-4 *4 (-172))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3))
- (-4 *4 (-373 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4)))
- (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
+ (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
+ (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2))
+ (-4 *2 (-946 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-210)))))
-(((*1 *1 *1) (-4 *1 (-1054)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846)))
- (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))))
-(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4))
- (-14 *3 (-767)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922))))
- ((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
+ (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
(-5 *2
(-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4))
(|:| |genIdeal| (-504 *4 *5 *6 *7))))
- (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-846))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))))))
-(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))))
+ (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
(((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3))
(|:| |genIdeal| (-504 *3 *4 *5 *6))))
- (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045))
- (-5 *2 (-1257 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846))
- (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
+ (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))
+ (-4 *6 (-946 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
-(((*1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846))
- (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34)))
- (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5))
+ (-4 *5 (-946 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
+ (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
(-5 *2 (-413 *4 (-407 *4) *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))
- (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307))
+ (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-410 *4 *5) (-1034 *4)))
+ (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-307))
(-5 *1 (-413 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846))
- (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed"))
- (|:| -4013 (-640 (-1257 (-407 *8))))))
- (-5 *1 (-664 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208))
- (-4 *3 (-1093)) (-5 *2 (-767))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
- (-4 *4 (-1208)) (-5 *2 (-767)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-640 (-2 (|:| -3311 (-767)) (|:| -3412 *4) (|:| |num| *4))))
- (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093))
- (-5 *1 (-670 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093))
- (-14 *4
- (-1 (-112) (-2 (|:| -2552 *2) (|:| -3311 *3))
- (-2 (|:| -2552 *2) (|:| -3311 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2556 *4))))
- (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34)))
- (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5))
- (-4 *3 (-13 (-1093) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -2058 *5))))
- (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34)))
- (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2058 *4)))
- (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34)))
- (-5 *1 (-1133 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34)))
- (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3))
- (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
-(((*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097))
- (-5 *1 (-755))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097))
- (-5 *1 (-755)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2))
- (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1692 ($ *6)) (-15 -2143 (*6 $))
- (-15 -2153 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555))
- (-5 *2 (-1169)) (-5 *1 (-1039 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363))
- (-5 *2 (-112)) (-5 *1 (-662 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112))
- (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *1 *1 *1) (-5 *1 (-379)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'JINT 'X 'ELAM) (-1706) (-694))))
- (-5 *1 (-61 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 'XC) (-694))))
- (-5 *1 (-63 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1706 'X) (-1706) (-694))) (-5 *1 (-64 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1706) (-1706 'XC) (-694))) (-5 *1 (-66 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'X) (-1706 '-3174) (-694))))
- (-5 *1 (-71 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 'X) (-694))))
- (-5 *1 (-74 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'X 'EPS) (-1706 '-3174) (-694))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169))
- (-14 *5 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'EPS) (-1706 'YA 'YB) (-694))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169))
- (-14 *5 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1706) (-1706 'X) (-694))) (-5 *1 (-77 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1706) (-1706 'X) (-694))) (-5 *1 (-78 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 'XC) (-694))))
- (-5 *1 (-79 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706) (-1706 'X) (-694))))
- (-5 *1 (-80 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'X '-3174) (-1706) (-694))))
- (-5 *1 (-82 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-684 (-339 (-1706 'X '-3174) (-1706) (-694))))
- (-5 *1 (-83 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-684 (-339 (-1706 'X) (-1706) (-694)))) (-5 *1 (-84 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'X) (-1706) (-694))))
- (-5 *1 (-85 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-339 (-1706 'X) (-1706 '-3174) (-694))))
- (-5 *1 (-86 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-684 (-339 (-1706 'XL 'XR 'ELAM) (-1706) (-694))))
- (-5 *1 (-87 *3)) (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1706 'X) (-1706 '-3174) (-694))) (-5 *1 (-89 *3))
- (-14 *3 (-1169))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-563)) (-14 *4 (-767))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172))
- (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1085 (-316 *4)))
- (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379)))
- (-5 *1 (-258 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3)))
- (-14 *5 (-1169)) (-14 *6 *4)
- (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)))
- (-5 *1 (-313 *3 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2))
- (-4 *3 (-329 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3))
- (-4 *3 (-329 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-1281 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-1272 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384))))
- ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3785 "void")))
- (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21)))
- (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563)))))
- (-4 *3 (-13 (-846) (-21)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2409 (-640 (-330)))))
- (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172))
- (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-14 *4 (-917)) (-14 *5 (-640 (-1169)))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169))
- (-14 *5 *3) (-5 *1 (-474 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3))
- (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093))
- (-5 *1 (-670 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
- ((*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3))
- (-4 *2 (-373 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689))))
- ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-2 (|:| -2310 *3) (|:| -4223 *4))))
- (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -4166 (-640 (-1087 (-839 (-225)))))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-765))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -4166 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *1 (-765))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *1 (-765))))
- ((*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225))))
- (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-640 (-316 (-225))))
- (|:| -2522 (-640 (-225)))))))
- (-5 *1 (-837))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2522 (-640 (-225)))))
- (-5 *1 (-837))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -2522 (-640 (-225)))
- (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225))))
- (|:| |ub| (-640 (-839 (-225))))))
- (-5 *1 (-837))))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563)))
- (-5 *1 (-871))))
- ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-640 (-316 (-225))))
- (|:| |constraints|
- (-640
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-563))
- (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225))))))
- (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151))
- (|:| |tol| (-225))))
- (-5 *1 (-894))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4))
- (-4 *4 (-13 (-846) (-555)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963))))
- ((*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))
- ((*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208))))
- ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5))
- (-14 *6 (-640 *2))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2))
- (-4 *2 (-945 *3 (-531 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4))
- (-4 *4 (-945 *3 (-531 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169))
- (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093))))
- ((*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169))
- (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258))))
- ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *1 (-1277 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3))
- (-4 *3 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093))
- (-5 *1 (-733 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349))))
- ((*1 *1) (-4 *1 (-368)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349))))
- ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545)))
- ((*1 *1 *1) (-5 *1 (-563))) ((*1 *1 *1) (-5 *1 (-767)))
- ((*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4))
- (-4 *4 (-1093))))
- ((*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
(((*1 *2 *1)
(-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1233 *2)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-945 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1)))
- (-4 *1 (-1233 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169)))
- (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4))
- (-4 *4 (-905)) (-5 *1 (-658 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34)))
- (-5 *1 (-1134 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614))))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6))))
+ (-12 (-5 *3 (-637 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
+ (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-316 (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1233 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2))
- (-4 *2 (-651 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112))
- (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2))
+ (-4 *2 (-946 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169)))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-611 (-1169)))
(-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4)))))
+ (-5 *2 (-1158 (-637 (-942 *4)) (-637 (-293 (-942 *4)))))
(-5 *1 (-504 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4))
+ (-12 (-5 *3 (-915)) (-5 *2 (-1262)) (-5 *1 (-214 *4))
(-4 *4
(-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $))
- (-15 -1651 (*2 $)))))))
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $))
+ (-15 -2122 (*2 $)))))))
((*1 *2 *1)
(-12 (-5 *2 (-1262)) (-5 *1 (-214 *3))
(-4 *3
(-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $))
- (-15 -1651 (*2 $)))))))
+ (-10 -8 (-15 -4214 ((-1151) $ (-1169))) (-15 -4032 (*2 $))
+ (-15 -2122 (*2 $)))))))
((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $))
- (-15 -2153 ((-1118 *3 (-609 $)) $))
- (-15 -1692 ($ (-1118 *3 (-609 $))))))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2))
- (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1232 *5))
+ (-5 *2 (-1163 (-1163 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1232 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-684 (-1163 *8)))
+ (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1232 *5)) (-5 *2 (-684 *6))
+ (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1232 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1163 *7))
+ (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1232 *5))
+ (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1232 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1163 *7)) (-4 *5 (-1045)) (-4 *7 (-1045))
+ (-4 *2 (-1232 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1232 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1232 *5))
+ (-5 *2 (-1163 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1232 *4)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2169 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3))))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *4 (-1232 *3))
+ (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2))
- (-4 *2 (-651 *4)))))
-(((*1 *2)
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $)))))
+ (-4 *4 (-1232 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-410 *3 *4)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-684 *2)) (-5 *4 (-546))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *5 (-1232 *2))
+ (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-410 *2 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-684 *2)) (-5 *4 (-767))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -4384 ((-405 $) $))))) (-4 *5 (-1232 *2))
+ (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-410 *2 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-767)) (-4 *5 (-350)) (-4 *6 (-1232 *5))
+ (-5 *2
+ (-637
+ (-2 (|:| -2169 (-684 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-684 *6)))))
+ (-5 *1 (-498 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2169 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6))))
+ (-4 *7 (-1232 *6)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-1257 (-640 (-2 (|:| -2618 (-906 *3)) (|:| -2552 (-1113))))))
- (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))
- ((*1 *2)
- (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113))))))
- (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113))))))
- (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *2 (-13 (-1093) (-34))))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))
+ (-637
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-546)))))
+ (-5 *1 (-405 *3)) (-4 *3 (-556))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-767)) (-4 *3 (-350)) (-4 *5 (-1232 *3))
+ (-5 *2 (-637 (-1163 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1232 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-4 *6 (-1059 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3954 *1) (|:| |upper| *1)))
- (-4 *1 (-972 *4 *5 *3 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3))
+ (-4 *3 (-1207)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
+ (-4 *4 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
+ (-4 *4 (-1207)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207)) (-4 *3 (-1094))
+ (-5 *2 (-767))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
+ (-4 *4 (-1207)) (-5 *2 (-767)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-637 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1207))
+ (-5 *2 (-637 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-487)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-546)) (-5 *1 (-486 *4))
+ (-4 *4 (-1232 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1232 (-546))) (-5 *1 (-486 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1232 (-546))) (-5 *1 (-486 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1232 (-546))))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-637 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-506))) (-5 *1 (-483)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-5 *1 (-247 *3 *4)) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-1045))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-14 *3 (-637 (-1169))) (-5 *1 (-454 *3 *4 *5))
+ (-4 *4 (-1045)) (-4 *5 (-238 (-4372 *3) (-767)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-5 *1 (-481 *3 *4)) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-1045)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-480)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-480)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-860 *5))) (-14 *5 (-637 (-1169))) (-4 *6 (-452))
+ (-5 *2 (-2 (|:| |dpolys| (-637 (-247 *5 *6))) (|:| |coords| (-637 (-546)))))
+ (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-637 (-247 *5 *6))) (-4 *7 (-452)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-637 (-481 *4 *5))) (-5 *3 (-637 (-860 *4)))
+ (-14 *4 (-637 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
+ (-4 *6 (-452)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045))
- (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7)))
- (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6)))))
+ (-12 (-5 *4 (-637 (-860 *5))) (-14 *5 (-637 (-1169))) (-4 *6 (-452))
+ (-5 *2 (-637 (-637 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
+ (-5 *3 (-637 (-247 *5 *6))) (-4 *7 (-452)))))
+(((*1 *1) (-5 *1 (-468))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870)))
+ (-5 *4 (-637 (-915))) (-5 *5 (-637 (-261))) (-5 *1 (-468))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870)))
+ (-5 *4 (-637 (-915))) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468))))
+ ((*1 *1 *1) (-5 *1 (-468))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *1 (-468)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *3 (-637 (-261))) (-5 *1 (-262))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-468)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-915)) (-5 *2 (-1262))
+ (-5 *1 (-468))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-915))
+ (-5 *2 (-1262)) (-5 *1 (-468)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 (-637 (-939 (-225))))) (-5 *3 (-637 (-870)))
+ (-5 *1 (-468)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-563)) (-5 *1 (-204)))))
+ (-12 (-5 *3 (-637 (-637 (-939 (-225))))) (-5 *2 (-637 (-225)))
+ (-5 *1 (-468)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-915)) (-5 *2 (-1256 (-1256 (-546)))) (-5 *1 (-466)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1256 (-1256 (-546)))) (-5 *3 (-915)) (-5 *1 (-466)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-556))
+ (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1034 (-407 (-546))) (-363)
+ (-10 -8 (-15 -4361 ($ *7)) (-15 -3388 (*7 $)) (-15 -3387 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *2))
+ (-2 (|:| -2542 *5) (|:| -2543 *2))))
+ (-4 *2 (-238 (-4372 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-846)) (-4 *7 (-946 *4 *2 (-860 *3))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-637 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-4372 *3) (-767)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *2) (|:| -2543 *5))
+ (-2 (|:| -2542 *2) (|:| -2543 *5))))
+ (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-946 *4 *5 (-860 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-637 (-1169))) (-4 *2 (-172)) (-4 *4 (-238 (-4372 *5) (-767)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *3) (|:| -2543 *4))
+ (-2 (|:| -2542 *3) (|:| -2543 *4))))
+ (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846))
+ (-4 *7 (-946 *2 *4 (-860 *5))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-637 (-1169))) (-4 *2 (-172)) (-4 *3 (-238 (-4372 *4) (-767)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2542 *5) (|:| -2543 *3))
+ (-2 (|:| -2542 *5) (|:| -2543 *3))))
+ (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846))
+ (-4 *7 (-946 *2 *3 (-860 *4))))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-637 *3)) (-5 *5 (-915)) (-4 *3 (-1232 *4)) (-4 *4 (-307))
+ (-5 *1 (-460 *4 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-915)) (-4 *5 (-307)) (-4 *3 (-1232 *5))
+ (-5 *2 (-2 (|:| |plist| (-637 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3))
+ (-5 *4 (-637 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *5 (-555))
- (-5 *2
- (-2 (|:| |minor| (-640 (-917))) (|:| -1420 *3)
- (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))))
+ (-12 (-5 *4 (-637 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-307)) (-5 *2 (-112))
+ (-5 *1 (-455 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1256 (-637 *3))) (-4 *4 (-307)) (-5 *2 (-637 *3))
+ (-5 *1 (-455 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1232 *4))
+ (-5 *2 (-1256 (-637 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-637 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5))
- (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))
- (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5))))
- (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))))
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-307)) (-5 *2 (-767))
+ (-5 *1 (-455 *5 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
- ((*1 *2)
- (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1165 *3)
- (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113)))))))))
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2169 (-637 *1)))) (-4 *1 (-367 *3))))
((*1 *2)
- (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045))
- (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8))
- (-4 *7 (-1233 *6)))))
-(((*1 *2 *3)
(|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-640 (-225))) (-5 *1 (-204)))))
-(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2))
- (-4 *2 (-172))))
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -2169 (-637 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2169 (-637 *1)))) (-4 *1 (-367 *3))))
((*1 *2)
- (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4))
- (-4 *3 (-409 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -2169 (-637 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-915))
+ (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1256 (-1169))) (-5 *3 (-1256 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-915))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-1256 (-684 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1169)) (-5 *3 (-1256 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-915)) (-14 *6 (-637 *2))
+ (-14 *7 (-1256 (-684 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-915)) (-14 *5 (-637 (-1169))) (-14 *6 (-1256 (-684 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-915)) (-14 *5 (-637 *2)) (-14 *6 (-1256 (-684 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-915))
+ (-14 *4 (-637 (-1169))) (-14 *5 (-1256 (-684 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1163 (-942 *4))) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
((*1 *2)
- (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4))
- (-4 *4 (-409 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-684 *4)) (-4 *5 (-651 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368))
- (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6))
- (-5 *3 (-640 (-684 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045))
- (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4))
- (-5 *3 (-640 (-684 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
- (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-640 (-684 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
- (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-640 (-684 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))
- (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4))))
+ (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1163 (-942 *3)))))
((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
+ (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1163 (-942 *4))) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1165 *3)
- (-1257 (-640 (-2 (|:| -2618 *3) (|:| -2552 (-1113)))))))))
+ (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1163 (-942 *3)))))
((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34)))
- (-4 *3 (-13 (-1093) (-34))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7))
- (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5))
- (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -2516 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-555))
- (-5 *2 (-2 (|:| -1957 (-684 *5)) (|:| |vec| (-1257 (-640 (-917))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363))
- (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045))
- (-5 *2 (-112)) (-5 *1 (-1025 *4)))))
+ (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4))))
- (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))))
+ (-12 (-5 *2 (-1163 (-407 (-942 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-640 (-2 (|:| -2173 (-563)) (|:| -3311 (-563))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-407 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-637 (-942 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-637 (-942 *4))) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
+ ((*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-637 (-942 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-637 (-942 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556))
+ (-4 *3 (-172)) (-14 *4 (-915)) (-14 *5 (-637 (-1169)))
+ (-14 *6 (-1256 (-684 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1256 (-453 *4 *5 *6 *7))) (-5 *2 (-637 (-942 *4)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-915))
+ (-14 *6 (-637 (-1169))) (-14 *7 (-1256 (-684 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *1)) (-4 *1 (-452))))
+ ((*1 *1 *1 *1) (-4 *1 (-452))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767))
+ (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3))
- (-4 *3 (-611 (-536)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225)))
- (-5 *1 (-923)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045))
- (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7))
- (-4 *6 (-1233 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045))
- (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7))
- (-4 *6 (-1233 *4)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-555))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563))
- (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4))
- (-4 *4 (-363)) (-4 *4 (-1045))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5))
- (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -2161 *4))) (-5 *5 (-767))
+ (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
+ (-5 *1 (-450 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-789)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
+ (-5 *2 (-112)) (-5 *1 (-450 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-546)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
+ (-5 *2 (-1262)) (-5 *1 (-450 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-450 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-546))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-789)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
+ (-5 *1 (-450 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-546))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-789)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
+ (-5 *1 (-450 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767))))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262))
+ (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-546))
+ (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3))))
- ((*1 *1 *1) (-4 *1 (-1196))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| -4013 (-684 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-684 *3))))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+ (-637
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-789)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
+ (-5 *1 (-450 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-192)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))
- (-4 *3 (-555))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208))
- (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307))
- (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 *4))))
- (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))))
-(((*1 *1) (-4 *1 (-349))))
-(((*1 *1 *1) (-4 *1 (-626)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1193))))))
-(((*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1132))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3))))
- ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-789)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-450 *4 *5 *6 *2))
+ (-4 *4 (-452)) (-4 *6 (-846)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-637 (-2 (|:| |totdeg| (-767)) (|:| -2161 *3)))) (-5 *4 (-767))
+ (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
+ (-5 *1 (-450 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *2))
+ (-4 *2 (-946 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-684 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *3)
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789))
+ (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-450 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045))
- (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208))
- (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-684 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-684 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *3)
+ (-637
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-789)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846))
+ (-5 *1 (-450 *4 *3 *5 *6)))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1) (-5 *1 (-171)))
- ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))
- ((*1 *1) (-5 *1 (-394)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))
- ((*1 *1)
- (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093))
- (-4 *4 (-661 *3))))
- ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045))))
- ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))
- ((*1 *1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1169)))
- ((*1 *1) (-5 *1 (-1188))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| -2310 *4) (|:| -1765 *3) (|:| -3443 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -1765 *1) (|:| -3443 *1))) (-4 *1 (-1059 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-555)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -2310 *3) (|:| -1765 *1) (|:| -3443 *1)))
- (-4 *1 (-1233 *3)))))
+ (-637
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-789)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
+ (-5 *1 (-450 *3 *4 *5 *6)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045))
- (-5 *1 (-1025 *4)))))
-(((*1 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917))
+ (-12
(-5 *2
- (-3 (-1165 *4)
- (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113)))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536)))))
-(((*1 *1) (-5 *1 (-577)))
- ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4))
- (-4 *4 (-1093)) (-4 *4 (-1208)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-767))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-640 (-2 (|:| -2387 *3) (|:| -2556 *4))))
- (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4))
- (-5 *2 (-2 (|:| -3169 (-620 *4 *5)) (|:| -4388 (-407 *5))))
- (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1233 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4))
- (-5 *1 (-1025 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-637
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-789)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
+ (-5 *1 (-450 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
+ (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
+ (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-917))
- (-5 *2 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-789)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
+ (-5 *2 (-112)) (-5 *1 (-450 *4 *5 *6 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3))))
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-546)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7))
+ (-5 *3 (-637 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8))
+ (-5 *3 (-637 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563)))
- (-5 *1 (-190))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169)))
- (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093))
- (-4 *3 (-1208)) (-5 *1 (-294 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))
- (-5 *1 (-294 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1))))
- (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1))))
- (-4 *1 (-302))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093))))
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7))
+ (-5 *3 (-637 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563))))
- (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5))
- (-4 *4 (-846)) (-4 *5 (-172))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1)))
- (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767)))
- (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846))
- (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767)))
- (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846))
- (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169))
- (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846))
- (-4 *4 (-611 (-536)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846))
- (-4 *3 (-611 (-536)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))
- (-4 *3 (-611 (-536)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5))
- (-4 *4 (-1093)) (-4 *5 (-1208))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555))
- (-5 *1 (-1039 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5))))
- (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4)))
- (-4 *4 (-555)) (-5 *1 (-1039 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4)))
- (-4 *4 (-555)) (-5 *1 (-1039 *4))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8))
+ (-5 *3 (-637 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-637 (-637 *7))) (-5 *1 (-449 *4 *5 *6 *7))
+ (-5 *3 (-637 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
+ (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-637 (-637 *8))) (-5 *1 (-449 *5 *6 *7 *8))
+ (-5 *3 (-637 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-637 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-5 *1 (-448 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-684 *2)) (-5 *4 (-563))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-1151)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307))
+ (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789))
+ (-4 *6 (-846)) (-5 *1 (-448 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-446)) (-5 *3 (-546)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))
+ ((*1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2))
- (-4 *2 (-1233 *4)))))
+ (-12 (-5 *2 (-546)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-546)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
+(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))
+ ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-546)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-405 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-1045))
+ (-5 *2 (-637 *6)) (-5 *1 (-444 *5 *6)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093))
- (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4))))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))
- (-5 *1 (-54 *4 *5 *2))))
+ (|partial| -12 (-5 *3 (-915)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-915)) (-5 *4 (-767)) (-5 *1 (-442 *2))
+ (-4 *2 (-1232 (-546)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093))
- (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5))))
- (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
+ (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *1 (-442 *2))
+ (-4 *2 (-1232 (-546)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *5 (-767))
+ (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-915)) (-5 *4 (-637 (-767))) (-5 *5 (-767))
+ (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1232 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-915)) (-5 *4 (-405 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-444 *5 *2))
+ (-4 *5 (-1045)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| -4147 *4) (|:| -4363 (-546)))))
+ (-4 *4 (-1232 (-546))) (-5 *2 (-732 (-767))) (-5 *1 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-405 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1045))
+ (-5 *2 (-732 (-767))) (-5 *1 (-444 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1232 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4))
- (-5 *1 (-1024 *5)) (-4 *5 (-1045))))
+ (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *5 *3 *6))
+ (-4 *3 (-1232 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4))
- (-4 *4 (-1045))))
+ (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1232 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563))
- (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045))))
+ (-12 (-5 *4 (-915)) (-4 *5 (-1045))
+ (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-5 *2 (-546)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1232 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1090 (-767))) (-5 *6 (-767))
+ (-5 *2
+ (-2 (|:| |contp| (-546))
+ (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2963 (-546)) (|:| -2818 (-637 *3)))) (-5 *1 (-442 *3))
+ (-4 *3 (-1232 (-546))))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-405 *3)) (-4 *3 (-556))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| -4147 *4) (|:| -4363 (-546)))))
+ (-4 *4 (-1232 (-546))) (-5 *2 (-767)) (-5 *1 (-442 *4)))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-442 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-637
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-546)))))
+ (-4 *2 (-556)) (-5 *1 (-405 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563))))
- (-5 *1 (-1024 *4)) (-4 *4 (-1045)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-546))
+ (|:| -2818 (-637 (-2 (|:| |irr| *4) (|:| -2537 (-546)))))))
+ (-4 *4 (-1232 (-546))) (-5 *2 (-405 *4)) (-5 *1 (-442 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-437))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-437)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-437)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-437)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-437)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4325 "void"))) (-5 *1 (-436)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-436))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))
- (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
-(((*1 *1 *1 *1) (-4 *1 (-656))))
-(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-684 *2)) (-5 *4 (-767))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2802 ((-418 $) $)))))
- (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563))))
- (-5 *1 (-190)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093))
- (-4 *4 (-23)) (-14 *5 *4))))
+ (|partial| -12 (-4 *5 (-1034 (-48)))
+ (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4))
+ (-5 *2 (-405 (-1163 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349))
- (-5 *2 (-1257 (-640 (-2 (|:| -2618 *4) (|:| -2552 (-1113))))))
- (-5 *1 (-346 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3))
- (-4 *3 (-611 (-536))))))
-(((*1 *1 *1 *1) (-4 *1 (-656))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-577))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5))
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4))
(-5 *2
- (-640
- (-2 (|:| -4013 (-684 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-684 *6)))))
- (-5 *1 (-498 *5 *6 *7))
- (-5 *3
- (-2 (|:| -4013 (-684 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-684 *6))))
- (-4 *7 (-1233 *6)))))
+ (-3 (|:| |overq| (-1163 (-407 (-546)))) (|:| |overan| (-1163 (-48)))
+ (|:| -3026 (-112))))
+ (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563))))
- (-5 *1 (-190)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045))
- (-5 *1 (-1024 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045))
- (-5 *1 (-1024 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)))))
+ (|partial| -12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4))
+ (-5 *2 (-405 (-1163 (-407 (-546))))) (-5 *1 (-435 *4 *5 *3))
+ (-4 *3 (-1232 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113)))
- (-5 *1 (-346 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ (-12 (-4 *4 (-13 (-556) (-846) (-1034 (-546)))) (-4 *5 (-421 *4))
+ (-5 *2 (-405 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-1262))
+ (-5 *1 (-433 *3 *4)) (-4 *4 (-421 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-407 (-546)))
+ (-5 *1 (-433 *4 *3)) (-4 *3 (-421 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-608 *3)) (-4 *3 (-421 *5))
+ (-4 *5 (-13 (-846) (-556) (-1034 (-546)))) (-5 *2 (-1163 (-407 (-546))))
+ (-5 *1 (-433 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-421 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-546)))))
+ (-4 *2 (-13 (-846) (-21))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-546)))))
+ (-4 *2 (-13 (-846) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169))
+ (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-582 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-1094)) (-5 *2 (-767)))))
+(((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))))
+(((*1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-421 *3)))
+ (-14 *4 (-1169)) (-14 *5 *2)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1132))) ((*1 *1 *1 *1) (-4 *1 (-1132))))
+ (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-4 *2 (-13 (-27) (-1193) (-421 *3) (-10 -8 (-15 -4361 ($ *4)))))
+ (-4 *4 (-844))
+ (-4 *5
+ (-13 (-1235 *2 *4) (-363) (-1193)
+ (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $)))))
+ (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6) (-10 -8 (-15 -4361 ($ *7)))))
+ (-4 *7 (-844))
+ (-4 *8
+ (-13 (-1235 *3 *7) (-363) (-1193)
+ (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
+ (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8))
+ (-14 *10 (-1169)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-4 *3 (-13 (-27) (-1193) (-421 *6) (-10 -8 (-15 -4361 ($ *7)))))
+ (-4 *7 (-844))
+ (-4 *8
+ (-13 (-1235 *3 *7) (-363) (-1193)
+ (-10 -8 (-15 -4225 ($ $)) (-15 -4227 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
+ (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8))
+ (-14 *10 (-1169)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
(-5 *2
- (-640
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-563)))))
- (-5 *1 (-418 *3)) (-4 *3 (-555))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3))
- (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6))
- (-4 *6 (-1233 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| -1765 *3) (|:| -3443 *3))) (-5 *1 (-1228 *4 *3))
- (-4 *3 (-1233 *4)))))
+ (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))))
+ (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-421 *5)))
+ (-14 *6 (-1169)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-846)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-846)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4))
- (-4 *4 (-1045)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2)
- (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
+ (-12 (-5 *2 (-1169)) (-5 *3 (-637 *1)) (-4 *1 (-421 *4)) (-4 *4 (-846))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-421 *3)) (-4 *3 (-846)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846))
+ (-5 *2 (-2 (|:| -4369 (-546)) (|:| |var| (-608 *1)))) (-4 *1 (-421 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-405 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1212))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1232 (-407 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-172))
+ (-4 *1 (-370 *4 *5)) (-4 *5 (-1232 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-410 *3 *4))
+ (-4 *4 (-1232 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-172)) (-4 *1 (-418 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-417 *3 *2)) (-4 *3 (-418 *2))))
+ ((*1 *2) (-12 (-4 *1 (-418 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-417 *3 *2)) (-4 *3 (-418 *2))))
+ ((*1 *2) (-12 (-4 *1 (-418 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
((*1 *2)
- (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-1165 *3))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
+ ((*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
((*1 *2)
- (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
+ ((*1 *2) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307))
+ (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-410 *4 *5))
+ (-14 *7 (-1256 *6)) (-5 *1 (-415 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1256 *6)) (-4 *6 (-410 *4 *5)) (-4 *4 (-987 *3))
+ (-4 *5 (-1232 *4)) (-4 *3 (-307)) (-5 *1 (-415 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-307)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3))
+ (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-410 *3 *4) (-1034 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-5 *2 (-2 (|:| -2387 *3) (|:| -2556 *4))))))
+ (-12 (-5 *3 (-767)) (-5 *4 (-1256 *2)) (-4 *5 (-307)) (-4 *6 (-987 *5))
+ (-4 *2 (-13 (-410 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2))
+ (-4 *7 (-1232 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3))
- (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*")))
- (-4 *4 (-1045)) (-5 *1 (-1024 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917))
- (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093)))))
-(((*1 *2)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5)))
- (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1232 *4)) (-5 *2 (-684 *4))))
((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491)))))
-(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089))))
+ (-12 (-4 *4 (-172)) (-4 *5 (-1232 *4)) (-5 *2 (-684 *4))
+ (-5 *1 (-409 *3 *4 *5)) (-4 *3 (-410 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3))
+ (-5 *2 (-684 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1256 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1232 *4)) (-5 *2 (-684 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208))))
- ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563)))
- (-5 *1 (-190)))))
+ (-12 (-4 *1 (-410 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1232 *3))
+ (-5 *2 (-684 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-405 *3)) (-4 *3 (-556)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-405 *4)) (-4 *4 (-556)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-546)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-378))) (-5 *1 (-261))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1) (-12 (-5 *1 (-405 *2)) (-4 *2 (-556)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-915)) (|has| *1 (-6 -4399)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-915)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-555) (-147)))
- (-5 *2 (-2 (|:| -1685 *3) (|:| -1700 *3))) (-5 *1 (-1227 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-12 (-5 *3 (-546)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-915)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-948 (-563)))))
- (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5))
- (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -1957 (-684 *5)) (|:| |vec| (-1257 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045))
- (-5 *2 (-684 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))
- ((*1 *1 *1 *1) (-4 *1 (-1132))))
+ (-12 (-5 *3 (-546)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-915)))))
+(((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-767))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))
+ ((*1 *1 *1) (-4 *1 (-402))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-363) (-147)))
+ (-5 *1 (-399 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1232 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-363) (-147)))
+ (-5 *2 (-637 (-2 (|:| -2543 (-767)) (|:| -4187 *4) (|:| |num| *4))))
+ (-5 *1 (-399 *3 *4)) (-4 *4 (-1232 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-395)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-637 (-637 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-637 (-3 (|:| |array| (-637 *3)) (|:| |scalar| (-1169)))))
+ (-5 *6 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-395))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-637 (-637 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-637 (-3 (|:| |array| (-637 *3)) (|:| |scalar| (-1169)))))
+ (-5 *6 (-637 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-395))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-637 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) (-5 *2 (-1096))
+ (-5 *1 (-395)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-393)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))))
+(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
+(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767))
+ (-4 *5 (-172)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767))
+ (-4 *5 (-172)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 (-407 (-942 (-546))))) (-5 *4 (-637 (-1169)))
+ (-5 *2 (-637 (-637 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 (-546)))) (-5 *2 (-637 *4)) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-844) (-363))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
- (-4 *4 (-1208)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2))
- (-4 *2 (-1233 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))))
+ (-12 (-5 *3 (-407 (-942 (-168 (-546))))) (-5 *2 (-637 (-168 *4)))
+ (-5 *1 (-379 *4)) (-4 *4 (-13 (-363) (-844)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 (-407 (-942 (-168 (-546)))))) (-5 *4 (-637 (-1169)))
+ (-5 *2 (-637 (-637 (-168 *5)))) (-5 *1 (-379 *5))
+ (-4 *5 (-13 (-363) (-844))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363))
- (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4))))
+ (-12 (-5 *3 (-637 (-407 (-942 (-168 (-546))))))
+ (-5 *2 (-637 (-637 (-293 (-942 (-168 *4)))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-363) (-844)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5))
- (-2174 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5)))
- (-5 *1 (-635 *5 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -2308 ((-1151) $ (-1169))) (-15 -1463 (*2 $))
- (-15 -1651 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502))))
- ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
+ (-12 (-5 *3 (-637 (-293 (-407 (-942 (-168 (-546)))))))
+ (-5 *2 (-637 (-637 (-293 (-942 (-168 *4)))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-363) (-844)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-942 (-168 (-546)))))
+ (-5 *2 (-637 (-293 (-942 (-168 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-363) (-844)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-407 (-942 (-168 (-546))))))
+ (-5 *2 (-637 (-293 (-942 (-168 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-363) (-844))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-546)) (-5 *1 (-378)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-378))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-546))) (-5 *1 (-378)))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-378)))
+ ((*1 *1) (-5 *1 (-378))))
+(((*1 *1 *1) (-5 *1 (-225)))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169)))
- (-14 *3 (-640 (-1169))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
- ((*1 *1 *1) (-4 *1 (-844)))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
- ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1132))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169))))
- (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208))
- (-4 *2 (-1093))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3))
- (-4 *3 (-1208))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093))
- (-5 *1 (-733 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-637 (-1169))) (-14 *3 (-637 (-1169)))
+ (-4 *4 (-387))))
+ ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378))))
+(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-378))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-378)))))
+(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-378)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4409)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (|has| *1 (-6 -4409)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4409)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-846))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34)))
- (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4))
- (-4 *4 (-1208)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147)))
- (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-372 *3))
+ (-4 *3 (-1207)))))
+(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1256 *1)) (-4 *1 (-367 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1163 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1163 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555))
- (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563))
- (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-640 (-563)))
- (|:| |cols| (-640 (-563)))))
- (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9))))
- (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563))
- (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10))
- (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789))
- (-5 *2
- (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12))
- (|:| |wcond| (-640 (-948 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1257 (-407 (-948 *9))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *9)))))))))
- (-5 *1 (-920 *9 *10 *11 *12)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-637 (-1256 *4))) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-637 (-1256 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1163 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1163 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1151)) (-4 *1 (-365 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094))))
+ ((*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1151)) (-4 *1 (-365 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(((*1 *1 *1) (-4 *1 (-173)))
+ ((*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1151)))))
+(((*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563)))))
- (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))))
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350))
+ (-4 *2
+ (-13 (-402)
+ (-10 -7 (-15 -4361 (*2 *4)) (-15 -2167 ((-915) *2))
+ (-15 -2169 ((-1256 *2) (-915))) (-15 -4343 (*2 *2)))))
+ (-5 *1 (-357 *2 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555))
- (-5 *2 (-112)) (-5 *1 (-635 *4 *5)))))
+ (-12 (-4 *4 (-350)) (-5 *2 (-954 (-1163 *4))) (-5 *1 (-356 *4))
+ (-5 *3 (-1163 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-350)) (-5 *1 (-356 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4))
- (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563))
- (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4))
- (-4 *4 (-1233 *2)))))
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
-(((*1 *1) (-5 *1 (-1259))))
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915)) (-5 *2 (-1163 *4)) (-5 *1 (-356 *4)) (-4 *4 (-350)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))))
+(((*1 *2 *2) (-12 (-5 *2 (-915)) (-5 *1 (-356 *3)) (-4 *3 (-350)))))
+(((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 (-902 *3)) (|:| -2542 (-1113))))))
+ (-5 *1 (-352 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113))))))
+ (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1163 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113))))))
+ (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))))
(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-12 (-5 *2 (-684 (-902 *3))) (-5 *1 (-352 *3 *4)) (-14 *3 (-915))
+ (-14 *4 (-915))))
+ ((*1 *2)
+ (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350))
+ (-14 *4
+ (-3 (-1163 *3) (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-684 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563))))
- (-5 *1 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2
- (-3 (-839 *3)
- (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-839 *3) "failed")))
- "failed"))
- (-5 *1 (-633 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151))
- (-4 *3 (-13 (-27) (-1193) (-430 *6)))
- (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452))
- (-5 *2
- (-3 (-839 (-407 (-948 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")))
- "failed"))
- (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-452))
- (-5 *2
- (-3 (-839 *3)
- (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-839 *3) "failed")))
- "failed"))
- (-5 *1 (-634 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151))
- (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3))
- (-5 *1 (-634 *6)))))
+ (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))
+ (-4 *4 (-350)) (-5 *2 (-767)) (-5 *1 (-347 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-14 *3 (-915)) (-14 *4 (-915))))
+ ((*1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350))
+ (-14 *4
+ (-3 (-1163 *3) (-1256 (-637 (-2 (|:| -3813 *3) (|:| -2542 (-1113)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-767)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-915)))))
(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093))
- (-5 *1 (-673 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3))))
- ((*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169))))
- (-4 *7 (-789))
+ (-12 (-4 *1 (-350))
+ (-5 *2 (-637 (-2 (|:| -4147 (-546)) (|:| -2543 (-546))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-350)) (-5 *3 (-546)) (-5 *2 (-1180 (-915) (-767))))))
+(((*1 *1) (-4 *1 (-350))))
+(((*1 *2)
+ (-12 (-4 *1 (-350)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915))
(-5 *2
- (-640
- (-2 (|:| |det| *8) (|:| |rows| (-640 (-563)))
- (|:| |cols| (-640 (-563))))))
- (-5 *1 (-920 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))))
+ (-3 (-1163 *4) (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113)))))))
+ (-5 *1 (-347 *4)) (-4 *4 (-350)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259))))
- ((*1 *1 *1) (-5 *1 (-1259))))
-(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-684 (-407 (-948 (-563)))))
- (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027))
- (-5 *3 (-316 (-563))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-294 (-829 *3)))
- (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))))
- (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3))
- (-4 *3 (-13 (-27) (-1193) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452))
- (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5))
- (-5 *3 (-407 (-948 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5)))))
+ (|partial| -12 (-5 *3 (-915))
+ (-5 *2 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))
+ (-5 *1 (-347 *4)) (-4 *4 (-350)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4))
- (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))
+ (-4 *4 (-350)) (-5 *2 (-684 *4)) (-5 *1 (-347 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350))
+ (-5 *2 (-1256 (-637 (-2 (|:| -3813 *4) (|:| -2542 (-1113))))))
+ (-5 *1 (-347 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163 *4)) (-4 *4 (-350)) (-5 *2 (-954 (-1113)))
+ (-5 *1 (-347 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5)))
+ (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-14 *3 (-915))
+ (-14 *4 (-915))))
+ ((*1 *2)
+ (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-350))
+ (-14 *4 (-1163 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-346 *3 *4)) (-4 *3 (-350))
+ (-14 *4 (-915)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5)))
(-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8))
- (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
- (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112))
- (-5 *1 (-920 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-767)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1212)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172))
- (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259))))
- ((*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4))
+ (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-684 (-407 (-948 (-563)))))
- (-5 *2
- (-640
- (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563))
- (|:| |radvect| (-640 (-684 (-316 (-563))))))))
- (-5 *1 (-1027)))))
-(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1) (-5 *1 (-629))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4))
+ (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4))
- (-4 *4 (-1045))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262))
- (-5 *1 (-1259)))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4))
+ (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1212)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-563))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1232 *4))
+ (-4 *5 (-1232 (-407 *3))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3)
- (-5 *3 (-563))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5))
- (-5 *3 (-563)) (-4 *5 (-865 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363)))
- (-4 *3 (-1233 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1692 (*2 (-1169))))
- (-4 *2 (-1045)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
+ (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
+ (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1256 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
+ (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1212))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1232 (-407 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212))
+ (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 (-407 *2))) (-4 *2 (-1232 *4))
+ (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212))
+ (-4 *4 (-1232 (-407 *2))) (-4 *2 (-1232 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 (-407 *2))) (-4 *2 (-1232 *4))
+ (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212))
+ (-4 *4 (-1232 (-407 *2))) (-4 *2 (-1232 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1212))
+ (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
+ (-4 *1 (-342 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4))
- (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1232 *5))
+ (-4 *7 (-1232 (-407 *6))) (-5 *2 (-637 (-942 *5)))
+ (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1169))
- (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3785 "void"))) (-5 *1 (-1172)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+ (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212))
+ (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5))) (-4 *4 (-363))
+ (-5 *2 (-637 (-942 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-407 *5)))
+ (-5 *2 (-637 (-637 *4))) (-5 *1 (-341 *3 *4 *5 *6))
+ (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-637 (-637 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4))
- (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169))))
- (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169)))
+ (-14 *4 (-637 (-1169))) (-4 *5 (-387))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-637 (-1169)))
+ (-14 *4 (-637 (-1169))) (-4 *5 (-387)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-363)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-407 *3)))
+ (-4 *1 (-336 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-546)) (-4 *2 (-363)) (-4 *4 (-1232 *2))
+ (-4 *5 (-1232 (-407 *4))) (-4 *1 (-336 *2 *4 *5 *6))
+ (-4 *6 (-342 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-363)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-407 *3)))
+ (-4 *1 (-336 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))
+ (-4 *1 (-336 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *1 (-336 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1232 *3))
+ (-4 *5 (-1232 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-1256 *6)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-407 *4)))
+ (-5 *2 (-1256 *6)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169)) (-5 *4 (-942 (-546))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1085 (-942 (-546)))) (-5 *3 (-942 (-546))) (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-942 (-546)))) (-5 *1 (-330)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-1151))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-314 (-168 (-378)))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-546))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-378))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-689))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-696))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-314 (-694))) (-5 *1 (-330))))
+ ((*1 *1) (-5 *1 (-330))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-330))) (-5 *1 (-330)))))
+(((*1 *1) (-5 *1 (-330))))
+(((*1 *1) (-5 *1 (-330))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-859))) (-5 *1 (-330)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-637 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
+ (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
+ (|:| |Goto| "goto") (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-330)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-637 (-942 (-546))))
+ (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1169)) (|:| |rand| (-859))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330))
+ (|:| |elseClause| (-330))))
+ (|:| |returnBranch|
+ (-2 (|:| -3814 (-112))
+ (|:| -3813 (-2 (|:| |ints2Floats?| (-112)) (|:| -3661 (-859))))))
+ (|:| |blockBranch| (-637 (-330))) (|:| |commentBranch| (-637 (-1151)))
+ (|:| |callBranch| (-1151))
+ (|:| |forBranch|
+ (-2 (|:| -1596 (-1085 (-942 (-546)))) (|:| |span| (-942 (-546)))
+ (|:| -3641 (-330))))
+ (|:| |labelBranch| (-1113))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3641 (-330))))
+ (|:| |commonBranch|
+ (-2 (|:| -3956 (-1169)) (|:| |contents| (-637 (-1169)))))
+ (|:| |printBranch| (-637 (-859)))))
+ (-5 *1 (-330)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-330)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))))
+(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1163 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1163 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
+ (-5 *2 (-1163 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2))
- (-4 *3 (-13 (-1093) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268)))))
-(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1163 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
+ (-4 *3 (-172)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-546)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-788)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))))
+ (-12 (-5 *3 (-546)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045))
+ (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
- (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))
- (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
+ (-12 (-5 *2 (-1163 *7)) (-5 *3 (-546)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789))
+ (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-640
- (-2 (|:| -2521 (-767))
- (|:| |eqns|
- (-640
- (-2 (|:| |det| *7) (|:| |rows| (-640 (-563)))
- (|:| |cols| (-640 (-563))))))
- (|:| |fgb| (-640 *7)))))
- (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767))
- (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
+ (-12 (-5 *3 (-1163 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-5 *2 (-1163 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4))
- (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))))
+ (-12 (-5 *3 (-1163 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-4 *6 (-1045)) (-5 *2 (-1163 *6)) (-5 *1 (-321 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1163 *9)) (-5 *4 (-637 *7)) (-5 *5 (-637 *8)) (-4 *7 (-846))
+ (-4 *8 (-1045)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1163 *8))
+ (-5 *1 (-321 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
+ (-12 (-5 *2 (-407 (-546))) (-5 *1 (-319 *3 *4 *5))
+ (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225)))
+ (-5 *6 (-546)) (-5 *2 (-1203 (-923))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225)))
+ (-5 *6 (-546)) (-5 *7 (-1151)) (-5 *2 (-1203 (-923))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225)))
+ (-5 *6 (-225)) (-5 *7 (-546)) (-5 *2 (-1203 (-923))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-314 (-546))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1082 (-225)))
+ (-5 *6 (-225)) (-5 *7 (-546)) (-5 *8 (-1151)) (-5 *2 (-1203 (-923)))
+ (-5 *1 (-318)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-293 *6)) (-5 *4 (-113)) (-4 *6 (-421 *5))
+ (-4 *5 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-113)) (-5 *5 (-637 *7)) (-4 *7 (-421 *6))
+ (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-637 (-293 *7))) (-5 *4 (-637 (-113))) (-5 *5 (-293 *7))
+ (-4 *7 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-637 (-293 *8))) (-5 *4 (-637 (-113))) (-5 *5 (-293 *8))
+ (-5 *6 (-637 *8)) (-4 *8 (-421 *7))
+ (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-637 *7)) (-5 *4 (-637 (-113))) (-5 *5 (-293 *7))
+ (-4 *7 (-421 *6)) (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-637 (-113))) (-5 *6 (-637 (-293 *8)))
+ (-4 *8 (-421 *7)) (-5 *5 (-293 *8))
+ (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *5)) (-5 *4 (-113)) (-4 *5 (-421 *6))
+ (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-4 *3 (-421 *6))
+ (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-4 *3 (-421 *6))
+ (-4 *6 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-113)) (-5 *5 (-293 *3)) (-5 *6 (-637 *3)) (-4 *3 (-421 *7))
+ (-4 *7 (-13 (-846) (-556) (-611 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-317 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-314 *3)) (-4 *3 (-556)) (-4 *3 (-846)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-546)) (-5 *1 (-314 *3)) (-4 *3 (-556)) (-4 *3 (-846)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2551 *1)))
+ (-4 *1 (-307)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-637 *1)) (-4 *1 (-307)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-844)) (-5 *1 (-304 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225)))
+ (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-407 (-546))) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-314 (-378))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-942 (-225))) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-942 (-225))) (-5 *2 (-314 (-378))) (-5 *1 (-303)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-640
- (-2 (|:| -2521 (-767))
- (|:| |eqns|
- (-640
- (-2 (|:| |det| *7) (|:| |rows| (-640 (-563)))
- (|:| |cols| (-640 (-563))))))
- (|:| |fgb| (-640 *7)))))
- (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767))
- (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4))
- (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169)))
- (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-238 (-3610 *3) (-767)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4))
- (-14 *3 (-640 (-1169))) (-4 *4 (-1045)))))
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *2 (-1031)) (-5 *1 (-303)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-669 *4)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))))
-(((*1 *2)
- (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4))
- (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-225)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1596
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1031)) (-5 *1 (-303)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4))
- (-5 *1 (-1170 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3))
- (-4 *3 (-1045)))))
-(((*1 *2 *1 *1)
(-12
- (-5 *2
- (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *1)
+ (-5 *3
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151)))))
+ (-5 *2 (-1031)) (-5 *1 (-303))))
+ ((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+ (-5 *3
+ (-2 (|:| -3057 (-378)) (|:| -3956 (-1151))
+ (|:| |explanations| (-637 (-1151))) (|:| |extra| (-1031))))
+ (-5 *2 (-1031)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1151)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082 (-838 (-225)))) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-637 (-1151))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1151)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-303)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3))
- (-4 *3 (-945 *4 *6 *5)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2))
- (-4 *2 (-669 *3)))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *2 (-1256 (-314 (-378))))
+ (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-314 (-378))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1256 (-694))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-2 (|:| -3530 (-407 (-546))) (|:| -3529 (-407 (-546))))))
+ (-5 *2 (-637 (-225))) (-5 *1 (-303)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1082 (-838 (-225)))) (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-314 (-225))) (-5 *2 (-314 (-407 (-546)))) (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 (-314 (-225))))
(-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *3 (-640 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2)
+ (-2 (|:| |additions| (-546)) (|:| |multiplications| (-546))
+ (|:| |exponentiations| (-546)) (|:| |functionCalls| (-546))))
+ (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))
+ (-5 *2 (-378)) (-5 *1 (-267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *2 (-378)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-407 (-546))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-546))) (-5 *1 (-303)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1082 (-838 (-378)))) (-5 *2 (-1082 (-838 (-225))))
+ (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-225))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-314 (-378))) (-5 *2 (-314 (-225))) (-5 *1 (-303)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-225)) (-5 *1 (-303)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-942 (-407 (-546)))) (-5 *4 (-1169))
+ (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-637 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-263))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-1146 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-225))) (-5 *4 (-637 (-1169)))
+ (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1256 (-314 (-225)))) (-5 *4 (-637 (-1169)))
+ (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-637 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-225))) (-5 *4 (-637 (-1169)))
+ (-5 *5 (-1082 (-838 (-225)))) (-5 *2 (-1146 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-225))) (-5 *4 (-1169)) (-5 *5 (-1082 (-838 (-225))))
+ (-5 *2 (-637 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 (-225))) (-5 *4 (-1169)) (-5 *5 (-1082 (-838 (-225))))
+ (-5 *2 (-637 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *2 (-1262)) (-5 *1 (-1259))))
- ((*1 *2 *1)
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-301)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-298)) (-4 *2 (-1207))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-637 (-608 *1))) (-5 *3 (-637 *1)) (-4 *1 (-298))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-637 (-293 *1))) (-4 *1 (-298))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-298)))))
+(((*1 *1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1) (-4 *1 (-298))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-298)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-608 *1))) (-4 *1 (-298)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-608 *1))) (-4 *1 (-298)))))
+(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-637 (-113))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-298)) (-5 *3 (-1169)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-608 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1034 (-546)))
+ (-4 *4 (-13 (-846) (-556))) (-5 *2 (-1163 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-608 *1)) (-4 *1 (-1045)) (-4 *1 (-298)) (-5 *2 (-1163 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-311)) (-5 *1 (-296))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-1151))) (-5 *3 (-1151)) (-5 *2 (-311)) (-5 *1 (-296)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1045)) (-4 *4 (-1232 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1232 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-722)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-722)) (-4 *2 (-1207)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-556))
+ (-4 *3 (-1207)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452))
+ (-5 *2
+ (-637
+ (-2 (|:| |eigval| (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4))))
+ (|:| |eigmult| (-767)) (|:| |eigvec| (-637 (-684 (-407 (-942 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-942 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452))
+ (-5 *2
+ (-637
+ (-2 (|:| |eigval| (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4))))
+ (|:| |geneigvec| (-637 (-684 (-407 (-942 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-942 *4)))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-407 (-942 *6)) (-1158 (-1169) (-942 *6)))) (-5 *5 (-767))
+ (-4 *6 (-452)) (-5 *2 (-637 (-684 (-407 (-942 *6))))) (-5 *1 (-292 *6))
+ (-5 *4 (-684 (-407 (-942 *6))))))
+ ((*1 *2 *3 *4)
(-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-407 (-942 *5)) (-1158 (-1169) (-942 *5))))
+ (|:| |eigmult| (-767)) (|:| |eigvec| (-637 *4))))
+ (-4 *5 (-452)) (-5 *2 (-637 (-684 (-407 (-942 *5))))) (-5 *1 (-292 *5))
+ (-5 *4 (-684 (-407 (-942 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-407 (-942 *5)) (-1158 (-1169) (-942 *5)))) (-4 *5 (-452))
+ (-5 *2 (-637 (-684 (-407 (-942 *5))))) (-5 *1 (-292 *5))
+ (-5 *4 (-684 (-407 (-942 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-407 (-942 *4)))) (-4 *4 (-452))
+ (-5 *2 (-637 (-3 (-407 (-942 *4)) (-1158 (-1169) (-942 *4)))))
+ (-5 *1 (-292 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1078))) (-5 *1 (-291)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1096)) (-5 *1 (-291)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-1096)) (-5 *1 (-291)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-637 (-961))) (-5 *1 (-291)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-961))) (-5 *1 (-291)))))
+(((*1 *1) (-5 *1 (-291))))
+(((*1 *1) (-5 *1 (-291))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-546)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1207)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-363)) (-5 *2 (-637 (-1146 *4))) (-5 *1 (-285 *4 *5))
+ (-5 *3 (-1146 *4)) (-4 *5 (-1249 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1249 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-546))) (-4 *1 (-282 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-546)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3))
+ (-4 *3 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-184)) (-5 *1 (-280)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-280)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-407 (-546)))
+ (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4)))
+ (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *4 *2)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-637 (-608 *2))) (-5 *4 (-1169))
+ (-4 *2 (-13 (-27) (-1193) (-421 *5)))
+ (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-421 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-556) (-846) (-1034 (-546)) (-636 (-546))))
(-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4165 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-1259))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))))
+ (-2 (|:| |func| *3) (|:| |kers| (-637 (-608 *3))) (|:| |vals| (-637 *3))))
+ (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-421 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-846) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
+ (-4 *3 (-13 (-421 *4) (-998))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-637 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-421 *4) (-998))) (-4 *4 (-13 (-846) (-556)))
+ (-5 *1 (-276 *4 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
- (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5))
- (-4 *4 (-1093)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))))
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-421 *3) (-998))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-13 (-846) (-556))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-421 *3) (-998))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-13 (-846) (-556))))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-546))) (-5 *1 (-275)))))
+(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| -1957 (-684 (-407 (-948 *4))))
- (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -2521 (-767))
- (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |partsol| (-1257 (-407 (-948 *4))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *4)))))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *1 *2 *2)
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-637 (-314 (-225)))) (|:| -3856 (-637 (-225)))))))
+ (-5 *2 (-637 (-1151))) (-5 *1 (-267)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))))
+(((*1 *2 *3) (-12 (-5 *3 (-314 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-314 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-314 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *4 (-767)) (-5 *2 (-684 (-225)))
+ (-5 *1 (-267)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-314 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-314 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-314 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1337 (-418 *3))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
- (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))
+ (-2 (|:| |fn| (-314 (-225))) (|:| -3856 (-637 (-225)))
+ (|:| |lb| (-637 (-838 (-225)))) (|:| |cf| (-637 (-314 (-225))))
+ (|:| |ub| (-637 (-838 (-225))))))
+ (-5 *1 (-267)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-838 (-225)))) (-5 *4 (-225)) (-5 *2 (-637 *4))
+ (-5 *1 (-267)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4))
+ (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789))
+ (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-113))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846)))))
-(((*1 *2 *2 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
+ (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
+ (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *2 (-51))
+ (-5 *1 (-261))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *1 (-263 *2))
+ (-4 *2 (-1207)))))
+(((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-261))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-915)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-261))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-637 (-261))) (-5 *1 (-262)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-921))
+ (-5 *2
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-921)) (-5 *4 (-407 (-546)))
+ (-5 *2
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1257 (-407 (-948 *4))))
- (|:| -4013 (-640 (-1257 (-407 (-948 *4)))))))
- (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147)))
- (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169))))
- (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2)
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-637 (-939 (-225))))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-637 (-637 (-939 (-225)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-407 (-546))))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-1082 (-378)))) (-5 *1 (-261)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452))
- (-5 *2
- (-2 (|:| |dpolys| (-640 (-247 *5 *6)))
- (|:| |coords| (-640 (-563)))))
- (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1233 (-169 *2))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212))
- (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))))
+ (-12 (-5 *3 (-637 (-261))) (-5 *4 (-1169)) (-5 *2 (-112)) (-5 *1 (-261)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1259))
+ (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1259)) (-5 *1 (-255 *3))
+ (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261)))
+ (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1259)) (-5 *1 (-255 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-378)))
+ (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1259)) (-5 *1 (-255 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261)))
+ (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-378)))
+ (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1260))
+ (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1260)) (-5 *1 (-255 *3))
+ (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261)))
+ (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-378)))
+ (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-255 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *5 (-637 (-261)))
+ (-5 *2 (-1259)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1259))
+ (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1259)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1259))
+ (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260))
+ (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260))
+ (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378))) (-5 *2 (-1260))
+ (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1260)) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-1169)) (-5 *5 (-637 (-261)))
+ (-4 *7 (-421 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-546)))) (-5 *2 (-1259))
+ (-5 *1 (-257 *6 *7))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1259)) (-5 *1 (-260))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-637 (-225))) (-5 *4 (-637 (-261))) (-5 *2 (-1259))
+ (-5 *1 (-260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *2 (-1259)) (-5 *1 (-260))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-939 (-225)))) (-5 *4 (-637 (-261))) (-5 *2 (-1259))
+ (-5 *1 (-260))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-637 (-225))) (-5 *2 (-1260)) (-5 *1 (-260))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-637 (-225))) (-5 *4 (-637 (-261))) (-5 *2 (-1260))
+ (-5 *1 (-260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-258)))))
+(((*1 *2 *2) (-12 (-5 *2 (-546)) (-5 *1 (-258)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1082 (-225)))
+ (-5 *2 (-1260)) (-5 *1 (-258)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1082 (-225)))
+ (-5 *5 (-112)) (-5 *2 (-1260)) (-5 *1 (-258)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225)))
+ (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261)))
+ (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-255 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-378)))
+ (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-255 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-255 *3)) (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1085 (-378))) (-5 *2 (-1126 (-225))) (-5 *1 (-255 *3))
+ (-4 *3 (-13 (-611 (-535)) (-1094)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-378))) (-5 *5 (-637 (-261)))
+ (-4 *6 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-255 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-378)))
+ (-4 *5 (-13 (-611 (-535)) (-1094))) (-5 *2 (-1126 (-225)))
+ (-5 *1 (-255 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *5 (-637 (-261))) (-5 *2 (-1126 (-225))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1082 (-378)))
+ (-5 *2 (-1126 (-225))) (-5 *1 (-256)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-254 *3))))
+ ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1207)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-563)))))
- (-5 *1 (-361 *3)) (-4 *3 (-1093))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-767)))))
- (-5 *1 (-386 *3)) (-4 *3 (-1093))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
+ (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-637 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
+ (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-637 (-767)))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| -2173 *3) (|:| -3311 (-563)))))
- (-5 *1 (-418 *3)) (-4 *3 (-555))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
+ (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-637 (-767))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
+ (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789))
+ (-4 *2 (-266 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
+ (-4 *4 (-266 *3)) (-4 *5 (-789)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
+ (-4 *4 (-266 *3)) (-4 *5 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
+ ((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
+(((*1 *2 *1) (-12 (-5 *2 (-184)) (-5 *1 (-248)))))
+(((*1 *1 *2) (-12 (-5 *2 (-184)) (-5 *1 (-248)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-767))
+ (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-546))))))
+ (-5 *1 (-246 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-546)) (-5 *1 (-241))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-546)) (-5 *1 (-241)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241))))
+ ((*1 *2 *3) (-12 (-5 *3 (-637 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-546)) (-5 *1 (-241)))))
+(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-238 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-293 (-942 (-546))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-637 (-1169)))
+ (|:| |inhom| (-3 (-637 (-1256 (-767))) "failed"))
+ (|:| |hom| (-637 (-1256 (-767))))))
+ (-5 *1 (-236)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3))))
+ ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))))
+(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1169))
+ (-5 *5 (-838 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1163 *6)) (-5 *4 (-838 *6))
+ (-4 *6 (-13 (-1193) (-29 *5)))
+ (-4 *5 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-224 *5 *6)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1193) (-29 *6)))
+ (-4 *6 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *1 (-224 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-452) (-846) (-1034 (-546)) (-636 (-546))))
+ (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-637 (-1169)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
+ (-14 *3 (-637 (-1169))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
+ (-14 *4 (-637 (-1169)))))
((*1 *2 *1)
- (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3372 (-767)))))
- (-5 *1 (-815 *3)) (-4 *3 (-846)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
+ (-14 *4 (-637 (-1169))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-314 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4))
+ (-14 *4 (-637 (-1169))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
+ (-14 *3 (-637 (-1169))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1169)) (-5 *6 (-112))
+ (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-546)) (-636 (-546))))
+ (-4 *3 (-13 (-1193) (-956) (-29 *7)))
(-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
+ (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-637 (-838 *3))) (|:| |fail| "failed")
+ (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *7 *3)) (-5 *5 (-838 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-546))) (-5 *1 (-217)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
- (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13))
- (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13))
- (-5 *7 (-640 (-640 (-2 (|:| -1646 (-767)) (|:| |pcoef| *13)))))
- (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10))))
- (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12))
- (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4))
- (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4)))))
+ (-12 (-4 *4 (-350)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-767)) (-4 *4 (-350)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1232 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-350)) (-5 *2 (-637 (-2 (|:| |deg| (-767)) (|:| -2960 *3))))
+ (-5 *1 (-216 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-350))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2818 (-637 (-2 (|:| |irr| *3) (|:| -2537 (-546)))))))
+ (-5 *1 (-216 *5 *3)) (-4 *3 (-1232 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1232 (-407 *2)))
+ (-4 *2 (-1232 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-915)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-637 (-314 (-225))))
+ (|:| |constraints|
+ (-637
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767))
+ (|:| |boundaryType| (-546)) (|:| |dStart| (-684 (-225)))
+ (|:| |dFinish| (-684 (-225))))))
+ (|:| |f| (-637 (-637 (-314 (-225))))) (|:| |st| (-1151))
+ (|:| |tol| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-210)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-637 (-314 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-210)))))
+(((*1 *2 *2) (-12 (-5 *2 (-314 (-225))) (-5 *1 (-210)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1256 (-314 (-225)))) (|:| |yinit| (-637 (-225)))
+ (|:| |intvals| (-637 (-225))) (|:| |g| (-314 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-684 (-314 (-225))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-205)))))
+(((*1 *2 *3) (-12 (-5 *3 (-684 (-314 (-225)))) (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-205))))
+ ((*1 *2 *2 *3) (-12 (-5 *3 (-637 (-378))) (-5 *2 (-378)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-546)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-637 (-225))) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -2887 (-113)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-378)) (-5 *1 (-192)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1623 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))))
-(((*1 *1 *2 *2)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| I (-316 (-563))) (|:| -3195 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168))))
- (-5 *1 (-1168)))))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular| "There is a singularity at the lower end point")
+ (|:| |upperSingular| "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1169)) (|:| |fn| (-314 (-225)))
+ (|:| -1596 (-1082 (-838 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3) (-12 (-5 *2 (-405 (-1163 (-546)))) (-5 *1 (-191)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-637 (-1163 (-546)))) (-5 *1 (-191)) (-5 *3 (-546)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-546))) (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1171 (-407 (-546)))) (-5 *2 (-407 (-546))) (-5 *1 (-190)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-546)))) (-5 *1 (-190)) (-5 *3 (-546)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1256 (-684 *4))) (-4 *4 (-172))
+ (-5 *2 (-1256 (-684 (-942 *4)))) (-5 *1 (-189 *4)))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-637 (-112))))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-637 (-861))))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-1174))) (-5 *1 (-184)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-183))) (-5 *1 (-183)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1207)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1207)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-669 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-844)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2818 (-405 *3)))) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-1232 (-168 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1232 (-168 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844)))
+ (-4 *3 (-1232 *2)))))
(((*1 *2 *3 *2)
(-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1233 (-169 *2)))))
+ (-4 *3 (-1232 (-168 *2)))))
((*1 *2 *3)
(-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1233 (-169 *2))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9)))
- (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767)))
- (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11))
- (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12)))
- (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12)))))
-(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4))
- (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4))))
+ (-4 *3 (-1232 (-168 *2))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1232 (-168 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363))
- (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3551 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))))
+ (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-405 *3)) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-1232 (-168 *4))))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1233 (-169 *3))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1154 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563))))
- (-5 *1 (-1155 *3)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11))
- (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767)))
- (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846))
- (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789))
- (-5 *1 (-703 *9 *10 *8 *11)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391))))
- ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3))
- (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858))
- (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))))
+ (-4 *2 (-1232 (-168 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844)))
+ (-5 *2 (-637 (-2 (|:| -2818 (-637 *3)) (|:| -1691 *5))))
+ (-5 *1 (-181 *5 *3)) (-4 *3 (-1232 (-168 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-844)))
+ (-5 *2 (-637 (-2 (|:| -2818 (-637 *3)) (|:| -1691 *4))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))
+ (-12 (-5 *2 (-637 (-168 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1232 (-168 (-546)))) (-4 *4 (-13 (-363) (-844)))))
((*1 *2 *3)
- (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555))
- (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-684 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4013 (-640 *6)))
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-651 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1257 *6) "failed"))
- (|:| -4013 (-640 (-1257 *6)))))
- (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6)))))
+ (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-637 (-168 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-637 (-168 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1232 (-168 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3551 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1193) (-998))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-109))) (-5 *1 (-175)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *1 *1) (-5 *1 (-161)))
+ ((*1 *1 *2) (-12 (-5 *2 (-546)) (-5 *1 (-161)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-421 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169))))
+ ((*1 *1 *1) (-4 *1 (-160))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-421 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556)))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-421 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-846) (-556))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-421 *3)))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-157)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-225))
(-5 *2
- (-640
- (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225)))
- (|:| -4166 (-1087 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))
- (-5 *1 (-558))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))
- (-5 *2 (-640 *3))))
- ((*1 *2 *1)
- (-12
+ (-2 (|:| |brans| (-637 (-637 (-939 *4)))) (|:| |xValues| (-1082 *4))
+ (|:| |yValues| (-1082 *4))))
+ (-5 *1 (-153)) (-5 *3 (-637 (-637 (-939 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-921))
(-5 *2
- (-640
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225)))
- (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
- (-5 *1 (-799)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -3443 *1)))
- (-4 *1 (-1059 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -3443 *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7))
- (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))
- (-4 *7 (-1208))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6))
- (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-921)) (-5 *4 (-407 (-546)))
(-5 *2
- (-2 (|:| A (-684 *5))
- (|:| |eqs|
- (-640
- (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -1420 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5))
- (-4 *6 (-651 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-651 *5))
- (-5 *2 (-2 (|:| -1957 (-684 *6)) (|:| |vec| (-1257 *5))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5)))))
+ (-2 (|:| |brans| (-637 (-637 (-939 (-225)))))
+ (|:| |xValues| (-1082 (-225))) (|:| |yValues| (-1082 (-225)))))
+ (-5 *1 (-153)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-915)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363))
+ (-14 *5 (-989 *3 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1207))
+ (-4 *2 (-1094)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-555))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3551 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1233 (-169 *3))))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4))
(-5 *2
- (-2 (|:| -2310 *3) (|:| |gap| (-767)) (|:| -1765 (-778 *3))
- (|:| -3443 (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
+ (|:| |c2| (-407 *5)) (|:| |deg| (-767))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1232 (-407 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1232 (-407 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1232 *5))
+ (-5 *2 (-2 (|:| -2543 (-767)) (|:| -4369 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1232 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1232 *4))
+ (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1232 (-407 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1212)) (-4 *5 (-1232 *4))
+ (-5 *2 (-2 (|:| -4369 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3))
+ (-4 *3 (-1232 (-407 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-834))) (-5 *1 (-140)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-184))) (-5 *1 (-140)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-184))) (-5 *1 (-140)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-637 (-546))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))
+ (-14 *4 (-767)) (-4 *5 (-172)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-546)) (-14 *3 (-767)) (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-637 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))
+ (-14 *4 (-767)) (-4 *5 (-172)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-546))
+ (-14 *4 (-767)))))
+(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-546))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-546))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1094)) (-4 *2 (-846))
+ (-5 *1 (-114 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-637 (-1 *4 (-637 *4)))) (-4 *4 (-1094))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-637 (-1 *4 (-637 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-637 (-961))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-769))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-769)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-769))) (-5 *1 (-113)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-637 (-961))) (-5 *1 (-109)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))))
+(((*1 *2) (-12 (-5 *2 (-637 (-1169))) (-5 *1 (-105)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169))
(-5 *2
- (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -1765 *1)
- (|:| -3443 *1)))
- (-4 *1 (-1059 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-2 (|:| |zeros| (-1146 (-225))) (|:| |ones| (-1146 (-225)))
+ (|:| |singularities| (-1146 (-225)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2))
+ (-4 *4 (-681 *2 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2))
+ (-4 *4 (-681 *2 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
+ (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1045)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6))
+ (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-637 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-405 *3)) (-5 *1 (-100 *4 *3))
+ (-4 *3 (-1232 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-452) (-147)))
+ (-5 *2 (-405 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-546))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1151)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1151)) (-5 *1 (-97)))))
+(((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *5 (-556))
(-5 *2
- (-2 (|:| -2310 *1) (|:| |gap| (-767)) (|:| -1765 *1)
- (|:| -3443 *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
+ (-2 (|:| |minor| (-637 (-915))) (|:| -3674 *3)
+ (|:| |minors| (-637 (-637 (-915)))) (|:| |ops| (-637 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-915)) (-4 *3 (-653 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6))
- (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))))
-((-1290 . 735580) (-1291 . 735034) (-1292 . 734692) (-1293 . 734590)
- (-1294 . 734469) (-1295 . 734399) (-1296 . 734249) (-1297 . 733777)
- (-1298 . 733611) (-1299 . 733299) (-1300 . 732966) (-1301 . 732814)
- (-1302 . 732552) (-1303 . 732463) (-1304 . 731868) (-1305 . 731738)
- (-1306 . 731134) (-1307 . 730570) (-1308 . 730436) (-1309 . 730301)
- (-1310 . 729956) (-1311 . 729382) (-1312 . 729179) (-1313 . 729106)
- (-1314 . 729004) (-1315 . 728935) (-1316 . 728805) (-1317 . 728555)
- (-1318 . 728492) (-1319 . 728358) (-1320 . 728308) (-1321 . 727977)
- (-1322 . 727774) (-1323 . 727701) (-1324 . 727496) (-1325 . 727324)
- (-1326 . 727252) (-1327 . 727105) (-1328 . 726968) (-1329 . 726905)
- (-1330 . 726771) (-1331 . 726350) (-1332 . 726147) (-1333 . 726091)
- (-1334 . 726018) (-1335 . 725905) (-1336 . 725733) (-1337 . 725281)
- (-1338 . 725218) (-1339 . 725087) (-1340 . 725019) (-1341 . 724816)
- (-1342 . 724562) (-1343 . 724460) (-1344 . 724210) (-1345 . 724038)
- (-1346 . 723744) (-1347 . 723252) (-1348 . 723199) (-1349 . 723068)
- (-1350 . 723000) (-1351 . 722884) (-1352 . 722740) (-1353 . 722583)
- (-1354 . 722528) (-1355 . 722356) (-1356 . 721908) (-1357 . 721548)
- (-1358 . 721497) (-1359 . 721366) (-1360 . 721298) (-1361 . 721169)
- (-1362 . 719829) (-1363 . 719734) (-1364 . 719656) (-1365 . 719478)
- (-1366 . 719187) (-1367 . 718991) (-1368 . 718608) (-1369 . 718513)
- (-1370 . 718460) (-1371 . 718266) (-1372 . 718169) (-1373 . 717795)
- (-1374 . 717402) (-1375 . 717287) (-1376 . 717214) (-1377 . 717087)
- (-1378 . 716948) (-1379 . 716888) (-1380 . 716790) (-1381 . 716638)
- (-1382 . 716556) (-1383 . 716477) (-1384 . 716084) (-1385 . 715969)
- (-1386 . 715887) (-1387 . 715759) (-1388 . 715620) (-1389 . 715563)
- (-1390 . 715465) (-1391 . 715313) (-1392 . 715236) (-1393 . 715163)
- (-1394 . 714955) (-1395 . 714770) (-1396 . 714555) (-1397 . 714442)
- (-1398 . 714190) (-1399 . 714061) (-1400 . 714004) (-1401 . 713909)
- (-1402 . 713233) (-1403 . 713032) (-1404 . 712973) (-1405 . 712890)
- (-1406 . 712683) (-1407 . 712537) (-1408 . 712426) (-1409 . 712302)
- (-1410 . 712217) (-1411 . 712004) (-1412 . 711909) (-1413 . 711851)
- (-1414 . 711579) (-1415 . 711460) (-1416 . 711377) (-1417 . 711153)
- (-1418 . 711015) (-1419 . 710672) (-1420 . 710516) (-1421 . 710264)
- (-1422 . 709761) (-1423 . 709618) (-1424 . 709523) (-1425 . 709325)
- (-1426 . 709241) (-1427 . 709158) (-1428 . 708852) (-1429 . 708714)
- (-1430 . 708582) (-1431 . 708481) (-1432 . 708357) (-1433 . 707045)
- (-1434 . 706937) (-1435 . 706842) (-1436 . 706813) (-1437 . 706729)
- (-1438 . 706628) (-1439 . 706508) (-1440 . 706309) (-1441 . 706164)
- (-1442 . 706005) (-1443 . 705753) (-1444 . 705638) (-1445 . 705517)
- (-1446 . 705422) (-1447 . 705338) (-1448 . 705279) (-1449 . 704645)
- (-1450 . 704525) (-1451 . 704380) (-1452 . 704256) (-1453 . 704124)
- (-1454 . 704057) (-1455 . 703955) (-1456 . 703825) (-1457 . 703741)
- (-1458 . 703617) (-1459 . 703018) (-1460 . 702877) (-1461 . 702720)
- (-1462 . 702219) (-1463 . 701465) (-1464 . 701388) (-1465 . 701103)
- (-1466 . 700784) (-1467 . 700710) (-1468 . 700608) (-1469 . 700496)
- (-1470 . 700412) (-1471 . 700288) (-1472 . 699897) (-1473 . 699809)
- (-1474 . 699458) (-1475 . 699185) (-1476 . 698928) (-1477 . 698813)
- (-1478 . 698711) (-1479 . 698553) (-1480 . 698456) (-1481 . 698082)
- (-1482 . 698029) (-1483 . 697980) (-1484 . 697892) (-1485 . 697661)
- (-1486 . 697388) (-1487 . 697317) (-1488 . 697060) (-1489 . 696965)
- (-1490 . 696851) (-1491 . 696713) (-1492 . 696643) (-1493 . 696588)
- (-1494 . 696536) (-1495 . 696448) (-1496 . 696173) (-1497 . 696106)
- (-1498 . 695808) (-1499 . 695438) (-1500 . 695336) (-1501 . 695256)
- (-1502 . 695108) (-1503 . 695038) (-1504 . 694703) (-1505 . 694654)
- (-1506 . 694566) (-1507 . 694179) (-1508 . 694128) (-1509 . 694026)
- (-1510 . 693739) (-1511 . 693538) (-1512 . 693469) (-1513 . 693385)
- (-1514 . 693291) (-1515 . 692962) (-1516 . 692781) (-1517 . 692747)
- (-1518 . 692301) (-1519 . 692249) (-1520 . 692111) (-1521 . 691868)
- (-1522 . 691817) (-1523 . 691672) (-1524 . 691561) (-1525 . 691239)
- (-1526 . 691183) (-1527 . 691099) (-1528 . 691002) (-1529 . 690814)
- (-1530 . 690762) (-1531 . 690728) (-1532 . 690582) (-1533 . 690444)
- (-1534 . 690201) (-1535 . 690060) (-1536 . 689964) (-1537 . 689490)
- (-1538 . 689046) (-1539 . 688938) (-1540 . 688854) (-1541 . 688663)
- (-1542 . 684665) (-1543 . 684613) (-1544 . 684525) (-1545 . 684282)
- (-1546 . 684077) (-1547 . 683920) (-1548 . 683824) (-1549 . 683717)
- (-1550 . 683294) (-1551 . 683092) (-1552 . 683008) (-1553 . 682841)
- (-1554 . 682483) (-1555 . 682403) (-1556 . 682257) (-1557 . 682169)
- (-1558 . 681926) (-1559 . 681596) (-1560 . 681569) (-1561 . 681403)
- (-1562 . 681313) (-1563 . 681205) (-1564 . 680778) (-1565 . 680008)
- (-1566 . 679517) (-1567 . 679176) (-1568 . 679124) (-1569 . 679036)
- (-1570 . 678805) (-1571 . 678754) (-1572 . 678631) (-1573 . 678540)
- (-1574 . 678315) (-1575 . 678164) (-1576 . 678074) (-1577 . 677997)
- (-1578 . 677424) (-1579 . 677254) (-1580 . 677166) (-1581 . 677020)
- (-1582 . 676891) (-1583 . 676660) (-1584 . 676589) (-1585 . 676445)
- (-1586 . 676417) (-1587 . 676274) (-1588 . 676132) (-1589 . 676009)
- (-1590 . 675738) (-1591 . 675528) (-1592 . 675282) (-1593 . 675230)
- (-1594 . 675142) (-1595 . 674990) (-1596 . 674249) (-1597 . 674165)
- (-1598 . 674069) (-1599 . 673650) (-1600 . 673506) (-1601 . 673235)
- (-1602 . 673158) (-1603 . 672824) (-1604 . 672443) (-1605 . 672355)
- (-1606 . 672171) (-1607 . 671430) (-1608 . 671333) (-1609 . 671190)
- (-1610 . 670940) (-1611 . 670770) (-1612 . 670383) (-1613 . 670114)
- (-1614 . 669916) (-1615 . 669864) (-1616 . 669773) (-1617 . 669668)
- (-1618 . 668980) (-1619 . 668501) (-1620 . 668430) (-1621 . 667753)
- (-1622 . 667629) (-1623 . 666926) (-1624 . 666684) (-1625 . 666455)
- (-1626 . 666406) (-1627 . 666312) (-1628 . 666189) (-1629 . 665613)
- (-1630 . 665254) (-1631 . 665045) (-1632 . 664890) (-1633 . 664651)
- (-1634 . 664591) (-1635 . 664435) (-1636 . 664225) (-1637 . 664049)
- (-1638 . 663955) (-1639 . 663903) (-1640 . 663472) (-1641 . 663364)
- (-1642 . 662788) (-1643 . 662715) (-1644 . 662275) (-1645 . 662097)
- (-1646 . 661986) (-1647 . 661909) (-1648 . 661800) (-1649 . 661572)
- (-1650 . 661440) (-1651 . 661018) (-1652 . 660969) (-1653 . 660872)
- (-1654 . 660764) (-1655 . 660188) (-1656 . 660044) (-1657 . 659834)
- (-1658 . 659781) (-1659 . 659640) (-1660 . 659563) (-1661 . 659480)
- (-1662 . 659253) (-1663 . 659201) (-1664 . 659151) (-1665 . 658846)
- (-1666 . 658160) (-1667 . 658090) (-1668 . 657912) (-1669 . 657859)
- (-1670 . 657808) (-1671 . 657685) (-1672 . 657532) (-1673 . 657261)
- (-1674 . 657208) (-1675 . 657158) (-1676 . 657109) (-1677 . 657022)
- (-1678 . 656712) (-1679 . 656026) (-1680 . 655977) (-1681 . 655907)
- (-1682 . 655786) (-1683 . 655590) (-1684 . 655338) (-1685 . 655000)
- (-1686 . 654641) (-1687 . 654503) (-1688 . 654450) (-1689 . 654398)
- (-1690 . 653748) (-1691 . 653005) (-1692 . 634291) (-1693 . 634172)
- (-1694 . 633423) (-1695 . 633353) (-1696 . 633283) (-1697 . 632968)
- (-1698 . 632490) (-1699 . 632403) (-1700 . 632065) (-1701 . 631773)
- (-1702 . 631632) (-1703 . 631372) (-1704 . 631323) (-1705 . 631146)
- (-1706 . 628325) (-1707 . 628232) (-1708 . 627993) (-1709 . 627419)
- (-1710 . 627325) (-1711 . 627047) (-1712 . 626997) (-1713 . 626862)
- (-1714 . 626784) (-1715 . 626492) (-1716 . 626014) (-1717 . 625962)
- (-1718 . 625690) (-1719 . 625640) (-1720 . 625495) (-1721 . 624921)
- (-1722 . 624827) (-1723 . 624706) (-1724 . 624656) (-1725 . 624521)
- (-1726 . 624443) (-1727 . 624151) (-1728 . 624028) (-1729 . 623994)
- (-1730 . 623945) (-1731 . 623519) (-1732 . 623414) (-1733 . 623182)
- (-1734 . 622608) (-1735 . 622528) (-1736 . 622434) (-1737 . 622307)
- (-1738 . 622257) (-1739 . 622194) (-1740 . 622095) (-1741 . 621803)
- (-1742 . 621567) (-1743 . 621336) (-1744 . 621270) (-1745 . 621205)
- (-1746 . 621087) (-1747 . 620400) (-1748 . 620306) (-1749 . 620221)
- (-1750 . 620153) (-1751 . 618955) (-1752 . 618896) (-1753 . 618642)
- (-1754 . 618555) (-1755 . 618437) (-1756 . 618400) (-1757 . 618301)
- (-1758 . 617614) (-1759 . 617520) (-1760 . 617447) (-1761 . 617243)
- (-1762 . 617185) (-1763 . 616994) (-1764 . 616887) (-1765 . 616637)
- (-1766 . 616478) (-1767 . 615298) (-1768 . 615161) (-1769 . 614672)
- (-1770 . 613985) (-1771 . 613899) (-1772 . 613806) (-1773 . 613733)
- (-1774 . 613660) (-1775 . 611391) (-1776 . 611113) (-1777 . 610685)
- (-1778 . 610390) (-1779 . 610303) (-1780 . 609886) (-1781 . 609648)
- (-1782 . 609538) (-1783 . 608963) (-1784 . 608877) (-1785 . 608806)
- (-1786 . 608688) (-1787 . 608307) (-1788 . 608144) (-1789 . 608003)
- (-1790 . 607895) (-1791 . 607824) (-1792 . 606715) (-1793 . 606140)
- (-1794 . 606087) (-1795 . 606001) (-1796 . 605945) (-1797 . 605893)
- (-1798 . 605446) (-1799 . 605247) (-1800 . 605165) (-1801 . 604821)
- (-1802 . 604654) (-1803 . 604462) (-1804 . 604395) (-1805 . 603820)
- (-1806 . 603734) (-1807 . 603678) (-1808 . 603597) (-1809 . 603362)
- (-1810 . 603223) (-1811 . 603082) (-1812 . 600819) (-1813 . 599633)
- (-1814 . 599472) (-1815 . 599440) (-1816 . 598866) (-1817 . 598780)
- (-1818 . 597484) (-1819 . 597428) (-1820 . 597347) (-1821 . 597092)
- (-1822 . 596989) (-1823 . 596791) (-1824 . 596511) (-1825 . 595329)
- (-1826 . 594782) (-1827 . 594696) (-1828 . 594122) (-1829 . 594048)
- (-1830 . 593977) (-1831 . 593896) (-1832 . 593799) (-1833 . 593696)
- (-1834 . 593498) (-1835 . 593342) (-1836 . 591136) (-1837 . 590937)
- (-1838 . 590905) (-1839 . 590331) (-1840 . 590226) (-1841 . 590155)
- (-1842 . 590103) (-1843 . 590022) (-1844 . 589925) (-1845 . 589640)
- (-1846 . 589422) (-1847 . 589274) (-1848 . 589188) (-1849 . 587884)
- (-1850 . 587310) (-1851 . 587084) (-1852 . 587013) (-1853 . 586759)
- (-1854 . 586653) (-1855 . 586594) (-1856 . 586535) (-1857 . 586095)
- (-1858 . 585947) (-1859 . 585782) (-1860 . 585358) (-1861 . 584784)
- (-1862 . 584704) (-1863 . 584623) (-1864 . 584302) (-1865 . 583826)
- (-1866 . 583484) (-1867 . 583410) (-1868 . 583001) (-1869 . 582778)
- (-1870 . 582451) (-1871 . 582027) (-1872 . 581950) (-1873 . 581870)
- (-1874 . 581790) (-1875 . 581705) (-1876 . 581252) (-1877 . 581151)
- (-1878 . 580987) (-1879 . 580853) (-1880 . 580683) (-1881 . 580123)
- (-1882 . 579970) (-1883 . 579874) (-1884 . 579794) (-1885 . 579709)
- (-1886 . 579624) (-1887 . 579522) (-1888 . 579403) (-1889 . 579240)
- (-1890 . 579206) (-1891 . 579129) (-1892 . 578044) (-1893 . 576926)
- (-1894 . 576517) (-1895 . 576411) (-1896 . 576319) (-1897 . 576257)
- (-1898 . 576173) (-1899 . 575957) (-1900 . 575793) (-1901 . 575670)
- (-1902 . 575593) (-1903 . 573863) (-1904 . 572005) (-1905 . 571906)
- (-1906 . 571783) (-1907 . 571479) (-1908 . 571089) (-1909 . 570927)
- (-1910 . 570757) (-1911 . 570620) (-1912 . 570403) (-1913 . 568826)
- (-1914 . 568747) (-1915 . 567874) (-1916 . 567793) (-1917 . 566906)
- (-1918 . 566740) (-1919 . 566656) (-1920 . 566498) (-1921 . 566424)
- (-1922 . 566371) (-1923 . 566241) (-1924 . 566110) (-1925 . 565308)
- (-1926 . 565095) (-1927 . 565016) (-1928 . 564944) (-1929 . 564362)
- (-1930 . 564281) (-1931 . 564091) (-1932 . 563968) (-1933 . 563915)
- (-1934 . 563785) (-1935 . 563654) (-1936 . 563144) (-1937 . 562971)
- (-1938 . 562877) (-1939 . 562672) (-1940 . 561854) (-1941 . 561493)
- (-1942 . 561282) (-1943 . 561037) (-1944 . 560908) (-1945 . 560781)
- (-1946 . 560619) (-1947 . 560211) (-1948 . 560132) (-1949 . 559942)
- (-1950 . 559690) (-1951 . 559633) (-1952 . 559518) (-1953 . 559458)
- (-1954 . 559331) (-1955 . 559227) (-1956 . 558567) (-1957 . 558463)
- (-1958 . 557306) (-1959 . 557207) (-1960 . 556955) (-1961 . 556883)
- (-1962 . 556650) (-1963 . 556597) (-1964 . 556470) (-1965 . 556411)
- (-1966 . 556339) (-1967 . 556266) (-1968 . 556148) (-1969 . 555902)
- (-1970 . 555845) (-1971 . 555745) (-1972 . 555522) (-1973 . 555469)
- (-1974 . 555342) (-1975 . 555283) (-1976 . 555211) (-1977 . 555143)
- (-1978 . 555022) (-1979 . 554776) (-1980 . 554558) (-1981 . 554160)
- (-1982 . 554054) (-1983 . 554012) (-1984 . 553799) (-1985 . 553656)
- (-1986 . 553410) (-1987 . 553192) (-1988 . 552974) (-1989 . 552851)
- (-1990 . 552658) (-1991 . 552552) (-1992 . 552106) (-1993 . 552054)
- (-1994 . 551911) (-1995 . 551665) (-1996 . 551492) (-1997 . 551443)
- (-1998 . 551239) (-1999 . 550908) (-2000 . 550859) (-2001 . 550019)
- (-2002 . 549573) (-2003 . 549518) (-2004 . 549378) (-2005 . 549131)
- (-2006 . 548913) (-2007 . 548885) (-2008 . 548662) (-2009 . 548366)
- (-2010 . 546510) (-2011 . 546064) (-2012 . 545974) (-2013 . 545801)
- (-2014 . 545685) (-2015 . 545591) (-2016 . 545352) (-2017 . 545056)
- (-2018 . 544988) (-2019 . 544463) (-2020 . 544376) (-2021 . 544290)
- (-2022 . 544110) (-2023 . 544000) (-2024 . 543827) (-2025 . 543715)
- (-2026 . 543574) (-2027 . 543264) (-2028 . 543144) (-2029 . 543076)
- (-2030 . 542986) (-2031 . 541135) (-2032 . 541049) (-2033 . 540926)
- (-2034 . 540816) (-2035 . 540643) (-2036 . 540531) (-2037 . 540393)
- (-2038 . 540076) (-2039 . 540008) (-2040 . 539915) (-2041 . 539834)
- (-2042 . 539748) (-2043 . 539624) (-2044 . 539451) (-2045 . 539339)
- (-2046 . 539200) (-2047 . 539071) (-2048 . 538317) (-2049 . 538231)
- (-2050 . 538130) (-2051 . 537858) (-2052 . 537746) (-2053 . 537493)
- (-2054 . 537302) (-2055 . 537119) (-2056 . 536984) (-2057 . 531646)
- (-2058 . 531584) (-2059 . 531454) (-2060 . 531351) (-2061 . 531295)
- (-2062 . 524296) (-2063 . 524184) (-2064 . 524156) (-2065 . 523900)
- (-2066 . 523412) (-2067 . 523225) (-2068 . 523090) (-2069 . 522883)
- (-2070 . 522794) (-2071 . 522738) (-2072 . 522488) (-2073 . 522376)
- (-2074 . 522216) (-2075 . 522132) (-2076 . 522003) (-2077 . 521879)
- (-2078 . 521714) (-2079 . 521504) (-2080 . 521448) (-2081 . 521272)
- (-2082 . 521118) (-2083 . 520901) (-2084 . 520794) (-2085 . 520673)
- (-2086 . 520508) (-2087 . 520449) (-2088 . 520393) (-2089 . 520252)
- (-2090 . 520174) (-2091 . 520121) (-2092 . 519880) (-2093 . 519663)
- (-2094 . 519522) (-2095 . 519404) (-2096 . 519240) (-2097 . 519187)
- (-2098 . 519131) (-2099 . 519072) (-2100 . 518929) (-2101 . 518744)
- (-2102 . 518454) (-2103 . 518195) (-2104 . 518063) (-2105 . 517927)
- (-2106 . 517788) (-2107 . 515656) (-2108 . 515567) (-2109 . 515503)
- (-2110 . 515297) (-2111 . 515239) (-2112 . 515101) (-2113 . 514667)
- (-2114 . 514553) (-2115 . 514420) (-2116 . 514323) (-2117 . 514211)
- (-2118 . 514103) (-2119 . 512135) (-2120 . 512077) (-2121 . 512017)
- (-2122 . 511349) (-2123 . 510795) (-2124 . 510647) (-2125 . 510575)
- (-2126 . 510513) (-2127 . 510412) (-2128 . 510324) (-2129 . 510216)
- (-2130 . 505674) (-2131 . 505546) (-2132 . 505208) (-2133 . 505032)
- (-2134 . 504902) (-2135 . 504763) (-2136 . 504706) (-2137 . 504609)
- (-2138 . 503201) (-2139 . 503053) (-2140 . 502945) (-2141 . 502820)
- (-2142 . 502532) (-2143 . 501831) (-2144 . 501649) (-2145 . 501375)
- (-2146 . 501271) (-2147 . 501211) (-2148 . 501096) (-2149 . 500908)
- (-2150 . 500629) (-2151 . 500501) (-2152 . 500417) (-2153 . 499739)
- (-2154 . 499563) (-2155 . 499384) (-2156 . 499277) (-2157 . 498880)
- (-2158 . 498806) (-2159 . 498721) (-2160 . 498554) (-2161 . 498480)
- (-2162 . 498409) (-2163 . 498182) (-2164 . 498049) (-2165 . 497867)
- (-2166 . 497752) (-2167 . 497642) (-2168 . 497118) (-2169 . 497066)
- (-2170 . 496965) (-2171 . 496798) (-2172 . 496568) (-2173 . 491054)
- (-2174 . 490937) (-2175 . 490622) (-2176 . 490395) (-2177 . 490220)
- (-2178 . 490168) (-2179 . 489903) (-2180 . 489724) (-2181 . 489620)
- (-2182 . 489507) (-2183 . 489229) (-2184 . 489027) (-2185 . 488635)
- (-2186 . 488450) (-2187 . 488366) (-2188 . 488269) (-2189 . 488141)
- (-2190 . 488086) (-2191 . 487979) (-2192 . 487800) (-2193 . 487745)
- (-2194 . 487641) (-2195 . 487528) (-2196 . 487434) (-2197 . 487346)
- (-2198 . 487122) (-2199 . 487041) (-2200 . 486944) (-2201 . 486741)
- (-2202 . 486689) (-2203 . 486502) (-2204 . 486423) (-2205 . 486313)
- (-2206 . 485869) (-2207 . 485772) (-2208 . 485648) (-2209 . 485567)
- (-2210 . 485469) (-2211 . 485290) (-2212 . 484280) (-2213 . 484206)
- (-2214 . 483824) (-2215 . 483754) (-2216 . 483644) (-2217 . 483412)
- (-2218 . 483350) (-2219 . 479684) (-2220 . 479617) (-2221 . 479409)
- (-2222 . 479328) (-2223 . 479161) (-2224 . 475825) (-2225 . 475298)
- (-2226 . 475224) (-2227 . 474917) (-2228 . 474738) (-2229 . 474665)
- (-2230 . 474549) (-2231 . 474344) (-2232 . 474186) (-2233 . 474134)
- (-2234 . 474081) (-2235 . 472611) (-2236 . 472516) (-2237 . 472434)
- (-2238 . 458320) (-2239 . 458149) (-2240 . 457982) (-2241 . 457455)
- (-2242 . 457372) (-2243 . 453309) (-2244 . 453130) (-2245 . 453075)
- (-2246 . 452965) (-2247 . 452783) (-2248 . 452597) (-2249 . 452545)
- (-2250 . 452492) (-2251 . 452397) (-2252 . 452316) (-2253 . 452069)
- (-2254 . 451788) (-2255 . 451301) (-2256 . 451218) (-2257 . 451031)
- (-2258 . 450958) (-2259 . 450842) (-2260 . 450712) (-2261 . 450659)
- (-2262 . 450523) (-2263 . 450426) (-2264 . 450005) (-2265 . 449950)
- (-2266 . 449897) (-2267 . 449515) (-2268 . 449460) (-2269 . 449329)
- (-2270 . 449119) (-2271 . 449060) (-2272 . 448962) (-2273 . 448861)
- (-2274 . 448334) (-2275 . 448260) (-2276 . 448176) (-2277 . 447180)
- (-2278 . 446823) (-2279 . 446674) (-2280 . 446463) (-2281 . 446404)
- (-2282 . 446306) (-2283 . 446237) (-2284 . 446052) (-2285 . 445978)
- (-2286 . 443633) (-2287 . 443560) (-2288 . 443152) (-2289 . 442741)
- (-2290 . 442203) (-2291 . 442012) (-2292 . 441947) (-2293 . 441570)
- (-2294 . 441319) (-2295 . 439777) (-2296 . 439727) (-2297 . 439584)
- (-2298 . 439510) (-2299 . 439102) (-2300 . 438947) (-2301 . 438804)
- (-2302 . 438221) (-2303 . 438156) (-2304 . 438103) (-2305 . 438005)
- (-2306 . 437292) (-2307 . 436774) (-2308 . 431661) (-2309 . 431582)
- (-2310 . 431224) (-2311 . 431106) (-2312 . 430951) (-2313 . 430801)
- (-2314 . 430545) (-2315 . 430489) (-2316 . 430406) (-2317 . 429756)
- (-2318 . 429626) (-2319 . 428984) (-2320 . 428929) (-2321 . 428769)
- (-2322 . 428686) (-2323 . 428563) (-2324 . 428269) (-2325 . 428213)
- (-2326 . 428018) (-2327 . 427201) (-2328 . 427145) (-2329 . 427086)
- (-2330 . 426941) (-2331 . 426786) (-2332 . 426679) (-2333 . 426382)
- (-2334 . 426214) (-2335 . 426118) (-2336 . 426034) (-2337 . 425974)
- (-2338 . 425877) (-2339 . 425311) (-2340 . 425212) (-2341 . 425094)
- (-2342 . 424939) (-2343 . 424832) (-2344 . 424532) (-2345 . 424462)
- (-2346 . 424393) (-2347 . 424284) (-2348 . 424179) (-2349 . 424058)
- (-2350 . 423492) (-2351 . 423393) (-2352 . 423211) (-2353 . 423074)
- (-2354 . 422964) (-2355 . 422834) (-2356 . 422736) (-2357 . 422303)
- (-2358 . 422207) (-2359 . 422136) (-2360 . 422037) (-2361 . 421913)
- (-2362 . 421776) (-2363 . 421638) (-2364 . 421505) (-2365 . 421407)
- (-2366 . 421232) (-2367 . 421136) (-2368 . 421062) (-2369 . 420921)
- (-2370 . 420822) (-2371 . 420529) (-2372 . 420392) (-2373 . 420282)
- (-2374 . 420146) (-2375 . 420048) (-2376 . 419970) (-2377 . 419743)
- (-2378 . 419664) (-2379 . 419587) (-2380 . 419341) (-2381 . 419110)
- (-2382 . 419011) (-2383 . 418718) (-2384 . 418587) (-2385 . 418450)
- (-2386 . 418311) (-2387 . 418157) (-2388 . 417997) (-2389 . 417808)
- (-2390 . 417731) (-2391 . 417485) (-2392 . 417047) (-2393 . 416948)
- (-2394 . 416661) (-2395 . 416524) (-2396 . 416368) (-2397 . 415083)
- (-2398 . 414923) (-2399 . 414743) (-2400 . 414687) (-2401 . 414603)
- (-2402 . 413639) (-2403 . 413540) (-2404 . 413481) (-2405 . 413197)
- (-2406 . 413060) (-2407 . 412787) (-2408 . 412462) (-2409 . 411281)
- (-2410 . 411128) (-2411 . 410677) (-2412 . 410621) (-2413 . 410479)
- (-2414 . 410232) (-2415 . 410118) (-2416 . 409812) (-2417 . 409665)
- (-2418 . 409609) (-2419 . 409539) (-2420 . 409158) (-2421 . 408400)
- (-2422 . 408248) (-2423 . 408181) (-2424 . 408059) (-2425 . 407757)
- (-2426 . 407643) (-2427 . 407555) (-2428 . 407352) (-2429 . 407197)
- (-2430 . 407084) (-2431 . 407005) (-2432 . 406752) (-2433 . 405903)
- (-2434 . 405723) (-2435 . 405656) (-2436 . 405534) (-2437 . 405232)
- (-2438 . 405118) (-2439 . 405033) (-2440 . 404922) (-2441 . 404818)
- (-2442 . 404564) (-2443 . 404253) (-2444 . 400632) (-2445 . 400459)
- (-2446 . 400396) (-2447 . 400256) (-2448 . 399954) (-2449 . 399840)
- (-2450 . 399741) (-2451 . 399630) (-2452 . 399476) (-2453 . 399180)
- (-2454 . 398828) (-2455 . 398566) (-2456 . 398045) (-2457 . 397852)
- (-2458 . 397511) (-2459 . 397397) (-2460 . 397298) (-2461 . 397230)
- (-2462 . 397110) (-2463 . 396814) (-2464 . 396744) (-2465 . 396518)
- (-2466 . 396260) (-2467 . 395738) (-2468 . 395410) (-2469 . 395294)
- (-2470 . 395199) (-2471 . 395085) (-2472 . 394859) (-2473 . 394721)
- (-2474 . 394611) (-2475 . 394482) (-2476 . 394221) (-2477 . 393946)
- (-2478 . 393129) (-2479 . 392854) (-2480 . 392766) (-2481 . 392505)
- (-2482 . 392388) (-2483 . 392360) (-2484 . 392260) (-2485 . 392157)
- (-2486 . 392059) (-2487 . 391978) (-2488 . 391523) (-2489 . 391136)
- (-2490 . 390964) (-2491 . 390773) (-2492 . 390704) (-2493 . 390626)
- (-2494 . 390523) (-2495 . 386363) (-2496 . 386275) (-2497 . 386187)
- (-2498 . 385838) (-2499 . 385654) (-2500 . 385431) (-2501 . 385087)
- (-2502 . 384885) (-2503 . 384807) (-2504 . 384704) (-2505 . 384624)
- (-2506 . 384176) (-2507 . 384088) (-2508 . 383987) (-2509 . 383907)
- (-2510 . 383773) (-2511 . 383696) (-2512 . 382792) (-2513 . 382479)
- (-2514 . 382317) (-2515 . 381990) (-2516 . 381911) (-2517 . 381422)
- (-2518 . 380995) (-2519 . 380907) (-2520 . 380809) (-2521 . 379559)
- (-2522 . 379434) (-2523 . 379251) (-2524 . 379085) (-2525 . 378941)
- (-2526 . 378762) (-2527 . 378603) (-2528 . 378308) (-2529 . 378189)
- (-2530 . 377569) (-2531 . 377481) (-2532 . 377409) (-2533 . 377194)
- (-2534 . 377017) (-2535 . 376851) (-2536 . 376707) (-2537 . 376633)
- (-2538 . 376501) (-2539 . 376391) (-2540 . 376317) (-2541 . 376244)
- (-2542 . 375637) (-2543 . 375549) (-2544 . 374742) (-2545 . 374453)
- (-2546 . 374319) (-2547 . 374175) (-2548 . 374034) (-2549 . 373983)
- (-2550 . 373927) (-2551 . 373542) (-2552 . 373215) (-2553 . 372997)
- (-2554 . 372903) (-2555 . 372831) (-2556 . 371629) (-2557 . 371422)
- (-2558 . 371366) (-2559 . 370278) (-2560 . 369889) (-2561 . 369794)
- (-2562 . 369766) (-2563 . 369588) (-2564 . 369500) (-2565 . 369164)
- (-2566 . 369081) (-2567 . 368883) (-2568 . 368727) (-2569 . 368373)
- (-2570 . 368278) (-2571 . 368079) (-2572 . 367815) (-2573 . 367727)
- (-2574 . 367655) (-2575 . 367627) (-2576 . 367537) (-2577 . 367394)
- (-2578 . 367338) (-2579 . 367158) (-2580 . 366917) (-2581 . 366737)
- (-2582 . 366376) (-2583 . 366288) (-2584 . 365874) (-2585 . 365794)
- (-2586 . 365458) (-2587 . 363829) (-2588 . 363749) (-2589 . 363428)
- (-2590 . 361996) (-2591 . 361899) (-2592 . 361811) (-2593 . 361739)
- (-2594 . 361617) (-2595 . 360751) (-2596 . 360664) (-2597 . 360549)
- (-2598 . 360490) (-2599 . 360349) (-2600 . 359753) (-2601 . 359725)
- (-2602 . 359070) (-2603 . 358982) (-2604 . 358529) (-2605 . 357155)
- (-2606 . 357095) (-2607 . 356750) (-2608 . 356604) (-2609 . 356523)
- (-2610 . 356495) (-2611 . 355785) (-2612 . 355697) (-2613 . 355625)
- (-2614 . 355467) (-2615 . 354916) (-2616 . 354756) (-2617 . 354523)
- (-2618 . 354211) (-2619 . 353413) (-2620 . 353356) (-2621 . 353328)
- (-2622 . 353221) (-2623 . 353133) (-2624 . 353028) (-2625 . 352835)
- (-2626 . 352456) (-2627 . 352400) (-2628 . 352372) (-2629 . 352268)
- (-2630 . 352180) (-2631 . 352103) (-2632 . 351618) (-2633 . 351375)
- (-2634 . 351176) (-2635 . 351119) (-2636 . 351067) (-2637 . 350995)
- (-2638 . 350943) (-2639 . 350839) (-2640 . 350751) (-2641 . 350674)
- (-2642 . 350432) (-2643 . 350102) (-2644 . 349942) (-2645 . 349911)
- (-2646 . 349414) (-2647 . 349321) (-2648 . 349207) (-2649 . 349119)
- (-2650 . 349047) (-2651 . 347209) (-2652 . 346941) (-2653 . 346591)
- (-2654 . 346255) (-2655 . 345833) (-2656 . 345783) (-2657 . 345574)
- (-2658 . 345355) (-2659 . 343845) (-2660 . 343744) (-2661 . 343277)
- (-2662 . 343114) (-2663 . 342674) (-2664 . 342605) (-2665 . 342506)
- (-2666 . 342338) (-2667 . 342022) (-2668 . 341606) (-2669 . 340058)
- (-2670 . 339975) (-2671 . 339471) (-2672 . 338985) (-2673 . 338822)
- (-2674 . 337952) (-2675 . 337883) (-2676 . 337804) (-2677 . 337633)
- (-2678 . 337525) (-2679 . 337442) (-2680 . 337239) (-2681 . 337076)
- (-2682 . 336949) (-2683 . 336844) (-2684 . 336788) (-2685 . 336623)
- (-2686 . 336520) (-2687 . 335784) (-2688 . 335714) (-2689 . 335411)
- (-2690 . 335236) (-2691 . 334865) (-2692 . 334794) (-2693 . 334629)
- (-2694 . 334468) (-2695 . 334306) (-2696 . 334236) (-2697 . 334055)
- (-2698 . 333880) (-2699 . 333828) (-2700 . 333703) (-2701 . 333548)
- (-2702 . 333428) (-2703 . 333328) (-2704 . 333221) (-2705 . 333094)
- (-2706 . 332935) (-2707 . 332717) (-2708 . 332539) (-2709 . 332487)
- (-2710 . 332423) (-2711 . 332268) (-2712 . 332164) (-2713 . 331972)
- (-2714 . 331868) (-2715 . 331224) (-2716 . 330978) (-2717 . 330756)
- (-2718 . 330397) (-2719 . 330345) (-2720 . 330220) (-2721 . 330015)
- (-2722 . 329914) (-2723 . 329810) (-2724 . 329657) (-2725 . 328485)
- (-2726 . 328361) (-2727 . 328148) (-2728 . 327990) (-2729 . 327796)
- (-2730 . 327744) (-2731 . 327625) (-2732 . 327503) (-2733 . 327228)
- (-2734 . 327146) (-2735 . 326951) (-2736 . 326670) (-2737 . 326414)
- (-2738 . 326299) (-2739 . 326240) (-2740 . 326035) (-2741 . 325873)
- (-2742 . 325060) (-2743 . 324941) (-2744 . 324426) (-2745 . 324349)
- (-2746 . 324267) (-2747 . 324017) (-2748 . 323795) (-2749 . 323609)
- (-2750 . 322472) (-2751 . 322407) (-2752 . 322304) (-2753 . 322230)
- (-2754 . 322151) (-2755 . 322098) (-2756 . 322018) (-2757 . 321939)
- (-2758 . 321694) (-2759 . 321541) (-2760 . 320897) (-2761 . 320835)
- (-2762 . 320807) (-2763 . 320733) (-2764 . 320667) (-2765 . 320539)
- (-2766 . 320462) (-2767 . 320391) (-2768 . 320069) (-2769 . 319916)
- (-2770 . 318614) (-2771 . 318404) (-2772 . 318260) (-2773 . 318199)
- (-2774 . 318125) (-2775 . 318058) (-2776 . 317994) (-2777 . 317914)
- (-2778 . 317812) (-2779 . 317741) (-2780 . 317353) (-2781 . 317200)
- (-2782 . 315938) (-2783 . 315664) (-2784 . 315611) (-2785 . 315537)
- (-2786 . 315470) (-2787 . 315416) (-2788 . 315336) (-2789 . 315265)
- (-2790 . 315064) (-2791 . 314911) (-2792 . 314028) (-2793 . 313454)
- (-2794 . 313385) (-2795 . 313311) (-2796 . 313254) (-2797 . 313145)
- (-2798 . 313068) (-2799 . 312997) (-2800 . 312733) (-2801 . 312580)
- (-2802 . 311307) (-2803 . 310793) (-2804 . 310723) (-2805 . 310649)
- (-2806 . 310571) (-2807 . 309195) (-2808 . 309139) (-2809 . 309059)
- (-2810 . 308988) (-2811 . 308445) (-2812 . 308054) (-2813 . 307952)
- (-2814 . 307807) (-2815 . 307688) (-2816 . 307620) (-2817 . 307496)
- (-2818 . 307412) (-2819 . 307299) (-2820 . 307225) (-2821 . 306991)
- (-2822 . 306920) (-2823 . 306626) (-2824 . 306285) (-2825 . 306190)
- (-2826 . 306067) (-2827 . 306036) (-2828 . 305969) (-2829 . 305791)
- (-2830 . 305617) (-2831 . 305546) (-2832 . 305453) (-2833 . 305295)
- (-2834 . 305196) (-2835 . 305059) (-2836 . 304708) (-2837 . 304613)
- (-2838 . 304480) (-2839 . 304397) (-2840 . 304342) (-2841 . 304218)
- (-2842 . 304147) (-2843 . 304089) (-2844 . 303787) (-2845 . 303531)
- (-2846 . 303285) (-2847 . 302934) (-2848 . 302851) (-2849 . 302605)
- (-2850 . 302519) (-2851 . 302453) (-2852 . 302368) (-2853 . 302210)
- (-2854 . 302003) (-2855 . 301628) (-2856 . 301277) (-2857 . 300647)
- (-2858 . 300545) (-2859 . 300455) (-2860 . 300389) (-2861 . 300302)
- (-2862 . 300225) (-2863 . 299893) (-2864 . 299721) (-2865 . 299611)
- (-2866 . 299260) (-2867 . 299186) (-2868 . 298996) (-2869 . 298930)
- (-2870 . 298858) (-2871 . 298773) (-2872 . 298630) (-2873 . 298514)
- (-2874 . 298410) (-2875 . 298023) (-2876 . 297940) (-2877 . 297867)
- (-2878 . 297801) (-2879 . 297613) (-2880 . 297556) (-2881 . 297413)
- (-2882 . 296909) (-2883 . 296796) (-2884 . 296409) (-2885 . 296335)
- (-2886 . 296265) (-2887 . 296199) (-2888 . 296027) (-2889 . 295885)
- (-2890 . 295802) (-2891 . 295418) (-2892 . 295305) (-2893 . 294918)
- (-2894 . 294700) (-2895 . 294635) (-2896 . 294569) (-2897 . 294387)
- (-2898 . 293792) (-2899 . 293709) (-2900 . 293280) (-2901 . 293152)
- (-2902 . 292769) (-2903 . 292556) (-2904 . 292501) (-2905 . 292435)
- (-2906 . 291833) (-2907 . 291238) (-2908 . 290973) (-2909 . 290863)
- (-2910 . 290765) (-2911 . 290086) (-2912 . 289350) (-2913 . 289257)
- (-2914 . 289163) (-2915 . 289097) (-2916 . 288931) (-2917 . 288653)
- (-2918 . 287902) (-2919 . 287802) (-2920 . 287695) (-2921 . 287344)
- (-2922 . 287057) (-2923 . 286990) (-2924 . 286680) (-2925 . 286614)
- (-2926 . 286030) (-2927 . 285669) (-2928 . 285532) (-2929 . 282233)
- (-2930 . 282077) (-2931 . 281620) (-2932 . 281477) (-2933 . 281132)
- (-2934 . 281066) (-2935 . 280936) (-2936 . 280609) (-2937 . 280518)
- (-2938 . 280444) (-2939 . 280310) (-2940 . 279881) (-2941 . 279827)
- (-2942 . 279760) (-2943 . 279686) (-2944 . 279620) (-2945 . 279543)
- (-2946 . 279410) (-2947 . 279273) (-2948 . 279178) (-2949 . 279044)
- (-2950 . 278411) (-2951 . 278333) (-2952 . 278249) (-2953 . 277924)
- (-2954 . 277858) (-2955 . 277488) (-2956 . 277355) (-2957 . 277303)
- (-2958 . 277235) (-2959 . 277039) (-2960 . 276926) (-2961 . 276287)
- (-2962 . 276204) (-2963 . 275994) (-2964 . 275928) (-2965 . 275750)
- (-2966 . 275418) (-2967 . 275262) (-2968 . 275193) (-2969 . 274997)
- (-2970 . 274878) (-2971 . 274486) (-2972 . 274384) (-2973 . 274298)
- (-2974 . 274232) (-2975 . 274160) (-2976 . 274051) (-2977 . 273963)
- (-2978 . 273892) (-2979 . 273715) (-2980 . 273373) (-2981 . 273173)
- (-2982 . 273087) (-2983 . 273021) (-2984 . 272881) (-2985 . 272772)
- (-2986 . 272684) (-2987 . 272613) (-2988 . 272479) (-2989 . 272087)
- (-2990 . 271957) (-2991 . 271889) (-2992 . 271803) (-2993 . 271737)
- (-2994 . 271547) (-2995 . 271438) (-2996 . 271355) (-2997 . 271184)
- (-2998 . 271101) (-2999 . 270964) (-3000 . 270622) (-3001 . 270553)
- (-3002 . 270305) (-3003 . 270219) (-3004 . 270153) (-3005 . 270037)
- (-3006 . 269928) (-3007 . 269845) (-3008 . 269771) (-3009 . 269688)
- (-3010 . 269557) (-3011 . 269332) (-3012 . 268471) (-3013 . 268220)
- (-3014 . 268134) (-3015 . 268068) (-3016 . 267952) (-3017 . 267843)
- (-3018 . 267205) (-3019 . 267061) (-3020 . 266936) (-3021 . 266823)
- (-3022 . 266293) (-3023 . 266045) (-3024 . 265959) (-3025 . 265893)
- (-3026 . 265777) (-3027 . 265668) (-3028 . 265202) (-3029 . 265065)
- (-3030 . 264943) (-3031 . 264725) (-3032 . 264562) (-3033 . 264314)
- (-3034 . 264228) (-3035 . 264162) (-3036 . 264009) (-3037 . 263900)
- (-3038 . 263520) (-3039 . 263437) (-3040 . 263312) (-3041 . 263094)
- (-3042 . 263021) (-3043 . 262908) (-3044 . 262840) (-3045 . 262754)
- (-3046 . 262688) (-3047 . 262544) (-3048 . 262435) (-3049 . 259508)
- (-3050 . 258744) (-3051 . 258670) (-3052 . 258566) (-3053 . 258347)
- (-3054 . 258250) (-3055 . 257914) (-3056 . 257828) (-3057 . 257762)
- (-3058 . 257688) (-3059 . 257579) (-3060 . 257435) (-3061 . 257267)
- (-3062 . 257083) (-3063 . 256903) (-3064 . 255838) (-3065 . 255752)
- (-3066 . 255686) (-3067 . 255600) (-3068 . 255491) (-3069 . 255347)
- (-3070 . 255195) (-3071 . 255021) (-3072 . 254802) (-3073 . 254582)
- (-3074 . 254496) (-3075 . 254430) (-3076 . 254356) (-3077 . 254247)
- (-3078 . 254082) (-3079 . 253978) (-3080 . 253779) (-3081 . 253599)
- (-3082 . 253516) (-3083 . 253404) (-3084 . 253318) (-3085 . 253252)
- (-3086 . 253178) (-3087 . 253069) (-3088 . 252791) (-3089 . 252630)
- (-3090 . 252392) (-3091 . 252288) (-3092 . 252114) (-3093 . 251720)
- (-3094 . 251623) (-3095 . 251549) (-3096 . 251463) (-3097 . 251397)
- (-3098 . 251323) (-3099 . 251214) (-3100 . 251059) (-3101 . 250862)
- (-3102 . 250721) (-3103 . 250636) (-3104 . 250517) (-3105 . 250337)
- (-3106 . 250263) (-3107 . 250045) (-3108 . 249959) (-3109 . 249893)
- (-3110 . 249749) (-3111 . 249640) (-3112 . 249493) (-3113 . 249303)
- (-3114 . 249159) (-3115 . 248787) (-3116 . 248659) (-3117 . 248444)
- (-3118 . 248370) (-3119 . 248284) (-3120 . 247627) (-3121 . 247474)
- (-3122 . 247365) (-3123 . 247175) (-3124 . 246936) (-3125 . 246853)
- (-3126 . 246725) (-3127 . 246635) (-3128 . 246561) (-3129 . 246527)
- (-3130 . 246441) (-3131 . 245784) (-3132 . 245609) (-3133 . 245500)
- (-3134 . 245264) (-3135 . 245177) (-3136 . 245055) (-3137 . 244965)
- (-3138 . 244807) (-3139 . 244588) (-3140 . 244502) (-3141 . 244374)
- (-3142 . 244221) (-3143 . 244112) (-3144 . 243873) (-3145 . 243790)
- (-3146 . 243565) (-3147 . 243471) (-3148 . 243402) (-3149 . 243316)
- (-3150 . 243193) (-3151 . 243040) (-3152 . 242931) (-3153 . 242736)
- (-3154 . 242514) (-3155 . 242343) (-3156 . 242256) (-3157 . 242197)
- (-3158 . 242111) (-3159 . 241988) (-3160 . 241702) (-3161 . 241593)
- (-3162 . 241422) (-3163 . 241332) (-3164 . 241249) (-3165 . 241163)
- (-3166 . 241022) (-3167 . 240736) (-3168 . 240627) (-3169 . 240532)
- (-3170 . 240380) (-3171 . 240203) (-3172 . 240120) (-3173 . 240009)
- (-3174 . 239740) (-3175 . 239654) (-3176 . 239499) (-3177 . 239088)
- (-3178 . 238979) (-3179 . 238866) (-3180 . 238763) (-3181 . 238611)
- (-3182 . 238420) (-3183 . 238354) (-3184 . 238268) (-3185 . 238124)
- (-3186 . 237838) (-3187 . 237729) (-3188 . 237645) (-3189 . 237586)
- (-3190 . 237306) (-3191 . 237250) (-3192 . 237184) (-3193 . 237111)
- (-3194 . 237002) (-3195 . 236924) (-3196 . 236809) (-3197 . 236750)
- (-3198 . 236346) (-3199 . 236263) (-3200 . 236189) (-3201 . 235956)
- (-3202 . 235829) (-3203 . 235777) (-3204 . 235628) (-3205 . 235519)
- (-3206 . 235425) (-3207 . 235290) (-3208 . 235159) (-3209 . 235076)
- (-3210 . 235004) (-3211 . 234952) (-3212 . 234849) (-3213 . 234017)
- (-3214 . 233911) (-3215 . 233802) (-3216 . 233595) (-3217 . 233501)
- (-3218 . 233442) (-3219 . 233237) (-3220 . 233154) (-3221 . 233123)
- (-3222 . 232724) (-3223 . 232669) (-3224 . 232562) (-3225 . 232492)
- (-3226 . 232291) (-3227 . 232102) (-3228 . 231932) (-3229 . 231862)
- (-3230 . 231810) (-3231 . 231779) (-3232 . 231679) (-3233 . 231598)
- (-3234 . 231283) (-3235 . 231191) (-3236 . 231136) (-3237 . 231048)
- (-3238 . 230950) (-3239 . 230834) (-3240 . 230775) (-3241 . 230669)
- (-3242 . 230504) (-3243 . 230425) (-3244 . 228837) (-3245 . 228648)
- (-3246 . 228556) (-3247 . 228448) (-3248 . 228351) (-3249 . 228235)
- (-3250 . 228173) (-3251 . 228069) (-3252 . 227827) (-3253 . 227679)
- (-3254 . 227600) (-3255 . 227442) (-3256 . 227356) (-3257 . 227233)
- (-3258 . 227199) (-3259 . 227091) (-3260 . 226993) (-3261 . 226889)
- (-3262 . 226540) (-3263 . 226105) (-3264 . 226032) (-3265 . 226001)
- (-3266 . 225899) (-3267 . 225801) (-3268 . 225694) (-3269 . 225506)
- (-3270 . 225403) (-3271 . 225350) (-3272 . 225160) (** . 222071)
- (-3274 . 221998) (-3275 . 221914) (-3276 . 221812) (-3277 . 221699)
- (-3278 . 221592) (-3279 . 221399) (-3280 . 221293) (-3281 . 221240)
- (-3282 . 220867) (-3283 . 220747) (-3284 . 220691) (-3285 . 220589)
- (-3286 . 220380) (-3287 . 220132) (-3288 . 220025) (-3289 . 219968)
- (-3290 . 219674) (-3291 . 219586) (-3292 . 219534) (-3293 . 219254)
- (-3294 . 219181) (-3295 . 219119) (-3296 . 219039) (-3297 . 218941)
- (-3298 . 218758) (-3299 . 218651) (-3300 . 218578) (-3301 . 218405)
- (-3302 . 218333) (-3303 . 218161) (-3304 . 218109) (-3305 . 218027)
- (-3306 . 217976) (-3307 . 217857) (-3308 . 217805) (-3309 . 217732)
- (-3310 . 217698) (-3311 . 217217) (-3312 . 217101) (-3313 . 217000)
- (-3314 . 216893) (-3315 . 216828) (-3316 . 216754) (-3317 . 216604)
- (-3318 . 216512) (-3319 . 216461) (-3320 . 216388) (-3321 . 216354)
- (-3322 . 215694) (-3323 . 215596) (-3324 . 215495) (-3325 . 215388)
- (-3326 . 215360) (-3327 . 215230) (-3328 . 215159) (-3329 . 215089)
- (-3330 . 214869) (-3331 . 214835) (-3332 . 214771) (-3333 . 214519)
- (-3334 . 214418) (-3335 . 214311) (-3336 . 214261) (-3337 . 214209)
- (-3338 . 214135) (-3339 . 214016) (-3340 . 213683) (-3341 . 213649)
- (-3342 . 213528) (-3343 . 213415) (-3344 . 213314) (-3345 . 213207)
- (-3346 . 211761) (-3347 . 211668) (-3348 . 211597) (-3349 . 211568)
- (-3350 . 211384) (-3351 . 208603) (-3352 . 207835) (-3353 . 207714)
- (-3354 . 207493) (-3355 . 207392) (-3356 . 207285) (-3357 . 206793)
- (-3358 . 206681) (-3359 . 206628) (-3360 . 206506) (-3361 . 206362)
- (-3362 . 206328) (-3363 . 205736) (-3364 . 205628) (-3365 . 205321)
- (-3366 . 205220) (-3367 . 205113) (-3368 . 204511) (-3369 . 204193)
- (-3370 . 204122) (-3371 . 204068) (-3372 . 202856) (-9 . 202828)
- (-3374 . 202467) (-3375 . 202433) (-3376 . 202325) (-3377 . 201547)
- (-3378 . 201446) (-3379 . 201339) (-3380 . 200535) (-3381 . 200354)
- (-3382 . 200301) (-3383 . 200124) (-3384 . 200093) (-8 . 200065)
- (-3386 . 199894) (-3387 . 199860) (-3388 . 199701) (-3389 . 199112)
- (-3390 . 199011) (-3391 . 198904) (-3392 . 198788) (-3393 . 198182)
- (-3394 . 198038) (-3395 . 197985) (-3396 . 197924) (-7 . 197896)
- (-3398 . 197725) (-3399 . 197569) (-3400 . 197535) (-3401 . 197297)
- (-3402 . 196800) (-3403 . 196699) (-3404 . 196592) (-3405 . 195938)
- (-3406 . 195780) (-3407 . 195727) (-3408 . 195546) (-3409 . 195372)
- (-3410 . 195113) (-3411 . 195016) (-3412 . 194685) (-3413 . 194517)
- (-3414 . 194269) (-3415 . 194168) (-3416 . 194061) (-3417 . 193475)
- (-3418 . 193311) (-3419 . 192637) (-3420 . 192584) (-3421 . 192523)
- (-3422 . 192264) (-3423 . 192173) (-3424 . 192054) (-3425 . 191932)
- (-3426 . 191684) (-3427 . 191569) (-3428 . 191462) (-3429 . 191388)
- (-3430 . 191331) (-3431 . 191167) (-3432 . 190900) (-3433 . 190847)
- (-3434 . 190775) (-3435 . 190643) (-3436 . 190448) (-3437 . 190357)
- (-3438 . 190118) (-3439 . 189819) (-3440 . 189704) (-3441 . 189597)
- (-3442 . 189545) (-3443 . 189337) (-3444 . 189284) (-3445 . 188908)
- (-3446 . 188851) (-3447 . 188656) (-3448 . 188601) (-3449 . 188397)
- (-3450 . 187774) (-3451 . 187723) (-3452 . 187616) (-3453 . 187564)
- (-3454 . 187375) (-3455 . 187322) (-3456 . 187269) (-3457 . 187210)
- (-3458 . 186613) (-3459 . 186561) (-3460 . 186350) (-3461 . 185897)
- (-3462 . 185648) (-3463 . 185531) (-3464 . 185424) (-3465 . 185350)
- (-3466 . 185192) (-3467 . 185139) (-3468 . 185011) (-3469 . 184933)
- (-3470 . 184881) (-3471 . 184688) (-3472 . 184528) (-3473 . 184470)
- (-3474 . 184363) (-3475 . 184308) (-3476 . 184147) (-3477 . 184094)
- (-3478 . 183939) (-3479 . 183792) (-3480 . 183740) (-3481 . 183461)
- (-3482 . 183312) (-3483 . 183211) (-3484 . 183104) (-3485 . 183052)
- (-3486 . 182891) (-3487 . 182838) (-3488 . 182785) (-3489 . 182456)
- (-3490 . 182404) (-3491 . 182225) (-3492 . 181896) (-3493 . 181795)
- (-3494 . 181688) (-3495 . 181636) (-3496 . 181478) (-3497 . 181425)
- (-3498 . 181281) (-3499 . 181128) (-3500 . 180636) (-3501 . 180583)
- (-3502 . 180505) (-3503 . 180344) (-3504 . 180243) (-3505 . 180174)
- (-3506 . 180067) (-3507 . 180015) (-3508 . 179875) (-3509 . 179822)
- (-3510 . 170260) (-3511 . 169768) (-3512 . 169699) (-3513 . 169558)
- (-3514 . 169415) (-3515 . 169299) (-3516 . 169192) (-3517 . 169105)
- (-3518 . 169035) (-3519 . 168907) (-3520 . 168854) (-3521 . 168703)
- (-3522 . 168185) (-3523 . 167955) (-3524 . 167752) (-3525 . 167609)
- (-3526 . 166874) (-3527 . 166767) (-3528 . 166316) (-3529 . 166188)
- (-3530 . 166135) (-3531 . 166084) (-3532 . 165700) (-3533 . 165632)
- (-3534 . 165473) (-3535 . 165329) (-3536 . 165186) (-3537 . 165061)
- (-3538 . 164984) (-3539 . 164877) (-3540 . 164818) (-3541 . 164604)
- (-3542 . 164476) (-3543 . 164405) (-3544 . 164355) (-3545 . 164284)
- (-3546 . 163748) (-3547 . 163498) (-3548 . 163217) (-3549 . 163092)
- (-3550 . 162985) (-3551 . 161883) (-3552 . 161611) (-3553 . 161468)
- (-3554 . 161397) (-3555 . 161346) (-3556 . 161275) (-3557 . 161132)
- (-3558 . 160989) (-3559 . 160711) (-3560 . 160393) (-3561 . 160168)
- (-3562 . 160028) (-3563 . 159957) (-3564 . 159839) (-3565 . 159648)
- (-3566 . 159595) (-3567 . 159222) (-3568 . 159079) (-3569 . 159007)
- (-3570 . 158956) (-3571 . 158770) (-3572 . 158736) (-3573 . 158370)
- (-3574 . 157840) (-3575 . 157722) (-3576 . 157648) (-3577 . 157526)
- (-3578 . 157249) (-3579 . 157107) (-3580 . 157035) (-3581 . 156837)
- (-3582 . 156718) (-3583 . 156663) (-3584 . 156501) (-3585 . 156283)
- (-3586 . 156158) (-3587 . 155899) (-3588 . 155582) (-3589 . 155437)
- (-3590 . 155360) (-3591 . 155217) (-3592 . 155098) (-3593 . 154385)
- (-3594 . 154324) (-3595 . 154118) (-3596 . 153900) (-3597 . 153742)
- (-3598 . 153436) (-3599 . 153145) (-3600 . 152931) (-3601 . 152178)
- (-3602 . 152125) (-3603 . 152011) (-3604 . 151917) (-3605 . 151602)
- (-3606 . 151442) (-3607 . 151048) (-3608 . 150050) (-3609 . 149835)
- (-3610 . 149518) (-3611 . 149200) (-3612 . 149037) (-3613 . 148984)
- (-3614 . 148863) (-3615 . 148769) (-3616 . 148260) (-3617 . 148187)
- (-3618 . 148007) (-3619 . 147128) (-3620 . 146961) (-3621 . 146535)
- (-3622 . 145935) (-3623 . 145747) (-3624 . 145694) (-3625 . 145576)
- (-3626 . 145469) (-3627 . 145177) (-3628 . 145125) (-3629 . 145006)
- (-3630 . 144791) (-3631 . 144737) (-3632 . 144685) (-3633 . 144514)
- (-3634 . 144373) (-3635 . 144213) (-3636 . 144160) (-3637 . 144048)
- (-3638 . 143941) (-3639 . 143819) (-3640 . 143767) (-3641 . 143648)
- (-3642 . 143444) (-3643 . 143390) (-3644 . 143338) (-3645 . 143123)
- (-3646 . 142883) (-3647 . 142830) (-3648 . 142712) (-3649 . 142660)
- (-3650 . 142500) (-3651 . 142448) (-3652 . 142333) (-3653 . 141469)
- (-3654 . 141089) (-3655 . 141026) (-3656 . 140717) (-3657 . 140470)
- (-3658 . 140417) (-3659 . 140312) (-3660 . 140260) (-3661 . 140080)
- (-3662 . 140002) (-3663 . 139864) (-3664 . 139835) (-3665 . 139418)
- (-3666 . 139355) (-3667 . 139269) (-3668 . 139022) (-3669 . 138969)
- (-3670 . 138886) (-3671 . 138834) (-3672 . 138651) (-3673 . 138589)
- (-3674 . 138451) (-3675 . 138313) (-3676 . 138144) (-3677 . 137768)
- (-3678 . 137577) (-3679 . 137226) (-3680 . 137012) (-3681 . 136959)
- (-3682 . 136855) (-3683 . 136803) (-3684 . 136726) (-3685 . 136625)
- (-3686 . 136407) (-3687 . 136097) (-3688 . 136068) (-3689 . 135692)
- (-3690 . 135536) (-3691 . 135391) (-3692 . 135252) (-3693 . 135199)
- (-3694 . 134233) (-3695 . 133960) (-3696 . 133908) (-3697 . 133831)
- (-3698 . 133730) (-3699 . 133473) (-3700 . 133233) (-3701 . 133204)
- (-3702 . 132994) (-3703 . 132841) (-3704 . 132759) (-3705 . 132433)
- (-3706 . 132219) (-3707 . 132166) (-3708 . 131941) (-3709 . 131792)
- (-3710 . 131400) (-3711 . 131323) (-3712 . 131256) (-3713 . 131152)
- (-3714 . 131096) (-3715 . 130794) (-3716 . 130649) (-3717 . 130567)
- (-3718 . 130327) (-3719 . 130035) (-3720 . 129982) (-3721 . 129898)
- (-3722 . 129846) (-3723 . 129659) (-3724 . 129552) (-3725 . 129455)
- (-3726 . 129290) (-3727 . 128899) (-3728 . 128740) (-3729 . 128625)
- (-3730 . 128495) (-3731 . 128370) (-3732 . 128156) (-3733 . 128103)
- (-3734 . 127754) (-3735 . 127514) (-3736 . 127417) (-3737 . 127147)
- (-3738 . 127021) (-3739 . 126961) (-3740 . 126630) (-3741 . 126602)
- (-3742 . 126478) (-3743 . 126339) (-3744 . 126286) (-3745 . 126212)
- (-3746 . 126005) (-3747 . 125879) (-3748 . 125690) (-3749 . 124989)
- (-3750 . 123985) (-3751 . 123914) (-3752 . 123768) (-3753 . 123554)
- (-3754 . 123501) (-3755 . 123403) (-3756 . 123375) (-3757 . 123291)
- (-3758 . 123162) (-3759 . 121970) (-3760 . 121852) (-3761 . 121781)
- (-3762 . 121598) (-3763 . 121446) (-3764 . 121303) (-3765 . 120994)
- (-3766 . 120942) (-3767 . 120868) (-3768 . 120840) (-3769 . 120718)
- (-3770 . 120586) (-3771 . 120525) (-3772 . 120313) (-3773 . 120143)
- (-3774 . 120028) (-3775 . 119883) (-3776 . 119831) (-3777 . 119737)
- (-3778 . 119709) (-3779 . 119608) (-3780 . 119462) (-3781 . 119405)
- (-3782 . 118792) (-3783 . 118583) (-3784 . 118359) (-3785 . 118330)
- (-3786 . 118224) (-3787 . 118094) (-3788 . 117952) (-3789 . 117899)
- (-3790 . 117783) (-3791 . 117682) (-3792 . 117625) (-3793 . 117198)
- (-3794 . 116822) (-3795 . 116362) (-3796 . 115985) (-3797 . 115752)
- (-3798 . 115699) (-3799 . 115586) (-3800 . 115513) (-3801 . 115419)
- (-3802 . 115357) (-3803 . 115253) (-3804 . 115176) (-3805 . 114641)
- (-3806 . 114532) (-3807 . 113611) (-3808 . 113217) (-3809 . 112957)
- (-3810 . 112815) (-3811 . 112721) (-3812 . 112627) (-3813 . 112427)
- (-3814 . 112328) (-3815 . 112224) (-3816 . 112164) (-3817 . 111607)
- (-3818 . 111492) (-3819 . 111464) (-3820 . 111284) (-3821 . 111004)
- (-3822 . 110776) (-3823 . 110723) (-3824 . 110629) (-3825 . 110471)
- (-3826 . 110305) (-3827 . 110187) (-3828 . 109630) (-3829 . 109561)
- (-3830 . 109533) (-3831 . 109440) (-3832 . 109282) (-3833 . 109116)
- (-3834 . 108156) (-3835 . 107990) (-3836 . 107864) (-3837 . 107795)
- (-3838 . 107742) (-3839 . 107672) (-3840 . 107569) (-3841 . 107541)
- (-3842 . 107448) (-3843 . 107290) (-3844 . 107096) (-3845 . 107019)
- (-3846 . 106409) (-3847 . 106340) (-3848 . 106280) (-3849 . 106180)
- (-3850 . 106152) (-3851 . 106059) (-3852 . 105901) (-3853 . 105735)
- (-3854 . 105681) (-3855 . 105457) (-3856 . 105391) (-3857 . 105332)
- (-3858 . 105235) (-3859 . 105207) (-3860 . 105119) (-3861 . 104961)
- (-3862 . 104769) (-3863 . 104644) (-3864 . 104584) (-3865 . 104454)
- (-3866 . 104374) (-3867 . 101959) (-3868 . 101801) (-3869 . 101661)
- (-3870 . 101414) (-3871 . 99300) (-3872 . 99083) (-3873 . 99052)
- (-3874 . 98993) (-3875 . 98842) (-3876 . 98814) (-3877 . 98754)
- (-3878 . 98686) (-3879 . 98619) (-3880 . 98476) (-3881 . 98229)
- (-3882 . 98077) (-3883 . 98027) (-3884 . 97967) (-3885 . 97585)
- (-3886 . 97557) (-3887 . 97526) (-3888 . 97474) (-3889 . 97420)
- (-3890 . 97368) (-3891 . 97210) (-3892 . 97083) (-3893 . 96836)
- (-3894 . 96648) (-3895 . 96577) (-3896 . 96518) (-3897 . 96275)
- (-3898 . 96247) (-3899 . 96192) (-3900 . 96034) (-3901 . 95904)
- (-3902 . 95786) (-3903 . 95633) (-3904 . 95326) (-3905 . 95282)
- (-3906 . 95139) (-3907 . 95080) (-3908 . 94617) (-3909 . 94549)
- (-3910 . 94466) (-3911 . 94414) (-3912 . 94256) (-3913 . 94132)
- (-3914 . 93271) (-3915 . 93098) (-3916 . 93027) (-3917 . 92944)
- (-3918 . 92802) (-3919 . 92486) (-3920 . 92418) (-3921 . 92255)
- (-3922 . 92203) (-3923 . 92045) (-3924 . 91921) (-3925 . 91889)
- (-3926 . 91716) (-3927 . 91664) (-3928 . 91581) (-3929 . 91483)
- (-3930 . 90876) (-3931 . 90796) (-3932 . 90682) (-3933 . 90524)
- (-3934 . 90418) (-3935 . 90068) (-3936 . 90019) (-3937 . 89873)
- (-3938 . 89779) (-3939 . 89170) (-3940 . 88763) (-3941 . 88686)
- (-3942 . 88528) (-3943 . 88422) (-3944 . 88195) (-3945 . 88138)
- (-3946 . 88086) (-3947 . 88034) (-3948 . 87918) (-3949 . 86843)
- (-3950 . 86481) (-3951 . 85265) (-3952 . 85107) (-3953 . 85004)
- (-3954 . 84904) (-3955 . 84393) (-3956 . 84341) (-3957 . 84289)
- (-3958 . 84192) (-3959 . 83607) (-3960 . 83425) (-3961 . 83240)
- (-3962 . 83140) (-3963 . 82982) (-3964 . 82829) (-3965 . 82729)
- (-3966 . 82576) (-3967 . 82460) (-3968 . 82342) (-3969 . 82241)
- (-3970 . 81925) (-3971 . 81382) (-3972 . 81282) (-3973 . 81208)
- (-3974 . 81052) (-3975 . 79269) (-3976 . 79102) (-3977 . 79007)
- (-3978 . 78874) (-3979 . 78777) (-3980 . 78439) (-3981 . 78260)
- (-3982 . 77917) (-3983 . 77818) (-3984 . 77744) (-3985 . 77588)
- (-3986 . 77474) (-3987 . 77307) (-3988 . 77212) (-3989 . 76931)
- (-3990 . 76787) (-3991 . 76456) (-3992 . 76234) (-3993 . 76153)
- (-3994 . 75337) (-3995 . 75282) (-3996 . 75096) (-3997 . 74949)
- (-3998 . 73879) (-3999 . 73780) (-4000 . 73657) (-4001 . 73521)
- (-4002 . 73250) (-4003 . 73197) (-4004 . 72870) (-4005 . 72648)
- (-4006 . 72570) (-4007 . 72515) (-4008 . 72352) (-4009 . 72256)
- (-4010 . 72138) (-4011 . 72079) (-4012 . 72023) (-4013 . 71157)
- (-4014 . 71027) (-4015 . 70805) (-4016 . 70698) (-4017 . 70643)
- (-4018 . 70564) (-4019 . 70459) (-4020 . 70335) (-4021 . 70276)
- (-4022 . 70220) (-4023 . 70021) (-4024 . 69862) (-4025 . 69330)
- (-4026 . 69111) (-4027 . 68949) (-4028 . 68894) (-4029 . 68812)
- (-4030 . 68725) (-4031 . 68579) (-4032 . 68551) (-4033 . 68492)
- (-4034 . 68320) (-4035 . 67945) (-4036 . 66780) (-4037 . 66561)
- (-4038 . 66453) (-4039 . 66382) (-4040 . 65949) (-4041 . 65790)
- (-4042 . 65761) (-4043 . 65590) (-4044 . 65562) (-4045 . 65503)
- (-12 . 65331) (-4047 . 65275) (-4048 . 65220) (-4049 . 65001)
- (-4050 . 64865) (-4051 . 64763) (-4052 . 64555) (-4053 . 64473)
- (-4054 . 64416) (-4055 . 64289) (-4056 . 64261) (-4057 . 64205)
- (-4058 . 64153) (-4059 . 64098) (-4060 . 63879) (-4061 . 63743)
- (-4062 . 63639) (-4063 . 63557) (-4064 . 63475) (-4065 . 63358)
- (-4066 . 63213) (-4067 . 63185) (-4068 . 63129) (-4069 . 63026)
- (-4070 . 62948) (-4071 . 62729) (-4072 . 62606) (-4073 . 62415)
- (-4074 . 62333) (-4075 . 62261) (-4076 . 62108) (-4077 . 61998)
- (-4078 . 61801) (-4079 . 61492) (-4080 . 61407) (-4081 . 61330)
- (-4082 . 61111) (-4083 . 61012) (-4084 . 60916) (-4085 . 60810)
- (-4086 . 60733) (-4087 . 60570) (-4088 . 60518) (-4089 . 60391)
- (-4090 . 60245) (-4091 . 60168) (-4092 . 60067) (-4093 . 59918)
- (-4094 . 59858) (-4095 . 59721) (-4096 . 59659) (-4097 . 59582)
- (-4098 . 59489) (-4099 . 59437) (-4100 . 59291) (-4101 . 59142)
- (-4102 . 59062) (-4103 . 59007) (-4104 . 58908) (-4105 . 58831)
- (-4106 . 58594) (-4107 . 58457) (-4108 . 58282) (-4109 . 58250)
- (-4110 . 58135) (-4111 . 57939) (-4112 . 57887) (-4113 . 57759)
- (-4114 . 57469) (-4115 . 57374) (-4116 . 57319) (-4117 . 57164)
- (-4118 . 57027) (-4119 . 56874) (-4120 . 56842) (-4121 . 56526)
- (-4122 . 56474) (-4123 . 56422) (-4124 . 56369) (-4125 . 56299)
- (-4126 . 56244) (-4127 . 56089) (-4128 . 56021) (-4129 . 55868)
- (-4130 . 55836) (-4131 . 55717) (-4132 . 54536) (-4133 . 54484)
- (-4134 . 54432) (-4135 . 54153) (-4136 . 54100) (-4137 . 54005)
- (-4138 . 53950) (-4139 . 53846) (-4140 . 53578) (-4141 . 53462)
- (-4142 . 53288) (-4143 . 53256) (-4144 . 52889) (-4145 . 52861)
- (-4146 . 52809) (* . 48263) (-4148 . 48144) (-4149 . 48074)
- (-4150 . 47920) (-4151 . 47325) (-4152 . 47209) (-4153 . 47017)
- (-4154 . 46985) (-4155 . 46705) (-4156 . 46653) (-4157 . 46555)
- (-4158 . 46463) (-4159 . 46368) (-4160 . 46075) (-4161 . 45969)
- (-4162 . 45853) (-4163 . 45554) (-4164 . 45522) (-4165 . 45243)
- (-4166 . 45104) (-4167 . 44809) (-4168 . 44739) (-4169 . 44480)
- (-4170 . 44402) (-4171 . 44349) (-4172 . 44154) (-4173 . 44122)
- (-4174 . 44029) (-4175 . 43818) (-4176 . 43624) (-4177 . 43529)
- (-4178 . 43501) (-4179 . 43405) (-4180 . 43278) (-4181 . 43193)
- (-4182 . 43078) (-4183 . 43046) (-4184 . 42787) (-4185 . 42301)
- (-4186 . 42208) (-4187 . 42106) (-4188 . 41902) (-4189 . 41714)
- (-4190 . 41644) (-4191 . 41594) (-4192 . 41498) (-4193 . 41182)
- (-4194 . 41056) (-4195 . 41027) (-4196 . 40934) (-4197 . 40832)
- (-4198 . 40687) (-4199 . 40141) (-4200 . 40086) (-4201 . 39911)
- (-4202 . 39815) (-4203 . 37653) (-4204 . 37598) (-4205 . 37519)
- (-4206 . 37406) (-4207 . 37335) (-4208 . 36419) (-4209 . 36274)
- (-4210 . 35795) (-4211 . 35675) (-4212 . 35429) (-4213 . 35330)
- (-4214 . 34678) (-4215 . 34546) (-4216 . 34433) (-4217 . 34341)
- (-4218 . 34262) (-4219 . 33972) (-4220 . 33917) (-4221 . 33745)
- (-4222 . 33639) (-4223 . 33363) (-4224 . 33048) (-4225 . 32736)
- (-4226 . 32623) (-4227 . 32461) (-4228 . 32330) (-4229 . 31869)
- (-4230 . 31799) (-4231 . 31608) (-4232 . 31484) (-4233 . 31197)
- (-4234 . 31011) (-4235 . 30898) (-4236 . 30538) (-4237 . 30409)
- (-4238 . 29982) (-4239 . 29948) (-4240 . 29914) (-4241 . 29621)
- (-4242 . 29497) (-4243 . 29378) (-4244 . 28833) (-4245 . 28665)
- (-4246 . 28543) (-4247 . 28427) (-4248 . 28269) (-4249 . 27839)
- (-4250 . 27760) (-4251 . 27723) (-4252 . 27689) (-4253 . 27286)
- (-4254 . 26919) (-4255 . 26838) (-4256 . 26786) (-4257 . 26566)
- (-4258 . 26165) (-4259 . 26028) (-4260 . 25837) (-4261 . 25727)
- (-4262 . 25606) (-4263 . 25527) (-4264 . 25490) (-4265 . 25272)
- (-4266 . 24384) (-4267 . 24261) (-4268 . 24043) (-4269 . 23991)
- (-4270 . 23814) (-4271 . 23680) (-4272 . 23651) (-4273 . 23536)
- (-4274 . 23407) (-4275 . 23370) (-4276 . 23220) (-4277 . 22878)
- (-4278 . 22776) (-4279 . 22699) (-4280 . 22647) (-4281 . 22477)
- (-4282 . 22343) (-4283 . 22276) (-4284 . 22150) (-4285 . 22047)
- (-4286 . 21918) (-4287 . 21881) (-4288 . 21751) (-4289 . 21582)
- (-4290 . 21218) (-4291 . 21165) (-4292 . 21066) (-4293 . 20634)
- (-4294 . 20334) (-4295 . 20257) (-4296 . 20089) (-4297 . 20055)
- (-4298 . 19925) (-4299 . 19696) (-4300 . 19158) (-4301 . 19057)
- (-4302 . 18944) (-4303 . 18737) (-4304 . 18638) (-4305 . 18338)
- (-4306 . 18266) (-4307 . 18137) (-4308 . 18103) (-4309 . 18000)
- (-4310 . 17746) (-4311 . 17668) (-4312 . 17555) (-4313 . 17482)
- (-4314 . 17364) (-4315 . 17011) (-4316 . 16919) (-4317 . 16839)
- (-4318 . 16710) (-4319 . 16655) (-4320 . 16474) (-4321 . 16121)
- (-4322 . 16043) (-4323 . 15985) (-4324 . 15907) (-4325 . 15789)
- (-4326 . 15559) (-4327 . 15486) (-4328 . 15430) (-4329 . 14992)
- (-4330 . 14803) (-4331 . 14643) (-4332 . 13615) (-4333 . 13519)
- (-4334 . 12908) (-4335 . 12850) (-4336 . 12769) (-4337 . 12709)
- (-4338 . 12479) (-4339 . 12406) (-4340 . 12040) (-4341 . 11778)
- (-4342 . 11530) (-4343 . 11427) (-4344 . 11109) (-4345 . 10924)
- (-4346 . 10874) (-4347 . 10647) (-4348 . 10350) (-4349 . 10237)
- (-4350 . 10164) (-4351 . 10057) (-4352 . 9809) (-4353 . 9628)
- (-4354 . 9416) (-4355 . 9317) (-4356 . 9085) (-4357 . 9022)
- (-4358 . 8923) (-4359 . 8810) (-4360 . 8738) (-4361 . 8486)
- (-4362 . 8326) (-4363 . 7752) (-4364 . 7674) (-4365 . 7071)
- (-4366 . 6906) (-4367 . 6590) (-4368 . 6516) (-4369 . 5995)
- (-4370 . 5923) (-4371 . 5536) (-4372 . 4298) (-4373 . 4246)
- (-4374 . 4083) (-4375 . 3564) (-4376 . 3468) (-4377 . 3408)
- (-4378 . 3174) (-4379 . 3016) (-4380 . 2943) (-4381 . 2597)
- (-4382 . 2493) (-4383 . 2268) (-4384 . 2213) (-4385 . 2071)
- (-4386 . 293) (-4387 . 197) (-4388 . 30)) \ No newline at end of file
+ (-12 (-4 *4 (-556)) (-5 *2 (-1256 (-684 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-684 *4)) (-4 *5 (-653 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-556))
+ (-5 *2 (-2 (|:| -1735 (-684 *5)) (|:| |vec| (-1256 (-637 (-915))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-915)) (-4 *3 (-653 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-58 *3)) (-4 *3 (-1207))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-1207)) (-5 *1 (-58 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-546)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) (-4 *3 (-372 *4))
+ (-4 *5 (-372 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-546)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) (-4 *5 (-372 *4))
+ (-4 *3 (-372 *4)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-1169))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-637 (-1068 *4 *5 *2))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-886 *4))))
+ (-4 *2 (-13 (-421 *5) (-882 *4) (-611 (-886 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-637 (-1068 *5 *6 *2))) (-5 *4 (-915)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-886 *5))))
+ (-4 *2 (-13 (-421 *6) (-882 *5) (-611 (-886 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-51)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 (-684 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-637 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-637 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-418 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-418 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-113)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846))
+ (-4 *5 (-1034 (-546))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-421 *5))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *5 (-608 $)) $))
+ (-15 -3387 ((-1118 *5 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *5 (-608 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-546))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-1163 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $))
+ (-15 -3387 ((-1118 *4 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *4 (-608 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 *2))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $))
+ (-15 -3387 ((-1118 *4 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *4 (-608 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-637 (-608 *2)))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *4 (-608 $)) $))
+ (-15 -3387 ((-1118 *4 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *4 (-608 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-298)
+ (-10 -8 (-15 -3388 ((-1118 *3 (-608 $)) $))
+ (-15 -3387 ((-1118 *3 (-608 $)) $))
+ (-15 -4361 ($ (-1118 *3 (-608 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1232 *4)) (-5 *2 (-1262))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-407 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-5 *2 (-2 (|:| -4275 *3) (|:| -2233 *4))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-546)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4))
+ (-4 *3 (-13 (-846) (-556))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-846) (-556)))
+ (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1163 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-846) (-556)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-942 (-546))) (-5 *3 (-1169)) (-5 *4 (-1082 (-407 (-546))))
+ (-5 *1 (-30)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-637 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-556))) (-5 *2 (-637 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-846) (-556))) (-5 *2 (-637 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1163 *1)) (-5 *3 (-1169)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-556)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-556))))))
+((-1290 . 727389) (-1291 . 726962) (-1292 . 726841) (-1293 . 726726)
+ (-1294 . 726600) (-1295 . 726470) (-1296 . 726401) (-1297 . 726347)
+ (-1298 . 726212) (-1299 . 726136) (-1300 . 725980) (-1301 . 725752)
+ (-1302 . 724788) (-1303 . 724541) (-1304 . 724239) (-1305 . 723937)
+ (-1306 . 723635) (-1307 . 723297) (-1308 . 723205) (-1309 . 723113)
+ (-1310 . 723021) (-1311 . 722929) (-1312 . 722837) (-1313 . 722745)
+ (-1314 . 722650) (-1315 . 722555) (-1316 . 722463) (-1317 . 722371)
+ (-1318 . 722279) (-1319 . 722187) (-1320 . 722095) (-1321 . 721993)
+ (-1322 . 721891) (-1323 . 721789) (-1324 . 721697) (-1325 . 721630)
+ (-1326 . 721579) (-1327 . 721527) (-1328 . 721476) (-1329 . 721425)
+ (-1330 . 721355) (-1331 . 720917) (-1332 . 720715) (-1333 . 720688)
+ (-1334 . 720565) (-1335 . 720442) (-1336 . 720298) (-1337 . 720128)
+ (-1338 . 720004) (-1339 . 719765) (-1340 . 719692) (-1341 . 719551)
+ (-1342 . 719500) (-1343 . 719451) (-1344 . 719381) (-1345 . 719246)
+ (-1346 . 719111) (-1347 . 718883) (-1348 . 718635) (-1349 . 718455)
+ (-1350 . 718284) (-1351 . 718207) (-1352 . 718133) (-1353 . 717978)
+ (-1354 . 717823) (-1355 . 717637) (-1356 . 717454) (-1357 . 717277)
+ (-1358 . 717220) (-1359 . 717164) (-1360 . 717108) (-1361 . 717034)
+ (-1362 . 716956) (-1363 . 716925) (-1364 . 716856) (-1365 . 716782)
+ (-1366 . 716726) (-1367 . 716655) (-1368 . 716581) (-1369 . 716507)
+ (-1370 . 716455) (-1371 . 716403) (-1372 . 716351) (-1373 . 716228)
+ (-1374 . 715906) (-1375 . 715818) (-1376 . 715717) (-1377 . 715596)
+ (-1378 . 715515) (-1379 . 715434) (-1380 . 715277) (-1381 . 715126)
+ (-1382 . 715048) (-1383 . 714990) (-1384 . 714917) (-1385 . 714852)
+ (-1386 . 714787) (-1387 . 714725) (-1388 . 714652) (-1389 . 714536)
+ (-1390 . 714484) (-1391 . 714429) (-1392 . 714377) (-1393 . 714325)
+ (-1394 . 714297) (-1395 . 714269) (-1396 . 714241) (-1397 . 714197)
+ (-1398 . 714126) (-1399 . 714074) (-1400 . 714025) (-1401 . 713973)
+ (-1402 . 713921) (-1403 . 713805) (-1404 . 713689) (-1405 . 713597)
+ (-1406 . 713505) (-1407 . 713382) (-1408 . 713323) (-1409 . 713264)
+ (-1410 . 713205) (-1411 . 713177) (-1412 . 713149) (-1413 . 713121)
+ (-1414 . 713093) (-1415 . 712983) (-1416 . 712931) (-1417 . 712879)
+ (-1418 . 712827) (-1419 . 712775) (-1420 . 712723) (-1421 . 712671)
+ (-1422 . 712643) (-1423 . 712540) (-1424 . 712488) (-1425 . 712322)
+ (-1426 . 712138) (-1427 . 711927) (-1428 . 711812) (-1429 . 711579)
+ (-1430 . 711480) (-1431 . 711386) (-1432 . 711271) (-1433 . 710873)
+ (-1434 . 710655) (-1435 . 710606) (-1436 . 710578) (-1437 . 710487)
+ (-1438 . 710375) (-1439 . 710263) (-1440 . 710151) (-1441 . 710039)
+ (-1442 . 709927) (-1443 . 709815) (-1444 . 709642) (-1445 . 709566)
+ (-1446 . 709384) (-1447 . 709326) (-1448 . 709268) (-1449 . 708930)
+ (-1450 . 708645) (-1451 . 708561) (-1452 . 708428) (-1453 . 708370)
+ (-1454 . 708318) (-1455 . 708263) (-1456 . 708211) (-1457 . 708137)
+ (-1458 . 708063) (-1459 . 707982) (-1460 . 707901) (-1461 . 707846)
+ (-1462 . 707772) (-1463 . 707698) (-1464 . 707624) (-1465 . 707547)
+ (-1466 . 707492) (-1467 . 707433) (-1468 . 707334) (-1469 . 707235)
+ (-1470 . 707136) (-1471 . 707037) (-1472 . 706938) (-1473 . 706839)
+ (-1474 . 706740) (-1475 . 706626) (-1476 . 706512) (-1477 . 706398)
+ (-1478 . 706284) (-1479 . 706170) (-1480 . 706056) (-1481 . 705939)
+ (-1482 . 705863) (-1483 . 705787) (-1484 . 705400) (-1485 . 705054)
+ (-1486 . 704952) (-1487 . 704690) (-1488 . 704588) (-1489 . 704383)
+ (-1490 . 704270) (-1491 . 704168) (-1492 . 704011) (-1493 . 703922)
+ (-1494 . 703828) (-1495 . 703748) (-1496 . 703673) (-1497 . 703613)
+ (-1498 . 703554) (-1499 . 703495) (-1500 . 703392) (-7 . 703364) (-8 . 703336)
+ (-9 . 703308) (-1504 . 703189) (-1505 . 703107) (-1506 . 703025)
+ (-1507 . 702943) (-1508 . 702861) (-1509 . 702779) (-1510 . 702685)
+ (-1511 . 702615) (-1512 . 702545) (-1513 . 702454) (-1514 . 702360)
+ (-1515 . 702278) (-1516 . 702196) (-1517 . 701705) (-1518 . 701152)
+ (-1519 . 700942) (-1520 . 700867) (-1521 . 700613) (-1522 . 700386)
+ (-1523 . 700176) (-1524 . 700046) (-1525 . 699965) (-1526 . 699816)
+ (-1527 . 699461) (-1528 . 699169) (-1529 . 698877) (-1530 . 698585)
+ (-1531 . 698293) (-1532 . 698234) (-1533 . 698127) (-1534 . 697699)
+ (-1535 . 697601) (-1536 . 697441) (-1537 . 697242) (-1538 . 697106)
+ (-1539 . 697006) (-1540 . 696906) (-1541 . 696812) (-1542 . 696753)
+ (-1543 . 696411) (-1544 . 696310) (-1545 . 696191) (-1546 . 695975)
+ (-1547 . 695794) (-1548 . 695627) (-1549 . 695412) (-1550 . 694973)
+ (-1551 . 694864) (-1552 . 694749) (-1553 . 694680) (-1554 . 694611)
+ (-1555 . 694542) (-1556 . 694476) (-1557 . 694351) (-1558 . 694134)
+ (-1559 . 694056) (-1560 . 694006) (-1561 . 693935) (-1562 . 693792)
+ (-1563 . 693651) (-1564 . 693570) (-1565 . 693489) (-1566 . 693433)
+ (-1567 . 693377) (-1568 . 693304) (-1569 . 693164) (-1570 . 693111)
+ (-1571 . 693059) (-1572 . 693007) (-1573 . 692855) (-1574 . 692737)
+ (-1575 . 692619) (-1576 . 692501) (-1577 . 692368) (-1578 . 692087)
+ (-1579 . 691951) (-1580 . 691895) (-1581 . 691839) (-1582 . 691780)
+ (-1583 . 691721) (-1584 . 691665) (-1585 . 691609) (-1586 . 691412)
+ (-1587 . 689070) (-1588 . 688943) (-1589 . 688797) (-1590 . 688669)
+ (-1591 . 688617) (-1592 . 688565) (-1593 . 688513) (-1594 . 684474)
+ (-1595 . 684379) (-1596 . 684240) (-1597 . 684031) (-1598 . 683929)
+ (-1599 . 683827) (-1600 . 682911) (-1601 . 682834) (-1602 . 682705)
+ (-1603 . 682578) (-1604 . 682501) (-1605 . 682424) (-1606 . 682297)
+ (-1607 . 682170) (-1608 . 682004) (-1609 . 681877) (-1610 . 681750)
+ (-1611 . 681533) (-1612 . 681095) (-1613 . 680729) (-1614 . 680622)
+ (-1615 . 680403) (-1616 . 680334) (-1617 . 680275) (-1618 . 680194)
+ (-1619 . 680083) (-1620 . 680017) (-1621 . 679951) (-1622 . 679877)
+ (-1623 . 679805) (-1624 . 679428) (-1625 . 679376) (-1626 . 679317)
+ (-1627 . 679213) (-1628 . 679109) (-1629 . 679002) (-1630 . 678895)
+ (-1631 . 678788) (-1632 . 678681) (-1633 . 678574) (-1634 . 678467)
+ (-1635 . 678360) (-1636 . 678253) (-1637 . 678146) (-1638 . 678039)
+ (-1639 . 677932) (-1640 . 677825) (-1641 . 677718) (-1642 . 677611)
+ (-1643 . 677504) (-1644 . 677397) (-1645 . 677290) (-1646 . 677183)
+ (-1647 . 677076) (-1648 . 676969) (-1649 . 676862) (-1650 . 676755)
+ (-1651 . 676648) (-1652 . 676541) (-1653 . 676434) (-1654 . 676327)
+ (-1655 . 676148) (-1656 . 676026) (-1657 . 675775) (-1658 . 675472)
+ (-1659 . 675266) (-1660 . 675099) (-1661 . 674928) (-1662 . 674876)
+ (-1663 . 674813) (-1664 . 674750) (-1665 . 674698) (-1666 . 674509)
+ (-1667 . 674355) (-1668 . 674275) (-1669 . 674195) (-1670 . 674115)
+ (-1671 . 673985) (-1672 . 673753) (-1673 . 673725) (-1674 . 673697)
+ (-1675 . 673616) (-1676 . 673526) (-1677 . 673448) (-1678 . 673361)
+ (-1679 . 673301) (-1680 . 673143) (-1681 . 672950) (-1682 . 672465)
+ (-1683 . 672223) (-1684 . 671961) (-1685 . 671860) (-1686 . 671779)
+ (-1687 . 671698) (-1688 . 671628) (-1689 . 671558) (-1690 . 671399)
+ (-1691 . 671095) (-1692 . 670852) (-1693 . 670728) (-1694 . 670669)
+ (-1695 . 670607) (-1696 . 670545) (-1697 . 670480) (-1698 . 670418)
+ (-1699 . 670139) (-1700 . 669929) (-1701 . 669655) (-1702 . 669084)
+ (-1703 . 668570) (-1704 . 668425) (-1705 . 668358) (-1706 . 668277)
+ (-1707 . 668196) (-1708 . 668094) (-1709 . 668020) (-1710 . 667939)
+ (-1711 . 667865) (-1712 . 667656) (-1713 . 667443) (-1714 . 667353)
+ (-1715 . 667286) (-1716 . 667150) (-1717 . 667083) (-1718 . 667001)
+ (-1719 . 666920) (-1720 . 666818) (-1721 . 666618) (-1722 . 666550)
+ (-1723 . 666308) (-1724 . 666057) (-1725 . 665815) (-1726 . 665573)
+ (-1727 . 665505) (-1728 . 665169) (-1729 . 664168) (-1730 . 663948)
+ (-1731 . 663867) (-1732 . 663793) (-1733 . 663719) (-1734 . 663645)
+ (-1735 . 663541) (-1736 . 663468) (-1737 . 663400) (-1738 . 663190)
+ (-1739 . 663138) (-1740 . 663083) (-1741 . 662993) (-1742 . 662906)
+ (-1743 . 661055) (-1744 . 660976) (-1745 . 660231) (-1746 . 660101)
+ (-1747 . 659894) (-1748 . 659732) (-1749 . 659570) (-1750 . 659409)
+ (-1751 . 659270) (-1752 . 659176) (-1753 . 659078) (-1754 . 658984)
+ (-1755 . 658869) (-1756 . 658784) (-1757 . 658686) (-1758 . 658490)
+ (-1759 . 658399) (-1760 . 658305) (-1761 . 658238) (-1762 . 658185)
+ (-1763 . 658132) (-1764 . 658079) (-1765 . 656941) (-1766 . 656431)
+ (-1767 . 656352) (-1768 . 656293) (-1769 . 656265) (-1770 . 656237)
+ (-1771 . 656178) (-1772 . 656065) (-1773 . 655688) (-1774 . 655635)
+ (-1775 . 655524) (-1776 . 655471) (-1777 . 655418) (-1778 . 655362)
+ (-1779 . 655306) (-1780 . 655141) (-1781 . 655071) (-1782 . 654976)
+ (-1783 . 654881) (-1784 . 654786) (-1785 . 654629) (-1786 . 654472)
+ (-1787 . 654319) (-1788 . 653561) (-1789 . 653308) (-1790 . 652997)
+ (-1791 . 652645) (-1792 . 652428) (-1793 . 652165) (-1794 . 651790)
+ (-1795 . 651606) (-1796 . 651472) (-1797 . 651306) (-1798 . 651140)
+ (-1799 . 651006) (-1800 . 650872) (-1801 . 650738) (-1802 . 650604)
+ (-1803 . 650473) (-1804 . 650342) (-1805 . 650211) (-1806 . 649828)
+ (-1807 . 649701) (-1808 . 649573) (-1809 . 649321) (-1810 . 649197)
+ (-1811 . 648945) (-1812 . 648821) (-1813 . 648569) (-1814 . 648445)
+ (-1815 . 648160) (-1816 . 647887) (-1817 . 647614) (-1818 . 647316)
+ (-1819 . 647214) (-1820 . 647069) (-1821 . 646928) (-1822 . 646777)
+ (-1823 . 646616) (-1824 . 646528) (-1825 . 646500) (-1826 . 646418)
+ (-1827 . 646321) (-1828 . 645853) (-1829 . 645502) (-1830 . 645069)
+ (-1831 . 644928) (-1832 . 644858) (-1833 . 644788) (-1834 . 644718)
+ (-1835 . 644627) (-1836 . 644536) (-1837 . 644445) (-1838 . 644354)
+ (-1839 . 644263) (-1840 . 644177) (-1841 . 644091) (-1842 . 644005)
+ (-1843 . 643919) (-1844 . 643833) (-1845 . 643759) (-1846 . 643654)
+ (-1847 . 643428) (-1848 . 643350) (-1849 . 643275) (-1850 . 643182)
+ (-1851 . 643078) (-1852 . 642982) (-1853 . 642813) (-1854 . 642736)
+ (-1855 . 642659) (-1856 . 642568) (-1857 . 642477) (-1858 . 642277)
+ (-1859 . 642122) (-1860 . 641967) (-1861 . 641812) (-1862 . 641657)
+ (-1863 . 641502) (-1864 . 641347) (-1865 . 641280) (-1866 . 641125)
+ (-1867 . 640970) (-1868 . 640815) (-1869 . 640660) (-1870 . 640505)
+ (-1871 . 640350) (-1872 . 640195) (-1873 . 640040) (-1874 . 639966)
+ (-1875 . 639892) (-1876 . 639837) (-1877 . 639782) (-1878 . 639727)
+ (-1879 . 639672) (-1880 . 639601) (-1881 . 639396) (-1882 . 639295)
+ (-1883 . 639104) (-1884 . 639011) (-1885 . 638874) (-1886 . 638737)
+ (-1887 . 638600) (-1888 . 638532) (-1889 . 638416) (-1890 . 638300)
+ (-1891 . 638184) (-1892 . 638131) (-1893 . 637934) (-1894 . 637849)
+ (-1895 . 637541) (-1896 . 637486) (-1897 . 636834) (-1898 . 636519)
+ (-1899 . 636235) (-1900 . 636116) (-1901 . 636064) (-1902 . 636012)
+ (-1903 . 635960) (-1904 . 635907) (-1905 . 635854) (-1906 . 635795)
+ (-1907 . 635682) (-1908 . 635569) (-1909 . 635511) (-1910 . 635453)
+ (-1911 . 635403) (-1912 . 635268) (-1913 . 635218) (-1914 . 635155)
+ (-1915 . 635095) (-1916 . 634498) (-1917 . 634438) (-1918 . 634271)
+ (-1919 . 634179) (-1920 . 634066) (-1921 . 633982) (-1922 . 633867)
+ (-1923 . 633776) (-1924 . 633685) (-1925 . 633496) (-1926 . 633441)
+ (-1927 . 633254) (-1928 . 633131) (-1929 . 633058) (-1930 . 632985)
+ (-1931 . 632865) (-1932 . 632792) (-1933 . 632719) (-1934 . 632646)
+ (-1935 . 632426) (-1936 . 632093) (-1937 . 631909) (-1938 . 631765)
+ (-1939 . 631404) (-1940 . 631236) (-1941 . 631068) (-1942 . 630812)
+ (-1943 . 630556) (-1944 . 630361) (-1945 . 630166) (-1946 . 629572)
+ (-1947 . 629496) (-1948 . 629358) (-1949 . 628956) (-1950 . 628829)
+ (-1951 . 628670) (-1952 . 628344) (-1953 . 627855) (-1954 . 627366)
+ (-1955 . 626848) (-1956 . 626780) (-1957 . 626709) (-1958 . 626638)
+ (-1959 . 626455) (-1960 . 626336) (-1961 . 626217) (-1962 . 626126)
+ (-1963 . 626035) (-1964 . 625743) (-1965 . 625621) (-1966 . 625569)
+ (-1967 . 625517) (-1968 . 625465) (-1969 . 625413) (-1970 . 625361)
+ (-1971 . 625212) (-1972 . 625031) (-1973 . 624791) (-1974 . 624596)
+ (-1975 . 624568) (-1976 . 624540) (-1977 . 624512) (-1978 . 624484)
+ (-1979 . 624456) (-1980 . 624428) (-1981 . 624400) (-1982 . 624348)
+ (-1983 . 624258) (-1984 . 624208) (-1985 . 624139) (-1986 . 624070)
+ (-1987 . 623965) (-1988 . 623594) (-1989 . 623443) (-1990 . 623292)
+ (-1991 . 623087) (-1992 . 622965) (-1993 . 622890) (-1994 . 622812)
+ (-1995 . 622737) (-1996 . 622659) (-1997 . 622581) (-1998 . 622506)
+ (-1999 . 622428) (-2000 . 622194) (-2001 . 622039) (-2002 . 621740)
+ (-2003 . 621585) (-2004 . 621259) (-2005 . 621119) (-2006 . 620979)
+ (-2007 . 620898) (-2008 . 620817) (-2009 . 620552) (-2010 . 619819)
+ (-2011 . 619682) (-2012 . 619591) (-2013 . 619454) (-2014 . 619386)
+ (-2015 . 619317) (-2016 . 619229) (-2017 . 619141) (-2018 . 618970)
+ (-2019 . 618896) (-2020 . 618752) (-2021 . 618292) (-2022 . 617912)
+ (-2023 . 617148) (-2024 . 617004) (-2025 . 616860) (-2026 . 616698)
+ (-2027 . 616460) (-2028 . 616319) (-2029 . 616172) (-2030 . 615933)
+ (-2031 . 615697) (-2032 . 615458) (-2033 . 615266) (-2034 . 615143)
+ (-2035 . 614939) (-2036 . 614716) (-2037 . 614477) (-2038 . 614336)
+ (-2039 . 614198) (-2040 . 614059) (-2041 . 613806) (-2042 . 613550)
+ (-2043 . 613393) (-2044 . 613239) (-2045 . 612998) (-2046 . 612713)
+ (-2047 . 612575) (-2048 . 612488) (-2049 . 611822) (-2050 . 611646)
+ (-2051 . 611464) (-2052 . 611288) (-2053 . 611106) (-2054 . 610927)
+ (-2055 . 610748) (-2056 . 610561) (-2057 . 610179) (-2058 . 610000)
+ (-2059 . 609821) (-2060 . 609634) (-2061 . 609252) (-2062 . 608259)
+ (-2063 . 607875) (-2064 . 607491) (-2065 . 607373) (-2066 . 607216)
+ (-2067 . 607074) (-2068 . 606956) (-2069 . 606774) (-2070 . 606650)
+ (-2071 . 606360) (-2072 . 606070) (-2073 . 605786) (-2074 . 605502)
+ (-2075 . 605223) (-2076 . 605135) (-2077 . 605050) (-2078 . 604951)
+ (-2079 . 604852) (-2080 . 604628) (-2081 . 604528) (-2082 . 604425)
+ (-2083 . 604347) (-2084 . 604022) (-2085 . 603730) (-2086 . 603657)
+ (-2087 . 603272) (-2088 . 603244) (-2089 . 603045) (-2090 . 602871)
+ (-2091 . 602630) (-2092 . 602575) (-2093 . 602499) (-2094 . 602128)
+ (-2095 . 602012) (-2096 . 601935) (-2097 . 601862) (-2098 . 601781)
+ (-2099 . 601700) (-2100 . 601619) (-2101 . 601518) (-2102 . 601459)
+ (-2103 . 601240) (-2104 . 601001) (-2105 . 600877) (-2106 . 600753)
+ (-2107 . 600526) (-2108 . 600473) (-2109 . 600418) (-2110 . 600086)
+ (-2111 . 599762) (-2112 . 599574) (-2113 . 599383) (-2114 . 599219)
+ (-2115 . 598884) (-2116 . 598717) (-2117 . 598476) (-2118 . 598148)
+ (-2119 . 597956) (-2120 . 597739) (-2121 . 597566) (-2122 . 597144)
+ (-2123 . 596917) (-2124 . 596646) (-2125 . 596508) (-2126 . 596367)
+ (-2127 . 595889) (-2128 . 595766) (-2129 . 595530) (-2130 . 595276)
+ (-2131 . 595026) (-2132 . 594731) (-2133 . 594590) (-2134 . 594246)
+ (-2135 . 594105) (-2136 . 593912) (-2137 . 593719) (-2138 . 593544)
+ (-2139 . 593270) (-2140 . 592835) (-2141 . 592761) (-2142 . 592600)
+ (-2143 . 592437) (-2144 . 592276) (-2145 . 592109) (-2146 . 592056)
+ (-2147 . 592003) (-2148 . 591874) (-2149 . 591814) (-2150 . 591761)
+ (-2151 . 591708) (-2152 . 591638) (-2153 . 591578) (-2154 . 591519)
+ (-2155 . 591459) (-2156 . 591400) (-2157 . 591340) (-2158 . 591281)
+ (-2159 . 591222) (-2160 . 591080) (-2161 . 590985) (-2162 . 590894)
+ (-2163 . 590778) (-2164 . 590684) (-2165 . 590586) (-2166 . 590492)
+ (-2167 . 590351) (-2168 . 590086) (-2169 . 589229) (-2170 . 589073)
+ (-2171 . 588704) (-2172 . 588648) (-2173 . 588596) (-2174 . 588493)
+ (-2175 . 588408) (-2176 . 588320) (-2177 . 588174) (-2178 . 588025)
+ (-2179 . 587735) (-2180 . 587657) (-2181 . 587582) (-2182 . 587529)
+ (-2183 . 587476) (-2184 . 587445) (-2185 . 587382) (-2186 . 587263)
+ (-2187 . 587174) (-2188 . 587054) (-2189 . 586759) (-2190 . 586565)
+ (-2191 . 586377) (-2192 . 586232) (-2193 . 586087) (-2194 . 585801)
+ (-2195 . 585356) (-2196 . 585322) (-2197 . 585285) (-2198 . 585248)
+ (-2199 . 585211) (-2200 . 585174) (-2201 . 585143) (-2202 . 585112)
+ (-2203 . 585081) (-2204 . 585047) (-2205 . 585013) (-2206 . 584958)
+ (-2207 . 584769) (-2208 . 584527) (-2209 . 584285) (-2210 . 584048)
+ (-2211 . 583996) (-2212 . 583941) (-2213 . 583871) (-2214 . 583782)
+ (-2215 . 583713) (-2216 . 583641) (-2217 . 583411) (-2218 . 583359)
+ (-2219 . 583304) (-2220 . 583273) (-2221 . 583167) (-2222 . 582934)
+ (-2223 . 582616) (-2224 . 582434) (-2225 . 582241) (-2226 . 581962)
+ (-2227 . 581889) (-2228 . 581824) (-2229 . 581796) (-2230 . 581746)
+ (-2231 . 580323) (-2232 . 579175) (-2233 . 578037) (-2234 . 577545)
+ (-2235 . 576967) (-2236 . 576225) (-2237 . 575648) (-2238 . 575004)
+ (-2239 . 574425) (-2240 . 574351) (-2241 . 574299) (-2242 . 574247)
+ (-2243 . 574173) (-2244 . 574118) (-2245 . 574066) (-2246 . 574014)
+ (-2247 . 573962) (-2248 . 573892) (-2249 . 573444) (-2250 . 573230)
+ (-2251 . 572973) (-2252 . 572631) (-2253 . 572369) (-2254 . 572059)
+ (-2255 . 571848) (-2256 . 571548) (-2257 . 570978) (-2258 . 570840)
+ (-2259 . 570637) (-2260 . 570356) (-2261 . 570270) (-2262 . 569925)
+ (-2263 . 569783) (-2264 . 569491) (-2265 . 569270) (-2266 . 569145)
+ (-2267 . 569021) (-2268 . 568875) (-2269 . 568732) (-2270 . 568617)
+ (-2271 . 568487) (-2272 . 568115) (-2273 . 567855) (-2274 . 567580)
+ (-2275 . 567340) (-2276 . 567010) (-2277 . 566665) (-2278 . 566257)
+ (-2279 . 565834) (-2280 . 565637) (-2281 . 565362) (-2282 . 565194)
+ (-2283 . 564993) (-2284 . 564771) (-2285 . 564616) (-2286 . 564423)
+ (-2287 . 564320) (-2288 . 564292) (-2289 . 564113) (-2290 . 564039)
+ (-2291 . 563978) (-2292 . 563925) (-2293 . 563856) (-2294 . 563786)
+ (-2295 . 563667) (-2296 . 563489) (-2297 . 563434) (-2298 . 563188)
+ (-2299 . 563098) (-2300 . 562908) (-2301 . 562835) (-2302 . 562765)
+ (-2303 . 562700) (-2304 . 562645) (-2305 . 562554) (-2306 . 562247)
+ (-2307 . 561902) (-2308 . 561828) (-2309 . 561506) (-2310 . 561299)
+ (-2311 . 561213) (-2312 . 561127) (-2313 . 561041) (-2314 . 560955)
+ (-2315 . 560869) (-2316 . 560783) (-2317 . 560697) (-2318 . 560611)
+ (-2319 . 560525) (-2320 . 560439) (-2321 . 560353) (-2322 . 560267)
+ (-2323 . 560181) (-2324 . 560095) (-2325 . 560009) (-2326 . 559923)
+ (-2327 . 559837) (-2328 . 559751) (-2329 . 559665) (-2330 . 559579)
+ (-2331 . 559493) (-2332 . 559407) (-2333 . 559321) (-2334 . 559235)
+ (-2335 . 559149) (-2336 . 559063) (-2337 . 558960) (-2338 . 558871)
+ (-2339 . 558661) (-2340 . 558602) (-2341 . 558546) (-2342 . 558457)
+ (-2343 . 558345) (-2344 . 558257) (-2345 . 558109) (-2346 . 557924)
+ (-2347 . 557760) (-2348 . 557593) (-2349 . 557408) (-2350 . 557187)
+ (-2351 . 557063) (-2352 . 556855) (-2353 . 556763) (-2354 . 556671)
+ (-2355 . 556535) (-2356 . 556440) (-2357 . 556345) (-2358 . 554829)
+ (-2359 . 554769) (-2360 . 554679) (-2361 . 554584) (-2362 . 554503)
+ (-2363 . 554196) (-2364 . 554001) (-2365 . 553908) (-2366 . 553802)
+ (-2367 . 553384) (-2368 . 553331) (-2369 . 553303) (-2370 . 553250)
+ (-2371 . 553075) (-2372 . 552998) (-2373 . 552809) (-2374 . 552629)
+ (-2375 . 552205) (-2376 . 552053) (-2377 . 551873) (-2378 . 551700)
+ (-2379 . 551438) (-2380 . 551186) (-2381 . 550375) (-2382 . 550206)
+ (-2383 . 549987) (-2384 . 549083) (-2385 . 548939) (-2386 . 548795)
+ (-2387 . 548651) (-2388 . 548507) (-2389 . 548363) (-2390 . 548219)
+ (-2391 . 548024) (-2392 . 547830) (-2393 . 547687) (-2394 . 547372)
+ (-2395 . 547257) (-2396 . 546917) (-2397 . 546757) (-2398 . 546618)
+ (-2399 . 546479) (-2400 . 546350) (-2401 . 546265) (-2402 . 546213)
+ (-2403 . 545725) (-2404 . 544447) (-2405 . 544332) (-2406 . 544203)
+ (-2407 . 543896) (-2408 . 543645) (-2409 . 543570) (-2410 . 543495)
+ (-2411 . 543420) (-2412 . 543361) (-2413 . 543290) (-2414 . 543237)
+ (-2415 . 543175) (-2416 . 543104) (-2417 . 542741) (-2418 . 542454)
+ (-2419 . 542343) (-2420 . 542250) (-2421 . 542157) (-2422 . 542070)
+ (-2423 . 541850) (-2424 . 541630) (-2425 . 541487) (-2426 . 541394)
+ (-2427 . 541251) (-2428 . 541099) (-2429 . 540945) (-2430 . 540874)
+ (-2431 . 540665) (-2432 . 540487) (-2433 . 540277) (-2434 . 540099)
+ (-2435 . 540065) (-2436 . 540031) (-2437 . 540000) (-2438 . 539882)
+ (-2439 . 539567) (-2440 . 539289) (-2441 . 539168) (-2442 . 539041)
+ (-2443 . 538956) (-2444 . 538883) (-2445 . 538793) (-2446 . 538722)
+ (-2447 . 538666) (-2448 . 538610) (-2449 . 538554) (-2450 . 538483)
+ (-2451 . 538412) (-2452 . 538341) (-2453 . 538262) (-2454 . 538184)
+ (-2455 . 538099) (-2456 . 537839) (-2457 . 537750) (-2458 . 537452)
+ (-2459 . 537354) (-2460 . 537276) (-2461 . 537198) (-2462 . 537055)
+ (-2463 . 536976) (-2464 . 536904) (-2465 . 536701) (-2466 . 536645)
+ (-2467 . 536457) (-2468 . 536358) (-2469 . 536240) (-2470 . 536119)
+ (-2471 . 535976) (-2472 . 535833) (-2473 . 535693) (-2474 . 535553)
+ (-2475 . 535410) (-2476 . 535283) (-2477 . 535153) (-2478 . 535029)
+ (-2479 . 534905) (-2480 . 534799) (-2481 . 534693) (-2482 . 534590)
+ (-2483 . 534440) (-2484 . 534287) (-2485 . 534134) (-2486 . 533990)
+ (-2487 . 533836) (-2488 . 533759) (-2489 . 533679) (-2490 . 533524)
+ (-2491 . 533444) (-2492 . 533364) (-2493 . 533284) (-2494 . 533181)
+ (-2495 . 533122) (-2496 . 533060) (-2497 . 532885) (-2498 . 532732)
+ (-2499 . 532579) (-2500 . 532405) (-2501 . 532213) (-2502 . 531914)
+ (-2503 . 531719) (-2504 . 531604) (-2505 . 531478) (-2506 . 531401)
+ (-2507 . 531269) (-2508 . 530963) (-2509 . 530780) (-2510 . 530235)
+ (-2511 . 530015) (-2512 . 529841) (-2513 . 529671) (-2514 . 529572)
+ (-2515 . 529473) (-2516 . 529255) (-2517 . 529153) (-2518 . 529080)
+ (-2519 . 529004) (-2520 . 528925) (-2521 . 528628) (-2522 . 528529)
+ (-2523 . 528367) (-2524 . 528133) (-2525 . 527691) (-2526 . 527561)
+ (-2527 . 527421) (-2528 . 527112) (-2529 . 526810) (-2530 . 526494)
+ (-2531 . 526088) (-2532 . 526020) (-2533 . 525952) (-2534 . 525884)
+ (-2535 . 525789) (-2536 . 525681) (-2537 . 525573) (-2538 . 525471)
+ (-2539 . 525369) (-2540 . 525267) (-2541 . 525189) (-2542 . 524865)
+ (-2543 . 524384) (-2544 . 523757) (-2545 . 523693) (-2546 . 523574)
+ (-2547 . 523455) (-2548 . 523347) (-2549 . 523239) (-2550 . 523083)
+ (-2551 . 522481) (-2552 . 522243) (-2553 . 522075) (-2554 . 521953)
+ (-2555 . 521555) (-2556 . 521319) (-2557 . 521118) (-2558 . 520910)
+ (-2559 . 520717) (-2560 . 520447) (-2561 . 520268) (-2562 . 520199)
+ (-2563 . 520123) (-2564 . 519982) (-2565 . 519779) (-2566 . 519635)
+ (-2567 . 519385) (-2568 . 519077) (-2569 . 518721) (-2570 . 518562)
+ (-2571 . 518356) (-2572 . 518196) (-2573 . 518123) (-2574 . 518004)
+ (-2575 . 517885) (-2576 . 517725) (-2577 . 517545) (-2578 . 517362)
+ (-2579 . 517264) (-2580 . 517166) (-2581 . 517065) (-2582 . 516961)
+ (-2583 . 516835) (-2584 . 516709) (-2585 . 516580) (-2586 . 516448)
+ (-2587 . 516350) (-2588 . 516252) (-2589 . 516151) (-2590 . 516050)
+ (-2591 . 515884) (-2592 . 515718) (-2593 . 515524) (-2594 . 515358)
+ (-2595 . 515190) (-2596 . 515019) (-2597 . 514854) (-2598 . 514689)
+ (-2599 . 514589) (-2600 . 514397) (-2601 . 514296) (-2602 . 514101)
+ (-2603 . 513851) (-2604 . 513606) (-2605 . 513284) (-2606 . 512896)
+ (-2607 . 512695) (-2608 . 512431) (-2609 . 511888) (-2610 . 511594)
+ (-2611 . 511457) (-2612 . 511211) (-2613 . 511007) (-2614 . 510900)
+ (-2615 . 510799) (-2616 . 510689) (-2617 . 510579) (-2618 . 510451)
+ (-2619 . 510344) (-2620 . 510240) (-2621 . 510084) (-2622 . 509950)
+ (-2623 . 509816) (-2624 . 509706) (-2625 . 509587) (-2626 . 509410)
+ (-2627 . 509276) (-2628 . 509139) (-2629 . 509008) (-2630 . 508898)
+ (-2631 . 508776) (-2632 . 508651) (-2633 . 508550) (-2634 . 508366)
+ (-2635 . 508192) (-2636 . 507993) (-2637 . 507819) (-2638 . 507703)
+ (-2639 . 507578) (-2640 . 507450) (-2641 . 507331) (-2642 . 507106)
+ (-2643 . 506935) (-2644 . 506764) (-2645 . 506587) (-2646 . 506435)
+ (-2647 . 506158) (-2648 . 505766) (-2649 . 505635) (-2650 . 505430)
+ (-2651 . 505247) (-2652 . 505063) (-2653 . 504934) (-2654 . 504830)
+ (-2655 . 504689) (-2656 . 504557) (-2657 . 504443) (-2658 . 504295)
+ (-2659 . 504156) (-2660 . 504055) (-2661 . 503951) (-2662 . 503844)
+ (-2663 . 503734) (-2664 . 503633) (-2665 . 503526) (-2666 . 503419)
+ (-2667 . 503306) (-2668 . 503199) (-2669 . 503086) (-2670 . 502955)
+ (-2671 . 502806) (-2672 . 502268) (-2673 . 502125) (-2674 . 501975)
+ (-2675 . 501852) (-2676 . 501748) (-2677 . 501644) (-2678 . 501537)
+ (-2679 . 501399) (-2680 . 501292) (-2681 . 501161) (-2682 . 501005)
+ (-2683 . 500732) (-2684 . 500585) (-2685 . 500382) (-2686 . 500281)
+ (-2687 . 500127) (-2688 . 500007) (-2689 . 499878) (-2690 . 499783)
+ (-2691 . 499695) (-2692 . 499607) (-2693 . 499519) (-2694 . 499431)
+ (-2695 . 499343) (-2696 . 499249) (-2697 . 499161) (-2698 . 499073)
+ (-2699 . 498985) (-2700 . 498897) (-2701 . 498809) (-2702 . 498721)
+ (-2703 . 498633) (-2704 . 498545) (-2705 . 498457) (-2706 . 498369)
+ (-2707 . 498231) (-2708 . 498093) (-2709 . 497973) (-2710 . 497853)
+ (-2711 . 497712) (-2712 . 497624) (-2713 . 497536) (-2714 . 497448)
+ (-2715 . 497360) (-2716 . 497222) (-2717 . 497084) (-2718 . 496996)
+ (-2719 . 496908) (-2720 . 496820) (-2721 . 496732) (-2722 . 496644)
+ (-2723 . 496556) (-2724 . 496465) (-2725 . 496371) (-2726 . 496277)
+ (-2727 . 496180) (-2728 . 496130) (-2729 . 496080) (-2730 . 496027)
+ (-2731 . 495773) (-2732 . 495724) (-2733 . 495674) (-2734 . 495640)
+ (-2735 . 495575) (-2736 . 495538) (-2737 . 495401) (-2738 . 495163)
+ (-2739 . 495092) (-2740 . 494906) (-2741 . 494657) (-2742 . 494499)
+ (-2743 . 493958) (-2744 . 493759) (-2745 . 493544) (-2746 . 493382)
+ (-2747 . 492983) (-2748 . 492816) (-2749 . 491741) (-2750 . 491618)
+ (-2751 . 491401) (-2752 . 491270) (-2753 . 491139) (-2754 . 490981)
+ (-2755 . 490877) (-2756 . 490818) (-2757 . 490759) (-2758 . 490653)
+ (-2759 . 490547) (-2760 . 489629) (-2761 . 487500) (-2762 . 486684)
+ (-2763 . 484879) (-2764 . 484811) (-2765 . 484743) (-2766 . 484675)
+ (-2767 . 484607) (-2768 . 484539) (-2769 . 484461) (-2770 . 484059)
+ (-2771 . 483703) (-2772 . 483521) (-2773 . 482992) (-2774 . 482816)
+ (-2775 . 482594) (-2776 . 482372) (-2777 . 482150) (-2778 . 481931)
+ (-2779 . 481712) (-2780 . 481493) (-2781 . 481274) (-2782 . 481055)
+ (-2783 . 480836) (-2784 . 480735) (-2785 . 480002) (-2786 . 479947)
+ (-2787 . 479892) (-2788 . 479837) (-2789 . 479782) (-2790 . 479632)
+ (-2791 . 479339) (-2792 . 479080) (-2793 . 479052) (-2794 . 479002)
+ (-2795 . 478410) (-2796 . 477876) (-2797 . 477427) (-2798 . 477255)
+ (-2799 . 477064) (-2800 . 476775) (-2801 . 476387) (-2802 . 475511)
+ (-2803 . 475169) (-2804 . 475000) (-2805 . 474777) (-2806 . 474526)
+ (-2807 . 474176) (-2808 . 473158) (-2809 . 472843) (-2810 . 472631)
+ (-2811 . 472064) (-2812 . 471548) (-2813 . 469770) (-2814 . 469298)
+ (-2815 . 468699) (-2816 . 468449) (-2817 . 468315) (-2818 . 467863)
+ (-2819 . 467374) (-2820 . 467014) (-2821 . 466731) (-2822 . 466616)
+ (-2823 . 466501) (-2824 . 466286) (-2825 . 466233) (-2826 . 466180)
+ (-2827 . 466128) (-2828 . 466076) (-2829 . 465984) (-2830 . 465913)
+ (-2831 . 465839) (-2832 . 465768) (-2833 . 465715) (-2834 . 465644)
+ (-2835 . 465591) (-2836 . 465538) (-2837 . 465485) (-2838 . 465432)
+ (-2839 . 465379) (-2840 . 465326) (-2841 . 465273) (-2842 . 465220)
+ (-2843 . 465167) (-2844 . 465114) (-2845 . 465061) (-2846 . 465008)
+ (-2847 . 464955) (-2848 . 464902) (-2849 . 464831) (-2850 . 464760)
+ (-2851 . 464688) (-2852 . 464616) (-2853 . 464541) (-2854 . 464488)
+ (-2855 . 464435) (-2856 . 464382) (-2857 . 464329) (-2858 . 464276)
+ (-2859 . 464223) (-2860 . 464170) (-2861 . 464117) (-2862 . 464064)
+ (-2863 . 464011) (-2864 . 463958) (-2865 . 463905) (-2866 . 463852)
+ (-2867 . 463799) (-2868 . 463747) (-2869 . 463695) (-2870 . 463642)
+ (-2871 . 463589) (-2872 . 463498) (-2873 . 463445) (-2874 . 463417)
+ (-2875 . 463389) (-2876 . 463361) (-2877 . 463333) (-2878 . 463255)
+ (-2879 . 463195) (-2880 . 463143) (-2881 . 463091) (-2882 . 463039)
+ (-2883 . 462987) (-2884 . 462935) (-2885 . 462131) (-2886 . 462054)
+ (-2887 . 461977) (-2888 . 461911) (-2889 . 461844) (-2890 . 461777)
+ (-2891 . 461720) (-2892 . 461644) (-2893 . 461576) (-2894 . 461505)
+ (-2895 . 461434) (-2896 . 461368) (-2897 . 461281) (-2898 . 461209)
+ (-2899 . 461102) (-2900 . 460916) (-2901 . 460747) (-2902 . 460567)
+ (-2903 . 459976) (-2904 . 459813) (-2905 . 459235) (-2906 . 459105)
+ (-2907 . 459030) (-2908 . 458664) (-2909 . 457985) (-2910 . 457807)
+ (-2911 . 457735) (-2912 . 457595) (-2913 . 457405) (-2914 . 457298)
+ (-2915 . 457191) (-2916 . 457075) (-2917 . 456959) (-2918 . 456843)
+ (-2919 . 456565) (-2920 . 456414) (-2921 . 456270) (-2922 . 456196)
+ (-2923 . 456110) (-2924 . 456036) (-2925 . 455962) (-2926 . 455888)
+ (-2927 . 455744) (-2928 . 455593) (-2929 . 455418) (-2930 . 455267)
+ (-2931 . 455116) (-2932 . 454989) (-2933 . 454600) (-2934 . 454314)
+ (-2935 . 454028) (-2936 . 453617) (-2937 . 453331) (-2938 . 453258)
+ (-2939 . 453111) (-2940 . 453005) (-2941 . 452931) (-2942 . 452861)
+ (-2943 . 452782) (-2944 . 452705) (-2945 . 452628) (-2946 . 452476)
+ (-2947 . 452373) (-2948 . 452276) (-2949 . 452179) (-2950 . 452019)
+ (-2951 . 451932) (-2952 . 451845) (-2953 . 451758) (-2954 . 451699)
+ (-2955 . 451640) (-2956 . 451507) (-2957 . 451448) (-2958 . 451278)
+ (-2959 . 451190) (-2960 . 451093) (-2961 . 451059) (-2962 . 451028)
+ (-2963 . 450944) (-2964 . 450888) (-2965 . 450826) (-2966 . 450792)
+ (-2967 . 450758) (-2968 . 450724) (-2969 . 450690) (-2970 . 450656)
+ (-2971 . 447903) (-2972 . 447869) (-2973 . 447835) (-2974 . 447801)
+ (-2975 . 447689) (-2976 . 447655) (-2977 . 447603) (-2978 . 447569)
+ (-2979 . 447472) (-2980 . 447410) (-2981 . 447319) (-2982 . 447228)
+ (-2983 . 447173) (-2984 . 447121) (-2985 . 447069) (-2986 . 447017)
+ (-2987 . 446965) (-2988 . 446541) (-2989 . 446375) (-2990 . 446322)
+ (-2991 . 446253) (-2992 . 446200) (-2993 . 445970) (-2994 . 445814)
+ (-2995 . 445293) (-2996 . 445152) (-2997 . 445118) (-2998 . 445063)
+ (-2999 . 444352) (-3000 . 444037) (-3001 . 443532) (-3002 . 443454)
+ (-3003 . 443402) (-3004 . 443350) (-3005 . 443166) (-3006 . 443114)
+ (-3007 . 443062) (-3008 . 442986) (-3009 . 442924) (-3010 . 442706)
+ (-3011 . 442451) (-3012 . 442384) (-3013 . 442290) (-3014 . 442196)
+ (-3015 . 442013) (-3016 . 441931) (-3017 . 441809) (-3018 . 441687)
+ (-3019 . 441541) (-3020 . 440886) (-3021 . 440179) (-3022 . 440075)
+ (-3023 . 439974) (-3024 . 439873) (-3025 . 439762) (-3026 . 439594)
+ (-3027 . 439388) (-3028 . 439295) (-3029 . 439218) (-3030 . 439162)
+ (-3031 . 439091) (-3032 . 438971) (-3033 . 438870) (-3034 . 438772)
+ (-3035 . 438692) (-3036 . 438612) (-3037 . 438535) (-3038 . 438464)
+ (-3039 . 438393) (-3040 . 438322) (-3041 . 438251) (-3042 . 438180)
+ (-3043 . 438109) (-3044 . 438016) (-3045 . 437821) (-3046 . 437577)
+ (-3047 . 437407) (-3048 . 437035) (-3049 . 436866) (-3050 . 436750)
+ (-3051 . 436246) (-3052 . 435864) (-3053 . 435618) (-3054 . 435189)
+ (-3055 . 435097) (-3056 . 435000) (-3057 . 431710) (-3058 . 430890)
+ (-3059 . 430777) (-3060 . 430703) (-3061 . 430611) (-3062 . 430417)
+ (-3063 . 430223) (-3064 . 430152) (-3065 . 430081) (-3066 . 430000)
+ (-3067 . 429919) (-3068 . 429794) (-3069 . 429660) (-3070 . 429579)
+ (-3071 . 429505) (-3072 . 429340) (-3073 . 429181) (-3074 . 428950)
+ (-3075 . 428802) (-3076 . 428698) (-3077 . 428594) (-3078 . 428509)
+ (-3079 . 428141) (-3080 . 428060) (-3081 . 427973) (-3082 . 427892)
+ (-3083 . 427646) (-3084 . 427426) (-3085 . 427239) (-3086 . 426917)
+ (-3087 . 426624) (-3088 . 426331) (-3089 . 426021) (-3090 . 425704)
+ (-3091 . 425575) (-3092 . 425387) (-3093 . 424914) (-3094 . 424832)
+ (-3095 . 424617) (-3096 . 424402) (-3097 . 424143) (-3098 . 423712)
+ (-3099 . 423191) (-3100 . 423061) (-3101 . 422787) (-3102 . 422608)
+ (-3103 . 422493) (-3104 . 422389) (-3105 . 422334) (-3106 . 422257)
+ (-3107 . 422187) (-3108 . 422114) (-3109 . 422059) (-3110 . 421986)
+ (-3111 . 421931) (-3112 . 421576) (-3113 . 421168) (-3114 . 421015)
+ (-3115 . 420862) (-3116 . 420781) (-3117 . 420628) (-3118 . 420475)
+ (-3119 . 420340) (-3120 . 420205) (-3121 . 420070) (-3122 . 419935)
+ (-3123 . 419800) (-3124 . 419665) (-3125 . 419609) (-3126 . 419456)
+ (-3127 . 419345) (-3128 . 419234) (-3129 . 419166) (-3130 . 419056)
+ (-3131 . 418953) (-3132 . 414802) (-3133 . 414354) (-3134 . 413927)
+ (-3135 . 413310) (-3136 . 412709) (-3137 . 412491) (-3138 . 412313)
+ (-3139 . 412053) (-3140 . 411642) (-3141 . 411348) (-3142 . 410905)
+ (-3143 . 410727) (-3144 . 410334) (-3145 . 409941) (-3146 . 409756)
+ (-3147 . 409549) (-3148 . 409328) (-3149 . 409022) (-3150 . 408823)
+ (-3151 . 408194) (-3152 . 408037) (-3153 . 407646) (-3154 . 407594)
+ (-3155 . 407545) (-3156 . 407493) (-3157 . 407444) (-3158 . 407392)
+ (-3159 . 407246) (-3160 . 407194) (-3161 . 407048) (-3162 . 406996)
+ (-3163 . 406850) (-3164 . 406798) (-3165 . 406423) (-3166 . 406371)
+ (-3167 . 406322) (-3168 . 406270) (-3169 . 406221) (-3170 . 406169)
+ (-3171 . 406120) (-3172 . 406068) (-3173 . 406019) (-3174 . 405967)
+ (-3175 . 405918) (-3176 . 405852) (-3177 . 405734) (-3178 . 404572)
+ (-3179 . 404155) (-3180 . 404047) (-3181 . 403802) (-3182 . 403653)
+ (-3183 . 403504) (-3184 . 403337) (-3185 . 401086) (-3186 . 400809)
+ (-3187 . 400655) (-3188 . 400509) (-3189 . 400363) (-3190 . 400144)
+ (-3191 . 400012) (-3192 . 399937) (-3193 . 399862) (-3194 . 399727)
+ (-3195 . 399597) (-3196 . 399467) (-3197 . 399340) (-3198 . 399213)
+ (-3199 . 399086) (-3200 . 398959) (-3201 . 398856) (-3202 . 398756)
+ (-3203 . 398662) (-3204 . 398532) (-3205 . 398381) (-3206 . 398002)
+ (-3207 . 397887) (-3208 . 397644) (-3209 . 397181) (-3210 . 396868)
+ (-3211 . 396300) (-3212 . 395730) (-3213 . 394718) (-3214 . 394175)
+ (-3215 . 393862) (-3216 . 393524) (-3217 . 393193) (-3218 . 392873)
+ (-3219 . 392820) (-3220 . 392693) (-3221 . 392164) (-3222 . 391007)
+ (-3223 . 390952) (-3224 . 390897) (-3225 . 390821) (-3226 . 390702)
+ (-3227 . 390627) (-3228 . 390552) (-3229 . 390474) (-3230 . 390323)
+ (-3231 . 390231) (-3232 . 390161) (-3233 . 390069) (-3234 . 389999)
+ (-3235 . 389907) (-3236 . 389837) (-3237 . 389745) (-3238 . 389675)
+ (-3239 . 389620) (-3240 . 389550) (-3241 . 389430) (-3242 . 389375)
+ (-3243 . 389305) (-3244 . 389271) (-3245 . 389237) (-3246 . 389140)
+ (-3247 . 389043) (-3248 . 388825) (-3249 . 388547) (-3250 . 388397)
+ (-3251 . 388267) (-3252 . 388137) (-3253 . 388037) (-3254 . 387860)
+ (-3255 . 387700) (-3256 . 387600) (-3257 . 387423) (-3258 . 387263)
+ (-3259 . 387104) (-3260 . 386965) (-3261 . 386815) (-3262 . 386685)
+ (-3263 . 386555) (-3264 . 386408) (-3265 . 386281) (-3266 . 386178)
+ (-3267 . 386071) (-3268 . 385974) (-3269 . 385809) (-3270 . 385661)
+ (-3271 . 385232) (-3272 . 385132) (-3273 . 385029) (-3274 . 384941)
+ (-3275 . 384861) (-3276 . 384711) (-3277 . 384581) (-3278 . 384529)
+ (-3279 . 384439) (-3280 . 384327) (-3281 . 384014) (-3282 . 383833)
+ (-3283 . 382222) (-3284 . 381589) (-3285 . 381529) (-3286 . 381411)
+ (-3287 . 381293) (-3288 . 381149) (-3289 . 380994) (-3290 . 380833)
+ (-3291 . 380672) (-3292 . 380464) (-3293 . 380275) (-3294 . 380120)
+ (-3295 . 379962) (-3296 . 379804) (-3297 . 379649) (-3298 . 379509)
+ (-3299 . 379083) (-3300 . 378955) (-3301 . 378827) (-3302 . 378699)
+ (-3303 . 378556) (-3304 . 378413) (-3305 . 378271) (-3306 . 378126)
+ (-3307 . 377373) (-3308 . 377213) (-3309 . 377025) (-3310 . 376868)
+ (-3311 . 376628) (-3312 . 376381) (-3313 . 376134) (-3314 . 375923)
+ (-3315 . 375784) (-3316 . 375573) (-3317 . 375283) (-3318 . 375072)
+ (-3319 . 374933) (-3320 . 374722) (-3321 . 374416) (-3322 . 374271)
+ (-3323 . 374129) (-3324 . 373905) (-3325 . 373763) (-3326 . 373538)
+ (-3327 . 373339) (-3328 . 373182) (-3329 . 372852) (-3330 . 372692)
+ (-3331 . 372532) (-3332 . 372372) (-3333 . 372200) (-3334 . 372028)
+ (-3335 . 371853) (-3336 . 371501) (-3337 . 371307) (-3338 . 371145)
+ (-3339 . 371071) (-3340 . 370997) (-3341 . 370923) (-3342 . 370849)
+ (-3343 . 370775) (-3344 . 370701) (-3345 . 370577) (-3346 . 370403)
+ (-3347 . 370279) (-3348 . 370193) (-3349 . 370127) (-3350 . 370061)
+ (-3351 . 369995) (-3352 . 369929) (-3353 . 369863) (-3354 . 369797)
+ (-3355 . 369731) (-3356 . 369665) (-3357 . 369599) (-3358 . 369533)
+ (-3359 . 369467) (-3360 . 369401) (-3361 . 369335) (-3362 . 369269)
+ (-3363 . 369203) (-3364 . 369137) (-3365 . 369071) (-3366 . 369005)
+ (-3367 . 368939) (-3368 . 368873) (-3369 . 368807) (-3370 . 368741)
+ (-3371 . 368675) (-3372 . 368609) (-3373 . 368543) (-3374 . 368477)
+ (-3375 . 367828) (-3376 . 367179) (-3377 . 367051) (-3378 . 366928)
+ (-3379 . 366805) (-3380 . 366664) (-3381 . 366509) (-3382 . 366365)
+ (-3383 . 366190) (-3384 . 365552) (-3385 . 365429) (-3386 . 365305)
+ (-3387 . 364627) (-3388 . 363929) (-3389 . 363828) (-3390 . 363772)
+ (-3391 . 363716) (-3392 . 363660) (-3393 . 363604) (-3394 . 363545)
+ (-3395 . 363481) (-3396 . 363373) (-3397 . 363265) (-3398 . 363157)
+ (-3399 . 362878) (-3400 . 362804) (-3401 . 362578) (-3402 . 362496)
+ (-3403 . 362417) (-3404 . 362338) (-3405 . 362259) (-3406 . 362179)
+ (-3407 . 362100) (-3408 . 362006) (-3409 . 361905) (-3410 . 361836)
+ (-3411 . 361786) (-3412 . 361093) (-3413 . 360443) (-3414 . 359650)
+ (-3415 . 359568) (-3416 . 359463) (-3417 . 359370) (-3418 . 359277)
+ (-3419 . 359202) (-3420 . 359127) (-3421 . 359052) (-3422 . 358996)
+ (-3423 . 358940) (-3424 . 358873) (-3425 . 358806) (-3426 . 358743)
+ (-3427 . 358352) (-3428 . 357850) (-3429 . 357383) (-3430 . 357128)
+ (-3431 . 356937) (-3432 . 356593) (-3433 . 356295) (-3434 . 356125)
+ (-3435 . 355993) (-3436 . 355852) (-3437 . 354767) (-3438 . 354611)
+ (-3439 . 354441) (-3440 . 353047) (-3441 . 352909) (-3442 . 352763)
+ (-3443 . 352532) (-3444 . 352262) (-3445 . 352202) (-3446 . 352145)
+ (-3447 . 352088) (-3448 . 351875) (-3449 . 351735) (-3450 . 351627)
+ (-3451 . 351509) (-3452 . 351442) (-3453 . 351368) (-3454 . 351253)
+ (-3455 . 350996) (-3456 . 350894) (-3457 . 350696) (-3458 . 350380)
+ (-3459 . 349906) (-3460 . 349799) (-3461 . 349691) (-3462 . 349540)
+ (-3463 . 349398) (-3464 . 348979) (-3465 . 348729) (-3466 . 348052)
+ (-3467 . 347897) (-3468 . 347782) (-3469 . 347671) (-3470 . 346841)
+ (-3471 . 346788) (-3472 . 346735) (-3473 . 346539) (-3474 . 345184)
+ (-3475 . 344733) (-3476 . 343331) (-3477 . 342468) (-3478 . 342418)
+ (-3479 . 342368) (-3480 . 342318) (-3481 . 342250) (-3482 . 342174)
+ (-3483 . 341970) (-3484 . 341897) (-3485 . 341821) (-3486 . 341748)
+ (-3487 . 341630) (-3488 . 341578) (-3489 . 341498) (-3490 . 341418)
+ (-3491 . 341338) (-3492 . 341286) (-3493 . 341039) (-3494 . 340721)
+ (-3495 . 340636) (-3496 . 340551) (-3497 . 340489) (-3498 . 340099)
+ (-3499 . 339224) (-3500 . 338648) (-3501 . 337410) (-3502 . 336600)
+ (-3503 . 336348) (-3504 . 336096) (-3505 . 335669) (-3506 . 335423)
+ (-3507 . 335177) (-3508 . 334931) (-3509 . 334685) (-3510 . 334439)
+ (-3511 . 334193) (-3512 . 333946) (-3513 . 333699) (-3514 . 333452)
+ (-3515 . 333205) (-3516 . 332775) (-3517 . 332657) (-3518 . 331811)
+ (-3519 . 331779) (-3520 . 331431) (-3521 . 331204) (-3522 . 331104)
+ (-3523 . 331004) (-3524 . 329234) (-3525 . 329120) (-3526 . 328065)
+ (-3527 . 327972) (-3528 . 326980) (-3529 . 326645) (-3530 . 326310)
+ (-3531 . 326205) (-3532 . 326118) (-3533 . 326089) (-3534 . 326032)
+ (-3535 . 325952) (-3536 . 325880) (-3537 . 325805) (-3538 . 325730)
+ (-3539 . 325698) (-3540 . 325666) (-3541 . 325634) (-3542 . 325602)
+ (-3543 . 325570) (-3544 . 325538) (-3545 . 325506) (-3546 . 325474)
+ (-3547 . 325445) (-3548 . 325332) (-3549 . 325219) (-3550 . 325106)
+ (-3551 . 324993) (-3552 . 323904) (-3553 . 323782) (-3554 . 323645)
+ (-3555 . 323511) (-3556 . 323377) (-3557 . 323080) (-3558 . 322783)
+ (-3559 . 322435) (-3560 . 322205) (-3561 . 321975) (-3562 . 321862)
+ (-3563 . 321749) (-3564 . 316468) (-3565 . 312095) (-3566 . 311783)
+ (-3567 . 311628) (-3568 . 311100) (-3569 . 310767) (-3570 . 310570)
+ (-3571 . 310373) (-3572 . 310176) (-3573 . 309979) (-3574 . 309863)
+ (-3575 . 309737) (-3576 . 309621) (-3577 . 309505) (-3578 . 309410)
+ (-3579 . 309315) (-3580 . 309202) (-3581 . 308996) (-3582 . 307839)
+ (-3583 . 307744) (-3584 . 307628) (-3585 . 307533) (-3586 . 307284)
+ (-3587 . 307171) (-3588 . 306953) (-3589 . 306834) (-3590 . 306533)
+ (-3591 . 305761) (-3592 . 305178) (-3593 . 304684) (-3594 . 304436)
+ (-3595 . 304188) (-3596 . 303889) (-3597 . 303275) (-3598 . 302827)
+ (-3599 . 302670) (-3600 . 302524) (-3601 . 302198) (-3602 . 302040)
+ (-3603 . 301897) (-3604 . 301754) (-3605 . 301611) (-3606 . 301330)
+ (-3607 . 301108) (-3608 . 300581) (-3609 . 300366) (-3610 . 300151)
+ (-3611 . 299763) (-3612 . 299583) (-3613 . 299371) (-3614 . 299061)
+ (-3615 . 298860) (-3616 . 298678) (-3617 . 297524) (-3618 . 297135)
+ (-3619 . 296925) (-3620 . 296712) (-3621 . 295869) (-3622 . 295840)
+ (-3623 . 295771) (-3624 . 295700) (-3625 . 295533) (-3626 . 295504)
+ (-3627 . 295475) (-3628 . 295419) (-3629 . 295258) (-3630 . 295198)
+ (-3631 . 294502) (-3632 . 293324) (-3633 . 293263) (-3634 . 293039)
+ (-3635 . 292967) (-3636 . 292910) (-3637 . 292853) (-3638 . 292796)
+ (-3639 . 292739) (-3640 . 292664) (-3641 . 292072) (-3642 . 291713)
+ (-3643 . 291638) (-3644 . 291578) (-3645 . 291460) (-3646 . 290509)
+ (-3647 . 290382) (-3648 . 290169) (-3649 . 290094) (-3650 . 290040)
+ (-3651 . 289921) (-3652 . 289812) (-3653 . 289499) (-3654 . 289391)
+ (-3655 . 289288) (-3656 . 289127) (-3657 . 289026) (-3658 . 288928)
+ (-3659 . 288790) (-3660 . 288652) (-3661 . 288514) (-3662 . 288252)
+ (-3663 . 288042) (-3664 . 287904) (-3665 . 287615) (-3666 . 287462)
+ (-3667 . 287183) (-3668 . 286961) (-3669 . 286808) (-3670 . 286655)
+ (-3671 . 286502) (-3672 . 286349) (-3673 . 286196) (-3674 . 286040)
+ (-3675 . 285921) (-3676 . 285530) (-3677 . 285195) (-3678 . 284850)
+ (-3679 . 284499) (-3680 . 284154) (-3681 . 283809) (-3682 . 283422)
+ (-3683 . 283035) (-3684 . 282648) (-3685 . 282277) (-3686 . 281547)
+ (-3687 . 281196) (-3688 . 280742) (-3689 . 280313) (-3690 . 279696)
+ (-3691 . 279095) (-3692 . 278703) (-3693 . 278367) (-3694 . 277975)
+ (-3695 . 277639) (-3696 . 277417) (-3697 . 276890) (-3698 . 276675)
+ (-3699 . 276460) (-3700 . 276244) (-3701 . 276064) (-3702 . 275848)
+ (-3703 . 275668) (-3704 . 275280) (-3705 . 275100) (-3706 . 274888)
+ (-3707 . 274798) (-3708 . 274708) (-3709 . 274617) (-3710 . 274530)
+ (-3711 . 274440) (-3712 . 274359) (-3713 . 274170) (-3714 . 274114)
+ (-3715 . 274033) (-3716 . 273952) (-3717 . 273871) (-3718 . 273736)
+ (-3719 . 273601) (-3720 . 273477) (-3721 . 273356) (-3722 . 273238)
+ (-3723 . 273102) (-3724 . 272969) (-3725 . 272850) (-3726 . 272591)
+ (-3727 . 272306) (-3728 . 272234) (-3729 . 272142) (-3730 . 272050)
+ (-3731 . 271964) (-3732 . 271866) (-3733 . 271749) (-3734 . 271608)
+ (-3735 . 271551) (-3736 . 271494) (-3737 . 271434) (-3738 . 271037)
+ (-3739 . 270513) (-3740 . 270235) (-3741 . 269814) (-3742 . 269701)
+ (-3743 . 269259) (-3744 . 269027) (-3745 . 268824) (-3746 . 268642)
+ (-3747 . 268512) (-3748 . 268306) (-3749 . 268099) (-3750 . 267908)
+ (-3751 . 267343) (-3752 . 267087) (-3753 . 266796) (-3754 . 266502)
+ (-3755 . 266205) (-3756 . 265905) (-3757 . 265775) (-3758 . 265642)
+ (-3759 . 265506) (-3760 . 265367) (-3761 . 264088) (-3762 . 263763)
+ (-3763 . 263382) (-3764 . 263269) (-3765 . 263015) (-3766 . 262719)
+ (-3767 . 262423) (-3768 . 262162) (-3769 . 261987) (-3770 . 261908)
+ (-3771 . 261820) (-3772 . 261719) (-3773 . 261624) (-3774 . 261542)
+ (-3775 . 261470) (-3776 . 260669) (-3777 . 260597) (-3778 . 260265)
+ (-3779 . 260193) (-3780 . 259861) (-3781 . 259789) (-3782 . 259340)
+ (-3783 . 259268) (-3784 . 259163) (-3785 . 259088) (-3786 . 259013)
+ (-3787 . 258941) (-3788 . 258598) (-3789 . 258468) (-3790 . 258391)
+ (-3791 . 257842) (-3792 . 257699) (-3793 . 257556) (-3794 . 257058)
+ (-3795 . 256712) (-3796 . 256484) (-3797 . 256214) (-3798 . 255834)
+ (-3799 . 255594) (-3800 . 255354) (-3801 . 255114) (-3802 . 254874)
+ (-3803 . 254646) (-3804 . 254418) (-3805 . 254266) (-3806 . 254082)
+ (-3807 . 253977) (-3808 . 253854) (-3809 . 253746) (-3810 . 253638)
+ (-3811 . 253311) (-3812 . 253045) (-3813 . 252733) (-3814 . 252428)
+ (-3815 . 252118) (-3816 . 251383) (-3817 . 250788) (-3818 . 250611)
+ (-3819 . 250466) (-3820 . 250311) (-3821 . 250188) (-3822 . 250083)
+ (-3823 . 249968) (-3824 . 249869) (-3825 . 249385) (-3826 . 249275)
+ (-3827 . 249165) (-3828 . 249055) (-3829 . 247951) (-3830 . 247436)
+ (-3831 . 247369) (-3832 . 247295) (-3833 . 246422) (-3834 . 246348)
+ (-3835 . 246292) (-3836 . 246236) (-3837 . 246204) (-3838 . 246118)
+ (-3839 . 246086) (-3840 . 246000) (-3841 . 245576) (-3842 . 245152)
+ (-3843 . 244595) (-3844 . 243483) (-3845 . 241759) (-3846 . 240197)
+ (-3847 . 239401) (-3848 . 238897) (-3849 . 238405) (-3850 . 237997)
+ (-3851 . 237337) (-3852 . 237262) (-3853 . 237190) (-3854 . 237118)
+ (-3855 . 237076) (-3856 . 236954) (-3857 . 236514) (-3858 . 236074)
+ (-3859 . 235634) (-3860 . 235112) (-3861 . 234947) (-3862 . 234782)
+ (-3863 . 234471) (-3864 . 234384) (-3865 . 234294) (-3866 . 233936)
+ (-3867 . 233819) (-3868 . 233738) (-3869 . 233579) (-3870 . 233465)
+ (-3871 . 233390) (-3872 . 232538) (-3873 . 231352) (-3874 . 231252)
+ (-3875 . 231152) (-3876 . 230811) (-3877 . 230732) (-3878 . 230656)
+ (-3879 . 230549) (-3880 . 230391) (-3881 . 230283) (-3882 . 230147)
+ (-3883 . 230011) (-3884 . 229888) (-3885 . 229792) (-3886 . 229643)
+ (-3887 . 229547) (-3888 . 229392) (-3889 . 229237) (-3890 . 228557)
+ (-3891 . 227877) (-3892 . 227134) (-3893 . 226566) (-3894 . 225998)
+ (-3895 . 225430) (-3896 . 224749) (-3897 . 224068) (-3898 . 223387)
+ (-3899 . 222818) (-3900 . 222249) (-3901 . 221680) (-3902 . 221112)
+ (-3903 . 220544) (-3904 . 219976) (-3905 . 219408) (-3906 . 218840)
+ (-3907 . 218272) (-3908 . 218168) (-3909 . 217579) (-3910 . 217473)
+ (-3911 . 217397) (-3912 . 217254) (-3913 . 217161) (-3914 . 217068)
+ (-3915 . 216975) (-3916 . 216876) (-3917 . 216770) (-3918 . 216646)
+ (-3919 . 216522) (-3920 . 216155) (-3921 . 216032) (-3922 . 215930)
+ (-3923 . 215566) (-3924 . 215032) (-3925 . 214956) (-3926 . 214880)
+ (-3927 . 214787) (-3928 . 214604) (-3929 . 214508) (-3930 . 214432)
+ (-3931 . 214339) (-3932 . 214246) (-3933 . 214083) (-3934 . 213522)
+ (-3935 . 212961) (-3936 . 210164) (-3937 . 209991) (-3938 . 208527)
+ (-3939 . 207965) (-3940 . 207766) (-12 . 207594) (-3942 . 207422)
+ (-3943 . 207250) (-3944 . 207078) (-3945 . 206906) (-3946 . 206734)
+ (-3947 . 206562) (-3948 . 206447) (-3949 . 206177) (-3950 . 206114)
+ (-3951 . 206051) (-3952 . 205988) (-3953 . 205710) (-3954 . 205443)
+ (-3955 . 205390) (-3956 . 204625) (-3957 . 204574) (-3958 . 204381)
+ (-3959 . 204308) (-3960 . 204228) (-3961 . 204115) (-3962 . 203925)
+ (-3963 . 203561) (-3964 . 203289) (-3965 . 203238) (-3966 . 203187)
+ (-3967 . 203117) (-3968 . 202998) (-3969 . 202969) (-3970 . 202867)
+ (-3971 . 202745) (-3972 . 202691) (-3973 . 202514) (-3974 . 202453)
+ (-3975 . 202272) (-3976 . 202211) (-3977 . 202139) (-3978 . 201664)
+ (-3979 . 201289) (-3980 . 198005) (-3981 . 197952) (-3982 . 197824)
+ (-3983 . 197672) (-3984 . 197619) (-3985 . 197477) (-3986 . 195619)
+ (-3987 . 186262) (-3988 . 186111) (-3989 . 186041) (-3990 . 185990)
+ (-3991 . 185940) (-3992 . 185889) (-3993 . 185838) (-3994 . 185640)
+ (-3995 . 185497) (-3996 . 185383) (-3997 . 185262) (-3998 . 185144)
+ (-3999 . 185032) (-4000 . 184914) (-4001 . 184809) (-4002 . 184728)
+ (-4003 . 184624) (-4004 . 183687) (-4005 . 183467) (-4006 . 183230)
+ (-4007 . 183148) (-4008 . 182801) (-4009 . 182727) (-4010 . 182632)
+ (-4011 . 182558) (-4012 . 182356) (-4013 . 182265) (-4014 . 182149)
+ (-4015 . 182036) (-4016 . 181945) (-4017 . 181854) (-4018 . 181764)
+ (-4019 . 181674) (-4020 . 181584) (-4021 . 181496) (-4022 . 179134)
+ (-4023 . 179066) (-4024 . 179012) (-4025 . 178887) (-4026 . 178823)
+ (-4027 . 178698) (-4028 . 178579) (-4029 . 177811) (-4030 . 177750)
+ (-4031 . 177631) (-4032 . 176879) (-4033 . 176826) (-4034 . 176698)
+ (-4035 . 176634) (-4036 . 176580) (-4037 . 176471) (-4038 . 175148)
+ (-4039 . 175066) (-4040 . 174976) (-4041 . 174918) (-4042 . 174653)
+ (-4043 . 174568) (-4044 . 174493) (-4045 . 174408) (-4046 . 174351)
+ (-4047 . 174135) (-4048 . 173993) (-4049 . 173258) (-4050 . 172688)
+ (-4051 . 172118) (-4052 . 171548) (-4053 . 170813) (-4054 . 170131)
+ (-4055 . 169539) (-4056 . 168947) (-4057 . 168669) (-4058 . 168214)
+ (-4059 . 167865) (-4060 . 167507) (-4061 . 167183) (-4062 . 167050)
+ (-4063 . 166917) (-4064 . 166585) (-4065 . 166476) (-4066 . 166367)
+ (-4067 . 166258) (-4068 . 166149) (-4069 . 166040) (-4070 . 165931)
+ (-4071 . 165822) (-4072 . 165713) (-4073 . 165604) (-4074 . 165495)
+ (-4075 . 165386) (-4076 . 165277) (-4077 . 165168) (-4078 . 165059)
+ (-4079 . 164950) (-4080 . 164841) (-4081 . 164732) (-4082 . 164623)
+ (-4083 . 164514) (-4084 . 164405) (-4085 . 164296) (-4086 . 164187)
+ (-4087 . 164078) (-4088 . 163969) (-4089 . 163860) (-4090 . 163662)
+ (-4091 . 163347) (-4092 . 161776) (-4093 . 161621) (-4094 . 161483)
+ (-4095 . 161340) (-4096 . 161137) (-4097 . 159182) (-4098 . 159054)
+ (-4099 . 158929) (-4100 . 158801) (-4101 . 158577) (-4102 . 158353)
+ (-4103 . 158225) (-4104 . 158022) (-4105 . 157843) (-4106 . 157316)
+ (-4107 . 156789) (-4108 . 156508) (-4109 . 156090) (-4110 . 155563)
+ (-4111 . 155378) (-4112 . 155235) (-4113 . 154735) (-4114 . 154093)
+ (-4115 . 154037) (-4116 . 153943) (-4117 . 153822) (-4118 . 153751)
+ (-4119 . 153677) (-4120 . 153446) (-4121 . 152821) (-4122 . 152389)
+ (-4123 . 152307) (-4124 . 152165) (-4125 . 151687) (-4126 . 151565)
+ (-4127 . 151443) (-4128 . 151303) (-4129 . 151116) (-4130 . 151000)
+ (-4131 . 150739) (-4132 . 150670) (-4133 . 150471) (-4134 . 150312)
+ (-4135 . 150157) (-4136 . 150050) (-4137 . 149999) (-4138 . 149615)
+ (-4139 . 149214) (-4140 . 149024) (-4141 . 148834) (-4142 . 148593)
+ (-4143 . 148502) (-4144 . 146687) (-4145 . 146098) (-4146 . 146019)
+ (-4147 . 140550) (-4148 . 139759) (-4149 . 139380) (-4150 . 139308)
+ (-4151 . 139119) (-4152 . 138944) (-4153 . 138454) (-4154 . 138032)
+ (-4155 . 137592) (-4156 . 136728) (-4157 . 136604) (-4158 . 136477)
+ (-4159 . 136368) (-4160 . 136216) (-4161 . 136102) (-4162 . 135963)
+ (-4163 . 135881) (-4164 . 135799) (-4165 . 135691) (-4166 . 135271)
+ (-4167 . 134847) (-4168 . 134772) (-4169 . 134506) (-4170 . 134239)
+ (-4171 . 133856) (-4172 . 133155) (-4173 . 133095) (-4174 . 133020)
+ (-4175 . 132945) (-4176 . 132822) (-4177 . 132570) (-4178 . 132483)
+ (-4179 . 132407) (-4180 . 132331) (-4181 . 132235) (-4182 . 128271)
+ (-4183 . 127089) (-4184 . 126425) (-4185 . 126238) (-4186 . 124015)
+ (-4187 . 123689) (-4188 . 123308) (-4189 . 122864) (-4190 . 122629)
+ (-4191 . 122381) (-4192 . 122290) (-4193 . 120794) (-4194 . 120715)
+ (-4195 . 120609) (-4196 . 119073) (-4197 . 118660) (-4198 . 118243)
+ (-4199 . 118141) (-4200 . 118059) (-4201 . 117901) (-4202 . 116602)
+ (-4203 . 116520) (-4204 . 116441) (-4205 . 116086) (-4206 . 116029)
+ (-4207 . 115957) (-4208 . 115900) (-4209 . 115843) (-4210 . 115713)
+ (-4211 . 115509) (-4212 . 115140) (-4213 . 114718) (-4214 . 109645)
+ (-4215 . 109042) (-4216 . 108414) (-4217 . 108199) (-4218 . 107984)
+ (-4219 . 107816) (-4220 . 107601) (-4221 . 107433) (-4222 . 107265)
+ (-4223 . 107097) (-4224 . 106929) (-4225 . 104786) (-4226 . 104514)
+ (-4227 . 97577) (** . 94514) (-4229 . 94094) (-4230 . 93846) (-4231 . 93789)
+ (-4232 . 93291) (-4233 . 90386) (-4234 . 90236) (-4235 . 90072)
+ (-4236 . 89908) (-4237 . 89812) (-4238 . 89694) (-4239 . 89570)
+ (-4240 . 89427) (-4241 . 89256) (-4242 . 89129) (-4243 . 88984)
+ (-4244 . 88831) (-4245 . 88671) (-4246 . 88185) (-4247 . 88095)
+ (-4248 . 87427) (-4249 . 87233) (-4250 . 87137) (-4251 . 86827)
+ (-4252 . 85651) (-4253 . 85444) (-4254 . 84267) (-4255 . 84192)
+ (-4256 . 83011) (-4257 . 79406) (-4258 . 79042) (-4259 . 78765)
+ (-4260 . 78673) (-4261 . 78580) (-4262 . 78303) (-4263 . 78210)
+ (-4264 . 78117) (-4265 . 78024) (-4266 . 77640) (-4267 . 77569)
+ (-4268 . 77477) (-4269 . 77319) (-4270 . 76965) (-4271 . 76807)
+ (-4272 . 76699) (-4273 . 76670) (-4274 . 76603) (-4275 . 76449)
+ (-4276 . 76290) (-4277 . 75896) (-4278 . 75821) (-4279 . 75715)
+ (-4280 . 75643) (-4281 . 75565) (-4282 . 75492) (-4283 . 75419)
+ (-4284 . 75346) (-4285 . 75274) (-4286 . 75202) (-4287 . 75129)
+ (-4288 . 74888) (-4289 . 74548) (-4290 . 74400) (-4291 . 74327)
+ (-4292 . 74254) (-4293 . 74181) (-4294 . 73927) (-4295 . 73783)
+ (-4296 . 72447) (-4297 . 72253) (-4298 . 71982) (-4299 . 71834)
+ (-4300 . 71686) (-4301 . 71446) (-4302 . 71251) (-4303 . 70981)
+ (-4304 . 70785) (-4305 . 70756) (-4306 . 70655) (-4307 . 70554)
+ (-4308 . 70453) (-4309 . 70352) (-4310 . 70251) (-4311 . 70150)
+ (-4312 . 70049) (-4313 . 69948) (-4314 . 69847) (-4315 . 69746)
+ (-4316 . 69631) (-4317 . 69516) (-4318 . 69465) (-4319 . 69348)
+ (-4320 . 69290) (-4321 . 69189) (-4322 . 69088) (-4323 . 68987)
+ (-4324 . 68871) (-4325 . 68842) (-4326 . 68110) (-4327 . 67985)
+ (-4328 . 67860) (-4329 . 67720) (-4330 . 67602) (-4331 . 67477)
+ (-4332 . 67322) (-4333 . 66339) (-4334 . 65480) (-4335 . 65426)
+ (-4336 . 65372) (-4337 . 65164) (-4338 . 64790) (-4339 . 64376)
+ (-4340 . 64015) (-4341 . 63654) (-4342 . 63501) (-4343 . 63199)
+ (-4344 . 63043) (-4345 . 62717) (-4346 . 62646) (-4347 . 62575)
+ (-4348 . 62363) (-4349 . 61556) (-4350 . 61350) (-4351 . 60976)
+ (-4352 . 60456) (-4353 . 60188) (-4354 . 59638) (-4355 . 59088)
+ (-4356 . 58962) (-4357 . 57733) (-4358 . 56527) (-4359 . 55925)
+ (-4360 . 55707) (-4361 . 37148) (-4362 . 36962) (-4363 . 34862)
+ (-4364 . 32687) (-4365 . 32539) (-4366 . 32357) (-4367 . 31949)
+ (-4368 . 31648) (-4369 . 31297) (-4370 . 31129) (-4371 . 30961)
+ (-4372 . 30647) (-4373 . 16686) (-4374 . 15566) (* . 11070) (-4376 . 10814)
+ (-4377 . 10628) (-4378 . 9623) (-4379 . 9354) (-4380 . 8719) (-4381 . 7437)
+ (-4382 . 6178) (-4383 . 5298) (-4384 . 4032) (-4385 . 382) (-4386 . 280)
+ (-4387 . 160) (-4388 . 30)) \ No newline at end of file